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Abstract

If the length of the perimeter of a figure is given, what is the greatest area

that can be enclosed? This age-old question is called the isoperimetric prob-

lem. Its origins date back to antiquity but a thorough and complete solution

was not o↵ered until the 19th century. In this thesis we will reveal the solu-

tion to the isoperimetric problem and present some distinctly di↵erent ways

in which one can arrive at a conclusive answer.

We will also examine a few variations of this problem. For instance,

one could look at a pentagon and ask oneself what type of pentagon would

maximise the area when the length of the perimeter is given. This would

then fall under the isoperimetric problem for polygons. Moreover, we will

explore some results that bear a resemblance to the original problem. Lastly

we take a brief look at the isoperimetric problem in higher dimensions.
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1 Introduction

Geometry, merely mentioning the word evokes a multitude of shapes taking

form before our eyes. Ever since the release of Euclid’s Elements in the 4th

century B.C., countless generations have been introduced to the mathemat-

ical beauty of shapes and figures.

With analytic geometry and calculus making their debut in the 17th

century, one was able to solve problems that had been unsolved hitherto. In

modern mathematics it might be said that Euclidean geometry on its own

is seen as slightly archaic. There is, however, no denying that Euclidean

geometry has a certain charm of its own and that its seeming simplicity is

part of its appeal.

One of the earliest problems facing mathematicians was the isoperimetric

problem. The word isoperimetric means of equal perimeters. The isoperimet-

ric problem entails solving the following: Which figure encloses the greatest

area out of all figures with a given perimeter? An equivalent way of stating

the isoperimetric problem is: Which figure has the shortest perimeter out of

all figures with a given area?

That these two questions turn out to have the same answer may not be

obvious at first sight. Nevertheless we will show that this is the case in a

proof by contradiction. Let us suppose that the answer to the latter problem

and the latter problem only, is figure A. It then follows that there has to be

a figure that has the same perimeter as A but whose area is greater. Let

us call it figure B. By rescaling B, we can turn it into a figure with the

same area as A but it will then have a shorter perimeter than A. This is a

contradiction since we started out by stating that figure A was the solution

having the shortest perimeter out of all figures with a given area. Thus

it follows that the two ways of formulating the isoperimetric problem are

equivalent. It should be noted, however, that the former way of stating the

problem is the most common.

Yet, the question remains; which figure is the solution to the isoperimet-

ric problem? It turns out that the circle is the correct answer. Although

one might be able to arrive at the right answer by sheer intuition, actually

proving that the circle is the answer turns out to be a little more compli-

4



cated than hazarding an educated guess. Still, numerous proofs exist. We

formulate the isoperimetric theorem as follows:

Theorem 1.1 [The Isoperimetric Theorem]

Of all the figures with a given perimeter, the circle has the greatest area. Or

equivalently: Of all the figures with a given area, the circle has the shortest

perimeter.

One can state the isoperimetric theorem as an inequality as well. We

know that out of all figures with a given perimeter, P, the greatest area is

given by A = ⇡r2 = (2⇡r)2

4⇡ = P

2

4⇡ . We are thus now able to present the

following inequality.

Theorem 1.2 [The Isoperimetric Inequality]

For any figure with perimeter P and area A, the following inequality holds:

4⇡A  P 2.

Equality holds for the circle only.

In what follows we will have a look at so-called convex figures since they

will turn out to be highly important to us. In sections 4 and 5 we present

proofs of the isoperimetric theorem for triangles and quadrilaterals. We then

move on to section 6 where we will give a few proofs of theorem 1.1. After

that the isoperimetric theorem for n-gons will be proven. Following that,

some problems that are of an isoperimetric nature will be solved and we will

also take a closer look at figures of constant width. Lastly, we will make a

brief foray into the topic of the isoperimetric theorem in higher dimensions.

2 Geometric Terminology

When reading a text on geometry, one might come across words that seem

vaguely familiar. The purpose of this section is therefore to compile a list of

explanations of some of the terminology used throughout the thesis which

may cause some confusion.
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Equilateral

An equilateral polygon is a polygon whose sides are all of equal length.

Equiangular

An equiangular polygon is a polygon whose angles are all of equal magnitude.

Regular Polygon

A polygon is regular if and only if it is both equilateral and equiangular.

Radius of a polygon

The distance to any vertex from the center of a convex regular polygon.

Apothem

The distance to the midpoint of any side from the center of a convex regular

polygon.

Congruency

Two geometrical figures are congruent if and only if they can become iden-

tical figures by translation, rotation and/or reflection. If A and B are con-

gruent, we write A ⇠= B. Two angles are said to be congruent if and only if

they are of the same size.

Foci

The plural form of focus. The foci are two points situated on the longest

axis (the major axis) of an ellipse, and the distances from both foci to the

center are equidistant. If we choose a point on the ellipse and draw one ray

to each focus, the sum of the length of the rays will always be constant, no

matter which point on the ellipse we select. Thus the ellipse consists of all

of these points.

3 Convexity

The notion of convexity is an important one. Let us say we have a region, R.

If one is able to draw a straight line, L, between any two points a and b on

R, without L appearing outside of R, the region R is said to be convex. Any

region that is not convex, is concave. In figure 1, (I) and (II) are concave

and (III) and (IV) are convex.
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Figure 1

Any figure that is concave due to having a hole in its interior can be trans-

formed into a convex figure with a shorter perimeter length but a greater

area by simply filling in the hole. Additionally, any figure that is concave

because of outer depressions can also be transformed into a convex figure.

This is achieved by drawing a straight line between the two exact points

at which the depression begins, resulting in a convex figure with a shorter

perimeter length and a greater area. See figure 2.

Figure 2

If we suppose that the figure that is the solution to the isoperimetric

problem is concave, then making the figure convex as per the methods above

will yield a figure with greater area and a shorter perimeter. Thus, in the

search for the greatest area with a given perimeter for a given class of figures,

be it quadrilaterals, n-gons or the standard isoperimetric problem, one only

has to concern oneself with figures of a convex nature.
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4 The Isoperimetric Theorem for Triangles

While one most often hears of the original isoperimetric theorem as stated

above, one can still happen upon intriguing, albeit lesser-known versions of

it. Shortly, we will have a look at one of those; the isoperimetric theorem for

triangles. Before that however, a few preliminaries are required. We begin

by introducing and proving a theorem from ancient times by Heron [7].

4.1 Preliminaries

Theorem 4.1 [Heron’s Formula]

For any triangle with sides a, b and c, its area is given by

A =
1

4

p
((a+ c)2 � b2)(b2 � (a� c)2). (4.1.1)

Proof. We look at any triangle with sides a, b and c. See figure 3. Ultimately,

what we want is the area expressed as a function of the side lengths.

Figure 3

By the Pythagorean theorem we see that a2 = x2 + h2 and

b2 = (c� x)2 + h2 hold for the left and right triangle, respectively. We thus

acquire

b2 = c2 � 2cx+ x2 + h2 = c2 � 2cx+ a2. (4.1.2)

Solving for x, yields

x =
a2 � b2 + c2

2c
. (4.1.3)
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The area of the entire triangle is expressed as A = 1
2ch. From this fact it

follows that

4A2 = c2h2 = c2(a2�x2) = c2
 
a2�

✓
a2 � b2 + c2

2c

◆2
!

= a2c2�(a2 � b2 + c2)2

4
.

(4.1.4)

Multiplying both sides by four, we get

16A2 = 4a2c2�(a2�b2+c2)2 =
⇣
2ac+(a2�b2+c2)

⌘⇣
2ac�(a2�b2+c2)

⌘

=
⇣
(a+ c)2 � b2

⌘⇣
b2 � (a� c)2

⌘
. (4.1.5)

We finally obtain (4.1.1) by dividing each side by sixteen and then taking

the square root of both sides.

