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Abstract

This work aims at introducing Pélya’s theory of enumeration. After an initial discussion
regarding a general problem within combinatorial enumeration we devote some effort to
group theory. Basic extracts from the theory of generating functions proves necessary
to present, which serves to establish the concept of cycle index. Ultimately, we hope to

reconcile the two main topics of this text: the Redfield-Pélya theorem as a continuation of
Burnside’s lemma.
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1

Introduction

A tangible task such as a problem in enumeration — counting the number of things — can
entail many inconveniences. Anyone that has ever opened a book on combinatorics can
vouch for this. But the tricks of the trade are numerous, too, and here we shall provide at
least one. In 1937 an article entitled Kombinatorische Anzahlbestimmungen fur Gruppen,
Graphen und chemische Verbindungen came along. It was published in Acta Mathematica,
Vol. 68, pp. 145 to 254. It’s author was George Polya, and in it a theorem was to be found
which gave method to solving a variety of problems related to enumeration. In short
one can describe it as a way of counting — generate a sequence, even — of inequivalent
mappings between finite sets: so-called patterns. This undertaking rests upon, and ties
together, several areas within mathematics. Therefore, our discussion has to go in several
directions throughout earlier parts of this text.

1.1 AN ErucipaTiNng ExaMPLE A configuration is acquired by choosing elements

of a (finite) set under certain conditions. In this
text we deal with the problem of counting the number of configurations on a given set, not
only under a prescribed combinatorial condition but also with respect to some imposed
relation. An elucidating example is that of counting the number of undirected graphs with
three vertices. In the usual state of affairs the condition that vertices are labelled is taken
into account, providing us with the problem of finding all possible labelled graphs with
three vertices, and counting them. The problem reduces firsty to that of specifying the
number of edges in the graph while counting the number of possible graphs given this
specific number of edges, and secondly to add up the results.

Consider aset V = {1, 2, 3} of three labels, which shall serve as vertices: vertex 1, 2 and
3. The edge set E is a subset of V' X V, consisting of unordered pairs of elements in V/,
3) = 3 possible edges we can use. Moreover, we specify how many edges
must be in the graph we're considering. As shown in figure 1.1, there’s only one possible
graph with three labelled vertices and zero edges, three possible graphs with one and two

edges respectively, and finally there is only one graph with three edges. Accounting for all

hence there are (
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Figure 1.1: Every possible graph with the three labelled vertices 1, 2 and 3.
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00 6o do &b

possibilities and summing them up,

((g)) . ((g)) . (@) ) (@) )

so provides us with 8 distinct graphs where V' = {1, 2, 3}. Whilst this answer might be sat-
isfactory there’s a natural observation which can be made, namely that some of the graphs
in figure 1.1 are up to isomorphism identical — permuting the labels of one graph yields
another with the same number of edges. It is furthermore the case that starting with a spe-
cific graph, for example G = ({1,2,3}, {{1,2},{2,3}}), we obtain the two remaining
graphs with two edges via a permutation. By use of o = (1,2, 3), where o € &3, the graph
G = ({1,2,3},{{1,2},{2,3}}) becomes oG = (gl, 2,3},{{1,3},{2,3}}). Yet an-
other permutation using o, this time on oG, yields 6”G = ({1,2,3}, {{1,2},{1,3}}).

Figure 1.2: The graphs G, oG and o> in the orbit of G.

£
bt

Figure 1.2 represents the orbit of G. Perhaps this situation is familiar. Under the group
action of &3 on the three letters 1, 2 and 3 (the vertex set), the set of all 8 distinct graphs
reduces to that of four isomorphism classes, each representing an orbit corresponding to
a graph of 0,1,2 or 3 edges, as shown in the figure (1.3) below.

Thus we have counted the number of configurations, namely the number of graphs with
three vertices, under the imposed relation of isomorphism. This example illustrates
our main concern throughout this text, namely that of counting equivalence classes of
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Figure 1.3: The four orbits.

configurations. In Chapter 3 we shall elaborate on this concept in a general discussion on
group actions and, in particular, in discussing a well known lemma attributed to William
Burnside.

Figure 1.4: The four up to isomorphism distinct graphs with three vertices.
Ceeees i
e o 9o
Before venturing any further there’s something more to be mentioned. We will end this

introduction with another, somewhat more involved, example which further elucidates
the subject of this treatise. This example can be found in Pélya’s original article [8].

10



OCTAHEDRON CHAPTER 1 Introduction

1.2 OctaHEDRON  We have at our disposal six balls with three different colours: three

red balls, two blue balls and one yellow ball. Balls of the same color
cannot be distinguished. The balls are to be assigned to the six vertices of an octahedron, which
moves freely in space. In how many ways can this be done?

Figure 1.5: Octahedron.

Under the ordinary combinatorial condition, such an arrangement corresponds to the

multinomial
6 6!
(3,2,1) = 3m ~ 00

Here, however, we must also take into consideration arrangements which are equivalent
under rotations of the octahedron. As in our previous example permutations are involved,
this time we consider the permutation group of the octahedron, consisting of all possible
transformations of the octahedron with respect to its symmetries. A transformation
is a rotation about some axis of symmetry of the octahedron. In figure 1.6 the axes of
symmetry are shown.

Figure 1.6: Symmetries of the octahedron.

)

©;]
AN,
o 4

There are 4 axes of symmetry, denoted f,,, going through the centers of two opposite faces.
The axes of symmetry connecting opposite vertices are denoted v, and those connecting the
midpoints of two opposite edges are denoted e,,.

Rotating the octahedron about some axis, say f;, permutes the vertices on the opposite
faces through which the axis runs. This corresponds to a permutation of cycle type [32] —
it consists of two cycles of order 3, which are disjoint. We assign the symbol xj, to a cycle
of order k, hence the permutation about f; that we're considering acquires the symbol acg:
two cycles of order 3. We note that every permutation about some axis f,, has the symbol
mg In this manner we label every permutation with its appropriate symbol.

11



OCTAHEDRON CHAPTER 1 Introduction

x1: Doing nothing to the octrahedron is the same as rotating it 0° or 360° about some
axis. This is the identity permutation, which consists of 6 cycles of order 1.

x3: 120° rotation about an axis through two opposite faces. There are 4 axes of symme-
try and rotation can be done clockwise or counterclockwise, hence in total there
are 8 permutations of type f32 .

x?.m: 90° rotation about an axis through two opposite vertices. Yet again, rotation can be
done clockwise or counterclockwise. There are 6 permutations of this type.

x?lg 180° rotation about an axis through two opposite vertices. There are 3 permutations
of this type.
13 180° rotation about an axis through the midpoints of two opposite edges. There
are 6 permutations of this type.

Thus, in the octahedral group there are 24 rotational symmetries accounting for the
transformations we're interested in. By taking the arithmetic mean of the polynomial

6 2 2 2 2 3
1 + 8x3 + 62724 + 3x125 + 625 (1.1)

we get what is called the cycle index of the octahedral group (the term was introduced by
Pélya in [8]):

6 2 2 2 2 3
1 + 8x3 + 6124 + 3x]25 + 625

o (1.2)

The cycle index is crucial. Through substituting zy = z +y + 2, x5 = ° + y2 + 2%
T3 = z° + y( +2” and Ty = zt + y4 + 2" into (1.2) and expanding in powers of x, y and 2
the solution to our problem is the coeffiecient before x3y2 z, which turns out to be 3. Thus,
when considering arrangements which are equivalent under rotational transformations
there are 3 ways of assigning 3 red balls, 2 blue balls and one yellow ball to the vertices of
the octahedron.

Figure 1.7: The three distinct assignments of colored balls to the vertices of the octahedron.

This example presents a remarkable concoction of different theories. As we’ve seen it
utilizes concepts from group theory and extends on the lemma often attributed to Burnside
(Burnside’s lemma). A new idea is introduced, called the cycle index, which in an elegant
way interacts with the theory of generating functions. In chapter 9, we begin in earnest our
study of Pdlya’s Enumeration Theorem (PET), also called the Redfield-Pélya Theorem.

12



Permutations

AMONG the various notations used in the following pages, there is one of such
frequent recurrence that a certain readiness in its use is very desirable in dealing
with the subject of this treatise. We therefore propose to devote a preliminary
chapter to explaining it in some detail. (Burnside, [3])

2.1 On PErMmuUTATIONS In section 1.1 of chapter 1 we rearranged the three ver-

tices of a graph. Specifically, we applied the operation of
replacing each vertex by a different one, in such a way that no two vertices were replaced
by one and the same vertex. In short, we applied an operation on the vertices called a
permutation.

2.1.1 DerINITION. Letay,as,as, ..., a, be a set of n distinct letters. A permutation on
the n letters is the operation of replacing each letter by another, which may be the same
letter or a different one, under the condition that no two distinct letters be replaced by one
and the same letter. A permutation will change any given arrangement a1, as, as, - . . , Gy,
of the n letters, into a definite new arrangement by, by, b3, . .., b, of the same letters. &

2.1.2 DEriNITION. Let S = {ay, as,as, ..., a,}. A permutation on .S can be defined, in
an equivalent manner, as a mapping o : S — S which is 1-1 and onto. .

2.1.3 DeriNiTION. Let S = {ay,as,as,...,a,}. A permutation o of the set S can be
written in Cauchy’s two-line notation, where in a matrix one lists the letters of S in the
first row, and the image of each letter in the second row:

aq ag cee n
o= . .
( o(ar) o(as) ... olay) )
2.1.1 ExampLe. The equilateral triangle A with vertices a, b, and ¢ has rotational sym-

metry about its geometric centre o. The axes of symmetry are L, M and N. They are
perpendicular to each edge, and passes through e. Picture rotating A about e by 120

13



ON PERMUTATIONS CHAPTER 2 Permutations

Figure 2.1: An equilateral triangle and its symmetries.

L
a

degrees in the direction shown by the arrows. Label this transformation with the symbol
o. This transformation permutes the vertices: a is sent to b, and b to c¢. The resulting
triangle coincides with the initial one, and the transformation sends A into itself. Denote

o by
a b c
b ¢ a [

Applying o twice and three times to A yields
a c a b c
( c b ) and ( a b c )

3
where ¢ is the transformation of rotating A by 360 or 0 degrees, doing nothing to A.
Label this transformation with the symbol ¢. Reflection in some axis can be pictured as a
rotation by 180 about the axis (flipping A). Accounting for L, M, and N yields

a b ¢ a b c d a b c o
a ¢ b ) c b a an b a ¢/
T ©w A

Remark. The transformations in example 2.1.1 can be done in composition. A clockwise
rotation by 240 degrees of A followed by a flip with respect to the axis m would, in terms
of the symbols o” and 1, be the composition p o 0. The corresponding Cauchy two line

notation
a b c
a ¢ b )

poo?

SIS

IS

a L=0

is equivalent to performing the transformation 7 on A. Note that the composition y o o’
is read from right to left — the first transformation applied to A is o”, followed by the
transformation j applied to o (A).

14



ON PERMUTATIONS CHAPTER 2 Permutations

2.1.2 ExampLE. Consider a square with vertices a, b, ¢, and d. It has rotational symmetry
about its geometric centre ®. The axes of symmetry are K, L, M, and N.

Figure 2.2: A square and its symmetries.

K
I N
L\/:_\ /\\
R ! JRERN
TR
\\:,' i
M---|----#---f-1--
’I‘\ ’A
d I

There are ways of transforming O with respect to e or the axes K, L, M, or N. Picture
rotating O about e by 0, 90, 180, or 270 degrees in the direction shown by the arrows. Label
these transformation by the symbols ¢, o, 02, oro” respectively. Label a transformation by
reflection in the axes K, L, M, and N by the symbols 7, p, A, and ¢ respectively. Listing
all transformations in Cauchy’s two line notation will suffice for this example. °

Table 2.1: Transformations of a square.

a b ¢ d a b ¢ d a b ¢ d a b c d
a b ¢ d b ¢ d a c d a b d a b ¢
L o 0,2 03
a b ¢ d a b ¢ d a b ¢ d a b ¢ d
b a d ¢ a d c b d ¢ b a c b a d
T ©w A ®

Remark. Here, too, transformations can be done in composition. A clockwise rotation
by 90 degrees of O followed by a flip with respect to the axis / would, in terms of the
symbols o and 7, be the composition 7 0 ¢ = p.

2.1.4 DerINITION. Let 0,7 : S — S be permutations of a set S and let € S. Then
(to0)(z) = 7 (0 (x)) and we define the product of permutations as 7o (z) = 7(o(z)).
Hence permutations done in composition is the same as for composition of functions. ¢

2.1.3 ExampLE. Leta, 3 : {i}?:l — {i}?:l be permutations of {i}?:l = {1,2,3,4},

where
(1 2 3 4 dﬁ_1234
“=l3 4 1 2 P2 3 4 1)

15



ON PERMUTATIONS CHAPTER 2 Permutations

Namely a(1) = 3, a(2) =4, a(3) =1, a(4) = 2,and 8(1) = 2, 8(2) = 3, B(3) =
4, B(4) = 1, so that the composite permutation 3 is defined by a8(i) = a(5(7)):

af(1) =4, aB(2) =1, aB(3) =2, aB(4) =3, or

1 2 3 4 o
4 1 2 3 )

af

Remark. The permutations « and (3 in example 2.1.3 can be written in a different way,
called cycle notation. In cycle notation « is written (13)(24), and 3 is written (1234).

2.1.5 DEFINITION. Let 0 : § — S be a permutation of a set S of n letters. The cycle
decomposition of o is obtained by choosing an letter x € S, which begins the cycle, and
thereafter applying o repeatedly — first to z, then to o(z), and so on — so that for each
successive time that o is applied the image is entered as the next letter in the cycle. The
cycle ends, and starts over, when an application of ¢ returns the original letter z. If the
resulting cycle contains every letter of .S it is exhaustive and we are done. Otherwise
choose any letter y € S which does not belong to the resulting cycle, and repeat the
process by constructing a cycle which begins with . When all letters of .S can be found in
any of the cycles so created the set of cycles is exhaustive, and the cycles are disjoint. &

2.1.4 ExampLE. Consider the permutation o which in two line notation is given by

1 2 3 4 5

21 4 5 3 )
viz. 0(1) = 2,0(2) = 1,0(3) = 4,0(4) = 5,and 6(5) = 3. Using definition 2.1.5 we
obtain the cycle notation of o.

i. Choose some letter, say 1, and apply o repeatedly until 1 is returned: 1, o(1) = 2,
and 0°(1) = 1, and so 1 is returned after two sucessive applications of o, hence
the process ends. We get the cycle (12).

ii. (12) does not contain the letter 3. So pick 3, and repeat the process: 3, 0(3) = 4,
0%(3) = 5,and 0°(3) = 3, and so 3 is returned after three sucessive applications
of o, hence the process ends. We get the cycle (345).

iii. Every letter 1, 2, 3, 4, and 5 is in some cycle, hence the set of cycles is exhaustive.

o = (12)(345). o

16



ON PERMUTATIONS CHAPTER 2 Permutations

2.1.5 ExampLE. Returning to the square O in example 2.1.2, we once again consider the
permutations ¢, o, 02, 03, T, 4, A, and ¢ — the transformations of O. Taking the product

Table 2.2: Transformations of a square.

a b ¢ d a b ¢ d a b ¢ d a b c d
a b c d b ¢ d a c d a b d a b ¢
L o 0,2 03
a b ¢ d a b ¢ d a b ¢ d a b ¢ d
b a d ¢ a d c b d ¢ b a c b a d
T ©w A ®

of any two permutations results in any of the above listed ones. This can be checked by

means of a multiplication table. In it, the product is taken so that the rightmost factor

is an permutation from the leftmost column while the leftmost factor is an permutation
. . 2

from the top row in the table, ie. . w=o".

Table 2.3: Product table for the transformations of a square.

O

L L o o o T W A g
2 3

o o o o Lo A e T
o > 3

o o o Lo AN @ T U
O s 2

g o L o o 9 T B

3 2
T T © A u L o o o
3 2
L u T e X o L o 0
A AN u T o o L o
3 2
| v A u T 0 o o

<

Remark. Table 2.3 is the muliplication table of D, — the dihedral group of order 4 — the
group of rigid motions of a square.

2.1.6 DerINITION. Let S be a nonempty set. The set &g consists of all permutations of S.

2.1.7 DeriNiTION. Let S = {1,2,3,...,n}. The set &, is the set of all permutations of
S. The cardinality of &,, is n!, since there are n! bijective mappings from S to S. .

2.1.6 Exampie. Let S = N3 = {1,2, 3}, so that

&3 = {(1)(2)(3), (1)(23), (12)(3), (13)(2), (123), (132)} . °

17



ON PERMUTATIONS CHAPTER 2 Permutations

2.1.1 TueoreM. &, has the following properties:
L If T and p are permutations belonging to &,,, then T 1 belongs to &,, too;

II. For any permutations o, T, and ji belonging to &,,, their product is associative,
(o7)u = o(Tp);
1. The identity permutation, denoted (, belongs to &,,, so that for all 0 € &,,

Lo = 0L =0y

. : . -1,
IV. For every permutation o € &,, there exists an inverse counterpart denoted o ~, in

&,,, for which
-1 -1
o0 =0 O0=1.

