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Abstract

This work aims at introducing Pólya’s theory of enumeration. After an initial discussion
regarding a general problem within combinatorial enumeration we devote some e�ort to
group theory. Basic extracts from the theory of generating functions proves necessary
to present, which serves to establish the concept of cycle index. Ultimately, we hope to
reconcile the two main topics of this text: the Red�eld-Pólya theorem as a continuation of
Burnside’s lemma.
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1
Introduction

A tangible task such as a problem in enumeration — counting the number of things — can
entail many inconveniences. Anyone that has ever opened a book on combinatorics can
vouch for this. But the tricks of the trade are numerous, too, and here we shall provide at
least one. In 1937 an article entitled Kombinatorische Anzahlbestimmungen fur Gruppen,
Graphen und chemische Verbindungen came along. It was published in Acta Mathematica,
Vol. 68, pp. 145 to 254. It’s author was George Polya, and in it a theorem was to be found
which gave method to solving a variety of problems related to enumeration. In short
one can describe it as a way of counting — generate a sequence, even — of inequivalent
mappings between �nite sets: so-called patterns. This undertaking rests upon, and ties
together, several areas within mathematics. Therefore, our discussion has to go in several
directions throughout earlier parts of this text.

1.1 A� E���������� E������ A con�guration is acquired by choosing elements
of a (�nite) set under certain conditions. In this

text we deal with the problem of counting the number of con�gurations on a given set, not
only under a prescribed combinatorial condition but also with respect to some imposed
relation. An elucidating example is that of counting the number of undirected graphs with
three vertices. In the usual state of a�airs the condition that vertices are labelled is taken
into account, providing us with the problem of �nding all possible labelled graphs with
three vertices, and counting them. The problem reduces �rsty to that of specifying the
number of edges in the graph while counting the number of possible graphs given this
speci�c number of edges, and secondly to add up the results.

Consider a set V = {1, 2, 3} of three labels, which shall serve as vertices: vertex 1, 2 and
3. The edge set E is a subset of V ✓ V , consisting of unordered pairs of elements in V ,
hence there are ⇥3

2
� = 3 possible edges we can use. Moreover, we specify how many edges

must be in the graph we’re considering. As shown in �gure 1.1, there’s only one possible
graph with three labelled vertices and zero edges, three possible graphs with one and two
edges respectively, and �nally there is only one graph with three edges. Accounting for all

8



A� E���������� E������ C������ 1 Introduction

Figure 1.1: Every possible graph with the three labelled vertices 1, 2 and 3.
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so provides us with 8 distinct graphs where V = {1, 2, 3}. Whilst this answer might be sat-
isfactory there’s a natural observation which can be made, namely that some of the graphs
in �gure 1.1 are up to isomorphism identical — permuting the labels of one graph yields
another with the same number of edges. It is furthermore the case that starting with a spe-
ci�c graph, for exampleG = ({1, 2, 3} , {{1, 2} , {2, 3}}), we obtain the two remaining
graphs with two edges via a permutation. By use of � = (1, 2, 3), where � " S3, the graph
G = ({1, 2, 3} , {{1, 2} , {2, 3}}) becomes �G = ({1, 2, 3} , {{1, 3} , {2, 3}}). Yet an-
other permutation using �, this time on �G, yields �2G = ({1, 2, 3} , {{1, 2} , {1, 3}}).

Figure 1.2: The graphs G, �G and �2G in the orbit of G.
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Figure 1.2 represents the orbit of G. Perhaps this situation is familiar. Under the group
action ofS3 on the three letters 1, 2 and 3 (the vertex set), the set of all 8 distinct graphs
reduces to that of four isomorphism classes, each representing an orbit corresponding to
a graph of 0,1,2 or 3 edges, as shown in the �gure (1.3) below.
Thus we have counted the number of con�gurations, namely the number of graphs with
three vertices, under the imposed relation of isomorphism. This example illustrates
our main concern throughout this text, namely that of counting equivalence classes of

9



A� E���������� E������ C������ 1 Introduction

Figure 1.3: The four orbits.
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con�gurations. In Chapter 3 we shall elaborate on this concept in a general discussion on
group actions and, in particular, in discussing a well known lemma attributed to William
Burnside.

Figure 1.4: The four up to isomorphism distinct graphs with three vertices.

Before venturing any further there’s something more to be mentioned. We will end this
introduction with another, somewhat more involved, example which further elucidates
the subject of this treatise. This example can be found in Pólya’s original article [8].
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O��������� C������ 1 Introduction

1.2 O��������� We have at our disposal six balls with three di�erent colours: three
red balls, two blue balls and one yellow ball. Balls of the same color

cannot be distinguished. The balls are to be assigned to the six vertices of an octahedron, which
moves freely in space. In how many ways can this be done?

Figure 1.5: Octahedron.

Under the ordinary combinatorial condition, such an arrangement corresponds to the
multinomial

⇧

6

3, 2, 1↵ = 6!

3!2!1!

= 60.

Here, however, we must also take into consideration arrangements which are equivalent
under rotations of the octahedron. As in our previous example permutations are involved,
this time we consider the permutation group of the octahedron, consisting of all possible
transformations of the octahedron with respect to its symmetries. A transformation
is a rotation about some axis of symmetry of the octahedron. In �gure 1.6 the axes of
symmetry are shown.

Figure 1.6: Symmetries of the octahedron.

f2
f3

f4f1
v1

v2

v3

e3
e4

e5
e6

e1
e2

There are 4 axes of symmetry, denoted fn, going through the centers of two opposite faces.
The axes of symmetry connecting opposite vertices are denoted vn and those connecting the
midpoints of two opposite edges are denoted en.

Rotating the octahedron about some axis, say f4, permutes the vertices on the opposite
faces through which the axis runs. This corresponds to a permutation of cycle type [32]—
it consists of two cycles of order 3, which are disjoint. We assign the symbol xk to a cycle
of order k, hence the permutation about f4 that we’re considering acquires the symbol x2

3:
two cycles of order 3. We note that every permutation about some axis fn has the symbol
x2
3. In this manner we label every permutation with its appropriate symbol.

11



O��������� C������ 1 Introduction

x6
1: Doing nothing to the octrahedron is the same as rotating it 0` or 360` about some

axis. This is the identity permutation, which consists of 6 cycles of order 1.

x2
3: 120

` rotation about an axis through two opposite faces. There are 4 axes of symme-
try and rotation can be done clockwise or counterclockwise, hence in total there
are 8 permutations of type f2

3 .

x2
1x4: 90

` rotation about an axis through two opposite vertices. Yet again, rotation can be
done clockwise or counterclockwise. There are 6 permutations of this type.

x2
1x

2
2: 180

` rotation about an axis through two opposite vertices. There are 3 permutations
of this type.

x3
2: 180

` rotation about an axis through the midpoints of two opposite edges. There
are 6 permutations of this type.

Thus, in the octahedral group there are 24 rotational symmetries accounting for the
transformations we’re interested in. By taking the arithmetic mean of the polynomial

x
6
1 + 8x

2
3 + 6x

2
1x4 + 3x

2
1x

2
2 + 6x

3
2 (1.1)

we get what is called the cycle index of the octahedral group (the term was introduced by
Pólya in [8]):

x6
1 + 8x2

3 + 6x2
1x4 + 3x2

1x
2
2 + 6x3

2

24

. (1.2)

The cycle index is crucial. Through substituting x1 = x + y + z , x2 = x2
+ y2 + z2,

x3 = x3
+y3+z3 and x4 = x4

+y4+z4 into (1.2) and expanding in powers of x, y and z
the solution to our problem is the coe�ecient before x3y2z, which turns out to be 3. Thus,
when considering arrangements which are equivalent under rotational transformations
there are 3 ways of assigning 3 red balls, 2 blue balls and one yellow ball to the vertices of
the octahedron.

Figure 1.7: The three distinct assignments of colored balls to the vertices of the octahedron.

This example presents a remarkable concoction of di�erent theories. As we’ve seen it
utilizes concepts from group theory and extends on the lemma often attributed to Burnside
(Burnside’s lemma). A new idea is introduced, called the cycle index, which in an elegant
way interacts with the theory of generating functions. In chapter 9, we begin in earnest our
study of Pólya’s Enumeration Theorem (PET), also called the Red�eld-Pólya Theorem.

12



2
Permutations

AMONG the various notations used in the following pages, there is one of such
frequent recurrence that a certain readiness in its use is very desirable in dealing
with the subject of this treatise. We therefore propose to devote a preliminary
chapter to explaining it in some detail. (Burnside, [3])

2.1 O� P����������� In section 1.1 of chapter 1 we rearranged the three ver-
tices of a graph. Speci�cally, we applied the operation of

replacing each vertex by a di�erent one, in such a way that no two vertices were replaced
by one and the same vertex. In short, we applied an operation on the vertices called a
permutation.

2.1.1 D���������. Let a1, a2, a3, . . . , an be a set of n distinct letters. A permutation on
the n letters is the operation of replacing each letter by another, which may be the same
letter or a di�erent one, under the condition that no two distinct letters be replaced by one
and the same letter. A permutation will change any given arrangement a1, a2, a3, . . . , an,
of the n letters, into a de�nite new arrangement b1, b2, b3, . . . , bn of the same letters. Ç

2.1.2 D���������. Let S = {a1, a2, a3, . . . , an}. A permutation on S can be de�ned, in
an equivalent manner, as a mapping � ⇥ S ∫ S which is 1-1 and onto. Ç

2.1.3 D���������. Let S = {a1, a2, a3, . . . , an}. A permutation � of the set S can be
written in Cauchy’s two-line notation, where in a matrix one lists the letters of S in the
�rst row, and the image of each letter in the second row:

� = ⌅

a1 a2 . . . an
�(a1) �(a2) . . . �(an)

⌦ . Ç

2.1.1 E������. The equilateral triangleW with vertices a, b, and c has rotational sym-
metry about its geometric centre •. The axes of symmetry are L, M and N . They are
perpendicular to each edge, and passes through •. Picture rotating W about • by 120

13



O� P����������� C������ 2 Permutations

Figure 2.1: An equilateral triangle and its symmetries.

N M

L

bc

a

•

degrees in the direction shown by the arrows. Label this transformation with the symbol
�. This transformation permutes the vertices: a is sent to b, and b to c. The resulting
triangle coincides with the initial one, and the transformation sendsW into itself. Denote
� by

⌅

a b c
b c a

⌦

�

.

Applying � twice and three times toW yields

⌅

a b c
c a b

⌦

�2

and ⌅

a b c
a b c

⌦

◆=�3

where �3 is the transformation of rotatingW by 360 or 0 degrees, doing nothing toW.
Label this transformation with the symbol ◆. Re�ection in some axis can be pictured as a
rotation by 180 about the axis (�ippingW). Accounting for L,M , andN yields

⌅

a b c
a c b

⌦

⌧

, ⌅

a b c
c b a

⌦

µ

and ⌅

a b c
b a c

⌦

�

. Å

Remark. The transformations in example 2.1.1 can be done in composition. A clockwise
rotation by 240 degrees ofW followed by a �ip with respect to the axism would, in terms
of the symbols �2 and µ, be the composition µ ` �2. The corresponding Cauchy two line
notation

⌅

a b c
a c b

⌦

µ`�2

,

is equivalent to performing the transformation ⌧ onW. Note that the composition µ ` �2

is read from right to left — the �rst transformation applied toW is �2, followed by the
transformation µ applied to �2

(W).

14



O� P����������� C������ 2 Permutations

2.1.2 E������. Consider a square with vertices a, b, c, and d. It has rotational symmetry
about its geometric centre •. The axes of symmetry areK , L,M , andN .

Figure 2.2: A square and its symmetries.

M

K

N

L

c

a b

d

•

There are ways of transforming u with respect to • or the axesK , L,M , orN . Picture
rotatingu about • by 0, 90, 180, or 270 degrees in the direction shown by the arrows. Label
these transformation by the symbols ◆, �, �2, or �3 respectively. Label a transformation by
re�ection in the axesK , L,M , andN by the symbols ⌧ , µ, �, and ' respectively. Listing
all transformations in Cauchy’s two line notation will su�ce for this example. Å

Table 2.1: Transformations of a square.

⌅

a b c d
a b c d

⌦

◆

⌅

a b c d
b c d a

⌦

�

⌅

a b c d
c d a b

⌦

�2

⌅

a b c d
d a b c

⌦

�3

⌅

a b c d
b a d c

⌦

⌧

⌅

a b c d
a d c b

⌦

µ

⌅

a b c d
d c b a

⌦

�

⌅

a b c d
c b a d

⌦

'

Remark. Here, too, transformations can be done in composition. A clockwise rotation
by 90 degrees of u followed by a �ip with respect to the axisK would, in terms of the
symbols � and ⌧ , be the composition ⌧ ` � = µ.

2.1.4 D���������. Let �, ⌧ ⇥ S ∫ S be permutations of a set S and let x " S. Then
(⌧ `�)(x) = ⌧ (� (x)) and we de�ne the product of permutations as ⌧�(x) = ⌧(�(x)).
Hence permutations done in composition is the same as for composition of functions. Ç

2.1.3 E������. Let ↵,� ⇥ {i}4i=1 ∫ {i}4i=1 be permutations of {i}4i=1 = {1, 2, 3, 4},
where

↵ = ⌅

1 2 3 4

3 4 1 2

⌦ , and � = ⌅

1 2 3 4

2 3 4 1

⌦ .

15



O� P����������� C������ 2 Permutations

Namely ↵(1) = 3, ↵(2) = 4, ↵(3) = 1, ↵(4) = 2, and �(1) = 2, �(2) = 3, �(3) =
4, �(4) = 1, so that the composite permutation ↵� is de�ned by ↵�(i) = ↵(�(i)):

↵�(1) = 4, ↵�(2) = 1, ↵�(3) = 2, ↵�(4) = 3, or

⌅

1 2 3 4

4 1 2 3

⌦

↵�

. Å

Remark. The permutations ↵ and � in example 2.1.3 can be written in a di�erent way,
called cycle notation. In cycle notation ↵ is written (13)(24), and � is written (1234).

2.1.5 D���������. Let � ⇥ S ∫ S be a permutation of a set S of n letters. The cycle
decomposition of � is obtained by choosing an letter x " S, which begins the cycle, and
thereafter applying � repeatedly — �rst to x, then to �(x), and so on — so that for each
successive time that � is applied the image is entered as the next letter in the cycle. The
cycle ends, and starts over, when an application of � returns the original letter x. If the
resulting cycle contains every letter of S it is exhaustive and we are done. Otherwise
choose any letter y " S which does not belong to the resulting cycle, and repeat the
process by constructing a cycle which begins with y. When all letters of S can be found in
any of the cycles so created the set of cycles is exhaustive, and the cycles are disjoint. Ç

2.1.4 E������. Consider the permutation � which in two line notation is given by

⌅

1 2 3 4 5

2 1 4 5 3

⌦ ,

viz. �(1) = 2, �(2) = 1, �(3) = 4, �(4) = 5, and �(5) = 3. Using de�nition 2.1.5 we
obtain the cycle notation of �.

i. Choose some letter, say 1, and apply � repeatedly until 1 is returned: 1, �(1) = 2,
and �2

(1) = 1, and so 1 is returned after two sucessive applications of �, hence
the process ends. We get the cycle (12).

ii. (12) does not contain the letter 3. So pick 3, and repeat the process: 3, �(3) = 4,
�2

(3) = 5, and �3
(3) = 3, and so 3 is returned after three sucessive applications

of �, hence the process ends. We get the cycle (345).

iii. Every letter 1, 2, 3, 4, and 5 is in some cycle, hence the set of cycles is exhaustive.

� = (12)(345). Å
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2.1.5 E������. Returning to the square u in example 2.1.2, we once again consider the
permutations ◆, �, �2, �3, ⌧ , µ, �, and '— the transformations of u. Taking the product

Table 2.2: Transformations of a square.

⌅

a b c d
a b c d

⌦

◆

⌅

a b c d
b c d a

⌦

�

⌅

a b c d
c d a b

⌦

�2

⌅

a b c d
d a b c

⌦

�3

⌅

a b c d
b a d c

⌦

⌧

⌅

a b c d
a d c b

⌦

µ

⌅

a b c d
d c b a

⌦

�

⌅

a b c d
c b a d

⌦

'

of any two permutations results in any of the above listed ones. This can be checked by
means of a multiplication table. In it, the product is taken so that the rightmost factor
is an permutation from the leftmost column while the leftmost factor is an permutation
from the top row in the table, ie. ' µ = �2.

Table 2.3: Product table for the transformations of a square.

u ◆ � �2 �3 ⌧ µ � '

◆ ◆ � �2 �3 ⌧ µ � '

� � �2 �3 ◆ µ � ' ⌧

�2 �2 �3 ◆ � � ' ⌧ µ

�3 �3 ◆ � �2 ' ⌧ µ �

⌧ ⌧ ' � µ ◆ �3 �2 �

µ µ ⌧ ' � � ◆ �3 �2

� � µ ⌧ ' �2 � ◆ �3

' ' � µ ⌧ �3 �2 � ◆

Å

Remark. Table 2.3 is the muliplication table ofD4 — the dihedral group of order 4 — the
group of rigid motions of a square.

2.1.6 D���������. Let S be a nonempty set. The setSS consists of all permutations of S.

2.1.7 D���������. Let S = {1, 2, 3, . . . , n}. The setSn is the set of all permutations of
S. The cardinality ofSn is n!, since there are n! bijective mappings from S to S. Ç

2.1.6 E������. Let S = N3 = {1, 2, 3}, so that

S3 = {(1)(2)(3), (1)(23), (12)(3), (13)(2), (123), (132)} . Å
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2.1.1 T������. Sn has the following properties:

I. If ⌧ and µ are permutations belonging to Sn, then ⌧µ belongs to Sn too;

II. For any permutations �, ⌧ , and µ belonging to Sn, their product is associative,

(�⌧)µ = �(⌧µ);

III. The identity permutation, denoted ◆, belongs to Sn, so that for all � " Sn

◆� = �◆ = �;

IV. For every permutation � " Sn there exists an inverse counterpart denoted ��1, in
Sn, for which

��
�1 = �

�1
� = ◆.

Proof. I - IV follows immediately from the properties of bijective functions. ⌅

Remark. The properties whichSn satis�es in theorem 2.1.1 are called group axioms, and
Sn is called the symmetric group on n letters.

2.1.7 E������. The product table forS3 is the same as that forW. Å

Table 2.4: The product table of S3.

S3 (1)(2)(3) (123) (132) (1)(23) (13)(2) (12)(3)
(1)(2)(3) (1)(2)(3) (123) (132) (1)(23) (13)(2) (12)(3)
(123) (123) (132) (1)(2)(3) (13)(2) (12)(3) (1)(23)
(132) (132) (1)(2)(3) (123) (12)(3) (1)(23) (13)(2)
(1)(23) (1)(23) (12)(3) (13)(2) (1)(2)(3) (132) (123)
(13)(2) (13)(2) (1)(23) (12)(3) (123) (1)(2)(3) (132)
(12)(3) (12)(3) (13)(2) (1)(23) (132) (123) (1)(2)(3)

Table 2.5: Replacing 1, 2, and 3 by a, b, and c table 2.4 becomes that of the rigid motions ofW.

