
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Montague’s Intensional Logic for Computational Semantics of
Human Language

av

Axel Ljungström

2018 - No K16

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Montague’s Intensional Logic for Computational Semantics of
Human Language

Axel Ljungström

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Roussanka Loukanova

2018

Abstract

This thesis concerns methods of rendering human language expressions

into mathematical logic as a means of representing meaning in a compu-

tational manner. In particular, the work aims to show how rendering into

Montague’s intensional logic can circumvent some of the problems with

rendering into first-order predicate logic. The first part presents some

necessary preliminaries regarding formal grammar in computational lin-

guistics. The second part considers first-order predicate logic for semantic

representations of human language and includes comments both on its ad-

vantages and its disadvantages for such purposes. In the third and final

part, Montague’s intensional logic is presented together with a Montago-

vian grammar AGr. Rules for rendering human language into the logic are

introduced and are used to resolve some of the problems with rendering

into first-order predicate logic.

1

Acknowledgements

I would like to thank my supervisor Roussanka Loukanova for all the

time and energy she has devoted to helping me with this thesis. I could

not have asked for someone more helpful and dedicated. I would also like

to thank Erik Palmgren for his valuable feedback.

2

Contents

1 Introduction 4

2 Languages 4
2.1 Context-Free Grammars . 4
2.2 Syntactic Properties of the English Language 7

2.2.1 Syntactic Categories . 7
2.2.2 Context Free Rules . 9
2.2.3 Tree Structures . 11

2.3 Semantic Properties of English 12

3 First-Order Logic 13
3.1 Syntax . 13
3.2 Semantics . 16
3.3 Substitution . 20
3.4 Advantages of L

1

. 24
3.5 Complex Individual Terms . 25
3.6 Limitations of First-Order Logics 26

3.6.1 Predicate Modification . 26
3.6.2 Quantification . 28
3.6.3 Tense . 29
3.6.4 Modality . 29
3.6.5 Intensionality . 30

4 Montague Intensional Logic 31
4.1 Syntax . 32
4.2 Semantics . 34
4.3 Some Features of �-Calculus . 40
4.4 Down-Up Cancellation . 42
4.5 L

IL

in Grammar of Human Language 43
4.5.1 Syntactic Categories and Basic Expressions of a Montago-

vian Grammar . 43
4.5.2 Type-Lift Rules . 46

4.6 Montagovian Grammar AGr . 52
4.6.1 Syntax of a Fragment of English 52
4.6.2 Compositional Rendering of English into L

IL

. 56
4.6.3 Restricting the Models of L

IL

. 63
4.7 Rendering English into L

IL

. 64
4.7.1 Predication . 64
4.7.2 Quantification . 65
4.7.3 Tense . 70
4.7.4 Modality . 70
4.7.5 Intensionality . 71

5 Summary and Outlook 72

3

1 Introduction

One of the most important ideas to come out of the invention of predicate
logic was that semantics of human language (HL) sentences can be treated
mathematically, using mathematical logic.

In this essay, I take on the task of investigating some of the initial and fun-
damental ideas of computational approaches to rendering HL expressions into
mathematical logic for semantic representations. I shall present two of the most
influential theories of the 20th century — rendering into first order predicate
logic (FOL) and rendering into Montague Intensional Logic, see Montague [12].
Both approaches have had an important impact on the development of compu-
tational semantics of HL. My goal is to show that FOL can serve as a basis of
formal semantics of HL, but that it needs to be radically extended if it is to cap-
ture many vital semantic aspects. My intention is to illustrate that a significant
achievement in this direction was made, for the first time, by Montague [12]. In
the final part of the essay, I shall have a short section on more contemporary
approaches to computational semantics of HL.

2 Languages

Before we can say anything about renderings of languages we need to establish
what a language is. A language is defined in Definition 2.1–2.4, see Hopcroft,
Motwani and Ullman [5].

Definition 2.1. Let ⌃ = {s
1

, s

2

, . . . , s

n

} be a set containing n � 1 (fixed)
di↵erent symbols s

i

. We call ⌃ an alphabet.

Definition 2.2. Let x

1

, x

2

, . . . , x

k

2 ⌃ for some fixed k � 0. We then call
x

1

x

2

. . . x

k

a string. When k = 0 we refer to the empty string. We denote this
✏.

Notation 1. The set of strings of length k � 0 formed by the alphabet ⌃ is
denoted ⌃k. We let ⌃0 = {✏}.

Definition 2.3. Let ⌃⇤ =
S
k�0

⌃k. We call this the Kleene closure of ⌃.

Definition 2.4. Let L ✓ ⌃⇤. We then say L is a language.

Any human language is a language in this formal sense. English, in its most
simple form, is the language consisting of the alphabet ⌃ = {a, b, c, . . . , x, y, z}
where the formation rule for each ⌃k is that all the strings in ⌃k are also well-
formed English language words.

2.1 Context-Free Grammars

One of the central ideas in computational linguistics is that of a context-free

grammar (CFG). A CFG is, intuitively, a system of generative rules that define

4

which strings over a given alphabet are to be generated as strings of the lan-
guage in question. The rules applied during the generation of a string define its
syntactic structure.

Formally, we define a CFG as follows, see Hopcroft, Motwani and Ullman [5]:

Definition 2.5. A context-free grammar is any tuple G = (V, T, P, S), where:

1. V is a finite set of nonterminals, also called syntactic categories (partic-
ularly, when the grammar is related to HL), each of which represents its
own language. In English, an example is the syntactic category IV, i.e.
the language of intransitive verbs

2. T , the terminals, is the alphabet which is used to form the strings in each
category of V

3. P is a finite set of rules. A rule is on the form C ! X

1

, . . . , X

n

where
C 2 V is the head of the rule, ! is the rule symbol and each X

i

2 V [T

4. S is a special nonterminal in V called the start symbol. The start symbol
can be thought of as denoting the major syntactic category

Definition 2.6. Let ↵�� 2 (V [⌃)⇤. If there is a rule � ! � in P , we write
↵��) ↵�� and call this a derivation from ↵�� to ↵��. If B can be derived
from A using 0 or more derivations we simply write A)⇤

B, see Aho and
Ullman [1].

Definition 2.7. Let G = (V, T, P, S) be a context-free grammar. We say
L(G) = {w 2 T

⇤ | S)⇤
w} is a language over G.

Example 2.1. Consider the following grammar:

G = ({N,I,S}, {0, 1, . . . , 9},P, S) (1)

where P contains the following rules:

S ! N

N ! NI

N ! ✏

I ! 0 | 1 | 2 | . . . | 9

(2)

Now, L(G) will contain any string of natural numbers. Consider for instance
this derivation of the string 132:

S) N (3a)

) N2 (3b)

) N32 (3c)

) N132 (3d)

) ✏132 = 132 (3e)

5

Despite their computation power, CFGs are limited. Consider the following
example:

Example 2.2. G = ({S,N}, {a, b, c,+,�},P, S) where P consists of the follow-
ing rules:

S ! N

N ! N+ N

N ! N� N

N ! a | b | c

(4)

We now have a� b+ c 2 L(G). There are two derivations of this. We describe
these using the following trees:

S

N

N

a

- N

N

b

+ N

c

(5)

S

N

N

N

a

- N

b

+ N

c

(6)

Cases like (5)–(6) constitute a serious limitation of basic CFGs. L(G) only
takes into account which expressions can be rendered and not how they are
rendered. If a computer were to implement a grammar as the above to treat
basic arithmetic we would run into problems. Replace, for instance, a by 2, b
by 2 and c by 1. In (5), the bottom right subtree represents adding 2 to 1, i.e.
3. This is then subtracted from a. So (5) represents 2 � (2 + 1). In the same
manner, (6) represents (2 � 2) + 1. Consequently, we interpret 2 � (2 + 1) in
the same way as we interpret (2� 2) + 1 which, obviously, constitutes a severe
problem if our grammar is to represent some system of arithmetic. Often, we
are not interested only in the fact that a string can be derived but also in which
way the string is derived. We say that grammars that give rise to more than
one derivation of one string is ambiguous. To eliminate these ambiguities we
make the following definition:

6

Definition 2.8. Let G be a CFG. We define the language of derivation trees
DerTree(G) as follows:

1. Every vertex is labelled with some w 2 V [T [{✏}.

2. The root is labelled S

3. The internal vertices are labelled only with elements V

4. If v is a vertex labelled X, v
1

, . . . , v

n

are its daughters, labelled X

1

, . . . , X

n

respectively, then X ! X

1

, . . . , X

n

is a rule in P

5. If a vertex is labelled ✏ it is

(a) a leaf

(b) the only daughter of its parent

See Hopcroft and Ullman [6].

We shall refer to the tree grammar DerTree(G) of G as a phrase structure

grammar of G and our goal is, essentially, to construct a grammar G which
gives rise to a grammar DerTree(G) whose elements correspond English language
expressions in a way that respects their phrase structure.

2.2 Syntactic Properties of the English Language

We have now covered the necessary preliminaries to state some of the syntactic
properties of the baby-version of English we are going to consider in this essay.
We do this in the style of a CFG which we endow with a phrase structure.

2.2.1 Syntactic Categories

In Table 1 we introduce a number of syntactic categories which, with sim-
plifications, correspond to established syntactic structures in theoretical and
computational linguistics. I want to stress that this is an incredibly simplified
version of only a small fraction of English. First, it will treat some phrases such
as, for instance, “believe that” and “attempt to” as (compound) words when
clearly they are in fact more complex constructions. Furthermore, there are
many other linguistic features that CFGs cannot handle in a satisfactory way.
For instance, if we were to use a CFG to attack the problems of plural/singular
agreement and gender agreement, we would be required to add a large number
of new rules and categories which are alien to common linguistic practice. For
linguistic details of English syntax, see Sag et al. [16] and Kim and Sells [8].
For a more computational perspective, using methods of mathematical logic, see
Loukanova [9–11]. For a given formal grammar G and a HL L, we say that (a) G
undergenerates L, when grammatical expressions of L are not in the language
G(L) generated by G; (b) G overgenerates L, when G generates expressions
that are not in L. The toy CFG, which we present here, both undergenerates
and overgenerates English language, with respect to English syntax. That is,

7

it both fails to generate many correct grammatical expressions and succeeds
in generating many ungrammatical expressions. It is important to point out
these details. However, for our purposes they can be ignored. The grammar we
are presenting is only intended to serve as a simple introduction of some of the
fundamental concepts in the syntax of human language. We shall see that this
will be needed especially in Section 4.

Syntactic Category Description (Example) Words
S Sentence –
NP Noun Phrase John, he, she
N Common Noun boy, cat
IV Intransitive Verb smokes, sings
VP Verb Phrase runs away
TV Transitive Verb gives
Det Determiner the, some, every
P Preposition by, on
PP Preposition Phrase under the bridge
Adj Adjective blue, ugly
Adv Adverb rapidly, helplessly
AdjP Adjective Phrase silly and blue
SAdv Sentence Adverb possibly
SCP Sentence-Complement Verb believe that, wish that
ICP Infinitive-Complement Verb try to, attempt to
Conj Coordinators and, or
Neg Negation does not

Table 1: Toy Context Free Grammar

S, the sentence category, is to play the role of our initial symbol, by standard
terminology in formal grammars.

Let us, for the rest of the essay, restrict ourselves to the following set � of ba-
sic words, as a lexicon, partitioned into sets of words of syntactic categories that
are parts of speech (POS). I.e., the lexicon � is categorised by POS categories:
common nouns (N), intransitive verbs (IV), transitive verbs (TV) determiners
(Det), prepositions (P), (premodifying) adjectives (Adj), adverbs (Adv), sen-
tence adverbs (SAdv), sentence-compliment verbs (SCP), infinitive-complement
verbs (ICP), coordinators (Conj) and negations (Neg). For detailed, grammat-
ical information about POS and syntactic categories see Huddleston and Pul-
lum [7].

� =L

N

[L

NNP [L

IV

[L

TV

[L

Det

[L

P

[L

Adj

[L

Adv

[L

SAdv

[
L

SCP

[L

ICP

[L

Conj

[L

Neg

(7)

where L

N

is the set of the words, of POS noun (N), generated by the rule (8a);
L

NNP is the set of the proper names generated by the rule (8b); etc.

N ! cat | boy | . . . (8a)

8

N
NP

! Serge | Jacques | he | she | he | it | . . . (8b)

IV ! sing(s) | smoke(s) | will sing | will smoke | sang | smoked | . . . (8c)

TV ! is taller than | writes | . . . (8d)

P ! by | under | . . . (8e)

Conj ! and | or | . . . (8f)

Det ! some | every | the | . . . (8g)

Adv ! well | rapidly | . . . (8h)

Adj ! silly | blue | . . . (8i)

SAdv ! necessarily | possibly | . . . (8j)

SCP ! thinks that | . . . (8k)

ICP ! tries to | . . . (8l)

Neg ! does not | . . . (8m)

2.2.2 Context Free Rules

We now introduce a set of context free rules, called the phrase structure rules

presented as follows in (9a)–(9t). Together, (8a)–(8m) and (9a)–(9t), are the
rules of a CFG, which we use in this thesis to generate a small fragment of
English.

Phrase Structure Rules

S ! NP VP (9a)

S ! SCP S (9b)

S ! SAdv S (9c)

S ! S Conj-S (9d)

Conj-S ! Conj S (9e)

NP ! N
NP

(9f)

NP ! Det N (9g)

NP ! NP Conj-NP (9h)

Conj-NP ! Conj NP (9i)

VP ! IV (9j)

VP ! IV PP (9k)

VP ! IV Adv (9l)

VP ! TV NP (9m)

VP ! ICP VP (9n)

VP ! Neg VP (9o)

VP ! VP Conj-VP (9p)

Conj-VP ! Conj VP (9q)

9

PP ! P NP (9r)

Adj ! Neg Adj (9s)

AdjP ! AdjP Conj-AdjP (9t)

Conj-AdjP ! Conj AdjP (9u)

Note that the words in the set �, in (7), are the terminal symbols of our
CFG, or simply, words 1 for our purposes here. The rules (8a)–(8m) are called
its terminal rules, in terminology of formal grammars, or lexical rules, in the
terminology of computational and formal grammars of HL. The rules (9a)–(9u)
are called phrasal rules.

I’m stressing here that the rules above are only to be regarded as an introduc-

tory idea of how developing a computational grammar of HL can be approached.
Our CF rules generate expressions of HL and , simultaneously, assign syntac-
tic categories to the generated expressions. Hence, the derivations by our CF
rules endow the generated expressions with an internal syntactic structure. In
addition, CFGs are a good source of algorithms for parsing expressions into tree-
structure analyses. This is a well-established standard approach in foundations
of parsers in computer science and computational linguistics, see Hopcroft and
Ullman [6].

Subcategorisation Here, I explain briefly an important technique for remov-
ing some overgeneration for CFGs. This was was among the first realisations
in computational grammar of human language. The rules (8a), (8b) and (9f)
showcase this technique.

If we were to place the proper nouns and common nouns together in a
set L

N

= {Serge, Jacques, cat, boy, . . . } of POS N (which would be generated
by the rule N ! Serge, Jacques, cat, boy, . . .), then our CFG would generate
ungrammatical expressions such as “The Serge sings”.

The technique that we use to deal with this problem is called subcategorisa-

tion. What this means is that syntactic categories, which share some common
feature, are split into subcategories. This is what happens in our CFG where
we have the following division of POS N:

1. N, in (8a), is our syntactic POS category of words that may be incomplete
NP

2. N
NP

, in (8b), is the syntactic POS category of words that are NPs, whilst
also of nominal POS

Our CFG does, however, still su↵er from some overgeneration — it lacks
mechanisms to handle grammatical agreement between the major verb of a
sentence, i.e., the grammatical head verb in a sentence, and its subject NP, as

1In computational linguistics, the notion of a word is a more complex.

10

shown in (10)–(12):

* overgeneration *

S) NP VP

) NP Conj-NP VP

) NP Conj NP VP

) NP Conj NP IV

) N
NP

Conj NP IV

) N
NP

Conj Det N IV

) · · ·) Serge and the cat sings

(10)

* overgeneration *

S) NP VP

) NP IV

) N
NP

IV

) · · ·) Serge sing

(11)

* overgeneration *

S) NP VP

) NP VP Conj-VP

) NP VP Conj VP

) NP IV Conj VP

) NP IV Conj IV

) N
NP

IV Conj IV

) · · ·) Serge sing and smokes

(12)

Concerning such problems of overgeneration, recall the explanation in Sec-
tion 2.2.1.

For more detailed and developed grammars similar to ours that intend, in
a computation way, to treat these problems, see Sag et al. [16] and Kim and
Sells [8] (linguistic explanations) and Loukanova [10, 11] (using mathematical
logic). Here, we leave the semantics of plurals for future work.

2.2.3 Tree Structures

We note that the above rules make it possible to analyse the generation of
sentences by trees, called phrase structures, alternatively, tree structures, which
correspond to the CF rules. For instance, (9a) can be represented by (13):

S

NP VP

(13)

If we are not interested in the internal structure of a certain subtree we shall
replace it by a triangle.

Example 2.3. We give the phrase structure for the following sentences:

11

(a) Serge sings

S

NP

N
NP

Serge

VP

IV

sings

(14)

(b) Some singers smoke

S

NP

Det

Some

N

singers

VP

IV

smoke

(15)

(c) Jacques smokes and Serge sings

S

S

Jacques smokes

Conj-S

Conj

and

S

Serge sings

(16)

2.3 Semantic Properties of English

Before we attempt to integrate the semantics of English with the syntax of En-
glish we must make clear what we mean by “semantics”. Roughly speaking,
semantics is the study of meaning. It is an integral part of any language. Let us
consider an example from mathematics. When we write e

i⇡ = �1 we immedi-
ately see from the syntax of our mathematical system that, unlike e=i

⇡ = (�)1,
this is a well-formed expression. It is, however, not the fact that e

i⇡ = �1
is well-formed that makes it interesting. Clearly, it carries with it some other
information. Said in a very simplified way, it is this information that we call the
meaning of the expression. The exact same thing applies to HL. Formally, the
English language sentence “Serge loves to smoke” is just a collection of strings
from some subset of some Kleene closure based on some alphabet ⌃. Still, it
is clear to us that this sentence tells us something more - it tells us that Serge
loves to smoke. Therefore, we say that the meaning of “Serge loves to smoke”
is the condition which needs to be satisfied for the sentence to be true.2

We make the following assumptions:
2This truth-conditional framework is largely due to Tarski [17] and Davidson [2]

12

An1 The semantic value of a sentence is a truth value (i.e. 1 or 0). The meaning
of a sentence is its truth-conditions

An2 The semantic value of a sentence is determined by the semantic values of
its components and the way its components are composed. This is known
as Frege’s principle or the principle of compositionality

An3 The semantic values of modal expressions, e.g., sentences that include
adverbs such as “necessarily” and “possibly”, are evaluated with respect
to a set of possible worlds. So, informally, “Necessarily, it is raining” is
true i↵ it is raining in all possible worlds

The above assumptions are necessary for our project to succeed. It should be
noted that An1, An2 and, especially, An3 have been criticised, primarily on
philosophical, but also on linguistic and computational grounds. Nevertheless,
they have been standard starting points in mathematical foundations of compu-
tational semantics. Since this is an essay in mathematics and not in philosophy,
I shall take them as valuable starting point.

