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Abstract

Consider a set of matrices that is closed under both linear combinations and
the ”commutator” AB � BA of any pair of matrices A,B of the set. This is
what is known as a linear Lie algebra; these generalize to abstract Lie algebras,
which possess a commutator-like operation but need not consist of matrices.
We begin with a brief discussion on how Lie algebras arise, followed by an
investigation of some basic properties of Lie algebras and what can be said in
the general case. We then turn to semisimple Lie algebras—those that can be
built up from ”simple” ones—and study in depth their representations, or ways
to inject them into linear Lie algebras in a structure-preserving fashion. After
deriving a su�cient breadth of results, we then proceed with exploiting a certain
representation and its properties in order to deconstruct any given semisimple
algebra into its so-called Cartan decomposition. Finally, we show how any such
decomposition can be understood in terms of its ”root system”, an associated
geometric object embedded in some Euclidean space.
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1 Introduction: Lie Groups

This introductory chapter is meant to guide the reader through the construction
of Lie algebras as ”linearizations” of Lie groups, which is how they arise in
practice. Here we assume familiarity with concepts from di↵erential geometry,
though one can safely skip to to the next section without losing any necessary
theory as long as one is willing to accept Lie algebras at their ”face value”.
We start with a definition:

Definition 1.1. A Lie group is a smooth manifold equipped with a group
structure in such a way that (g, h) 7! gh and g 7! g�1 define smooth maps
G⇥G ! G and G ! G, respectively.

One can show that GL(V ), the group of all invertible linear operators over V ,
is a Lie group for any finite-dimensional real vector space V (see Section 7.1 of
[4]). Along with its Lie subgroups—that is, the subgroups that also inherits a
manifold structure from its ”parent”—GL(V ) provides many canonical examples
of Lie groups. We will here be content with pointing out only one of these (as
Lie groups will not be our main topic of study); this subgroup is SL(V ), the set
of all linear operators on V with determinant equal to 1.

Definition 1.2.

• A map ⇢ : G ! H between Lie groups is said to be a homomorphism

(of Lie groups) if it is smooth and a group homomorphism.

• A map ⇢ as above is an isomorphism (of Lie groups) if it is bijective
with smooth inverse.

• An isomorphism ⇢ : G ! G is called an automorphism of G, and we
write ⇢ 2 Aut G.

Let e denote the group identity of G. We begin with considering for any given
g 2 G the conjugation map  g : G ! G, i.e.  g(h) = ghg�1 for all h 2 G. It
is a group isomorphism from G to itself with inverse  g�1 . Moreover, it is a
smooth map from G to itself since it is the the group inversion map followed by
two applications of the group multiplication map, and these are smooth maps
by assumption. Then  g�1 is smooth, too, meaning  g is an automorphism of
G. As g varies in G, we obtain a map

 : G ! Aut G,
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and since  gh =  g � h, this map is in fact a group homomorphism. Again fix
g 2 G. Since  g is smooth, we may consider its di↵erential at the identity:

(d g)e : TeG ! T 
g

(e)G.

Let us call this di↵erential the adjoint representation of g in G and write adG g
as a shorthand. Since  g(e) = geg�1 = gg�1 = e,

adG g : TeG ! TeG,

and because tangent spaces are real vector spaces and di↵erentials are linear
transformations between them, we have adG g 2 End TeG for all g 2 G, where
End TeG denotes the set of all linear operators of TeG. We can be more specific:
The di↵erential of a smooth map with smooth inverse (which we know  g to
have) is always invertible, so adG g is invertible. If we write GL(TeG) for the
group of all invertible linear operators on TeG, we therefore have a map

adG : G ! GL(TeG).

Let g, h 2 G be arbitrary. By the chain rule for di↵erentials,

adG gh = (d gh)e = (d( g � h))e = (d g)e � (d h)e = adG g � adG h,

and it follows that adG is a group homomorphism. Since both its domain
and codomain are Lie groups (as for the latter, recall the discussion preceding
Definition 1.2) we naturally wonder if not adG is also a homomorphism of Lie
groups. This is in fact true, though we will not show it here. As it allows for
the identification of G with a Lie subgroup of a linear group, i.e. it represents G
as a group of linear operators (though perhaps with loss of information if adG
is not injective), we call adG the adjoint representation of G.
Now, let us write L = TeG. As adG is a smooth map, it is di↵erentiable, and its
di↵erential at e should send elements of L into the tangent space of GL(L) at
adG e = (d e)e = (d IdG)e = IdL. (To verify this last claim, let X 2 L. Then
(d IdG)e(X)(f) = X(f � IdG) = X(f) for all f 2 C1(G), or (d IdG)e(X) = X.)
To understand this tangent space better, we make use of the fact that GL(L)
is a smooth embedded submanifold of End L, where the latter denotes the real
vector space of linear operators on L. Due to this inclusion, Proposition C.3 of
[5] tells us that

Remark. The tangent space to GL(L) at IdL can be regarded as the set of all
A 2 End L such that there exists a smooth curve � in GL(L) with �(0) = IdL
and d�/dt|t=0 = A.

and so if we disregard exactly what maps to what, we see that what we really
have is a mapping

L ! End L.

The notation is at this point starting to get cumbersome, so let us just write ad
for this map. If one has a background in computer science, then it is clear that
we may define a function [�,�] : L⇥ L ! L by ”uncurrying” ad:

[X,Y ] = ad(X)(Y ), (X,Y 2 L).
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In words, we send elements X 2 L to functions ad(X) 2 End L, and then
evaluate those functions at elements Y 2 L. Now, ad is linear (it is just a
di↵erential whose image we embedded in a new codomain), meaning [�,�] is
linear in its first argument. But each [X,�] is a linear operator on L, so we see
that [�,�] is bilinear.
So far, our discussion has taken us from our initial Lie group G to the real vector
space L = TeG, which we now see to be equipped with a bilinear operation
[�,�]. By giving more attention to details, one can derive additional properties
of [�,�], such as it being skew-symmetric and satisfying a certain technical
identity called the Jacobi identity. We will will be content with stopping here
since this gives most of the motivation we need. For the reader, the takeaway
is this: What we have derived here is exactly a Lie algebra.
As intuition for why the Lie algebra of a Lie group could be of value, suppose
G is connected; it is a fact (see Section 8.1 of [4]) that G is generated as group
by any neighbourhood of e and that any homomorphism ⇢ : G ! H is uniquely
determined by the di↵erential d⇢e : TeG ! TeH. This is perhaps not so surpris-
ing, as the tangent space TeG is in some sense the ”best linear approximation”
of the Lie group at its identity (at least if we apply our intuition on submanifolds
of Rn), and it is natural that the additional rigorosity provided by the group
structure could force this approximate relationship into a more exact one.
For our final remark of this section, we state (without proof) that

d⇢e([X,Y ]) = [d⇢e(X), d⇢e(Y )], (X,Y 2 L),

where we in the right-hand side mean the operation [�,�] as defined on TeH.
This identity motivates the definition of a homomorphism between Lie algebras
as a linear transformation that preserves the bilinear operation.