W ◆ � �2 ⌧ µ �

◆ ◆ � �2 ⌧ µ �

� � �2 ◆ µ � ⌧

�2 �2 ◆ � � ⌧ µ

⌧ ⌧ � µ ◆ �2 �

µ µ ⌧ � � ◆ �2

� � µ ⌧ �2 � ◆
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T���& C�������� C������ 2 Permutations

2.2 T��� & C�������� There are two basic but relevant topics on the theory of
permutations which need to be adressed before we begin

our section on group theory. Firstly we need to de�ne the cycle type of a permutation,
so that any permutation of a �nite number of letters can be classi�ed accordingly. Next
comes a brief study of so called conjugacy which, in a nice way, relates to cycle types.

2.2.1 D���������. Let � ⇥ S ∫ S be a permutation of a �nite set S. In cycle notation
� is written as a collection of cycles, where each cycle has a certain number of letters —
the length of a cycle — and where there is a certain number of cycles of a speci�c length.
The type of � is a way of accounting for how many cycles of each length are present in the
cycle decomposition of �. We shall follow the notation used in [2]. Ç

2.2.1 E������. Let � be the permutation

⌅

1 2 3 4 5 6 7 8 9

3 7 2 5 4 8 1 6 9

⌦ ,

which in cycle decomposition we write � = (1327)(45)(68)(9). The type of � is ex-
pressed as an unordered list [1, 2, 2, 4]: one cycle of length 1, two cycles of length 2, and
one cycle of length 4. The list can be made more compact by introducing the notation
[1, 2, 2, 4] ⇥= [1

1, 22, 41]. Å

2.2.2 D���������. Two permutations �, ⌧ " Sn are conjugate if there exists µ " Sn

such that µ�µ�1 = ⌧ . Ç

2.2.2 E������. InS6, let

� = ⌅

1 2 3 4 5 6

3 6 2 5 4 1

⌦ and ⌧ = ⌅

1 2 3 4 5 6

2 3 5 6 1 4

⌦ ,

viz. � = (1326)(45) and ⌧ = (1235)(46). Thenµ = (1)(4)(23)(56) is the permutation
sought after for which µ�µ�1 = ⌧ . Hence � and ⌧ are conjugate. Å

2.2.1 T������. The permutations �, ⌧ " Sn are conjugate if and only if they have the
same cycle type.

Proof. See [2]. ⌅
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3
Groups

The ideas in the pages yet to be presented rest upon group theory. Of particular importance
to us will be the study of group actions, orbits, and stabilizers which is presented in chapter
5. This undertaking necessitates a familiarity with the idea of a group. In the present
chapter we shall review the most basic de�nitions and concepts and present them through
examples.

3.1 B ����� O��������� Foundational to the study of algebraic structures is the
notion of binary operations. In example 2.1.5 in chapter

2 we found that the set of transformations of a square is closed under composition of
transformations, which could be illustrated by use of table 2.3. Part of the reason for this
is that composition of functions is a binary operation.

3.1.1 D���������. A binary operation ò on a nonempty set S is a mapping from the
cartesian product S ✓ S = {(x, y) ∂ x, y " S} into S:

(x, y)
x,y"S

¿ ò(x, y) " S.

The element ò(x, y) in S is denoted x ò y. Ç

3.1.1 E������. Ordinary addition + and multiplication � are binary operations on the
sets N,Z,R,C (as is subtraction, except on the set N). Å

3.1.2 E������. Matrix addition inMm✓n(F) is a binary operation. Matrix multiplication
inMn✓n(F) is a binary operation. Å

3.1.3 E������. Taking the product of permutations in Sn is a binary operation, as is
composition of transformations of the polygons discussed in example 2.1.1 and 2.1.2.
More generally, on the set of all functions from S to S, composition of functions is a
binary operation. Å
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3.1.4 E������. On N, Z,Q, and R the functions ò(x, y) = max{x, y}, and ò(x, y) =
min{x, y} are binary operations. A somewhat exotic binary operation could be that of
ò(A,B) = A =B whereA,B " À(S), and S = {a, b, c}. Å

3.1.5 E������. An inner product Ö, ã ⇥ V ✓V ∫ F for some vector spaceV de�ned
over F is not a binary operation. The distance function d ⇥ R2

✓ R2 ∫ R is another
example of a function which is not a binary operation. The speci�c reason being, in both
cases, that the codomain is not a factor in the cartesian product which constitutes the
domain. In the setM(F) of all matrices over some �eld F, matrix addition is not a binary
operation since matrix addition isn’t even possible for matrices of di�erent dimensions. Å

3.1.2 D���������. The binary operation ò ⇥ S ✓ S ¿ S is said to be associative if
x ò (y ò z) = (x ò y) ò z, for all x, y, z " S. If in S there exists an element e such that
e ò x = x and x ò e = x then e is called an identity element for ò. Given the existance
of an identity element e " S, if for x " S there exists a counterpart y " S such that
x ò y = e and y ò x = e then y is said to be an inverse of x. Ç

3.1.6 E������. In the setGLn(F) of all invertible n ✓ n-matrices, both matrix addition
and multipliciation is associative. Only for matrix multiplication an identity element
exists, being In. Additive and multiplicative inverses exist for everyM " GLn(F). Å

3.1.7 E������. In the setSn, the product of permutations is an associative binary opera-
tion. This is merely a consequence of the fact that composition of functions is associative.
The identity permutation belongs to Sn, and as we saw before there exists for every
� " Sn an inverse permutation ��1. Å

3.2 G����� A group is a set S equipped with a binary operation ò which satis�es
the properties in de�nition 3.1.2, viz. ò is associtive, has an identity

element, and each element in S has an inverse. One often speaks of a set with a binary
operation satisfying the group axioms.

3.2.1 D��������� (G���� A�����). A setG equipped with a binary operation ò is a group
if the following properties hold.

I. If x, y " G, then x ò y " G. (Closure);

II. For all x, y, z " G, x ò (y ò z) = (x ò y) ò z. (Associativity);

III. There exists e " G so that e ò x = x and x ò e = x for all x " G. (Identity);

IV. For each x " G there exists y " G so that x ò y = e and y ò x = e. (Inverse). Ç

Remark. The correct way to denote a group is as an ordered pair (G,ò). Here the fancy
symbolG (black-letter G) will be used, admittedly for stylistic reasons but also as a kind
of shorthand for (G,ò), and to distinguish a group from a graph. We allow for an abuse
of notation by usingG when referring to the underlying setG.

3.2.1 E������. In chapter 2 every example presented is a group. The set of all trans-
formations of the equilateral triangle (example 2.1.1) is a group under composition of
transformations, as is the set of all transformations of the square (example 2.1.2). In
theorem 2.1.1 it is veri�ed thatSn is indeed a group. Å
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3.2.2 E������. The setGLn(F) of all invertible n ✓ n-matrices over the �eld F— the
general linear group — is a group under matrix multiplication. So is SLn(F)— the special
linear group— consisting only of invertible n✓n-matrices with determinant equal to 1. Å

3.2.3 E������. The setQ✓ = Q \ {0} is a group under ordinary multiplication. So are
R✓, and C✓. Å

3.2.4 E������. For a non-empty set S the set of all permutations of S is Sym(S), which
is a group under composition of functions. Å

3.2.5 E������. In example 2.1.7 in chapter 2, we saw that the product tables ofS3 and
that of the rigid motions of W coincided. This is because they are isomorphic, which
means thatS3 and the group of rigid motions ofW represents the same group. From this
perspective there is no reason to distinguish them other than for illustrative purposes. Å

In dealing with groups, there are two basic properties which are central.

3.2.1 P���. For a group G, where a, b, c " G, the following applies.

I. If a ò b = a ò c, then b = c.

II. If a ò c = b ò c, then a = b.

Proof. See [1]. ⌅

3.2.2 P���. For a group G where a, b " G the equations a ò x = b and x ò a = b has
unique solutions.

Proof. See [1]. ⌅

3.2.2 D���������. A groupG is said to be abelian if a ò b = b ò a for all a, b " G. Ç

Remark. From now on the somewhat cumbersome notation of ò will be abandoned and
replaced by the multiplicative notation, viz. a ò b will instead be written ab.

3.2.6 E������. The setMm✓n(R) is an abelian group under matrix addition. The set
Z5 = {[0]5, [1]5, [1]5, [3]5, [4]5} of congruence classes modulo 5 is an abelian group
under addition of congruence classes, while Z✓

5 = {[1]5, [2]5, [3]5, [4]5} is an abelian
group under multiplication of congruence classes. Å

Remark. Oftentimes Zn and Z✓

n are written Z�nZ and ⇥Z�nZ�
✓

.

3.2.3 D���������. If inG = (G,ò) the setG is �nite,G is said to be a �nite group and
we denote the order ofG by ∂G∂. Ç

3.2.7 E������. The group of rigid motions of a regular n-gon is denoted Dn. As it has n
rotational symmetries and n re�ective symmetries ∂Dn∂ = 2n. It is therefore called the
dihedral group of order 2n. In examples 2.1.1, and 2.1.2 — the rigid motions ofW and u—
we are dealing with the dihedral groups D3, and D4 where ∂D3∂ = 6, and ∂D4∂ = 8. Å
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3.2.8 E������. Returning to the equilateral triangle in example 2.1.1, we consider only
the rotations with respect to its geometric centre. We denote these transformations by

Figure 3.1: Rotations of W about •.

bc

a

•

◆ = (a)(b)(c), � = (abc), �2 = (acb), and obtain C3 = ⇥t◆,�,�2
z ,`�, which is a

group under composition of transformations. C3 is short for the cyclic group of order 3 and
is commonly expressed in terms of some generator a as C3 = áa ∂ a3 = eç. This is an
example of an abelian group. Moreover, it is an example of a subgroup of the rigid motions
ofW, and — as per example 3.2.5 — C3 is a subgroup ofS3. Å

Table 3.1: Product table of the rigid motions of W restricted to rotations about •.

W ◆ � �2 ⌧ µ �

◆ ◆ � �2 ⌧ µ �

� � �2 ◆ µ � ⌧

�2 �2 ◆ � � ⌧ µ

⌧ ⌧ � µ ◆ �2 �

µ µ ⌧ � � ◆ �2

� � µ ⌧ �2 � ◆

3.3 S�������� In example 3.2.8 we restricted the set of rigid motions for an equi-
lateral triangle to contain only rotations about its geometric centre,

and discovered that this set was closed under the same operation — that of composition —
as for the original group of rigid motions ofW.
3.3.1 D���������. For a groupG = (G,ò), letH N G. Then H = (H,ò) is said to be a
subgroup of G if H is itself a group, that is ifH is a group under ò— the binary operation
induced byG. Ç

Remark. A group H being a subgroup of G is written H ( G. IfH L G (H is a proper
subset ofG), then H < G (H is a proper subgroup ofG).
3.3.1 E������. (Z,+) < (Q,+) < (R,+) < (C,+), �Q✓, �⌥ < �R✓, �⌥ < �C✓, �⌥,
and (mZn,+) < (kZn,+) ifm is a multiple of k. Å

3.3.2 E������. (Cn,`) < (Dn,`) < (Sn,`), and (Öiã , �) < (C, �) where Öiã =
{i,�1,�i, 1}. Å

3.3.3 E������. SLn (F) < GLn (F) whereæM " SLn (F) ⇥ detM = 1. Å
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3.3.4 E������. ConsiderO = v⌅

cos' � sin'
sin' cos'

⌦ ⇥ 0 & ' < 2⇡|. Since

⌅

cos' � sin'
sin' cos'

⌦ ⌅

cos ✓ � sin ✓
sin ✓ cos ✓

⌦ = ⌅

cos(' + ✓) � sin(' + ✓)
sin(' + ✓) cos(' + ✓)

⌦

for any two matrices inO— due to standard trigonometric identities —O is closed under
matrix multiplication. Moreover, for any matrices A,B,C " O, A(BC) = (AB)C
since matrix multiplication is associative. For ' = 0:

⌅

cos' � sin'
sin' cos'

⌦ = ⌅

1 0

0 1

⌦ ,

hence the unit matrix is contained inO. Lastly we have that det ⌅ cos' � sin'
sin' cos'

⌦ = 1,

again due to trigonometry, regardless of '. This is enough to verify that any matrix inO
is invertible, and tells us thatO L SL2(R). Most importantlyO satis�es all of the group
axioms, and is a subgroup of SL2(R). Å

Remark. The group considered is called the rotation group for R2, or the special orthogonal
group for R2, often denoted SO2. By rotations about the origin, it acts on vectors in R2.
3.3.5 E������. ConsiderGLn(Fp)— the general linear group — over a �nite base �eld
of order p. There’s a bijection between an invertible matrixM inGLn(Fp) and a unique
basis consisting of the columns ofM , which spans V (Fp), since they are linearly inde-
pendent due toM being invertible. This confronts us with the task of �nding the number
of bases for V (Fp). We achieve this by counting the number of basis vectors which can
be chosen. The �rst basis vector v1 allows for any of the p elements of Fp in all of the n
coordinates, except for an occurance of the zero vector. Thus pn � 1 is the number of
ways to construct the �rst basis vector. The second one, v2, is similarly constructed —
except for any of the p linear combinations of v1. Thus p

n
� p is the number of ways to

construct v2. There are p
2 linear combinations of v1, and v2. Hence there are p

n
� p2

ways to construct v3. Generally, there are p
k linear combinations of v1, v2, . . . ,vk and

so there are pn � pk ways to build the k + 1:th vector. By the rule of product:

∑GLn(Fp)∑ =
n�1

5
k=0

⇥p
n
� p

k
� . Å

3.3.6 E������. The factor group F✓

n = ⇥

Z�nZ�
✓

contains the invertible elements of
Fn = Z�nZ. An element [x] " Z�nZ has an inverse if, and only if gcd(x, n) = 1. The
order of ⇥Z�nZ�

✓

must therefore equal the number of integers k, where 1 & k < n such
that gcd(k, n) = 1. This is the de�nition of Euler’s totient function '(n). Hence

ª

ª

ª

ª

ª

ª

⇥

Z�nZ�
✓

ª

ª

ª

ª

ª

ª

= '(n). Å

Remark. For a prime number n = p, '(p) = p � 1, so that
ª

ª

ª

ª

ª

ª

⇥

Z�pZ�
✓

ª

ª

ª

ª

ª

ª

= p � 1. In the

list of every positive integer from 1 to pn, there are pn�1 multiples of p, hence
ª

ª

ª

ª

ª

ª

ª

⇤

Z�pnZ 
✓ª

ª

ª

ª

ª

ª

ª

= p
n
� p

n�1
.
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3.3.2 D���������. For H a subgroup ofG, where a " G, the set

aH = {x " G ⇥ x = ah, for some h " H}

is called the left coset of H in G determined by a. The right coset of H in G determined by
a is the set

Ha = {x " G ⇥ x = ha, for some h " H} . Ç

3.3.1 L����. For H a subgroup of G, and a, b " G, either aH = bH or aH = bH = o.

Proof. Suppose that x " aH = bH, then x
(1)= ah1 and x

(2)= bh2. Now let y " aH, viz.
y = ah for some h " H. We wish to show that aH N bH, and bH N aH. By (1), y
can be written as y = ⇥xh�1

1 �h which, by associativity, is equivalent to y = x ⇥h�1
1 h�.

By (2), y = (bh2) ⇥h
�1
1 h� so that y = b ⇥h2h

�1
1 h�, where h2h

�1
1 h " H, hence y is an

element in bH. Therefore aH N bH. To show that bH N aH a similar argument applies,
and we conclude that aH = bH. ⌅

3.3.2 L�������’� T������. If G is a �nite group and H is a subgroup of G, then the
order of H divides the order of G.

Proof. Each left coset of H has the same cardinality as H, and by lemma 3.3.1 each left
coset is distinct. Hence the left cosets of H partitionG, so that ∂G∂ = k ∂H∂ where k
equals the number of left cosets of H inG. ⌅

3.3.3 D���������. The number of left cosets of H inG is written [G ⇥ H]. Ç

3.3.7 E������. The general linear groupGLn �Fp⌥ over a �nite base �eld Fp is a group
of �nite order, where SLn �Fp⌥ < GLn �Fp⌥. By Lagrange’s Theorem

∑GLn �Fp⌥∑ = ◆GLn �Fp⌥ ⇥ SLn �Fp⌥⇡ � ∑SLn �Fp⌥∑ .

The set of left cosets of SLn �Fp⌥ inGLn �Fp⌥ is writtenGLn �Fp⌥�SLn �Fp⌥
, where

ª

ª

ª

ª

ª

ª

ª

GLn �Fp⌥�SLn �Fp⌥

ª

ª

ª

ª

ª

ª

ª

= ◆GLn �Fp⌥ ⇥ SLn �Fp⌥⇡ . (3.1)

The elements inGLn �Fp⌥�SLn �Fp⌥
are equivalence classes, each containing matrices

whose determinants are equal. We can therefore establish a bijection between equivalence
classes and F✓

p . Thus
ª

ª

ª

ª

ª

ª

ª

GLn �Fp⌥�SLn �Fp⌥

ª

ª

ª

ª

ª

ª

ª

= ∑F✓

p ∑, where ∑F✓

p ∑ = p � 1. Hence

◆GLn �Fp⌥ ⇥ SLn �Fp⌥⇡ =
(3.2)

p � 1 by which we can compute that

∑SLn �Fp⌥∑ =
(3.1)

4n�1
k=0 ⇥pn � pk�

p � 1

. Å
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3.4 I����������� Later on we will make use of Cayley’s Theorem for which some
essential terminology is required. We have previously hinted

that two groups di�ering in appearance while displaying the same essential properties are
not to be distinguished. One says that two such groups are isomorphic — essentially the
same.

3.4.1 D���������. For two groupsG1 andG2, a group isomorphism is a bijective mapping

� ⇥ G1 ∫ G2,

such that
�(g1g2) = �(g1)�(g2),

for all g1 " G1 and for all g2 " G2. For the product g1g2 the underlying binary operation
is ò1 inG1, while for �(g1)�(g2) it is ò2. If an isomorphism exists betweenG1 andG2

the groups are isomorphic, which we write

G1  G2. Ç

As a direct consequence of de�nition 3.4.1 it can easily be shown that for e1 " G1,
�(e1) = e2 " G2, and that for all g " G1 � ⇥g�1� = �(g)�1.

3.4.1 E������. For two groupsG1 andG2 their productG1✓G2 also constitutes a group,
called the direct product ofG1 andG2 —where (a1, a2)ò (b1, b2) = (a1 ò1 b1, a2 ò2 b2),
for ò1 " G1 and ò2 " G2. MoreoverG1 ✓G2  G2 ✓G1. The mapping

� ⇥ G1 ✓G2 ∫ G2 ✓G1

by (g1, g2) ¿ (g2, g1) is a bijection, which is easily veri�ed. Å

3.4.2 E������. (C,+) s �C✓, �⌥. In �C✓, �⌥, the element i has order 4while there exists
no element in (C,+) of order 4. Å

3.4.3 E������. The set F = sfa,b ⇥ R ∫ R ⇥ f(x)a,b = ax + b, where a j 0y is a

group under composition of functions, and the setU = v⌅

a b
0 1

⌦ ⇥ a j 0| is a subgroup

ofGL2 (R). The mapping

fa,b ¿
�

⌅

a b
0 1

⌦

is one-to-one by � �fa,b⌥ = � �fc,d⌥ ø a = c and b = d º fa,b = fc,d. For

any ⌅

a b
0 1

⌦ " U there clearly exists fa,b " F so that � �fa,b⌥ = ⌅

a b
0 1

⌦, so

� is onto. Lastly � preserves group products, viz. � �fa,b ` fc,d⌥ = � �fac,ad+b⌥ =

⌅

ac ad + b
0 1

⌦, where ⌅ ac ad + b
0 1

⌦ = ⌅

a b
0 1

⌦ ⌅

c d
0 1

⌦ = � �fa,b⌥� �fx,y⌥.