3 First-Order Logic

In this part of the essay we consider rendering English into FOL. This approach,
we shall see, will not take us all the way but it lays the foundation of any
more advanced approach. In particular, it is fundamental to understand how
renderings into FOL work and in what way they are limited to be able to
appreciate the theories presented in Section 4.

3.1 Syntax

Here we present the formal syntax for an initial choice of a language of FOL,
L

1

. We start by giving a traditional definition, by induction:

Syntax of L
1

1. The formal syntax of L
1

syntactic categories Const

L1 , PredSymb

L1
, Vars

and Formulae

L1

(i) Const

L1
:⌘ {c

0

, c

1

, . . . , c

n

}, for a fixed n 2 N, is the set of individual
constants, which we also call (individual) names

(ii) PredSymb

L1
:⌘ {P i1

1

, . . . , P

im
m

}, for a fixed m 2 N, is the set of pred-
icate symbols, i.e., predicate constants, where, for each j = 1, . . . ,m,
P

ij

j

is a predicate symbol of arity i

j

2 N
(iii) Vars

:⌘ {x
0

, x

1

, x

2

, . . . } is a countable set of symbols, called the
variables of L

1

13

We also require:

Const

L1 \PredSymb

L1
= Const

L1 \Vars = PredSymb

L1
\Vars = ? (17)

We refer to the objects of categories (i)–(ii) as non-logical constants and
to the objects in categories (i) and (iii) as individual terms:

Terms

L1
:⌘ Const

L1 [Vars (18)

2. Formulae

L1 , the set of formulae of L
1

, is defined recursively, as follows:

Definition 3.1 (Formulae of L
1

).

(i) If P is a predicate symbol of arity n, i.e., P 2 PredSymb

n

, and
t

1

, . . . , t

n

are individual terms, i.e., t

1

, . . . , t

n

2 Terms

L1 (which
are not necessarily distinct), then P (t

1

, . . . , t

n

) is a formula, called
atomic formula.

(ii) If ' is a formula, then ¬' is a formula

(iii) If ' and are formulas, then (' ^) is a formula

(iv) If ' and are formulas, then (' _) is a formula

(v) If ' and are formulas, then ('!) is a formula

(vi) If ' and are formulas, then ('$) is a formula

(vii) If ' is a formula and x is a variable, then 8x' is a formula

(viii) If ' is a formula and x is a variable, then 9x' is a formula.

(ix) If t
1

and t

2

are idividual terms, i.e. t

1

, t

2

2 Terms

L1 , then (t
1

= t

2

)
is a formula

Note that I will very often use metavariables, such as ' and in Definition 3.1
(i)–(viii) above, for the objects of the language in question. For instance, I
will often use P or bold-face words such as sing, smoke, etc., instead of P i

j

to
represent predicate symbols and x, y and z to represent variables. Also note
the following notational agreement

Notation 2. I will often use the typical = as equivalence depending on the
context of discussion. Often, when a and b are expressions of some language L,
I will use a = b to say that a is on the form of b.

From now on, I will define large parts of the syntax of a given language by
using Backus Normal Form BNF-style of recursive definitions.

Notation 3. The symbol := is used in:

1. variable assignments

2. special recursion terms

14

The symbol :⌘ is used for definitional introductions, definitions in BNF style,
and in the syntactic operator of formal substitution (replacement).

Notation 4. For any language L, the set Formulae

L

of the formulae of L de-
pends on the choice of the sets Const

L

and PredSymb

L

. We omit the subscript
and write Formulae, Const and PredSymb, by assuming a given language L.

Definition 3.2. The set of predicate symbols of arity i 2 N is:

PredSymb

i

:⌘ {P i

1

, . . . , P

i

mi
}, for i,m

i

2 N (19)

Of course then, by Definition 3.2 we have:

PredSymb =
[

i�1

PredSymb

i

(20)

Formulae of L
1

(BNF)-Style. Definition 3.1 (ii)–(viii) of the set Formulae

L1

of the formulae of L
1

is given in BNF-style by Definition 3.3, (21a)–(21c).

Definition 3.3 (Formulae of L
1

in BNF-Style). Given that t
1

, . . . , t

n

2 Terms,
P

i 2 PredSymb

i

, the set of the formulae Formulae

L1 is defined by the recursive
rules (21a)–(21c):

� :⌘ P

i(t
1

, . . . , t

i

) | (t
i

= t

j

) | (21a)

¬' | (' ^) | (' _) | ('!) | ('$) | (21b)

9x' | 8x' (21c)

Notation 5. Sometimes, we omit parentheses when there is no risk for confu-
sion.

Definition 3.4. For every formula ' 2 Formulae, we define the set FreeV(') of
the free variables of ' and the set BoundV(') of the bound variables of ' by
structural induction over the Definition 3.3 of the formulae of L

1

:

1. If c 2 Const, then FreeV(c) = BoundV(c) = ?

2. If x 2 Vars, then FreeV(x) = {x} and BoundV(x) = ?

3. If ' = P (t
1

, . . . , t

n

), where P 2 PredSymb

n

and t

1

, . . . , t

n

2 Terms, then
FreeV(') =

S
n

i=1

FreeV(t
i

), and BoundV(') = ?

4. If ' = ¬ , where 2 Formulae, then FreeV(') = FreeV() and
BoundV(') = BoundV()

5. If ' = (⇤ ⇠), where , ⇠ 2 Formulae and ⇤ is either ^, _, !, $, or =,
then FreeV(') = FreeV() [FreeV(⇠) and
BoundV(') = BoundV() [BoundV(⇠)� FreeV() [FreeV(⇠)

15

6. If ' = Qx where 2 Formulae, x 2 Vars, and Q is either 8 or 9, then
FreeV(') = FreeV()� {x} and BoundV(') = BoundV() [{x}
We say that the formula is in the scope of the quantifier Qx in Qx ,
and that, the quantifier Qx binds all free occurrences of x in

Definition 3.5. If ' 2 Formulae we define the set of variables of ' as:

Var(') := FreeV(') [BoundV(') (22)

Definition 3.6. For each occurrence of Qx 2 Formulae in a formula
' 2 Formulae, where x 2 Vars, and Q is either 8 or 9, the formula is the
scope of the quantifier Qx in that occurrence. In Qx , all free occurrences of
all variables y 2 FreeV() in are in the scope of Qx.

Definition 3.7. If ' 2 Formulae we call ' a sentence i↵ FreeV(') = ?.

Therefore, a formula ' is a sentence exactly when, for each variable x, each
of the occurrences of x in ' is within the scope of either 8x or 9x.

3.2 Semantics

To give an account of the semantics of L

1

we first need to introduce some
fundamental concepts of semantics of a formal language L. We note that these
definitions mainly apply to L

1

as this is the only language we have defined so
far but that they can be extended for any formal language L.

Definition 3.8. A model M for a language L is tuplet containing a domain D

and an interpretation function I that assigns values to the non-logical constants
of L with respect to D. In particular, for L

1

a model M = (D, I) is an ordered
pair where D is a non-empty set and I is a function assigning values to the
non-logical constants of L, so that, for the constants of L

1

:

I(c) 2 D, if c 2 Const (23a)

I(P) ✓ D

n

, if P 2 PredSymb

n

(23b)

The function I called the interpretation function of the model M for the lan-
guage L.

Definition 3.9. Let Vars
L

denote the set of variables in a language L and let
M = (D, I) be a model for L. Any function g : Vars

L

! D is called a variable

assignment for L in M, or simply, assignment or valuation of L.

For L

1

, the elements of Const are interpreted as elements of D, by (23a),
and the elements of PredSymb are interpreted as a set of tuplets (with length
corresponding to the arity of the constant in question) of some elements of D,
by (23b). If we for instance let D = {1, 2, 3} and we wish to interpret the binary
predicate symbol P as representing the binary predicate ‘... is greater than ...’
we let:

I(P) = {(2, 1), (3, 1), (3, 2)} (24)

16

since both 2 and 3 are greater than 1 and 3 is greater than 2. The assignment
can be seen as a temporary interpretation. Let I(P) be as in (24), let x, y 2 Vars

and consider:

P (x, y) (25)

We have no way of evaluating (25). We need to assign to x and y some elements
of the domain, like the interpretation function did for a and b. So if h is an
assignment and, for instance, h(x) = 2, h(y) = 1 with a, b 2 Const, (25) can be
thought of as (informally!):

“P (2, 1)” (26)

by which we mean that 2 is greater than 1.
Before we move on to give semantic values to the expressions of L

1

I want to
make a short clarification on how a modelM = (D, I) relates to human language
and, especially, our fragment of English �. When we use language we have an
idea of what a significant part of the words we use refer to — fundamentally,
some refer to objects in the world and some refer to relations between these
objects. Ideally, the domain D represents all of the objects we have in mind
when we talk and the interpretation function I represents the way in which we
connect these objects with the words we use. Hence, I appears to capture a
good portion of the meaning of a word. Of course, capturing all of linguistics
in a model M = (D, I) seems like an overambitious project. For our fragment
� this approach does, however, appear to give a fairly adequate picture of how
this small part of language works. The power of a model-theoretic approach is
that it reflects compositionality very well. We are allowed to set up our domain
D in any way we like and we are free to choose the interpretation function I

so that it gives words precisely the extension we wish. What happens to the
semantic values when we add these expressions together will then be determined
by our model in a clear and compositional way. Note that the model-theoretic
approach by no means is restricted to L

1

and will be used for the semantics of
any language in this essay.

We now move on to give semantic values to the expressions of L

1

. The
semantic value of a formula ' is always assigned relative to a model M = (D, I),
and an assignment h. This is denoted by [[']]M,h.

Semantics of L
1

The semantics of the language L
1

is given by Definition 3.10.
That is, semantic values of the L

1

expressions are defined by structural induction
on the syntax of L

1

.

Definition 3.10 (Semantics of L
1

Expressions). We assign semantic values to
the formulas by using a set {0, 1}, where 0 corresponds to false and 1 corresponds
to true.

For every model M = (D, I) and every variable assignment h for L

1

in
M = (D, I), and for every ↵ 2 Formulae[Terms, we define the semantic value
[[↵]]M,h as follows, by structural induction on ↵:

17

1. If ↵ 2 Const[PredSymb, then [[↵]]M,h = I(↵)

2. If ↵ 2 Vars, then [[↵]]M,h = h(↵)

3. If ↵ is a predicate symbol of arity n, i.e., ↵ 2 PredSymb

n

, and t

1

, . . . , t
n

are individual terms, i.e., t
1

, . . . , t

n

2 Terms

L1 , then
[[↵(t

1

, . . . , t

n

)]]M,h = 1 i↵ ([[t
1

]]M,h

, . . . , [[t
n

]]M,h) 2 [[↵]]M,h

4. If ↵ 2 Formulae, then [[¬↵]]M,h = 1 i↵ [[↵]]M,h = 0. Otherwise,
[[¬↵]]M,h = 0

5. If ↵ = (' ^) with ', 2 Formulae, then [[↵]]M,h = [[(' ^)]]M,h = 1 i↵
[[']]M,h = 1 and [[]]M,h = 1. Otherwise, [[↵]]M,h = 0

6. If ↵ = (' _) with ', 2 Formulae, then [[↵]]M,h = [[(' _)]]M,h = 1 i↵
[[']]M,h = 1 or [[]]M,h = 1. Otherwise, [[↵]]M,h = 0

7. If ↵ = (' !) with ', 2 Formulae, then [[↵]]M,h = [[(' !)]]M,h = 1
i↵ [[']]M,h = 0 or [[']]M,h = [[]]M,h = 1. Otherwise, [[↵]]M,h = 0

8. If ↵ = (' $) with ', 2 Formulae, then [[↵]]M,h = [[(' $)]]M,h = 1
i↵ [[']]M,h = [[]]M,h = 1 or [[']]M,h = [[]]M,h = 0. Otherwise, [[↵]]M,h = 0

9. If ↵ = 8x' with ' 2 Formulae and x 2 Vars, then [[↵]]M,h = [[8x']]M,h = 1
i↵ [[']]M,h

0
= 1, for all assignments h

0 such that, for all v 2 Vars�{x},
h(v) = h

0(v)

10. If ↵ = 8x' with ' 2 Formulae and x 2 Vars, then [[↵]]M,h = [[8x']]M,h = 1
i↵ [[']]M,h

0
= 1, for some assignment h

0 such that, for all v 2 Vars�{x},
h(v) = h

0(v)

11. If ↵ is (� = �) with �, � 2 Terms, then [[(� = �)]]M,h = 1 i↵
[[�]]M,h = [[�]]M,h.

Lemma 3.1. If ' is a sentence, then for all assignments h, h0 we have [[']]M,h =
[[']]M,h

0
.

Proof. Assume [[']]M,h 6= [[']]M,h

0
. Then, for at least one x 2 FreeV(') we

have h(x) 6= h

0(x). But since ' is a sentence, we have that FreeV(') = ?.
Consequently, h(x) = h

0(x) for all x 2 FreeV('). This is a contradiction and so
the lemma follows.

By Lemma 3.1 Definition 3.11 makes sense:

Definition 3.11. If ' is a sentence we define [[']]M := [[']]M,h, where h is an
arbitrary assignment.

Definition 3.12 (Semantic and Logical Consequences).

1. We say that a sentence is a semantic consequence of a set of sentences
� in M, and write � |=M , i↵:

for all ' 2 �, [[']]M = 1 =) [[]]M = 1 (27)

18

2. We say that a sentence is a logical consequence of a set of sentences �,
and write � |= , i↵, for all M:

for all ' 2 �, [[']]M = 1 =) [[]]M = 1 (28)

Definition 3.13. We say that a sentence ' is a logical truth if [[']]M = 1 for
all models M. We denote this “|= '”.

Notation 6. If � |= and � = {' } we sometimes omit the brackets and write:

' |= (29)

Example 3.1. LetM = (D, I) be a model whereD = {Edith, Serge, Jacques}
and I is defined:

- I(a) = Edith

- I(b) = Serge

- I(c) = Jacques

- I(P) = {Edith, Serge, Jacques}

- I(Q) = {Edith}

- I(R) = {(Serge, Edith), (Jacques, Edith), (Jacques, Serge)}

For intuition, think of P being interpreted as the unary predicate ‘... smokes’,
Q as the unary predicate ‘... is a woman’ and R as the binary predicate ‘... is
taller than ...’ so that for instance R(b, a) can be thought of as representing
“Serge is taller than Edith”. Let us now show, from first principles, that (30)
and (31) are correct:

[[P (a) ^Q(a)]]M = 1 (30)

[[Q(a) ! 9xR(x, c)]]M = 0 (31)

Solution: We start with (30):

[[P (a) ^Q(a)]]M = 1 () [[P (a)]]M = 1 and [[Q(a)]]M = 1 (32a)

() [[P]]M([[a]]M) = 1 and [[Q]]M([[a]]M) = 1 (32b)

() Edith 2 I(P) and Edith 2 I(Q) (32c)

Since the last statement holds, it must be the case that [[P (a) ^Q(a)]]M = 1
Let us now show (31):

[[Q(a) ! 9xR(x, c)]]M = 1 () [[Q(a)]]M = 0 or [[9xR(x, c)]]M = 1 (33a)

() [[Q]]M([[a]]M) = 0 or there is an h (33b)

such that [[R(x, c)]]M,h = 1 (33c)

19

We know that [[Q]]M([[a]]M) 6= 0. Now, assume there is a h such that
[[R(x, c)]]M,h = 1. We have:

[[R(x, c)]]M,h = 1 () (h(x), I(c)) 2 I(R) (34a)

() (h(x), Jacques) 2 I(R) (34b)

Clearly, for none of the three possible values of h(x) the last statement is true.
So there can be no h such that [[R(x, c)]]M,h = 1. So [[9xR(x, c)]]M 6= 1. Finally
we conclude that [[Qa ! 9xR(x, c)]]M = 0.

3.3 Substitution

One of the most important features of FOL is substitution. By substitution we
mean, informally, that an expression that is part of some complex expression
can be substituted with an expression with the same semantic value without
altering the semantic value of the complex expression. Note that substitution
is an operation carried out at meta level and not in the logic itself. In this
section we cover some concepts relating to substitution for L

1

. As always, these
concepts can be extended to any other formal language L.

Definition 3.14. Let ' 2 Formulae and A 2 Terms[PredSymb[Formulae.
We define the free occurrences of A in ' by structural induction on ', w.r.t.
Definition 3.1.

1. If ' is an atomic formula, i.e., ' = P (t
1

, . . . , t

n

), where P 2 PredSymb

n

and t

1

, . . . , t

n

2 Terms, then any occurrence of A in ' is free, that is:

(a) If A = ', then this occurrence of A is free

(b) If for some j = 1, . . . , n, we have t

j

= A, then this occurrence of A
is free

(c) If A = P , then this occurrence of A is free

2. If ' = ¬ , then an occurrence of A in ' is free i↵ A = ' or this is a free
occurrence of A in

3. If ' = (⇤ ⇠) and ⇤ is either ^, _, ! or $, then an occurrence of A in '
is free i↵ A = (⇤ ⇠), or this is a free occurrence of A either in or in ⇠

4. If ' = Qx , where Q is either 9 or 8 and x 2 Vars, then an occurrence of
A in ' is free i↵ this is a free occurrence of A in and x /2 FreeV(A), or
A = Qx

5. (This is a special case of atomic formulae, as in item 1.) If ' = (t
1

= t

2

),
where t

1

, t

2

2 Terms, then an occurrence of A in ' is free i↵ A = t

1

, A = t

2

or A = '.

Informally, what Definition 3.14 says is that if an expression A occurs in a
formula ', then it is free as long as there is no variable occurring in A that is
bound by some quantifier occurring in ' but not in A. I stress again that this
definition applies to L

1

but can of course be modified for any language L.

20

Definition 3.15. If ' 2 Formulae and A 2 Terms[PredSymb[Formulae, we
say that an occurrence of A in ' is bound i↵ it is not free.

Notation 7. The result of replacing all free occurrences of A in ' with B is
denoted by (35):

'{A :⌘ B } (35)

Notation 8. Let ' 2 Formulae and, for i = 1, . . . , n (n � 1), let A
i

, B
i

be well-
formed expressions of L, i.e., for L

1

, A
i

, B

i

2 Const[FreeV[PredSymb[Formulae,
with A

i

pairwise distinct. The result of the simultaneous replacement of all free
occurrences of all A

i

in ', correspondingly with B

i

, is denoted by (36):

'{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

} (36)

Definition 3.16 (Free Substitution). A substitution (36) is free i↵ (37) holds
for all i = 1, . . . , n (n � 1):

y 2 FreeV(B
i

) =) y 2 FreeV ('{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}) (37)

Theorem 3.2 (Equivalent Substitutions). Assume that ' 2 Formulae and, for
i = 1, . . . , n (n � 1), A

i

, B

i

2 Const[FreeV[PredSymb[Formulae, with A

i

pairwise distinct. Let

'

⇤ = '{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

} (38)

be a free substitution where:

[[A
i

]]M,h = [[B
i

]]M,h

, for all i = 1, . . . , n (39)

Then, we have [[']]M,h = [['⇤]]M,h.