Proof. 1-1V follows immediately from the properties of bijective functions. ]

Remark. The properties which &, satisfies in theorem 2.1.1 are called group axioms, and
&, is called the symmetric group on n letters.

2.1.7 ExampLe. The product table for &5 is the same as that for A. °

Table 2.4: The product table of S3.

(D(2)3)  (123) (132) (1)(23)  (13)(2)  (12)(3)
(123) (132)  (1)(2)3) (13)(2)  (12)(3)  (1)(23)
(132)  (1)(2)(3)  (123) (12)(3)  (1)(23)  (13)(2)

(1)(23)  (12)(3)  (13)(2)  (1)(2)(3)  (132) (123)
(13)(2)  (1)(23)  (12)3)  (123)  (1)(2)(3)  (132)
(12)(3)  (13)(2)  (1)(23)  (132) (123)  (1)(2)(3)

Table 2.5: Replacing 1, 2, and 3 by a, b, and c table 2.4 becomes that of the rigid motions of A.

18



TyrE €/ CONJUGACY CHAPTER 2 Permutations

2.2 Tyre & CoNjucacY There are two basic but relevant topics on the theory of
permutations which need to be adressed before we begin
our section on group theory. Firstly we need to define the cycle type of a permutation,
so that any permutation of a finite number of letters can be classified accordingly. Next
comes a brief study of so called conjugacy which, in a nice way, relates to cycle types.

2.2.1 DErFINITION. Let o : S — S be a permutation of a finite set .S. In cycle notation
o is written as a collection of cycles, where each cycle has a certain number of letters —
the length of a cycle — and where there is a certain number of cycles of a specific length.
The type of o is a way of accounting for how many cycles of each length are present in the
cycle decomposition of o. We shall follow the notation used in [2]. .

2.2.1 ExampLE. Let o be the permutation

1 2 3 45 6 7 89

3 725 481 6 9)
which in cycle decomposition we write ¢ = (1327)(45)(68)(9). The type of o is ex-
pressed as an unordered list [1,2,2,4]: one cycle of length 1, two cycles of length 2, and

one cycle of length 4. The list can be made more compact by introducing the notation
[1,2,2,4] := [1',2%,4"]. o

2.2.2 DerFINITION. Two permutations o, 7 € &,, are conjugate if there exists p € &,,
such that ,uau_l =T. 3

2.2.2 ExampLE. In &g, let

(123456 4 .1 2345%6
97\ 3 6 25 4 1) ™M 7T l2 356 14)

viz. 0 = (1326)(45) and 7 = (1235)(46). Then i = (1)(4)(23)(56) is the permutation
sought after for which uopy =~ = 7. Hence o and 7 are conjugate. o

2.2.1 THEOREM. The permutations o, T € &, are conjugate if and only if they have the
same cycle type.

Proof. See [2]. [ |

19



3

Groups

The ideas in the pages yet to be presented rest upon group theory. Of particular importance
to us will be the study of group actions, orbits, and stabilizers which is presented in chapter
5. This undertaking necessitates a familiarity with the idea of a group. In the present
chapter we shall review the most basic definitions and concepts and present them through
examples.

3.1 BiNnary OreEraTIONs Foundational to the study of algebraic structures is the

notion of binary operations. In example 2.1.5 in chapter
2 we found that the set of transformations of a square is closed under composition of
transformations, which could be illustrated by use of table 2.3. Part of the reason for this
is that composition of functions is a binary operation.

3.1.1 DEFINITION. A binary operation * on a nonempty set S is a mapping from the
cartesian product S X S = {(z,y) | =,y € S} into S:

(z,y) — *(z,y) € S.
z,yes

The element *(x,y) in S is denoted = * y. .

3.1.1 ExampLE. Ordinary addition + and multiplication - are binary operations on the
sets N, Z, R, C (as is subtraction, except on the set N). o

3.1.2 ExampLE. Matrix addition in M,,,x,, (F) is a binary operation. Matrix multiplication
in M,,x,, (F) is a binary operation. 3

3.1.3 ExampLE. Taking the product of permutations in &,, is a binary operation, as is
composition of transformations of the polygons discussed in example 2.1.1 and 2.1.2.
More generally, on the set of all functions from S to .S, composition of functions is a
binary operation. o

20



Grouprs CHAPTER 3 Groups

3.1.4 ExampLe. On N, Z, Q, and R the functions *(z,y) = max{x,y}, and *(x,y) =

min{x, y} are binary operations. A somewhat exotic binary operation could be that of
*(A,B) = An B where A, B € p(S5),and S = {a, b, c}. o

3.1.5 ExampLE. An inner product {,) : V X V — T for some vector space V defined
over FF is not a binary operation. The distance function d : R? x R* —> R is another
example of a function which is not a binary operation. The specific reason being, in both
cases, that the codomain is not a factor in the cartesian product which constitutes the
domain. In the set M[(IF) of all matrices over some field IF, matrix addition is not a binary
operation since matrix addition isn’t even possible for matrices of different dimensions. ¢

3.1.2 DeriNiTION. The binary operation * : S X S — S is said to be associative if
% (y*2)=(x*y)*zforallz,y, z €S. Ifin S there exists an element e such that
e* x = xand x * e = x then e is called an identity element for *. Given the existance
of an identity element e € S, if for x € S there exists a counterpart y € S such that
x *xy =eandy *x x = e then y is said to be an inverse of x. .

3.1.6 ExampLE. In the set GL,, (IF) of all invertible n X n-matrices, both matrix addition
and multipliciation is associative. Only for matrix multiplication an identity element
exists, being I,,. Additive and multiplicative inverses exist for every M € GL,,(F). <

3.1.7 ExampLE. In the set &,,, the product of permutations is an associative binary opera-
tion. This is merely a consequence of the fact that composition of functions is associative.
The identity permutation belongs to &,,, and as we saw before there exists for every
o € &,, an inverse permutation o . o

3.2 Grouprs A group is aset S equipped with a binary operation * which satisfies

the properties in definition 3.1.2, viz. * is associtive, has an identity
element, and each element in S has an inverse. One often speaks of a set with a binary
operation satisfying the group axioms.

3.2.1 DEFINITION (GROUP AXIOMS). A set G equipped with a binary operation * is a group
if the following properties hold.

L Ifx,y € G, thenz x y € G. (Closure);
Il Forallz,y,z € G,z * (y * z) = (x * y) * 2. (Associativity);
III. There exists e € G sothate * © = z and x * e = x for all z € G. (Identity);
IV. For each x € G there exists y € G sothatx * y = eand y * x = e. (Inverse).

Remark. The correct way to denote a group is as an ordered pair (G, *). Here the fancy
symbol & (black-letter G) will be used, admittedly for stylistic reasons but also as a kind
of shorthand for (G, *), and to distinguish a group from a graph. We allow for an abuse
of notation by using & when referring to the underlying set G.

3.2.1 ExampLE. In chapter 2 every example presented is a group. The set of all trans-
formations of the equilateral triangle (example 2.1.1) is a group under composition of
transformations, as is the set of all transformations of the square (example 2.1.2). In
theorem 2.1.1 it is verified that &,, is indeed a group. °
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3.2.2 ExampLe. The set GL,, () of all invertible n X n-matrices over the field F — the
general linear group — is a group under matrix multiplication. So is SL,, (IF) — the special
linear group — consisting only of invertible 1 X n-matrices with determinant equal to 1. ¢

3.2.3 ExampLe. The set Q* = Q \ {0} is a group under ordinary multiplication. So are
R*, and C*. o

3.2.4 ExampLE. For a non-empty set .S the set of all permutations of S is Sym(.S'), which
is a group under composition of functions. o

3.2.5 ExampLE. In example 2.1.7 in chapter 2, we saw that the product tables of &3 and
that of the rigid motions of A coincided. This is because they are isomorphic, which
means that &3 and the group of rigid motions of A represents the same group. From this
perspective there is no reason to distinguish them other than for illustrative purposes. ¢

In dealing with groups, there are two basic properties which are central.

3.2.1 Prop. For a group &, where a,b, c € &, the following applies.
LIfaxb=ax*cthenb=c
IL Ifa*xc=0b%*c thena = 0.

Proof. See [1]. [ |

3.2.2 Prop. For a group & where a,b € & the equations a * x = band x * a = b has
unique solutions.

Proof. See [1]. [ |
3.2.2 DErFINITION. A group & is said to be abelian ifa * b =b* aforalla,b € &. &

Remark. From now on the somewhat cumbersome notation of * will be abandoned and
replaced by the multiplicative notation, viz. a * b will instead be written ab.

3.2.6 ExampLE. The set M, (R) is an abelian group under matrix addition. The set
Zs = {[0]5,[1]5,[1]5,[3]5, [4]5} of congruence classes modulo 5 is an abelian group
under addition of congruence classes, while Z; = {[1]5,[2]5,[3]5,[4]5} is an abelian
group under multiplication of congruence classes. °
Remark. Oftentimes Z,, and Z: are written Z/nZ and (Z/nZ)X.

3.2.3 DerNITION. Ifin & = (G, %) the set G is finite, & is said to be a finite group and
we denote the order of & by |®|. .

3.2.7 ExampLE. The group of rigid motions of a regular n-gon is denoted ®,,. As it has n
rotational symmetries and n reflective symmetries |9,,| = 2n. It is therefore called the
dihedral group of order 2n. In examples 2.1.1, and 2.1.2 — the rigid motions of A and O —
we are dealing with the dihedral groups D3, and ©, where |D3| = 6,and |D4] = 8. o
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3.2.8 ExampLE. Returning to the equilateral triangle in example 2.1.1, we consider only
the rotations with respect to its geometric centre. We denote these transformations by

Figure 3.1: Rotations of A about e.

a

c b

A

L = (a)(b)(c), ¢ = (abc), o® = (ach), and obtain €5 = ({L, o, 02} , 0), which is a
group under composition of transformations. € is short for the cyclic group of order 3 and

is commonly expressed in terms of some generator @ as €3 = <a | o’ = e>. This is an
example of an abelian group. Moreover, it is an example of a subgroup of the rigid motions
of A, and — as per example 3.2.5 — €5 is a subgroup of S;. ©

Table 3.1: Product table of the rigid motions of A restricted to rotations about e.

2
AL o0 O
2
L L o O
2
o o o 1
2 2
g o L O

3.3 SuBcGrouprs Inexample 3.2.8 we restricted the set of rigid motions for an equi-

lateral triangle to contain only rotations about its geometric centre,
and discovered that this set was closed under the same operation — that of composition —
as for the original group of rigid motions of A.

3.3.1 DerINITION. For a group & = (G, *),let H € G. Then $) = (H, *) is said to be a
subgroup of & if §) is itself a group, that is if H is a group under * — the binary operation
induced by &. .
Remark. A group $) being a subgroup of & is written $) < 6. If H C G (H is a proper
subset of ), then $) < & () is a proper subgroup of &).

3.3.1 Exampie. (Z,+) < (Q,+) < (R, +) < (C,+), (Q",) < (R,-) < (C¥,-
and (mZ,,, +) < (kZ,,, +) if m is a multiple of k.

3.3.2 ExampLE. (€,,0) < (9D,,0) < (&,,0),and ({i),-) < (C,-) where (3)
{i,-1,-4,1}.

3.3.3 ExampLe. SL,, (F) < GL,, (F) where VM € SL,, (F) : det M = 1.

O —

LR ||
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cosyp —sing
sing  cosy

( cosp  —sing )( cosd —sinf )z( cos(p +0) —sin(p +0) )

3.3.4 ExampLe. Consider O = {( ) 0=sp< 2#}. Since

sinp  cosy sinf  cos#@ sin(p +0) cos(p +0)

for any two matrices in O — due to standard trigonometric identities — O is closed under
matrix multiplication. Moreover, for any matrices A, B,C € O, A(BC) = (AB)C
since matrix multiplication is associative. For ¢ = 0:

cosp —sinp \ (1 0
sing cose ) \O0 1)

hence the unit matrix is contained in O. Lastly we have that det (

)

cosp —sing
sing  cosy )
again due to trigonometry, regardless of . This is enough to verify that any matrix in O
is invertible, and tells us that O C SLy(R). Most importantly O satisfies all of the group
axioms, and is a subgroup of SLy(R). ©

Remark. The group considered is called the rotation group for R?, or the special orthogonal
group for R?, often denoted SO». By rotations about the origin, it acts on vectors in RZ.

3.3.5 ExampLe. Consider GL,, (F,) — the general linear group — over a finite base field
of order p. There’s a bijection between an invertible matrix A/ in GL,,(F,,) and a unique
basis consisting of the columns of M, which spans V'(IF,,), since they are linearly inde-
pendent due to M being invertible. This confronts us with the task of finding the number
of bases for V(IF,,). We achieve this by counting the number of basis vectors which can
be chosen. The first basis vector v, allows for any of the p elements of IF, in all of the n
coordinates, except for an occurance of the zero vector. Thus p” — 1 is the number of
ways to construct the first basis vector. The second one, vy, is similarly constructed —
except for any of the p linear combinations of v;. Thus p" — p is the number of ways to
construct vo. There are p2 linear combinations of vy, and vs. Hence there are p™ — p2
ways to construct vg. Generally, there are pk linear combinations of v, Vg, ..., v} and
so there are p" — pk ways to build the k£ + 1:th vector. By the rule of product:
n—1
IGL,(F)| = [(»" -7")- o

k=0
3.3.6 ExampLE. The factor group ) = (Z/nZ)X contains the invertible elements of
F, = Z/nZ' An element [2] € Z/nZ has an inverse if, and only if gcd(z,n) = 1. The

order of (Z/nz)>< must therefore equal the number of integers k, where 1 < k < n such
that ged(k,n) = 1. This is the definition of Euler’s totient function ¢(n). Hence

X
|(Z42)"] = e(m). o
Remark. For a prime number n = p, o(p) = p — 1, so that '(Z/pZ)Xl =p— 1. Inthe
list of every positive integer from 1 to p”, there are pn_1 multiples of p, hence

(Z/p"Z)X

n n—1

=p —-p
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3.3.2 DerFiNITION. For §) a subgroup of &, where a € &, the set
a$) = {x € & : x = ah, for some h € H}

is called the left coset of §) in & determined by a. The right coset of §) in & determined by
a is the set
$Ha ={z € & : x = ha, forsome h € H}. .

3.3.1 LemMa. For §) a subgroup of &, and a,b € &, either a$) = b$) or aH) N b$H = @.

Proof. Suppose that x € a$) N b§), then x @ ahq and x @ bho. Now let y € a$), viz.
y = ah for some h € §). We wish to show that a$) S b$), and b$) S a$). By (1), y

can be written as y = (thl) h which, by associativity, is equivalent toy = z (h[lh).
By (2),y = (bhs) (h;lh) sothaty = b (hzhflh), where hohi'h € $, hence y is an
element in b$). Therefore a$) € b§). To show that by S a$) a similar argument applies,
and we conclude that a$) = b$). ||

3.3.2 LAGRANGE’s THEOREM. If & is a finite group and §) is a subgroup of &, then the
order of $) divides the order of ®.

Proof. Each left coset of §) has the same cardinality as §), and by lemma 3.3.1 each left
coset is distinct. Hence the left cosets of §) partition &, so that |&| = k || where k
equals the number of left cosets of §) in &. |

3.3.3 DeriNiTION. The number of left cosets of £ in & is written [& : §]. .

3.3.7 ExampLE. The general linear group GL,, (IFp) over a finite base field IF,, is a group
of finite order, where SL,, (Fp) <GL, (Fp) By Lagrange’s Theorem

(GL, (F,)| = [GL, (F,) : SL, (F,)] - |SL. (5,)].
The set of left cosets of SL,, (Fp) in GL,, (FP) is written GL, (FT’)/SL (IF ), where
n\fp

|G ey, ()

= [GL, (F,) : SL,, (F,)]. (.1

The elements in GL, (FP )/SL (]F ) are equivalence classes, each containing matrices
n\Lp
whose determinants are equal. We can therefore establish a bijection between equivalence

= |IE";|, where |IE";| = p — 1. Hence

x GL, (F
classes and F),. Thus ’ n ( p)/SLn (Fp)
[GLn (IFP) :SL, (Fp)] (3=2> p — 1 by which we can compute that

B s (»" —pk)'

SLu(5,)] =
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3.4 IsomorPHISMs Later on we will make use of Cayley’s Theorem for which some

essential terminology is required. We have previously hinted
that two groups differing in appearance while displaying the same essential properties are
not to be distinguished. One says that two such groups are isomorphic — essentially the
same.