2 Lie algebras

Throughout the remaining text, all results and their accompanying proofs are,
unless otherwise stated, based partly or completely on those of [7].

2.1 Fundamental definitions and results

Let V be a vector space over some field F , and let End V denote the set of
all linear operators of V . Of course, ”End” stands for endomorphism, which
here means a linear mapping from V to itself, or just a linear operator of V .
The set End V is itself a vector space over F under addition of operators and
multiplication of operators with scalars. Moreover, End V is (in the terminology
of [7]) an F-algebra, by which is meant a vector space over F equipped with a
bilinear operation. (The reader might be more familiar with referring to such a
structure as an algebra over a field). In End V , the bilinear operation is given
by composition of operators and is as usual denoted by juxtaposition. Note
that though composition is associative, we do not in general require the bilinear
operation to be associative in our definition of an F -algebra.
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Now introduce a new binary operation [�,�] on End V , called the bracket, by
letting [A,B] = AB�BA for all A,B 2 End V . We usually suppress the comma
and write [AB] if there is no ambiguity. Clearly, [AB] = 0 if A, B commute,
so the bracket can be said to be a measure of the ”commutativity” of pairs of
operators. Equipping End V with this operation gives rise to an F -algebra, but
a di↵erent one from when the operation is composition. For this to be the case,
we have to verify that the bracket is bilinear. Starting with the first argument,

[aA+ bB, C] = (aA+ bB)C � C(aA+ bB)
= a(AC � CA) + b(BC � CB) = a[AC] + [BC].

Here as in the rest of the text we write A,B, C, . . . for operators in End V and
a, b, c, . . . for scalars in F . Linearity in the other argument then follows from
[AB] = AB � BA = �(BA � AB) = �[BA], or in words, the anticommutative
property of the bracket.

Definition 2.1. A linear Lie algebra is an F -subalgebra of End V , i.e. a
subspace of End V closed under the bracket.

We say that a linear Lie algebra L, contained in End V , is finite dimensional if
V is. When we view End V as a linear Lie algebra in its own right, we denote it
gl(V ), and we use lowercase letters x, y, z, . . . to denote its elements. The only
di↵erence is that we explicitly acknowledge the additional structure provided
by the bracket.
Linear Lie algebras satisfy many important and useful results, but what is re-
markable is that many of these hold for a larger class of vector spaces modeled on
linear Lie algebras. These are called abstract Lie algebras, or just Lie algebras,
and their definition is given next.

Definition 2.2. Let L be an F -algebra, with bilinear operation [�,�], which
we call the bracket of L. We say that L is a Lie algebra if, for all x, y, z 2 L,

(L1) [xx] = 0;

(L2) [x[yz]] + [y[zx]] + [z[xy]] = 0 (the Jacobi identity).

Both axioms are generalizations of properties satisfied by the bracket of a linear
Lie algebra: (L1) is trivial in the linear case since [xx] = xx� xx = 0, but (L2)
is not as obvious. For completeness sake we verify it below, which additionally
shows that linear Lie algebras are (as expected) special examples of Lie algebras.
Letting L be a linear Lie algebra, we see that for all x, y, z 2 L,

[x[yz]] + [y[zx]] + [z[xy]] =

[x, yz � zy] + [y, zx� xz] + [z, xy � yx] =

[x, yz]� [x, zy] + [y, zx]� [y, xz] + [z, xy]� [z, yx] =

xyz � yzx� xzy + zyx+ yzx� zxy � yxz + xzy + zxy � xyz � zyx+ yxz =

0� 0� 0 + 0� 0� 0 = 0.
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In addition, anticommutativity of the bracket of abstract Lie algebras follows
from bilinearity and (L1), since these together imply

0 = [x+ y, x+ y] = [xx] + [xy] + [yx] + [yy] = [xy] + [yx], (x, y 2 L).

Rearranging this equation, we obtain [xy] = �[yx].
We say that L is finite dimensional if it is finite dimensional as vector space. If
L moreover happens to be a linear Lie algebra, then we (as before) impose that
its underlying vector space V be finite dimensional.
As is typical of many other algebraic theories, we have notions of substructures
and structure-preserving transformations between Lie algebras.

Definition 2.3. A subalgebra K of a Lie algebra L is an F -subalgebra of L,
i.e. [xy] 2 K for all x, y 2 K.

Definition 2.4. Let L,M be Lie algebras. A homomorphism (of Lie algebras)
is an F -algebra homomorphism � : L ! M , i.e. a linear transformation such
that �([xy]) = [�(x)�(y)] for all x, y 2 L.

Definition 2.5. A bijective homomorphism � : L ! M is called an isomor-

phism. When an isomorphism exists between L and M , we call L and M
isomorphic, and write L ⇠= M .

To say that L is a linear Lie algebra is hence equivalent to saying that L is a
subalgebra of gl(V ) for some vector space V .

Remark. To shorten definitions and proofs, we will adopt a shorthand where
we allow expressions to contain one or more sets where elements would usually
stand, e.g. [xL]. Such expressions are to be understood as denoting the set of all
expressions obtained when the participating set(s) are replaced with one of its
elements, assuming that the resulting set is well-defined. Our previous example
would therefore define the set [xL] = {[xy] | y 2 L}, and, in a similar spirit
[LM ] = {[xy] | x 2 L, y 2 M}. There is one exception to this rule, however,
and that is when we write [IJ ] for two ideals I, J of the same algebra. We
explain next what we mean by an ideal, and after that, our convention for [IJ ].