Hence
(F,`)  (U, �) . Å
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3.4.4 E������. For a groupG and a �xed element a " G, the mapping �a ⇥ G ∫ G
by g ¿ aga�1 is an isomorphism. Assuming that � (x) = � (y) ø axa�1 = aya�1

cancellation immediately yields that x = y. Surjectivity is veri�ed by picking the element
y " G, and since a is inG, a�1 too must be inG. Hence a�1ya is inG, and � ⇥a�1ya� =
aa�1yaa�1 = y, so ' is onto. Lastly we verify the conservation of products by

�(xy) = axya
�1 = axa

�1
aya

�1 = ⇥axa
�1
� ⇥aya

�1
� = �(x)�(y). Å

3.5 H������������ Abandoning the requirements of bijectivity, while keeping
the requirements for a mapping between groups to conserve

products, we end up with a group homomorphism.

3.5.1 D���������. A mapping � between the groupsG1 andG2 is a homomorphism if

�(xy) = �(x)�(y),

for all x, y " G1. Ç

3.5.1 E������. Returning to the groupGLn �Fp⌥ of example 3.3.5, we de�ne themapping
� ⇥ GLn �Fp⌥ ∫ F✓

p , byM ¿ detM . Since F✓

p is a group under multiplication, and
since detXY = detX detY for matricesX,Y " GLn �Fp⌥, we have established that
� is a homomorphism. Å

3.5.2 D���������. The kernel of a homomorphism � between the groupsG1 andG2 is
the set

ker� = {g " G1 ⇥ �(g) = e " G2} . Ç

3.5.2 E������. As established in example 3.5.1, the mapping � ⇥ GLn �Fp⌥ ∫ F✓

p is a
homomorphism, and ker� = SLn �Fp⌥. Å

3.5.3 D���������. A subgroup H of the group G is called normal if ghg�1 " H for all
h " H and g " G. For N a normal subgroup ofG, one writes

N PG. Ç

3.5.1 P���. For H a subgroup of G it holds that ghg�1 " H for all h " H and g " G if,
and only if gH = Hg for all g " G.

Proof. Assume that ghg�1 " H for all h " H and g " G. We need to show that
gH = Hg for all g " G, which holds if gH N Hg and Hg N gH. Let h be an arbitrary
element in H, then ghg�1 " H by the assumption that H is normal. Hence ghg�1 = h¨

for some h¨ " H, so that gh = h¨g which entails that gh " Hg since h was chosen
arbitrarily. The other entailment is analogous. Now, assume that gH = Hg for all
g " G, and let gh " gH. Then gh = h¨g by our assumption, hence ghg�1 = h¨ " H. ⌅

3.5.4 D���������. H a subgroup ofG is called normal if gH = Hg for all g " G. Ç
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H������������ C������ 3 Groups

3.5.3 E������. For a group G, the set Z (G) = {g " G ⇥ ag = ga, for all a " G} is
called the center ofG. Furthermore, Z (G)PG. For any a, b " Z (G) and g " Gwe have
that (ab)g = a(bg) = a(gb) = (ag)b = g(ab) so that ab commutes with every g " G,
hence ab " Z (G). Associativity is inherited, and e " Z (G) since it commutes with
every other element inG. For any a " Z (G) we have that ag = ga ø ga�1 = a�1g
for all g " G, hence a�1 " Z (G). Normality follows immediately from the de�nition
of Z (G), since for a " Z (G) we have that ag = ga ø gag�1 = a " Z (G) for all
g " G. Å

3.5.4 E������. For a homomorphism � ⇥ G1 ∫ G2, ker� PG1. For any two a, b "
ker� we have that �(ab) = �(a)�(b) = e since � is a homomorphism, hence ker�
is closed. Associativity is inherited, and �(e) = e, so that e " ker�. Furthermore,
� (a)� ⇥a�1� = e ø � ⇥a�1� = � (a)�1 = e, hence a�1 " ker�. Å

3.5.5 E������. LetG be a �nite group and let H be a subgroup ofG. Furthermore, let
[G ⇥ H] = 2. Then H has two left cosets inG, the �rst one being xH = xH for all x " H,
and the second one being xH = G \ H for all x ä H. The right cosets of H are Hx = H
for all x " H, and Hx = G \ H for all x ä H. Thus, xH = Hx for all x " H. Since the
cosets partition G into H and G \ H, while xH = Hx, it follows that xH = Hx for all
x ä H. Therefore xH = Hx, both for x " H and x ä H, i.e. for all x " G. This is the
de�nition of a normal subgroup, hence H PG. Å

3.5.6 E������. The quaternion groupQ8 = (Q, �), whereQ = {1,�1, i,�i, j,�j, k,�k},
is given by

äi, j, k

ª

ª

ª

ª

ª

ª

ª

ª

ª

ª

ª

ª

i2 = j2 = k2 = �1

ij = k, jk = i, ki = j
ji = �k, kj = �i, ik = �j

ê .

Since o(±i) = o(±j) = o(±k) = 4 the only element of order 2 is �1, and so Ö�1ã =
{1,�1} ( Q8 is the only subgroup of order 2. Looking at the above stated identities
we observe that �1 and 1 also happens to be the only elements which commute with
every other element ofQ8. So Z (Q8) = Ö�1ã, hence Ö�1ã PQ8. For each remaining,
non-trivial subgroup, we have that [Q8 ⇥ Öiã] = [Q8 ⇥ Öjã] = [Q8 ⇥ Ökã] = 2 so that
Öiã , Öjã , ÖkãPQ8 by the fact that any subgroup with index 2 is normal as seen in example
3.5.5. Å
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4
Polytopes

In this brief interlude we look at the symmetries of some of the regular polygons and
polyhedrons that we’ll be dealing with later. We introduce a numerical labelling of the
vertices, by means of which we express the group of symmetries — mappings of an object
into itself — in a more familiar way, namely as a collection of permutations of a set of
numbers.

4.1 G��� & H������

4.1.1 D���������. A groupG can be written in terms of its generating set . Much like the
idea of a linear hull — a set of basis vectors — spanning a vector space, a generating set
is a set of group elements such that every element ofG can be expressed as a product of
elements in the generating set. The generating set ofG is written

Ög1, g2, . . . , gn " G ⇥ r1(g1), r2(g2), . . . , rn(gn)ã ,

where ri (1 & i & n) is some rule under which the generator gi functions. Ç

4.1.1 E������. The dihedral group of order 2n is generated by a cycle containing1, 2, . . . , n,
and a transposition, which is a cycle only containing two elements of 1, 2, . . . , n, i.e. (12).
Let � = (12 . . . n), ⌧ = (12), and (1) = e, then

Dn = á�, ⌧ ⇥ �
n = e, ⌧

2 = e, ⌧� = �
�1
⌧ç . Å

Figure 4.1: The n-gons for 5 & n & 11.
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4.1.2 E������. The equilateral triangleW has rotational symmetry about its geometric
centre •. The axial symmetries are L,M and N . They are perpendicular to each edge,
and passes through • (cf. �gure 2.1). Label the vertices by 1, 2, and 3. Picture a clockwise
rotation ofW about • by 120 degrees. Denote this transformation by (123). This trans-
formation permutes the vertices: 1 is sent to 2, 2 to 3, and 3 to 1. The resulting triangle
coincides with the initial one, and the transformation sendsW into itself. Applying (123)
twice and three times toW yields (132), and (1), where (1) is the identity permutation.
Re�ection in some axis can be pictured as a rotation by 180 degrees about the axis. Ac-
counting for the axesL,M , andN yields the permutations (12), (23), and (13). We have
previously mentioned that this is the group D3, which is the same group as S3. As per
de�nition 4.1.1, we can writeD3 in terms of its generating set — for � = (123), ⌧ = (12),
and e = (1)— as

D3 = á�, ⌧ ⇥ �
3 = e, ⌧

3 = e, ⌧� = �
�1
⌧ç . Å

Remark. See table 2.4.

4.1.3 E������. A square with vertices 1, 2, 3, and 4 has rotational symmetry about its
geometric centre • (cf. �gure 2.2). The axial symmetries are K , L, M , and N . The
transformations around • correspond to (1), (1234), (13)(24), or (1432) respectively.
Re�ections in the axes K , L, M , and N correspond to (12)(34), (24), (14)(23), and
(13) respectively. These are the group elements of D4, a subgroup ofS4. Å

4.1.4 E������. D4 = á�, ⌧ ⇥ �4 = e, ⌧2 = e, ⌧� = ��1⌧ç, where � = (1234), ⌧ =
(12)(34), and ��1 = �3. These rules greatly simpli�es the endeavour of drawing the
product table of D4. Å

Table 4.1: Product table of D4.

D4 e � �

2
�

3
⌧ �⌧ �

2
⌧ �

3
⌧

e e � �

2
�

3
⌧ �⌧ �

2
⌧ �

3
⌧

� � �

2
�

3
e �⌧ �

2
⌧ �

3
⌧ ⌧

�

2
�

2
�

3
e � �

2
⌧ �

3
⌧ ⌧ �⌧

�

3
�

3
e � �

2
�

3
⌧ ⌧ �⌧ �

2
⌧

⌧ ⌧ �

3
⌧ �

2
⌧ �⌧ e �

3
�

2
�

�⌧ �⌧ ⌧ �

3
⌧ �

2
⌧ � e �

3
�

2

�

2
⌧ �

2
⌧ �⌧ ⌧ �

3
⌧ �

2
� e �

3

�

3
⌧ �

3
⌧ �

2
⌧ �⌧ ⌧ �

3
�

2
� e
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4.1.5 E������. Among the polyhedra our �rst object of study is an ordinary tetrahedron,
depicted in �gure 4.2. A rigid motion is done with respect to one of its axial symmetries.

Figure 4.2: A tetrahedron and its symmetries.

a1

a2

a3

a4

1

2

3

4

Such a transformationmaps the tetrahedron into itself. A rotation about a4 corresponds to
(123) or (132)while the product of, say, (123) and (124) yields (124)(123) = (14)(23).
In this sense the vertices are pairwise permutable. Accounting for all the symmetries and
writing down the corresponding permutations of the vertices in cyclic notation, along
with their respective types will su�ce for this example. Å

Table 4.2: Vertex permutations along with their cycle types, corresponding to the rigid motions
of the tetrahedron.

(1) ⇥ 1

4
⇢ (12)(34) ⇥ 2

2
⇢ (13)(24) ⇥ 2

2
⇢ (14)(23) ⇥ 2

2
⇢

(123) ⇥ 3

1
⇢ (124) ⇥ 3

1
⇢ (134) ⇥ 3

1
⇢ (234) ⇥ 3

1
⇢

(132) ⇥ 3

1
⇢ (142) ⇥ 3

1
⇢ (143) ⇥ 3

1
⇢ (243) ⇥ 3

1
⇢

Remark. While writing down the table of products for a group might be a helpful exercise,
it becomes too cumbersome and serves no real purpose as we progress to groups of greater
order. For our purposes it is only necessary to know the order of a group and how its
elements can be represented cyclically.

4.1.6 E������. Consider a cube with vertices 1 through 8, depicted in �gure 4.3. Our
task is to �nd its group of rigid motions — and represent it in terms of a collection of
permutations of its vertices — hence we are interested in its symmetries. Figure 4.4 is an
attempt to depict the symmetries of the cube, and a rigid motion is done with respect to
one of its symmetries. Such a transformation maps the cube into itself.
Rotating the cube with respect to some vn can be done by 120` or 240`. Rotation about
some fn can be done by 90`, 180`, or 270`. With respect to some en a rotation can be done
by 180`. Accounting for the identity transformation, the sum total of all transformations
is 24. This was to be expected however, as motivated by �gure 4.5. Å
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Figure 4.3: A cube with vertices 1 through 8.
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Figure 4.4: The cube and its symmetries.
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e3
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There are 4 axes of symmetry, denoted vn, going through opposite vertices. The axes of
symmetry going through the centers of opposite faces are denoted fn and those connecting the
midpoints of two opposite edges are denoted en. Observe that these symmetries are the same as
those in �gure 1.6.

Figure 4.5: The cube and the octahedron are dual. The axes connecting the midpoints of two
opposite edges have been omitted, since this would obscure the �gure.

Looking upon a face of the cube — and shrinking it to a point — we regard it instead as a
vertex. The subsequent graph so obtained, by connecting the "face-vertices", is an octahedron.
The underlying group which acts on each solid, with respect to their respective symmetries, is
the same — since the symmetries are the same. The di�erence in how we choose to represent
this group is merely illustrative, but still important (cf. Chapter 8).
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5
Group Actions

Soon we are done with the preliminaries on group theory. What remains to explain is
the idea of letting a group act on a set. In section 1.1 a graph on three vertices 1, 2, and 3
was given, with the edge set {{1, 2} , {2, 3}}. We saw that thatS3 acted on the graph in
such a way that it permuted the edges, while the number of edges in the resulting graphs
remained constant under the repeated action ofS3. We shall begin this chapter with the
basic notions and examples, after which we will �nally arrive at one of the main ideas in
this text.

5.1 A������

5.1.1 D���������. LetG be a group and let S be a set. The mapping ' ⇥ G✓S ∫ S , by

(g, s) ¿
'

gs

is called a group action of G on S if for all x " S we have that a(bx) = (ab)x for all
a, b " G, and ex = x for the identity element e " G. Ç

5.1.1 E������. Let G = (Z,+), and S = R. Then G acts on R by translation, via
'(n, x) = n+x. Viz. ' (m,'(n, x)) = ' (m,n + x) = m+(n+x) = (m+n)+x =
' (m + n, x), and ' (0, x) = 0 + x = x. Å

5.1.2 E������. LetG = (G, �), whereG = tei✓ ⇥ 0 & ✓ < 2⇡z, and let S = C. ThenG

acts on C by rotation, via ' ⇥ei✓, z� = ei✓ ∂z∂ ei↵ = ∂z∂ ei(✓+↵), where z = ∂z∂ ei↵ and
↵ = arg z. Å

5.1.3 E������. Among the axioms of a vector �eld there’s compatibility of scalar multipli-
cation with �eld multiplication . LetV (F) be a vector space. As we’ve seen, F✓ is a group
under standard multiplication, so that �F✓, �⌥ acts onV (F), via ' �a,��v ⌥ = a��v . Å

5.1.4 E������. The groupGLn (F) acts by ordinarymatrix multiplication on the vectors
of Fn. Å
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5.1.2 D���������. A group G is said to act transitively on a set S if for all elements
x, y " S there exists g " G such that gx = y. Ç

5.1.5 E������. The symmetric groupSn acts transitively onN = {1, 2, 3, . . . , n} since
for every k " N we can get to every other elementm " N by applying the 2-cycle to k:
(km)(k) = m. Å

5.1.6 E������. The groupGLn (R) acts transitively on V = sv " Rn
⇥ v j 0y. Å

5.1.3 D���������. LetG be a group acting on a set S. For an element s " S , the orbit of s
is the set

Gs = {x " S ⇥ s = gx, for some g " G} . Ç

5.1.4 D���������. LetG be a group acting on a set S. For an element s " S , the stabilizer
of s underG is the set

Gs = {g " G ⇥ gs = s} . Ç

5.1.5 D���������. LetG be a group acting on a set S. The subset of S �xed by G is the set

S
G = {x " S ⇥ gx = x, for all g " G} . Ç

Remark. Oftentimes one denotes Gs, Gs, and SG by writing OrbG(s), StabG(s), and
FixG(S) respectively.

5.1.7 E������. LetG be a group, and H ( G a subgroup. De�ne ' ⇥ H ✓G ∫ G by

(h, g) ¿
'

hg.

This is a group action, where H acts on the group elements ofG, since ' (k,'(k, g)) =
h(kg) = (hk)g = '(hk, g), and since '(e, g) = g. The orbit of g " G is the right
coset Hg = {x " G ⇥ x = hg, for some h " H}. The stabilizer of g " G is Hg =
{h " H ⇥ hg = g} = {e}, while GH = {x " G ⇥ hx = x, for all h " H} = o is the
subset ofG �xed by H in the case where H is non-trivial. Å

5.1.8 E������. It is easily verie�ed that Sn acts on the set N = {1, 2, 3, . . . , n}. The
set StabSn

(k) = {� " Sn ⇥ �(k) = k} is the stabilizer of k " N , and it is a subgroup
of Sn. Let �, ⌧ " StabSn

(k), then � (⌧(k)) = �(k) = k, and so �⌧ " StabSn
(k),

which veri�es the closedness property. It is an inherited property fromSn that �(⌧µ) =
(�⌧)µ, for all �, ⌧, µ " StabSn

(k). It is indeed the case that e(k) = k, for the identity
permutation e " Sn, hence e " StabSn

(k). Lastly, for � " StabSn
(k) we have that

�(k) = k ø ��1
(�(k)) = ��1

(k) ø k = ��1
(k), and so ��1 " StabSn

(k).
Moreover we can de�ne a mapping ' ⇥ StabSn

(k) ✓N \ {k} ∫ N \ {k}, with the
new group StabSn

(k) ( Sn, which is the group action of StabSn
(k) onN \ {k}. Å

5.1.9 E������. Generally, for a groupG acting on a setX , the stabilizer of y " X is a
subgroup ofG which acts onX \ {y}. Å
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5.1.10 E������. One can extend on the idea of transitivity in De�nition 5.1.2 to the
notion of double-transitivity.

Let G be a group actiong on a set X . If, for all (x1, y1), (x2, y2) " X ✓X ,
there is a group element g such that g(x1, y1) = (x2, y2), then the group action
is called doubly transitive.

The property that G acts doubly-transitively on X , where ∂X∂ > 2, is equivalent to
StabG(y) acting transitively onX \ {y}. Let G be a group acting on the setX , where
∂X∂ > 2, and assume that it acts doubly-transitively. Let x, z " X \ {y} be two distinct
elements. This is possible since ∂X∂ > 2. Then (x, y), (z, y) " X ✓ X are tuples of
distinct elements ofX . By our assumption thatG acts doubly-transitively we therefore
have that g(x, y) = (z, y), which suggests that g " StabG(y). The elements x, z "
X \ {y} being distinct, together with gx = z, entails that StabG(y) acts transitively on
X \ {y}. Moreover, suppose that StabG(y) acts transitively onX \ {y} for all y " X .
Let (x1, z1), (x2, z2) " X ✓X be distinct tuples of elements in X so that g1z1 = z2,
and g2x1 = x2, for g1 " StabG(x1), and g2 " StabG(z2). Then g2g1(x1, z1) =
g2(x1, z2) = (x2, z2). HenceG acts doubly-transitively onX , and we conclude thatG
acts doubly-transitively onX if, and only if StabG(y) acts transitively onX \ {y}. Å

5.1.11 E������. Consider the cube from Example 4.1.6, and its rigid motions restricted
to only one of the axial symmetries, in this case f1. This gives rise to the subgroup
H = á(1234)(5678) ⇥ [(1234)(5678)]

4 = (1)ç. It is clear that H acts on the set of

Figure 5.1: The cube with respect to f1.
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f1

vertices, V = {1, 2, 3, 4, 5, 6, 7, 8}, of the cube by permuting them. Pick a vertex, say 1,
then OrbH(1) = {1, 2, 3, 4}, and StabH(1) = {(1) " H}, while FixH(V ) = o. Å

5.2 T�� O�����S���������
T������

For a group G acting on a non-empty set X , it is
natural to de�ne the relation ⇥ onX by the rule that,
for x, y " X , x ⇥ y ø gx = y for some g " G.