3.4.1 DEFINITION. For two groups &; and &, a group isomorphism is a bijective mapping
¢:86; — Gy,

such that

#(g192) = d(91)¢(g2),

forall g; € &, and forall g5 € &,. For the product g; g» the underlying binary operation
is *q in &, while for ¢(g; )P(ga) it is *». If an isomorphism exists between &; and &,
the groups are isomorphic, which we write

61 = @2. *
As a direct consequence of definition 3.4.1 it can easily be shown that for e; € &y,
¢(e1) = ey € By, and that forall g € &, ¢(g_1) =¢(g) "

3.4.1 ExampLE. Fortwo groups &, and &, their product & X &, also constitutes a group,
called the direct product of &1 and B4 — where (a1, as) * (by,by) = (aq *1 by, ag *9 by),
for *; € & and *5 € B,. Moreover B, X B, = &y X &,. The mapping

¢:®1X62—’®2X®1
by (g1, 92) — (g2, g1) is a bijection, which is easily verified. 3

3.42 Exameie. (C,+) # (C*,-).In(C*,-), the element i has order 4 while there exists
no element in (C, +) of order 4. °
3.4.3 ExampLe. Theset ' = {f,, : R — R : f(2)ap = ax + b, wherea # 0} isa
group under composition of functions, and the set U = {( g Zl) ) ta# O} is a subgroup

of GL5 (R). The mapping

a b
fa,bT(O 1)

is one-to-one by¢(fa7b) = qﬁ(fgd) < a=candb =d = f,, = foq. For

a b . a b
any( 0 1 ) € U there clearly exists f,;, € F so thatqb(fa’b) = ( 0 1 ), so

¢ is onto. Lastly ¢ preserves group products, viz. ¢ (fa,b o fC,d) = ¢ (fac,adw) =
ac ad+b ac ad+b a b c d
( 0 1 ), Where( 0 1 ) = ( 0 1 )( 0 1 ) = ¢(fa,b)¢(fz,y)'

Hence
(F,O)E(U7-), <
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3.4.4 ExampLE. For a group & and a fixed element ¢ € &, the mapping ¢, : & — &
by g —> aga” " is an isomorphism. Assuming that ¢ (z) = ¢ (y) & aza™' = aya™"
cancellation immediately yields that = y. Surjectivity is verified by picking the element
y € ®,and since a isin &, a~ ' too must be in &. Hence o~ 'ya is in &, and ¢ (a_lya) =

aailyaafl = g, so ( is onto. Lastly we verify the conservation of products by
-1 -1 -1 -1 -1
o(zy) = arya = azxa aya = (awa )(aya ) = ¢(z)d(y). S

3.5 HomomorrHIsMs Abandoning the requirements of bijectivity, while keeping
the requirements for a mapping between groups to conserve
products, we end up with a group homomorphism.

3.5.1 DEFINITION. A mapping ¢ between the groups &; and &, is a homomorphism if

o(zy) = o(x)d(y),
forallz,y € 6. *

3.5.1 ExamPLE. Returningto the group GL,, (F,,) of example 3.3.5, we define the mapping
¢:GL, (F,) — IF;, by M +— det M. Since IF': is a group under multiplication, and
since det XY = det X det Y for matrices X,Y € GL,, (IFP), we have established that
¢ is a homomorphism. 3

3.5.2 DeFINITION. The kernel of a homomorphism ¢ between the groups &, and &, is
the set

kergp = {g€ &, :¢(g) =e € By}. .
3.5.2 EXAMPLE. As established in example 3.5.1, the mapping ¢ : GL,, (F,) — IF'; isa
homomorphism, and ker ¢ = SL,, (IFP) o

3.5.3 DEFINITION. A subgroup $) of the group & is called normal if ghg_1 € § for all
h € $ and g € &. For ¢ a normal subgroup of &, one writes

NS, *

3.5.1 Prop. For $) a subgroup of ® it holds that ghg_1 € N forallh € $Hand g € B if,
and only if g8 = g forall g € &.

Proof. Assume that ghg_1 € Hforallh € Hand g € &. We need to show that
g9 = Hg for all g € &, which holds if g S Hg and Hyg S gf. Let h be an arbitrary
element in §), then ghg_1 € §) by the assumption that §) is normal. Hence ghg_1 =h'
for some h' € £, so that gh = h'g which entails that gh € Hg since h was chosen
arbitrarily. The other entailment is analogous. Now, assume that g = g for all
g € ®,andlet gh € g$. Then gh = h’g by our assumption, hence ghg_1 =henm

3.5.4 DEFINITION. $) a subgroup of & is called normal if g = $Hg forall g € &. .
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3.5.3 ExampLE. For a group &, the set Z (8) = {g € & : ag = ga, foralla € B} is
called the center of . Furthermore, Z (&) < &. Forany a,b € Z (&) and g € & we have
that (ab)g = a(bg) = a(gb) = (ag)b = g(ab) so that ab commutes with every g € &,
hence ab € Z (&). Associativity is inherited, and e € Z (&) since it commutes with
every other element in &. For any a € Z (&) we have that ag = ga < gat=a'yg
for all g € &, hence ' eZ (®). Normality follows immediately from the definition
of Z (&), since for a € Z (&) we have that ag = ga < gag ' = a € Z (&) for all
g € ®. °

3.5.4 ExampLE. For a homomorphism ¢ : &; — &,, ker ¢ <« &;. For any two a,b €
ker ¢ we have that ¢(ab) = ¢(a)¢p(b) = e since ¢ is a homomorphism, hence ker ¢
is closed. Associativity is inherited, and ¢(e) = e, so that e € ker ¢. Furthermore,

¢ (a) ¢<CL—1) =e d)(a_l) = (;S(a)_l = ¢ hence a”! € ker 0. ©

3.5.5 ExampLE. Let & be a finite group and let ) be a subgroup of &. Furthermore, let
[& : ©] = 2. Then $) has two left cosets in &, the first one being 2 = 2§ for all x € ),
and the second one being z$) = & \ § for all = ¢ §). The right cosets of §j are Hz = $
forallz € ,and Hz = G \ H forall z ¢ $H. Thus, 6 = Hz for all z € $. Since the
cosets partition & into $) and & \ §), while z§ = )z, it follows that ) = $Hz for all
x & 9. Therefore ) = Hz, bothforx € Hand x ¢ §, i.e. for all z € &. This is the
definition of a normal subgroup, hence §) < &. o

3.5.6 ExampLE. The quaternion group Qg = (Q, -),where Q = {1, -1,1,—1,7, -4, k, =k},
is given by
2= ifop?=o1
1,7,k ij=k,jk=4ki=j
ji = —k, kj = —i,ik = —j

Since o(+i) = o(+7) = o(£k) = 4 the only element of order 2 is —1, and so {—1) =
{1, -1} < Qg is the only subgroup of order 2. Looking at the above stated identities
we observe that —1 and 1 also happens to be the only elements which commute with
every other element of Qg. So Z (Qg) = (—1), hence {(—1) <« Qg. For each remaining,
non-trivial subgroup, we have that [Qg : (i)] = [Qg : {(7)] = [Qs : (k)] = 2 so that
(i), (j), (k) <« Qg by the fact that any subgroup with index 2 is normal as seen in example
3.5.5. o
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Polytopes

In this brief interlude we look at the symmetries of some of the regular polygons and
polyhedrons that we’ll be dealing with later. We introduce a numerical labelling of the
vertices, by means of which we express the group of symmetries — mappings of an object
into itself — in a more familiar way, namely as a collection of permutations of a set of
numbers.

4.1 GoNs & HEDRONS

4.1.1 DeriNITION. A group & can be written in terms of its generating set . Much like the
idea of a linear hull — a set of basis vectors — spanning a vector space, a generating set
is a set of group elements such that every element of & can be expressed as a product of
elements in the generating set. The generating set of & is written

(91,92, 9n €S :71(91),72(92)s - -7 (gn)) s

where 7; (1 < ¢ < n) is some rule under which the generator g; functions. .
4.1.1 ExampLE. The dihedral group of order 2n is generated by a cycle containing 1, 2, ..., n,
and a transposition, which is a cycle only containing two elements of 1,2, ..., n,ie. (12).

Leto = (12...n), 7 = (12),and (1) = ¢, then

n 2 -1
®n=<U,T:J =e,7 =eT0=0 T). °

Figure 4.1: The n-gons for 5 <n < 11
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4.1.2 ExampLE. The equilateral triangle A has rotational symmetry about its geometric
centre ®. The axial symmetries are L, M and N. They are perpendicular to each edge,
and passes through e (cf. figure 2.1). Label the vertices by 1, 2, and 3. Picture a clockwise
rotation of A about @ by 120 degrees. Denote this transformation by (123). This trans-
formation permutes the vertices: 1 is sent to 2, 2 to 3, and 3 to 1. The resulting triangle
coincides with the initial one, and the transformation sends A into itself. Applying (123)
twice and three times to A yields (132), and (1), where (1) is the identity permutation.
Reflection in some axis can be pictured as a rotation by 180 degrees about the axis. Ac-
counting for the axes L, M, and N yields the permutations (12), (23), and (13). We have
previously mentioned that this is the group ®3, which is the same group as &3. As per
definition 4.1.1, we can write ®3 in terms of its generating set — for o = (123), 7 = (12),
ande = (1) —as

®3=(077:03=e773=e770=0_17'>. 3
Remark. See table 2.4.

4.1.3 ExampLE. A square with vertices 1, 2, 3, and 4 has rotational symmetry about its
geometric centre o (cf. figure 2.2). The axial symmetries are K, L, M, and N. The
transformations around e correspond to (1), (1234), (13)(24), or (1432) respectively.
Reflections in the axes K, L, M, and N correspond to (12)(34), (24), (14)(23), and
(13) respectively. These are the group elements of D4, a subgroup of &,. °

4.1.4 ExaMpPLE. O, = <J,T tot=e i =e,70 = 0717'>, where o = (1234), 7 =
(12)(34), and 0" = 0. These rules greatly simplifies the endeavour of drawing the
product table of Dy. o

Table 4.1: Product table of D4.

@ 2 3 2 3
4 € (o g (o T oT T OT
2 3 2 3
e € g g g T oT gaT OT
2 3 3
g g g g € aT oT O0OT T
2 2 3 2
(o g (o (& g oT OT T oT
3 3 2 3 2
(o g e g o o T T oT o T
3 2 3 2
T T oT OT oT (& o g (o
3 2 3 2
oT oT T oT OT g e g g
2 2 3 2 3
T OT aT T g T g (o e g
3 3 2 3 2
oT OT OT T T g g g e
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4.1.5 ExampLE. Among the polyhedra our first object of study is an ordinary tetrahedron,
depicted in figure 4.2. A rigid motion is done with respect to one of its axial symmetries.

Figure 4.2: A tetrahedron and its symmetries.

Such a transformation maps the tetrahedron into itself. A rotation about a, corresponds to
(123) or (132) while the product of, say, (123) and (124) yields (124)(123) = (14)(23).
In this sense the vertices are pairwise permutable. Accounting for all the symmetries and
writing down the corresponding permutations of the vertices in cyclic notation, along
with their respective types will suffice for this example. <

Table 4.2: Vertex permutations along with their cycle types, corresponding to the rigid motions
of the tetrahedron.

(1) :[1*] @(12)(34) : [2°] (@(13)(24) : [2®] (14)(23) : [2
(123) : |3 (124) : [3 (134) : |3 (234) : [3
(132) : |3 (142) : |3 (143) : |3 (243) : |3

Remark. While writing down the table of products for a group might be a helpful exercise,
it becomes too cumbersome and serves no real purpose as we progress to groups of greater
order. For our purposes it is only necessary to know the order of a group and how its
elements can be represented cyclically.

4.1.6 ExampLE. Consider a cube with vertices 1 through 8, depicted in figure 4.3. Our
task is to find its group of rigid motions — and represent it in terms of a collection of
permutations of its vertices — hence we are interested in its symmetries. Figure 4.4 is an
attempt to depict the symmetries of the cube, and a rigid motion is done with respect to
one of its symmetries. Such a transformation maps the cube into itself.

Rotating the cube with respect to some v,, can be done by 120° or 240°. Rotation about
some f,, can be done by 90°, 180°, or 270°. With respect to some e,, a rotation can be done
by 180°. Accounting for the identity transformation, the sum total of all transformations
is 24. This was to be expected however, as motivated by figure 4.5. °
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Figure 4.3: A cube with vertices 1 through 8.

There are 4 axes of symmetry, denoted vy, going through opposite vertices. The axes of
symmetry going through the centers of opposite faces are denoted f,, and those connecting the
midpoints of two opposite edges are denoted e,,. Observe that these symmetries are the same as
those in figure 1.6.

Figure 4.5: The cube and the octahedron are dual. The axes connecting the midpoints of two
opposite edges have been omitted, since this would obscure the figure.
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Looking upon a face of the cube — and shrinking it to a point — we regard it instead as a
vertex. The subsequent graph so obtained, by connecting the "face-vertices', is an octahedron.
The underlying group which acts on each solid, with respect to their respective symmetries, is
the same — since the symmetries are the same. The difference in how we choose to represent
this group is merely illustrative, but still important (cf. Chapter 8).
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5

Group Actions

Soon we are done with the preliminaries on group theory. What remains to explain is
the idea of letting a group act on a set. In section 1.1 a graph on three vertices 1,2, and 3
was given, with the edge set {{1,2}, {2, 3}}. We saw that that &3 acted on the graph in
such a way that it permuted the edges, while the number of edges in the resulting graphs
remained constant under the repeated action of &3. We shall begin this chapter with the
basic notions and examples, after which we will finally arrive at one of the main ideas in
this text.

5.1 AcCTIONS

5.1.1 DEFINITION. Let & be a group and let S be a set. The mapping ¢ : & X .S — S, by
(9,5) — gs
%)

is called a group action of & on S if for all z € S we have that a(bz) = (ab)z for all
a,b € 8, and ex = x for the identity element e € &. *

5.1.1 ExampLe. Let & = (Z,+),and S = R. Then & acts on R by translation, via
o(n,z) =n+xz.Viz.o (m,o(n,z)) =p(m,n+z) =m+(n+z) = (m+n)+z =
e(m+n,z),andp (0,2) =0+ = =. S

5.1.2 ExampLE. Let & = (G, -), where G = {ew :0<6< 27r}, and let S = C. Then &

. . i i ; i(0+ ;
acts on C by rotation, via ¢ (el ,z) =e" |z e = |2| ¢+ Where z = |z] e and

o = arg 2. ©

5.1.3 ExampLE. Among the axioms of a vector field there’s compatibility of scalar multipli-
cation with field multiplication . Let V (IF) be a vector space. As we've seen, F* is a group
under standard multiplication, so that (IFX7 ) actson V (IF), via (a, 5’) =av. ©

5.1.4 ExampLE. The group GL,, (IF) acts by ordinary matrix multiplication on the vectors
of F". o
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5.1.2 DErFINITION. A group & is said to act transitively on a set S if for all elements

x,y € S there exists g € & such that gz = y. .
5.1.5 ExampLE. The symmetric group &, acts transitively on N = {1,2,3,...,n} since
for every k € N we can get to every other element m € N by applying the 2-cycle to k:
(km)(k) = m. °

5.1.6 ExampLE. The group GL,, (R) acts transitivelyon V = {v e R" : v # 0}. o

5.1.3 DEFINITION. Let & be a group acting on a set .S. For an element s € S, the orbit of s
is the set
Gs={xr €S :s=gr, forsomeg € &}. .

5.1.4 DEFINITION. Let & be a group acting on a set .S. For an element s € S, the stabilizer
of s under & is the set
G,={ge&:gs=s}. .

5.1.5 DEFINITION. Let & be a group acting on a set S. The subset of S fixed by & is the set
S®={xES:gx=x,forallgE®}. .

Remark. Oftentimes one denotes s, &, and S by writing Orbg (s), Stabgs (s), and
Fixg (S) respectively.

5.1.7 ExampLE. Let & be a group, and §) < & a subgroup. Define ¢ : $ X & — & by
(h,9) > hy.

This is a group action, where §) acts on the group elements of &, since ¢ (k, p(k,g)) =
h(kg) = (hk)g = p(hk,g), and since (e, g) = g. The orbit of g € & is the right
coset g = {x € & : x = hg, forsome h € $H}. The stabilizer of g € G is H,; =
{(he$H:hg=g} = {e}, while 8" = {z €& : ha =z, forallh € H} = @ is the
subset of & fixed by $) in the case where $) is non-trivial. 23

5.1.8 ExampLE. It is easily veriefied that &,, acts on the set N = {1,2,3,...,n}. The
set Stabg (k) = {0 € &,, : 0(k) = k} is the stabilizer of k£ € N, and it is a subgroup
of &,. Let 0,7 € Stabg (k), then o (7(k)) = o(k) = k, and so o7 € Stabg (k),
which verifies the closedness property. It is an inherited property from &,, that o(7y) =
(o7)p, forall o, 7, u € Stabg (k). It is indeed the case that e(k) = F, for the identity
permutation e € &,,, hence e € Stabg (k). Lastly, for o € Stabg (k) we have that
o(k) =k & o (o(k)) = 0 (k) & k = o '(k),andsoo = € Stabg, (k).
Moreover we can define a mapping ¢ : Stabg (k) X N \ {k} — N\ {k}, with the
new group Stabg (k) < &,,, which is the group action of Stabgs (k) on N \ {k}. o

5.1.9 ExampLE. Generally, for a group & acting on a set X, the stabilizer of y € X isa
subgroup of ® which acts on X \ {y}. o

34



THE ORBIT-STABILIZER THEOREM CHAPTER 5  Group Actions

5.1.10 ExampPLE. One can extend on the idea of transitivity in Definition 5.1.2 to the
notion of double-transitivity.

Let & be a group actiong on a set X. If, for all (z1,y1), (T2,72) € X X X,
there is a group element g such that g(x1,y1) = (22, Yo ), then the group action
is called doubly transitive.