Proof. We show the statement by induction on ':

Base Case

1. ' = P (t
1

, . . . , t

n

) where P 2 PredSymb

n

and t

1

, . . . , t

n

2 Terms. Consider
'

⇤ = '{P :⌘ Q, t

1

:⌘ s

1

, . . . , t

n

:⌘ s

n

} where Q 2 PredSymb

n

and
s

1

, . . . , s

n

2 Terms. Note that some of these replacements might be of the
exact same expression (and so we cover all cases of substitution). Assume
further that:

[[P]]M,h = [[Q]]M,h (40a)

[[t
i

]]M,h = [[s
i

]]M,h (i = 1, . . . , n) (40b)

We want to show that [[']]M,h = [['⇤]]M,h. For convenience we define the
function h

⇤ : Terms ! D in (41):

h

⇤(↵) =

(
h(↵) if ↵ 2 Vars

I(↵) if ↵ 2 Const

(41)

21

This results in the following reformulation of the truth conditions for
P (t

1

, . . . , t

n

) and Q(s
1

, . . . , s

n

):

[[P (t
1

, . . . , t

n

)]]M,h = 1 () (h⇤(t
1

), . . . , h⇤(t
n

)) 2 [[P]]M,h (42)

[[Q(s
1

, . . . , s

n

)]]M,h = 1 () (h⇤(s
1

), . . . , h⇤(s
n

)) 2 [[Q]]M,h (43)

Also, our construction of h⇤ gives us, by (40b):

h

⇤(t
i

) = h

⇤(s
i

) (44)

For i = 1, . . . , n. The statement now follows immediately from (40a) and
(42)–(44):

[[P (t
1

, . . . , t

n

)]]M,h = 1 () (h⇤(t
1

), . . . , h⇤(t
n

)) 2 [[P]]M,h (45a)

() (h⇤(s
1

), . . . , h⇤(s
n

)) 2 [[Q]]M,h (45b)

() [[Q(s
1

, . . . , s

n

)]]M,h = 1 (45c)

The above is what we wanted to show for the base case.

Induction Step Assume as induction hypothesis that the statement holds for
all less complex (with respect to the inductive definition of L

1

-formulae) than
'.

4. ' = ¬

(Case 1) A

1

= ' (n = 1), i.e., the only occurrence of A
1

is '. Then, the only
free substitution is:

'

⇤ = '{A
1

:⌘ B

1

} = B

1

, (46)

where, by (39), [[A
1

]]M,h = [[B
1

]]M,h. Thus, we have:

[[']]M,h = [[A
1

]]M,h = [[B
1

]]M,h = [['⇤]]M,h (47)

Therefore, the statement holds.

(Case 2) All the free occurrences of A
i

(i = 1, . . . , n) are in . The equivalence
(48b) holds by the induction hypothesis. Thus, we have:

[[']]M,h = 1 () [[]]M,h = 0 (48a)

()
ind.

[[{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h = 0 (48b)

() [[¬ {A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h = 1 (48c)

() [['⇤]]M,h = 1 (48d)

Therefore, [[']]M,h = [['⇤]]M,h, and the statement holds in this case
too.

22

5. ' = (^ ⇠). The case when A = ' is proved as in (Case 1) above. We
show the second case:

[[']]M,h = 1 () [[]]M,h = [[⇠]]M,h = 1 (49a)

()
ind.

[[{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h =

[[⇠{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h = 1
(49b)

() [[{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}^
⇠{A

1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h = 1
(49c)

() [[(^ ⇠){A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h = 1 (49d)

() [['⇤]]M,h = 1 (49e)

6. The statement for the cases when ' = (_⇠), ' = (! ⇠), ' = ($ ⇠),
and ' = (= ⇠) is proved in a similar manner as in 5

7. ' = 8x . The case when A = ' is again proved as in (Case 1) above. We
show the second case:

[[']]M,h = 1 () [[]]M,h

0
= 1

for all assignments h0 s.t. if u 2 Vars�{x} then h(u) = h

0(u)
(50)

We also have:

[['⇤]]M,h = 1 () [[{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h

0
= 1

for all assignments h0 s.t. if u 2 Vars�{x} then h(u) = h

0(u)
(51)

Since the substitution is free, we know that no new occurrences of x have
been added by the substitution. Hence, for any h

0 in (50)–(51) we have
by the induction hypothesis that:

[[]]M,h

0
= 1 () [[{A

1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h

0
= 1 (52)

which proves the statement

8. The statement for the case when ' = 9x is proved in the same manner
as in 7

This shows that:

[[']]M,h = [['{A
1

:⌘ B

1

, . . . , A

n

:⌘ B

n

}]]M,h (53)

which is what we wanted to show.

Theorem 3.2 is crucial if we want our system to respect compositionality.
That is, if we give two expressions the same semantic value, they should be
able to play the exact same role in a sentence. We note that the theorem does
not hold if we omit the requirement that the substitution in question is free, as
shown in Example 3.2.

23

Example 3.2. Let P 2 PredSymb

2

, x 2 Vars, c 2 Const and M = (D, I) be
such that D = {a, b}, I(P) = {(a, b)} and I(c) = b. The following then holds:

[[9xP (x, c)]]M,h = 1 (54)

for all assignments h. Let h0 be an assignment such that:

[[x]]M,h

0
= h

0(x) = b = [[c]]M,h

0
(55)

Now consider:

 = [9xP (x, c)]{ c :⌘ x } = 9xP (x, x) (56)

for which we have:

[[]]M,h

0
= [[9xP (x, x)]]M,h

0
= 0 6= 1 = [[9xP (x, c)]]M,h

0
(57)

which, of course, would contradict any theorem about a general substitution of
bound variables.

3.4 Advantages of L1

Our language L

1

can be used to formalise large parts of HL. In Example 3.1,
Pa ^Qa can be though of as capturing “Edith is a woman and Edith smokes”
or, perhaps, “Edith is a smoking woman”. In the same way Qa ! 9xR(x, c)
captures the somewhat odd sentence “If Edith is a woman, then someone is
taller than Jacques”. The idea is that the L

1

-versions of HL sentences capture
their logical form — their underlying grammatical structure.

There are some strong advantages to analysing HL using L

1

. First, in L

1

,
every sentence has a truth value. Consider the following sentence:

S1 The king of France is bald 3

Intuitively, either the sentence is true or it is false. But there is no king of
France, so how do we determine which answer is correct? This problem was one
of the earliest motivators for the use of L

1

in the treatment of English language
sentences. Russell [15] realised that a formalisation in L

1

of the sentence made
its truth value clear. We let:

king of France
render���! King-F (58)

and

is bald
render���! bald (59)

The sentence can now be rendered as:

9x(King-F(x) ^ 8y(King-F(y) ! y = x) ^ bald(x)) (60)

3For a more mathematical example, consider the statement “The largest prime number is
not a perfect square”. Is it true or false?

24

The second perhaps slightly confusing conjunct is there to capture the unique-
ness entailed by the determiner “the” in “the king of France”. Now, it is not di�-
cult to calculate the truth value of the sentence. Relative to a modelM = (D, I)
where there is no king of France (that is, I(King-F) = ?) the first conjunct
will always be false, and consequently the whole sentence is false.

Secondly, L
1

can capture ambiguities in HL that do not seem to let them-
selves be captured otherwise. The most common problem is that of quantifier
ambiguities. Let us consider a simple example from mathematics:

S2 Every integer is greater than some rational number

It is by no means clear what is claimed in S2. There are two possible answers:

A1 The proposition is true. Let n 2 Z. Define i

n

= n � 1. Clearly, i
n

2 Q
and i

n

< n

A2 The proposition is false. Assume that every integer is greater than some
q 2 Q. Then bqc 2 Z and bqc < q

The reason that these two contradictory arguments both seem to work is that
the sentence can be seen as the representation of two di↵erent L

1

-sentences:

A1⇤ 8x (integer(x) ! 9y (rational(y) ^ greater-than(x, y)))

A2⇤ 9x (rational(x) ^ 8y (integer(y) ! greater-than(y, x)))

These two forms explain how the two answers can look to di↵erent. Should we
answer as in A1, we do so because we have analysed the sentence as in A1⇤.
An alternative way of phrasing it is to say that “every” (i.e. “8”) has been
given a wide scope, whereas “some” (i.e. “9”) has been given a narrow scope.
Should we, conversely, answer as in A2, we do so because we have analysed
the sentence as in A2⇤. Here, “every” has been given a narrow scope, whereas
“some” has been given a wide scope. We refer to the A1/A1⇤-reading as the de

dicto-reading and to the A2/A2⇤-reading as the de re-reading. Unsurprisingly,
de dicto-readings are far more common than de re-readings.

3.5 Complex Individual Terms

One way to improve the renderings of human language into FOL is to allow
for function symbols. When we allow for functions from individual terms to
individual terms we are provided with a much more systematic way to treat
otherwise complex expressions involving quantifiers. The functions also provide
us with a way of directly referring to the objects that we want to talk about,
rather than describing them by a complex clause of quantifiers. For example, we
could get the following rendering of (60) (ignoring any philosophical questions
this particular sentence may raise):

The King of France is bald
render���! bald(fTHE-KING-OF(France)) (61)

25

The rendering in (61) is clearly simpler than (60). Here fTHE-KING-OF can be
thought of as representing a function that takes the object denoted by France
as input to then output one unique individual (i.e., the King of France). Note
that rather than saying something like “there exists an object such that it is
such and such”, like we did in (60), we directly refer to the individual denoted
by fTHE-KING-OF(France).

It is however not entirely clear whether this is a satisfactory rendering, as
fTHE-KING-OF appears to represent some object with the structure NP P, which
is not permitted by our PS rules (9a)–(9u). We want our rendering to reflect
that “of” is combined with “France” to create the PP “of France” which can
then be combined with the NP “The King”. This is not what happens in (61).

To get a FOL with functions, Lfun

1

, we simply extend L

1

by adding a set of
function symbols FunSymb

L

fun
1

= {f i0
0

, f

i1
1

, . . . , f

im
m

} for a fixed m 2 N where for

each j = 0, . . . ,m, f
ij

j

is a function symbol of arity i

j

2 N.
Let c 2 Const

L1 , x 2 Vars, f 2 FunSymb

L

fun
1

, and T, t

1

, . . . , t

n

2 Terms

L

fun
1

.
Then the set of Terms

L

fun
1

is defined by induction, in (62), in BNF-style:

T

:⌘ c | x | fn(t
1

, . . . , t

n

)

for c 2 Const, x 2 Vars, fn 2 FunSymb

L

fun
1

,

t

i

2 Terms

L

fun
1

, i 2 { 1, . . . , n }, n � 0

(62)

The set Formulae

L

fun
1

is defined in the same way as it was for L
1

, by adding
(62), and it clearly extends Formulae

L1 since Terms

L1 ⇢ Terms

L

fun
1

.

3.6 Limitations of First-Order Logics

In the following sections I shall mention a few of the problems that arise when
we try to render into FOL. I will focus on examples from L

1

. This is without
any loss of generality, since the problems extend to L

fun

1

and all other FOLs.
One limitation that I will not mention here is coordination of VPs, NPs and

Adjs. This will be covered in depth in Section 4.5.2.

3.6.1 Predicate Modification

It is not di�cult to see that many of our phrase structure rules will not work
when implemented in L

1

. Let us show this. Consider the following two sen-
tences:

S3 Jacques sings

S4 Jacques sings well

Assume we are to formulate these sentences in L

1

. Here is one approach for S3:

1. The whole sentence is on the form NP VP and must be represented by a
sentence ' in L

1

26

2. The verb “sings” takes “Jacques” as an argument. The only objects in L

1

that can take an argument and output a sentence are those in PredSymb.
Since it only takes one argument, it must be of arity 1. So:

sings
render���! sing 2 PredSymb

1

(63)

3. The name “Jacques” is an argument of sing. The only objects in L

1

that
can combine with a predicate and result in a sentence are those in Const.
So:

Jacques
render���! j 2 Const (64)

By the above, it is clear that the correct rendering of S3 is:

Jacques sings
render���! sing(j) (65)

What then is the correct rendering of S4? The sentence is on the form NP VP.
So, as we want uniformity with the rendering of S3, we get the rendering in (64)
as well as:

sings well
render���! sing-well 2 PredSymb

1

(66)

So the rendering of S4 should be:

sing-well(j) (67)

But this rendering contradicts PS Rule (9l). We have sing-well 2 PredSymb

1

and consequently it cannot be analysed further. In other words, there is no way
of separating sing from well.

There is one other possible approach. One could try to to render S4 as:

sing(j) ⇤well(j) (68)

where ⇤ is ^,_,! or $. But this too is absurd, since well(j) appears to be
on the form NP Adv, which is not permitted by our grammar. So S4 does not
appear to have a satisfactory rendering in L

1

.
The problem can be summed up as follows. In L

1

, there is no way for predi-
cate symbols to take other predicate symbols as arguments, which is something
HL seems to require. Just like a verb appears to take a noun phrase as an
argument,4 we need to let adverbs be able to take verbs as arguments if we are
to make sense of them. This is one of the primary motivation for the need of a
higher order language.

4Although we shall see later that this is not necessarily the case.

27

3.6.2 Quantification

Previously, we saw that one of the strengths of L
1

was that it could make sense
of the ambiguities in sentences with multiple quantifiers. Unfortunately, it is
also its treatment of quantification that is one of its major drawbacks. Consider
the following sentence:

S5 Every Belgian sings

If we want to render S5 into L

1

, should get the following rendering:

Every Belgian sings
render���! 8x(belgian(x) ! sing(x)) (69)

Let us consider the corresponding phrase structure of this sentence:

S

NP

Every Belgian

VP

IV

sings

(70)

Compare this to the phrase structure of S3:

S

NP

Jacques

VP

IV

sings

(71)

Clearly, the structures of these two trees are reminiscent of each other. On this
level, they are in fact the same. Herein lies the problem — we need to explain
how (69) can describe the correct rendering of S5 when S3 renders sing(j).
“Every Belgian” appears to have on the form 8x(belgian(x) ! ⇤) where ⇤
somehow needs to be replaced by sing(x). There are two problems with this.
First, when rendering sing(j) from S3, we did so by applying the VP on the
NP. Here, if ⇤ is to be replaced by sing(x), we need to apply the NP on the
VP which of course contradicts the uniformity of our rendering. The second
problem is that there simply is no mechanism in L

1

that allows us to replace
⇤ with sing(x). As we shall see later we can do this using the tools of simply
typed lambda calculus, but we are not there yet.

We should also note that it gets even more problematic when it comes to
dealing with sentences like S2, which have renderings that contain multiple
quantifiers. Here, the rendering of the second NP will contain a variable from
the first NP, despite their renderings being independent of each other. In L

1

, it
is di�cult to make sense of this.

28

3.6.3 Tense

One perhaps less fundamental limitation of L
1

is that it is bad at expressing
statements that are relative to time. Let us consider two similar sentences to
S3:

S6 Jacques sang

S7 Jacques will sing

Let us try to render S6 and S7 into L

1

. The first approach is to simply introduce
new predicates Sing-P,Sing-F 2 PredSymb

1

so that:

Jacques sang
render���! sing-P(j) (72)

and

Jacques will sing
render���! sing-F(j) (73)

This might work in some cases. However, there are several problems with this
approach. First, it treats the di↵erent tenses of the verb as having nothing in
common. The above rendering does not capture that “sang” and “will sing” in
fact correspond to the same verb, but tensed di↵erently. This is perhaps, math-
ematically speaking, a minor point but for the linguist it should be worrisome.
We do not just want our rendering to work from a technical point of view — we
want it to capture in a clear way how HL works. I claim that this is not done
by the above renderings.

It is, in fact, possible to translate any tense logic into FOL, see Garson [4].
The technicalities of such a translation is beyond the scope of this essay (as the
translations shall not be used), but it is worth noting that these translations
still require us first to render our English language sentences into some system
of temporal logic before being able to translate them into L

1

.

3.6.4 Modality

We wish to give adequate renderings of words such as “necessarily” and “possi-
bly”. This discussion is essentially the same as that concerning tense.

As we saw in section 2.1, the semantic values of these expressions are though
of in terms of possible worlds. Intuitively, a possible world is copy of our cur-
rent world where things have been altered in a non-contradictory way. Math-
ematically, two possible world w

1

, w

2

are simply indices such that if a is some
expression in L

1

, then it is possible that [[a]]M,w1 6= [[a]]M,w1 . So by saying that
something is necessarily true we mean that it is true in all possible worlds. By
saying that something is possibly true we mean, on the other hand, that it is
true in at least one possible world. We notice here the similarity between these
two expressions and the tensed verbs. Saying “Jacques sang” is true is to say
that there exists one point in time (in the past) where “Jacques sings” is true.
Mathematically speaking, points in time and possible worlds are the same type
of objects, and so the reason why L

1

is limited in its treatment of “necessarily”
and “possibly” is the same as why it is limited in its treatment of tensed verbs.

29

3.6.5 Intensionality

We start of this section by the following definition:

Definition 3.17. We say a context introduced by a sentence S is extensional if
for any word a occurring in the sentence, a can be replaced with a co-referring
word b (assuming the replacement respects the syntax of the language in ques-
tion) without changing the semantic value of S. If the context is not extensional,
we call it intensional.

For an example of intensionality, consider the sentence:

S8 Martin Heidegger wrote silly books

Since the sentence is true, and since “Martin Heidegger” refers to the same thing
as “The author of Being and Time”5, we can make a substitution and end up
with:

S9 The author of Being of Time wrote silly books

Both S8 and S9 are true sentences, so the context appears to be extensional.
Extensionality does not, however, always hold. There are some words that

introduce a context where extensionality no longer holds. Suppose there is a
young aspiring logician, Ludwig, who is not as well-versed in the fascinating
school of continental philosophy as we are. Ludwig only knows that Martin
Heidegger wrote some silly books, but does not know Being and Time is one of
them. Then:

S10 Ludwig thinks that Martin Heidegger wrote silly books

is a true sentence, whereas:

S11 Ludwig thinks that the author of Being and Time wrote silly books

is false. Let us now consider the renderings in L

1

of S10 and S11. Let:

silly book
render���! silly-book (74a)

... thinks...wrote...
render���! thinks-wrote (74b)

Ludwig
render���! l (74c)

Martin Heiddeger
render���! m (74d)

The author of Being and Time
render���! m0 (74e)

Clearly, in our intended model M, [[m]]M = [[m0]]M. We should get something
along the lines of:

Ludwig thinks that Martin Heidegger wrote silly books (75a)

5Strictly speaking, it could be argued that a citation “A” refers to the word A. We ig-
nore these language-philosophical matters here (and prioritise readability). For details, see
Russell [15]

30

render���! 9x(silly-book(x) ^ thinks-wrote(l,m, x)) (75b)

Ludwig thinks that the author of Being and Time wrote silly books (75c)

render���! 9x(silly-book(x) ^ thinks-wrote(l,m0
, x)) (75d)

But since [[m]]M = [[m0]]M, Theorem 3.2 gives us (76):

[[9x(silly-book(x) ^ thinks-wrote(l,m, x))]]M = 1

() [[9x(silly-book(x) ^ thinks-wrote(l,m0
, x))]]M = 1

(76)

So both rendering are given identical truth-conditions, despite S10 being
true and S11 being false. Since the truth conditions of the two sentences are
di↵erent, we shall require a rendering that somehow reflects that “thinks that”
introduces an intensional context.