Since ex = x, we have that x ⇥ x. If x ⇥ y, we have that y ⇥ x since gx = y ø g�1y =
x. If x ⇥ y, and y ⇥ z, for x, y, z " X , we have that x ⇥ z, since gx = y, and hy = z
implies that hgx = z. Hence the properties of re�exivity, symmetry, and transitivity are
satis�ed and so ⇥ is an equivalence relation on X . It follows that ⇥ partitions X into
equivalence classes — the orbits of each and every element ofX — and we denote this
partition byX�G.
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5.2.1 T������. Let G be a group of �nite order, and X a �nite set subjected to the action
of G. There exists a bijection

 ⇥

G�StabG(x) ∫ OrbG(x), by

 (gStabG(x)) = gx,

for elements in the orbit OrbG(x) and the left cosets of StabG(x) in G.

Proof. Initially, it has to be veri�ed that  satis�es the very de�nition of a function.
Thus we need to show that takes the elements g1, g2 of some left coset gStabG(x)
to one and the same element in OrbG(x). Since g1, g2 " gStabG(x) we have that
g1 = gh1, and g2 = gh2, for h1, h2 " StabG(x). Hence g = g1h

�1
1 , and g =

g2h
�1
2 º g1h

�1
1 = g2h

�1
2 º g1 = g2 ⇥h

�1
2 h1�, where h

�1
2 h1 " StabG(x). Let

h�1
2 h1 = h, since h " StabG(x) we have that g2x = g2 (hx) = (g2h)x = g1x, which

is what we wanted to verify. Moreover, it has to be veri�ed that is a bijection. Let
 (g1StabG(x)) =  (g2StabG(x)), i.e. g1x = g2x, then g�11 g2x = x º g�11 g2 "
StabG(x), which entails that g1, g2 " g1StabG(x) so that g1, and g2 belongs to the
same coset wherefore g1StabG(x) = g2StabG(x). Since  is clearly surjective our
proof is complete. ⌅

5.2.2 P���. Take G and X as in Theorem 5.2.1, where x " X . Then

∂G∂ = ∂OrbG(x)∂ ∂StabG(x)∂ .

Proof. By Lagrange’s Theorem (Theorem 3.3.2) we have, StabG(x) being a subgroup of
G, that

ª

ª

ª

ª

ª

ª

G�StabG(x)
ª

ª

ª

ª

ª

ª

= [G ⇥ StabG(x)] ø
∂G∂

∂StabG(x)∂
= [G ⇥ StabG(x)] .

In theorem 5.2.1 we saw that was a bijection betweenG�StabG(x), and OrbG(x),
hence ∂OrbG(x)∂ = [G ⇥ StabG(x)] and so

∂G∂ = ∂OrbG(x)∂ ∂StabG(x)∂ . ⌅

5.2.1 E������. In example 5.1.10 we saw that a group G acts doubly transitively on
a set X if, and only if StabG(y) acts transitively on X \ {y}. We can show that if G
acts doubly transitively on X , where ∂X∂ ' 2, then n(n � 1)∑ ∂G∂. Assume therefore
that G acts doubly transitively on X , viz. for all (x1, y1), (x2, y2) " X ✓ X there
exists g " G such that g(x1, y2) = (x2, y2). In particular, there is g " G such that
g(x1, x1) = (y2, y2) and soG acts transitively onX . SinceG acts transitively onX we
have that OrbG(y) = X , and by Proposition 5.2.2 that ∂OrbG(y)∂ ∂StabG(y)∂ = ∂G∂,
hence n ∂StabG(y)∂ = ∂G∂ since ∂OrbG(y)∂ = ∂X∂ = n. Again, by Proposition 5.2.2,
we have that ∂OrbG(z)∂ ∂StabG(z)∂ = ∂StabG(y)∂ for an element z " X \ {y}. Since
G acts doubly transitively onX we have that StabG(y) acts transitively onX \ {y}, for
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all y " X . Hence OrbG(z) = X \ {y} and so ∂OrbG(z)∂ = ∂X {y}∂ = n � 1. Hence
(n�1) ∂StabG(z)∂ = ∂StabG(y)∂, and so ∂G∂ = n(n�1) ∂StabG(z)∂. We conclude that
n(n � 1)∑ ∂G∂. Å

5.2.2 E������. Consider the tetrahedral group from Example 4.1.5. The task of �nding
the number of transformations in it is greatly simpli�ed by Proposition 5.2.2. Looking at
the vertex 4 we realize that it is possible to map it to any of the vertices 1,2,3 — and,
of course, to itself — by a suitable rigid motion of the tetrahedron about one of its
axial symmetries. Hence OrbG(4) = {1, 2, 3, 4}. There are two transformations which
permutes all vertices but vertex 4, namely (123), and (132). The identity transformation,
too, �xes vertex 4. Hence StabG(4) = {(1), (123), (132)}, and so the tetrahedral group
has order ∂OrbG(4)∂ ∂StabG(4)∂ = 4 � 3 = 12. Å

5.2.3 E������. Consider the cube group, from Example 4.1.6. By a suitable rigid motion
about any of its axial symmetries, a vertex v can bemapped to any of the others— including
v, by the identity transformation. Hence OrbG(v) = {1, 2, 3, 4, 5, 6, 7, 8} = V , viz
∂textOrbG(v)∂ = 8. For any vertex of the cube there’s three transformations which �xes
it — the identity, and the two rotations about the axis of symmetry connectiong v and its
diagonal opposite — and so ∂StabG(v)∂ = 3. By the Orbit Stabilizer Theorem we get that
the cube group has order ∂OrbG(v)∂ ∂StabG(v)∂ = 8 � 3 = 24. Å
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6
Counting Orbits

For a groupG acting on a non-empty setX , it is natural to de�ne the relation ⇥ onX by
the rule that, for x, y " X , x ⇥ y ø gx = y for some g " G. Since ex = x, we have
that x ⇥ x. If x ⇥ y, we have that y ⇥ x since gx = y ø g�1y = x. If x ⇥ y, and y ⇥ z,
for x, y, z " X , we have that x ⇥ z, since gx = y, and hy = z implies that hgx = z.
Hence the properties of re�exivity, symmetry, and transitivity are satis�ed and so ⇥ is
an equivalence relation onX . It follows that ⇥ partitionsX into equivalence classes —
the orbits of each and every element ofX — and we denote this partition byX�G. The
question which obviously comes to mind is how to determine the cardinality of this set.
In his book [3], Burnside stated and proved a very famous theorem which he attributed to
Frobenius, while the theorem was also known to Cauchy. For this reason it sometimes
(jokingly) goes under the name Not Burnside’s Lemma . Here we will abide to convention
and refer to it as Burnside’s lemma , and in the following pages we will present it together
with a few examples.

6.1 B������� ’� L���� Perhaps we should remind ourselves of what this text is
about. As mentioned in the very �rst chapter, we’re in-

terested in counting a set of combinatorial con�gurations, whatever they may be, while
realizing that some of them may not be distinguishable. In section 1.2 in chapter 1 we
saw that the set of graphs with three vertices had size 8, but that there were only 4 graphs
which were esentially distinguishable. We realized this by letting the groupS3 act on the
vertices of the graphs, and we came to the conclusion that the set of graphs partitioned
into orbits — each orbit representing a distinct isomporhism class. The following theorem
helps our understanding in this regard, and in later parts we will elaborate on it.
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6.1.1 T������ (B�������’� L����). Let G be a group of �nite order, and X a �nite set
subjected to the action of G. The total number of orbits is

ª

ª

ª

ª

ª

X�G
ª

ª

ª

ª

ª

= 1

∂G∂

=
g"G

∂Fix(g)∂ ,

where summation is taken over all g " G and, for an arbitrary g " G, Fix(g) =
{x " X ⇥ gx = x}.

Proof. Consider the set S = {(g, x) " G ✓X ⇥ gx = x}. We shall count ∂S∂ in two
ways.

I: Fix an element g " G. We have that ∂Fix(g)∂ = ∂{x " X ⇥ gx = x}∂ is the
number of elements inX which are �xed by g, hence

∂S∂ = =
g"g

∂Fix(g)∂ ; (6.1)

II: Fix an element x " X . We have that ∂StabG(x)∂ = ∂{g " G ⇥ gx = x}∂ is the
number of elements ofG under which x is invariant, hence

∂S∂ = =
x"X

∂StabG(x)∂ . (6.2)

By (6.1) and (6.2) we have that<g"g ∂Fix(g)∂ = <x"X ∂StabG(x)∂, and by Proposition
5.2.2 we have that ∂StabG(x)∂ = ∂G∂ ™ ∂OrbG(x)∂. Therefore

=
g"G

∂Fix(g)∂ = =
x"X

∂G∂

∂OrbG(x)∂
ø

1

∂G∂

=
g"G

∂Fix(g)∂ = =
x"X

1

∂OrbG(x)∂
.

SinceX is the disjoint union of all of its orbits inX�G the sum overX —<x"X —
can be broken up into sums over each individual orbit. Assuming there are k orbits,
and denoting each orbit byOi, we have that

=
x"X

1

∂OrbG(x)∂
=

k

=
i=1

=
x"Oi

1

∂Oi∂
.

But<x"Oi

1
∂Oi∂

= 1, for 1 & i & k, so that<x"X
1

∂OrbG(x)∂
= <k

i=1 1 = k, hence

ª

ª

ª

ª

ª

X�G
ª

ª

ª

ª

ª

= k = 1

∂G∂

=
g"G

∂Fix(g)∂ . ⌅

6.1.1 E������. Suppose that we are to put seven beads on a necklace, the beads evenly
distributed, and the necklace the shape of a circle. Furthermore, four beads are to be black,
and three beads are to be white. Our task is to determine howmany such necklaces we can
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make. We can think of the seven beads being placed at the corners of a regular 7-gon, and
realize that such a necklace, when made, can be transformed in a manner corresponding
to the dihedral group

D7 = á(1234567), (1)(27)(36)(45) ⇥ (1234567)
7 = [1(27)(36)(45)]

2 = (1)ç .

Not all necklaces, then, are distinguishable since one could be obtained by a rotation, or
re�ection, of some other necklace. Our task is reduced to that of counting the number of
orbits whenD7 acts onX , whereX is the set containing all necklaces that are possible to
make regardless of rotational or re�ective symmetries. The cardinality ofX is ⇥7

4
� = 35,

since we can choose to put the four black beads in seven places, where the internal order
of the black beads lacks importance since they are indistinguishable. Placing the four black
beads anywhere completely determines where the three white beads go. The cardinality
ofD4 is 14, it consists of 7 rotations about the geometric centre, and 7 re�ections in the
axes though a vertex and its opposite side. None of the 35 necklaces is �xed in the same
position under the 6 proper rotations, while all of them remain �xed under the under
(1). For each re�ection inD4, the number of necklaces which are kept unchanged is 3.
Using Burnside’s lemma, and that there are 7 re�ective symmetries, we conclude that the
number of distinguishable necklaces is

1

∂D7∂
=

g"D7

∂Fix (g)∂ = 35 + 7 � 3

14

= 56

14

= 4,

as illustrated in the �gure below. Å

Figure 6.1: The four up to isomorphism distinguishable necklaces.

In the above example it must be observed that the setX does not consist of the vertices
{1, 2, 3, 4, 5, 6, 7}, but of the 35 con�gurations — the colorings — of the 7-gon, by using
white and black beads. Hence the groupD7 acts on a set of con�gurations, and so a bit of
confusion arises in how to denote its group elements.

6.1.2 E������. Similar to the 7-gon in the previous example, we think of the number
of ways to construct a necklace using black beads and white beads, 3 in total, and evenly
distributed. Determining the number of possible con�gurations we arrive at

⇧

3

0

↵ + ⇧

3

1

↵ + ⇧

3

2

↵ + ⇧

3

3

↵ = 8,

in terms of choosing, for instance, the number of black beads to be placed in the necklace.
The task of determining each up to ismorphism distinguishable coloring of the vertices
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of an equilateral triangle isn’t too painful, and in �gure 6.2 we list them, along with the
8 con�gurations. The group acting on the set X = {A1, B1, B2, B3, C1, C2, C3, D1}

of the 8 con�gurations is D3. and it is worthwhile examining how such an action is
represented.

Figure 6.2: Con�gurations of necklaces with three beads — black, and/or white.

A1 B1 C1 D1

B2 C2

B3 C3

The letters A, B, C , andD denotes the isomorphism class of a necklace, while the index counts
its cardinality.

Any group element inD3 can either be represented in standard notation — as a permu-
tation of the vertices of a square— or in terms of elements inX . For our purposes, the
latter notation is both illustrative and convenient. For instance, pick ⌧ = (132). Letting ⌧
act on the con�gurations, as displayed in �gure 6.3, we can instead represent it by

⌧
ò = ⌅

A1 B1 B2 B3 C1 C2 C3 D1

A1 B3 B1 B2 C3 C1 C2 D1
⌦ ,

in terms of con�gurations. Even more conveniently, we can write ⌧ò in cycle decom-
position, as ⌧ò = (A1)(B1B3B2)(C1C3C2)(D1). Such a representation is bene�cial
since, by the disjoint cycles, it explicitly states the equivalence classes — the orbits — of
X , which are four.

ª

ª

ª

ª

ª

X�D3

ª

ª

ª

ª

ª

= 1

6

=
g"D3

∂Fix(g)∂ = 8 + 3 � 4 + 2 + 2

6

= 4. Å

6.1.3 E������. Our next example deals with colorings of the edges of a square. Using a
set S of n di�erent colors, and starting with a set of two colors, S = {R,B}, red and blue,
we are allowed to color the square in any way. The set of con�gurationsX has cardinality
16, as there are 16mappings from the set of edges of the square, E = {e1, e2, e3, e4}, to
the set of colors S = {R,B}. Indeed, we can just as well writeX = {f1, f2, . . . , f16} in
terms of the di�erent mappings from E to S. LettingD4 act on E, two con�gurations
fi, fj " X are equivalent if fi� = fj , for some � " D4. The equivalence classes are
precisely X�D4

, and so Burnside’s lemma (Theorem 6.1.1) applies. InD4, the identity
element (1) �xes all ofX , a rotation around the horizontal axis, (14)(23), �xes 8 elements,
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as does a rotation, (12)(34), around the vertical axis. A �ip about a diagonal axis, either
(13) or (24), �xes 4 elements. The permutation (1234) �xes only 2 elements, and the
same goes for (1432), while 4 elements ofX are invariant under (13)(24). In �gure 6.3
we list the elements ofX . The cardinality ofX�D4

— the equivalence classes, i.e. orbits —
is

1

∂D4∂
=

g"D4

∂Fix(g)∂ = 16 + 2 � 8 + 2 � 4 + 2 � 2 + 4

8

= 48

8

= 6.

Figure 6.3: The color con�gurations of X , with S = {R,B}.

We turn now to the case where S is a set containing n di�erent colors. Here, a slight
alteration of our reasoning must take place. The set of con�gurations still consists of every
mapping from E to S, and has cardinality n4, but counting the number of con�gurations
�xed under some permutation gets a bit more involved. All color con�gurations are
obsiously invariant under the identity permutation. For (12)(34), a �ip/rotation (or
re�ection) in the vertical axis of symmetry keeps n3 color con�gurations �xed, and the
same goes for (14)(23). The transformations (13), and (24), about a diagonal axis, each
�xes n2 colorings. A rotation about the geometric centre of the square, either by (1234),
or (1432), �xes n colourings. The permutation (13)(24) corresponds to a 180` rotation
about the geometric centre, which �xes n2 colorings. We get that

ª

ª

ª

ª

ª

X�D4

ª

ª

ª

ª

ª

= 1

∂D4∂
=

g"D4

∑X
g
∑ = n4

+ 2n3
+ 3n2

+ 2n
8

,

is the number of equivalence classes of the color con�gurations, when acted on byD4. Å

Remark. The color con�gurations of the vertices of a square when acted on byD4 has the
same number of equivalence classes. Subdivide a square, so that each edge gets a vertex in
its midpoint, and join those vertices in a cycle — a new, tilted square is so obtained. Apply
the same reasoning as above.
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6.1.4 E������. Our �nal task is to color the faces of a cube, using n colors, and to deter-
mine the number of distinguishable colorings. We denote the set of color con�gurations
withX , and as per the standard argument its cardinality is n6 — the number of mappings
from the set of edges to the set of colors. To our aid we look at the rotational symmetries
of a cube, depicted in �gure 4.4. A permutation with respect to an axis vk going through a
vertex and its diagonal opposite leaves n2 color con�gurations �xed, and there are 8 such
permutations — for each of the 4 axes vk we can go 120

` or 240` — and together they
sum up to 8n2 invariant colorings. A proper permutation with respect to an orthogonal
axis can be done by 90`, 180`, or 270` — a 90` rotation leaves n3 coloring unchanged, as
does a rotation by 270`, while n4 con�gurations are invariant under a 180` rotation.

There are three orthogonal axes, accounting for all of them sums up to 3n4
+6n3 invariant

colorings. A permutation with respect to an axis going through the midpoints of two
opposing edges leaves n3 colorings unchanged, and there are 6 such permutations, which
accounts for 6n3 invariant colorings. The sum total of �xed con�gurations acted on by
the rigid motions of a cube is therefore

n
6
+ 3n

4
+ 12n

3
+ 8n

2
.

Applying Burnside’s lemma, we get that the number of distinguishable colorings of the
faces of a cube — lets denote it, here, byQ— is

1

∂Q∂

=
g"Q

∑X
g
∑ = n6

+ 3n4
+ 12n3

+ 8n2

24

. Å

Remark. The color con�gurations of the vertices of an octahedron when acted on by the
rigid motions of a cube has the same number of equivalence classes. The reason being, as
mentioned earlier, that the cube and the octahedron are dual.
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7
Generating Functions

7.1 I����������� As we extend on the Orbit Counting Lemma there’s a few basic
notions from the theory of generating functions we can borrow

to help our understanding. First, an observation can be made about the interplay of
addition and exclusive disjunction.

7.1.1 E������. Take for example the task of �ipping a coin. The possible number of
outcomes is two — heads or tails, with no simultaneous occurance of the two — and
through the use of the polynomial x+ y we have modelled the situation accordingly. Here,
the coe�cient before x is the one possible outcome heads, while the coe�cient before
y is the one possible outcome tails. We can further develop on this idea, to describe a
situtation where a coin is to be �ipped n times, now using the polynomial (x + y)n =
(x+ y)n = <n

k=0 ⇥
n
k
�xn�kyk = 1+ nx+ ⇥

n
2
�xn�2y2 + . . .+ nxyn�1. This polynomial

enumerates every possible outcome, i.e. there are ⇥n
k
� ways to toss a coin to get n � k

heads and k tails. Å

7.2 G��������� F�������� A di�erent problem which also comes to mind is,
for example, that of �nding the number of positive

integer solutions to the equation x1 + x2 + x3 = 10. Each term xi can take on 8 di�erent
values as, for instance, x1 = 8 determines that x2,3 = 1. Hence each term can be written
as a polynomial xi = x1

+ x2
+ . . . + x8, i.e. xi takes on the values 1, or 2, or 3, . . ., or 8,

where the coe�cient before each term xk simply states that there is one possible way to
pick xi = k. The interplay of addition and exclusive disjunction does not relate to our
original equation x1 + x2 + x3 = 10, as x1, x2, and x3 are independent variables, only to
x1

+ x2
+ . . .+ x8. By the rule of product we investigate ⇥x1

+ x2 . . . + x8
�

3
, where the

coe�cient before x10 is 36, and so we have computed the answer to our problem. This
can be veri�ed with the classical idea of using stars and bars : ⇥10�1

3�1
� = ⇥

9
2
� = 36.
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For our purposes there’s no need for a thorough exposition. In this chapter we will only
provide the most basic ideas, and present results in keeping with the theme of this text.