The property that & acts doubly-transitively on X, where | X| > 2, is equivalent to
Stabgs (y) acting transitively on X \ {y}. Let & be a group acting on the set X, where
| X'| > 2, and assume that it acts doubly-transitively. Let z, 2 € X \ {y} be two distinct
elements. This is possible since | X| > 2. Then (z,y),(z,y) € X X X are tuples of
distinct elements of X. By our assumption that & acts doubly-transitively we therefore
have that g(z,y) = (z,y), which suggests that ¢ € Stabg(y). The elements x, 2z €
X \ {y} being distinct, together with gz = 2, entails that Stabg () acts transitively on
X \ {y}. Moreover, suppose that Stabg (1) acts transitively on X \ {y} forally € X.
Let (21, 21), (xa, 20) € X X X be distinct tuples of elements in X so that g;2; = 2o,
and goy = To, for g1 € Stabg(fﬂl), and g € Stabg(zz). Then g2g1($1721) =
go(x1,29) = (22, 22). Hence & acts doubly-transitively on X, and we conclude that &
acts doubly-transitively on X if, and only if Stabg (/) acts transitively on X \ {y}. ¢

5.1.11 ExampLE. Consider the cube from Example 4.1.6, and its rigid motions restricted
to only one of the axial symmetries, in this case f;. This gives rise to the subgroup
H = <(1234)(5678) : [(1234)(5678)]" = (1)) It is clear that §) acts on the set of

Figure 5.1: The cube with respect to f;.

vertices, V = {1,2,3,4,5,6, 7,8}, of the cube by permuting them. Pick a vertex, say 1,
then Orbg (1) = {1,2,3,4}, and Stabg (1) = {(1) € $H}, while Fixy (V) = @. o

5.2 THeE OrRBIT-STABILIZER For a group & acting on a non-empty set X, it is
THEOREM natural to define the relation ~ on X by the rule that,

forz,y € X,z ~y < gr = yforsome g € &.
Since ex = x, we have that z ~ x. If © ~ y, we have that y ~ x since gx = y <= g_ly =
x. Ifx ~y,andy ~ z for z,y,z € X, we have that x ~ z, since gx = y,and hy = z
implies that hgx = z. Hence the properties of reflexivity, symmetry, and transitivity are
satisfied and so ~ is an equivalence relation on X. It follows that ~ partitions X into
equivalence classes — the orbits of each and every element of X — and we denote this

partition by X/@.
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5.2.1 THEOREM. Let & be a group of finite order, and X a finite set subjected to the action
of &. There exists a bijection

v ®/Stab@(a:) —> Orbg (), by

U (gStabe (7)) = gz,
for elements in the orbit Orbe () and the left cosets of Stabg () in &.

Proof. Initially, it has to be verified that W satisfies the very definition of a function.
Thus we need to show that U takes the elements g, g, of some left coset gStabg ()
to one and the same element in Orbg (). Since g;,go € gStabg () we have that
g1 = ghy, and gy = ghy, for hy,hy € Stabg(z). Hence g = g,h]", and g =
g2hat = gihi' = goh3' = g1 = g (h3'h1), where hy'hy € Stabes (). Let
hy'hy = h, since h € Stabg () we have that goz = go (ha) = (goh) = = g1, which
is what we wanted to verify. Moreover, it has to be verified that W is a bijection. Let
U (g, Stabg (x)) = W (goStabgs (), ie. g1x = gox, then gl_lgzx =75 = gl_lgz €
Stabg (), which entails that g1, go € g1Stabg () so that g1, and g belongs to the
same coset wherefore g;Stabg () = goStabg (). Since W is clearly surjective our
proof is complete. |

5.2.2 Pror. Take & and X as in Theorem 5.2.1, where x € X. Then
|&| = |Orbe ()| |Stabe ()] -

Proof. By Lagrange’s Theorem (Theorem 3.3.2) we have, Stabg () being a subgroup of
&, that

&

| Stabe ()| = [0+ Ssbe ()] = 1o

=[®& : Stabg (z)].

In theorem 5.2.1 we saw that U was a bijection between 6/Stab@ (z) and Orbys (),
hence |Orbg ()| = [& : Stabg (x)] and so

|&] = |Orbg (2)] |Stabe ()] - ]

5.2.1 ExampLE. In example 5.1.10 we saw that a group & acts doubly transitively on
a set X if, and only if Stabg (y) acts transitively on X \ {y}. We can show that if &
acts doubly transitively on X, where | X| = 2, then n(n — 1)| |®|. Assume therefore
that & acts doubly transitively on X, viz. for all (z1, ), (z2,y2) € X X X there
exists g € & such that g(z1,92) = (22,y2). In particular, there is ¢ € & such that
g(x1,21) = (y2,92) and so & acts transitively on X. Since & acts transitively on X we
have that Orbg (y) = X, and by Proposition 5.2.2 that |Orbg (y)| |Stabe ()| = ||,
hence n |Stabg (y)| = || since |Orbg (y)| = | X| = n. Again, by Proposition 5.2.2,
we have that |Orbg (2)| [Stabg (2)| = |Stabg ()| for an element z € X \ {y}. Since
& acts doubly transitively on X we have that Stabe () acts transitively on X \ {y}, for
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ally € X. Hence Orbg (2) = X \ {y} and so |Orbg (2)| = | X {y}| = n — 1. Hence
(n—1)|Stabg (2)| = |Stabgs (y)], and so |&| = n(n — 1) |Stabes (2)|. We conclude that
n(n—1)||8|. o

5.2.2 ExampLE. Consider the tetrahedral group from Example 4.1.5. The task of finding
the number of transformations in it is greatly simplified by Proposition 5.2.2. Looking at
the vertex 4 we realize that it is possible to map it to any of the vertices 1,2,3 — and,
of course, to itself — by a suitable rigid motion of the tetrahedron about one of its
axial symmetries. Hence Orbg (4) = {1, 2, 3, 4}. There are two transformations which
permutes all vertices but vertex 4, namely (123), and (132). The identity transformation,
too, fixes vertex 4. Hence Stabg (4) = {(1), (123), (132)}, and so the tetrahedral group
has order |Orbg (4)| |Stabgs (4)| = 4 -3 = 12. ©

5.2.3 ExampLE. Consider the cube group, from Example 4.1.6. By a suitable rigid motion
about any of its axial symmetries, a vertex v can be mapped to any of the others — including
v, by the identity transformation. Hence Orbg (v) = {1,2,3,4,5,6,7,8} = V, viz
|textOrbg (v)| = 8. For any vertex of the cube there’s three transformations which fixes
it — the identity, and the two rotations about the axis of symmetry connectiong v and its
diagonal opposite — and so |Stabe (v)| = 3. By the Orbit Stabilizer Theorem we get that
the cube group has order |Orbg (v)| |Stabg (v)| = 8 - 3 = 24. S
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Counting Orbits

For a group & acting on a non-empty set X, it is natural to define the relation ~ on X by
the rule that, for z,y € X,z ~ y & gx = y for some g € &. Since ex = x, we have
that x ~ x. If x ~ y, we have that y ~ x since gz = y < g_ly =z.Ifz ~yandy ~ 2,
for z,y,z € X, we have that x ~ z, since gx = y, and hy = z implies that hgx = z.
Hence the properties of reflexivity, symmetry, and transitivity are satisfied and so ~ is
an equivalence relation on X. It follows that ~ partitions X into equivalence classes —
the orbits of each and every element of X — and we denote this partition by X/@. The
question which obviously comes to mind is how to determine the cardinality of this set.
In his book [3], Burnside stated and proved a very famous theorem which he attributed to
Frobenius, while the theorem was also known to Cauchy. For this reason it sometimes
(jokingly) goes under the name Not Burnside’s Lemma . Here we will abide to convention
and refer to it as Burnside’s lemma , and in the following pages we will present it together
with a few examples.

6.1 Burnsipe's LEmMmmA  Perhaps we should remind ourselves of what this text is

about. As mentioned in the very first chapter, we're in-
terested in counting a set of combinatorial configurations, whatever they may be, while
realizing that some of them may not be distinguishable. In section 1.2 in chapter 1 we
saw that the set of graphs with three vertices had size 8, but that there were only 4 graphs
which were esentially distinguishable. We realized this by letting the group &3 act on the
vertices of the graphs, and we came to the conclusion that the set of graphs partitioned
into orbits — each orbit representing a distinct isomporhism class. The following theorem
helps our understanding in this regard, and in later parts we will elaborate on it.
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6.1.1 THEOREM (BURNSIDE’s LEMMA). Let & be a group of finite order, and X a finite set
subjected to the action of ®. The total number of orbits is

X, |-t .
X s = Bl > |Fix(g)
geESB
where summation is taken over all ¢ € & and, for an arbitrary g € &, Fix(g) =

{reX:gx=xa}

Proof. Consider the set S = {(g,z) € & X X : gz = x}. We shall count |S| in two
ways.

I: Fix an element g € &. We have that |Fix(g)| = [{x € X : gz = z}] is the
number of elements in X which are fixed by g, hence

1S =) [Fix(g)|; 6.1)

geg

II: Fix an element z € X. We have that |Stabg (z)| = [{g € & : gz = z}| is the
number of elements of & under which x is invariant, hence

S| = ) [Stabe ()] . 6.2)

zeX

By (6.1) and (6.2) we have that ) . |Fix(g)| = ), x [Stabe (2)|, and by Proposition
5.2.2 we have that |Stabg ()| = |&| / |Orbg (2)|. Therefore

o o]
Z |Fix(g)| = Z m |Q5| Z |Fix(g)| = Z |Orb @)

geSB zeX geB ze€X

Since X is the disjoint union of all of its orbits in X/@ the sumover X — ) .+ —
can be broken up into sums over each individual orbit. Assuming there are k orbits,
and denoting each orbit by O;, we have that

&[\/Ik

Y

Z |0rb® I

1z€0; ’
But ZTEO OLl =1forl<i<ksothat) IOrb—;(ﬂE)\ = Zil 1 =k, hence
X, ol ck=— S |g
Vsl =k= |@|gez®'F‘X(g)" n

6.1.1 ExamPLE. Suppose that we are to put seven beads on a necklace, the beads evenly
distributed, and the necklace the shape of a circle. Furthermore, four beads are to be black,
and three beads are to be white. Our task is to determine how many such necklaces we can
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make. We can think of the seven beads being placed at the corners of a regular 7-gon, and
realize that such a necklace, when made, can be transformed in a manner corresponding
to the dihedral group

D7 = ((1234567), (1)(27)(36)(45) : (1234567)" = [1(27)(36)(45)]" = (1)).

Not all necklaces, then, are distinguishable since one could be obtained by a rotation, or
reflection, of some other necklace. Our task is reduced to that of counting the number of
orbits when ©7 acts on X, where X is the set containing all necklaces that are possible to
make regardless of rotational or reflective symmetries. The cardinality of X is (Z) = 35,
since we can choose to put the four black beads in seven places, where the internal order
of the black beads lacks importance since they are indistinguishable. Placing the four black
beads anywhere completely determines where the three white beads go. The cardinality
of ®y4 is 14, it consists of 7 rotations about the geometric centre, and 7 reflections in the
axes though a vertex and its opposite side. None of the 35 necklaces is fixed in the same
position under the 6 proper rotations, while all of them remain fixed under the under
(1). For each reflection in @D 4, the number of necklaces which are kept unchanged is 3.
Using Burnside’s lemma, and that there are 7 reflective symmetries, we conclude that the
number of distinguishable necklaces is

1 . 35+7-3 56
mg;7|FIX(g)| = T = ﬁ —4,

as illustrated in the figure below. o

Figure 6.1: The four up to isomorphism distinguishable necklaces.

202020,

In the above example it must be observed that the set X does not consist of the vertices
{1,2,3,4,5,6, 7}, but of the 35 configurations — the colorings — of the 7-gon, by using
white and black beads. Hence the group ®7 acts on a set of configurations, and so a bit of
confusion arises in how to denote its group elements.

6.1.2 ExampLe. Similar to the 7-gon in the previous example, we think of the number
of ways to construct a necklace using black beads and white beads, 3 in total, and evenly
distributed. Determining the number of possible configurations we arrive at

)16

in terms of choosing, for instance, the number of black beads to be placed in the necklace.
The task of determining each up to ismorphism distinguishable coloring of the vertices
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of an equilateral triangle isn’t too painful, and in figure 6.2 we list them, along with the
8 configurations. The group acting on the set X = {4, By, By, B3, C1,C5,C3, D1}
of the 8 configurations is ®3. and it is worthwhile examining how such an action is
represented.

Figure 6.2: Configurations of necklaces with three beads — black, and/or white.

/i

/N

RIS
P

The letters A, B, C, and D denotes the isomorphism class of a necklace, while the index counts
its cardinality.

Any group element in ®3 can either be represented in standard notation — as a permu-
tation of the vertices of a square— or in terms of elements in X. For our purposes, the
latter notation is both illustrative and convenient. For instance, pick 7 = (132). Letting 7
act on the configurations, as displayed in figure 6.3, we can instead represent it by

* Al Bl BQ Bg Cl CQ Cg Dl
"4 By B B, C3 C, C, Dy )

in terms of configurations. Even more conveniently, we can write % in cycle decom-
position, as 7° = (A, )(B1B3B5)(C1C3C5)(D1). Such a representation is beneficial
since, by the disjoint cycles, it explicitly states the equivalence classes — the orbits — of
X, which are four.

'X/’}Dg':% z |Fix(g)|=8+3.46¢=4. o

geD3

6.1.3 ExampLE. Our next example deals with colorings of the edges of a square. Using a
set S of n different colors, and starting with a set of two colors, S = { R, B}, red and blue,
we are allowed to color the square in any way. The set of configurations X has cardinality
16, as there are 16 mappings from the set of edges of the square, £ = {eq, €9, €3, €4}, to
the set of colors S = { R, B}. Indeed, we can just as well write X = {f1, f2,..., fi1s} in
terms of the different mappings from E to S. Letting ©4 act on F, two configurations
fi, fj € X are equivalent if f;o = f;, for some o € ©D,. The equivalence classes are

precisely X/@4, and so Burnside’s lemma (Theorem 6.1.1) applies. In D, the identity
element (1) fixes all of X, a rotation around the horizontal axis, (14)(23), fixes 8 elements,
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as does a rotation, (12)(34), around the vertical axis. A flip about a diagonal axis, either
(13) or (24), fixes 4 elements. The permutation (1234) fixes only 2 elements, and the
same goes for (1432), while 4 elements of X are invariant under (13)(24). In figure 6.3
we list the elements of X. The cardinality of X/@4 — the equivalence classes, i.e. orbits —
is

1 . 16+2-8+2-44+2-2+4 48
IGA] Z |Fix(g)| = 3 =g =

gEDy

Figure 6.3: The color configurations of X, with S = {R, B}.

We turn now to the case where S is a set containing n different colors. Here, a slight
alteration of our reasoning must take place. The set of configurations still consists of every
mapping from F to S, and has cardinality n*, but counting the number of configurations
fixed under some permutation gets a bit more involved. All color configurations are
obsiously invariant under the identity permutation. For (12)(34), a flip/rotation (or
reflection) in the vertical axis of symmetry keeps n” color configurations fixed, and the
same goes for (14)(23). The transformations (13), and (24), about a diagonal axis, each
fixes n” colorings. A rotation about the geometric centre of the square, either by (1234),
or (1432), fixes n colourings. The permutation (13)(24) corresponds to a 180° rotation
about the geometric centre, which fixes n? colorings. We get that

4 3 2
X 1 _n +2n" +3n" +2n
Yol =g 21X 5 :

gED,

is the number of equivalence classes of the color configurations, when acted on by D,4. ¢

Remark. The color configurations of the vertices of a square when acted on by D4 has the
same number of equivalence classes. Subdivide a square, so that each edge gets a vertex in
its midpoint, and join those vertices in a cycle — a new, tilted square is so obtained. Apply
the same reasoning as above.
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6.1.4 ExampLE. Our final task is to color the faces of a cube, using n colors, and to deter-
mine the number of distinguishable colorings. We denote the set of color configurations
with X, and as per the standard argument its cardinality is n® — the number of mappings
from the set of edges to the set of colors. To our aid we look at the rotational symmetries
of a cube, depicted in figure 4.4. A permutation with respect to an axis v, going through a
vertex and its diagonal opposite leaves n? color configurations fixed, and there are 8 such
permutations — for each of the 4 axes v, we can go 120° or 240° — and together they
sum up to 8n” invariant colorings. A proper permutation with respect to an orthogonal
axis can be done by 90°, 180°, or 270° — a 90° rotation leaves n® coloring unchanged, as
does a rotation by 270°, while n* configurations are invariant under a 180° rotation.