4 Montague Intensional Logic

We now want to extend L

1

to a language that can better handle the previously
mentioned limitations. The new language will have 4 properties:

P1 It will be a type theoretic language

P2 Every predicate will be represented by a unary function

P3 It will be a higher-order language. That is, it will allow for abstraction
over predicates, rather than just individuals

P4 It will contain mechanisms for making sense of tense, modality and inten-
sionality

At first, in Example 4.1, we revisit L
1

and reformulate a part of it to satisfy P1
and P2. Then, we extend this idea to the syntax of L

IL

.

Example 4.1. Our goal is to extend L

1

by adding types and restricting our non-
logical constants to these types. I.e., we assign a type for indivduals to the mem-
bers of Const

L1 and types for unary functions to the members of PredSymb

L1
.

Let us limit ourselves to unary and binary predicates, which we will represent
by appropriate unary functions.

(i) If ↵ 2 Const, then ↵ is of type e

(ii) If ' 2 Formulae, then ' is of type t

(iii) If P 2 PredSymb and P is of arity 1, then P is of type he, ti

(iv) If R 2 PredSymb and R is of arity 2, then R is of type he, he, tii

We can also do the same for the logical constants6:

6We do not do this for =, since this requires more sophisticated methods

31

(v) If ↵ = ¬, then ↵ is of type ht, ti

(vi) If ↵ 2 {^,_,!,$}, then ↵ is of type ht, ht, tii

This is, of course, not yet precise. Before we give a more rigorous and general
definition of types, it is good to get a basic intutition of what (i)–(vi) mean. The
types essentially work as syntactic categories for expressions of our language.
They also determine what kind of objects the expressions denote. When we say
that ↵ and ' are of types e and t respectively, we are (1) specifying what kind
of objects they denote (i.e. ↵ denotes an individual, ' denotes a truth value)
and (2) representing some of their syntactic properties. What we mean by (2)
is that the types restrict what strings of expressions we are allowed to form. For
example, if P is a well-formed expression of type he, ti, then the idea is that P
can be combined with another well-formed expression of type e and that this
will then produce a more complex expression of type t (we shall see how this
works in practice later in this section). It is an important feature that P can
only be combined with well-formed expressions of type e. I.e., if ↵ is of type
e and ' is of type t, then P (↵) is a well-formed expression of type t, whereas
P (') is not well-formed.

4.1 Syntax

I hope that Example 4.1 has given a fairly clear idea of what types are and how
they can be used. We are now ready to do things formally. First, we introduce
the following notational agreements:

Notation 9. If a is of type A we write a : A. If several expressions are of the
same type, e.g., a : ⌧ and b : ⌧ , we write a, b : ⌧ .

Notation 10. Instead of writing ⇤(b)(a), where ⇤ is a logical constant of type
ht, ht, tii and a, b : t, we use the infix notation: (a ⇤ b). This allows us to write
conjuction and disjunction as (a^b) and (a_b) rather than ^(b)(a) and _(b)(a).

The syntax of L
IL

is given by Definition 4.1. Originally, L
IL

was introduced
by Montague [12] by using it for a formal grammar for translating a fragment
of English Language in it.

Definition 4.1 (Syntax of L
IL

).

1. The set Types of the types of L
IL

is defined by the recursive rules (77) in
BNF:

⌧ ::= e | t | hs, ⌧i | h⌧, ⌧i (77)

Note that the symbol s is not a type, but a special syntactic object, which
is used in composition of complex types. It is used to signify possible
worlds

2. The following are the basic expressions of L
IL

:

32

(i) If � 2 Types, then Const

�

:⌘ {c�
0

, c

�

1

, . . . } is a countable set of non-
logical constants of type �

(ii) If � 2 Types, then Vars

�

:⌘ {x�

0

, x

�

1

, . . . } is a countable set of variables
of type �

(iii) Logical Constants: ¬ : ht, ti and ^,_,!,$: ht, ht, tii. We define
LogConstht,ti :⌘ {¬} and LogConstht,ht,tii :⌘ {^,_,!,$}

3. For each � 2 Types, the set ME

�

is the smallest set satisfying the following
recursive rules:

(i) For every � 2 Types, if a 2 Const

�

[Vars

�

, then a 2 ME

�

(ii) ¬ 2 MEht,ti and ^,_,!,$ 2 MEht,ht,tii

(iii) If a 2 ME

⌧

and x 2 Vars

�

, then (�x a) 2 MEh�,⌧i

(iv) If a 2 MEh�,⌧i and b 2 ME

�

, then a(b) 2 ME

⌧

(v) If a, b 2 ME

�

, then (a = b) 2 ME

t

(vi) If ', 2 ME

t

and x 2 Vars

�

then 8x', 9x', F', P', ⇤' 2 ME

t

7

(vii) If a 2 ME

�

, then (̂ a) 2 MEhs,�i
8

(viii) If a 2 MEhs,�i, then (̌ a) 2 ME

�

9

For each � 2 Types, the set ME

�

is called the set of the meaningful expres-

sions of type �. The expressions ' : t are called formulae. The expressions
(�x a) are called �-abstractions and a(b) applications.

Definition 4.2.

Const =
[

⌧2Types

Const

⌧

(78a)

Vars =
[

⌧2Types

Vars

⌧

(78b)

LogConst = LogConstht,ti [LogConstht,ht,tii (78c)

ME =
[

⌧2Types

ME

⌧

(78d)

We make a few notational agreements and clarifications.

Notation 11. Parentheses will often be omitted when there is no risk for con-
fusion. Note, in particular, the following cases:

1. Parentheses will often be omitted in terms with consecutive applications,
by assuming left association. For instance, (((P (x

1

))(x
2

))(x
3

))(x
4

) will
be written as P (x

1

)(x
2

)(x
3

)(x
4

)

7For intuition, think of F' as in the future ', of P' as in the past ' and of ⇤' as
necessarily '

8For intuition, think of (̂ a) as intensionally a
9For intuition, think of (̌ a) as extensionally a

33

2. If (w, t) 2 W ⇥ T we omit one layer of parentheses when (w, t) is taken as
an argument. E.g., we write P (w, t) rather than P ((w, t))

3. If we have multiple �- abstractions following each other, we often use right
association and omit the parenthesises. E.g., we sometimes write �P �Q'

rather than (�P (�Q'))

4. We often omit the parentheses in (̌P)

Notation 12. If P : � we sometimes write � as a subscript of P , i.e. we write
P

�

. This will only be done in cases where I feel it is important to note the type
of an expression or where it increases readability.

Notation 13. Given P : hs, h�, ⌧ii and ↵ : � the brace notation for one argu-

ment is given by (79):

P{↵} = (̌P)(↵) (79)

For a version of this brace notation, see Montague [12]. Also, see Dowty et
al. [3].

We also give the brace notation for two arguments:

Notation 14. Given P : hs, h�
1

, h�
2

, ⌧iii, ↵
1

: �
1

and ↵
2

: �
2

the brace notation

for two arguments is given by (80):

P{↵
1

,↵

2

} = (̌P)(↵
2

)(↵
1

) (80)

Similarly to the case of L
1

, the sets FreeV(↵) and BoundV(↵), for each ↵ 2
ME

�

and � 2 Types, are defined by recursion, i.e., by structural induction on
↵, using Definition 4.1-3. We shall, however, not rely very heavily on these
concepts in what follows. Consequently, a formal definition is omitted.

4.2 Semantics

The semantics of L
IL

is given by Definition 4.3, again following Montague [12].

Notation 15. We shall use the following, typical notational agreement in (81):

B

A = { f | f : A ! B } (81)

That is, BA is the set of all total functions with domain A and codomain B.

The semantic values of the expressions of L
IL

are assigned in models with a
hierarchy of semantic sub-domains according to the types.

Definition 4.3. (Models of L
IL

) A model of L
IL

is a tupleM = (D,W, T,, I),
where: D is a nonempty set of objects, called individuals or entities (as in the
models for L

1

); W and T are nonempty sets, of possible worlds and points in

time, respectively;  is a linear ordering on T ; I is the interpretation function

34

defined on the set Const of the constants of L
IL

, which takes values that respect
the type of the constants, according to (83a)–(83b). The ordered pairs (w, t),
where w 2 W and t 2 T , are called indices.

We introduce the concept of a denotation of an expression A : � to respect
its type � 2 Types. If � 2 Types then D

�

is the set of the possible denotations
of the expressions A of type �.

(i) D

e

= D

(ii) D

t

= {0, 1}

(iii) Dh�,⌧i = D

D�
⌧

(iv) Dhs,�i = D

W⇥T

�

The set T in (82) is called the frame of the model M:

T = {D
�

| � 2 Types} (82)

By the notational agreement (81), the sets Dh�,⌧i and Dhs,�i, contain all of
the corresponding functions. Because of this, the frame T and the models are
called standard.

The interpretation function I of M is such that it satisfies (83a)–(83b):

I : Const ! { f | f : (W ⇥ T) ! [T} (83a)

I(c)(w, t) 2 D

�

, for every c 2 Const

�

, w 2 W , t 2 T (83b)

Definition 4.4. (Extensions of the Meaningful Expressions of L
IL

) Here we
define the semantic values, which Montague called the extensions of the mean-
ingful expressions, i.e., of the expressions that are elements of the set ME of
L

IL

. The semantic extension of every expression ↵ 2 ME

⌧

is with respect to its
type ⌧ , and is relative to some w 2 W , t 2 T and some assignment h. In general,
the semantic values of the complex expressions may depend on the values of the
constants in Const by the interpretation function I.

For every expression ↵ 2 ME, we define its semantic value [[↵]]M,w,t,h, called
the extension of ↵, by structural induction on ↵:

(i) If ↵ 2 Const

�

, for some � 2 Types, then [[↵]]M,w,t,h = I(↵)(w, t)

(ii) If ↵ 2 Vars

�

, for some � 2 Types, then [[↵]]M,w,t,h = h(↵)

(iii) If ↵ = (�x a), where a 2 ME

�

and x 2 Vars

⌧

, for some �, ⌧ 2 Types, then
[[↵]]M,w,t,h = [[(�x a)]]M,w,t,h = g, where g is a function on D

⌧

such that,
for all u 2 D

⌧

, g(u) = [[a]]M,w,t,h

0
, where h

0 is just like h, possibly except
on u, and h

0(x) = u, i.e.:

h

0(y) =

(
h(y), if y 6= x

u, otherwise, i.e., if y = x

(84)

35

(iv) If ↵ = a(b) where a 2 MEh�,⌧i and b 2 ME

�

for some �, ⌧ 2 Types, then
[[↵]]M,w,t,h = [[a(b)]]M,w,t,h = [[a]]M,w,t,h([[b]]M,w,t,h)

(v) If ↵ = ¬, then [[↵]]M,w,t,h = [[¬]]M,w,t,h where, for any assignment g,
[[¬]]M,w,t,g = neg : {0, 1} ! {0, 1} is defined by neg(u) = 1� u

(vi) If ↵ = ^, then [[↵]]M,w,t,h = [[^]]M,w,t,h where, for any assignment g,
[[^]]M,w,t,g = and : {0, 1} ! {0, 1}{0,1} is defined by and(u)(v) = min{u, v},
for all u, v 2 {0, 1}

(vii) If ↵ = _, then [[↵]]M,w,t,h = [[_]]M,w,t,h where, for any assignment g,
[[_]]M,w,t,g = or : {0, 1} ! {0, 1}{0,1} is defined by or(u)(v) = max{u, v}
for all u, v 2 {0, 1}

(viii) If ↵ = !, then [[↵]]M,w,t,h = [[!]]M,w,t,h where, for any assignment g,
[[!]]M,w,t,g = imp : {0, 1} ! {0, 1}{0,1} is defined by imp(u)(v) = 1 i↵
v = 0 or u = 1, for all u, v 2 {0, 1}10

(ix) If ↵ = $, then [[↵]]M,w,t,h = [[$]]M,w,t,h where, for any assignment g,
[[$]]M,w,t,g = i↵ : {0, 1} ! {0, 1}{0,1} is defined by i↵(x)(y) = x + y + 1
(in Z

2

)

(x) If ↵ is (a = b) where a, b 2 ME

�

for some � 2 Types, then [[↵]]M,w,t,h =
[[(a = b)]]M,w,t,h = 1 i↵ [[a]]M,w,t,h 2 D

�

is the same object as [[b]]M,w,t,h 2
D

�

(xi) If ↵ = 8x' where ' 2 ME

t

and x 2 Vars

�

for some � 2 Types, then
[[↵]]M,w,t,h = [[8x']]M,w,t,h = 1 i↵ [[']]M,w,t,h

0
= 1, for all h0 such that

h

0(y) = h(y), for all y 2 Vars

�

�{x}

(xii) If ↵ = 9x' where ' 2 ME

t

and x 2 Vars

�

for some � 2 Types, then
[[↵]]M,w,t,h = [[8x']]M,w,t,h = 1 i↵ [[']]M,w,t,h

0
= 1 for some h

0 where
h

0(y) = h(y) for all y 2 Vars

�

�{x}

(xiii) If ↵ = ⇤' where ' 2 ME

t

, then [[↵]]M,w,t,h = [[⇤']]M,w,t,h = 1 i↵
[[']]M,w

0
,t

0
,h = 1 for all w0 2 W and for all t0 2 T

(xiv) If ↵ = F' where ' 2 ME

t

, then [[↵]]M,w,t,h = [[F']]M,w,t,h = 1 i↵
[[']]M,w,t

0
,h = 1 for some t

0 2 T such that t0 > t

(xv) If ↵ = P' where ' 2 ME

t

, then [[↵]]M,w,t,h = [[P']]M,w,t,h = 1 i↵
[[']]M,w,t

0
,h = 1 for some t

0 2 T such that t0 < t

(xvi) If ↵ = (â) where a 2 ME

�

for some � 2 Types, then
[[↵]]M,w,t,h = [[(â)]]M,w,t,h is a function g defined on W ⇥ T , such that,
for all (w0

, t

0) 2 W ⇥ T , g(w0
, t

0) = [[a]]M,w

0
,t

0
,h

10The order of the arguments in imp(u)(v) = 1 might be unexpected. This is in fact the
curried version of a binary function imp⇤(v, u) defined just as imp(u)(v). Hence, this should
be thought of as representing “v implies u”, rather than u implies v, which the order of the
arguments might entail.

36

(xvii) If ↵ = (ǎ) where a 2 MEhs,�i for some � 2 Types, then
[[↵]]M,w,t,h = [[(ǎ)]]M,w,t,h = [[a]]M,w,t,h(w, t)

The definition of truth is similar to that for L
1

:

Definition 4.5 (Truth of Formulae).

1. We say that a formula ' : t is true relative to a model M, (w, t) 2 W ⇥ T

and an assignment g, if [[']]M,w,t,g = 1

2. We say that ' : t is true relative to M and (w, t) 2 W ⇥ T , and we write
[[']]M,w,t = 1, if for all assignments g, [[']]M,w,t,g = 1

Proposition 4.1. For every expression ↵ 2 ME, the extension [[↵]]M,w,t,h of ↵
is uniquely defined.

Proof. The proof is by recursion, i.e., by structural induction, on ↵ 2 ME.

Definition 4.6 (Montague Intension). For every expression A 2 ME, the Mon-

tague intension [[A]]M,h of A, for a given model M and an assignment h, is the
function F : W ⇥ T ! D, such that, for every (w, t) 2 W ⇥ T :

F (w, t) = [[A]]M,w,t,h (85)

Corollary 4.6.1. For every A : ⌧ , model M, assignment g, and (w, t) 2 W ⇥T :

[[A]]M,h(w, t) = [[A]]M,w,t,h (86a)

[[A]]M,h = [[̂A]]M,w,t,h (86b)

Proof. Follows from Definitions 4.4.(xvii)–4.6.

The semantics presented above looks di↵erent from that for L

1

. Let us
clarify some of the ideas that we use:

1. Some of the logical constants are now evaluated with respect to the model
and are thought of as defining functions, just like any other function con-
stants of L

IL

. This is non-standard and was not done in Montague [12]. I
prefer this approach since it gives a clear answer of what the logical con-
stants mean (i.e., what their semantic values are). Thus, when we render
English into L

IL

, we will be able to render conjunctions and negations into
something that has a semantic value by itself and not only with respect to
other expressions. Otherwise, we would not be able to answer what, e.g.,
“not” means by itself in negated sentences — we can only give what the
compound expressions, like “Jacques does not smoke”, “Serge does not
sing”, etc., mean. For more details on categorematic logical constants,
see Westerst̊ahl [18]. For syncategorematic logical constans, on the other
hand, see Winter [20]

37

2. The � symbol in Definition 4.4.(iii) is used to form a new expression which
denotes a function on the corresponding variable. This will be explained
in more detail in Section 4.3

3. The ⇤ symbol in Definition 4.4.(xiii) is used to regard the truth value of
a formula with respect to the possible worlds and the points of time in
which it is true. It can be thought of as corresponding to “necessarily”,
i.e. “in all possible worlds and at all points in time”

4. The F and P in Definition 4.4.(xiv)–(xv) are symbols similar to ⇤ that
are used to regard the truth value of a formula with repsect to the points
in time in which it is true. They can be though of as corresponding to the
future and past tense in English language, respectively

5. The ˆ symbol, in Definition 4.4.(xvi), is used to introduce intesional con-
texts. Asking what the semantic value of â is, is roughly the same as
asking what the semantic value of a is at each (w, t) 2 W ⇥ T

6. The ˇ symbol, in Definition 4.4.(xvii), removes intensional functionality
from expressions. It can be thought of as taking an intensional expression
and evaluating it at a given (w, t) 2 W ⇥ T

Note that Definition 4.3 implies that if we are to express a predicate of higher
arity than 1, we then do it by creating a string of unary functions. Since we want
our new language to be an extension of L

1

, we need to prove that predicates of
higher arity than 1 can be expressed in this new language.

We do that by proving the following simplified lemma, for the special case
of untyped functions of two arguments.

Theorem 4.1 (Currying / Schönfinkelisation Theorem for the Untyped Func-
tions of 2 Arguments). Let A,B,C be nonempty sets, and:

C

A⇥B = { g | g : A⇥B ! C } (87a)

C

B = {h | h : B ! C } (87b)

U = { f | f : A ! C

B } (87c)

There is a bijection between U and C

A⇥B .

Proof. We define F : U ! C

A⇥B as follows:
For every f 2 U , we define:

F (f) = g, where g is the function g 2 C

A⇥B , such that (88a)

g(x, y) = f(x)(y), for every x 2 A, y 2 B (88b)

First, we need to show that the function F is well-defined. For this, we need to
prove the following:

(1) The function g in (88a), such that it satisfies (88a), exists

38

(2) The function g in (88a) is unique.

(1) follows, because, for every x 2 A, y 2 B the value f(x)(y) is defined, by
f 2 U , where U is as in (87c).