7.2.1 E������. Lets return to example 6.1.3: colored edges of a square. We can assign to
each edge ei " E = {e1, e2, e3, e4} the polynomial r+ b, so that (r+ b)4 = r4 + 4r3b+
6r2b2 + 4rb3 + b4, which generates all of the 16 con�gurations. Å

7.2.2 E������. The colorings of the faces of a cube, such as that in example 6.1.4, has
n6 con�gurations for a set of S {c1, c2, . . . , cn} of n colors. As in example 7.1.1, we can
assign to each face the polynomial c1 + c2 + . . . + cn, where the sum of the coe�cients
in the expansion of (c1 + c2 + . . . + cn)

6 equals n6. Å

7.2.1 D���������. Let a0, a1, a3, . . . be a sequence of integers. The formal power series

A(x) =
ô

=
i=0

aixi

is called the generating function, or the generating formal power series, of a0, a1, a3, . . . Ç

Remark. It must be observed that in this text a generating function is not to be evaluated
for any speci�c x. We do not concern ourselves about the meaning of x or its powers, they
serve only as symbols to designate the position of a coe�cient.

7.2.3 E������. For any positive integer n " Z+ we have that

(1 + y)
n =

n

=
k=0

⇧

n
k↵y

k
,

which is the generating function for 1, ⇥n
1
�, ⇥n

2
�,. . . , ⇥n

n
�. By letting y = ax, for any a " R,

we have that

(1 + ax)
n =

n

=
k=0

⇧

n
k↵(ax)

k
,

is the generating function for the sequence 1, a⇥n
1
�, a2⇥n

2
�, . . . , an⇥n

n
�. Å

7.2.4 E������. We have that (1�y)(1+y+y2+y3 . . .) = 1. Hence the in�nite sequence
(1)

ô

k=0 = 1, 1, 1, . . . has as its generating function

1

1 � y
=

ô

=
k=0

y
k
.

By letting y = ax, for any a " R, we have that

1

1 � ax
=

ô

=
k=0

(ax)
k

is the generating function for the in�nite sequence ⇥ak�
ô

k=0 = 1, a, a2, . . . Å
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7.2.1 P���. For A(x) = <ô

k=0 akx
k , and B(x) = <ô

k=0 bkx
k ,

A(x)B(x) =
ô

=
k=0

akx
k

ô

=
k=0

bkx
k =

ô

=
k=0

k

=
i=0

aibk�ix
k

Remark. This product of power series is called discrete convolution, or the Cauchy product
of two in�nite series.
In the table below we collect a few of the standard identities relating sequences to their
generating functions.

Table 7.1: Some standard identities.

m,n " Z+, a " R.
I. (1 + x)n = ⇥

n
0
� + ⇥

n
1
�x1

+ ⇥

n
2
�x2

+ . . . + ⇥

n
n
�xn.

II. (1 + ax)n = ⇥

n
0
� + ⇥

n
1
�ax + ⇥

n
2
�(ax)2 + . . . + ⇥

n
n
�(ax)n.

III. (1 + xm
)

n = ⇥

n
0
� + ⇥

n
1
�xm

+ ⇥

n
2
�x2m

+ . . . + ⇥

n
n
�xnm.

IV. 1�xn+1

1�x
= 1 + x + x2

+ . . . + xn.

V. 1
1�x

= 1 + x + x2
+ . . . = <ô

k=0 x
k.

VI. 1
1�ax

= 1 + ax + (ax)2 + . . . = <ô

k=0(ax)
k.

VII. 1
(1+x)n

= <ô

k=0 (�1)
k
⇥

n+k�1
k

�xk.

VIII. 1
(1�x)n

= <ô

k=0 ⇥
n+k�1

k
�xk.

7.2.5 E������. We can use a generating function to determine the number of ways to pick
k objects from a set S = {o1, o2, . . . , on} of n distinct objects, where an object can be
picked repeatedly. The power series 1+ x+ x2

+ x3
+ . . . represent the possible choices

for an object. There are n distinct objects, and so by the rule of product our generating
function is

⇥1 + x + x
2
+ x

3
+ . . .�

n = (1 � x)
�n

,

where (1 � x)�n = <ô

i=0 ⇥
n+i�1

k
�xk . Hence we seek the coe�cient before xk in the

expansion of<ô

i=0 ⇥
n+i�1

k
�xi, which is ⇥n+k�1

k
�. Again, this can be veri�ed by the method

of stars and bars. Å

7.2.6 E������. We �nd the coe�cient before x50 in ⇥x7
+ x8

+ x9
+ . . .�

6
, �rst by

factorizing it into

x
7
⇥1 + x + x

2
+ . . .�⇢

6 = x
42

⇥1 + x + x
2
+ . . .�

6 = x
42
(1 � x)

�6
,

and then by determining the coe�cient before x8 in the expansion of (1 � x)�6 =
<ô

k=0 ⇥
6+k�1

k
�, which is ⇥13

8
� = 1287. Å
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7.2.7 E������. The six outcomes of rolling a die can be represented by the polynomialx1
+

x2
+x3

+x4
+x5

+x6, while rolling it 10 times corresponds to ⇥x1
+ x2

+ . . . + x6
�

10
.

We wish to know the likelihood of obtaining the sum 40 after 10 rolls. Initially, we
must calculate the coe�cient before x40 in ⇥x1

+ x2
+ . . . + x6

�

10
, by factorizing it as

x(1 + x + . . . + x5
)⇢

10 = x10
(1 � x6

)(1 � x)�1⇢
10 = x10

⇥1 � x6
�

10
(1 � x)�10.

Hence we seek the coe�cient before x30 in

⇥1 � x
6
�

10
(1 � x)

�10 =
10

=
k=0

⇧

10

k ↵ ⇥�x
6
�

k
ô

=
k=0

⇧

10 + k � 1

k ↵x
k
,

which, by a tedious computation, is equal to

⇧

39

30

↵ � ⇧

10

1

↵⇧

33

24

↵ + ⇧

10

2

↵⇧

27

18

↵ � ⇧

10

3

↵⇧

21

12

↵ + ⇧

10

4

↵⇧

15

6

↵ � ⇧

10

5

↵ = 2930455.

The size of the sample space is 610, and so the likelihood of 10 rolls of a die summing up
to 40 is

2930455

6

10
. Å
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8
The Cycle Index

8.1 I����������� We recall the type of a permutation. It’s a compact way to
encode its shape, i.e. how many cycles of each length there are

in a permutation � " Sn, as illustrated in example 2.2.1. For instance, the permutation
� = (1327)(45)(68)(9) has type 11, 22, 41⇢. In this chapter we are going to associate
a polynomial to a group of permutations — a generating function in several variables
called the cycle index— in which the terms are related to the cycle structure of each group
element. Our aim is to simplify the computations necessary to determine the equivalence
classes of n-colorings of an object.

8.2 T�� C���� I���� Lets review The Orbit Counting Lemma, and once again
consider Example 6.1.4. We reached the result that for n

colors there existed n
6
+3n4

+12n3
+8n2

24
distinguishable n-colorings of a cube. We try now

to use a di�erent approach, which is based on the type of each group element ofQ, when
expressed as permutations. For this, we need to de�ne the cycle structure representation of
a permutation.

8.2.1 D���������. A cycle structure representation is analogous to the type of a permuta-
tion. If the type of a permutation � " Sn is written ◆1

↵1 , 2↵2 , 3↵3 , . . . , n↵n
⇡, then the

cycle structure representation of � is written x
↵1

1 x
↵2

2 x
↵3

3 . . . x↵n
n (cf. Section 1.2). We

associate with each element g " G ( Sn its cycle structure representation, the monomial

⇣g (x1, x2, x3, . . . , xn) = x
↵1

1 x
↵2

2 x
↵3

3 . . . x
↵n
n . Ç

8.2.1 E������. For � = (1234)(5678) " Q, ⇣� (x1, x2, . . . , x8) = x2
4. Å

8.2.2 D���������. The cycle index of a �nite group of permutationsG is the formal sum

⇣G (x1, x2, x3, . . . , xn) =
1

∂G∂

=
g"G

⇣g (x1, x2, x3, . . . , xn) . Ç
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T�� C���� I���� C������ 8 The Cycle Index

8.2.2 E������. For the groupQ— the group of rigid motions of the cube — we have
already determined that there are 24 group elements. Labelling each vertex in an arbitrary
manner, for instance such as in Example 4.1.6, each permutation corresponding to a rigid
motion has a related cycle structure representation. We list them in the table below.

Table 8.1: Vertex permutations of a cube, their types, and their cycle structure representations.

g " Q3 Type ⇣g

(1)(2)(3)(4)(5)(6)(7)(8) 18⇢ x

8
1

(1234)(5678) 42⇢ x

2
4

(1485)(2376) 42⇢ x

2
4

(1265)(4378) 42⇢ x

2
4

(1432)(5876) 42⇢ x

2
4

(1584)(2673) 42⇢ x

2
4

(1562)(4873) 42⇢ x

2
4

(18)(27)(36)(45) 24⇢ x

4
2

(13)(24)(57)(68) 24⇢ x

4
2

(16)(25)(38)(47) 24⇢ x

4
2

(14)(28)(35)(67) 24⇢ x

4
2

(17)(23)(46)(58) 24⇢ x

4
2

(17)(28)(34)(56) 24⇢ x

4
2

(12)(35)(46)(78) 24⇢ x

4
2

(15)(28)(37)(46) 24⇢ x

4
2

(17)(26)(35)(48) 24⇢ x

4
2

(1)(7)(245)(386) 12, 32⇢ x

2
1x

2
3

(1)(7)(254)(368) 12, 32⇢ x

2
1x

2
3

(2)(8)(136)(475) 12, 32⇢ x

2
1x

2
3

(2)(8)(163)(457) 12, 32⇢ x

2
1x

2
3

(3)(5)(186)(247) 12, 32⇢ x

2
1x

2
3

(3)(5)(168)(274) 12, 32⇢ x

2
1x

2
3

(4)(6)(138)(275) 12, 32⇢ x

2
1x

2
3

(4)(6)(183)(257) 12, 32⇢ x

2
1x

2
3

There is only one element of Q for which ⇣g (x1, x2, . . . , x8) = x8
1, namely the iden-

tity permutation. There are six for which ⇣g (x1, x2, . . . , x8) = x2
4, nine for which

⇣g (x1, x2, . . . , x8) = x4
2, and eight for which ⇣g (x1, x2, . . . , x8) = x2

1x
2
3. And so, by

De�nition 8.2.2,

⇣Q (x1, x2, . . . , x8) =
x8
1 + 6x2

4 + 9x4
2 + 8x2

1x
2
3

24

. Å
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T�� C���� I���� C������ 8 The Cycle Index

For a cube, however, it makes more sense to color the faces rather than the vertices. As
we’ve already discussed the duality between the octahedron and the cube, we know now
that the cycle index of a cube with respect to a group of permutations of its faces must
therefore be the same as for vertex permutations of octahedron.

8.2.3 E������. With respect to its group of vertex permutations, the cycle index for an
octahedron (cf. Section 1.2) is

x6
1 + 8x2

3 + 6x2
1x4 + 3x2

1x
2
2 + 6x3

2

24

,

which is also the cycle index for a cube with respect to face permutations.

8.2.4 E������. The group T of rigid motions of a tetrahedron induces a permutation
group on the 4 vertices. We have the following table.

Table 8.2: The types, and cycle structure representations of the vertex permutations of a
tetrahedron.

g (Example) Type ⇣g # Sum
(1)(234) 1

1, 31⇢ x1x3 8 8x1x3

(12)(34) 2

2
⇢ x2

2 3 3x2
2

(1)(2)(3)(4) 1

4
⇢ x4

1 1 x4
1

And so ⇣T (x1, x2, x3, x4) = x
4
1+8x1x3+3x2

12
. The tetrahedron is a self-dual platonic solid.

Therefore, the cycle index of the group of vertex permutations is the same as for edge
permutations. Å

8.2.5 E������. Our next example concerns yet another platonic solid, called the icosahe-
dron.This object is a bit more awkward to deal with when determining what permutations
are induced by its group of rigid motions.

Figure 8.1: Icosahedron.

By the Orbit Stabilizer Theorem, we can quickly determine the order of its group of vertex
permutations. Each vertex can be sent to every other, hence the orbit of any vertex is the
set of all vertices, and so ∑OrbG(x)∑ = 12. Except for the �ve rotations about an axis going
through two opposing vertices there are no other transformations which �xes a vertex,
hence ∂StabG(x)∂ = 5 so that ∂G∂ = ∑OrbG(x)∑ ∂StabG(x)∂ = 12 � 5 = 60. We conclude
that the group of rigid motions yields a permutation group of order 60.
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With the aid of �gure 8.1, and by straining our spatial faculties (alternatively, referring to
[2]), we produce the following table.

Table 8.3: The types, and cycle structure representations of the (vertex) permutation group,
induced by the rigid motions of an icosahedron.

g (Shape) Type ⇣g # Sum
(�)(�)(�)(�)(�)(�)(�)(�)(�)(�)(�)(�) 1

12
⇢ x12

1 1 x12
1

(�)(�)(� � � � �)(� � � � �) 1

2, 52⇢ x2
1x

2
5 24 24x2

1x
2
5

(� � �)(� � �)(� � �)(� � �) 3

4
⇢ x4

3 20 20x4
3

(��)(��)(��)(��)(��)(��) 2

6
⇢ x6

2 15 15x6
2

Thus we have that the cycle index of the icosahedron is

1

60

⇥x
12
1 + 24x

2
1x

2
5 + 20x

4
3 + 15x

6
2� . Å

8.2.6 E������. The �nal platonic solid to deal with is the dodecahedron, the dual of the
icosahedron. The permutation group induced by rigid motions acting on the vertices of
the dodecahedron yields the cycle index

1

60

⇥x
20
1 + 20x

2
1x

6
3 + 15x

10
2 + 24x

4
5� ,

which is also the cycle index for the permutation group of the faces of the icosahedron. Å

Figure 8.2: Dodecahedron
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8.2.1 P���. The cyclic group Cn = Üg ⇥ gn = eå has the cycle index

⇣Cn
(x1, x2, . . . , xn) =

1

n =
d∂n

'(d)x
n/d
d .

Proof. See [2]. ⌅

8.2.2 P���. The cycle index of Dn is

1

2

⇣Cn
(x1, x2, . . . , xn) +

~

Ñ

Ñ

Ñ

Ç

Ñ

Ñ

Ñ

Ä

1
4
⇤x

n/2
2 + x2

1x
n/2�1
2  if n is even

1
2
x1x

(n�1)/2
2 if n is odd

.

Proof. See [2]. ⌅

8.2.7 E������. Consider the problem of coloring a bracelet with 6 beads, which are
evenly distributed around it. If we are permitted only to rotate the bracelet around its
center, and the positions of a bead is clockwise labelled with the letters 1, 2, 3, 4, 5, 6, we
are dealing with the cyclic group C6. By Proposition 8.2.1 we have that

⇣C6
(x1, x2, x3, x4, x5, x6) =

1

6

=
d∂6

'(d)x
n/d
d = 1

6

⇥x
6
1 + x

3
2 + 2x

2
3 + 2x6� . Å

8.2.8 E������. If we consider the same bracelet as in Example 8.2.7, only this time we are
also allowed to �ip it about some axis, then we are dealing with the dihedral of a 6-gon —
D6. By Proposition 8.2.2 we have that

⇣D6
(x1, x2, x3, x4, x5, x6) =

1

12

⇥x
6
1 + x

3
2 + 2x

2
3 + 2x6� +

1

4

⇥x
3
2 + x

2
1x

2
2� . Å

8.2.9 E������. Continuing our discussion on the cube, and the relation between the
Orbit Counting Lemma and the cycle index of a permutation group, we consider the
permutations of its faces. Let S = {c1, c2} be a set of 2 colors. Each face can be assigned
any color, with no simultaneous occurance of the two on one and the same face, and the
polynomial c1 + c2 models the situation of coloring a face. The identity permutation
consists of 6 disjoint 1-cycles, (f1)(f2)(f3)(f4)(f5)(f6), each containing the label of
a face. Each face can be assigned c1 + c2 (c1 or c2) independently, and so (c1 + c2)

6

generates the 64 colorings — all invariant under the identity permutation. For one of the
6 permutations with the shape (f1)(f2)(f3f4f5f6) we ask how to color the faces so that
they remain invariant. As the cycles are disjoint, we can regard each by itself, and assign
c1 + c2 to the 1-cycles. In the 4-cycle every face has to be the same color, and there are
two colors to choose from, hence we assign c41 + c42 to it. Our permutation thus becomes
the polynomial (c1 + c2)

2
⇥c41 + c42� = c61 + 2c51c2 + c41c

2
2 + c21c

4
2 + 2c1c

5
2 + c62. We can

repeat this process of thought using the cycle structure representation of a permutation
of the faces of a cube, since they are analogous. The proper group to consider would be
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the permutation group of vertices of an octahedron, and summing up each polynomial,
acquired in this way, for every permutation would then give us

24c
6
1 + 24c

5
1c2 + 48c

4
1c

2
2 + 48c

3
1c

3
2 + 48c

2
1c

4
2 + 24c1c

5
2 + 24c

6
2. (8.1)

The polynomial in (8.1) is peculiar since dividing it by 24 yields the expression

c
6
1 + c

5
1c2 + 2c

4
1c

2
2 + 2c

3
1c

3
2 + 2c

2
1c

4
2 + c1c

5
2 + c

6
2, (8.2)

which generates the distinct colorings of the cube. From it we see, for instance, that
there are 2 ways to color the cube so that two sides has color c1 while four sides has
color c2. By letting c1 = c2 = 1, and substituting it into (8.2) we get 10, which is the
number of inequivalent colorings. The same result (from Example 6.1.4) would have been
reached using the Orbit Counting Lemma, where in n

6
+3n4

+12n3
+8n2

24
we put 2 instead of

n, obtaining
2

6
+ 3 � 2

4
+ 12 � 2

3
+ 8 � 2

2

24

= 10.

Likewise, we could just as well have put 2 instead of xi in the cycle index of Example 8.2.3
(the octahedron), i.e.

2

6
+ 8 � 2

2
+ 6 � 2

2
� 2 + 3 � 2

2
� 2

2
+ 6 � 2

3

24

= 10.