We use this shorthand in our next few definitions. The symbol ⇢ will be reserved
for inclusions of sets and does not necessarily imply proper inclusion.

Definition 2.6. An ideal I of a Lie algebra L is a subalgebra of L for which
[xI] ⇢ I for all x 2 L. That is, x 2 L, y 2 I imply [xy] 2 I.

Due to anticommutativity, it would not have mattered had we instead chosen
[Ix] ⇢ I to be the defining property for ideals. We will often make use of this
fact when showing that a subalgebra under consideration is an ideal.
There are always at least two ideals in L—the zero subalgebra {0}, denoted 0,
and L itself. These are the trivial ideals, and may of course coincide, which
happens when L = 0. As in ring theory, if I, J are ideals, then I \ J and I + J
are, too, which not di�cult to verify. For a third way to construct new ideals
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from old, consider the set of all finite linear combinations of elements [xy], where
x 2 I, y 2 J . We denote this set [IJ ] (or [I, J ]). In set-builder notation,

[IJ ] = {
Pn

i=1ai[xiyi] | n 2 Z+; ai 2 F, xi 2 I, yi 2 J ; i = 1, 2 . . . , n}.

Clearly, [IJ ] ⇢ I \ J , and then its definition implies that it is an ideal of L. A
special case is [LL], and having [LL] = 0 when L is linear is equivalent to having
every pair of operators in L commute. With this as motivation, we borrow some
terminology from group theory and say that

Definition 2.7. L is abelian if [LL] = 0.

We may also take inspiration from ring theory and define simple Lie algebras
in an analogous way to simple rings. We do just this, but are careful to add an
extra condition:

Definition 2.8. A Lie algebra is called simple if it has no nontrivial ideals,
and is not abelian.

There are good reasons for including this latter criterion. One is that it has the
e↵ect of immediately excluding any Lie algebra of dimension less than two from
being simple, since any such algebra is automatically abelian in view of (L1).
We give an example of why this is useful at the end of the next section.
When I is an ideal of L, the quotient space L/I has a well-defined bracket, given
by [x+I, y+I] = [xy]+I, x, y 2 L. We call Lie algebras constructed in this way
quotient algebras, and the surjective homomorphism ⇡ : L ! L/I, ⇡(x) = x+ I
is called the associated quotient map. As an application, we observe that L/[LL]
is abelian: [x+ [LL], y + [LL]] = [xy] + [LL] = [LL], x, y 2 L.
Let � : L ! M be a homomorphism, and define Ker � = {x 2 L | �(x) = 0}. It
is an ideal of L, since for any x 2 Ker �, �([xL]) = [�(x)�(L)] = [0,�(L)] = 0,
meaning [xL] ⇢ Ker �. Similarly, the set �(L) = {�(x) | x 2 L} is a subalgebra
of M . As we will see, ideals of Lie algebras play exactly the same role as ideals
in ring theory, in that they bring with them a Lie-algebraic variant of the usual
isomorphism theorems. Before we formulate these we list some subalgebras of
interest, found in any Lie algebra.

Definition 2.9. Let L be a Lie algebra, X a subset of L, and K a subspace of
L (not necessarily a subalgebra). We define

(i) the centralizer of X in L to be the set CL(X) = {x 2 L | [xX] = 0};

(ii) the center of L to be the set Z(L) = {x 2 L | [xL] = 0}, or equivalently,
Z(L) = CL(L);

(iii) the normalizer of K in L to be the set NL(K) = {x 2 L | [xK] ⇢ K]}.

Verifying that these are subspaces of L is not di�cult. To show that they are
subalgebras requires the Jacobi identity. Take for example NL(K). Then

[[xy]K] = �[K[xy]] = [x[yK] + [y[Kx]] ⇢ K +K = K, x, y 2 NL(K),
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and hence [xy] 2 NL(K). In line with the earlier remark, K is to be understood
as being replaced with the same element of K simultaneously across the three
leftmost expressions, but to remain as set to the right of the inclusion. That
the centralizer is a subalgebra follows similarly. The center, however, is more
than a subalgebra; it is an ideal, which follows from [x, Z(L)] = 0 ⇢ Z(L) for
all x 2 L. If K is a subalgebra, then K is an ideal of NL(K), which is seen by
comparing the definitions. Comparing definitions also reveals that a subspace
K is an ideal of L if and only if NL(K) = L.
We now state the isomorphism results we will need thoughout this text. Since
they build on already existing isomorphism theorems for vector spaces, their
proofs are mostly a matter of verifying that the additional Lie structure is
compatible, so we allow ourselves to omit them.

Proposition 2.1. Let L,M be Lie algebras, � : L ! M a homomorphism, and
I, J ideals of L. Then

(a) L/Ker � ⇠= �(L);

(b) if I ⇢ J , then J/I is an ideal of L/I, and (L/I)/(J/I) ⇠= L/J ;

(c) (I + J)/J ⇠= I/(I \ J).

2.2 Modules and representations

Let V be a vector space. Any pair x 2 gl(V ), v 2 V yields a vector, namely x
evaluated at v. We denote this vector using one of xv, x(v) or x.v, depending on
the context. The first two will mostly be used when x is fixed, while the third
emphasizes evaluation as a function (x, v) 7! x.v. Since a linear Lie algebra
L ⇢ gl(V ) consists of linear operators, it is natural to raise the question of in
what way the Lie-algebraic structure of L relates to how L maps V into itself,
and vice versa. To start with, we can identify three fundamental properties.

(M1) (ax+ by).v = a(x.v) + b(y.v);

(M2) x.(av + bw) = a(x.v) + b(x.w);

(M3) [xy].v = x.(y.v)� y.(x.v). (x, y 2 L; v, w 2 V ; a, b 2 F ).

Properties (M1) and (M2) follow from L being a linear subspace of gl(V ) and
the elements of L being linear operators respectively, while (M3) is just the
definition of the linear bracket.
Much like how abstract Lie algebras generalize linear Lie algebras, we now take
these as the defining properties for a type of objects meant to generalize the
way a linear Lie algebra acts on its underlying vector space.