There are three orthogonal axes, accounting for all of them sums up to 3n* +6n invariant
colorings. A permutation with respect to an axis going through the midpoints of two
opposing edges leaves n® colorings unchanged, and there are 6 such permutations, which
accounts for 6n° invariant colorings. The sum total of fixed configurations acted on by
the rigid motions of a cube is therefore

4 2
n6 +3n + 12n3 +8n”.

Applying Burnside’s lemma, we get that the number of distinguishable colorings of the
faces of a cube — lets denote it, here, by Q — is

1 Z |Xg| 3 n® +3n* +12n° + 8n°
B 24 ’

1l &

Remark. The color configurations of the vertices of an octahedron when acted on by the

rigid motions of a cube has the same number of equivalence classes. The reason being, as

mentioned earlier, that the cube and the octahedron are dual.
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Generating Functions

7.1 InTrRODUCTION  As we extend on the Orbit Counting Lemma there’s a few basic

notions from the theory of generating functions we can borrow
to help our understanding. First, an observation can be made about the interplay of
addition and exclusive disjunction.

7.1.1 ExampLE. Take for example the task of flipping a coin. The possible number of
outcomes is two — heads or tails, with no simultaneous occurance of the two — and
through the use of the polynomial « + y we have modelled the situation accordingly. Here,
the coefficient before x is the one possible outcome heads, while the coefficient before
y is the one possible outcome tails. We can further develop on this idea, to describe a
situtation where a coin is to be flipped n times, now using the polynomial (z + y)" =
(x+y)" =Y, (Z)x"_kyk =1l+nz+ (g)x"_QyQ +...+nxy""". This polynomial
enumerates every possible outcome, i.e. there are (:) ways to toss a coin to get n — k
heads and k tails. o

7.2 GENERATING FuncTioNs A different problem which also comes to mind is,

for example, that of finding the number of positive
integer solutions to the equation z; + x5 + x3 = 10. Each term z; can take on 8 different
values as, for instance, 71 = 8 determines that 5 3 = 1. Hence each term can be written
as a polynomial x; = ot o+ ;c2 +...+ ws, i.e. x; takes on the values 1, 0r 2,0r 3, ..., or 8,
where the coefficient before each term =" simply states that there is one possible way to
pick x; = k. The interplay of addition and exclusive disjunction does not relate to our
original equation z1 + x5 + 3 = 10, as 21, @9, and x5 are independent variables, only to
R T L By the rule of product we investigate (xl +27 .+ $8)3, where the

coefficient before 2 is 36, and so we have computed the answer to our problem. This

can be verified with the classical idea of using stars and bars : (130__11) = (g) = 36.
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For our purposes there’s no need for a thorough exposition. In this chapter we will only
provide the most basic ideas, and present results in keeping with the theme of this text.

7.2.1 ExampLE. Lets return to example 6.1.3: colored edges of a square. We can assign to
eachedge e; € E = {eq, €9, €3, €4} the polynomial r + b, so that (r + =t + 4%+
6r°b% + 4rb® + b*, which generates all of the 16 configurations. ©

7.2.2 ExampLE. The colorings of the faces of a cube, such as that in example 6.1.4, has
6 . .

n~ configurations for a set of S {c1, ca, . .., ¢, } of m colors. As in example 7.1.1, we can

assign to each face the polynomial ¢; + ¢3 + ... + ¢, where the sum of the coefficients

in the expansion of (¢; + ¢o + ... + ¢, )° equals n’. 3

7.2.1 DEFINITION. Let ag,aq,as, ... be a sequence of integers. The formal power series

[ee]

A(z) = Z a;T;

i=0
is called the generating function, or the generating formal power series, of ag, a1, as,...

Remark. It must be observed that in this text a generating function is not to be evaluated
for any specific . We do not concern ourselves about the meaning of x or its powers, they
serve only as symbols to designate the position of a coeflicient.

7.2.3 Exampre. For any positive integer n € Z" we have that

(1+y)" =) (Z)yk
k=0

n

which is the generating function for 1, (Y), ( ),. . (Z) By letting y = ax, forany a € R,

we have that

n
(1+azx)" = Z (Z)(aa:)k,
k=0
is the generating function for the sequence 1, a(’;), aQ(g), cee an(Z). o

7.2.4 ExampLe. We have that (1—y)(1+y+y°+y>...) = 1. Hence the infinite sequence
()2 = 1,1,1,... has as its generating function

By letting y = ax, for any a € R, we have that

1 —1ax - Z(a:ﬂ)k

0

b
I

. . . P k\® 2
is the generating function for the infinite sequence (a ) =1,a,a",... o
k=0
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GENERATING FUuNcTIONS CHAPTER 7 Generating Functions

Remark. This product of power series is called discrete convolution, or the Cauchy product
of two infinite series.

In the table below we collect a few of the standard identities relating sequences to their
generating functions.

Table 7.1: Some standard identities.

m7nEZ+, a € R.

L (1+m)”=(’0‘)+(1)x +(g) 2+...+(;‘)x".

IL (1+azx)" =( ) ( )ax+ (g) ax) +. (:)(ax)"
T DTN (A (N ()
IV. %=1+x+x2+...+x‘

V. ﬁ=1+1‘+w2+...=zzo=01'k.

VL 1_1(” =l+az+(ax)’ +...= Z:’:O(a:p)k.

VIL Ty = Laeo (<) (”*’“ l)xk.

VIIL iy = Lo ()"

7.2.5 ExamPLE. We can use a generating function to determine the number of ways to pick
k objects from a set S = {01, 09, ...,0,} of n distinct objects, where an object can be
picked repeatedly. The power series 1 + = + 2” + 2 + ... represent the possible choices
for an object. There are n distinct objects, and so by the rule of product our generating
function is ) N
(1+1:+a:2+x3+...) =(1-z)",

where (1 —2)™" = Y7, ("J’]ﬁ_l)xk Hence we seek the coefficient before 2" in the
expansion of ZZO (”J'i_l)xi, which is ("+k 1) Again, this can be verified by the method

k
of stars and bars. o

6
7.2.6 ExampLE. We find the coefficient before z°° in (m7 +2®+ 2" + . ) , first by
factorizing it into

[;r7(1+x+x2+...)}6=;r42(1+x+x2+...)6=x42(1—x)76,

and then by determining the coeflicient before 2® in the expansion of (1 — x)_e =

Yoo (O7571), whichis (1) = 1287. o
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7.2.7 ExampLE. The six outcomes of rolling a die can be represented by the polynomial '+

10
2® + 2% + 2"+ 2° + 2° while rolling it 10 times corresponds to (;rl vt 4+ wG) .
We wish to know the likelihood of obtaining the sum 40 after 10 rolls. Initially, we

40 . 1 2 10 o
%in (x +x +...+x6) , by factorizing it as

must calculate the coefficient before x
10 S _1710 10 _
[x(1+:r:+...+$5):| =x10[(1—xb)(1—x) 1] =x10(1—1’6) (1-2)"",

. 30 .
Hence we seek the coeflicient before ° in

6110 0 /10 ok [10+ k-1
(1-2°) " (1-2) =Z(k;)(_x )kZ( t )xk
k=0 k=0

which, by a tedious computation, is equal to

) () ()] () 5) s

The size of the sample space is 6", and so the likelihood of 10 rolls of a die summing up

to 40 is
2930455

610 ©

47



The Cycle Index

8.1 INTrRODUCTION We recall the type of a permutation. It’s a compact way to

encode its shape, i.e. how many cycles of each length there are
in a permutation o € &, as illustrated in example 2.2.1. For instance, the permutation
o = (1327)(45)(68)(9) has type [11, 2% 4! ] In this chapter we are going to associate
a polynomial to a group of permutations — a generating function in several variables
called the cycle index— in which the terms are related to the cycle structure of each group
element. Our aim is to simplify the computations necessary to determine the equivalence
classes of n-colorings of an object.

8.2 TuEe CycirEe INDEx Lets review The Orbit Counting Lemma, and once again

consider Example 6.1.4. We reached the result that for n
colors there existed n+3n’+12n% +8n° distinguishable n-colorings of a cube. We try now
to use a different approach, which is based on the type of each group element of £, when
expressed as permutations. For this, we need to define the cycle structure representation of

a permutation.

8.2.1 DEFINITION. A cycle structure representation is analogous to the type of a permuta-

tion. If the type of a permutation o € &,, is written [1*,2%2,3% ... n®" ], then the
. . . Q) O Qg (o .

cycle structure representation of ¢ is written x, 'z, 23" ...x," (cf. Section 1.2). We

associate with each element g € & < &, its cycle structure representation, the monomial

T, Lo, Ty, Ly) = Ty o Tl . T .
Cg ( 3 ’ ) 1 2 3 n
8.2.1 ExampLe. For o = (1234)(5678) € 9, ¢, (21,2, ..., 28) = 25 ©

8.2.2 DEFINITION. The cycle index of a finite group of permutations & is the formal sum

1
C@ (731,.T2,.'E3,...,.’13n) = @ Z Cg (.751,]32,51337...,.’En). *
geEB
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8.2.2 ExampLE. For the group ) — the group of rigid motions of the cube — we have

already determined that there are 24 group elements. Labelling each vertex in an arbitrary
manner, for instance such as in Example 4.1.6, each permutation corresponding to a rigid

motion has a related cycle structure representation. We list them in the table below.

Table 8.1: Vertex permutations of a cube, their types, and their cycle structure representations.

g €Q; Type Gy
MEBDOEOMNE) (1]
(1234)(5678) 42 x5
(1485)(2376) 42 z2
(1265)(4378) 42 2
(1432)(5876) [42] z2
(1584)(2673) 42 z2
(1562)(4873) 42 z>
(18)(27)(36)(45) [24] zd
(13)(24)(57)(68) 2] zd
(16)(25)(38)(47) [21] zh
(14)(28)(35)(67) [24] zh
(17)(23)(46)(58) [24] zd
(17)(28)(34)(56) [24] zh
(12)(35)(46)(78) [24] i
(15)(28)(37)(46) 24 zh
(17)(26)(35)(48) [21] zh
(1)(7)(245)(386) [12,3%] 2222
(1)(7)(254)(368) [12,3%] 2222
(2)(8)(136)(475) [12,3%] 2222
(2)(8)(163)(457) (12,32 2222
(3)(5)(186)(247) [12,3%] 2222
(3)(5)(168)(274) [12,3%] 2222
(4)(6)(138)(275) [12,3%] 2222
(4)(6)(183)(257) (12,32 2242

There is only one element of Q for which (; (1, z, . .

tity permutation. There are six for which (; (21, 2, ..

.,zg) = 25, namely the iden-

2 . .
.,xg) = x4, nine for which

Cg (@1, 29,...,28) = T3, and eight for which (; (1, 22, ...,25) = 2723, And so, by

Definition 8.2.2,

2 2

CQ (Il,ZZJQ,...,I'g) =

49

1:? + 61:?1 + 93{:;1 + 8z173
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For a cube, however, it makes more sense to color the faces rather than the vertices. As
we've already discussed the duality between the octahedron and the cube, we know now
that the cycle index of a cube with respect to a group of permutations of its faces must
therefore be the same as for vertex permutations of octahedron.

8.2.3 ExampLE. With respect to its group of vertex permutations, the cycle index for an
octahedron (cf. Section 1.2) is
1:(13 + 81::2; + 6x?1’4 + Sx%xg + 6x§
24 ’
which is also the cycle index for a cube with respect to face permutations.

8.2.4 ExampLE. The group ¥ of rigid motions of a tetrahedron induces a permutation
group on the 4 vertices. We have the following table.

Table 8.2: The types, and cycle structure representations of the vertex permutations of a

tetrahedron.
g (Example) Type Cq #  Sum
(1)(234) _11,31] 125 8 Sayws
(12)(34) 2? 5 3 3a5
M)y |1 1 a

4
And so (g (21, To, T3, T4) = % The tetrahedron is a self-dual platonic solid.
Therefore, the cycle index of the group of vertex permutations is the same as for edge
permutations. o

8.2.5 ExampLE. Our next example concerns yet another platonic solid, called the icosahe-
dron. This object is a bit more awkward to deal with when determining what permutations
are induced by its group of rigid motions.

Figure 8.1: Icosahedron.

By the Orbit Stabilizer Theorem, we can quickly determine the order of its group of vertex
permutations. Each vertex can be sent to every other, hence the orbit of any vertex is the
set of all vertices, and so |Orb@( z) | = 12. Except for the five rotations about an axis going
through two opposing vertices there are no other transformations which fixes a vertex,
hence |Stabg ()| = 5 so that [&| = |Orbg 4| [Stabe ()| = 12 - 5 = 60. We conclude
that the group of rigid motions yields a permutation group of order 60.
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With the aid of figure 8.1, and by straining our spatial faculties (alternatively, referring to
[2]), we produce the following table.

Table 8.3: The types, and cycle structure representations of the (vertex) permutation group,
induced by the rigid motions of an icosahedron.

g (Shape) Type g #  Sum
OEEEEEEEEE) _112] o’ 1 ar
OIOICEREE ICERER ) _12,52} s 24 242743
(CERICED [CER [CRR! Ex 3 20 2023
RIDIDIDICDIED 2° 5 15 1525

Thus we have that the cycle index of the icosahedron is

1
50 (at:i2 + 24;17?35? + 20;173 + 15952) . 3

8.2.6 ExampLE. The final platonic solid to deal with is the dodecahedron, the dual of the

icosahedron. The permutation group induced by rigid motions acting on the vertices of
the dodecahedron yields the cycle index

1
50 (x?o + 20x§x§ + 15xéo + 24x§) ,
which is also the cycle index for the permutation group of the faces of the icosahedron. ¢

Figure 8.2: Dodecahedron
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8.2.1 Prop. The cyclic group €,, = (g 1g" = e> has the cycle index
1 n/d
Ce, (@1,22,- ., m,) = 7 ) p(d)ay"".
d|n
Proof. See [2]. | |
8.2.2 Prop. The cycle index of ®,, is
1 i (;rg/z + x%x;L/Q_l) if n is even
QCCW ($1,$27...71’n)+ 1 (n-1)/2 . . .
5 L123 if n is odd
Proof. See [2]. | |

8.2.7 ExampLE. Consider the problem of coloring a bracelet with 6 beads, which are
evenly distributed around it. If we are permitted only to rotate the bracelet around its
center, and the positions of a bead is clockwise labelled with the letters 1,2, 3,4, 5, 6, we
are dealing with the cyclic group €. By Proposition 8.2.1 we have that

1 nid_ 176 3 2
Ceo (X1, 2,03, T4, 5, 06) = & dLTE @(d)%z/ =5 (151 + 2o+ 205 + 2906)~ ©

8.2.8 ExampLE. If we consider the same bracelet as in Example 8.2.7, only this time we are
also allowed to flip it about some axis, then we are dealing with the dihedral of a 6-gon —
©g. By Proposition 8.2.2 we have that

Co, (@1, 22, 3, T4, 25, T6) = 1—12 (z? + Ty + 205 + 2x6) + }1 (mg + x?zg) o
8.2.9 ExampLE. Continuing our discussion on the cube, and the relation between the
Orbit Counting Lemma and the cycle index of a permutation group, we consider the
permutations of its faces. Let S = {c1, ¢} be a set of 2 colors. Each face can be assigned
any color, with no simultaneous occurance of the two on one and the same face, and the
polynomial ¢; + ¢, models the situation of coloring a face. The identity permutation
consists of 6 disjoint 1-cycles, (f1)(f2)(f3)(f1)(f5)(f6), each containing the label of
a face. Each face can be assigned ¢; + ¢, (¢1 or ¢y) independently, and so (¢; + 02)6
generates the 64 colorings — all invariant under the identity permutation. For one of the
6 permutations with the shape (f1)(f2)(f3.f4f5/¢) we ask how to color the faces so that
they remain invariant. As the cycles are disjoint, we can regard each by itself, and assign
¢y + ¢ to the 1-cycles. In the 4-cycle every face has to be the same color, and there are
two colors to choose from, hence we assign czll + cg to it. Our permutation thus becomes
the polynomial (¢; + 02)2 (0411 + cg) =S +28¢y + cich + cocs + 2c1c + c5. We can
repeat this process of thought using the cycle structure representation of a permutation
of the faces of a cube, since they are analogous. The proper group to consider would be

52



THE CycLE INDEX CHAPTER 8  The Cycle Index

the permutation group of vertices of an octahedron, and summing up each polynomial,
acquired in this way, for every permutation would then give us

24¢S + 245 ey + 48¢ich + 48cach + A8¢5 ey + 24, ch + 245 (8.1)
The polynomial in (8.1) is peculiar since dividing it by 24 yields the expression
c? + C?CQ + 2(:411(33 + 20?03 + 20?04% + clcg + cg, (8.2)

which generates the distinct colorings of the cube. From it we see, for instance, that
there are 2 ways to color the cube so that two sides has color ¢; while four sides has
color ¢y. By letting ¢; = ¢o = 1, and substituting it into (8.2) we get 10, which is the
number of inequivalent colorings. The same result (from Example 6.1.4) would have been

. . . . n®+3nt+12n°+8n° .
reached using the Orbit Counting Lemma, where in =———-=——— we put 2 instead of
n, obtaining
+3.2'+12.2°+8.2°

24

Likewise, we could just as well have put 2 instead of z; in the cycle index of Example 8.2.3
(the octahedron), i.e.