This is what we’re going to look at in the chapter that follows. Å
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9
The Pattern Inventory

9.1 P������� It is time to introduce a consistent terminology and to refurbish some
of the theory which we’ve earlier gone through. LetX and Y be �nite

sets, and consider mappings from the domain X to the range Y . The set of all such
mappings is, as usual, denoted by Y X . In previous examples the set Y consisted of colors,
while X contained parts of some geometrical structure. We chose to name Y X the set
of colorings of X , the set of color con�gurations of X , or simply a set of con�gurations. A
coloring, or con�guration, is a mapping f ⇥ X ∫ Y . In discussing the Orbit Counting
Lemma, in Chapter 6, an ambiguity seemed to arise in how to denote an element in the
underlying group acting on a set. If, for instance, we are to determine distinguishable
colorings of the vertices of a square using n colors, where X = {v1, v2, v3, v4}, and
Y = {c1, c2, . . . , cn}, then Y X is the set of con�gurations while n4 is its cardinality.
The permutation group ofX isD4, and so it is the underlying group acting on Y X . An
element ofD4, it seems, can be written in terms of the vertices v1, v2, v3, v4 of a square,
whereD4 acts onX , and in terms of con�gurations in Y X , sinceD4 acts on Y X —we
say that an element g of D4 induces a permutation rg of Y X , and we call the induced
group sD4. Generally, for a permutation groupG of a �nite setX , where sG is the induced
group acting on Y X for �nite Y , we introduce a relation on Y X , and say that f1 and f2
are equivalent — f1 ⇥ f2 — if there is an element g " G so that f1 (gx) = f2(x), for
x " X , and g " G. We establish quickly that ⇥ is an equivalence relation.

I. Since e " G we have f(x) = f(ex) = f(x), and so f ⇥ f .

II. If g " G, then g�1 " G, and so f1(gx) = f2(x) º f2 ⇥g
�1x� = f1(x). Hence

f1 ⇥ f2 º f2 ⇥ f1.

III. If g, h " G, then gh " G, so that if f1(gx) = f2(x), and f2(hx) = f3(x) then
f1(hgx) = f2(hx) = f3(x). Hence f1 ⇥ f3.
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9.1.1 D���������. LetX and Y be �nite sets, andG a group of permutations ofX . The
equivalence relation introduced by f1 ⇥ f2 if f1(gx) = f2(x), for some g " G, splits
Y X into equivalence classes called patterns . Ç

Naturally, we wish to determine the number of patterns in ªªª
ª

ª

Y X
™

sGª

ª

ª

ª

ª

. As one might suspect
it is equal to ªªª

ª

ª

Y X
™G

ª

ª

ª

ª

ª

. The Orbit Counting Lemma (Theorem 6.1.1) comes into play.

9.1.2 D���������. ’ Let X and Y be �nite sets, and G a group of permutations of X .
The element g " G induces a permutation of Y X in the following way: (rgf) (x) =
f ⇥g�1(x)�, viz. rgf = fg�1, for all colorings f " Y X . The set of all such induced
permutations is the group sG, which satis�es the axioms of a group action, and so it acts
on Y X .

I. For e " G, ref = fe�1 = f .

II. For g1, g2 " G, sg1 (sg2f) = sg1 ⇥fg�12 � = fg�12 g�11 = f (g1g2)
�1 = vg1g2f . Ç

9.1.1 L����. The group sG, as de�ned in 9.1.2, is isomorphic to G.

Proof. For g1, g2 " G we have that vg1g2f = f(g1g2)
�1 = fg�12 g�11 = sg2fg�11 =

sg1sg2f , and so the homomorphy condition is satis�ed. Next we need to establish that
sg1 = sg2 ø g1 = g2, so that the function ' taking g to rg is a bijection. Therefore,
suppose that sg1 = sg2, so that (sg1f) (x) = (sg2f) (x) ø f ⇥g�11 (x)� = f ⇥g�12 (x)�.
By our assumption f ⇥g�11 (x)� = f ⇥g�12 (x)� holds for all f " Y X , and is true in
particular for the coloring f which assigns a speci�ed color to g�1(x), and another
color to every other member ofX . In this case, the equation f ⇥g�11 (x)� = f ⇥g�12 (x)�

implies that g�11 (x) = g�12 (x), and because the same argument works for each x " X ,
we conclude that g1 = g2. Hence '(g) = rg is a bijection, and

G  sG. ⌅

9.1.2 T������. For Y X = {f ⇥ f a mapping fromX to Y } a set of con�gurations, where
G is a permutation group which acts on X , the number of patterns is

ª

ª

ª

ª

ª

ª

ª

ª

Y
X

�G
ª

ª

ª

ª

ª

ª

ª

ª

= 1

∂G∂

=
g"G

∂Fix(g)∂

where Fix(g) = tf " Y X
⇥ f(g(x)) = f(x),æx " Xz, the set of colorings �xed by g.
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Proof. The underlying groupG acts onX , and the induced group sG acts on Y X . Let

O denote an orbit in Y X

�sG, and let P denote a pattern in Y X

�G. If f1, f2 " O, we
have that rgf1 = f2, for some rg " sG. This implies that f1g

�1 = f2, so that f1, f2 " P .
Hence f1, f2 " O if, and only if, f1, f2 " P . By the Orbit Counting Lemma we have
that

ª

ª

ª

ª

ª

ª

ª

ª

Y
X

�sG
ª

ª

ª

ª

ª

ª

ª

ª

= 1

ª

ª

ª

ª

ª

sGª

ª

ª

ª

ª

=
rg"sG

∂Fix(rg)∂ ,

where Fix(rg) = tf " Y X
⇥ (rgf) (x) = f(x),æx " Xz. Now if f " Fix(rg), then

rgf = f which implies that fg�1 = f ø fg = f , by De�nition 9.1.2. Hence
rgf = f ø fg = f , and so ∂Fix(rg)∂ = ∂Fix(g)∂. Since G  sG º ∂G∂ = ª

ª

ª

ª

ª

sGª

ª

ª

ª

ª

, by
Lemma 9.1.1, we see that

1

ª

ª

ª

ª

ª

sGª

ª

ª

ª

ª

=
rg"sG

∂Fix(rg)∂ = 1

∂G∂

=
g"G

∂Fix(g)∂ ,

and we conclude that
ª

ª

ª

ª

ª

ª

ª

ª

Y
X

�sG
ª

ª

ª

ª

ª

ª

ª

ª

= 1

G
=
g"G

Fix(g) =
ª

ª

ª

ª

ª

ª

ª

ª

Y
X

�G
ª

ª

ª

ª

ª

ª

ª

ª

. ⌅

9.2 W������ In Example 8.2.9 we touched on the idea of assigning a weight to a color
con�guration. For setsX , Y , with mappings Y X , the initial idea is to

assign an element of a commutative ring to each member of y " Y , called the weight of y.
In doing so, we can form sums, products and rational multiples of weights (provided that
the ringR contains the rational numbers), which satis�es the usual axioms.

9.2.1 D���������. For a �nite set Y , and a commutative ringR containingQ, the function
w ⇥ Y ∫ R assigns to each member y " Y its weight w(y) " R. Ç

9.2.2 D���������. ForX , Y , and the set of mappings Y X , the functionW ⇥ Y X ∫ R
assigns to each con�guration f " Y X its weightW (f) " R, where

W (f) = 5
x"X

w (f(x)) . Ç

9.2.1 L����. If f1, f2 " P N Y X , where P is a pattern (orbit) in Y X , then

W (f1) = W (f2) .

Proof. If f1, f2 " P N Y X , then f1 ⇥ f2, by De�nition 9.1.1, viz. f1(gx) = f2(x)
where g " G. The products4x"X w (f1(x)), and4x"X w (f1(gx)) have the same
factors, only in a di�erent order, since g only permutes the index set, which is all ofX .
Hence4x"X w (f1(x)) = 4x"X w (f1(gx)) = 4x"X w (f2(x)) = W (f2) . ⌅
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9.2.3 D���������. The weight of a pattern P N Y X is denotedW (P ). All con�gurations
f " P have the same weight, andW (P ) = W (f), for some f " P . Ç

9.2.1 E������. Let X = {e1, e2, e3, e4} be the edges of a square, and let Y = {r, b}
contain the colors r, and b. LetQ [x, y] be the polynomial ring in two variables x, and y,
with rational coe�cients. Assign the weight w(r) = x to r, and w(b) = y to b. For the
2-colorings of a square with respect to its edges, we determined in Example 6.1.3 that
there are 16 con�gurations, and 6 patterns in all.
P1: All edges inX are mapped to r " Y so that, for f " P1,W (f) = x

4 = W (P1);
P2: Three edges inX are mapped to r " Y , one is mapped to b " Y . ThereforeW (P2) = x

3
y;

P3: Two adjacent edges are mapped to r " Y , and two adjacent edges are mapped to b " Y .
HenceW (P3) = x

2
y

2;
P4: Two opposite edges are mapped to r, and to opposite edges are mapped to b. ThusW (P4) =

x

2
y

2;
P5: Three edges are mapped to b, one is mapped to r. ThusW (P5) = xy

3;
P6: All edges are mapped to b, so thatW (P6) = y

4.
Å

9.2.2 E������. LetX = {a1, a2, a3, a4, a5, a6} be the faces of a cube, and let Y = {r, b}
contain the colors r, and b. LetQ [x, y] be the polynomial ring in two variables x, and y,
with rational coe�cients. Assign the weight w(r) = x to r, and w(b) = y to b. For the
2-colorings of a cube with respect to its faces, we determined in Example 8.2.9 that there
are 64 con�gurations, and 10 patterns in all.
P1: All faces inX are mapped to r " Y so that, for f " P1,W (f) = x

6 = W (P1);
P2: All faces, but one, are mapped to r " Y . One face is mapped to b " Y . We have that

W (P2) = x

5
y;

P3: Four faces are mapped to r, and two adjacent faces are mapped to b. And soW (P3) = x

4
y

2;
P4: Four faces are mapped to r, and two opposite faces are mapped to b. ThusW (P4) = x

4
y

2;
P5: Three faces meeting at a vertex are mapped to r, and three faces (also meeting at a vertex)

are mapped to b. We have thatW (P5) = x

3
y

3;
P6: Two opposite faces, and one more face, are mapped to r. Three faces are mapped to b.

ThereforeW (P6) = x

3
y

3;
P7: Two adjacent faces are mapped to r, and four faces are mapped to b. We have thatW (P7) =

x

2
y

4;
P8: Two opposite faces are mapped to r, and four faces are mapped to b. We have thatW (P8) =

x

2
y

4;
P9: All faces, but one, are mapped to b. ThusW (P9) = xy

5;
P10: All faces inX are mapped to b " Y , henceW (P10) = y

6.
Å

Remark. It is worthwile to observe that
10

=
i=1

W (Pi) = x
6
+ x

5
y + 2x

4
y
2
+ 2x

3
y
3
+ 2x

2
y
4
+ xy

5
+ y

6
.

Compare this sum with the expression (8.2) found in Example 8.2.9. This is the pattern
inventory of 2-colorings of a cube moving freely in space.
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9.3 T�� P������ I�������� We are to present a famous theorem due to Pólya.
In short, our task is to establish a function — called

the pattern inventory — which generates and/or enumerates the patterns of a set Y X

of con�gurations. To help us in this regard we shall extend on the ideas of weights of
con�gurations, and weights of patterns.

9.3.1 D���������. For a �nite set Y , where each element y " Y has been assigned the
weight w(y), we say that

I (Y ) = =
y"Y

w(y)

is the inventory of Y . Ç

9.3.2 D���������. Given the �nite sets X , Y , and where W (f) = 4x"X w (f(x))

(de�nition 9.2.2), then the inventory of Y X is given by

I ⇥Y
X
� = =

f"Y X

W (f) . Ç

9.3.1 L����.
I ⇥Y

X
� = (I (Y ))

∂X∂

.

Proof. See [4]. ⌅

9.3.2 L����. Let X be a disjoint union �n
i=1 Xi of �nite sets Xi, so that (by the rule of

sum) ∂X∂ = ∂X1∂ + . . . + ∂Xn∂. Let Y = {y1, y2, . . . , ym}, and let S N Y X where
S = tf " Y X

⇥ f is constant on each Xiz. Then

I (S) = =
f"S

W (f) =
n

5
i=i

=
y"Y

[w(y)]
∂Xi∂

Proof. See [4]. ⌅
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9.3.3 T������ (B��� P����). For �nite setsX , and Y , whereG is a group of permutations
of X , the number of patterns in Y X is given by the following formula:

ª

ª

ª

ª

ª

ª

ª

ª

Y
X

�G
ª

ª

ª

ª

ª

ª

ª

ª

= 1

G
=
g"G

∂Y ∂

c(g)
,

where c(g) is the number of cycles in g, as expressed in the decomposition of X under the
action of g.

Proof. By Theorem 9.1.1 we have that
ª

ª

ª

ª

ª

ª

ª

ª

Y X

�G
ª

ª

ª

ª

ª

ª

ª

ª

= 1
G
<g"G ∂Fix(g)∂, where Fix(g) =

tf " Y X
⇥ f(g(x)) = f(x),æx " Xz. We must therefore show that ∂Fix(g)∂ =

∂Y ∂

c(g). We make the observation that g " G is a permutation of X , and that each
g splits X into a disjoint union of c(g) cycles X1, X2, . . . , Xc(g), where each cycle
is cyclically permuted by g. If f " Fix(g), then f = fg = fg2 = . . ., hence f is
constant on each cycleXi. Conversely, if f is constant on eachXi, then f = fg since
g(x) " Xi, for x " Xi, and so f " Fix(g). Thus f " Fix(g) if, and only if, f is
constant on each cycleXi. Therefore, all of the elements in a cycleXi are mapped to
one and the same member of Y . There are c(g) cycles, and for each cycleXi there are
∂Y ∂ possible elements to which one can map all members ofXi. By the rule of product
we get that ∂Fix(g)∂ = ∂Y ∂

c(g), and so

ª

ª

ª

ª

ª

ª

ª

ª

Y
X

�G
ª

ª

ª

ª

ª

ª

ª

ª

= 1

G
=
g"G

∂Fix(g)∂ = 1

G
=
g"G

∂Y ∂

c(g)
. ⌅

9.3.3 D���������. Let P = {P1, . . . , Pk} be the set of all patterns in Y
X . We recall from

de�nition 9.2.3 that for the weight of some pattern P : W (P ) = W (f), where f " P .
The pattern inventory , also called the pattern generating function (PGF for short) is de�ned

I (P) = =
P"P

W (P ) . Ç
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9.3.4 P����’� E���������� T������. Let X , and Y be �nite sets where ∂X∂ = n, and
let G be a group of permutations ofX . We recall that the cycle index of G is the formal sum

⇣G (x1, x2, x3, . . . , xn) =
1

∂G∂

=
g"G

⇣g (x1, x2, x3, . . . , xn) .

The pattern inventory (de�nition 9.3.3) is given by

⇣G w=
y"Y

w(y), =
y"Y

[w(y)]
2
, . . . , =

y"Y
[w(y)]

n
} .

If all weights are chosen to be equal to 1 we get the number of patterns, viz. ªªª
ª

ª

Y X
™G

ª

ª

ª

ª

ª

.
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Proof. Let ! be some value that the weight of a function may have. For f1, f2 " Y X ,
and g " G, if f1 = f2g then W (f1) = W (f2) (Lemma 9.2.1). We take S! N Y X ,
where tf " Y X

⇥ W (f) = !z, hence if f1 = f2g " S! then f1g
�1 " S! . Let

Fix!(g) = tf " Y X
⇥ fg = f, andW (f) = !z. The number of patterns (Theorem

9.1.1) contained in S! is
1

∂G∂

=
g"G

∂Fix!(g)∂ . (9.1)

The patterns contained in S! have the same weight !, and if we multiply (9.1) by !,
and sum over all possible values of !, we obtain the pattern inventory

I (P) = =
P"P

W (P ) = 1

∂G∂

=
!

=
g"G

∂Fix!(g)∂!. (9.2)

If we let Fix(g) = tf " Y X
⇥ fg = fz, then we have that

=
!

∂Fix!(g)∂! = =
f"Fix(g)

W (f) ,

and since the indices in (9.2) are �nite we can exchange the order of summation. The
right hand side in (9.2) becomes

1

∂G∂

=
g"G

=
!

∂Fix!(g)∂! = 1

∂G∂

=
g"G

=
f"Fix(g)

W (f) . (9.3)

It remains to evaluate the sum<f"Fix(g) W (f) in (9.3). We make the observation that
g " G is a permutation of X , and each g splits X into a disjoint union of m cycles
X1, X2, . . . , Xm, wherem & n. Each cycle is cyclically permuted by g. If f " Fix(g),
then f = fg = fg2 = . . ., hence f is constant on each cycleXi. Conversely, if f is
constant on eachXi, then f = fg since g(x) " Xi, for x " Xi, and so f " Fix(g).
We can therefore apply Lemma 9.3.2:

=
f"Fix(g)

W (f) =
m

5
i=1

=
y"Y

[w(y)]
∂Xi∂ . (9.4)
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Proof, continuation. Expanding on the right hand side of (9.4), we get

⇧=
y"Y

[w(y)]
∂X1∂

↵ ⇧=
y"Y

[w(y)]
∂X2∂

↵⇧⇧=
y"Y

[w(y)]
∂Xm∂

↵ (9.5)

Let ◆1↵1 , 2↵2 , . . . , n↵n
⇡ be the type of g. This means that among the numbers ∂X1∂,

∂X2∂ , . . . , ∂Xn∂, 1 occurs ↵1 times, 2 occurs ↵2 times, and so on. We can therefore
write (9.5) as

=
f"Fix(g)

W (f) = ⇧=
y"Y

[w(y)]↵

↵1

⇧=
y"Y

[w(y)]
2
↵

↵2

⇧⇧=
y"Y

[w(y)]
n
↵

↵n

. (9.6)

Hence the right hand side in (9.3) becomes

1

∂G∂

=
g"G

w⇧=
y"Y

[w(y)]↵

↵1

⇧=
y"Y

[w(y)]
2
↵

↵2

⇧⇧=
y"Y

[w(y)]
n
↵

↵n

} . (9.7)

We note that ⇥<y"Y [w(y)]�
↵1

⇥<y"Y [w(y)]2�
↵2

⇧ ⇥<y"Y [w(y)]n�
↵n is pre-

cisely what is obtained by substitution of

x1 = =
y"Y

w(y), x2 = =
y"Y

[w(y)]
2
, . . . , xn = =

y"Y
[w(y)]

n

into the cycle structure representation ⇣g (x1, x2, . . . , xn) of g. We can therefore
conclude that (9.7) is the cycle index

⇣G w=
y"Y

w(y), =
y"Y

[w(y)]
2
, . . . , =

y"Y
[w(y)]

n
} . ⌅
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9.4 G��� & H������ Pólya’s Enumeration Theorem reduces the problem of �nd-
ing equivalence classes — patterns — of a set of con�gura-

tions to that of �nding a cycle index ⇣G — the result being a generating function: the
pattern inventory. Here we give a brief exposition on the colorings of the geometrical
objects we’ve encountered.

9.4.1 E������. LetX = {x1, x2, x3, x4, x5} be the positionings of 5 beads in a necklace,
and let Y be a set of 3 colors. Consider the problem of making a bracelet with 5 colored
beads, which are evenly distributed around it, while we are only allowed to rotate the
necklace about the centre. The group in question which acts onX is C5 = ág ⇥ g5 = eç,
and has the cycle index (Theorem 8.2.1)

⇣C7
(x1, x2, x3, x4, x5) =

1

5

=
d∂5

'(d)x
5/d
d = 1

5

⇥x
5
1 + 4x5� .