Definition 2.10. Let V be a vector space and L a Lie algebra, both over the
same field F . Let f : L ⇥ V ! V be a binary operation satisfying (M1)-(M3),
which we write f(x, y) = x.v. The pair hV, fi is then called an L-module, and
we say that f defines an action, or that L acts on V .
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By abuse of language, we often just say that V is an L-module. Note that while
(M3) is equivalent to [xy].v = (xy).v � (yx).v when L is linear and the action
is evaluation, we are forced to use expressions such as x.(y.v) in the abstract
setting, since in this case xy need not be defined.
Let V be an L-module with action (x, v) 7! x.v. We say that a subspace W
of V is an L-submodule of V if x.w 2 W for all x 2 L, w 2 W . In this case
x.(v +W ) = x.w +W is well-defined on the quotient space V/W and satisfies
(M1)-(M3), so V/W is an L-module. We call such a module a quotient module.
Now let V , U be L-modules and let � : V ! U be a linear transformation. If
� in addition satisfies �(x.v) = x.�(v) for all x 2 L, v 2 V , then we say that
� is an L-module homomorphism. The kernel of such a homomorphism is an
L-submodule of L.

Proposition 2.2. Let V , U be L-modules and let � : V ! U be an L-module
homomorphism. Then V/Ker � is isomorphic as module to �(V ).

Given any pair V,W of L-modules, the set Hom(V,W ) of all linear transforma-
tions V ! W is itself an L module under the action

(x.f)(v) = x.f(v)� f(x.v), x 2 L, f 2 Hom(V,W ), v 2 V.

Note that x.f = 0 if and only if f is an L-module homomorphism.
Given x 2 L we may define a function �(x) : V ! V by letting �(x)(v) = x.v
for any v 2 V . Then (M2) guarantees that �(x) is linear, so �(x) 2 End V . This
yields a function � : L ! gl(V ), which in addition is a linear transformation by
(M1). Finally, by (M3),

�([xy])(v) = [xy].v = x.(y.v)� y.(x.v)

= �(x)(�(y)(v))� �(y)(�(x)(v)) = [�(x),�(y)](v).

Hence, � : L ! gl(V ) is a homomorphism of Lie algebras. We call a homomor-
phism of this type a representation of L, and our discussion above shows that
any L-module induces a representation of L. As might have been guessed this
also works in reverse, so that a any homomorphism of the form � : L ! gl(V )
(that is, a representation of L) yields an action by setting x.v = �(x)(v). We
thus have a bijective correspondence between L-modules and L-representations.

Remark. Let � : L ! gl(V ) be a representation and let W be a submodule of V
with respect to the action induced by �. As we have seen, W/V is an L-module,
and has a corresponding representation, say �0 : L ! gl(V/W ). Explicitly, this
representation is given by

�0(x)(v +W ) = x.(v +W ) = x.v +W = �(x)(v) +W,

for all x 2 L, v 2 V .

If L ⇢ gl(V ) is a linear Lie algebra, then clearly V is an L-module if we take the
operator to be evaluation—indeed, this was the motivation for the definition
of an L-module. In this case the associated representation is just the inclusion
homomorphism of L into gl(V ). In other words,
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We will have more to say about representations later. For now we are content
with introducing a certain representation central to nearly all of the coming
theory. It will play an especially important role in connecting results between
linear and abstract Lie algebras.

Definition 2.11. Let K be a subalgebra of L. The action of K on L given
by x.y = [xy], (x 2 K, y 2 L) is called the adjoint action of K on L, and
the representation K ! gl(L) induced by this action is called the adjoint

representation of K in L.

We need to verify that this is an action as claimed. Axioms (M1) and (M2)
follow from the bilinearity of the bracket while (M3) follows from the Jacobi
identity and anticommutativity:

x.(y.z)�y.(x.z) = [x[yz]]�[y[xz]] = [x[yz]+[y[zx]] = �[z[xy]] = [[xy]z] = [xy].z.

We use adL : L ! gl(L) to denote the adjoint representation in the case where
one takes K = L. In this notation, a choice of x 2 L yields the linear operator
adL x 2 gl(L), which, when evaluated at y 2 L, gives adL x(y) = [xy]. Again
letting K be arbitrary, we see that in this more general case, the corresponding
representation is just adL|K : K ! gl(L).
Under the adjoint action, L is a K-module, so we may consider its submodules.
These are, by definition, subspaces I ⇢ L that satisfies x.y 2 I for all x 2 K,
y 2 I. Equivalently, I is a subspace such that [K, I] ⇢ I. When K = L, this is
just the criterion for I to be an ideal, so the L-submodules of L are exactly the
ideals of L. If K is an arbitrary subalgebra, then either of the conditions that
I is an ideal L, or K ⇢ I, is su�cient for I to be a K-submodule of L.

Remark. Let K ⇢ L be a subalgebra, and start with its adjoint representation
adL|K : K ! gl(L). Since necessarily [K,K] ⇢ K, we see that K is a K-
submodule of L (take I = K in the preceding). Passing to quotients, we obtain
the (admittedly rather complicated) representation (adL|K)0 : K ! gl(L/K).

We have seen that one translates between actions and representations by setting
�(x)(v) = x.v in either direction; in the case of the adjoint representation this
appears as adL x(y) = [xy]. In the same way x 2 L implies �(x) 2 gl(L) in the
general case, we here have adL x 2 gl(L) for x 2 L. Since representations are
homomorphisms we have the identity [adL x, adL y] = adL [xy] for all x, y 2 L.
This can also be calculated directly from the definition adL x(y) = [xy]. The
kernel of adL is an ideal and equals

Ker adL = {x 2 L | adL x = 0} = {x 2 L | [xL] = 0} = Z(L).