The following theorem will also prove useful. It is the well-known theo-

rem of the arithmetic and geometric mean, often abbreviated as the AM-GM

inequality. The proof is due to G. Pólya [4].

Theorem 4.2 [The AM-GM Inequality]

If x
i

2 R+, 8i then the following relationship between the arithmetic and

geometric mean holds:

1

n

nX

i=1

x
i

�
nY

i=1

x1/n
i

. (4.1.6)

Equality holds only when x1 = x2 = ... = x
n

.

Proof. We will make use of the function exp(x�1)�x. Its first derivative is

exp(x� 1)� 1 and di↵erentiating twice yields exp(x� 1). Since the second

derivative is greater than zero for all x 2 R, we know that the original

function is convex everywhere. Furthermore, we see that the function attains

its global minimum value of 0 when x = 1. Thus, the inequality

0  exp(x� 1)� x , x  exp(x� 1) holds.
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Now let f(x) = x and g(x) = exp(x � 1). The inequality can therefore

simply be written as f(x)  g(x). We now let a be the arithmetic mean and

observe that the following inequality holds:

nY

i=1

f(x
i

)

a


nY

i=1

g(x
i

)

a
. (4.1.7)

The right-hand side can be written as

exp

⇢
nX

i=1

⇣x
i

a
� 1
⌘�

= exp

⇢
1

a

nX

i=1

x
i

� n

�
= exp(n� n) = 1. (4.1.8)

Hence, (4.1.7) can be simplified to
Q

n xi

a

n  1. We thus finally end up with

the AM-GM inequality:

nY

i=1

x1/n
i

 a. (4.1.9)

4.2 Proving The Isoperimetric Theorem for Triangles

Now we are ready to prove the isoperimetric theorem for triangles. The

following proof is due to Kazarino↵ [7].

Theorem 4.3 [The Isoperimetric Theorem for Triangles]

Among all triangles with a given perimeter, the equilateral triangle has the

greatest area.

Proof. Consider a triangle with perimeter p and sides s1, s2 and s3. From

theorem 4.1 we see that the greatest area is attained when

(p� 2s1)(p� 2s2)(p� 2s3) (4.2.1)

is maximised. This can be seen by first observing that the factors under the

radical sign in (4.1.1) can be written as
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((s1 + s3) + s2)((s1 + s3)� s2)(s2 + (s1 � s3))(s2 � (s1 � s3)). (4.2.2)

Secondly, we know that p = s1 + s2 + s3 is fixed and therefore (4.2.1)

follows. In order to maximise (4.2.1) we apply (4.1.6) with n = 3. We begin

by letting x
i

= p � 2s
i

, i = 1, 2, 3. The AM-GM inequality thus states

that (x1x2x3)1/3  x1+x2+x3
3 . The arithmetic mean can be rewritten as p/3.

Hence we acquire the inequality x1x2x3  (p/3)3. The left-hand side is

clearly maximised when the two sides are equal, i.e. when x1 = x2 = x3 ,
p� 2s1 = p� 2s2 = p� 2s3 , s1 = s2 = s3. That concludes the proof.

5 The Isoperimetric Theorem for Quadrilaterals

Before proving the isoperimetric theorem for quadrilaterals we will prove

the central angle theorem and two related results, both of which will be of

use to us.

5.1 Preliminaries

Theorem 5.1 [The Central Angle Theorem and Some Related Re-

sults]

A central angle is defined to be any angle between two radii of a circle. Its

vertex lies at the center of the circle. An inscribed angle is the angle between

two chords that meet at a point on the circumference of the circle. The in-

scribed angle has its vertex on any point on the circumference of the circle,

except on the circular arc on which it is subtended.

The central angle theorem states that the central angle has double the

magnitude of any inscribed angle if they are subtended by the same circular

arc. See figure 4.

As a consequence it follows that among all triangles sharing the same

base and with an opposing angle of the same magnitude, the triangle with

the greatest area is the one that is isosceles.

Additionally, as yet another consequence of the central angle theorem it

follows that two opposite angles in an inscribed quadrilateral (a quadrilateral

whose vertices lie on the circumference of a circle) always add up to ⇡.
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Figure 4

Proof. We will look at three di↵erent cases. See figure 5.

Figure 5

Case 1: We see that 4O1A1C1 is isosceles since its legs are the radii of

the circle. Thus \O1A1C1 and \O1C1A1 are congruent. We now observe

that ⇡ = \A1O1C1+\C1A1O1+\A1C1O1 = \A1O1B1+\A1O1C1. Hence

\A1O1B1 = \C1A1O1 + \A1C1O1 = 2\A1C1O1, which shows that the

central angle has twice the magnitude of the inscribed angle.

Case 2: By drawing a diameter from C2 we can use the same method

as in the first case, twice. See figure 6. In other words we first show
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Figure 6

that \A2O2D2 = 2\A2C2O2 and then analogously show that \D2O2B2 =

2\B2C2O2. Finally, since \A2C2B2 = \A2C2O2 + \B2C2O2, it holds

that \A2O2B2 = \A2O2D2 + \D2O2B2 = 2\A2C2O2 + 2\B2C2O2 =

2\A2C2B2.

Figure 7

Case 3: We draw a diameter from C3 and yet again use the method from case

1. See figure 7. First we show that \D3O3B3 = 2\D3C3B3 and then that

\D3O3A3 = 2\D3C3A3 by using the preceding method. Hence \A3O3B3 =

\D3O3B3 � \D3O3A3 = 2(\D3C3B3 � \D3C3A3) = 2\A3C3B3, which is

exactly what we wanted to show.

Having shown all three cases, the central angle theorem is thus proved.
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Furthermore, one can draw a chord and let it be the base of a triangle

whose vertex is placed on the circumference of the circle that is not on the

circular arc subtending the top angle of the triangle. Since the height of

the triangle is at its peak when the highest point of the triangle lies directly

above the central point of the circle, it follows that of all triangles having the

same base length and opposing angle of the same magnitude, the isosceles

triangle has the greatest area. See figure 8.

Figure 8

Now we will prove that two angles opposite of one another in an inscribed

quadrilateral always add up to ⇡. We inscribe the quadrilateral ABCD in

a circle and let O be the midpoint of the circle. See figure 9. Let \BAD =

✓. It then follows from the central angle theorem that the central angle

subtended by the same circular arc equals 2✓. We can reason analogously

for the angles � and 2�. Since 2✓+2� = 2⇡ it follows that ✓+ � = ⇡. Thus

the two remaining angles of the quadrilateral also add up to ⇡.

Figure 9
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5.2 Proving The Isoperimetric Theorem for Quadrilaterals

Now we will present Kazarino↵’s proof of the isoperimetric theorem for

quadrilaterals [7]. It turns out that the square solves this isoperimetric

problem, i.e. that the following theorem holds:

Theorem 5.2 [The Isoperimetric Theorem for Quadrilaterals]

Out of all quadrilaterals with equal perimeters, the square has the greatest

area.

Proof. Let a convex quadrilateral be given as in figure 10 with sides of length

s1, s2, s3 and s4. We also let its perimeter be P and its area be A. Now, let

the line of length t divide the quadrilateral into two triangles. The height

of the triangles are s1sin(') and s4sin(✓), respectively. Thus the area of

the leftmost triangle is 1
2s1s2sin('), and the area of the rightmost triangle

is 1
2s3s4sin(✓).

Figure 10

The area of the quadrilateral is therefore A = 1
2s1s2sin(')+

1
2s3s4sin(✓). It

follows that 4A = 2s1s2sin(') + 2s3s4sin(✓). Squaring both sides yields

16A2 = 4s21s
2
2sin

2(') + 8s1s2s3s4sin(')sin(✓) + 4s23s
2
4sin

2(✓). (5.2.1)

Through the law of cosines we see that
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t2 = s21 + s22 � 2s1s2cos(') = s23 + s24 � 2s3s4cos(✓), (5.2.2)

which means that

s21 + s22 � s23 � s24 = 2s1s2cos(')� 2s3s4cos(✓). (5.2.3)

Squaring both sides yet again, we see that

(s21 + s22 � s23 � s24)
2 = 4s21s

2
2cos

2(')� 8s1s2s3s4cos(')cos(✓) + 4s23s
2
4cos

2(✓).