We can choose to assign some weight x, y, z to each color in Y . Applying Theorem 9.3.4
we get that

⇣C5
w=
y"Y

w(y), . . . , =
y"Y

[w(y)]
5
} = 1

5

⇥(x + y + z)
5
+ 4 ⇥x

5
+ y

5
+ z

5
�� . (9.8)

The expression on the right hand side in (9.8) is, when expanded, equal to:

x5
+x4y+x4z+ 2x3y2 + 4x3yz+ 2x3z2 + 2x2y3 + 6x2y2z+ 6x2yz2 +

2x2z3 + xy4 + 4xy3z + 6xy2z2 + 4xyz3 + xz4 + y5 + y4z + 2y3z2 +

2y2z3 + yz4 + z5,

which is the pattern inventory of the 3-colorings of a 5-beaded necklace. Among the 21
terms we see, for instance, that there are 6 distinct colorings where there are two of the
�rst, one of the second, and two of the third color. Å

9.4.2 E������. We consider the same 5-beaded necklace, again using three colors, with
the extra condition that we allow for re�ections (that is, we are allowed to �ip it about some
axis of symmetry). The group in question which acts onX isD5 = ág ⇥ g5 = h2 = eç,
which has the cycle index (Theorem 8.2.2)

1

2

⇣C5
(x1, x2, x3, x4, x5) +

1

2

x1x
(5�1)/2
2 = 1

10

⇥x
5
1 + 4x5 + 5x1x

2
2� .

We can choose to assign some weight x, y, z to each color in Y . Applying Theorem 9.3.4
we get the pattern inventory

1

10

⇥(x + y + z)
5
+ 4 ⇥x

5
+ y

5
+ z

5
� + 5(x + y + z)(x

2
+ y

2
+ z

2
)

2
� . (9.9)

By expanding (9.9) we obtain

x

5
+x

4
y+x

4
z+2x3

y

2
+2x3

yz+2x3
z

2
+2x2

y

3
+4x2

y

2
z+4x2

yz

2
+2x2

z

3
+

xy

4
+ 2xy3

z + 4xy2
z

2
+ 2xyz3 + xz

4
+ y

5
+ y

4
z + 2y3

z

2
+ 2y2

z

3
+ yz

4
+ z

5
.
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Comparing the terms in this expression to the corresponding ones in the previous example,
we remark that the coe�cients are smaller this time. Naturally — since two colorings
which are distinct with respect only to rotations might this time be equivalent under
re�ections. Å

9.4.3 E������. From example 8.2.3, we have that the cycle index of the groupG acting
on the faces of a cube is x

6
1+8x

2
3+6x

2
1x4+3x

2
1x

2
2+6x

3
2

24
. Lets determine the 3-colorings of the

faces of a cube, using the colors red, blue and yellow. Assign to each color the weights r, b,
y. By Theorem 9.3.4, we get that the pattern inventory is

(r+b+y)
6
+8(r3+b3+y3

)

2
+6(r+b+y)2(r4+b4+y4

)+3(r+b+y)2(r2+b2+y2
)

2
+6(r2+b2+y2

)

3

24

which, when expanded, is equal to

r

6
+ r

5
b+ r

5
y + 2r4b2 + 2r4by + 2r4y2

+ 2r3b3 + 3r3b2y + 3r3by2
+ 2r3y3

+

2r2b4+3r2b3y+6r2b2y2
+3r2by3

+2r2y4
+ rb

5
+2rb4y+3rb3y2

+3rb2y3
+

2rby4 + ry

5
+ b

6
+ b

5
y + 2b4y2

+ 2b3y3
+ 2b2y4

+ by

5
+ y

6.

We remark that there are 3 distinct ways of coloring the cube so that there are three red
faces, two blue faces, and one yellow face. This was also the answer to the question posed
in section 1.2. Naturally — since the cube and the octahedron are dual solids. We make an
attempt to interpret this in �gure 9.1. Å

Figure 9.1: The distinct colorings corresponding to 3r3b2y.

9.4.4 E������. We have that the cycle index of the groupG acting on the vertices of an
icosahedron (example 8.2.5) is

1

60

⇥x
12
1 + 24x

2
1x

2
5 + 20x

4
3 + 15x

6
2� .

Considering a set of two colors, for instance black, and white — with weights b, and w —
yields the pattern inventory

b12 + b11w+ 3b10w2
+ 5b9w3

+ 12b8w4
+ 14b7w5

+ 24b6w6
+ 14b5w7

+

12b4w8
+ 5b3w9

+ 3b2w10
+ bw11

+ w12.

Of course, the same inventory goes for the 2-colorings of the faces of a dodecahedron
since it is the dual of the icosahedron. Å

9.4.5 E������. The group which acts on the set of vertices of the dodecahedron has the
(example 8.2.6) cycle index

1

60

⇥x
20
1 + 20x

2
1x

6
3 + 15x

10
2 + 24x

4
5� .

Again we consider a 2-coloring black, and white — with weights b, and w. The pattern
inventory is
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b20 + b19w + 6b18w2
+ 21b17w3

+ 96b16w4
+ 262b15w5

+ 681b14w6
+

1302b13w7
+ 2157b12w8

+ 2806b11w9
+ 3158b10w10

+ 2806b9w11
+

2157b8w12
+1302b7w13

+681b6w14
+262b5w15

+96b4w16
+21b3w17

+

6b2w18
+ bw19

+ w20.

Å
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10
Graphical Enumeration

It would be slightly inappropriate to omit a discussion on graphical enumeration, since
we actually began this text with such an example (Section 1.1). Lets resume this discussion
now. We review, �rst, the basic de�nitions in graph theory, and transition shortly to the
application of Pólya’s Enumeration Theorem.

10.1 S ����� G�����

10.1.1 D���������. Let V be a �nite, non-empty, set — we will typically have that V =
{1, 2, . . . , n}. Let E N ⇥

V
2
�, where ⇥V

2
� = {{i, j} ⇥ i, j " V, i j j}. We call V the vertex

set, E the edge set, and G = (V,E) the undirected, loop-free (and labelled) simple graph
with vertex set V , and edge set E. We will denote ⇥V

2
� by V (2), and we have that

ª

ª

ª

ª

ª

V
(2)ª

ª

ª

ª

ª

=
ª

ª

ª

ª

ª

ª

ª

ª

ª

⇧

V
2

↵

ª

ª

ª

ª

ª

ª

ª

ª

ª

= ⇧

∂V ∂

2

↵. Ç

10.1.1 E������. Let V = {1, 2, 3}. Then ª

ª

ª

ª

ª

V (2)ª
ª

ª

ª

ª

= ⇥

3
2
� = 3. As per the discussion in

Section 1.2 we can consider all possible graphs. As shown in �gure 10.1, there’s only
one possible graph with three labelled vertices and zero edges, three possible graphs
with one and two edges respectively, and �nally there is only one graph with three edges.
Accounting for all possibilities — and summing them up,

⇧

⇥

3
2
�

0

↵ + ⇧

⇥

3
2
�

1

↵ + ⇧

⇥

3
2
�

2

↵ + ⇧

⇥

3
2
�

3

↵ = 2

⇥

3
2
�

,

so provides us with 8 distinct, labelled, graphs where V = {1, 2, 3}. Å
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Figure 10.1: Every possible graph with the three labelled vertices 1, 2, and 3.

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

10.1.1 P���. There are 2
ª

ª

ª

ª

ª

V
(2)ª

ª

ª

ª

ª = 2

⇥

∂V ∂

2
� labelled graphs with ∂V ∂ vertices.

Proof. It is su�cient to observe that for each edge e " ⇥

V
2
�we can choose either to join

it with E, or not. This can be illustrated with the binomial theorem:

⇧

⇥

∂V ∂

2
�

0

↵ + ⇧

⇥

∂V ∂

2
�

1

↵ + . . . + ⇧

⇥

∂V ∂

2
�

⇥

∂V ∂

2
�

↵ = 2

⇥

∂V ∂

2
�

. ⌅

10.1.2 D���������. Let G1 = (V1, E1), and G2 = (V2, E2) be two undirected graphs.
We say thatG1 andG2 are isomorphic if there exists a bijection � ⇥ V1 ∫ V2, such that,
for all i, j " V1, {i, j} " E1 if, and only if, {�(i),�(j)} " E2. If such a � exists it is
called an isomorphism of graphs, and we write

G1  G2. Ç

10.1.2 E������. We have that

G1 = ({1, 2, 3} , {{1, 2} , {2, 3}})  G2 = ({1, 2, 3} , {{1, 2} , {1, 3}}) ,

since � = (12) is a bijection, between V1 and V2, satisfying the sought after properties of
de�nition 10.1.2.

10.1.3 D���������. Let V = {1, 2, . . . , v} be the vertex-set of a graph G. The natural
choice to consider, as a permutation group acting on the vertices ofG, is the symmetric
groupSv . We de�ne the symmetric pair group S(2)

v as the group induced by the permuta-
tions inSn. A pair-permutation �(2) is an element ofS(2)

v , induced by �, which permutes
V (2) by

�
(2)

{i, j} = {�(i),�(j)} , for each {i, j} " V
(2)

. Ç

Remark. The pair groupS(2)
n acts on V (2), since:

I. e(2) {i, j} = {e(i), e(j)} = {i, j}, for all {i, j} " V (2);

II. g(2) ⇥h(2)
{i, j}� = g(2) {h(i), h(j)} = {gh(i), gh(j)} = (gh)(2) {i, j}, for all

{i, j} " V (2).
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10.1.3 E������. For V = {1, 2, 3} we have that V (2) = {{1, 2} , {1, 3} , {2, 3}}. We
establish, here, the induced groupS(2)

3 .

I: To e = (1)(2)(3) " S3 corresponds the element e(2) = (12)(13)(23) " S(2)
3 .

({1, 2})({1, 3})({2, 3})would, of course, be the correct way to denote e(2), but we
choose to omit the curly brackets and commas in order to obtain a more convenient
notation;

II: For (123) " S3, we have that (123)
(2) = (12, 23, 13) " S(2)

3 ;

III: For (132) " S3, we have that (132)
(2) = (12, 13, 23) " S(2)

3 ;

IV: For (3)(12) " S3, we have that (12)
(2) = (12)(13, 23) " S(2)

3 ;

V: For (2)(13) " S3, we have that (13)
(2) = (13)(12, 23) " S(2)

3 ;

VI: For (1)(23) " S3, we have that (23)
(2) = (23)(12, 13) " S(2)

3 . Å

We need a way to establish the isomorphism classes of labelled graphs and we will
do so using the same approach as before — by �nding the cycle structure monomials
⇣g(2)

(x1, x2, . . .) for each �
(2) " S(2)

v in order to determine the cycle index

⇣S(2)
v

(x1, x2, . . .)

ofS(2)
v , and thereafter by applying Pólya’s Enumeration Theorem. Introducing the set of

colors Y = {A,B}, "absent" and "present", we make use of the observation thatKv — the
complete graph on v vertices— contains all possible e = {i, j} " V (2), i.e. ∂Kn∂ =

ª

ª

ª

ª

ª

V (2)ª
ª

ª

ª

ª

,
so that our current predicament can be adressed as a problem of coloring the edge set of
Kn, where w(A) = x0 = 1 (the weight of an edge which is absent), and w(B) = x (a
present edge). The pattern inventory determines the isomorphism classes of Y V

(2)

™S(2)
n

— by enumerating the distinct unlabelled graphs, given a number of edges — and will be
expressed as a polynomial

⇥

v
2
�

=
e=0

gv,ex
e
.

10.1.4 E������. A quick glance at �gure 10.1, together with our �ndings in example
10.1.3, determines that

⇣S(2)
3

(x1, x2, x3) =
1

6

⇥x
3
1 + 2x3 + 3x1x2� .

Applying PET, we get that

⇣S(2)
3

⇥1 + x, 1 + x
2
, 1 + x

3
� = 1

6

⇥(1 + x)
3
+ 2(1 + x

3
) + 3(1 + x)(1 + x

2
)� ,

which equals 1 + x + x2
+ x3. In other words we have that for three unlabelled vertices,

there’s one distinct graph with 0 edges, one distinct graph with 1 edge, one distinct graph
with 2 edges, and one distinct graph with 3 edges, as depicted in �gure 10.2. Å
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Figure 10.2: Isomorphism classes of graphs with three vertices.

10.1.5 E������. Table 10.1 contains the elements ofS(2)
4 —the group of pair-permutations

on V (2) = {{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}}.

Table 10.1: A list of group elements in S(2)
4 .

(12, 13, 14)(23, 34, 24) (12, 23, 24)(13, 34, 14) (12, 24, 14)(13, 23, 34)
(12, 14, 13)(23, 24, 34) (12, 24, 23)(13, 14, 34) (12, 14, 24)(13, 34, 23)
(12, 23, 13)(14, 24, 34) (12, 13, 23)(14, 34, 24) (12)(34)(13, 24)(14, 23)
(13)(24)(12, 34)(14, 23) (14)(23)(12, 34)(13, 24) (12)(34)(13, 14)(23, 24)
(13)(24)(12, 14)(23, 34) (23)(14)(12, 24)(13, 34) (13)(24)(12, 23)(14, 34)
(14)(23)(12, 13)(24, 34) (12)(34)(13, 23)(14, 24) (13, 24)(12, 23, 34, 14)
(14, 23)(12, 24, 34, 13) (12, 34)(13, 23, 24, 14) (14, 23)(12, 13, 34, 24)
(12, 34)(13, 14, 24, 23) (13, 24)(12, 14, 34, 23) (12)(13)(14)(23)(24)(34)

Table 10.2: Types, and cycle structure monomials of elements in S(2)
4 .

Type ⇣�(2)
# Sum

1

6
⇢ x6

1 1 x6
1

1

2, 22⇢ x2
1x

2
2 9 9x2

1x
2
2

2

1, 41⇢ x2x4 6 6x2x4

3

2
⇢ x2

3 8 8x2
3

From table 10.2 we can determine the cycle index, which is

⇣S(2)
4

(x1, x2, x3, x4, x5, x6) =
1

24

⇥x
6
1 + 9x

2
1x

2
2 + 6x2x4 + 8x

2
3� .

Applying PET, we get that

⇣S(2)
4

= 1

24

⇥(1 + x)
6
+ 9(1 + x)

2
(1 + x

2
)

2
+ 6(1 + x

2
)(1 + x

4
) + 8(1 + x

3
)

2
� ,

which equals 1 + x + 2x2
+ 3x3

+ 2x4
+ x5

+ x6. Hence with four unlabelled vertices
we have one distinct graph with 0 edges, one with 1 edge, two with 2 edges, three with
3 edges, two with 4 edges, one with 5 edges, and one with 6 edges (viz. K4). Figure 10.3
depicts them. Å
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Figure 10.3: Isomorphism classes of graphs with 4 vertices.

Before congratulating ourselves we should consider that the computations involved in
determining ⇣S(2)

v
has, for far, been rather laborious. Needless to say, for larger v the

computational load increases drastically. The explicit formula for computing ⇣S(2)
v

is
established in [7], by Harary and Palmer.

10.1.2 T������.

⇣S(2)
v

= 1

�v!
=
(j)

w

�v!
4 kjkjk!

5
k

x
kj2k+1

2k+1 5
k

⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k 5
r<t

x
(r,t)jrjt
[r,t] } ,

where (r, t) = gcd(r, t), and [r, t] = lcm(r, t). Summation is taken over partitions
(j) = 1

j1 , 2j2 , . . . , kjk , . . . , vjv⇢ of v — where the notation (j1, j2, . . . , jv) is used.

Proof. See []. ⌅

10.1.6 E������. We end this section with an application of Theorem 10.1.2 by computing
⇣S(2)

5
, and determining the pattern inventory. There are seven partitions of 5: 15⇢,

1

3, 21⇢, 12, 31⇢, 11, 41⇢, 11, 22⇢, 21, 31⇢, and 51⇢. We go through them, case by case,
using the (j1, j2, . . . , jv) notation. For brevity we cannot display complete calculations,
only their results.

I: For (5, 0, 0, 0, 0), we have that
1

4kjk jk!
= 1

155!200!...500!
= 1

155!
;

4k x
kj2k+1

2k+1 = x1�0
3 . . . x5�0

11 = 1;

4k ⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k = x10
1 . . . ⇥x5x

4
10�

0
x
5�⇥0

2
�

5 = x10
1 ;

4r<t x
(r,t)jrjt
[r,t] = x0

2x
0
3 . . . x

0
20 = 1.

II: (3, 1, 0, 0, 0), we have that
1

4kjk jk!
= 1

133!211!300!...500!
= 1

133!211!
;

4k x
kj2k+1

2k+1 = x1�0
3 x2�0

5 . . . x5�0
11 = 1;

4k ⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k = x4
1 . . . ⇥x5x

4
10�

0
x0
5 = x4

1;

4r<t x
(r,t)jrjt
[r,t] = x3

2x
0
3 . . . x

0
20 = x3

2.
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III: (2, 0, 1, 0, 0), we have that

1
4kjk jk!

= 1
122!200!311!...500!

= 1
6
;

4k x
kj2k+1

2k+1 = x1
3x

0
5 . . . x

0
11 = x3;

4k ⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k = x1
1 ⇥x2x

1
4�

0
x0
2 . . . ⇥x5x

4
10�

0
x0
5 = x1;

4r<t x
(r,t)jrjt
[r,t] = x0

2x
2
3 . . . x

0
20 = x2

3.

IV: (1, 0, 0, 1, 0), we have that

1
4kjk jk!

= 1
111!200!300!411!500!

= 1
4
;

4k x
kj2k+1

2k+1 = x0
3x

0
5 . . . x

0
11 = 1;

4k ⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k = ⇥x1x
0
2�

0
x0
1 ⇥x2x

1
4�

1
x0
2 . . . = x2x4;

4r<t x
(r,t)jrjt
[r,t] = x0

2x
0
3x

1
4x

0
5 . . . x

0
20 = x4.

V: (1, 2, 0, 0, 0), we have that

1
4kjk jk!

= 1
111!222!300!400!500!

= 1
8
;

4k x
kj2k+1

2k+1 = x0
3x

0
5 . . . x

0
11 = 1;

4k ⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k = ⇥x1x
0
2�

2
x0
1 ⇥x2x

1
4�

0
x
2�⇥2

2
�

2 . . . = x2
1x

2
2;

4r<t x
(r,t)jrjt
[r,t] = x1�2

2 x0
3 . . . x

0
20 = x2

2.

VI: (0, 1, 1, 0, 0), we have that

1
4kjk jk!

= 1
100!211!311!400!500!

= 1
6
;

4k x
kj2k+1

2k+1 = x1
3x

0
5 . . . x

0
11 = x3;

4k ⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k = ⇥x1x
0
2�

1
x0
1 ⇥x2x

1
4�

0
x0
2 . . . = x1;

4r<t x
(r,t)jrjt
[r,t] = x0

2x
0
3 . . . x

1
6 . . . x

0
20 = x6.

VII: (0, 0, 0, 0, 1), we have that

1
4kjk jk!

= 1
100!...511!

= 1
5
;

4k x
kj2k+1

2k+1 = x0
3x

2
5 . . . x

0
11 = x2

5;

4k ⇥xkx
k�1
2k �

j2k
x
k⇥jk

2
�

k = ⇥x1x
0
2�

0
x0
1 . . . ⇥x5x

4
10�

0
x0
5 = 1;

4r<t x
(r,t)jrjt
[r,t] = x0

2x
0
3 . . . x

0
20 = 1.