To see that (2) is the case, assume that there are g

1

, g

2

2 C

A⇥B , g
1

6= g

2

,
that are such that (88b) holds, i.e.: g

1

(x, y) = f(x)(y), for every x 2 A, y 2 B;
and g

2

(x, y) = f(x)(y), for every x 2 A, y 2 B. Then g

1

(x, y) = g

2

(x, y), for
every x 2 A, y 2 B, and by this, g

1

= g

2

. This contradicts the assumption
g

1

6= g

2

. Thus, it is not true, and g is unique.
Second, we show that the function F is surjective. Let m : A ⇥ B ! C. If

we can construct a function f 2 U , i.e., f : A ! C

B , such that F (f) = m we
are done. We define f : A ! C

B as follows. For each a 2 A, let f(a) = f

a

,
where f

a

: B ! C, such that f

a

(y) = m(a, y), for all y 2 B. We now have,
F (f)(x, y) = f(x)(y) = f

x

(y) = m(x, y), for all x 2 A, y 2 B, and by this,
F (f) = m. Therefore, F is surjective.

Third, we show that the function F defined by (88a)-(88b), is injective. Let
f

1

, f

2

2 U , with f

1

6= f

2

. We then have f

1

(a) 6= f

2

(a) for some a 2 A. But
f

1

(a) and f

2

(a) are functions, such that f
1

(a) : B ! C and f

2

(a) : B ! C. So
f

1

(a) 6= f

2

(a) only if f
1

(a)(b) 6= f

2

(a)(b), for some b 2 B. By (88a)-(88b), it
follows that F (f

1

)(a, b) 6= F (f
2

)(a, b), and thus, F (f
1

) 6= F (f
2

). Therefore, F
is injective.

Corollary 4.1.1. For any basic type �, there is a bijection between Dh�⇥�,�i
and Dh�,h�,�ii.

Corollary 4.1.2. (1) There is a bijection between Dhe⇥e,ei and Dhe,he,eii
(2) There is a bijection between Dhe⇥e,ti and Dhe,he,tii
(3) There is a bijection between Dhs⇥e,ti and Dhs,he,tii.

The special case Theorem 4.1, can be generalised to the Currying / Schönfin-
kelisation Theorem for the typed functions of n-arguments, by double recursion.
I do not give the proof here — only a brief sketch of how it can be done. The first
step would be to define the type system and domains for the multi-argument
functions. The second step is to define a translation from this type system to
the types in Types. This is done by induction on type structure. The third
step is to define a bijective translation — a Curry coding — of the multi-
argument functions to the unary functions. This is done by induction on the
multi-argument types. Then, the proof that currying is bijective is by induction.

Note that the order of the arguments in Theorem 4.1 does not agree with the
order of arguments that we are using. That is, Theorem 4.1 shows that we can
transform arguments on the form (↵

1

,↵

2

) to a sequence of two arguments on the
form (↵

1

)(↵
2

), whereas we prefer (for our purposes) the reverse order (↵
2

)(↵
1

).
This is, however, not a problem since we can easily define a bijection between
C

A⇥B and C

B⇥A. Consequently, we are free to choose which order to use.
In fact, for a generalised version of the theorem, we can establish a bijection
between C

A1⇥···⇥An and C

A�(1)⇥···⇥A�(n) for any permutation � on {1, . . . , n}
(where n 2 N) and collection of sets {A

1

, . . . A

n

}. I omit the proof, but note
that it is a consequence of the fact that �, by definition, is a bijection.

39

4.3 Some Features of �-Calculus

Before we explore the applications of L
IL

, we explain how the � symbol in Def-
inition 4.4.(iii) is used. The system in which we will work with L

IL

is a system
of typed lambda calculus. We introduce two new operations in Definition 4.7:

Notation 16. Often, we use the following notation, for any A,B 2 ME
⌧

A = B () [[A]]M,h = [[B]]M,h

,

(89)

for every model M, and variable assignment h.

Definition 4.7. Let � : ⌧ , such that the expression ↵ 2 Const

�

occurs n � 0
times in �. Then, if x 2 Vars

�

and x does not occur in �, i.e., x is a fresh
variable, let �{↵ :⌘ x } be the result of replacing all occurrences of ↵ in � with
x.

Thus, we have:

(�x (�{↵ :⌘ x })(↵) = � (90)

where �x (�{↵ :⌘ x }) : h�, ⌧i, ↵ 2 Const

�

and x 2 Vars

�

is a fresh variable.
When we go from � to (�x (�{↵ :⌘ x })(↵), we say abstract over ↵ in �. We
also allow for reversing the operation. When we do this, we say we convert :

(�x (�{↵ :⌘ x }))(↵) = (�{↵ :⌘ x }){x :⌘ ↵ } (91)

Definition 4.8. (Restricted �-Conversion)

(�x �)(↵) = �{x :⌘ ↵ } (92)

given that the following conditions are satisfied:

(1) A general restriction for �-conversion in �-calculus:

- Every free occurrence of x in � is such that it is not in the scope of
�y, 8y, 9y, for some y 2 FreeV(↵). If this is the case, we say that ↵
is free for (replacing) x in �.

(2) A restriction that is specific for L

IL

. At least one of the following two
conditions are satisfied:

(a) Every free occurrence of x in � is such that it is not in the scope of
,̂ ⇤, F, P

(b) The expression ↵ in question is constructed from variables and ex-
pressions that can be of the form Â or ⇤A, by using the logic
constants ¬, ^, _, !, $, and �, application, 8, 9, = (i.e., without
the down symbolˇand constants). If this is the case, we say that ↵
is modally closed.

40

The condition (2)b can be thought of as (and can be proved to be) saying
that ↵ does not depend on world-time pairs, i.e.:

[[↵]]M,w,t,h = [[↵]]M,w

0
,t

0
,h (93)

for all (w, t), (w0
, t

0) 2 W ⇥ T .

Notation 17. When we apply �-conversion, we shall write A

convert����! B.

So, the �-symbol designates an abstraction operator for forming expressions
denoting functions. About details for the restrictions, see Musken [14] and
Dowty et al. [3].

Example 4.2. Let x 2 Vars

e

, j 2 Const

e

, P 2 Varshe,ti, sing 2 Consthe,ti. We
re-consider our previous rendering of “Jacques sings”, now in L

IL

. In (94a)–
(94b), we have parentheses according to the syntax of �-expressions of L

IL

,
given in Definition 4.1-(iii), by adding some extra parentheses, sometimes in
di↵erent sizes, for visualisation clarity:

sing(j)
abstract����!

h
�x

�
sing(x)

�i
(j) (94a)

abstract����!
h
�P

⇣
�x

�
P (x)

�⌘
(j)

i
(sing) (94b)

In the reverse direction, by �-conversion, we have (95a)–(95b):

h
�P

⇣
�x

�
P (x)

�⌘
(j)

i
(sing)

convert����!
⇣
�x

�
sing(x)

�⌘
(j) (95a)

convert����! sing(j) (95b)

Lambda calculus is, of course, not only about applications to the semantic
representation in the analysis of everyday human language analysis. It has many
other applications. For example, the function constant f can be used to denote
the intended function, by the equation f(x) = x

2. The same function can be
denoted by the expression �x (x2), without introducing the function constant f .
Thus, if we are to calculate the value f(2), we can use �-conversion, as in (96):

�
�x (x2)

�
(2) = 22 (96)

We finish this subsection by adding two more laws, which are closely related
to abstraction and conversion in lambda calculus.

Definition 4.9 (↵-Conversion). Alphabetical variants by renaming bound vari-
ables:

Let A 2 ME
⌧

, x 2 Vars

�

�xA = �y (A{x :⌘ y }) (97a)

given that y has no occurrences in A and that y is free for replacing x in A.

41

Proposition 4.2 (Restricted Substitution for L
IL

). For any x 2 Vars

⌧

, A,B 2
ME

⌧

and � 2 ME
�

which satisfy the conditions (1) and (2)a or (2)b, the fol-
lowing holds:

[[A = B]]M,h = 1 =) [[�{x :⌘ A }]]M,h = [[�{x :⌘ B }]]M,h (98)

Substitution is restricted by using conditions similar to those in Definition 4.8
for A, B, x, �.

(1) A, B are free for (replacing) x in �.

(2) (a) Every free occurrence of x in � is such that it is not in the scope of
,̂ ⇤, F, P

(b) The expressions A,B have the same intensions, by satisfying the
following condition

ˆA = ˆB (99)

Proof. Omitted. The proof is similar to (but longer and more complex than)
the proof of Theorem 3.2.

4.4 Down-Up Cancellation

We add one more rule. We note the following consequence of Definition 4.3.(xvi)–
(xvii).

Proposition 4.3. For every expression A of L
IL

, for every model M, every
variable assignment h for M, every w 2 W and t 2 T , the following holds:

[[̌ (̂ A)]]M,w,t,h = [[A]]M,w,t,h (100a)

[[̌ (̂ A)]]M,h = [[A]]M,h (100b)

Proof. Assume arbitrary choices of an expression A of L

IL

, a model M =
(D,W, T,, I), an assignment h, w 2 W and t 2 T . Then, by the definitions:

[[̌ (̂ A)]]M,w,t,h = [[̂ A]]M,w,t,h(w, t) (101a)

= g(w, t), where g is the function such that

g(w0
, t

0) = [[A]]M,w

0
,t

0
,h

, for all (w0
, t

0) 2 W ⇥ T

(101b)

= [[A]]M,w,t,h (101c)

This proves (100a). (100b) is an immediate consequence.

Definition 4.10. For any expression A of L
IL

we define the following operation:

(̌ (̂ A))
cancel���! A (102)

42

Note that the other order of cancellation does not hold. We show this by con-
structing a counterexample. Let M = ({a, b},W, T,, I) where A : hs, hs, eii,
T = {t} and W = {w

1

, w

2

}. Assume that:

[[̂ (̌ A)]]M,w,t,h = [[A]]M,w,t,h (103)

Then, from (103), the following equality must hold:

[[̂ (̌ A)]]M,w,t,h(w
1

, t) = [[A]]M,w,t,h(w
1

, t), for all w 2 W (104)

By Definition 4.3.(xvi)–(xvii), we have:

[[̂ (̌ A)]]M,w,t,h(w
1

, t) = [[̌ A]]M,w1,t,h = [[A]]M,w1,t,h(w
1

, t) (105)

And so, by (105) and (104), we have that the choice of w in the [[A]]M,w,t,h is
arbitrary. Hence (106) must hold:

[[A]]M,w2,t,h(w
1

, t) = [[A]]M,w1,t,h(w
1

, t) (106)

But (106) does not always hold, in each world and time. To see this, let I be
such that:

I(A)(w
1

, t) = B (107a)

B(w
1

, t) = a (107b)

I(A)(w
2

, t) = C (107c)

C(w
1

, t) = b (107d)

So, we have:

[[A]]M,w2,t,h(w
1

, t) = I(A)(w
2

, t)(w
1

, t) = b (108a)

[[A]]M,w1,t,h(w
1

, t) = I(A)(w
1

, t)(w
1

, t) = a (108b)

And so, by (108a)–(108b), we have that (106) fails.

4.5 LIL in Grammar of Human Language

In this section, we introducde a Montague grammar for semantic represenation
of HL. For this purpose, we render HL into L

IL

. If A is some HL expression,

↵ : ⌧ is some L

IL

expression and A

render���! ↵, then ↵ can be used as a logical
form of A which we can use for semantic representation of some interpretation
of A.

4.5.1 Syntactic Categories and Basic Expressions of a Montagovian
Grammar

We shall translate a fragment of English to L

IL

expressions, by rules that use
the syntax of each of these languages.

43

Syntactic Category Type Words
S t Jacques sings
T hhs, he, tii, ti Jacques, he
N he, ti boy
IV he, ti sings
TV hhs, hhs, he, tii, tii, he, tii is taller than
Det hhs, he, tii, hhs, he, tii, tii the
P hhs, hhs, he, tii, tii, hhs, he, tii, he, tiii under
Adj hhs, he, tii, he, tii silly
Adv hhs, he, tii, he, tii very
SAdv hhs, ti, ti necessarily
SCP hhs, ti, he, tii thinks that
ICP hhs, he, tii, he, tii attempt to
Conj ht, ht, tii and
Neg ht, ti not

Conj-S ht, ti and Serge sings
Conj-IV hhe, ti, he, tii and sings
Conj-Adj hhhs, he, tii, he, tii, hhs, he, tii, he, tiii and silly
Conj-T hhhs, he, tii, ti, hhs, he, tii, tii and Jacques

Table 2: Assignment of L
IL

-types to Syntactic Categories of HL in the Mon-
tagovian Grammar AGr

We begin by assigning types to each of the syntactic categories of human
language we suggested in Table 1, now re-introduced, with some di↵erences, in
Table 2.

For syntactic categories of English language, similar to the ones in Ta-
ble 2, and for similar type assignments, see Montague [12], Dowty et al. [3]
and Loukanova [9].

Some things have changed in the transition from Table 1 to Table 2. First,
the categories VP, PP and AdjP are missing in Table 2. The reason for this
is that they have been conflated with IV, Adv and Adj, respectively. This is
mainly for the sake of simplifying syntactic representation and it is something
we could have chosen to do from the very start. In this essay, we do not provide
sophisticated syntax of human language. Such simplifications would not have
been suitable if we were interested in a very detailed syntax of HL. There are
reasons to reserve IV for a lexical cateogory whilst leaving VP for more com-
plex expressions. For details on formal syntax of English, see Sag et. al [16],
Kim and Sells [8]. Here, we use L

IL

to provide logic expressions for semantic
representations.

Secondly, the syntactic category NP from Table 1 has been replaced by the
syntactic category T in Table 2. Sometimes T is referred to as the syntactic
category of term phrases. T can, for the purposes in this work, be seen as
the same category as NP In future work, I wish to distinguish between the
two. Montague [12] gives some of the expressions of category T a very di↵er-

44

ent interpretation than what is intuitive for some expressions of the syntactic
category NP. For instance, sometimes, we would prefer to interpret some NPs
as denoting individuals, e.g., when they have the grammatical form of count-
able nouns in singular form — hence, they should, intuitively, be of type e.
Often in Montague Grammars, NPs, i.e. Ts, are interpreted as denoting sets
of properties of individuals. Consequently, it makes sense to let NPs take VPs
as arguments rather than vice versa. We shall see how this is used to solve
the problems of the quantifiers covered previously. I emphasise that was one
of Montague’s major novelties at the time, which continues to be used in Mon-
tagovian grammars. The type of a property is hs, he, tii, and thus, the type of
a set of properties is hhs, he, tii, ti. A proper name, like, “Serge” refers11 to the
set of all properties that the individual Serge satisfies — e.g. properties like
{is a singer, smokes, is French, . . . }.

As a consequence of the above, I have also replaced Conj-VP, Conj-AdjP
and Conj-NP with Conj-IV, Conj-Adj and Conj-T respectively.

For each syntactic category C, Montague [12] introduced B
C

— the set of
the basic expressions of the category C. B

C

are nonempty for the categories C
that have basic expressions, i.e., words in the considered fragment of English.
We define B

C

for our fragment � of English:

B
T

= { Serge, Jacques, he
0

, she
0

, it
0

, . . . , he
n

, she
n

, it
n

, . . . } (109)

B
N

= {cat, boy} (110)

B
IV

= {sing(s), smoke(s)} (111)

B
TV

= {is taller than, writes, } (112)

B
Det

= {some, every, the} (113)

B
P

= {by} (114)

B
Adv

= {well, rapidly} (115)

B
Adj

= {silly, blue} (116)

B
SAdv

= {necessarily} (117)

B
SCP

= {thinks that} (118)

B
ICP

= {attempt to} (119)

B
Conj

= {and, or} (120)

B
Neg

= {does not} (121)

B
C

= ? if C /2 {T, N, IV, TV, Det, P, Adv, Adj, SAdv,

SCP, ICP, Conj, Neg}
(122)

We will also define P
C

for each category C as the set of all phrases of that
category, see (P1)–(P26).

11This is, of course, an assumption that comes with a great deal of philosophical implica-
tions, but we shall not dwell on this here, because we concentrate on a mathematical repre-
sentation of the style of PTQ, see Montague [12].

45

4.5.2 Type-Lift Rules

There are some problems with using L

IL

for semantic representations in a gram-
mar of human language. Some of the types do not seem to match.

Consider the sentences (A)–(C), and their plausible renderings. Note that
the objects rendering the proper names Jacques and Serge are treated di↵er-
ently from the L

1

-renderings. This is a consequence of their syntactic cate-
gory of terms T being associated with the type hhs, he, tii, ti rather than e.
The proper nouns Jacques and Serge are rendered to the constants J and
S, correspondingly. This results in another mismatch between rendering the
sentences (A)–(C), and, in addition, non-well-formed expressions (¬smoke),
(smoke^sing), ^(sing)(smoke), ^(sing), (J^S), ^(S)(J), ^(S). Thus, these
candidate-renderings are incorrect. We explain some of the problems below.
Note that the trees in (123)–(127) use the new syntactic categories in Table 2.

Note that the trees in (123), (125) and (127) represent renderings of the
sentences (A)–(C), where the coordinated expressions are generated by adding
their components one-by-one. The leaves are English words, not constants in
any logic language. We use auxiliary syntactic categories as this will able us to
render negation and coordination words into logical constants (of corresponding
Curry type) in a categorematic way.

(A) Jacques does not smoke

A possible syntactic analysis of this sentence is given in (123):

S

T

Jacques

IV

Neg

does not

IV

smoke

(123)

However, if we are to let

not
render���! ¬

we will end up with non-well-formed expressions. We want to be able
to reflect that “does not smoke” belongs to the category IV, just like
“smoke”. However, if we are to follow the phrase structure given in (123),
we appear to get 124, which is not well-formed, primarily due to the fact
that smoke is not of type t and therefore cannot be negated.

* incorrect * Jacques does not smoke
render���! J(¬smoke) (124)

(B) Jacques smokes and sings

46

A possible syntactic analysis of this sentence is given in (125):

S

T

Jacques

IV

IV

smokes

Conj-IV

Conj

and

IV

sings

(125)

If we are to let
and

render���! ^

it is unclear how to use this to combine the verbs “smokes” and “sings”,
since ^ : ht, ht, tii and any rendering of the two verbs should be of type
he, ti. Also, if this coordination would result in something of type t, there is
no way for us to combine this with the expression rendered by “Jacques”,
which, clearly, is not of type ht, ti. Hence, the redering in (126) which
appears to be the rendering reflected in (125) does not make sense.

* incorrect * Jacques smokes and sings
render���! J(smoke ^ sing) (126)

(C) Jacques and Serge sing

A possible syntactic analysis of this sentence is given in (127):

S

T

T

Jacques

Conj-T

Conj

and

T

Serge

IV

sing

(127)

Again, if we are to let

and
render���! ^

it is unclear how to use this to combine the term phrases “Jacques” and
“Serge”, since ^ : ht, ht, tii and any render of a term phrase should be
of type hhs, he, tii, ti. As before, we also cannot let the coordinated term
phrase be of type t, as this would prevent us from combining it with
the expression rendered by “sing”. Hence, the rendering in (128) which
appears to be the rendering reflected in (127) does not make sense.