2°+8.22+6-22.2+3.2°.2°+6-2°

oY 10.

This is what we're going to look at in the chapter that follows. <
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The Pattern Inventory

9.1 PaTTERNS Itistime to introduce a consistent terminology and to refurbish some

of the theory which we've earlier gone through. Let X and Y be finite
sets, and consider mappings from the domain X to the range Y. The set of all such
mappings is, as usual, denoted by Y¥. In previous examples the set Y consisted of colors,
while X contained parts of some geometrical structure. We chose to name Y™ the set
of colorings of X, the set of color configurations of X, or simply a set of configurations. A
coloring, or configuration, is a mapping f : X — Y. In discussing the Orbit Counting
Lemma, in Chapter 6, an ambiguity seemed to arise in how to denote an element in the
underlying group acting on a set. If, for instance, we are to determine distinguishable
colorings of the vertices of a square using n colors, where X = {v;,vs, v3,v4}, and
Y = {ci,¢a,...,c,}, then Y is the set of configurations while n* is its cardinality.
The permutation group of X is ®4, and so it is the underlying group acting on Y*. An
element of Dy, it seems, can be written in terms of the vertices v1, vo, v3, v4 of a square,
where ®,4 acts on X, and in terms of configurations in YX, since 4 acts on YX —we
say that an element g of D4 induces a permutation g of YX, and we call the induced
group .. Generally, for a permutation group & of a finite set X, where & is the induced
group acting on Y™ for finite Y, we introduce a relation on Y, and say that f; and fy
are equivalent — f; ~ fy — if there is an element g € & so that f; (gz) = fo(x), for
x € X, and g € 6. We establish quickly that ~ is an equivalence relation.

L. Since e € & we have f(z) = f(ex) = f(z),andso f ~ f.

IL Ifg € ®,theng ' € ®,and so f,(gz) = folz) = fo (g_lac) = f1(x). Hence
fi~fa= fa~ f1.

Il If g,h € &, then gh € &, so thatif f;(gz) = fo(x), and fo(hx) = f3(z) then
fihgz) = fa(ha) = f3(z). Hence f1 ~ f5.
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9.1.1 DerFINITION. Let X and Y be finite sets, and G a group of permutations of X. The
equivalence relation introduced by f; ~ fo if f1(gz) = f3(z), for some g € &, splits
v into equivalence classes called patterns . .

Naturally, we wish to determine the number of patterns in 'YX / (G | As one might suspect

it is equal to 'YX / (G} | The Orbit Counting Lemma (Theorem 6.1.1) comes into play.

9.1.2 DeriniTION. " Let X and Y be finite sets, and G a group of permutations of X.
The element g € & induces a permutation of Y™ in the following way: (3/) (z) =
f (gfl(;z:)), viz. gf = fg~', forall colorings f € Y. The set of all such induced

permutations is the group &, which satisfies the axioms of a group action, and so it acts
X
onY

I Fore € &, ef = fe ' = .

IL Forgi, 0o € 6,51 (2f) = g1 (f92') = fo2 01" = f(0192)"" =ngaf. ®

9.1.1 LEMMA. The group &, as defined in 9.1.2, is isomorphic to ®.

— -1 -1 -1 _ =, -1

Proof. For g,9, € & we have that g192f = f(9192) ~ = fg2 91" = 9291 =
gl g f and so the homomorphy condition is satisfied. Next we need to establish that
g1 = g2 = 91 = g2 50 that the function ¢ taking g to g is a buectlon Therefore,

suppose that 71 = 73,50 that (71.1) () = (/) (x) <=  (97"(x)) = f (43" (x)).
By our assumption f (gl_l(x)) =f (gg_l (:1:)) holds for all f € Y™, and is true in
particular for the coloring f which assigns a specified color to 971 (), and another
color to every other member of X In this case, the equation f (gl_1 (x)) =f (gg_1 (x))

implies that g, '(z) = g5 (), and because the same argument works for each x € X,
we conclude that g; = go. Hence ¢(g) = g is a bijection, and

—

6. |

11

(G

9.1.2 THEOREM. For Y™ = {f : f amapping fromX to Y} a set of configurations, where
& is a permutation group which acts on X, the number of patterns is

] V| = a7 . (o)

geEG

where Fix(g) = {f eY™: fy(z)) = f(z), Yz € X}, the set of colorings fixed by g.
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Proof. The underlying group & acts on X, and the induced group Bactson Y™ . Let

O denote an orbit in v¥ /Qj’ and let P denote a pattern in /Q5 If f1, fo € O, we

have that g f; = f,, for some g € G. This implies that flg = fo,so that fi, fo € P.
Hence f1, fo € O if, and only if, f1, fo € P. By the Orbit Counting Lemma we have

that
¥ /@I Gp S IR

where Fix(7) = {f € Y™ : (§f) (2) = f(2), Vo € X}. Now if f € Fix(g), then
gf = f which implies that fg_1 = f & fg = f, by Definition 9.1.2. Hence
if = f = fg = f,and so [Fix(7)| = |Fix(g)|. Since & = & = |6| = |, by
Lemma 9.1.1, we see that

— Z |Fix(§ Y [Fix(g)l,
8] & |®|

geES
and we conclude that

X 1 X
‘Y /g;‘ =5 > Fix(g) = ‘Y /@|. u

geES

9.2 WEiGgHTs InExample 8.2.9 we touched on the idea of assigning a weight to a color

configuration. For sets X, Y, with mappings Y, the initial idea is to
assign an element of a commutative ring to each member of y € Y, called the weight of y.
In doing so, we can form sums, products and rational multiples of weights (provided that
the ring R contains the rational numbers), which satisfies the usual axioms.

9.2.1 DerINITION. For a finite set Y, and a commutative ring R containing @, the function
w Y — R assigns to each member y € Y its weight w(y) € R. .

9.2.2 DeFintTION. For X, Y, and the set of mappings Y™, the function W : Y~ — R
assigns to each configuration f € v its weight W (f) € R, where

W) =] Jw(f). .

zeX

9.2.1Lemma. If f1,fo € P S YX, where P is a pattern (orbit) in YX, then

W (f1) =W (f).

Proof. 1f f1,fo € P € Y™, then f; ~ fs, by Definition 9.1.1, viz. f,(gz) = fo(z)
where g € &. The products [ [ o w (f1(x)), and [ [, x w (f1(gz)) have the same
factors, only in a different order, since g only permutes the index set, which is all of X.

Hence [ [,ex w (f1(#)) = [Loex w (f1(92)) = [Liex w (f2(2)) =W (f2). W
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9.2.3 DerFINITION. The weight of a pattern P € Y™ is denoted W (P). All configurations
f € P have the same weight, and W (P) = W (f), for some f € P. .

9.2.1 ExampLE. Let X = {eq, eq, €3, €4} be the edges of a square, and let Y = {r, b}
contain the colors 7, and b. Let Q [, y] be the polynomial ring in two variables x, and y,
with rational coefficients. Assign the weight w(r) = x to r, and w(b) = y to b. For the
2-colorings of a square with respect to its edges, we determined in Example 6.1.3 that
there are 16 configurations, and 6 patterns in all.
P,: All edges in X are mapped tor € Y so that, for f € P, W (f) = z* = W (P,);
P,: Three edges in X are mapped tor € Y/, one is mapped to b € Y. Therefore W (P,) = :c3y;
Ps: Two adjacent edges are mapped to r € Y, and two adjacent edges are mappedto b € Y.
Hence W (Py) = z°y%;
Py: Tgvozopposite edges are mapped to 7, and to opposite edges are mapped to b. Thus W (P,) =
'y
Ps: Three edges are mapped to b, one is mapped to r. Thus W (Ps5) = my?’;
Ps: All edges are mapped to b, so that W (Ps) = y*.

°
9.2.2 ExampLE. Let X = {aq, as, as, a4, as, ag} be the faces of a cube, and let Y = {r, b}
contain the colors r, and b. Let Q [z, y] be the polynomial ring in two variables x, and v,
with rational coefficients. Assign the weight w(r) = x to r, and w(b) = y to b. For the
2-colorings of a cube with respect to its faces, we determined in Example 8.2.9 that there
are 64 configurations, and 10 patterns in all.

Py: All faces in X are mapped tor € Y so that, for f € P, W (f) = 2° = W (P,);

Ps: All faces, but one, are mapped to r € Y. One face is mapped to b € Y. We have that
W (Py) = a”y;

Ps: Four faces are mapped to , and two adjacent faces are mapped to b. And so W (P3) = o'y’

P,: Four faces are mapped to 7, and two opposite faces are mapped to b. Thus W (P,) = $4y2;

Ps: Three faces meeting at a vertex are mapped to r, and three faces (also meeting at a vertex)
are mapped to b. We have that W (P5) = z°y/°;

FPs: Two opposite faces, and one more face, are mapped to r. Three faces are mapped to b.
Therefore W (Ps) = z°y/°;

P Tgvo4adjacent faces are mapped to 7, and four faces are mapped to b. We have that W (P;) =
7y

Pg: Tgvo4opposite faces are mapped to 7, and four faces are mapped to b. We have that W (Pg) =
7y

Py: All faces, but one, are mapped to b. Thus W (Py) = zy%

Pio: All faces in X are mapped to b € Y, hence W (Py) = ¢°.

Remark. It is worthwile to observe that

10

Z W (P;) = 2%+ x5y + 29641;2 + 2x3y3 + 2x2y4 + xy5 + y6.

i=1
Compare this sum with the expression (8.2) found in Example 8.2.9. This is the pattern
inventory of 2-colorings of a cube moving freely in space.
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9.3 THE PATTERN INVENTORY We are to present a famous theorem due to Pélya.

In short, our task is to establish a function — called
the pattern inventory — which generates and/or enumerates the patterns of a set v
of configurations. To help us in this regard we shall extend on the ideas of weights of
configurations, and weights of patterns.

9.3.1 DeriNITION. For a finite set Y, where each element y € Y has been assigned the
weight w(y), we say that

I(Y)=) wy)

yeY
is the inventory of Y. .

9.3.2 DeFINITION. Given the finite sets X, Y, and where W (f) = [[,cx w (f())
(definition 9.2.2), then the inventory of v¥is given by

I(v*)= Z W (f). .

fey X

9.3.1 LEMMA.

1Y) =)™,
Proof. See [4]. |

9.3.2 LEMMA. Let X be a disjoint union U?=1 X; of finite sets X, so that (by the rule of
sum) | X| = | Xq| + ...+ |X,| Let Y = {y1,y2,. .., Ym} and let S < Y™ where
S = {f ey™: f is constant on each Xi}. Then

1m=2Wm=ﬁwaV”

fes =1 yeY

Proof. See [4]. | |
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9.3.3 THEOREM (BABY POLYA). For finite sets X, and Y, where & is a group of permutations
of X, the number of patterns in v s given by the following formula:

X
Y 1 :
l /®| =g 2
geB

where c(g) is the number of cycles in g, as expressed in the decomposition of X under the
action of g.

Proof. By Theorem 9.1.1 we have that

v 1
/@‘ = & 2 gee |Fix(g)|, where Fix(g) =
{f eY™: fy(z) = f(z), Yz € X}. We must therefore show that |Fix(g)| =

|Y|C(g ). We make the observation that g € & is a permutation of X, and that each
g splits X into a disjoint union of ¢(g) cycles X1, Xo, ..., X(4), where each cycle
is cyclically permuted by g. If f € Fix(g), then f = fg = fg® = ... hence fis
constant on each cycle X;. Conversely, if f is constant on each X, then f = fg since
g(z) € X;, forx € X;, and so f € Fix(g). Thus f € Fix(g) if, and only if, f is
constant on each cycle X;. Therefore, all of the elements in a cycle X; are mapped to
one and the same member of Y. There are ¢(g) cycles, and for each cycle X there are
|Y'| possible elements to which one can map all members of X;. By the rule of product
we get that |Fix(g)| = |Y|C(g), and so

X
Y 1 . 1 c
\ /@\ =g 2 IFx(9)l =g > V. m

geESB geESB

9.3.3 DerINITION. Let P = {Py, ..., P} be the set of all patterns in Y. We recall from
definition 9.2.3 that for the weight of some pattern P: W (P) = W (f), where f € P.
The pattern inventory , also called the pattern generating function (PGF for short) is defined

I(P)=) W(P). N

pep
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9.3.4 P61ya’s ENUMERATION THEOREM. Let X, and Y be finite sets where | X | = n, and
let & be a group of permutations of X. We recall that the cycle index of & is the formal sum

1
CQS (xl7$27x37"'7xn)=_ Cg(‘rlv‘TanB?"'vxn)'
&
geS

The pattern inventory (definition 9.3.3) is given by

%{Z w(y), Y [w),.... ) [w(y)]"}.

yeY yeY yeY

If all weights are chosen to be equal to 1 we get the number of patterns, viz. |YX/® '

60



THE PATTERN INVENTORY CHAPTER 9 The Pattern Inventory

Proof. Let w be some value that the weight of a function may have. For fi, f € YX,
and g € &,if f; = fogthen W (f1) = W (f») (Lemma 9.2.1). We take S,, € Y,
where {f ey®: W (f)= w}, hence if f; = fog € S, then flg71 € S,. Let
Fix,,(g) = {f ey™: fg=f,andW (f) = w}. The number of patterns (Theorem

9.1.1) contained in S, is
1

T > |Fix, ()] ©.1)

ge®

The patterns contained in S, have the same weight w, and if we multiply (9.1) by w,
and sum over all possible values of w, we obtain the pattern inventory

1P =Y wE)= =5 Y [Fix.(9)] v ©.2)

PeP |®| w ged

If we let Fix(g) = {f eY¥:fg= f}, then we have that

Y [Fix,(g)lw=" > W(f),

feFix(g)

and since the indices in (9.2) are finite we can exchange the order of summation. The
right hand side in (9.2) becomes

1 . 1
o] L 2 IF@lw =) ) W, 9.3)

geEB W g€S feFix(g)

It remains to evaluate the sum Z FeFix(g) W (f) in (9.3). We make the observation that
g € & is a permutation of X, and each ¢ splits X into a disjoint union of m cycles
X1, X,,...,X,,, where m < n. Each cycle is cyclically permuted by g. If f € Fix(g),
then f = fg = fg2 = ..., hence f is constant on each cycle X;. Conversely, if f is
constant on each X, then f = fg since g(z) € X;, forz € X;, and so f € Fix(g).
We can therefore apply Lemma 9.3.2:

S w =] twun™. 0.9
=1

f€Fix(g) yey
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Proof, continuation. Expanding on the right hand side of (9.4), we get

(Z [w(y)]m) ( > [w(y)]”“) ( y [w(y)]'X""') 9.5)

YyeY yeY yeY
Let [10‘1 2%, na"] be the type of g. This means that among the numbers | X |,
| X5],...,|Xnl, 1 occurs o times, 2 occurs vy times, and so on. We can therefore

write (9.5) as
Y W)= (Z [w(y)]) (Z [w(y)f) (Z [w(y)]") . 9.6)
f€Fix(g) yey yey yey
Hence the right hand side in (9.3) becomes

w2 (Zwon] (L eer) (g wor) | e

geES yey yeYy yey

We note that (Y, ey [w(9)])" (¥ ey [w()*)™ -+ (L ey [w)]")™" is pre-

cisely what is obtained by substitution of

vr=y wly), w=) [wlP,.... z.=) [w)]"

yeyY yeY yeY

into the cycle structure representation (, (1, %2, . ..,%,) of g. We can therefore
conclude that (9.7) is the cycle index

%{Z w(y), Y [w),.... ) [w(yn"}. n

yey yeY yeY
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9.4 GonNs & HEDRONs  Podlya’s Enumeration Theorem reduces the problem of find-

ing equivalence classes — patterns — of a set of configura-
tions to that of finding a cycle index (g — the result being a generating function: the
pattern inventory. Here we give a brief exposition on the colorings of the geometrical
objects we've encountered.