In other words, any simple Lie algebra is isomorphic to a linear Lie algebra.
This would not necessarily be the case if we did not require [LL] 6= 0 in our
definition of simple algebras, since then Z(L) = L would be possible. This is
another indication that our chosen definition is easier to work with.
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3 Lie algebras and linear algebra

3.1 The Jordan decomposition

The existence of the adjoint representation seems to suggest that tools from lin-
ear algebra could be put to use in probing the structure of abstract Lie algebras.
This would be done by applying them to the image of adL, and then ”pulling
back” the results across adL. We will accomplish this to various extents, but
first we of course need such a set of tools.
Our first definition in this program is rather self-explanatory once we recall
some concepts from linear algebra: A linear operator A is nilpotent if there
exists a positive integer n such that An = 0, and a linear operator over a
finite dimensional vector space is diagonalizable if its matrix is diagonal for
some choice of basis. Rather than using the second term, we will use the term
semisimple to mean the same thing. There is a technical di↵erence, but this
di↵erence vanishes when the field is algebraically closed, which we from now on
always assume—this property will also be vital in other stages of the theory.

Definition 3.1. Let L be a Lie algebra and let x 2 L. We say that x is ad-

nilpotent if adL x is nilpotent. When L is finite dimensional we say that x is
ad-semisimple if adL x semisimple.

This definition raises an immediate question: If L is a (finite dimensional) linear
Lie algebra we may speak both about x 2 L being nilpotent (diagonalizable)
and ad-semisimple (ad-nilpotent)—what is the relationship between these prop-
erties, if any? The next lemma provides a partial answer.

Lemma 3.1.

(i) Let L be a linear Lie algebra. If x 2 L is nilpotent, then x is ad-nilpotent.

(ii) Let V be a finite dimensional vector space. If x 2 gl(V ) is semisimple,
then x is ad-semisimple in gl(gl(V )).

Proof. We start with the nilpotent case. Define �x(y) = xy and ⇢x(y) = yx
for all y 2 L, so that adL x(y) = [xy] = xy � yx = �x(y) � ⇢x(y), and thus
adL x = �x � ⇢x. The terms of this di↵erence commute as functions since
�x(⇢x(y)) = x(yx) = (xy)x = ⇢x(�x(y)). We may therefore use the binomial
theorem:

(adL x)n =
nX

k=0

(�1)k
✓
n

k

◆
�n�k
x ⇢kx. (3.1)

The assumption that x is nilpotent implies �m
x (y) = xmy = 0 for some positive

integer m, and similarly for ⇢x. Taking n large enough in (3.1) that at least one
of the two exponents in each summand is greater than m then forces (adL x)n =
0.

Proceeding to the semisimple case, let n = dimV and pick a basis (v1, . . . , vn) of
V in which the matrix of x is diagonal, say diag(a1, . . . , an). This choice of basis
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associates to each element in gl(V ) a matrix of size n ⇥ n. As a vector space,
gl(V ) has dimension n2 and standard basis {eij}ij (1  i, j  n), where eij is
the matrix having 1 at position i, j and 0 everywhere else. We now calculate
adgl(V ) x(eij) = [xeij ] = xeij � eijx = aieij � ajeij = (ai � aj)eij . Hence
adgl(V ) x sends each basis vector of gl(V ) to a multiple to itself, which is just
to say that the matrix of adgl(V ) x is diagonal as an operator in gl(gl(V )), i.e.
adgl(V ) x is semisimple.

We now formulate a theorem that—roughly speaking—allows us to split an
operator into a diagonalizable part and a nilpotent part.

Theorem 3.2 (The Jordan-Chevally decomposition). Let V be a finite dimen-
sional vector space over an algebraically closed field. For any A 2 End V there
exist As,An 2 End V such that

(a) A = As +An; As is diagonalizable, An is nilpotent, As and An commute;

(b) As and An are unique among all pairs of linear operators that satisfy (a);

(c) there exist polynomials p(t) and q(t), both with zero constant term, such that
As = p(A) and An = q(A);

(d) for any subspaces A ⇢ B ⇢ V such that A(B) ⇢ A, we also have As(B) ⇢ A
and An(B) ⇢ A.

Proof. See Theorem 8.10 of [6].

Remark. A consequence of (b) is that A is diagonalizable exactly when An = 0
in its Jordan decomposition, and similarly As = 0 exactly when A is nilpotent.

In gl(V ) this decomposition behaves nicely with respect to adgl(V ):

Lemma 3.3. Let V be finite dimensional. If x = xs + xn is the Jordan decom-
position of x in gl(V ), then adgl(V ) x = adgl(V ) xs + adgl(V ) xn is the Jordan
decomposition of adgl(V ) x in gl(gl(V )).

Proof. First, the adjoints sum up as desired by the linearity of adgl(V ). Secondly,
adgl(V ) xs and adgl(V ) xn are, respectively, semisimple and nilpotent in gl(gl(V ))
(Lemma 3.1). Lastly, they commute since xs, xn do: [adgl(V ) xs, adgl(V ) xn] =
adgl(V ) [xsxn] = 0. We need now only invoke the uniqueness of the Jordan
decomposition (Theorem 3.2(b)).

Again using the subscripts s and n to denote the semisimple and nilpotent parts
of adgl(V ) x in gl(V ) yields the following concise formulation of Lemma 3.3:

(adgl(V ) x)s = adgl(V ) xs, (adgl(V ) x)n = adgl(V ) xn, (x 2 gl(V )).

Note that we may not at this point replace gl(V ) with an arbitrary linear Lie
algebra L ⇢ gl(V ) in the above identity; Theorem 3.2 only guarantees, given
x 2 L, the existence of xs, xn as operators in gl(V ), and not that they necessarily
lie in the smaller algebra L. We will later find examples of subalgebras for which
this stronger property hold.
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Remark. Let V be finite dimensional and let A ⇢ B ⇢ gl(V ) be subspaces. Let
x 2 gl(V ). Moreover, suppose that adgl(V ) x(B) ⇢ A. Then Theorem 3.2(d)
and Lemma 3.3 together imply that

adgl(V ) xs(B) = (adgl(V ) x)s(B) ⇢ A.

Similarly, adgl(V ) xn(B) ⇢ A.