47

* incorrect * Jacques and Serge sing
render���! (J ^ S)(sing) (128)

Let us summarise the problems above. In (123), we incorrectly let ¬ : ht, ti
take sing as an argument which results in an expression that we would like to
be of type he, ti. But sing is of type he, ti. So ¬ behaves as if it were of type
hhe, ti, he, tii.

In (125), we have the problem that ^ : ht, ht, tii somehow takes sing : he, ti
as an argument to then output an expression that takes smoke : he, ti as an
argument, which, in turn, outputs another expression of type he, ti. So ^ behaves
as if it were of type hhe, ti, hhe, ti, he, tiii rather than ^ : ht, ht, tii.

In (127), the symbol ^ is misused in a similar way, but as if it were for a
conjunction of individual terms, i.e., of two expressions of type hhs, he, tii, ti,
instead of conjunction of formulae. Hence, ^ has been misused, as if it were of
type hhhs, he, tii, ti, hhhs, he, tii, ti, hhs, he, tii, tiii.

There are di↵erent ways of solving this problem. My solution of choice,
for this essay, is to introduce two type-shift rules. These were not included in
Montague [12], but are useful if we are to interpret coordination and negation
words like “and”, “not”, and the corresponding logic connectives ^, ¬, categore-
matically. That is, we would have preferred to place coordination (conjunction,
disjunction) and negation words in a syntactic category that is appropriate
for them, by giving them corresponding interpretations, similarly to any other
words.

In Montague [12], on the other hand, we are given a syncategorematic inter-
pretations of “and”, “not”, etc., and of the corresponding connectives. Hence,
the logical constants are not assigned types.

The following definitions are based on Westerst̊ahl [19]:

Definition 4.11. Let T : h⌧, ⌧i and �, ⌧ 2 Types. The operation geach

1

(T) is
defined by (129b)–(129a):

geach

1

(T) = (�P (�xT (P (x)))) (129a)

geach

1

(T) : hh�, ⌧i, h�, ⌧ii (129b)

where P : h�, ⌧i and x : �. For this essay, we use the following special cases
(130a)–(130b) of geach

1

from (129b)–(129a):

geach

a

1

(T) : hh�, ⌧i, h�, ⌧ii with � = e (130a)

geach

b

1

(T) : hh�, ⌧i, h�, ⌧ii with � = hs, he, tii (130b)

So, if T = ¬, with ⌧ = t, we have (131):

geach

a

1

(¬) : hhe, ti, he, tii (131)

The operation (i.e., operator) geacha
1

, in (131) is useful for representing negated
intransitive verbs, of the syntactic category IV, which we show in (135a)–(135b).

The operation geach

b

1

will be used later in the essay to handle the negation
of adjectives.

48

Definition 4.12. Let T : h⌧, h⌧, ⌧ii and �, ⌧ 2 Types. The operation geach

2

is
defined by (132a)–(132b):

geach

2

(T) = (�P (�Q (�x (T (P (x))(Q(x)))))) (132a)

geach

2

(T) : hh�, ⌧i, hh�, ⌧i, h�, ⌧iii (132b)

where P,Q : h�, ⌧i and x : �. For this essay we use the following special cases
(133a)–(133b) of geach

2

from (132a)–(132b):

geach

a

2

(T) : hh�, ⌧i, hh�, ⌧i, h�, ⌧iii with � = e (133a)

geach

b

2

(T) : hh�, ⌧i, hh�, ⌧i, h�, ⌧iii with � = hs, he, tii (133b)

Thus, for T = ^, with T : ht, ht, tii, we have (134a)–(134b):

geach

a

2

(^) : hhe, ti, hhe, ti, he, tiii
for T = ^ with ⌧ = t, � = e

(134a)

geach

b

2

(^) : hhhs, he, tii, ti, hhhs, he, tii, ti, hhs, he, tii, tiii
for T = ^ with ⌧ = t, � = hs, he, tii

(134b)

We shall show how geach

a

2

(^) can be used in rendering of coordinated expres-
sions of the syntactic category IV of intransitive verb phrases, and geach

b

2

(^) for
coordinated term phrases of category T, by the conjunction connector “and”.

We now show how Definitions 4.11–4.12 may be used towards solutions of
the problems in (123)–(127). In what follows, recall that smoke, sing : he, ti
and J,S : hhs, he, tii, ti.

Towards a Solution of the Problems in (123). If we let:

does not
render���! geach

a

1

(¬)

rather than ¬, we can make sense of the rendering suggested by the tree in
(123). We get:

geach

a

1

(¬)(smoke) =
⇣
�Phe,ti(�xe

¬(Phe,ti(xe

)))
⌘
(smoke) : he, ti (135a)

convert����! (�x
e

¬(smoke(x
e

))) : he, ti (135b)

49

Using (135a)–(135b), we give the following preliminary rendering of “Jacques
does not smoke” in (136):

J((�x
e

¬(smoke(x
e

))))
hhs, he, tii, ti+ he, ti

J
hhs, he, tii, ti

Jacques

(�x
e

¬(smoke(x
e

)))
he, ti

geach

a

2

(¬)
hhe, ti, he, tii

does not

smoke
he, ti

smoke

(136)

The idea is that the L

IL

expression in top node should simplify too, but
this cannot occur yet due to the remaining problem of type mismatch between
J and the new candidates for negation of HL expressions of syntactic category
IV, given in (135a)–(135b). We shall see that this can be taken care of by using
theˆandˇsymbols. We will return to this problem later.

Towards a Solution of the Problems in (125). If we let:

and
render���! geach

a

2

(^)

rather than ^, we are able to make sense of the tree structure given in (125).
We get:

geach

a

2

(^)(sing) = (137a)
⇣
�Phe,ti (�Qhe,ti (�xe

(^(Phe,ti(xe

))(Qhe,ti(xe

)))))
⌘
(sing) (137b)

convert����! (�Qhe,ti (�xe

(^(sing(x
e

))(Qhe,ti(xe

))))) : hhe, ti, he, tii (137c)

and hence:
h
geach

a

2

(^)(sing)
i
(smoke) (138a)

convert����!
⇣
�Qhe,ti (�xe

(^(sing(x
e

))(Qhe,ti(xe

))))
⌘
(smoke) (138b)

convert����! (�x
e

(^(sing(x
e

))(smoke(x
e

)))) = (138c)

(�x
e

(smoke(x
e

) ^ sing(x
e

))) : he, ti (138d)

50

And so a preliminary rendering of “Jacques smokes and sings” is that given by
the tree in (139):

J((�x
e

(smoke(x
e

) ^ sing(x
e

))))
hhs, he, tii, ti+ he, ti

J
hhs, he, tii, ti

Jacques

(�x
e

(smoke(x
e

) ^ sing(x
e

)))
he, ti

smoke
he, ti

smokes

geach

a

2

(^)(sing)
hhe, ti, he, tii

geach

a

2

(^)
hhe, ti, hhe, ti, he, tiii

and

sing
he, ti

sings

(139)

As before, the idea is that the expression in the top node should simplify to
smoke(j

e

) ^ sing(j
e

), which will be possible when we have solved the problem
with the type mismatch.

Towards a Solution of the Problems in (127). If we let:

^ render���! geach

b

2

(^)

rather than ^, we can make sense of the tree structure in (127). For readability,
let � = hs, he, tii. We get:

geach

b

2

(^)(S) = (140a)
⇣
�Ph�,ti (�Qh�,ti (�x�

(^(Ph�,ti(x�

))(Qh�,ti(x�

)))))
⌘
(S) (140b)

convert����!
�
�Qh�,ti (�x�

(^(S(x
�

))(Qh�,ti(x�

))))
�

: hh�, ti, h�, tii (140c)

Hence:
h
geach

b

2

(^)(S)
i
(J) = (141a)

convert����!
h
�Qh�,ti (�x�

(^(S(x
�

))(Q(x
�

))))
i
(J) (141b)

convert����! (�x
�

(^(S(x
�

))(J(x
�

)))) = (141c)

(�x
�

(J(x
�

) ^ S(x
�

))) : h�, ti (141d)

And so a preliminary rendering of “Jacques and Serge sing” is that given by

51

the tree in (142):

�
�x

�

(J(x
�

) ^ S(x
�

))
�
(sing)

h�, ti+ he, ti

�
�x

�

(J(x
�

) ^ S(x
�

))
�

h�, ti

J
h�, ti

Jacques

geach

b

2

(^)(S)
hh�, ti, h�, tii

geach

b

2

(^)
hh�, ti, hh�, ti, h�, tiii

and

S
h�, ti

Serge

sing
he, ti

sing

(142)

As before, the idea is that the expression in the top node should simplify,
which, yet again, will be possible when we have solved the problem with the
type mismatch.

4.6 Montagovian Grammar AGr

We have now covered preliminaries needed to present a Montagovian Gram-
mar AGr, which is very similar to the original PTQ grammar introduced by
Montague [12].

4.6.1 Syntax of a Fragment of English

Syntactic Categories of AGr Similarly to PTQ in Montague [12], our gram-
mar AGr has syntactic categories, which are listed in Table 2, along with a
mapping of the categories to corresponding L

IL

types.
Table 2 defines the set SynCats of our syntactic categories of our fragment

of English language, along with some basic expressions.

Basic Expressions of AGr The set of the basic expressions, for each syntac-
tic category C 2 SynCats, is given in (109), possibly with some more words, but
without adding words that can diverge from our syntactic rules given below.

Syntax of English Expressions in AGr Now, we give the structural rules
of our Montagovian grammar AGr for compound expressions of our fragment
of English. The rules associate each expression with a syntactic category, i.e.,
as a member of a set P

C

of expressions of category C.. We shall see that they
either correspond to or extend the previously suggested phrase structure rules

52

(9a)–(9u). For similar grammars, see Dowty et al. [3] and Montague [12]. I use
these grammars as the foundation of the grammar presented here, although I
add rules for the auxiliary syntactic categories Conj-S, Conj-T etc., which are
not in either of the cited texts.

Now, for each category C, we define the set P
C

of expressions of category C:

(P1) If C is a syntactic category, then B
C

✓ P
C

(P2) If � 2 P
N

, then F

0

(�), F
1

(�), F
2

(�) 2 P
T

, where:

F

0

(�) = every � (143)

F

1

(�) = the � (144)

F

2

(�) =

(
a �, if � begins with a consonant (sound);

an �, if � begins with a vowel (sound)
(145)

Note that all words in B
N

in (110) and B
Adj

in (116) begin with conso-
nants, so we are in fact only interested in the first case of F

2

.

(P3) If � 2 P
N

and ↵ 2 P
S

, then:

F

3,n

(�,↵) = � such that ↵0 (146)

where ↵0 is just like ↵ but with each occurrence of he
n

and him
n

replaced
by he/she/it or him/her/it respectively, depending on the gender of the
first B

N

-expression in �

(P4) If � 2 P
T

, ↵ 2 P
IV

, then F

4

(�,↵) 2 P
S

where:

F

4

(�,↵) =

(
� ↵

1 if � is not coordinated with “and”;

� ↵

2 if � is coordinated with “and”
(147)

where ↵1 is just like ↵ but with its first verb replaced by its third-person,
singular present version and ↵2 is just like ↵ but with its first verb replaced
by its third-person, plural present version

(P5) If � 2 P
TV

and ↵ 2 P
T

, then F

5

(�,↵) 2 P
IV

where:

F

5

(�,↵) =

(
� ↵ if ↵ 6= he

n

� him
n

otherwise
(148)

(P6) If � 2 P
P

and ↵ 2 P
T

, then F

5

(�,↵) 2 P
Adv

(where F
5

is defined in (148))

(P7) If � 2 P
SCP

and ↵ 2 P
S

, then F

6

(�,↵) = � ↵ 2 P
IV

(P8) If � 2 P
ICP

and ↵ 2 P
IV

, then F

6

(�,↵) = � ↵ 2 P
IV

(P9) If � 2 P
SAdv

and ↵ 2 P
S

, then F

6

(�,↵) = � ↵ 2 P
S

53

(P10) If � 2 P
Adj

and ↵ 2 P
N

, then F

6

(�,↵) = � ↵ 2 P
N

(P11) If � 2 P
Adv

and ↵ 2 P
IV

, then F

7

(�,↵) = ↵� 2 P
IV

(P12) If � 2 P
Conj

and ↵ 2 P
S

, then F

8

(�,↵) = � ↵ 2 P
Conj-S

(P13) If � 2 P
Conj

and ↵ 2 P
IV

, then F

8

(�,↵) = � ↵ 2 P
Conj-IV

(P14) If � 2 P
Conj

and ↵ 2 P
T

, then F

8

(�,↵) = � ↵ 2 P
Conj-T

(P15) If � 2 P
Conj

and ↵ 2 P
Adj

, then F

8

(�,↵) = � ↵ 2 P
Conj-Adj

(P16) If � 2 P
S

and ↵ 2 P
Conj-S

, then F

9

(�,↵) = � ↵ 2 P
S

(P17) If � 2 P
IV

and ↵ 2 P
Conj-IV

, then F

9

(�,↵) = � ↵ 2 P
IV

(P18) If � 2 P
T

and ↵ 2 P
Conj-T

, then F

9

(�,↵) = � ↵ 2 P
T

(P19) If � 2 P
Adj

and ↵ 2 P
Conj-Adj

, then F

9

(�,↵) = � ↵ 2 P
Adj

(P20) (Quantification Rule) If � 2 P
T

and ↵ 2 P
S

, then F

10,n

(�,↵) 2 P
S

, where
the syntactic operation F

10,n

is defined as follows, by (149):

F

10,n

(�,↵) =

(
↵

1 if � 6= he
k

↵

2

� = he
k

(149)

where:

(1) ↵1 is obtained from ↵ by replacing, the first occurrence of he
n

or him
n

(the one that comes first) by �, and all other occurrences of he
n

and him
n

,
correspondingly by:

(a) he/she/it or him/her/it, with respect to the gender of � (which, in
this AGr, is the first T- or N-expression in �), if � is not a coordinated
T-expression with the conjunction “and”

(b) they or them, if � is a coordinated T with the conjunction“and”

(2) ↵2 is the result of replacing, in ↵, all occurrences of he
n

/him
n

by
he

k

/him
k

(P21) (Quantification Rule) If � 2 P
T

and ↵ 2 P
N

, then F

10,n

(�,↵) 2 P
N

, where
F

10,n

(�,↵) is as in (149)

(P22) (Quantification Rule) If � 2 P
T

and ↵ 2 P
IV

, then F

10,n

(�,↵) 2 P
IV

,
where F

10,n

(�,↵) is as in (149)

(P23) (Future and Past Tenses) If ↵ 2 P
T

and � 2 P
IV

, then F

i

(↵, �) 2 P
S

for
i = 11, 12 where:

(1) F

11

(↵, �) = ↵�

0 where �0 is the result of replacing the first verb in �
by its third person singular future tense

54

(2) F

12

(↵, �) = ↵�

00 where �00 is the result of replacing the first verb in �
by its third person singular past tense

(P24) If ↵ 2 P
Neg

and � 2 P
IV

, then F

13

(↵, �) = ↵� 2 P
IV

(P25) If ↵ 2 P
Neg

and � 2 P
Adj

, then F

13

(↵, �) = ↵� 2 P
Adj

(P26) If ↵ 2 P
Neg

and ' 2 P
S

, then F

13

(↵, �) = ↵' 2 P
S

Some of these rules are not as straightforward as the phrase structure rules
(9a)–(9u). Here follows an explanation of the rules

Explanation of (P1)–(P26)

1. (P1) simply claims that all basic expressions of some category C are to be
part of all phrases of category C

2. (P2) defines ways to attach determiners to nouns. So, for instance:

F

1

(boy) = the boy (150)

3. (P3) and F

3,n

can be used to construct complex nouns that are simple
relative clauses. For instance:

F

3,n

(boy, he
n

walks) = boy such that he walks (151)

4. (P4) combines a verb and a term phrase to make a sentence. It also makes
sure that the verb agrees with the term phrase grammatically so that we
do not end up with ungrammatical sentences such as ”Serge and Jacques
sings” or ”Serge sing”

5. (P5) combines a transitive verb with a term phrase to make an intransitive
verb. It also replaces he

n

with him
n

when needed

6. (P6) combines a preposition, of the syntactic category P, and a term
phrase, of category T, to construct a prepositional phrase, PP. However, in
with our syntactic categories here, we have conflated PP with Adv (since
many prepositional phrases are used as adverbial expressions). This was
also done in Montague [12]. So:

F

5

(by, the boy) = by the boy (152)

The expression in (152) can be used as an adverbial — we can combine it
with a verb phrase to form another (more complex) verb phrase

7. (P7)–(P11) are straightforward, corresponding clearly to rules in (9a)–(9u)

8. (P12)–(P19) are coordination rules, for constructing expressions with con-
junct words, i.e., “and” and “or” in this work, and correspond to those in
(9a)–(9u)

55

9. (P20) is an entirely new rule. It lets us quantify term phrases into sen-
tences. That is, it lets us replace every occurrence of he

n

/him
n

by the
term phrase in question. So, for example:

F

10,n

(Jacques, he
n

sings) = Jacques sings (153)

(P21) and (P22) work in the same way as (P20), but for nouns and in-
transitive verbs, respectively. These rules are important in Montagovian
Grammars. They can be used to impose extra-syntax on English, for rep-
resentation of de re and de dicto readings (recall the two readings of S2).
Now, A2⇤ can be treated as being represented by the “sentence”:

S1⇤⇤ Some rational number, every integer is greater than it
0

10. (P23) are simple tense rules to deal with future and past tense:

F

11

(Jacques, sings) = Jacques will sing (154)

11. (P24)–(P26) are basic negation rules. We get some overgeneration, since,
for example, (P24) gives rise to expressions like “Jacques does not sings”.
They also appear to give rise to expressions like “Does not Jacques sings”
and “The does not blue man”. These rules are not ideal, but we leave
their improvement for future work.

Further, we note that in our AGr, we have represented the CFG with the
phrasal rules (9a)–(9u). This is shown in Table 3.

4.6.2 Compositional Rendering of English into L

IL

We now introduce Montagovian rules for rendering our fragment of English
language, generated by our grammar AGr, into L

IL

.
Recall that the sets B

C

of basic expressions of category C, are given in
(109). Recall also that Table 2 defines a set SynCats of syntactic categories of
our fragment of English language and a mapping Type from the categories to
types of L

IL

:

Type : SynCats ! Types (155)

Recall the brace notation in (79) and (80).
p.52, Notation 15.

Notation 18. For each a 2 Const

e

, we use the following abbreviation(s) (156):

a⇤ =
⇥
�P

�
(̌ P)(a)

�⇤
= [�P (̌ P)(a)] = �P [P{a}] (156)

for any P 2 Varshs,he,tii. We shall also use the abstract-operation, as in (157),
to recover from the abbreviation:

a⇤
abstract����!

⇥
�P

�
(̌ P)(a)

�⇤
(157)

Similarly to Montague [12]. we could have stated a⇤ as a simple abbreviation
of the expression �P ((̌ P)he,ti(ae)), for all ME

e

, without the abstract-operation
in (157).