(5.2.4)

Adding (5.2.1) and (5.2.4) together, we acquire

16A2+(s21+s22�s23�s24)
2 = 4s21s

2
2(sin

2(')+cos2('))+4s23s
2
4(sin

2(✓)+cos2(✓))

� 8s1s2s3s4(cos(')cos(✓)� sin(')sin(✓)). (5.2.5)

We now make use of the following two trigonometric identities:

sin2(↵) + cos2(↵) = 1,

and

cos(↵+ �) = cos(↵)cos(�)� sin(↵)sin(�),

and thus obtain

16A2 + (s21 + s22 � s23 � s24)
2 = 4s21s

2
2 + 4s23s

2
4 � 8s1s2s3s4cos('+ ✓). (5.2.6)

If the side lengths are all fixed, we see that the greatest area is acquired

when cos('+ ✓) = �1. This is the case when '+ ✓ = ⇡. This calls to mind

an inscribed quadrilateral in which two opposing angles always add up to ⇡.

See theorem 5.1. Therefore we see that a quadrilateral whose side lengths

are given, and which can be inscribed in a circle has the greatest area.

In order to prove the isoperimetric theorem for quadrilaterals it is thus

su�cient to only look at the quadrilaterals that can be inscribed in a circle.

So we keep the perimeter P of the quadrilateral fixed and let the two pairs of
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opposing angles add up to ⇡, respectively. Now we permit the side lengths

to vary, keeping in mind that the aforementioned constraints hold. Since

cos('+ ✓) = �1, (5.2.6) can be written as

16A2 + (s21 + s22 � s23 � s24)
2 = 4s21s

2
2 + 4s23s

2
4 + 8s1s2s3s4

) 16A2 = 4(s21s
2
2+s23s

2
4)+8s1s2s3s4�(s21+s22�s23�s24)

2 = 4(s1s2+s3s4)
2�(s21+s22�s23�s24)

2

= [2(s1s2 + s3s4) + (s21 + s22 � s23 � s24)][2(s1s2 + s3s4)� (s21 + s22 � s23 � s24)]

= [(s1 + s2)
2 � (s3 � s4)

2][(s3 + s4)
2 � (s1 � s2)

2]

= [(s1+s2)+(s3�s4)][(s1+s2)�(s3�s4)][(s3+s4)+(s1�s2)][(s3+s4)�(s1�s2)]

= (P � 2s1)(P � 2s2)(P � 2s3)(P � 2s4). (5.2.7)

Using the AM-GM inequality for n = 4, we see that the following inequality

holds

((P�2s1)(P�2s2)(P�2s3)(P�2s4))
1
4  (P � 2s1) + (P � 2s2) + (P � 2s3) + (P � 2s4)

4
.

(5.2.8)

The right-hand side of (5.2.8) can be rewritten as 4P�2(s1+s2+s3+s4)
4 =

4P�2P
4 = P

2 , yielding

((P � 2s1)(P � 2s2)(P � 2s3)(P � 2s4))
1
4  P

2
. (5.2.9)

Equality holds when

(P � 2s1) = (P � 2s2) = (P � 2s3) = (P � 2s4),

and that is the case when all sides are of equal length, i.e. when

s1 = s2 = s3 = s4.

This holds true when the quadrilateral is a square. Hence the proof is

complete.
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6 Proofs of The Isoperimetric Theorem

As mentioned earlier, there is an abundant number of proofs for the isoperi-

metric theorem. The isoperimetric problem was known to the Greeks of

ancient times. Pappus wrote down a proof of the isoperimetric theorem in

the 4th century A.D. He accredits Zenodorus, who lived in the 2nd century

B.C., in regard to this result. These proofs were not, however, rigorous

mathematical proofs by the standard of today.

The proofs that will be presented in the following are all from the 19th

century onward. We have chosen a select few that are all interesting in their

own way.

6.1 Steiner’s Attempt At a Proof

In modern times, the pursuit to come up with a rigorous proof of the isoperi-

metric theorem was commenced by the Swiss mathematician Jakob Steiner

(1796-1863). He eventually came up with five proofs, the first of which was

published in 1841 [13]. Due to his aversion to calculus, he was adamant in

seeking to come up with proofs that were purely geometrical. However, it

turns out they were incomplete inasmuch as they failed to ascertain that a

figure of maximum area actually exists. What Steiner proved was that if a

figure of greatest area exists, it has to be the circle.

An analogy that shows just how absurd a theorem one can come up with

if an extremum is presumed to exist is the following: We want to show that 1

is the largest integer. Now, for all integers n 6= 1, there is an integer n2 > n.

Therefore 1 is the largest integer.

In the case of the isoperimetric theorem, it turned out that the alleged as-

sertion that the circle maximised the area for a given perimeter was actually

true. The problem of proving the isoperimetric theorem and the existence

of a maximum was solved in 1879 by Karl Weierstrass [14]. Today many

proofs exist, displaying a variety of ingenious ways in which to prove the

formerly so elusive theorem.

Shortly we will present one of Steiner’s proofs from [2]. In order for the

proof to make sense one has to be familiar with the following theorem.
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Theorem 6.1 [The Greatest Area of a Triangle with Two Given

Sides]

If two line segments of length s and s0 are to be used as sides in a triangle,

the greatest area is achieved when they form the catheti in a right triangle.

Figure 11

Proof. The area of a triangle is 1
2bh where b is the base and h is the height.

In figure 11 we let s be the base and note that the height is maximised when

the triangle is a right triangle which concludes the proof.

Incomplete albeit elegant, only making use of Euclidean geometry, we

now present one of Steiner’s proofs:

Theorem 6.2 [Steiner’s Attempted Proof]

Out of all the regions with a given perimeter that is not a circle, one can

always find a figure that has the same perimeter but a greater area.

Proof. Let us assume that we already have the figure, F, with maximum area

and that the length of its perimeter is l. F obviously has to be convex. We

now proceed to draw a line, L, across F, which separates F into two figures,

each having a perimeter of length 1
2 l. The two figures must necessarily

have the same area. If that were not the case, we could just reflect the

one figure with the greatest area across the aforementioned line, thereby

creating a figure with the same perimeter l but a greater area. This would

then contradict our assumption that F has the greatest area.
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We now look at one of the halves of F and assume that it is not a

semicircle. By drawing two lines, AC and BC, there has to be a point on

the perimeter on which \ACB 6= ⇡

2 . See figure 12. The resulting figure, G,

consists of three regions: a triangle and two regions that can be thought of

as being glued on to two of the sides of the triangle. Imagine sliding point

A and B along L until \ACB = ⇡

2 . This enlarges the area of the triangle

due to theorem 6.1 but keeps the area of the two glued on regions the same.

Thus the area of G is increased.

By reflecting G over L, we now obtain a figure whose area is greater

than F. This is a contradiction since F was assumed to be the figure with

the greatest area. Therefore, G had to have been a semicircle and thus F

must have been a circle.

Figure 12

6.2 A Proof Using Elementary Geometry

The following proof is purely geometrical and it was published in 1998 by

G. Lawlor [9]. We will look at the area of figures in the first quadrant, i.e.

a figure whose area is hemmed in by the x- and y-axes and a smooth curve.

The smooth curve will have the length ⇡/2. The major part of the proof

will consist of showing that out of all those figures, the quarter circle has a

greater area than all the others. It will be su�cient to do so, since we can

reflect this figure about the axes in two steps. At the very end, we reflect
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the quarter circle about the y-axis to end up with the semicircle. We then

reflect the semicircle across the x-axis to finally get the full circle.