3.2 Linear functionals, dual spaces, and bilinear forms

We gather in this section several useful concepts and definitions from linear
algebra. These will be used rarely but often decisively throughout the rest
of the text. Some calculations have been formulated as remarks in order to
highlight their importance.
Let V be a vector space over F . Given subsets S ⇢ V and A ⇢ F we define
the A-span of S to be the set of all linear combinations of vectors in S with
coe�cients in A. Clearly the A-span of S is contained in V , and the F -span
of S is just the usual span of S in V and therefore a vector subspace of V .
Now let U be another vector space over some field E, and let B ⇢ F \ E
be a subset. We say that the function f : V ! U is B-linear if it satisfies
f(av + bw) = af(v) + bf(w) for all v, w 2 V , a, b 2 B. If F = E = B then f is
B-linear if and only if f is a linear transformation.
We can view F itself as a vector space over F by simply taking the field opera-
tions as the vector space operations. It is one-dimensional since F is the F -span
of any nonzero a 2 F . Similarly, if K is any subfield of F then F is a vector
space over K. We use FK to represent this point of view. The subspaces of FK

are exactly the K-span of subsets of F . Unlike F as a vector space over itself
FK need not in general be one-dimensional.
A linear functional on V is a linear transformation from V to F when we view
the latter as a vector space. The dual space of V , which we denote V ⇤, is
the vector space of all linear functionals on V . If V is finite dimensional with
basis (v1, . . . , vn) then V ⇤ has a corresponding basis (f1, . . . , fn), where fi is
the linear functional defined by fi(vj) = �ij (the Kronecker delta). Hence V ⇤

is finite dimensional, and dimV ⇤ = dimV . Moreover,
P

i aivi 7!
P

i aifi is an
isomorphism of vector spaces.

Remark. Let V be finite dimensional over F . Let K be a subfield of F , let E
be a subspace of FK , and let f 2 E⇤. Suppose that in some basis, x, y 2 gl(V )
has matrices diag(a1, . . . , am) and diag(f(a1), . . . , f(am)) respectively, where
a1, . . . , am 2 E. Let {eij}ij be the associated basis of gl(V ). Of the m2 pairs�
ai � aj , f(ai) � f(aj)

�
, 1  i, j  m some may have their first components

equal, but then so are their second components: ai � aj = ak � al implies
f(ai) � f(aj) = f(ak) � f(al) by the linearity of f . The set of pairs therefore
associates to every unique first component a unique second component. We may
now construct their Lagrange polynomial p(t), a polynomial with no constant
term satisfying p(ai�aj) = f(ai)�f(aj) for all 1  i, j  m. Recall the proof of
Lemma 3.1, which when repeated here shows that adgl(V ) x(eij) = (ai � aj)eij
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and adgl(V ) y(eij) = (f(ai)� f(aj))eij . Then, for all 1  i, j  m,

p(adgl(V ) x)(eij) = p(ai � aj)eij = adgl(V ) y(eij).

Writing y = f(x) we have the formula adgl(V ) f(x) = p(adgl(V ) x).

Any field with characteristic 0 has a subfield isomorphic to the field of rational
numbers. This subfield, which we by abuse of language denote Q, is generated
by adjoining the identity in F to Q and then closing Q under addition, additive
inverses, multiplication, and multiplicative inverses. We may therefore always
form the vector space FQ as long as char F = 0.

Remark. Given a finite subset {a1, . . . , am} ⇢ F , how may we approach show-
ing that every element in it is identically zero? Take E to be the Q-span of
{a1, . . . , am}, so E is a subspace of FQ. We want to show that E = 0, and for
this it su�ces to show that E⇤ = 0. Hence let f 2 E⇤, that is, f : E ! Q
and f is Q-linear. Suppose we knew that

P
i aif(ai) = 0. Apply f to both

sides and use the Q-linearity of f to get
P

i f(ai)
2 = 0. A sum of squares of

rational numbers is zero if and only if every rational number in the sum is zero,
so f(ai) = 0 (1  i  m). Then f must be zero on the Q-span of {a1, . . . , am}
and this span is by definition E, so f = 0. We therefore see that a su�cient
condition for all ai to be zero is for every f 2 E⇤ to satisfy

P
i aif(ai) = 0.

Let V be finite dimensional. The trace of any linear operator A 2 End V is
defined as the sum of the diagonal elements of the matrix of A, in some basis
of V . This sum—which we denote tr(A)—is invariant under change of basis,
and therefore well-defined. When F is algebraically closed we may equivalently
define tr(A) as the sum of the eigenvalues of A, counted with multiplicity. Hence
tr(A) = 0 if A is nilpotent, since the unique eigenvalue of A is 0. Observe that
the function tr : End V ! F given by A 7! tr(A) is a linear functional since

tr(aA+ bB) = a tr(A) + b tr(B), A,B 2 End V, a, b 2 F. (3.2)

In other words, tr 2 (End V )⇤. The trace also satisfies the useful identity

tr(AB) = tr(BA), A,B 2 End V. (3.3)

Remark. Let L be a finite dimensional linear Lie algebra. Then the trace of any
operator of L is defined. In this case we have an additional identity:

tr([xy]z) = tr(x[yz]), x, y, z 2 L. (3.4)

We refer to this as the trace being associative on L. To see that (3.4) holds,
expand the brackets on each side and use linearity together with (3.3).

A bilinear form on V is a bilinear function � : V ⇥ V ! F . We say that � is
symmetric if �(v, w) = �(w, v) for all v, w 2 V . If � is a bilinear form over a
Lie algebra L we say that � is associative if �([xy], z) = �(x, [yz]), x, y, z 2 L.
Now let V be finite dimensional. From (3.2) and (3.3) we see that the function
(x, y) 7! tr(xy) is a symmetric bilinear form on V , called the trace form of V ,
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which we write as Tr(x, y) for x, y 2 End V . The trace form is defined on any
finite dimensional linear Lie algebra, so in particular gl(V ). It is associative by
(3.4), i.e. Tr([xy], z) = Tr(x, [yz]) for all x, y, z 2 End V .
Let V be a vector space (not necessarily finite dimensional), W a subspace of
V , and � a bilinear form on V . The orthogonal complement of W in V is

W? = {v 2 V | �(v,W ) = 0}.

The bilinearity of � implies that W? is a subspace of V . We give a special
name to V ?, which we call the radical of �, and usually denote S. If the radical
is of � is zero then we say that � is nondegenerate. If V is finite dimensional
and � is nondegenerate then dimW +dimW? = dimV . In this case W = V is
equivalent to W? = 0.