56

Original rule Corresponding Montagovian rule
S ! NP VP (P4)
S ! SAdv S (P9)
S ! SCP S (P7)

S ! S Conj-S (P16)
Conj-S ! Conj S (P12)
NP ! Det N (P2)

NP ! NP Conj-NP (P18)
Conj-NP ! Conj NP (P14)

VP ! IV trivial
VP ! IV Adv (P11)
VP ! TV NP (P5)
VP ! ICP S (P8)
VP ! Neg VP (P24)

VP ! VP Conj-VP (P17)
Conj-VP ! Conj VP (P13)

PP ! P NP (P6)
N ! AdjP N (P10)

AdjP ! Neg AdjP (P25)
AdjP ! Adj trivial

AdjP ! AdjP Conj-AdjP (P19)
Conj-AdjP ! Conj AdjP (P15)

Table 3: Transition from CFG to Montagovian Syntax

The type assignment of the expression in (156), by using the subscript no-
tation, is

⇥
�Phs,he,tii

�
(̌ Phs,he,tii)he,ti(ae)

�
t

⇤
: hhs, he, tii, ti.

Notation 19. If for some collection of HL expressions {↵
i

}
n�i�1

(with fixed

n 2 N) we have that ↵
1

render���! ↵

0
1

, . . . , ↵

n

render���! ↵

0
n

, we abbreviate this as in
(158):

↵

1

, . . . ,↵

n

render���! ↵

0
1

, . . . ,↵

0
n

(158)

Rendering Rules of AGr

(R1) [See (109)–(122) for B
C

] If C is a category not in {Det,T, SAdv,Conj,Neg}
and ↵ 2 B

C

, then ↵
render���! c, for some c 2 ConstType(C)

(R2) necessarily
render���! (�p (⇤ p̌)), where p : hs, ti

(R3) and
render���! ^, or

render���! _

(R4) does not
render���! ¬

57

(R5) [See (109) for B
C

] If ↵ 2 B
T

� { he
0

, she
0

, . . . , he
n

, she
n

, . . . }, then:

↵

render���! a⇤ (159)

for some a 2 Const

e

(R6) he
n

render���! (�P (P{x
n

})), where P : hs, he, tii

(R7) [See (P2)] If � 2 P
N

and �
render���! �

0, then:

F

0

(�) = every �
render���! (�P (8x (�0(x) ! P{x}))) (160)

F

1

(�) = the �
render���! (�P (9y (8x (�0(x) $ x = y) ^ P{y}))) (161)

F

2

(�) = a/an �
render���! (�P (9x (�0(x) ^ P{x}))) (162)

where P : hs, he, tii

(R8) [See (P3)] If � 2 P
N

, ↵ 2 P
S

and �,↵
render���! �

0
,↵

0, then:

F

3,n

(�,↵)
render���! �x

n

(�0(x
n

) ^ ↵0)) (163)

where x

n

: e

(R9) [See (P4)] If � 2 P
T

, ↵ 2 P
IV

, with �,↵
render���! �

0
,↵

0, then:

F

5

(�,↵)
render���! �

0(̂ ↵0) (164)

(R10) [See (P5)] If � 2 P
TV

, ↵ 2 P
T

with �,↵
render���! �

0
,↵

0, then:

F

5

(�,↵)
render���! �

0(̂ ↵0) (165)

(R11) [See (P6)] If � 2 P
P

, ↵ 2 P
T

with �,↵
render���! �

0
,↵

0, then:

F

5

(�,↵)
render���! �

0(̂ ↵0) (166)

(R12) [See (P7)] If � 2 P
SCP

, ↵ 2 P
S

with �,↵
render���! �

0
,↵

0, then:

F

6

(�,↵)
render���! �

0(̂ ↵0) (167)

(R13) [See (P8)] If � 2 P
ICP

, ↵ 2 P
IV

with �,↵
render���! �

0
,↵

0, then:

F

6

(�,↵)
render���! �

0(̂ ↵0)

(R14) [See (P9)] If � 2 P
SAdv

, ↵ 2 P
S

with �,↵
render���! �

0
,↵

0, then:

F

6

(�,↵)
render���! �

0(̂ ↵0) (168)

58

(R15) [See (P10)] If � 2 P
Adj

, ↵ 2 P
N

with �,↵
render���! �

0
,↵

0, then:

F

7

(�,↵)
render���! �

0(̂ ↵0) (169)

(R16) [See (P11)] If � 2 P
Adv

, ↵ 2 P
IV

with �,↵
render���! �

0
,↵

0, then:

F

7

(�,↵)
render���! �

0(̂ ↵0) (170)

(R17) [See (P12)] If � 2 P
Conj

, ↵ 2 P
S

with �,↵
render���! �

0
,↵

0, then:

F

8

(�,↵)
render���! �

0(↵0) (171)

(R18) [See (P13)] If � 2 P
Conj

, ↵ 2 P
IV

, with �,↵
render���! �

0
,↵

0, then:

F

8

(�,↵)
render���!

⇥
�Q (geacha

2

(�0)(↵0)(Q))
⇤

(172)

where Q : he, ti
For the operation geach

a

2

, see (132a)–(132b) and (134a).

(R19) [See (P14)] If � 2 P
Conj

, ↵ 2 P
T

, with �,↵
render���! �

0
,↵

0, then:

F

8

(�,↵)
render���!

⇥
�R (geachb

2

(�0)(↵0)(R))
⇤

(173)

where R : hhs, he, tii, ti.
For the operation geach

b

2

, see (132a)–(132b) and (134b).

(R20) [See (P15)] If � 2 P
Conj

, ↵ 2 P
Adj

with �,↵
render���! �

0
,↵

0, then:

F

8

(�,↵)
render���!

⇥
�M (geachb

2

(geacha
2

(�0))(↵0)(M))
⇤

(174)

where M : hhs, he, tii, he, tii
See (132a)–(132b), for geacha

2

: (134a); for geachb
2

: (134b).

(R21) [See (P16)] If � 2 P
S

, ↵ 2 P
Conj-S

with �,↵
render���! �

0
,↵

0, then:

F

9

(�,↵)
render���! ↵

0(�0) (175)

(R22) [See (P17)] If � 2 P
IV

, ↵ 2 P
Conj-IV

with �,↵
render���! �

0
,↵

0, then:

F

9

(�,↵)
render���! ↵

0(�0) (176)

(R23) [See (P18)] If � 2 P
T

, ↵ 2 P
Conj-T

with �,↵
render���! �

0
,↵

0, then:

F

9

(�,↵)
render���! ↵

0(�0) (177)

59

(R24) [See (P19)] If � 2 P
Adj

, ↵ 2 P
Conj-Adj

, with �,↵
render���! �

0
,↵

0, then:

F

9

(�,↵)
render���! ↵

0(�0) (178)

(R25) [See (P20)] If � 2 P
T

, ↵ 2 P
S

and �,↵
render���! �

0
,↵

0, then:

F

10,n

(�,↵)
render���! �

0(̂ �x
n

↵

0) (179)

(R26) [See (P21)] If � 2 P
T

, ↵ 2 P
N

and �,↵
render���! �

0
,↵

0, then:

F

10,n

(�,↵)
render���!

�
�y (�0(�x

n

(↵0(y))))
�

(180)

(R27) [See (P22)] If � 2 P
T

, ↵ 2 P
IV

and �,↵
render���! �

0
,↵

0, then:

F

10,n

(�,↵)
render���!

�
�y (�0(�x

n

(↵0(y))))
�

(181)

(R28) [See (P23)] If � 2 P
T

, ↵ 2 P
IV

and �,↵
render���! �

0
,↵

0, then:

F

11

(�,↵)
render���! P(�0(̂ ↵0)) (182)

(R29) [See (P23)] If � 2 P
T

, ↵ 2 P
IV

and �,↵
render���! �

0
,↵

0, then:

F

12

(�,↵)
render���! F(�0(̂ ↵0)) (183)

(R30) [See (P24)] If � 2 P
Neg

, ↵ 2 P
IV

and �,↵
render���! ¬,↵0, then:

F

13

(�,↵)
render���! geach

a

1

(¬)(↵) (184)

(R31) [See (P25)] If � 2 P
Neg

, ↵ 2 P
Adj

and �,↵
render���! ¬,↵0, then:

F

13

(�,↵)
render���! geach

b

1

(geacha
1

(¬))(↵) (185)

(R32) [See (P26)] If � 2 P
Neg

, ↵ 2 P
S

and �,↵
render���! ¬,↵0 then:

F

13

(�,↵)
render���! ¬↵0 (186)

Explanation of (R1)–(R32)

1. (R1)–(R5) are simple rules for rendering the basic expressions into L

IL

2. (R7) are rules concerning the renderings of determiners. Clearly, they are
very similar to what we have seen so far

60

3. (R8) This rule concerns “such-that”. A variable x
n

of type e is abstracted
over which yields an expression of type he, ti, which corresponds to an
expression of category N

4. (R9)–(R16) Are straightforward and work in the same way. For instance,
in (R9) the rendering of a term phrase is applied on the intensional version
of the rendering of an intransitive verb. The ˆ is important for the types
to match, recall the problems in Section 4.5.2

5. (R17)–(R20) also work in the same way. What for instance (R18) says is
that if we render some conjunction, i.e. “and”, into ^ and some intransi-
tive verb, i.e. “runs”, into ↵0 we use the appropriate geach-rule on ^ to
make the types match and then render a formula that can be thought of
as ^↵0, i.e. half a conjunction that needs another intrasitive verb P to be
completed

Note that (R20) is special in that it uses two applications of the geach
rules after each other. This is to transform the ^ into something of the
rather complex type:

hhhhs, he, tii, he, tii, hhs, he, tii, he, tiii, hhs, he, tii, he, tiii

6. (R21)–(R24) complement the rules (R17)–(R20). They add “missing con-
junct” mentioned above.

This is so, because conjunction constants, e.g., “and” and ^, take their
arguments one-by-one, i.e., we have ^(↵

2

)(↵
1

) instead of the infix binary
convjunction symbol (↵

2

^ ↵
1

). (R25)–(R27) are used when we want to
quantify term phrases of category T, i.e., NP, in traditional notations)
into phrases for an indexed “pronoun”, such as it

0

, i.e. when we want to
replace it

0

with the term T phrase. The idea is that it
0

will provide some
variable x

0

in the rendering expression. We can then abstract over x
0

by
�x

0

, to provide its replacement with the rendering of the T expressions

7. (R28) and (R29) simply add P and F to formula, to restrict their truth
conditions to a specific set of points in time

8. (R32)–(R31) are simple negation rules. geach-rules are used when needed
to make the types match. Again, the treatment of adjectives is requires a
string of two geach-rules. First, we raise the type of ¬ to hhe, ti, he, tii
by geach

a

1

. After that, we apply geach

b

1

to raise the type of this to
hhhs, he, tii, he, tii, hhs, he, tii, he, tiii

That the (R1)–(R32) rules work together with (P1)–(P26) is of course noth-
ing obvious and needs to be proved rigorously. Especially, it is not at all obvious
that the rules (R17)–(R24) together with the corresponding (P12)–(P19) work
the way we want them to. Here I prove Proposition 4.4, which covers the base
case for the rules for coordination of adjectives. Propositions concerning the
other rules and their proofs are similar but are left for future work.

61

Proposition 4.4. For readability, let � = hhs, he, tii, he, tii. Assume (187a)–
(187b), according to Table 2:

A
1

,A
2

2 B

Adj

(187a)

A
1

,A
2

render���! ↵

1

,↵

2

for ↵
1

,↵

2

: �
(187b)

Then:

A
1

and A
2

render���!
⇣
�yhs,he,tii (�xe

((↵
1

(yhs,he,tii)(xe

)) ^ (↵
2

(yhs,he,tii)(xe

))))
⌘

: �
(188)

Proof. First, we have that A
1

,A
2

2 P
Adj

by (P1). Also:

and 2 P
Conj

(189)

So:

and A
2

2 P
Conj-Adj

by (P15) (190)

A
1

and A
2

2 P
Adj

by (P19) (191)

And so we can apply the corresponding rendering rules. I indicate which rule is
applied after each rendering.

A
1

,A
2

render���! ↵

1

,↵

2

(192a)

and
render���! ^ (R3) (192b)

and A
2

render���!
h
�M

�

�
geach

b

2

(geacha
2

(^)
�
(↵

2

)(M
�

))
i

(R20) (192c)

Let K = geach

a

2

(^). We then have, by (134a) and (134b):

K =
h
�Phe,ti (�Qhe,ti (�xe

(^(Phe,ti(x))(Qhe,ti(x)))))
i

(192d)

geach

b

2

(K) =

(�R
�

(�T
�

(�yhs,he,tii (K(R
�

(yhs,he,tii))(T�

(yhs,he,tii))))))
(192e)

hence

geach

b

2

(K)(↵
2

)(M
�

)
convert����! (�yhs,he,tii (K(↵

2

(yhs,he,tii))(M�

(yhs,he,tii))))
(192f)

By using convert on (192d):

K(↵
2

(yhs,he,tii))(M�

(yhs,he,tii)) =h
�Phe,ti (�Qhe,ti (�xe

(^(Phe,ti(xe

))(Qhe,ti(xe

)))))
i

⇣
↵

2

(yhs,he,tii)
⌘⇣

M

�

(yhs,he,tii)
⌘

convert����! (�x
e

(^(↵
2

(yhs,he,tii)(xe

))(M
�

(yhs,he,tii)(xe

))))

(192g)

62

And so, the rendering expression in (192c) is converted to:

h
�M

�

�
geach

b

2

(geachb
2

(^))
�
(↵

2

)(M
�

)
i

convert����!
h
�M

�

⇣
�yhs,he,tii (�xe

(^(↵
2

(yhs,he,tii)(xe

))

(M
�

(yhs,he,tii)(xe

))))
⌘i

(192h)

And so finally:

A
1

and A
2

render���!
h
�M

�

⇣
�yhs,he,tii (�xe

(^(↵
2

(yhs,he,tii)(xe

))

(M
�

(yhs,he,tii)(xe

))))
⌘i

(↵
1

)

(R24) (192i)

convert����!
⇣
�yhs,he,tii (�xe

(^(↵
2

(yhs,he,tii)(xe

))

(↵
1

(yhs,he,tii)(xe

))))
⌘
=

⇣
�yhs,he,tii (�xe

((↵
1

(yhs,he,tii)(xe

)) ^ (↵
2

(yhs,he,tii)(xe

))))
⌘

: �

(192j)

The best way of understanding these rules, however, is to see them in action.
In the following section, I shall give examples of renderings using (R1)–(R32).
By them, I will show how the previously mentioned limitations of L

1

have been
overcome, at least to some desirable extend.

4.6.3 Restricting the Models of L
IL

One important concept in Montauge semantics is that of meaning postulates.
Essentially, a meaning postulate is a formula that is required to hold in each
legitimate model. E↵ectively, it imposes some semantic property for the ex-
pressions involved by restricting our choice of models to those in which this
property holds. Montague [12] introduced several meaning postulates in very
general forms, by using variables of certain types. For clarity, instead of for
generality, I shall only give specific instances of meaning postulates that I rely
on in the coming sections.

Recall the brace notation in (79) and (80).

MP1 8x 8P ⇤ (greater-than(P)(x) $ [ˇP] (̂ �y ([ˆgreater-than⇤]{x, y})))

MP2 8x 8P ⇤ (write(P)(x) $ [ˇP] (̂ �y ([ˆwrite⇤]{x, y})))

where:

x, y : e (193a)

63

P : hs, hhs, he, tii, tii, (193b)

p : hs, ti (193c)

greater-than⇤,write⇤ 2 Consthe,he,tii (193d)

(193e)

The new constants labelled with “⇤” are the extensional versions of the
original constants to which they correspond.

4.7 Rendering English into LIL

We are now ready to deal with the problems we encountered in Section 3.6.
We shall show how we can use the syntactic analyses and rendering of various
expressions of English into L

IL

, for semantic representations.
We can often use metavariables, such as P,Q,R with typical type assign-

ments (194a)–(194d), unless their types are specified in other ways:

x

n

, x, y, z 2 Vars

e

for entities (194a)

p 2 Varshs,ti for propositions (194b)

P,Q 2 Varshs,he,tii for properties of entities (194c)

R 2 Varshe,ti for sets of entities (194d)

In the coming calculations, I will indicate which of the rules (R1)–(R31)

I rely on, when I use the
render���! operation. After each rendering, I will also

indicate the type of the rendered expression. I will let
MP1���! and

MP2���! denote
applications of MP1 and MP2, respectively. Sometimes, I will indicate the types
of expressions by adding subscripts to them. However, I shall only do this where
I consider it to increase readability. I will also use brackets of di↵erent kinds
and sizes — also this is for readablity.

Generally, the calculations of the rendering of a compound expression A from
the renderings of its components are non-deterministic, but always leading to
the same end result. I.e., in many cases there are di↵erent choices of the order
of applications of render rules on components, �-conversion, �-abstraction, and
up-down cancellation. Such reductions are applyed until no more reductions are
possible. All alterantive reductions end with expressions of L

IL

, which are equiv-
alent with respect to renaming bound varaiables. We usually choose reduction
steps that simplify the sub-components, as soon as possible for transperency.
One may choose some other systematic strategies, but they may laed to more
complex intermediate expressions. E.g., we could �-abstract after each render-
ing of a component of an expression A that is of the syntactice category S for
a sentence. In that way, we usually end up with a rather complex expression
when we reach the top expression of category S, which we would then simplify
using a string of �-conversions and down-up cancellations.

4.7.1 Predication

Let us once again consider:

64

S4 Jacques sings well

Recall, the problem was that there was no way in L

1

for “well” to modify “sing”.
We have solved this problem here, as seen by the following rendering:

Jacques
render���! j⇤ : hhs, he, tii, ti (R5) (195a)

abstract����!
⇥
�P ((̌ P)he,ti(j

e

))
⇤

(195b)

sings
render���! sing : he, ti (R1) (195c)

well
render���! well : hhs, he, tii, he, tii (R1) (195d)

sing well
render���! well(̂ sing) : he, ti (R16) (195e)

Jacques sings well
render���!

h
�P (̌ P (j))

i
(̂ well(̂ sing))hs,he,tii : t (R9) (195f)

h
�P (̌ P (j))

i
(̂ well(̂ sing))

convert����!
�
(̌̂ well(̂ sing))

�
(j) (195g)

cancel���! well(̂ sing)(j) (195h)

And so we have a satisfactory rendering of the sentence.

4.7.2 Quantification

Here we return to:

S5 Every Belgian sings

We get:

Belgian
render���! belgian : he, ti (R1) (196a)

Every Belgian

render���!
h
�P

�
8x (belgian(x) ! ˇP (x))

�i
: hhs, he, tii, ti

(R7) (196b)

sing
render���! sing : he, ti (R1) (196c)

Every Belgian sings
render���!

h
�P

�
8x (belgian(x) ! ˇP (x))

�i

(̂ sing)hs,he,tii : t
(R9) (196d)

h
�P

�
8x (belgian(x) ! ˇP (x))

�i
(̂ sing)hs,he,tii

convert����! 8x (belgian(x) ! (̌̂ sing(x)))
(196e)

cancel���! 8x (belgian(x) ! sing(x)) (196f)

65

Recall, in L

1

there were problems with rendering quantified NPs in a compo-
sitional way from their components. There were also problems with putting
combinng them with the renderings of VPs. This problem has been solved here.
Furthermore, we see that AGr treats NPs which are proper nouns and quantifier
NPs uniformly. In both cases, the NP is rendered into an L

IL

-expression of type
hhs, he, tii, ti, whereas the expressions simplify to forms that are similar or the
same as those in FOL.