9.4.1 ExampLe. Let X = {21, X9, T3, T4, T5} be the positionings of 5 beads in a necklace,
and let Y be a set of 3 colors. Consider the problem of making a bracelet with 5 colored
beads, which are evenly distributed around it, while we are only allowed to rotate the

necklace about the centre. The group in question which acts on X is €5 = ( g: 95 = e>,
and has the cycle index (Theorem 8.2.1)
1 5/ 1/ 5
Ce, (%1, 22, 23,24, 25) = gdlgw(d)l’d =z (5751 + 4955) :

We can choose to assign some weight z, y, z to each color in Y. Applying Theorem 9.3.4
we get that

5| 1 5 5, 5, 5

(QB{Z w(y),..., Z [w(y)] }— 5((;r+y+z) +4(;zr +y +z )) 9.8
yeY yeY

The expression on the right hand side in (9.8) is, when expanded, equal to:

4 4 3 2 2 2 2 2 2 2
2® +x y+a z+2x3y +4w3yz+223z + 2z y3+6my z+6x yz" +

2072 + :vy4 + 495@/32 + 6:vy222 + 4myz3 +azt+ y5 + y4z + 2y3z2 +
2.3 4, .5
20727 +yz + 27,
which is the pattern inventory of the 3-colorings of a 5-beaded necklace. Among the 21

terms we see, for instance, that there are 6 distinct colorings where there are two of the
first, one of the second, and two of the third color. <o

9.4.2 ExampLE. We consider the same 5-beaded necklace, again using three colors, with
the extra condition that we allow for reflections (that is, we are allowed to flip it about some

axis of symmetry). The group in question which acts on X is ©5 = (g : g5 =K'= e),
which has the cycle index (Theorem 8.2.2)

1 1 - 1
5Ce; (w1, T2, w3, T4, 05) + §~7C1913g5 R 0 (90? +dxs + 5361933)-

We can choose to assign some weight x, y, z to each color in Y. Applying Theorem 9.3.4
we get the pattern inventory

1 5 5 5
1—0((x+y+z)5+4(x +y +z )+5(x+y+z)(x2+y2+z2)2). 9.9)

By expanding (9.9) we obtain

o+ ;E4y +ztz+ 213y2 + 21’3yz +25°27 + 212y3 + 4$2y22 +4952yz;2 +2222°% +

:I:y4 + 2zy32 + 4:ry222 + 2:1:yz3 +at+ y5 + y4z + 2y322 + 2y223 + yz4 +2°.
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Comparing the terms in this expression to the corresponding ones in the previous example,
we remark that the coeflicients are smaller this time. Naturally — since two colorings
which are distinct with respect only to rotations might this time be equivalent under
reflections. °

9.4.3 ExampLE. From example 8.2.3, we have that the cycle index of the group & acting

. z?+81§+61§14+3zfz§+6zg . .
on the faces of a cube is o . Lets determine the 3-colorings of the

faces of a cube, using the colors red, blue and yellow. Assign to each color the weights 7, b,
y. By Theorem 9.3.4, we get that the pattern inventory is

(r+b+y) +8(r° +b% +°) 2 +6(r+b+y) > (r* +b* +y?)+3(r+b+1) 2 (r2+b%+3%) 2 +6(r2 +b2 +y2)?
24

which, when expanded, is equal to
o+’ + 7"5y +2r'p + 27“4by + 27"4y2 +2r°% + 37“3b2y + 3r3by2 + 27"3y3 +
2r°p" + 37"2637; + 67‘21723/2 + 37"26y3 + 2r2y4 +7b° + 2rb4y + 37"b3y2 + 3rb2y3 +
2rby4 + ry5 +00 4 b5y + 2b4y2 + 2b3y3 + 2b2y4 + by5 + yb.

We remark that there are 3 distinct ways of coloring the cube so that there are three red
faces, two blue faces, and one yellow face. This was also the answer to the question posed
in section 1.2. Naturally — since the cube and the octahedron are dual solids. We make an
attempt to interpret this in figure 9.1. o

Figure 9.1: The distinct colorings corresponding to 37"Sb2y.

e

9.4.4 ExampLE. We have that the cycle index of the group & acting on the vertices of an
icosahedron (example 8.2.5) is

1
% (1" + 242725 + 203 + 1523)

Considering a set of two colors, for instance black, and white — with weights b, and w —
yields the pattern inventory
b + 6w + 36 w® + 50%w” + 126%w" + 1467w’ + 240°w°® + 146°w" +
126" w® + 5b°w” + 3b*w'" + bw'! + w'
Of course, the same inventory goes for the 2-colorings of the faces of a dodecahedron
since it is the dual of the icosahedron. 23

9.4.5 ExampLE. The group which acts on the set of vertices of the dodecahedron has the
(example 8.2.6) cycle index

1
50 (m?o + 201‘?:10?; + 15xé0 + 24x§) .
Again we consider a 2-coloring black, and white — with weights b, and w. The pattern

inventory is
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b+ 0w + 60" w® + 216" w® + 966" w + 2620"°w” + 6816 w® +
1302b"%w’ + 21570 w® + 2806b''w” + 31586" w'” + 28060"w'" +
215765w™ + 13026" w™® + 6816°w™ +2626°w"® + 966 w'C + 210°w'" +

602w + bw'® + w?°
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10

Graphical Enumeration

It would be slightly inappropriate to omit a discussion on graphical enumeration, since
we actually began this text with such an example (Section 1.1). Lets resume this discussion
now. We review, first, the basic definitions in graph theory, and transition shortly to the
application of Pdlya’s Enumeration Theorem.

10.1 SimpPLE GRAPHS

10.1.1 DerINITION. Let V be a finite, non-empty, set — we will typically have that V' =
{1,2,...,n}. Let E € (‘2/), where (‘2/) ={{i,7} 14,5 € V,i # j}. We call V the vertex
set, F the edge set, and G = (V, E) the undirected, loop-free (and labelled) simple graph
with vertex set V, and edge set E. We will denote (‘2/) by V(z), and we have that

LGN

10.1.1 ExampLe. Let V' = {1,2,3}. Then V(2)' = (3) = 3. As per the discussion in
Section 1.2 we can consider all possible graphs. As shown in figure 10.1, there’s only
one possible graph with three labelled vertices and zero edges, three possible graphs
with one and two edges respectively, and finally there is only one graph with three edges.

Accounting for all possibilities — and summing them up,

((g)) . ((g)) N ((2)) N (@) _ o)

so provides us with 8 distinct, labelled, graphs where V' = {1, 2, 3}. o
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Figure 10.1: Every possible graph with the three labelled vertices 1, 2, and 3.

@@@@?@@%é@@

00 6o do &b

(2) gl
10.1.1 Prop. There are 2|V |- 2( 2) labelled graphs with | V| vertices.

Proof. It is sufficient to observe that for each edge e € (‘2/) we can choose either to join

it with £, or not. This can be illustrated with the binomial theorem:

(('5'))+(<'§>)+...+(g§:§) ) .

10.1.2 DeriNtTION. Let Gy = (Vy, Ey), and G5 = (Va, Es) be two undirected graphs.
We say that G; and G, are isomorphic if there exists a bijection o : V; — V5, such that,
foralli,j € Vi, {i,j} € E; if, and only if, {c(¢),0(j)} € Es. If such a o exists it is
called an isomorphism of graphs, and we write

G1 = GQ. *
10.1.2 ExampLE. We have that

Gi=({1,2,3},{{1,2},{2,3}}) = G2 = ({1,2,3}, {{1, 2} , {1, 3}}),

since 0 = (12) is a bijection, between V] and V5, satisfying the sought after properties of
definition 10.1.2.

10.1.3 DeriNtTION. Let V' = {1,2,...,v} be the vertex-set of a graph G. The natural
choice to consider, as a permutation group acting on the vertices of G, is the symmetric
group &,,. We define the symmetric pair group 65,2) as the group induced by the permuta-

)

tions in &,,. A pair-permutation o %) is an element of 6512 , induced by o, which permutes

V) by
P {i,j} = {0(i),5(j)} , for each {i, j} € V1. .

Remark. The pair group 6%2) acts on V(Q), since:
L e® (i, 5} = {e(i), e(j)} = {i, j}, forall {i, j} € V®;
1L g (R {i,5}) = g% {h(i), n()} = {gh(i), gh(5)} = (gh)® {i, 3}, for all
{i,j} e v®.
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10.1.3 ExampLe. For V = {1,2,3} we have that v® = {{1,2},{1,3},{2,3}}. We
establish, here, the induced group @éQ).

I: Toe = (1)(2)(3) € &; corresponds the element e = (12)(13)(23) € 6&2).

({1,2})({1, 3})({2, 3}) would, of course, be the correct way to denote ¢ but we
choose to omit the curly brackets and commas in order to obtain a more convenient
notation;

I For (123) € &s, we have that (123)® = (12,23,13) e 8%,

III: For (132) € &, we have that (132) = (12,13,23) € &;

IV: For (3)(12) € &s, we have that (12) = (12)(13,23) € &

V: For (2)(13) € &s, we have that (13) = (13)(12,23) € &

VI: For (1)(23) € &, we have that (23)® = (23)(12,13) € &', S

We need a way to establish the isomorphism classes of labelled graphs and we will

do so using the same approach as before — by finding the cycle structure monomials
e (21,29, ...) for each o e 65,2) in order to determine the cycle index

C@EJZ) (131,I27 .. )

of 65,2), and thereafter by applying Pélya’s Enumeration Theorem. Introducing the set of
colors Y = {A, B}, "absent" and "present’, we make use of the observation that K, — the
complete graph on v vertices — contains all possible ¢ = {7, j} € V@ e |K,| = |V(2) ',
so that our current predicament can be adressed as a problem of coloring the edge set of
K, where w(A) = 2” = 1 (the weight of an edge which is absent), and w(B) = z (a
present edge). The pattern inventory determines the isomorphism classes of Yv(z) / 6512)
— by enumerating the distinct unlabelled graphs, given a number of edges — and will be
expressed as a polynomial

(2)

€
D guet’.
e=0

10.1.4 ExampLE. A quick glance at figure 10.1, together with our findings in example
10.1.3, determines that

(1’? + 23 + 311502> .

| =

C@Ef) (z1,22,23) =
Applying PET, we get that
2 3y _ 1 3 3 2
<€Ef)(1+x’1+x A+ )— 6((1+x) +2(1+2)+3(1+z)(1+x )),
which equals 1 + x + ;r2 + m3. In other words we have that for three unlabelled vertices,

there’s one distinct graph with 0 edges, one distinct graph with 1 edge, one distinct graph
with 2 edges, and one distinct graph with 3 edges, as depicted in figure 10.2. ©
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Figure 10.2: Isomorphism classes of graphs with three vertices.
’ ) .\3 &
e o & 9o

10.1.5 ExampLE. Table 10.1 contains the elements of 6512) — the group of pair-permutations

on V® = {{1,2},{1,3},{1,4},{2,3}, {2, 4}, {3,4}}.

Table 10.1: A list of group elements in 6512).

(12,13,14)(23, 34, 24) (12,23,24)(13, 34, 14) (12,24,14)(13, 23, 34)
(12,14,13)(23, 24, 34) (12,24,23)(13, 14, 34) (12,14,24)(13, 34, 23)
(12,23,13)(14, 24, 34) (12,13,23)(14, 34, 24) (12)(34)(13,24)(14, 23)
(13)(24)(12,34)(14,23)  (14)(23)(12,34)(13,24)  (12)(34)(13,14)(23,24)
(13)(24)(12,14)(23,34)  (23)(14)(12,24)(13,34)  (13)(24)(12,23)(14, 34)
(14)(23)(12,13)(24,34)  (12)(34)(13,23)(14, 24) (13,24)(12, 23,34, 14)
(14, 23)(12, 24, 34,13) (12,34)(13, 23,24, 14) (14,23)(12,13, 34, 24)
(12,34)(13, 14, 24, 23) (13,24)(12,14,34,23)  (12)(13)(14)(23)(24)(34)

Table 10.2: Types, and cycle structure monomials of elements in @iz).

Type (o # Sum
16] m? 1 xff
-127 2? m%zg 9 9%%1’3
-217 4! Toxry 6  6romy
3% 228 8zl

From table 10.2 we can determine the cycle index, which is
1/ 2 2 i 2
(g@ (1,22, 23,24, x5, Tg) = 51 (xl + 9z7x5 + 6xox4 + 8x3) .
Applying PET, we get that
1
(e® = 37 ((+2)°+9(1+2)*(1+2")" + 6(1+2”)(1+2") +8(1 +2°)?)

which equals 1 + x + 24° + 32° + 22" + 2° + 2°. Hence with four unlabelled vertices
we have one distinct graph with 0 edges, one with 1 edge, two with 2 edges, three with
3 edges, two with 4 edges, one with 5 edges, and one with 6 edges (viz. K}). Figure 10.3
depicts them. o
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Figure 10.3: Isomorphism classes of graphs with 4 vertices.

Before congratulating ourselves we should consider that the computations involved in
determining Cg(z) has, for far, been rather laborious. Needless to say, for larger v the

computational load increases drastically. The explicit formula for computing C@z) is
established in [7], by Harary and Palmer.

10.1.2 THEOREM.
1 kjaks g k(%) (r)irde
o = ¥ i Tt [Tty Tt
() r<t

where (r,t) = ged(r,t), and [ r,t] = lem(r,t). Summation is taken over partitions
(5) = [ljl,Qh, N L ] of v — where the notation (j1, jo, - - -, Jo ) is used.

Proof. See []. | |

10.1.6 ExampLE. We end this section with an application of Theorem 10.1.2 by computing

(g, and determining the pattern inventory. There are seven partitions of 5: [15 :|,
5

[137 21:|, [12, 31 ], [11, 4! ], [11, 22], [21, 31 :|, and [51 :| We go through them, case by case,

using the (j1, Jo, - - - , Jo, ) Notation. For brevity we cannot display complete calculations,

only their results.

I: For (5,0,0,0,0), we have that

L = N S - L.

TT7% 5! 1551200!...500! 15517

2k _ 1-0 5-0 _ .

k Tok+1 = T3 ... T = ;

. )

s RCE) 10 40 5(3) 10,

I AR T, = 21 ...(%s700) T5 = 7
(r,t)jrde _ 0,0 0 _

]._['r<t 'T['r,t] - TaZ3 ... T20 = 1.

II: (3,1,0,0,0), we have that

1 — 1 — 1.
TTk* jp! - 133121113%01...5%0! IS EEIPETE
K2kt _ 1.0 20 50  _ .

k Tok+1 = T3 ¥ ...Tpnp = 1
g k(E) 4 410 o 4

I zpahe! T, = x7...(z5270) 25 = x1;
(r,t)5r7¢ _ 3.0 0 _ 3

[T« Tt = a3 . .. T2 = Zy-
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II: (2,0,1,0,0), we have that

1 _ 1 - 1.
TTE% 5! - 12212001311!...590! - 6’
kJ2k+1 _ 10 0 _ .
kT2k+1 _ = L3ls .- -T11 = @33
dar_K() 1 1\0 0 410 o i

[T, (ﬂﬁkiﬂzk ) Lk = T (9021‘4) 562~--($5$10) Ts = X1
(rt)grJt _ 0 2 0 _ 2
l_[’r<tx[r,t] = ToXg...2Ty = Zs3.

IV: (1,0,0,1,0), we have that

1 _ 1 = 1.
[Tk 5! - 1111290!13%01411!5°0! - 47
k]2k+1 _ 0.0 0 _ .
k Tok+1 = T3T5. . T1y = 1;
don K(%) 0\0 o 1\ o _ )
nk $k$2k Ik = T1T9 T\ Toly T ... = Loy,
(r,t)jrde 0010 0
1_[7‘<t x['f‘,t] = LoX3LyTs ... To0 = Ty.
V: (1,2,0,0,0), we have that
1 = D S - 1.
[T k7 5! - 1111222139014°0!5°0! - 8’
kjok+1 _ 0.0 0 _ 1:
k$2k+1 = 3Ty ...T171 = 3
Jok k(Jzk) _ 0\2 0 1\0 2'(2) _ 2 2,
[l zpah! T, = (z29) 27 (@0m1) 25 2 ... = xiT3;
(r,t)jrde _ 12 0 0 _ 2
l—IT'<t ‘T[T‘,t] = Ty T3...Tgo = To.
VI: (0,1,1,0,0), we have that
1 — . — 1.
[Tk® gy, 1901211131114°0!5°0! 6’
kjar+1 _ 1.0 0 _ .
kx2k+1 . = T3y ... T11 = I3;
don K(%) 0\l o 1\0 0 o
1. (l’kxgk ) X = (xlxg) 1 (w2$4) Tog... = q;
(r,t)jrde — 0.0 1 0 =
1_[7’<t I[T,t] = Iox3g...Tg...Ton = ZTg.
VIIL: (0,0,0,0, 1), we have that
S S = 1 N
Tk 5! 190!...5%1! 57
kjak+1 _ 0 2 0 _ 2,
k L2k+1 = L35 -+ T11 = Ts
o K(%) 0\0 o a0 o _
l_[k ($k$2k ) Lk = ($1$2) Lpe-- (3353310) x5 = 1
(r,t)jrde _ 0.0 0 _
l_[r<t .Z'[nt] = ToXg...2Tyq = 1.

Multiplying the terms in each of (I) to (VII) respectively, and summing up all of the resulting
products, so provides us with

1‘10 1‘4ZE3 xX 1‘3 €T {L’2 .1321‘4 13T 1‘2
1 142 143 244 142 14346 5
— 4 + + + + —=
120 12 6 4 8 6 5’7
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so that
C@? = % (x}o + 10&841{7}3 + 209611'2 + 30:62.’L'i + 15x§z§ + 20z 2376 + 24x§) .
Applying Pélya’s Enumeration Theorem — viz. substituting 1 + 2" ina Tj-representative,
and cleaning up the result — yields the polynomial
20+ 2% +22% + 42" +62° + 62° + 620 + 42 + 227 + 2 + 1,

which is the pattern inventory of (5, ¢)-graphs. In figure 10.4 we draw each isomorphism
class. 3

Figure 10.4: Isomorphism classes of graphs with 5 vertices.