So, to start o↵ we draw a curve between a point on the x-axis and a

point on the y-axis. We let the figure thus encompassed by the axes and the

smooth curve be F . It should be noted that we let F be a convex figure.

We then place n points on the curve so that they are all equidistant from

one another. Here, n is a large number. In total, we thus have n+ 2 points

that are all equally distant from each other. We let the point on the x-axis

be P1. Traversing the curve towards the point on the y-axis, we let P2 be

the next point that we reach and finally let the point on the y-axis be P
n+2.

From all points except the ones lying on the axes we draw a ray; this

is done so that the angle subtended by the x-axis and the ray emanating

from P
i

has the magnitude ⇡(i�1)
2(n+1) . We have now partitioned F into n + 1

sections, noting that two consecutive rays form what resembles a triangle.

The ray emanating from P
k

will be defined as R
k

. As can be seen from the

left figure in figure 13, the sections might overlap one another.

Figure 13

We now have to show that the triangle-like partitions cover all of F . In

order to show this we will have to show that for any point in the interior of

F , there is (at least) one partition covering it. It is clear that a point inside
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of F will be enclosed by the curve and the axes. Since F is convex and

R
i+1 subtends a greater angle with the x-axis than R

i

, two consecutive rays

eventually have to intersect one another, whether it be inside or outside of

F . For any point p, the ray immediately above it, trapping p from above,

has to be one of the rays R
j

, j = 2, ..., n + 2. As for the ray immediately

below p; one of the rays R
k

, k = 1, ..., n + 1 must necessarily then be the

ray that encloses p from beneath. That way, a point in the interior of F

will always be covered by at least one of the partitions. Thus the partitions

cover the entirety of F .

We have previously alluded to the fact that the partitions seem to re-

semble triangles. By letting the number of points, n ! 1, the curved

segment P
i

P
i+1 can be seen as a straight line. Thus the partitions have the

line segment P
i

P
i+1 as their base and can be regarded as triangles, 4T

i

,

1  i  n+ 1. In doing so, a tiny part of each partition, H
i

, 1  i  n+ 1,

will not be covered by the triangles. Since lim
i!1

P
n+1
i=1 Area(H

i

) = 0, we

now only look at the triangles. These triangles may overlap one another as

stated above.

Now let C (the right-hand figure in figure 13) be the part of the unit

circle centered at the origin that lies in the first quadrant. By partitioning C

in the same way, by the points Q
i

as outlined above including letting n ! 1
we see that it now consists of n+ 1 isosceles triangles, 4U

i

, 1  i  n+ 1.

The triangles covering F have the same base as the isosceles triangles

covering C. Furthermore, the rays emanating from the points P
i

and Q
i

subtend the same angle with the x-axis. We know from theorem 5.1 that

among all triangles sharing the same base and having an opposing angle of

the same magnitude, the triangle that is isosceles has the greatest area.

Therefore
P

n+1
i=1 Area(4U

i

) >
P

n+1
i=1 Area(4T

i

). We know that the trian-

gles 4T
i

cover at least all of F and as per the technique of reflection outlined

above, the proof is complete.
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6.3 A Proof Using Calculus

Another interesting proof, due to P.D. Lax [10], utilizes calculus to prove

the isoperimetric theorem.

As we saw earlier in theorem 1.2, the isoperimetric inequality states that

4⇡A  P 2, with equality only for the circle. The aforementioned inequality

thus states that a closed curve of length 2⇡ encompasses an area that is

 ⇡. Only when the curve forms the unit circle is the maximum area, ⇡,

attained. We now parameterize the curve, defining t to be the arc length

and letting the curve be defined by the points (x(t), y(t)), 0  t  2⇡. The

curve is placed so that the coordinates (x(0), y(0)) and (x(⇡), y(⇡)) both lie

on the x-axis.

The area of the resulting shape can be expressed, by the use of Green’s

theorem, as two integrals in the following way:

Area =

ZZ

C

1 dA =

I

C

y dx =

2⇡Z

0

y(t)x0(t) dt =

⇡Z

0

y(t)x0(t) dt +

2⇡Z

⇡

y(t)x0(t) dt = I1 + I2.

Since the area of the entire figure is proposed to be  ⇡ it su�ces to show

that both I1 and I2 have to be  ⇡/2. If, in addition, we can show that the

equality holds solely when the parameterization is that of a circle, the proof

will be complete.

We are now going to make use of the following inequality:

ab  a2 + b2

2
.

This easily follows since (a� b)2 � 0 , a2 � 2ab+ b2 � 0 , ab  a

2+b

2

2 .

Looking at I1 and implementing the inequality we get

I1 =

⇡Z

0

y(t)x0(t) dt  1

2

⇡Z

0

(y(t)2 + x0(t)2) dt. (6.3.1)

We now use the fact that t is the arc length to see that

(dt)2 = (dx)2 + (dy)2 )
⇣dx
dt

⌘2
+
⇣dy
dt

⌘2
= 1 ) x0(t)2 + y0(t)2 = 1.

23



By replacing x0(t)2 with 1�y0(t)2 we rewrite the integrand on the right-hand

side in (6.3.1) so that

I1 
1

2

⇡Z

0

(y(t)2 + 1� y0(t)2) dt. (6.3.2)

We now rewrite y(t) as a product of the factors g(t) and sin t. Of note is

that g is a bounded and di↵erentiable function. We get y(t) := g(t)sin t and

after di↵erentiating we acquire y0(t) = g0(t)sin t+ g(t)cos t.

Inserting both y and its derivative into (6.3.2) we get

I1 
1

2

⇡Z

0

(g(t)2sin2t+ 1� (g0(t)sint+ g(t)cos t)2) dt. (6.3.3)

The integral in (6.3.3) can now be simplified. In what follows, note that

the last equality follows by integration by parts of
⇡R

0
g(t)2cos 2t dt. This

eliminates the two lattermost integrals.

⇡Z

0

(g(t)2sin2t+ 1� (g0(t)sint+ g(t)cos t)2) dt =

⇡Z

0

(1� g0(t)2sin2 t) dt+

+

⇡Z

0

g(t)2(sin2t� cos2t) dt � 2

⇡Z

0

g(t)g0(t)sin t cos t dt =

⇡Z

0

(1� g0(t)2sin2 t) dt�

�
⇡Z

0

g(t)2cos 2t dt �
⇡Z

0

g(t)g0(t)sin 2t dt = ⇡ �
⇡Z

0

g0(t)2sin2 t dt.

(6.3.4)

Thus the inequality is reduced to

I1 
⇡

2
� 1

2

⇡Z

0

g0(t)2sin2 t dt. (6.3.5)

The integrand, g0(t)2sin2 t, is composed of two factors that are both � 0,

0  t  2⇡. Hence we conclude that I1  ⇡

2 . Only when g0(t) = 0 do we
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get I1 = ⇡

2 . Since we defined y(t) := g(t)sin t, we see that if g0(t) = 0 then

y(t) = k sin t, where k is a constant.

Furthermore, only when y(t) = x0(t) =
p
1� y0(t)2 do we have equality

in (6.3.1). This is the case solely when k = ±1 and so y(t) = ±sin t.

This, in turn, means that x(t) = ±cos t + c, where c is a constant. This

parameterization describes a semicircle whose diameter lies on the x-axis.

In order to prove that I2  ⇡

2 and that the equality only holds when x(t) and

y(t) trace out a semicircle, one can reason analogously. This then completes

the proof.

7 The Isoperimetric Theorem for n-gons

What if we look at polygons with more than four vertices? Having looked at

the case when n = 3 and n = 4 one might suspect that the regular polygon

is the one that maximises the area, given a certain perimeter. This actually

turns out to be the case, as we will see shortly.