Let us now consider the trickier sentence S2:

S2 Every integer is greater than some rational number

Montauge provides us with a way to account for both readings. Here we show
how to get the de dicto reading:

rational number
render���! rational-number : he, ti (R1) (197a)

some rational number

render���!
h
�P

�
9y (rational-number(y) ^ˇP (y))

�i
:

hhs, he, tii, ti

(R7) (197b)

is greater than

render���! greater-than : hhs, hhs, he, tii, tii, he, tii
(R1) (197c)

is greater than some rational number

render���! greater-than
⇣
ˆ
h
�P

�
9y (rational-number(y)^

ˇP (y))
�i⌘

: he, ti

(R10) (197d)

integer
render���! integer : he, ti (R1) (197e)

Every integer

render���!
h
�Q

�
8x (integer(x) ! ˇQ(x))

�i
: hhs, he, tii, ti

(R7) (197f)

Every integer is greater than some rational number

render���!
h
�Q

�
8x (integer(x) ! ˇQ(x))

�i

⇣
ˆgreater-than

(̂
⇥
�P (9y (rational-number(y)^

ˇP (y)))
⇤�⌘

: t

(R9) (197g)

66

convert����! 8x (integer(x) !

ˇ
⇣
ˆgreater-than

(̂
⇥
�P (9y (rational-number(y)^

ˇP (y)))
⇤�⌘

(x))

(197h)

cancel���! 8x (integer(x) !
greater-than

(̂
⇥
�P (9y (rational-number(y)^
ˇP (y)))

⇤�
(x))

(197i)

MP1���! 8x (integer(x) !

ˇ
⇣
ˆ
⇥
�P (9y (rational-number(y) ^ˇP (y)))

⇤⌘

⇣
ˆ
⇥
�z (̂ greater-than⇤{x, z})

⇤⌘
)

(197j)

cancel���! 8x (integer(x) !
⇣
�P (9y (rational-number(y) ^ˇP (y)))

⌘

⇣
ˆ
⇥
�z (̂ greater-than⇤{x, z})

⇤⌘
)

(197k)

convert����! 8x (integer(x) !
⇣
9y

�
rational-number(y)^

ˇ
⇣
ˆ
⇥
�z (̂ greater-than⇤{x, z})

⇤⌘
(y)

�⌘
)

(197l)

cancel���! 8x (integer(x) !
⇣
9y

�
rational-number(y)^
⇥
�z (̂ greater-than⇤{x, z})

⇤
(y)

�⌘
)

(197m)

convert����! 8x (integer(x) !
9y (rational-number(y)^

ˆgreater-than⇤{x, y}))
(197n)

67

cancel���! 8x (integer(x) !
9y (rational-number(y)^

greater-than⇤(y)(x)))

(197o)

We can also get the de re reading easily. Recall that this is considered to be
the sentence S2*:

S2* Some rational number, every integer is greater than it
0

We get:

it
0

render���!
⇥
�P (̌ P (x

0

))
⇤
: hhs, he, tii, ti (R6) (198a)

is greater than

render���! greater-than : hhs, hhs, he, tii, tii, he, tii
(R1) (198b)

is greater than it
0

render���! greater-than
�
ˆ
⇥
�P (̌ P (x

0

))
⇤�

: he, ti
(R10) (198c)

integer
render���! integer : he, ti (R1) (198d)

Every integer

render���!
h
�Q (8x (integer(x) ! ˇQ(x)))

i
: hhs, he, tii, ti

(R7) (198e)

Every integer is greater than it
0

render���!
h
�Q (8x (integer(x) ! ˇQ(x)))

i

⇣
ˆgreater-than

�
ˆ
⇥
�P (̌ P (x

0

))
⇤�⌘

: t

(R9) (198f)

convert����! 8x (integer(x) !

ˇ
⇣
ˆgreater-than

�
ˆ
⇥
�P (̌ P (x

0

))
⇤�⌘

(x))
(198g)

cancel���! 8x (integer(x) !
greater-than

�
ˆ
⇥
�P (̌ P (x

0

))
⇤�
(x))

(198h)

MP1���! 8x (integer(x) !
ˇ
�
ˆ
⇥
�P (̌ P (x

0

))
⇤�

�
ˆ
⇥
�z (̂ greater-than⇤{x, z})

⇤�
)

(198i)

cancel���! 8x (integer(x) !
⇥
�P (̌ P (x

0

))
⇤�
ˆ
⇥
�z (̂ greater-than⇤{x, z})

⇤�
)

(198j)

68

convert����! 8x (integer(x) !
ˇ
�
ˆ
⇥
�z (̂ greater-than⇤{x, z})

⇤�
(x

0

))
(198k)

cancel���! 8x (integer(x) !
⇥
�z (̂ greater-than⇤{x, z})

⇤
(x

0

))
(198l)

convert����! 8x (integer(x) ! ˆgreater-than⇤{x, x0

}) (198m)

cancel���! 8x (integer(x) ! greater-than⇤(x0

)(x)) (198n)

rational number
render���! rational-number : he, ti (R1) (198o)

some rational number

render���!
h
�P

�
9y(rational-number(y) ^ˇP (y))

�i

: hhs, he, tii, ti

(R7) (198p)

Every integer is greater than some rational number

render���!
h
�P

�
9y(rational-number(y) ^ˇP (y))

�i

⇣
ˆ
⇥
�x

0

(8x (integer(x) !

greater-than⇤(x0

)(x)))
⇤⌘

: t

(R25) (198q)

convert����! 9y(rational-number(y)^

ˇ
⇣
ˆ
⇥
�x

0

(8x (integer(x) !

greater-than⇤(x0

)(x)))
⇤⌘

(y))

(198r)

cancel���! 9y(rational-number(y)^
⇥
�x

0

(8x (integer(x) !
greater-than⇤(x0

)(x)))
⇤
(y))

(198s)

convert����! 9y(rational-number(y)^
8x (integer(x) ! greater-than⇤(y)(x)))

(198t)

69

4.7.3 Tense

We return to S3. Recall the discussion concerning the treatment of tense in L

1

.
This problem disappears if we render into L

IL

:

Jacques
render���! j⇤ : hhs, he, tii, ti (R5) (199a)

abstract����!
⇥
�P (̌ P (j))

⇤
(199b)

sing
render���! sing : he, ti (R1) (199c)

Jacques sang
render���! P

�⇥
�P (̌ P (j))

⇤
(̂ sing)

�
: t (R28) (199d)

P
�⇥
�P (̌ P (j))

⇤
(̂ sing)

� convert����! P(̌ (̂ sing)(j)) (199e)

cancel���! P(sing(j)) (199f)

So by (199a)–(199e) we have:

Jacques sang
render���! P(sing(j)) (200)

which is precisely what we want. Of course, by an almost identical derivation
we get:

Jacques will sing
render���! F(sing(j)) (201)

4.7.4 Modality

Let us now try to deal with:

S12 Necessarily, Jacques sings

We get:

Jacques
render���! j⇤ : hhs, he, tii, ti (R5) (202a)

abstract����!
⇥
�P (̌ P (j))

⇤
(202b)

sing
render���! sing : he, ti (R1) (202c)

Jacques sings
render���!

⇥
�P (̌ P (j))

⇤
(̂ sing) : t (R9) (202d)

⇥
�P (̌ P (j))

⇤
(̂ sing)

convert����! (̌̂ sing)(j)
cancel���! sing(j) (202e)

Necessarily
render���!

⇥
�p (⇤ p̌)

⇤
: hhs, ti, ti (R2) (202f)

Necessarily, Jacques sings
render���!

⇥
�p (⇤ p̌)

⇤
(̂ sing(j)) : t (R14) (202g)

⇥
�p (⇤ p̌)

⇤
(̂ sing(j))

convert����! ⇤
�
(̌̂ sing(j))

� cancel���! ⇤ (sing(j)) (202h)

So by (202a)–(202h) we have:

Necessarily, Jacques sings
render���! ⇤ (sing(j)) (203)

which is what we wanted.

70

4.7.5 Intensionality

We return to the sentences S10 and S11. Here we make life easy for us and
consider “silly books” and “the author of Being and Time” as proper names
and use the present tense “write” rather than “wrote”. I.e., we rewrite the
sentences as in S10⇤ and S11⇤

S10⇤ Ludwig thinks that Martin Heidegger writes silly-books

S11⇤ Ludwig thinks that the author of Being and Time writes silly-books

We start by rendering S10⇤:

writes
render���! write : hhs, hhs, he, tii, tii, he, tii (R1) (204a)

silly-books
render���! b⇤ : hhs, he, tii, ti (R5) (204b)

abstract����!
⇥
�P (̌ P (b))

⇤
(204c)

writes silly-books
render���! write

�
ˆ
⇥
�P (̌ P (b))

⇤�
: he, ti (R10) (204d)

Martin Heidegger
render���! m⇤ : hhs, he, tii, ti (R5) (204e)

abstract����!
⇥
�Q (̌ Q (m))

⇤
(204f)

Martin Heidegger writes silly-books

render���!
h
�Q (̌ Q(m))

i⇣
ˆwrite

�
ˆ
⇥
�P (̌ P (b))

⇤�⌘
: t

(R9) (204g)

convert����! ˇ
⇣
ˆwrite

�
ˆ
⇥
�P (̌ P (b))

⇤�⌘
(m) (204h)

cancel���! write
�
ˆ
⇥
�P (̌ P (b))

⇤�
(m) (204i)

MP2���! ˇ
�
ˆ
⇥
�P (̌ P (b))

⇤��
ˆ
⇥
�z(̂ write⇤{m, z})

⇤�
(204j)

cancel���!
⇥
�P (̌ P (b))

⇤�
ˆ
⇥
�z(̂ write⇤{m, z})

⇤�
(204k)

convert����! ˇ
�
ˆ
⇥
�z (̂ write⇤{m, z})

⇤�
(b) (204l)

cancel���! �z (̂ write⇤{m, z})(b) (204m)

cancel���! �z (write⇤(m, z))(b) (204n)

convert����! write⇤(m,b) (204o)

thinks that
render���! think-that : hhs, ti, he, tii (R1) (204p)

71

thinks that Martin Heidegger writes silly-books

render���! think-that(̂ write⇤(m,b)) : he, ti
(R12) (204q)

Ludwig
render���! l⇤ : hhs, he, tii, ti (R5) (204r)

abstract����!
⇥
�Q (̌ Q (l))

⇤
(204s)

Luwdig thinks that Martin Heidegger writes silly-books

render���!
⇥
�Q (̌ Q (l))

⇤
(̂ think-that(̂ write⇤(m,b))) : t

(R9) (204t)

convert����! (̌̂ think-that(̂ write⇤(m,b)))(l) (204u)

cancel���! think-that(̂ write⇤(m,b))(l) (204v)

And so we have:

Ludwig thinks that Martin Heidegger writes silly-books

render���! think-that(̂ write⇤(m,b))(l)
(205)

In a similar manner, if we let:

The author of Being and Time
render���! a⇤ (206)

and proceed in the same way as in (204a)–(204v) we get:

Ludwig thinks that the author of time writes silly-books

render���! think-that(̂ write⇤(a,b))(l)
(207)

Now, even if [[m]]M,w,t,h = [[a]]M,w,t,h for some (w, t) 2 W⇥T , a substitution
is blocked by the intensionalˆ. In other words, the restricted version of substitu-
tion — see Proposition 4.2 — does not apply here. [[̂ write⇤(m,b)]]M,w,t,h and
[[̂ write⇤(a,b)]]M,w,t,h denote two entirely di↵erent functions. I.e., as a coun-
terexample, we can construct a model with some (x, y) 2 W ⇥ T , such that:

[[b]]M,x,y,h = I(b)(x, y) 6= I(a)(x, y) = [[a]]M,x,y,h (208a)

[[write⇤(m,b)]]M,x,y,h 6= [[write⇤(m,a)]]M,x,y,h (208b)

5 Summary and Outlook

In this thesis I have introduced Montague’s L
IL

and provided a formal syntax in
a grammar AGr which, for a small fragment of English, represents key phrasal
structures that are problematic for formal and computational representation by

72

L

1

. I have also provided rendering rules, in a recursive parallel with the syntax,
which render phrases, up to sentences, into expressions of L

IL

for semantical
representation. The choice of fragment was to a large extent arbitrary — the
idea is that no matter which basic expressions we choose to work with, it should
be possible to provide an analysis analogous to that of the fraction of HL used
in this essay. It is clear, however, that this is not an exhaustive theory of how
HL works.

Furthermore, I have discussed CFGs and how they relate to HL. We have seen
how they can be used to provide computational theories of HL grammar. For
future work, however, they should be given more thorough linguistic motivations
and be introduced in a more computational manner. We have also seen some
ways in which CFGs are inadequate in that they need a large amount of rules and
auxiliary syntactic categories. These auxiliary categories are often very artificial
and do not represent intuitive features of actual HL. We have also seen how tree
structures corresponding to the CF rules can be added to improve (and extend)
a given CFG. These are important for new approaches to the construction of a
syntax-semantics interface for HL.

Since Montague [12] much research has focused on improving his theory. One
obvious way to improve our Montagovian grammar AGr is to extend it so that it
reflects a larger amount of linguistic features in English language. The approach
covered in this essay comes a long way, but there are many features that are
left unexplained. For example, we have no way of handling verb agreement.
There is no mechanism that reflects the fact that “Jacques smokes and sings”
is an acceptable sentences whereas “Jacques smoke and sings” is not. Another
limitation is its inability to deal with passive sentences. As of now, we are
very capable of providing a satisfactory rendering of “Martin Heidegger wrote
a silly book”. However, there it is not at all obvious how the passive form of
the sentence “A silly book was written by Martin Heidegger” could be analysed
in a way that captures the fact that both sentences share the exact same truth
conditions. We also have some overgeneration, especially when it comes to the
negation of sentences and adjectives.

A second improvment is to make Montague’s theory simpler and more com-
putational. One important and relatively early attempt is Musken’s logic TT

2

,
see Muskens [14]. Another more recent improvement is Moschovakis’s theory of
acyclic recursion, see Moschovakis [13].

To summarise, I need to:

1. linguistically motivate the use of CFGs and introduce the CFGs in a more
computational way

2. find a more suitable computational grammar for the syntax of HL to reduce
some of the complexity introduced by AGr and to be able to handle more
features of HL (by a computational syntax-semantics interface)

3. solve problems with overgeneration

4. learn more about (i) computational syntax of HL, (ii) problems relating
to semantics and (iii) better logics than L

IL

73

References

[1] Alfred V. Aho and Je↵rey D. Ullman. The Theory of Parsing, Translation,

and Compiling. 1,2 vols. Prentice-Hall series in automatic computation.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1972.

[2] Donald Davidson. “Truth and Meaning”. In: Synthese 17.3 (1967), pp. 304–
323. issn: 00397857, 15730964. url: http://www.jstor.org/stable/
20114563.

[3] David R Dowty, Robert Wall, and Stanley Peters. Introduction to Mon-

tague semantics. Vol. 11. Springer, 1981. url: http://link.springer.
com/book/10.1007%2F978-94-009-9065-4.

[4] James Garson. “Modal Logic”. In: The Stanford Encyclopedia of Philos-

ophy. Ed. by Edward N. Zalta. Spring 2016. Metaphysics Research Lab,
Stanford University, 2016.

[5] John E. Hopcroft, Rajeev Motwani, and Je↵rey D. Ullman. Introduction
to automata theory, languages, and computation. 3. ed., New international
ed. Harlow: Pearson Addison-Wesley, 2014. isbn: 1-292-03905-1.

[6] John E. Hopcroft and Je↵rey D. Ullman. Introduction to Automata The-

ory, Languages, and Computation. 1979.

[7] Rodney Huddleston, Geo↵rey K Pullum, et al. The Cambridge Gram-

mar of English. Cambridge University Press, 2002. url: http://www.
cambridge.org/uk/linguistics/cgel/.

[8] Jong-Bok Kim and Peter Sells. English Syntax: An Introduction. CSLI
Lecture Notes. CSLI Publications, 2008.

[9] Roussanka Loukanova. “Muskens’ Relational Montague Grammar. Part
III: PTQ Revised”. Computational Semantics II. Lecture Notes: Presen-
tations. 2008.

[10] Roussanka Loukanova. “An Approach to Functional Formal Models of
Constraint-Based Lexicalized Grammar (CBLG)”. In: Fundamenta Infor-

maticae 152.4 (2017), pp. 341–372. issn: 0169-2968 (P) 1875-8681 (E).
doi: 10.3233/FI-2017-1524.

[11] Roussanka Loukanova. “Partiality, Underspecification, Parameters and
Natural Language”. In: Partiality and Underspecification in Information,

Languages, and Knowledge. Ed. by Henning Christiansen et al. Cambridge
Scholars Publishing, 2017, pp. 109–150. url: http://www.cambridgescholars.
com/partiality-and-underspecification-in-information-languages-

and-knowledge.

[12] Richard Montague. “The Proper Treatment of Quantification in Ordinary
English”. In: Approaches to Natural Language. Ed. by Patrick Suppes,
Julius Moravcsik, and Jaakko Hintikka. Dordrecht, 1973, pp. 221–242.

74

[13] Yiannis N. Moschovakis. “A Logical Calculus of Meaning and Synonymy”.
In: Linguistics and Philosophy 29.1 (Feb. 2006), pp. 27–89. issn: 1573-
0549. doi: 10.1007/s10988-005-6920-7. url: http://dx.doi.org/10.
1007/s10988-005-6920-7.

[14] Reinhard Muskens. Meaning and Partiality. Studies in Logic, Language
and Information. Stanford, California: CSLI Publications, 1995.

[15] Bertrand Russell. “On Denoting”. In: Mind 14.56 (1905), pp. 479–493.
issn: 00264423, 14602113. url: http://www.jstor.org/stable/2248381.

[16] Ivan A. Sag, Thomas Wasow, and Emily M. Bender. Syntactic Theory: A

Formal Introduction. Stanford, California: CSLI Publications, 2003.

[17] Alfred Tarski. “The Semantic Conception of Truth: and the Foundations
of Semantics”. In: Philosophy and Phenomenological Research 4.3 (1944),
pp. 341–376. issn: 00318205. url: http://www.jstor.org/stable/
2102968.

[18] Dag Westerst̊ahl. “Logical Constants in Quantifier Languages”. In: Lin-
guistics and Philosophy 8.4 (1985), pp. 387–413. issn: 01650157, 15730549.
url: http://www.jstor.org/stable/25001218.

[19] DagWesterst̊ahl. “Formal Semantics 4: Proper Names, Coordination, Type
Shifts for the Connectives”. Formal Semantics. Lecture notes: Presenta-
tions. 2016.

[20] Yoad Winter. “Syncategorematic conjunction and structured meanings”.
In: In Proceedings of Semantics and Linguistic Theory, SALT5. 1995.

75