Remark. Let L be a Lie algebra and let � be an associative bilinear form on L.
If I is an ideal of L then so is I?: For any x, y 2 I? we have [xy] 2 I?, since

�([xy], I) = �(x, [yI]) ⇢ �(x, I) = 0.

A special case is L?, since L is an ideal of itself. The radical S is hence an ideal.

Any bilinear form � on a vector space V yields a linear transformation from
V into its dual V ⇤. This linear transformation is furnished by the mapping
v 7! (w 7! �(v, w)). Call this mapping �; in other words �(v), v 2 V is the
linear functional �(v) : V ! F defined by �(v)(w) = �(v, w). That this is
indeed a linear functional follows from the linearity of the second argument of
�, and that � is a linear transformation follows from the linearity of the first.
The kernel of � is exactly the radical of �, so � is nondegenerate if and only
if � is injective. Now if V is finite dimensional then we know from earlier that
dimV = dimV ⇤. In other words any nondegenerate bilinear form on a finite
dimensional vector space yields a natural isomorphism between the vector space
and its dual. The adjective ”natural” here refers to the fact that we could
construct this isomorphism without choosing a basis of V , i.e. without making
any ”unnatural” or arbitrary choices. Under these assumptions we see that to
every f 2 V ⇤ is associated a unique element vf 2 V such that �(vf ) = f , or
equivalently �(vf , v) = f(v) for all v 2 V . A basis (f1, . . . , fn) of V ⇤ therefore
yields a unique basis (v⇤1 , . . . , v

⇤
n) of V satisfying �(v⇤i , v) = fi(v) for all v 2 V ,

i = 1, . . . , n.

Remark. If we in the above nevertheless choose a basis (v1, . . . , vn) of V , then as
before V ⇤ has a corresponding basis (f1, . . . , fn), where fi is the linear functional
defined by fi(vj) = �ij . Then there exists a unique basis (v⇤1 , . . . , v

⇤
n) of V

satisfying �(v⇤i , vj) = �ij for i, j = 1, . . . , n. This basis (v⇤i )i is called the
dual basis of (vi)i. Now let L be a finite dimensional Lie algebra with basis
(x1, . . . , xn), and let � be a nondegenerate associative bilinear form on L. Let
(y1, . . . , yn) be the dual basis, which satisfies �(yi, xj) = �ij . For any x 2 L
there are coe�cients aij , bij 2 F , i, j = 1, . . . , n such that

[xxi] =
P

j aijxj , [xyi] =
P

j bijyj .
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We may calculate how these coe�cients relate to each other as follows:

aik =
X

j

aij�kj =
X

j

aij�(yk, xj) = �(yk, [xxi])

= �([ykx], xi) = �
X

j

bkj�(yj , xi) = �
X

j

bkj�ji = �bki.
(3.5)

Now suppose L is linear. We may then also calculate [x, xiyi] using (3.5) and
the identity [x, yz] = [xy]z + y[xz], x, y, z 2 gl(V ):

[x, xiyi] = [xxi]yi + xi[xyi] =
P

j aijxiyi �
P

j ajixiyi.

As a consequence, [x,
P

i xiyi] =
P

i[x, xiyi] = 0. This holds for any x 2 L;
hence

P
i xiyi commutes with L, or

P
i xiyi 2 Z(L).

4 Special classes of Lie algebras

4.1 Nilpotent algebras

The concept of ad-nilpotency alone does not take us very far in our program
beyond the results we already have—we need yet another notion of nilpotency
in our treatment of abstract Lie algebras. To motivate such a definition, let L
be linear and let every element in L be nilpotent. We might conceivably call
such an algebra ”nilpotent” in itself. Now, if x 2 L then x is ad-nilpotent by
Lemma 3.1(i), so there exists a positive integer n such that

[x[x . . . [x| {z }
n

y]]] = (adL x)n(y) = 0, (y 2 L).

One way to generalize this feature is to demand the existence of a single positive
integer n such that

[x1[x2 . . . [xny]]] = 0, (x1, . . . , xn, y 2 L). (4.1)

With this in mind we give our next definition.

Definition 4.1. Let L be a Lie algebra. Define L0 = L and Li = [LLi�1]
for i = 1, 2, . . . . We say that L is nilpotent (as Lie algebra) if there exists a
positive integer n such that Ln = 0.

Recall that if I, J are ideals of L then [IJ ] is defined to be the ideal of all finite
linear combinations of elements of the form [xy], x 2 I, y 2 J . By induction,
L0, L1, L2, . . . are ideals of L. Moreover, L0 � L1 � L2 � . . . , also by induction.
We call this descending chain of ideals the lower central series of L. Hence L is
nilpotent if and only if its lower central series terminates; that is, every ideal is
zero beyond some point in the chain.
Let L be nilpotent. By (4.1), every element of L is ad-nilpotent. Our main
theorem of this section says that the converse of this also is true, given that L
is finite dimensional.
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Theorem 4.1 (Engel). Let L be a finite dimensional Lie algebra. If every
element of L is ad-nilpotent, then L is nilpotent.

We sometimes have the chance to apply this theorem on linear Lie algebras, in
which case we may use a streamlined version.

Corollary 4.1.1. Let L be a finite dimensional linear Lie algebra. If every
element of L is nilpotent, then L is nilpotent.

Proof. Use Lemma 3.1(i) and Engel’s Theorem.

Before we can prove Engel’s Theorem, we need some basic facts about nilpotent
Lie algebras, and another theorem.

Proposition 4.2. Let L be a Lie algebra. Then

(a) if L is nilpotent, then all subalgebras and homomorphic images of L are;

(b) if L/Z(L) is nilpotent, then L is nilpotent;

(c) if L is nilpotent and L 6= 0, then Z(L) 6= 0.

Proof. (a) Let K be a subalgebra of L. Assume that Ki ⇢ Li, which clearly
holds for i = 0. Then Ki+1 = [KKi] ⇢ [LLi] = Li+1, so Ki ⇢ Li by
induction on i. Similarly, if � : L ! M is a surjective homomorphism, then
induction shows that M i = �(Li), and therefore the lower central series of
K and M terminates whenever the lower central series of L does.