A most intriguing aspect of proving the isoperimetric theorem for n-

gons is that no one seems to have managed to do so without the use of the

original isoperimetric theorem [7]. The proof that will be presented shortly

is no exception.

7.1 Preliminaries

First we will present three useful results. They will then be used to finally

prove the isoperimetric theorem for n-gons. The proof of theorem 7.1 is due

to [6].

Theorem 7.1

A regular polygon has an area that is equal or greater than an equilateral

polygon with the same number of sides and with sides of equal length as the

regular polygon.

Proof. Let P1 be a polygon inscribed in the circle, O. Also, let P2 be a

polygon that has an equal number of sides, and whose sides are of equal

length and with the sides in the same order as P1. The area of O is comprised

of the area of the polygon as well as the area of the circular segments. If
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we take the segments and fasten them to the corresponding sides of P2 we

obtain a new figure with the same perimeter as O. Let this new shape be

called F .

It follows from the original isoperimetric theorem (theorem 1.1) that

Area(O) > Area(F ). Furthermore, since the segments enclosing O and F

are identical it follows that Area(P1) > Area(P2). We know that a regular

polygon can be inscribed in a circle and thus the proof is complete.

Theorem 7.2

Out of two regular polygons that are of the same perimeter, the one with the

most number of sides has the greatest area.

Figure 14

Proof. We consider a regular n-gon with perimeter of length p that has been

partitioned into n congruent isosceles triangles with base length s. The

apothem, a, is equal to the height of the triangles. Moreover we observe

that p = ns. See figure 14. As for the indicated angle we see that ✓ = 2⇡
n

· 12 .
The height of the triangles can therefore be expressed as a = s

2 tan (⇡/n) .

The area of one triangle is then equal to s

2

4 tan (⇡/n) . Since we have n congruent

triangles, the area of the whole n-gon is

n
s2

4 tan ⇡

n

=
p2

4
· 1

n tan ⇡

n

. (7.1.1)

Now let x = ⇡/n, 0 < x  ⇡/3. Thus the area can be expressed as

p2

4⇡
· x

tanx
. (7.1.2)
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It is clear that as n increases, x decreases. Hence, if we show that (7.1.2)

increases as x decreases, the proof will be complete.

It su�ces to only look at the latter factor in (7.1.2), i.e. f(x) = x

tan x

.

Di↵erentiating this function yields

f 0(x) =
tan x� x

cos

2
x

tan2x
=

sin x cos x� x

sin2x
=

sin 2x� 2x

2sin2x
. (7.1.3)

The denominator is a square and is therefore always positive. The nu-

merator, on the other hand, is always negative for all x, 0 < x  ⇡/3. Thus

f 0(x) < 0 for all x in 0 < x  ⇡/3. In other words, as x decreases (n

increases) the area increases. That concludes the proof.

Theorem 7.3

Of two triangles having the same base and the same perimeter, the one whose

legs have the smallest di↵erence in their lengths has the largest area. Thus,

of all triangles having the same base and the same perimeter, the isosceles

triangle has the greatest area. Furthermore, out of two triangles whose bases

are identical and whose perimeters are of equal length, the one whose base

angles have the smallest di↵erence in magnitude has the greatest area.

Proof. An ellipse can be defined as all the points to which we draw two

rays, with the sum of the rays being constant, from the foci. Each pair

of rays, together with the line segment AB, create a triangle. All of these

triangles share the same base, AB. In addition, the triangles thus created,

have perimeters of equal length.

We clearly see from figure 15 that |AD � BD| < |AE � BE|, since

|AD| < |AE| and |BD| > |BE|. One can reason analogously when compar-

ing 4ABD with the isosceles 4ABC to see that |AC �BC| < |AD�BD|.
In fact, as the points on the ellipse move closer towards C, we see that the

di↵erence of the side lengths decrease and eventually at C, |AC �BC| = 0.

Hence, the smaller the di↵erence between the sides, the greater the area of

the triangle.

As for the angles, the same reasoning holds. Thus, we see that the

smaller the di↵erence between the base angles, the greater the area of the

triangle.
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Figure 15

For the isosceles triangle, |AC �BC| = |\ABC �\BAC| = 0 and thus

it has the greatest area out of all triangles with the same base and equal

perimeter lengths.

7.2 Proving The Isoperimetric Theorem for n-gons

Now we are finally ready to prove the isoperimetric theorem for n-gons. The

proof comes from [6].

Theorem 7.4 [The Isoperimetric Theorem for n-gons]

Out of all n-gons with fixed perimeter, the regular n-gon has the greatest

area.

Proof. This will be a proof by induction. The base case, i.e. n = 3, has been

verified in theorem 4.3. Our induction hypothesis is that the area of any

convex n-gon with a given perimeter is smaller than the area of a regular

n-gon of the same perimeter.

The outline of the proof is as follows: Firstly we will prove that for any

convex (n+1)-gon, one of the following two assertions hold.

i) The area of any convex (n+1)-gon of a given perimeter is not greater than

the area of some equilateral (n+1)-gon of the same perimeter.

ii) The area of any convex (n+1)-gon of a given perimeter is not greater

than the area of some n-gon of the same perimeter.
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When we have proved that either i) or ii) holds, we will make use of

theorem 7.1 and theorem 7.2. In the end it will follow that the area of a

regular (n+1)-gon of a given perimeter is greater than the area of any convex

(n+1)-gon of the same perimeter. Thus we will have proven exactly what

we set out to prove from the outset.

We now start o↵ the proof, our aim being to prove that for any con-

vex (n+1)-gon, either i) or ii) holds. We regard the convex (n+1)-gon

A1A2...An+1. See (I) in figure 16. Now we look at two adjacent sides of the

polygon, say A
i

A
i+1 and A

i+1Ai+2. We proceed to draw the line segment

A
i

A
i+2 and let this be the base of 4A

i

A
i+1Ai+2. Now we create a new tri-

angle, 4A
i

bA
i+1Ai+2, that has the same base as the aforementioned triangle.

In addition to that we let 4A
i

A
i+1Ai+2

⇠= 4A
i

bA
i+1Ai+2. In other words,

we have acquired an (n+1)-gon where the two sides A
i

A
i+1 and A

i+1Ai+2

have swapped places with each other.

What if the resulting (n+1)-gon ends up being concave? See (II) in figure

16. In that case we will transform it into a convex n-gon by eliminating

one vertex. We start by extending one of the two sides next to A
i

A
i+1

or A
i+1Ai+2 that formed part of the original (n+1)-gon. In other words,

we either extend A
i+2Ai+3 or A

i�1Ai

. Let us extend the side A
i�1Ai

by

adding the segment A
i

bbA
i+1 on to it. The length of the segment is chosen

so that A
i

bbA
i+1 +

bbA
i+1Ai+2 = A

i

A
i+1 + A

i+1Ai+2. Thus the perimeter of

4A
i

A
i+1Ai+2 and 4A

i

bbA
i+1Ai+2 are equal since they share the same base.

The extended side will end up crossing 4A
i

bA
i+1Ai+2, since if that were not

the case 4A
i

bbA
i+1Ai+2 would end up fully contained within 4A

i

bA
i+1Ai+2

and they could not then have equal perimeters.

The base angles of 4A
i

bbA
i+1Ai+2 are smaller than \A

i

A
i+2Ai+1 =

\A
i+2Ai

bA
i+1 and greater than \A

i

A
i+2
bA
i+1 = \A

i+2Ai

A
i+1. Therefore

|\A
i

A
i+2
bbA
i+1�\A

i+2Ai

bbA
i+1| < |\A

i

A
i+2Ai+1�\A

i+2Ai

A
i+1| and hence

from theorem 7.3 we see that Area(4A
i

bbA
i+1Ai+2) > Area(4A

i

A
i+1Ai+2).