)
L1

10.2 MuLrTigrAPHS Generalizing on the idea of 2-colorings of the complete graph

K, is a natural next step which provides a method of classifying
non-isomorphic undirected multigraphs on a set of v vertices. Instead of the colors
"absent", and "present’, we introduce the set Y = {0, 1,2, ...,m} of multiplicities of an

@
edgee € V(z), with weights w(i) = w;. The weight of a mapping f € yY , i.e. for
e ={v,vy} € V(2), simply states how many edges there are between vy, and vs:

w (f({v1,v2})) = w(k) = wy,
indicating that there are k edges between vy, and vs.
10.2.1 Exampie. Let V) = {{1,2},{1,3},{2,3}} be as in example 10.1.3, and let
Y = {0, 1,2} be the set of edge multiplicities. We saw that
1,3
C@f) (21,29, 73) = 5 (zl + 2x3 + 33011‘2).
By applying Pdlyas Enumeration Theorem we get the polynomial
wg + wgwl + wng + wowf + wogwiwa + wowg + ’wf + wwa + wlwg + wg,

which generates all possible non-isomorphic multigraphs with three vertices and a maxi-
mum edge multiplicity of 2. Note that by letting wy = w; = 1, and wy = 0, we get the
number of non-isomorphic simple graphs of three vertices (figure 10.2), whichis 4. ¢
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Figure 10.5: Non-isomorphic multigraphs with three vertices and a maximum edge multiplicity

of 2.
[ [

® o0 0o_o 03 & o—e
10.2.2 ExampLe. Let V' = {1,2,3,4, 5}, and consider multigraphs of 5 vertices. We still
deal with a maximum edge multiplicity of 2. It was seen in example 10.1.6 that

C@m = 120 (rl + 10T1$2 + 20r1x3 + 30r2r4 + 151:1”52 + 20212376 + 24%)

As in example 10.2.1 we apply Pélyas Enumeration Theorem, through substituting wf) +
w] + ws into a x;-representative, by which we obtain

10 9 8 2 7 3 6 4 5 5 4 6 3 7
wy + wowq + 2wowi + dwyw; + 6wyw, + wa’wi) + 6wow, + dwqwy +
7 2 6
2wywy + wowy + Wi + wows + 2wyw,wa + bwywiws + 12wowi we +
54 45 6 9
16wow;ws + 16w, wi’wg + 12wywi wy + 6wyw, wo + 2wowiwy + w%wQ +
2 3
2w0w2+6w0w1w2+17w0w1w2+30w0w1w2+37w0w1w2+30wpw1w2+
6 2 7 2 872 3 6
17w0w wy + 6wow; wa + 2wiw; + 4w0w2 + 12w0w1w2 + 3Ow0w% %
1 5 3 6
4Twowiw +47w0w1w2 +30w0w1w2 + 12w0w1w2 + 4wy wy +6w0w +
34 4 4
16wowwy + 37w0w1w2 + 47w0w§w + 37w0w1w2 + 16w0w1w2 +
5 5 5
6w wy + 6wyws + 16wywi ws + 30wy wiws + 30wywiws + 16wew, wo +
5 5 4 “6 3 6 2 7 6 3 6 6
6wiws + 6wywy + 12wywiwy + 1Twiwiwy + 12wewiwy + 6wiwy +
3 2 7 7 & 2 8 8
4wy wg +6wowi we + 6wowi Wy + 4w we + 2w wsy + 2wow, wa + 2w wy +
9 9 10
WoWo + wi1We + (5

It is an unwieldy expression, but it provides plenty of information. If we let wg = wy = 1,
and wo = 0, it sums up to 34 — the number of non-isomorphic simple graphs presented
in figure 10.4. If we let wg = wy = ws = 1 it sums up to the number of non-isomorphic
multigraphs of five unlabelled vertices — there are 792 such graphs. Moreover, letting
wy = 0, w; = 1, and wy = 2 counts the total number — 3275 — of edges which are
present in the list of all non-isomorphic multigraphs of five unlabelled vertices. o
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11

Chemical Enumeration

Pélya’s original article dealt in ways of enumerating chemical isomers. Such an example
will be presented in the end of this chapter, and it will be the very same one as given in [8].

11.1 DirecT ProDUCTS We begin our discussion with some ideas related to group
actions.

11.1.1 ExampLe. Let X = {21,29,...,2,},and Y = {y1,¥2,...,Ym} be two finite,
and disjoint sets. We take & to be a group of permutations of X, and we take $) to be a
group of permutations of Y. We have that

1 i @ in
(s = @0 Z_(]ili?minxfa:; L
(2)

1 1 Js om
CS’J = @ ZhiliQ...in«lIl] 'T22 cea Ty
(4)

are the cycle indices for &, and ), where g; ;, ; (resp. h;,;, ; )are the number of per-
mutations in & (resp. §) of type [1“ 22 ,nZ”:| <resp. [1J1 202, mjm]). Sum-
mation is taken over all partitions (¢), and (), of n and m respectively. Let U = X UY,,

then to each choice of g € & and h € §) there corresponds a new permutation group —
of U — which we define by

x> gz, ifxr € X, andy — hyify € Y.

We denote this permutation group by & X §) — the direct product of & and §j (cf. example
3.4.1). There are |&| | $)| permutations of the 1 +m objects in U, and in Cauchy’s notation
each pair g X h correspond to

(951 Ly ... Tn Y1 Y2 .. ym)
Ty Ty ... Tp! Y1 Y2 .. Ym! ’
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If g € & has type [1i172i2, . nz], and h € $) has type [1j172j2, . nJ:|, then the

type of g X h is [1i1+j‘, 2i2+j2, . ni’"””] — since each cycle in U lies either entirely

in X, or entirely in Y. We therefore have that the cycle structure monomial (g, — the
term in the cycle index (g xs, corresponding to the element g X h — must be equal to the
product of the term in (g corresponding to ¢, and the term in (g corresponding to h, viz.
Cgxh = C¢Cp- This applies to all terms of (g, and all terms of (g. Hence

Coxs = CoCs- o

11.1.2 ExampLE. The preceeding example can be illustrated by an enumeration problem
which concerns a traingle and a square. The groups of rigid motions ®4 and ©3 per-
mutes the vertices Vg = {21, 9, T3, 24} of O, and the vertices V5 = {y1, y2, y3} of A
respectively. We have that

1,3
C@S = 6 (ZEl + 31’11}2 + 21}3),
1, 4 2 2
(o, = 3 ( 1+ 2xixe + 325 + 2:64).

The direct product ®3 X D4 is a permutation group of V4 U Vg, and so

1,3 4 2 2
(oaxd, = TS (xl + 3179 + 2m3) (zl + 22179 + 375 + 21‘4).

We examine the colorings of the triangle together with the square, i.e. we wish to color
them both at the same time. The given colors are C' = {red, blue} with the respective
weights w(red) = r, and w(blue) = b. We imagine the triangle and the square alongside
eachother.

Figure 11.1

AL

The number of color configurations is 2" = 128, but not all of them are distinct. By
a suitable transformation of A, or O (inclusive disjunction), one configuration can be
obtained from another. We seek the patterns of C VAUV”, viz. we wish to determine the
pattern inventory of

VaUuVg

/Q5><3§~

Applying PET — substituting ™+ ina xj-representative, and cleaning up the result —
yields the polynomial

"+ 2r% + 4r°0% + 51“4b3 + 50" + 4020 + 2r° + b

We interpret this result in figure 11.2. 23
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Figure 11.2

Al AL A A A Al Al Ald
Al A A Al Al Ald
All AL A Al
Al A AL Al
Al Al

11.2 Tue Kranz Grour Let X = {z1,29,...,2,},and Y = {y1,y2,. .-, Ym}

be two disjoint and finite sets as before. We take & to be
a (finite) group of permutations of X, and we take £ to be a (finite) group of permutations
of Y. Consider the cartesian product X X Y = {(x,y) : € X, andy € Y'}. We can
construct a group of permutations of X X Y in which the group elements are defined in
the following way:

Choose an element in g € &, and to each x € X choose an element h, € §.
These elements determine a permutation of X X Y by

(z,y) ¥ (g2, hey), wherez € X,y €Y.

There are |&| |$|™ different choices of (g, h,) — permutations of & X $) — which
together form a group called the corona of & with respect to ) , or the Kranz & [§].

11.2.1 TueoreM. The cycle index of & [§)] is obtained by substituting

Ui = Co (@g, Tok, T3, - - ) into G (Y1, Y2, Yz, -+ - )
Viz.

Corn] (21, %2,...) = (o {Cs (21,22,...), (g (X2, %4,...),...}.

Proof. See [4]. | |

11.2.1 ExamPLE. Lets consider three cubes. We want to color each one of them using C' =
{red, blue}. The set of cubes can be permuted, while each separate cube can also be rotated,
and we wish to find the number of non-equivalent colorings under permutations and
rotations. The group under consideration is &3 [ & ], where & is the group of permutations
of the faces of a cube, and S5 is the symmetric group of degree 3. We have that

(o, (w1, 22,23) = % (37? + 3712 + 2583) ;

6 2 2 2 2 3
Co (21, 22,23, 4, T5, Tg) = b7 (1:1 + 8w + 617y + 32725 + 6I2).

Applying Theorem 11.2.1 we get that (g, [s] (21, T2, . . .) equals

é {[CQS (21, 22,1 + 3G (21,22, ..) Co (w2, 24, -.) + 2o (25, T, - ~)}-
(11.1)
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It would be feasible to expand (11.1), but this would yield a cycle index too unwieldy.
Instead we choose to give weights w(red) = w(blue) = 1 so that, when applying PET,
each (s = 10. Thus
1/ 3
Coafe] (2,2,...) = 6(10 +3+10-10+2-10) = 220.

We can therefore conclude that there are 220 non-equivalent colorings of the cubes. ¢

Table 11.1: Characteristics of &, £, & X $), and & [H].

Group & H (G2 5] &[9]
Degree n m n+m nm
Order 6] 5] [8]]9] 8] |5]"

Cycleindex C@ Cﬁ C@Cﬁ <Q§ {Cf] ('7;17‘7:27"')’Cf) (.73273)4,...),...}

11.3 CycrorroPANE A C-H graph represents a molecule formed by atoms of va-

lences 1 and 4. An atom of valence 4 is identified with a vertex
C, a carbon atom (a black ball in figure 11.3), and an atom of valence 1 is identified with
H (hydrogen, a gray ball). We shall follow the discussion as presented by Pélya in [8],
sections 56 — 57, to look at derivatives of cyclopropane and their isomers. The graph of
cyclopropane consists of three carbon atoms and six hydrogen atoms. The three carbon
atoms, of valence 4, are joined in a cyclic arrangement, and the hydrogen atoms are joined
pairwise to each carbon atom. Our first concern is to determine in what ways the graph
of cyclopropane can be mapped into itself. Three interpretations 1%, 2™ and 3 (as given
in [8]) must be considered.

Figure 11.3: Structure of a C3Hg-cyclopropane molecule.

1% We can identify a group of rigid motions which leaves a right prism with an equi-
lateral triangular base invariant under spatial rotations. The 6 endpoints in figure
11.3 are the six vertices of the prism. These points are subjected to a permutation
group which Pélya called the group of the stereoformula. We denote this group by &,
and we have that

6 3 2
(xl + 3.782 + 2.’}83)7

| =

Co (w1,22, 3, T4, 5, T6) =

2" The triangle with vertices corresponding to carbon atoms (of valence 4) can be
mapped into itself in 6 ways (D3). There are three pairs, consisting of two endpoints
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connected to a vertex of valence 4. The vertices in each pair can be interchanged.
Hence for each mapping of the triangle, the remaing vertices can be permuted in
2° =8 ways. We therefore obtain 6 - 8 = 48 topologically congruent selfmaps, as
Pélya phrased it. These selfmaps constitute a group, which turns out to be the kranz
&3 [&,], or — as Pélya called it — the group of the structural formula. By Theorem
11.2.1 we have that (s [,] (Z1, T2, T3, T4, &5, Tg) equals

1,56 4 2 2 2 3 2
4—8(;171 + 3z + 92T + 62714 + TTo + Gxoxy + 823 + 87¢);

4. We look at the prism as described in the 1" case, this time as subjected also to reflec-
tions in addition to spatial rotations. Here, the six vertices of the prism are subjected
to a permutation group of order 12 — the extended group of the stereoformula, as
phrased by Pélya. We denote this group by &, and we have that

1 /6 3 2 2 2
C@ ($1,$2,IE37$47£L'5,(E6) = E (.fL’l + 41’2 + 21‘3 + Sl'lmg + 2(E6) .

A derivative of cyclopropane is acquired when hydrogen atoms are replaced by so-called
monovalent radicals — a monovalent radical being a monovalent atom, or a molecule
with a free bond. We imagine the six radicals at the endpoints of the cyclopropane graph
in figure 11.3. They form a configuration, and each configuration provides a chemical
formula for a cyclopropane derivative. If two configurations can be transformed into
eachother — i.e. if they are equivalent with respect to the associated group — then they
represent the same derivative. In the case of stereoisomers the relevant group is &, the
group of the stereochemical formula. The group associated with structural isomers is
&5 [&,], the group of the structural formula. In the extended group of the stereochemical
formula, &, a derivative is equivalent to its enantiomer — its mirror image (an optical
isomer) — in addition to the molecules to which it is equivalent under spatial rotations.

We seek to determine the number of isomeric substitutes of cyclopropane of the form
CS X k le Z m»

where k+1+m = 6,and X, Y, Z are so-called independent radicals. Independent means
that if X;,Y;Z,,, and X, Y}, Z,,» have the same molecular structure then k = Koi=1,
andm = m'. For example the radicals H, CH3, CoHjy are not independent of eachother —
the radicals Hs and CoHj attached to C3 have the same molecular structure as if we were
to attach H, and (CH3)5 to Cs.

Assign to XY, Z the weights w (X) = z, w(Y) = y, and w(Z) = 2. Applying
Theorem 9.3.4 to (s, (s,&,, and (¢ provides a pattern inventory with respect to each
group.
L (s (@+y+2z..)=2"+2°y+ 22+ 42"y + 52'yz + 422” +
4oy + 10m3y2z+ 1091:“11/,22 +42°2° +4z2y4 + 10x2y32 + 18.’[‘23/222 +
10z yz3 +42°" + xy’ + 5.r13/4z + 10.ry3z2 + 10my223 + 5.ryz4 +
x2° + y6 + y5z + 4y422 + 4y 2+ 4y224 + y25 + 2z

78



CYCLOPROPANE CHAPTER 11 Chemical Enumeration

II: (o0, (T +y+2z,...)= z° +x5y+x5z+ 2$4y2 +2x4yz+ 212 +
2x3y3 + 322 + Z’)$3y,z2 +22°2° + 21‘2y4 + 3z.2y32 + 5x2y222 +
3x2yz3 +2r° 2t :vy5 + 2xy4z + 3xy322 + 3xy2 24 2myz4 vz’ +
yG +14°2 + 2y4z2 + 2y323 + 2y2z4 +y2” + zG;

I1I: Ce(x+y+2z,...)= 2%+ $5y +2°2 + 3904y2 + 3$4yz +32%27 +
3x3y3 + 62y + 6.%3y22 +32°2% + 3m2y4 + 6.@2%32 + 11x2y222 +
6x2y23 +32°2 xys + 3my4z + 6xy3z2 + 6$y22 + 390_1/24 vz’ +
yG +9°z + 3y4z2 + 3y323 + 3y224 +y2” + 20

We interpret the result in the I expression by reading the coefficient before x4y2. Here,
there are four non-equivalent stereoisomers of the cyclopropane derivative of the form
C3X,Y5. Two of these are enantiomers, which the coefficient before x4y2 in the 1"
expression indicates. In the ™ expression the coeflicient is 3, since optical isomers are
equivalent — they are in the same orbit, when subjected to the extended stereochemical
group. In the ik expression the coefficient before x4y2 is 2 — indicating that spatial
arrangements are disregarded alltogether — i.e. there’s only two non-equivalent structural
isomers of the C3.X,Y5 cyclopropane derivative.

Figure 11.4: The four non-equivalent stereoisomers of the C3X4Y5 cyclopropane derivative,
when subjected to & — the group of the stereoformula. (X = blue ball, and Y = red ball.)

Qiso. Biso. Yiso. 6iso.

The two isomers 7y, and J;, are enantiomers — mirror isomers — and therefore equivalent
with respect to €, the extended group of the stereoformula.

Figure 11.5: The two non-equivalent structural isomers of the C3 X, Y5 cyclopropane derivative,
when subjected to &3 [&,] — the group of the structural formula.

Qiso. ﬂ iso.
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