Multiplying the terms in each of (I) to (VII) respectively, and summing up all of the resulting
products, so provides us with

x10
1

120

+

x4
1x

3
2

12

+

x1x
3
3

6

+

x2x
2
4

4

+

x2
1x

4
2

8

+

x1x3x6

6

+

x2
5

5

,
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so that

⇣S(2)
v

= 1

120

⇥x
10
1 + 10x

4
1x

3
2 + 20x1x

3
3 + 30x2x

2
4 + 15x

2
1x

4
2 + 20x1x3x6 + 24x

2
5� .

Applying Pólya’s Enumeration Theorem— viz. substituting 1+ xk in a xk-representative,
and cleaning up the result — yields the polynomial

x
10

+ x
9
+ 2x

8
+ 4x

7
+ 6x

6
+ 6x

5
+ 6x

4
+ 4x

3
+ 2x

2
+ x + 1,

which is the pattern inventory of (5, e)-graphs. In �gure 10.4 we draw each isomorphism
class. Å

Figure 10.4: Isomorphism classes of graphs with 5 vertices.

10.2 M���������� Generalizing on the idea of 2-colorings of the complete graph
Kv is a natural next stepwhich provides amethod of classifying

non-isomorphic undirected multigraphs on a set of v vertices. Instead of the colors
"absent", and "present", we introduce the set Y = {0, 1, 2, . . . ,m} of multiplicities of an
edge e " V (2), with weights w(i) = wi. The weight of a mapping f " Y V

(2)

, i.e. for
e = {v1, v2} " V (2), simply states how many edges there are between v1, and v2:

w (f({v1, v2})) = w(k) = wk,

indicating that there are k edges between v1, and v2.

10.2.1 E������. Let V (2) = {{1, 2} , {1, 3} , {2, 3}} be as in example 10.1.3, and let
Y = {0, 1, 2} be the set of edge multiplicities. We saw that

⇣S(2)
3

(x1, x2, x3) =
1

6

⇥x
3
1 + 2x3 + 3x1x2� .

By applying Pólyas Enumeration Theorem we get the polynomial

w
3
0 + w

2
0w1 + w

2
0w2 + w0w

2
1 + w0w1w2 + w0w

2
2 + w

3
1 + w

2
1w2 + w1w

2
2 + w

3
2,

which generates all possible non-isomorphic multigraphs with three vertices and a maxi-
mum edge multiplicity of 2. Note that by letting w0 = w1 = 1, and w2 = 0, we get the
number of non-isomorphic simple graphs of three vertices (�gure 10.2), which is 4. Å
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Figure 10.5: Non-isomorphic multigraphs with three vertices and a maximum edge multiplicity
of 2.

10.2.2 E������. Let V = {1, 2, 3, 4, 5}, and consider multigraphs of 5 vertices. We still
deal with a maximum edge multiplicity of 2. It was seen in example 10.1.6 that

⇣S(2)
5

= 1

120

⇥x
10
1 + 10x

4
1x

3
2 + 20x1x

3
3 + 30x2x

2
4 + 15x

2
1x

4
2 + 20x1x3x6 + 24x

2
5� .

As in example 10.2.1 we apply Pólyas Enumeration Theorem, through substituting wi
0 +

wi
1 + wi

2 into a xi-representative, by which we obtain

w10
0 +w9

0w1 + 2w8
0w

2
1 + 4w7

0w
3
1 + 6w6

0w
4
1 + 6w5

0w
5
1 + 6w4

0w
6
1 + 4w3

0w
7
1 +

2w2
0w

8
1 +w0w

9
1 +w10

1 +w9
0w2 + 2w8

0w1w2 + 6w7
0w

2
1w2 + 12w6

0w
3
1w2 +

16w5
0w

4
1w2+16w4

0w
5
1w2+12w3

0w
6
1w2+6w2

0w
7
1w2+2w0w

8
1w2+w9

1w2+

2w8
0w

2
2+6w

7
0w1w

2
2+17w

6
0w

2
1w

2
2+30w

5
0w

3
1w

2
2+37w

4
0w

4
1w

2
2+30w

3
0w

5
1w

2
2+

17w2
0w

6
1w

2
2 + 6w0w

7
1w

2
2 + 2w8

1w
2
2 + 4w7

0w
3
2 + 12w6

0w1w
3
2 + 30w5

0w
2
1w

3
2 +

47w4
0w

3
1w

3
2+47w3

0w
4
1w

3
2+30w2

0w
5
1w

3
2+12w0w

6
1w

3
2+4w7

1w
3
2+6w6

0w
4
2+

16w5
0w1w

4
2 + 37w4

0w
2
1w

4
2 + 47w3

0w
3
1w

4
2 + 37w2

0w
4
1w

4
2 + 16w0w

5
1w

4
2 +

6w6
1w

4
2+6w5

0w
5
2+16w4

0w1w
5
2+30w3

0w
2
1w

5
2+30w2

0w
3
1w

5
2+16w0w

4
1w

5
2+

6w5
1w

5
2 + 6w4

0w
6
2 + 12w3

0w1w
6
2 + 17w2

0w
2
1w

6
2 + 12w0w

3
1w

6
2 + 6w4

1w
6
2 +

4w3
0w

7
2+6w2

0w1w
7
2+6w0w

2
1w

7
2+4w3

1w
7
2+2w2

0w
8
2+2w0w1w

8
2+2w2

1w
8
2+

w0w
9
2 + w1w

9
2 + w10

2 .

It is an unwieldy expression, but it provides plenty of information. If we let w0 = w1 = 1,
and w2 = 0, it sums up to 34— the number of non-isomorphic simple graphs presented
in �gure 10.4. If we let w0 = w1 = w2 = 1 it sums up to the number of non-isomorphic
multigraphs of �ve unlabelled vertices — there are 792 such graphs. Moreover, letting
w0 = 0, w1 = 1, and w2 = 2 counts the total number — 3275 — of edges which are
present in the list of all non-isomorphic multigraphs of �ve unlabelled vertices. Å
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11
Chemical Enumeration

Pólya’s original article dealt in ways of enumerating chemical isomers. Such an example
will be presented in the end of this chapter, and it will be the very same one as given in [8].

11.1 D ����� P������� We begin our discussion with some ideas related to group
actions.

11.1.1 E������. Let X = {x1, x2, . . . , xn}, and Y = {y1, y2, . . . , ym} be two �nite,
and disjoint sets. We takeG to be a group of permutations ofX , and we take H to be a
group of permutations of Y . We have that

⇣G = 1

∂G∂

=
(i)

gi1i2...inx
i1
1 x

i2
2 . . . x

in
n ;

⇣H = 1

∂G∂

=
(j)

hi1i2...imx
j1
1 x

j2
2 . . . x

jm
n

are the cycle indices forG, and H, where gi1i2...in (resp. hi1i2...in ) are the number of per-
mutations inG (resp. H) of type 1i1 , 2i2 , . . . , nin

⇢ ⇥resp. 1j1 , 2j2 , . . . ,mjm
⇢�. Sum-

mation is taken over all partitions (i), and (j), of n andm respectively. Let U = X < Y ,
then to each choice of g " G and h " H there corresponds a new permutation group —
of U —which we de�ne by

x ¿ gx, if x " X, and y ¿ hy if y " Y.

We denote this permutation group byG✓H— the direct product ofG andH (cf. example
3.4.1). There are ∂G∂ ∂H∂ permutations of the n+m objects inU , and in Cauchy’s notation
each pair g ✓ h correspond to

⌅

x1 x2 . . . xn y1 y2 . . . ym
x1¨ x2¨ . . . xn¨ y1¨ y2¨ . . . ym¨

⌦ .
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If g " G has type 1i1 , 2i2 , . . . nin
⇢, and h " H has type 1j1 , 2j2 , . . . njm

⇢, then the
type of g ✓ h is 1i1+ji , 2i2+j2 , . . . nin+jn

⇢ — since each cycle in U lies either entirely
inX , or entirely in Y . We therefore have that the cycle structure monomial ⇣g✓h — the
term in the cycle index ⇣G✓H corresponding to the element g ✓ h—must be equal to the
product of the term in ⇣G corresponding to g, and the term in ⇣H corresponding to h, viz.
⇣g✓h = ⇣g⇣h. This applies to all terms of ⇣G, and all terms of ⇣H. Hence

⇣G✓H = ⇣G⇣H. Å

11.1.2 E������. The preceeding example can be illustrated by an enumeration problem
which concerns a traingle and a square. The groups of rigid motions D4 and D3 per-
mutes the vertices V

u

= {x1, x2, x3, x4} of u, and the vertices VW

= {y1, y2, y3} ofW
respectively. We have that

⇣D3
= 1

6

⇥x
3
1 + 3x1x2 + 2x3� ;

⇣D3
= 1

8

⇥x
4
1 + 2x

2
1x2 + 3x

2
2 + 2x4� .

The direct productD3 ✓D4 is a permutation group of V
W

< V
u

, and so

⇣D3✓D4
= 1

48

⇥x
3
1 + 3x1x2 + 2x3� ⇥x

4
1 + 2x

2
1x2 + 3x

2
2 + 2x4� .

We examine the colorings of the triangle together with the square, i.e. we wish to color
them both at the same time. The given colors are C = {red, blue} with the respective
weights w(red) = r, and w(blue) = b. We imagine the triangle and the square alongside
eachother.

Figure 11.1

The number of color con�gurations is 27 = 128, but not all of them are distinct. By
a suitable transformation of W, or u (inclusive disjunction), one con�guration can be
obtained from another. We seek the patterns of CV

W

<V
u , viz. we wish to determine the

pattern inventory of
C

V
W

<V
u

�G ✓ H.

Applying PET — substituting rk + bk in a xk-representative, and cleaning up the result —
yields the polynomial

r
7
+ 2r

6
b + 4r

5
b
2
+ 5r

4
b
3
+ 5r

3
b
4
+ 4r

2
b
5
+ 2rb

6
+ b

7
.

We interpret this result in �gure 11.2. Å
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Figure 11.2

11.2 T�� K���� G���� Let X = {x1, x2, . . . , xn}, and Y = {y1, y2, . . . , ym}

be two disjoint and �nite sets as before. We takeG to be
a (�nite) group of permutations ofX , and we take H to be a (�nite) group of permutations
of Y . Consider the cartesian productX ✓ Y = {(x, y) ⇥ x " X, and y " Y }. We can
construct a group of permutations ofX ✓ Y in which the group elements are de�ned in
the following way:

Choose an element in g " G, and to each x " X choose an element hx " H.
These elements determine a permutation ofX ✓ Y by

(x, y) ¿ (gx, hxy), where x " X, y " Y.

There are ∂G∂ ∂H∂
n di�erent choices of (g, hx) — permutations of G ✓ H — which

together form a group called the corona of G with respect to H , or the Kranz G [H].

11.2.1 T������. The cycle index of G [H] is obtained by substituting

yk = ⇣H (xk, x2k, x3k, . . .) into ⇣G (y1, y2, y3, . . .).

Viz.

⇣G[H]

(x1, x2, . . .) = ⇣G {⇣H (x1, x2, . . .) , ⇣H (x2, x4, . . .) , . . .} .

Proof. See [4]. ⌅

11.2.1 E������. Lets consider three cubes. We want to color each one of them usingC =
{red, blue}. The set of cubes can be permuted, while each separate cube can also be rotated,
and we wish to �nd the number of non-equivalent colorings under permutations and
rotations. The group under consideration isS3 [G], whereG is the group of permutations
of the faces of a cube, and S3 is the symmetric group of degree 3. We have that

⇣S3
(x1, x2, x3) =

1

6

⇥x
3
1 + 3x1x2 + 2x3� ;

⇣G (x1, x2, x3, x4, x5, x6) =
1

24

⇥x
6
1 + 8x

2
3 + 6x

2
1x4 + 3x

2
1x

2
2 + 6x

3
2� .

Applying Theorem 11.2.1 we get that ⇣S3[G]

(x1, x2, . . .) equals

1

6

t[⇣G (x1, x2, . . .)]
3
+ 3⇣G (x1, x2, . . .) ⇣G (x2, x4, . . .) + 2⇣G (x3, x6, . . .)z .

(11.1)
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It would be feasible to expand (11.1), but this would yield a cycle index too unwieldy.
Instead we choose to give weights w(red) = w(blue) = 1 so that, when applying PET,
each ⇣G = 10. Thus

⇣S3[G]

(2, 2, . . .) = 1

6

⇥10

3
+ 3 � 10 � 10 + 2 � 10� = 220.

We can therefore conclude that there are 220 non-equivalent colorings of the cubes. Å

Table 11.1: Characteristics of G, H, G ✓ H, and G [H] .

Group G H G ✓ H G [H]
Degree n m n +m nm
Order ∂G∂ ∂H∂ ∂G∂ ∂H∂ ∂G∂ ∂H∂

n

Cycle index ⇣G ⇣H ⇣G⇣H ⇣G {⇣H (x1, x2, . . .) , ⇣H (x2, x4, . . .) , . . .}

11.3 C����������� A C-H graph represents a molecule formed by atoms of va-
lences 1 and 4. An atom of valence 4 is identi�ed with a vertex

C, a carbon atom (a black ball in �gure 11.3), and an atom of valence 1 is identi�ed with
H (hydrogen, a gray ball). We shall follow the discussion as presented by Pólya in [8],
sections 56 – 57, to look at derivatives of cyclopropane and their isomers. The graph of
cyclopropane consists of three carbon atoms and six hydrogen atoms. The three carbon
atoms, of valence 4, are joined in a cyclic arrangement, and the hydrogen atoms are joined
pairwise to each carbon atom. Our �rst concern is to determine in what ways the graph
of cyclopropane can be mapped into itself. Three interpretations 1st, 2nd, and 3rd (as given
in [8]) must be considered.

Figure 11.3: Structure of a C3H6-cyclopropane molecule.

1

st: We can identify a group of rigid motions which leaves a right prism with an equi-
lateral triangular base invariant under spatial rotations. The 6 endpoints in �gure
11.3 are the six vertices of the prism. These points are subjected to a permutation
group which Pólya called the group of the stereoformula. We denote this group byG,
and we have that

⇣G (x1, x2, x3, x4, x5, x6) =
1

6

⇥x
6
1 + 3x

3
2 + 2x

2
3� ;

2

nd: The triangle with vertices corresponding to carbon atoms (of valence 4) can be
mapped into itself in 6ways (D3). There are three pairs, consisting of two endpoints
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connected to a vertex of valence 4. The vertices in each pair can be interchanged.
Hence for each mapping of the triangle, the remaing vertices can be permuted in
2

3 = 8 ways. We therefore obtain 6 � 8 = 48 topologically congruent selfmaps, as
Pólya phrased it. These selfmaps constitute a group, which turns out to be the kranz
S3 [S2], or — as Pólya called it — the group of the structural formula. By Theorem
11.2.1 we have that ⇣S3[S2]

(x1, x2, x3, x4, x5, x6) equals

1

48

(x
6
1 + 3x

4
1x2 + 9x

2
1x

2
2 + 6x

2
1x4 + 7x

3
2 + 6x2x4 + 8x

2
3 + 8x6);

3

rd: We look at the prism as described in the 1st case, this time as subjected also to re�ec-
tions in addition to spatial rotations. Here, the six vertices of the prism are subjected
to a permutation group of order 12 — the extended group of the stereoformula, as
phrased by Pólya. We denote this group by E, and we have that

⇣E (x1, x2, x3, x4, x5, x6) =
1

12

⇥x
6
1 + 4x

3
2 + 2x

2
3 + 3x

2
1x

2
2 + 2x6� .

A derivative of cyclopropane is acquired when hydrogen atoms are replaced by so-called
monovalent radicals — a monovalent radical being a monovalent atom, or a molecule
with a free bond. We imagine the six radicals at the endpoints of the cyclopropane graph
in �gure 11.3. They form a con�guration, and each con�guration provides a chemical
formula for a cyclopropane derivative. If two con�gurations can be transformed into
eachother — i.e. if they are equivalent with respect to the associated group — then they
represent the same derivative. In the case of stereoisomers the relevant group isG, the
group of the stereochemical formula. The group associated with structural isomers is
S3 [S2], the group of the structural formula. In the extended group of the stereochemical
formula, E, a derivative is equivalent to its enantiomer — its mirror image (an optical
isomer) — in addition to the molecules to which it is equivalent under spatial rotations.

We seek to determine the number of isomeric substitutes of cyclopropane of the form

C3XkYlZm,

where k+ l+m = 6, andX,Y, Z are so-called independent radicals. Independent means
that ifXkYlZm andXk¨ , Yl¨ , Zm¨ have the same molecular structure then k = k¨, l = l¨,
andm = m¨. For example the radicals H, CH3, C2H5 are not independent of eachother —
the radicals H5 and C2H5 attached to C3 have the same molecular structure as if we were
to attach H4 and (CH3)2 to C3.

Assign to X,Y, Z the weights w (X) = x, w (Y ) = y, and w (Z) = z. Applying
Theorem 9.3.4 to ⇣G, ⇣S3S2

, and ⇣E provides a pattern inventory with respect to each
group.

I: ⇣G (x + y + z, . . .) = x6
+ x5y + x5z + 4x4y2 + 5x4yz + 4x4z2 +

4x3y3+10x3y2z+10x3yz2+4x3z3+4x2y4+10x2y3z+18x2y2z2+
10x2yz3 + 4x2z4 + xy5 + 5xy4z + 10xy3z2 + 10xy2z3 + 5xyz4 +
xz5 + y6 + y5z + 4y4z2 + 4y3z3 + 4y2z4 + yz5 + z6;
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II: ⇣S3S2
(x + y + z, . . .) = x6

+x5y+x5z+2x4y2+2x4yz+2x4z2+

2x3y3 + 3x3y2z + 3x3yz2 + 2x3z3 + 2x2y4 + 3x2y3z + 5x2y2z2 +
3x2yz3+2x2z4+xy5+2xy4z+3xy3z2+3xy2z3+2xyz4+xz5+
y6 + y5z + 2y4z2 + 2y3z3 + 2y2z4 + yz5 + z6;

III: ⇣E (x + y + z, . . .) = x6
+ x5y + x5z + 3x4y2 + 3x4yz + 3x4z2 +

3x3y3 + 6x3y2z+ 6x3yz2 + 3x3z3 + 3x2y4 + 6x2y3z+ 11x2y2z2 +
6x2yz3+3x2z4+xy5+3xy4z+6xy3z2+6xy2z3+3xyz4+xz5+
y6 + y5z + 3y4z2 + 3y3z3 + 3y2z4 + yz5 + z6.

We interpret the result in the Ist expression by reading the coe�cient before x4y2. Here,
there are four non-equivalent stereoisomers of the cyclopropane derivative of the form
C3X4Y2. Two of these are enantiomers, which the coe�cient before x4y2 in the IIIrd

expression indicates. In the IIIrd expression the coe�cient is 3, since optical isomers are
equivalent — they are in the same orbit, when subjected to the extended stereochemical
group. In the IInd expression the coe�cient before x4y2 is 2 — indicating that spatial
arrangements are disregarded alltogether — i.e. there’s only two non-equivalent structural
isomers of the C3X4Y2 cyclopropane derivative.

Figure 11.4: The four non-equivalent stereoisomers of the C3X4Y2 cyclopropane derivative,
when subjected to G — the group of the stereoformula. (X = blue ball, and Y = red ball.)

↵iso. �iso. �iso. �iso.

The two isomers �iso. and �iso. are enantiomers — mirror isomers — and therefore equivalent
with respect to E, the extended group of the stereoformula.

Figure 11.5: The two non-equivalent structural isomers of the C3X4Y2 cyclopropane derivative,
when subjected to S3 [S2] — the group of the structural formula.

↵iso. �iso.
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