So by replacing 4A
i

A
i+1Ai+2 with 4A

i

bbA
i+1Ai+2 we have now transformed

the (n+1)-gon into an n-gon of the same perimeter but with greater area.

To summarize, in the end we either end up with an (n+1)-gon that is

convex and of the same area with two of its sides interchanged or we acquire

a convex n-gon whose area is greater. In the latter case we stop. If the former
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Figure 16

scenario happens, we can rearrange the sides of the (n+1)-gon until we have

obtained an (n+1)-gon with its largest and smallest side adjacent to one

another. In the case that there is no smallest side and/or no greatest side,

we simply rearrange the sides so that one of the smallest and/or one of the

greatest sides are placed next to each other.

Figure 17

Having done that we now look at the (n+1)-gon in which the smallest

and largest side are next to each other (alternatively one of the smallest

or one of the greatest sides). We assume that these sides are A
i+1Ai+2 and

A
i

A
i+1. See figure 17. We create the line segment A

i

A
i+2 and let this be the
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base of 4A
i

A
i+1Ai+2. Then we create 4A

i

bA
i+1Ai+2 which shares the same

base as the triangle just mentioned and also let it be of the same perimeter.

The perimeter of the (n+1)-gon being p, one of the sides of 4A
i

bA
i+1Ai+2

is created so that its length is p/(n+ 1).

The smallest side of 4A
i

A
i+1Ai+2 must be less than p/(n + 1) and

the greatest side must be greater than p/(n + 1) since the two triangles

would not have equal perimeters if that were not the case. This means that

|A
i

bA
i+1�A

i+2
bA
i+1| < |A

i

A
i+1�A

i+2Ai+1| and by theorem 7.3 we thus see

that Area(4A
i

bA
i+1Ai+2) > Area(4A

i

A
i+1Ai+2). Hence the (n+1)-gon in

which we have replaced 4A
i

A
i+1Ai+2 with 4A

i

bA
i+1Ai+2 has a greater area

than the (n+1)-gon we started out with. If, when creating 4A
i

bA
i+1Ai+2,

we get a concave (n+1)-gon we repeat the same process as delineated above

and obtain a convex n-gon of the same perimeter but with greater area than

the original (n+1)-gon.

In the former case we now have an (n+1)-gon with (at least) one side of

length p/(n + 1). Repeating this exact same process we can create a new

(n+1)-gon with (at least) two more sides of length p/(n + 1). Continuing

this process, the area increasing each time, we eventually end up with one of

two figures; either an equilateral (n+1)-gon with all sides of length p/(n+1)

and the same perimeter but with greater area or an n-gon with the same

perimeter as the original (n+1)-gon but with greater area.

So to summarize, we have now proved that for any convex (n+1)-gon,

i) or ii) as described above, holds. Using theorem 7.1, we see that if i)

holds, then the convex regular (n+1)-gon with perimeter p has a greater

area than any convex (n+1)-gon with perimeter p. When ii) holds we see

that if the induction hypothesis holds true, theorem 7.2 also yields the same

conclusion.

8 Dido’s Problem

Legend has it that Dido was the founder of Carthage during the first mil-

lennium B.C. and that she later became queen of the said city. The legend

of Dido has been recited by many writers throughout the ages, but Virgil’s

version as retold in The Aeneid is surely the most well known. Dido, the
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daughter of the king of Tyre, found herself forced to abandon the city of Tyre

together with a steadfast entourage due to her deceitful brother Pygmalion.

In due course they arrived in northern Africa. Here they met up with

Hiarbas, a local king. Looking for a piece of land, they reached an agreement

with the king, that they could have as much soil as could be enclosed by

the hide of an ox. Upon hearing this, Dido proceeded to cut the hide into

exceptionally thin stripes. Using the coastline as a boundary, she thereby

managed to surround a substantial piece of land with the chopped-up pieces

of the ox hide tied into a long string. Here, the city of Carthage was even-

tually erected [3].

The ingeniousness with which Dido carried out the aforementioned feat

is the basis for what is called Dido’s problem. Its presentation varies but

it is largely the same problem. Firstly, the original version is presented.

Thereafter two other versions are shown. The solutions are due to G. Pólya

[11].

8.1 Dido’s First Problem

Let L be a line segment of infinite length. Of all the figures that can be

encompassed by the line segment and a string of length l’, what figure en-

compasses the largest area?

Solution

Let the string form a semicircle, S, together with L. Now reflect the semicircle

across L so that a full circle, C, is generated. We let area(S) = A and thus

area(C) = 2A. We also note that perimeter(C) = 2l0.

We will now create a new figure. Let the string form a region, R1,

together with L. This region is allowed to be any shape but a semicircle.

We now proceed to reflect R1 across L, thereby forming a new region, R2.

Now, let area(R1) = A0 and so consequently area(R2) = 2A0. We see that

perimeter(R2) = 2l0. See figure 18.

The regions C and R2 have the same perimeter and therefore it follows

from the isoperimetric theorem that area(C) > area(R2). So 2A > 2A0 )
A > A0 ) area(S) > area(R1). We thus see that the figure yielding the

greatest area is a semicircle.
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Figure 18

8.2 Dido’s Second Problem

Let L be a finite line segment of length l. Of all the figures that can be

encompassed by the line segment and a string of length l’, what figure en-

compasses the largest area?

Solution

Case 1 (l0  l): In this case the solution is exactly the same as the one

o↵ered above.

Case 2 (l0 > l): Let the string form a circular arc, that together with L,

encloses the region C1. It thus holds that perimeter(C1) = l + l0. Such

an arc will always exist since the shortest distance between two points is

a straight line. We now extend C1 with a circular region C 0
1, creating a

full circle, C2. This circle is what C1 would have been if we had continued

drawing the perimeter all the way around. We thus see that C1 +C 0
1 = C2.

We will now create a new region. Let the string form a region to-

gether with L, called R1, that is not a circular segment. It follows that

perimeter(R1) = l+ l0. Extend R1 with the exact same region C 0
1, creating

a new region R2. See figure 19. So R1 + C 0
1 = R2.
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The regions C2 and R2 have equal perimeters. By the isoperimetric

theorem it thus follows that area(C2) > area(R2). Hence, we see that

area(C1) + area(C 0
1) > area(R1) + area(C 0

1) ) area(C1) > area(R1) and

accordingly we have proven that a circular segment generates the greatest

area.

Figure 19

8.3 Dido’s Third Problem

Let L be the angle ✓ < ⇡. In other words, L is comprised of two line

segments of infinite length adjoined at the vertex, V, and ✓ is the angle

between the two line segments. We have a string of fixed length, l’, which

will be attached to two points (A and B) on L; both points being placed on

separate line segments. The two attachment points are not fixated and one

can therefore slide them up and down along their line segment. Of all the

figures that can be encompassed by L and a string of length l’, what figure

encompasses the largest area?

Solution

The solution consists of solving two related problems, i) and ii), and then

finally using them to arrive at the solution to the original problem.

i) We begin by looking at the case in which A and B are fixated on L. The

points are placed on separate line segments. We also let ✓ < ⇡. Recalling

case 2 of Dido’s second problem, we see that if we imagine a straight line

from A to B and if the string with a given length forms a circular arc with

endpoints at A and B, the greatest region is cut o↵ from the angle. To see
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the veracity of this, recollect that the triangle ABV is like C 0
1 in the previous

problem, only that it is a triangle this time. In (I) in figure 20 the string

forms a circular arc and in (II) the string is in the shape of an arbitrary

figure that is not a circular arc. In both cases the triangles are identical

and thus cut o↵ the same area. The area enclosed by the line segment AB

and the string is the greatest when the string forms a circular arc by the

solution to Dido’s second problem. If we add this area and the area of the

triangle we see that in (I) the greatest area is cut o↵ in total. It should be

noted that at this stage it does not matter whether or not the string ends

up crossing one or both of the line segments. If l
0
< |AB| we cannot form

any figure.

Figure 20

We now let ✓ > ⇡ and yet again fix A and B on separate line segments. A

circular arc is formed with endpoints A and B in (III). In (IV) an arbitrary

shape is formed by the string. By adding the triangle ABV to the area cut

o↵ by the string we see through Dido’s second problem that forming the

string as in (III) yields the greatest area. In this case the string might also

wind up crossing the line segments and should l
0
< |AB| we will not be able

to create any figure.

ii) We now turn to the situation when only A is fixed. Point B can be placed

anywhere as long as it is located on the other line segment. The angle should

be < ⇡. Our goal is now, once again, to cut o↵ as great an area as possible

from the angle. The length of the string is fixed at l
0
and its endpoints

should be placed at A and B. Seeing VB as a mirror we proceed to reflect

VA over to the left of VB. Let the new reflected line segment be called VC.
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With the help of the imaginary line AC we can create the triangle ACV.

If we seek to find the greatest area that can be cut o↵ from the angle

that is hemmed in by the line segment on which A is placed and its reflected

line segment on which C is located, with a string that starts in A and ends

in C, this problem is identical to i). See figure 21 which shows two di↵erent

scenarios, both of which can be solved in the same manner as i). The solution

is thus a circular arc which is perpendicular to the line segment BV at the

point B. The location of B is chosen so that the string can pass through B

on its way to C. Hence, we finally see that the solution to ii) is an arc of a

circle perpendicular to BV at B. The string might end up crossing one or

both of the line segments, which is fine at this stage too.

Figure 21

We are now ready to solve the original problem. So, to reiterate, we

want to find the greatest area that can be cut o↵ from an angle ✓ < ⇡. The

points A and B will be placed on separate line segments and neither point

will be fixed and can therefore be placed anywhere on their line segment.

The string has the fixed length l
0
.

We saw in ii) that when fixing A, the solution was a circular arc perpen-

dicular to BV at B. Likewise, if we fix B the solution will be a circular arc

perpendicular to AV at A by ii). Thus, in order to achieve the greatest area

one has to place A and B so that a circular arc can be formed that is per-

pendicular at both points to their respective line segments, simultaneously.

This is the arc of a circle with its center located at V.
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9 Figures of Constant Width

The circle can be regarded as the quintessential shape of constant width. As

it turns out there are an infinite number of these figures, but the only one

that is truly ubiquitous is the circle. While the vast majority of people have

heard of the circle, surely not as many would be able to name any other

figure of constant width.

9.1 What are Figures of Constant Width?

We must not get ahead of ourselves and so we will first and foremost look at

how figures of constant width can be defined. In order to do that we need

to look at the concept of a supporting line.

A supporting line is a line segment that touches a curve in any number

of points while still retaining the points of the curve either on the line seg-

ment itself or on only one side of the line segment. There are exactly two

supporting lines running parallel to one another in every direction. To find

a pair of supporting lines for a given direction, one can draw two parallel

lines that do not touch the figure and then slide them toward one another

until they make contact with the figure. The shortest distance between a

pair of supporting lines is a straight line between the two that forms a right

angle with both lines.

While a tangent line is a concept closely related to a supporting line,

they are not interchangeable. For instance, a supporting line touching the

vertex of a triangle is not a tangent line at the same vertex.

A figure of constant width is defined as a convex figure that has the same

width, w, in all directions; more specifically the shortest distance between

its two supporting lines in a given direction is the same, whichever the di-

rection. Figure 22 shows four closed curves with two pairs of supporting

lines for each curve; (I) and (II) being figures of constant width and (III)

and (IV) not having constant width.
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Figure 22

The diameter of a circle is also its width and therefore it truly is a figure

of constant width. What other figures of constant width exist? For instance,

the Reuleaux polygons all belong to the class of figures of constant width.

A Reuleaux polygon can be constructed in the following way: Construct

a regular n-gon, where n is an odd number. Next, let one of the vertices

be the center of a circle that runs through the vertices that make up the

endpoints of the opposite side. We repeat this by creating such a circle for

all the vertices of the polygon. The perimeter of the Reuleaux polygon thus

consists of n circular arcs. In figure 23 a Reuleaux pentagon is created.
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Figure 23

While not sharing the ubiquity of the circle, the Reuleaux polygons can

still be found in various places. Examples include church windows in the

shape of Reuleaux triangles and coins such as the British 20- and 50-pence

coins which are in the form of Reuleaux heptagons. Figure 24 shows some

Reuleaux polygons.

Figure 24

9.2 Barbier’s Theorem

An interesting result regarding figures of constant width is Barbier’s theo-

rem. Hereunder we will prove its veracity. First however, we will give the

solution to the rather famous problem called Bu↵on’s Needle (the version

with a shorter needle). It was stated by George-Louis Leclerc (Comte de

39



Bu↵on) in the 18th century and we will solve it using calculus [1]. Hav-

ing done that, the proof of Barbier’s theorem follows by the use of a little

mathematical statistics and the definition of supporting lines.

Theorem 9.1 [Bu↵on’s Needle]

Suppose that a needle of length l is dropped on a piece of paper. Furthermore,

we assume that on the piece of paper there are parallel straight horizontal

lines whose distance from one another is w and that l  w. Then the

probability of the needle crossing one of the lines is equal to 2l
⇡w

.

Proof. Suppose that a needle has just been dropped on the previously men-

tioned sheet of paper. Let d be the distance between the lowest point of the

needle and the line immediately above it. It thus holds that 0  d  w. We

also imagine a vertical line spanning the entire distance d. Now let ✓ be the

angle subtended by the part of the horizontal line between the imaginary line

and the needle. Therefore 0  ✓  ⇡/2. Once the needle has landed on the

paper, the needle will be crossing a line if and only if d  lcos✓. See figure 25.

Figure 25

The points between the graph of the function l cos ✓, 0  ✓  ⇡/2 and

the ✓-axis represent all the possible combinations of d and ✓ for which the

needle lands on a line. This area has been marked in blue in figure 26. Sim-

ilarly, the points lying between the constant function w, 0  ✓  ⇡/2 and

the ✓-axis show all the possible outcomes of d and ✓.
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Figure 26

Therefore the probability of the needle landing on a line is

P =

R
⇡/2
0 l cos ✓ d✓
R
⇡/2
0 w d✓

=
2l

⇡w
. (9.2.1)

Thus theoretically, one could approximate ⇡ by randomly dropping nee-

dles on a piece of paper. To get close to the true value one would have to

drop a vast amount of needles. Today however, by simulating on a computer,

this is certainly feasible.

Now, in order to prove Barbier’s theorem we will need some basic re-

sults from mathematical statistics. For a discrete random variable X, the

expected value (expectation) is defined as E[X] =
P

j

jP (X = j). Another

useful result is that E[kX] = kE[X], k 2 R. Also of use is the fact that

E[
P

n

i=1Xi

] =
P

n

i=1E[X
i

] for any random variables (even if they are depen-

dent) X1, ..., Xn

. We are now ready to prove the theorem of Barbier. The

idea comes from [15].
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Theorem 9.2 [Barbier’s Theorem]

All figures of constant width with the width w, have perimeter ⇡w.

Proof. Let X1 be a random variable denoting how many lines the needle

crosses when dropped on the aforementioned sheet of paper. This stochastic

variable will take the value 0 or 1 since l  w. So X1 has what is called a

Bernoulli distribution. Using the result from (9.2.1) we see that E[X1] =

0P (X1 = 0) + 1P (X1 = 1) = 2l
⇡w

.

Now let us imagine that we have n needles and let X
i

, i = 1, ..., n be n

random variables that denote how many times needle 1, ..., n crosses a line

if we were to drop them on the piece of paper. It holds that X
i

, i = 1, ..., n

are identically distributed. Since E[
P

n

i=1Xi

] =
P

n

i=1E[X
i

] it does not

matter whether the n pieces are joined together and then dropped or if they

are dropped individually one at a time. Furthermore, due to the identical

distribution of the stochastic variables we can write
P

n

i=1Xi

= nX. Here

X = X
i

, i = 1, ..., n.

A circle consists of an immense amount of infinitesimally small line seg-

ments of the same length joined together at equal angles to one another.

In other words, a regular n-gon turns into a circle as n ! 1. A circle of

diameter (width) w has a perimeter equal to ⇡w. If one were to drop a

”needle” in the shape of the aforesaid circle on the piece of paper, the circle

would clearly always end up intersecting two lines. We let Y = nX be the

random variable denoting the number of times n line segments intersect one

of the lines. If these line segments are linked together in the shape of a

regular n-gon and n is a very large number we are essentially dealing with

a circle. Thus E[Y ] is the expected value of the number of times the circle

will intersect a line. We see that

E[Y ] = E[nX] = nE[X] = n
2⇡w

n

⇡w
= 2. (9.2.2)

So when the length of the needle is ⇡w, the expected value of the number

of intersections is exactly equal to two. From the definition of figures of

constant width and supporting lines, we see that if we were to drop any

figure of constant width (its width equal to w) on the sheet of paper, it
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would always generate two intersections. Particularly, the expected value of

the number of intersections has to be equal to two. In order for that to hold,

the ”length of the needle” shaped like a figure of constant width has to be

⇡w. Hence the width of every figure of constant width is equal to ⇡w.

Some vending machines and other machinery that handle coins require

them to be more or less of constant width. From the isoperimetric theorem

(theorem 1.1) it follows that out of all shapes of constant width, the circle

calls for the use of the most amount of metal. In order to reduce the amount

of metal used, any other shape of constant width would actually fare better.

10 The Isoperimetric Theorem in Higher Dimen-

sions

So far this thesis has only dealt with the isoperimetric theorem in two dimen-

sions. Naturally several questions arise. Is there a corresponding theorem

for R3? If so, how can it be proven? Moreover, would it be possible or even

meaningful to venture even further to the dizzying heights of Rn, n � 4? To

the joy of mathematicians everywhere, the answer to all of these questions

is yes.

To delve deeply into this is unfortunately outside the scope of this thesis.

We can, however, make a brief foray into the broad topic of the isoperimet-

ric theorem for higher dimensions. For three dimensions, the isoperimetric

inequality can be stated as follows:

Theorem 10.1 [The Isoperimetric Inequality in R3]

For any three-dimensional region with surface area S and volume V, the

following inequality holds:

36⇡V 2  S3.

Equality holds for the sphere only.

To actually prove that this is the case is far from simple and significantly

harder than the planar case. Just like in R2, one also has to prove the exis-

tence of such a figure. The first proof of the isoperimetric inequality in R3
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is due to H.A. Schwarz [12]. The paper is in German and according to [5],

this proof is given ”in a rather di�cult paper.”

We will, however, prove equality. For a sphere in R3, the volume can be

expressed as V = 4⇡r3

3 . Also, its surface area can be written as S = 4⇡r2.

Using the latter formula we see that r =
�

S

4⇡

�1/2
. Hence the volume can

be expressed in terms of the surface area: V = 4⇡
3

�
S

4⇡

�3/2
= S

3/2

6
p
⇡

. Squaring

both sides and rearranging we acquire 36⇡V 2 = S3.

One can formulate the isoperimetric inequality in Rn, n � 2 in the fol-

lowing way [8]. It should be noted that a formal definition of the theorem

requires us to define what type of domain we are looking at since not all

domains have a volume in n dimensions that is well-defined. Moreover, the

boundary also needs to have a well-defined ”area” in dimension n� 1.

Theorem 10.2 [The Isoperimetric Inequality in Rn, n � 2]

Let ⌦ ⇢ Rn be a bounded domain and let @⌦ be its boundary. Furthermore,

let V
n

be the volume of the unit sphere in Rn. Then the following inequality

holds:

nV 1/n
n

|⌦|1�1/n  |@⌦|.

Here |E| stands for the Lebesgue volume measure in n dimensions or the

surface measure in dimension n � 1 of E ⇢ Rn. Equality holds for the

sphere only.

Kesavan [8], states that for n � 3 ”even the notion of ’surface measure’ of

the boundary is not obvious.” Furthermore, he says that ”when N = 2, we

clearly understand the notion of length of a rectifiable curve (a curve whose

length we can define). In higher dimensions, @⌦ will be a (N-1)-dimensional

manifold and there are several ways to define |@⌦|. (...) In general, the proof

uses di�cult notions from geometric measure theory. Recently, Cabre (...)

has observed that it is possible to use an idea similar to that by Alexandrov in

proving certain estimates for solutions of elliptic partial di↵erential equations

to prove the classical isoperimetric theorem.” The latter approach is then

used by Kesavan to prove the isoperimetric theorem in Rn, n � 2.

We will now prove that theorem 10.2 holds for n = 2 and n = 3. In R2,

the surface area is equivalent to the perimeter and so |@⌦| = P . The area
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of the unit circle is V2 = ⇡. The inequality thus becomes 2⇡1/2A1�1/2  P

which can be written as 4⇡A  P 2.

In R3 the volume of the unit sphere is V3 = 4⇡
3 . Just like before, we de-

note the surface area with S. So by theorem 10.2 we obtain 3
�
4⇡
3

�1/3
V 1�1/3 

S. This can be rewritten as 36⇡V 2  S3.

In conclusion, there does not seem to be a way of proving the isoperimet-

ric theorem for Rn, n � 3 by only using elementary geometry. One has to

make use of advanced mathematics that lie beyond the scope of this thesis.

Even so, only just knowing that it is possible to prove for n dimensions is

interesting indeed!

11 Summary

The isoperimetric problem is truly an ancient problem. As we have previ-

ously seen, Zenodorus allegedly proved that the circle was the solution in the

2nd century B.C. Nevertheless, by modern standards the proof would not

su�ce. The search for a proof that would be accepted in modern times was

commenced in the 19th century by Jakob Steiner. He constructed several

proofs, the first of which was published in 1841. For all their beauty, they

were unfortunately not complete. He had failed to address whether or not

a figure of maximum area actually exists.

In 1879, Karl Weierstrass constructed the first complete proof of the

isoperimetric theorem. Utilizing calculus of variations, he had managed

to produce a proof that left no doubt as to the existence of a figure of

maximum area. Since then several more proofs of the isoperimetric theorem

have surfaced. The methods used can vary greatly as we have seen in section

6. Not only is this fascinating in and of itself, but it also truly displays the

beauty and versatility of mathematics!

We have also seen that the isoperimetric problem can be defined for

polygons as well. The proof for n-gons makes it clear that the regular

polygon solves the isoperimetric problem for all n � 3. Still, curiously

enough, no proofs can be found that do not employ the original isoperimetric

theorem.

The isoperimetric theorem also lends itself to several intriguing problems
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and related topics. There are, for instance, various renditions of Dido’s

problem. Figures of constant width is also a subject that is isoperimetric in

nature.

We had a brief look at the isoperimetric problem in higher dimensions.

As we venture beyond the planar realm the complexity increases. Never-

theless, it has been proven that the sphere solves the isoperimetric theorem

in R3. Not only that but it has also been shown that the n-dimensional

sphere is the solution to the isoperimetric problem in Rn. When making

a formal definition of the isoperimetric theorem in Rn we need to specify

what domain we are looking at. The reason for this is that the volume in

dimension n has to be well-defined. In addition, the boundary should have

an ”area” in dimension n� 1 that is just as well-defined.

Surely, problems of an isoperimetric nature appear to o↵er an end-

less source of possibilities and in that regard we seem to have just barely

scratched the surface. In other words more discoveries remain to be made

and that is undoubtedly a satisfying thing to know.
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