(b) Let ⇡ : L ! L/Z(L) be the quotient homomorphism with kernel Z(L). By
the proof of part (a), (L/Z(L))i = ⇡(L)i = ⇡(Li), so ⇡(Ln) = 0 for some
positive integer n. Then Ln lies in the kernel of ⇡, that is, Ln ⇢ Z(L), so
Ln+1 = [LLn] ⇢ [LZ(L)] = 0 by the definition of Z(L).

(c) Let n be the unique positive integer such that Ln 6= 0 but Ln+1 = 0. Then
Ln ⇢ Z(L) by [LLn] = 0 and the definition of Z(L).

We have put the theorem needed to prove Engel’s Theorem in the appendix due
to its proof being slightly longer while at the same time not venturing much
beyond the techniques already seen before this section (one does not require
the above proposition, for example). The curious reader can find the proof in
Section 8.1. In any case, the theorem states that if L ⇢ gl(V ), (V 6= 0) is a
Lie algebra of nilpotent operators, then there exists nonzero v 2 V such that
L.v = 0, where the action is evaluation.
We are now ready to prove Engel’s Theorem.

Proof of Theorem 4.1. If L = 0 then there is nothing to prove, so suppose L
is nonzero. Take as induction assumption that the theorem holds for any Lie
algebra of dimension less than L. By the conditions of the theorem every element
in adL L is nilpotent in gl(L), so if we take L as our vector space and adL L
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as our Lie algebra, then these satisfy the conditions of the mentioned theorem.
This shows that there exists some nonzero y 2 L such that adL x(y) = 0
for all x 2 L, or equivalently, [Ly] = 0. Then y 2 Z(L), so that Z(L) 6=
0 which shows that L/Z(L) has dimension less than L. Furthermore, every
element x + Z(L) 2 L/Z(L) is ad-nilpotent since for some n depending on x,�
adL/Z(L) (x+ Z(L))

�n
(y + Z(L)) = (adL x)n(y) + Z(L) = 0 + Z(L) = Z(L)

for all y + Z(L) 2 L/Z(L). We may then apply our induction assumption to
get that L/Z(L) is nilpotent; hence L is nilpotent by Proposition 4.2(b).

We end this section with a useful nilpotency criterion for operators in gl(V ).

Lemma 4.3. Let V be finite dimensional and let A ⇢ B ⇢ gl(V ) be subspaces.
Define M = {x 2 gl(V ) | [xB] ⇢ A}. A su�cient condition for x 2 M to be
nilpotent is to satisfy Tr(x,M) = 0.

Proof. Let x = xs+xn be the Jordan decomposition of x in gl(V ). The hypoth-
esis x 2 M is, by the definition of M , equivalent to having adgl(V ) x(B) ⇢ A.
Then adgl(V ) xs(B) ⇢ A by the final remark of Section 3.1, so xs 2 M . Re-
call the remark immediately after Theorem 3.2, which says that x is nilpotent
if and only if xs = 0. Now xs is semisimple, so in some basis its matrix is
diagonal, say diag(a1, . . . , am). Put E = spanQ{a1, . . . , am} and let f 2 E⇤.
According to one the remarks in Section 3.2 we are done if we can show thatP

i aif(ai) = 0, since then E = 0 and xs = 0. Taking K = Q in an earlier
remark of the same section furnishes a polynomial p(t) without constant term
such that adgl(V ) f(xs) = p(adgl(V ) xs). If an operator maps a subspace B into
a subspace A, then so does any polynomial expression without constant term of
that operator, so adgl(V ) xs(B) ⇢ A implies that adgl(V ) f(xs)(B) ⇢ A. Hence
f(xs) 2 M . By hypothesis tr(xf(xs)) = 0, but then

0 = tr(xf(xs)) = tr(xsf(xs)) + tr(xnf(xs)) = tr(xsf(xs)) =
P

i aif(ai).

This is due to the appearance of the matrix of xn in our chosen basis: Looking
at the proof of the existence of the Jordan decomposition, one sees that it has
zeros everywhere except possibly on the ”diagonal” immediately above the main
diagonal, where it may also have ones. Then it commutes with f(xs), so xnf(xs)
is nilpotent and tr(xnf(xs)) = 0.

Let M be as in the lemma. If we take M? with respect to the trace form on
gl(V ) (that is, M? = {x 2 gl(V ) | Tr(x,M) = 0}), then the lemma just says
that all x 2 M \M? are nilpotent.

4.2 Solvable algebras

Our next family of Lie algebras are called solvable algebras, and their definition
closely mirrors that of nilpotent algebras.

Definition 4.2. Given a Lie algebra L, set L(0) = L and L(i) = [L(i�1)L(i�1)]
for i = 1, 2, . . . . We say that L is solvable if there exists a positive integer n
such that L(n) = 0.
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Our first connection between nilpotent and solvable algebras other than the
similarity of the definitions is that, using induction, L(i) = [L(i�1)L(i�1)] ⇢
[LLi�1] = Li, with base case L(0) = L = L0. This shows that nilpotent algebras
are solvable. Nilpotency is in fact (as might be expected) a strictly stronger
property, i.e. there are solvable algebras that are not nilpotent, though we
will refrain from calculating any examples until later. As a second connection,
observe that L(n) ⇢ [LL]n�1 when n = 1 (they are equal), and if this is true for
n = k then

L(k+1) = [L(k)L(k)] ⇢ [L[LL]k�1] = [LL]k.

By induction we have L(n) ⇢ [LL]n�1 for all positive integers n; hence L is
solvable if [LL] is nilpotent. We call the sequence L(0), L(1), L(2), . . . the derived
series of L, and as in the nilpotent case these are all ideals of L satisfying
L(0) � L(1) � L(2) � . . . . Some other useful properties of solvable algebras are
gathered below. Note the similarities with Proposition 4.2.

Proposition 4.4. Suppose L is a Lie algebra. Then

(a) if L is solvable, then all subalgebras and homomorphic images of L are

(b) if I is an ideal of L such that I and L/I are solvable, then L is solvable;

(c) if I and J are solvable ideals of L, then I + J is solvable.

Proof. (a) We have K(i) ⇢ L(i) when K is a subalgebra of L, which can be
verified in the same way as the proof of Theorem 4.2(a). If � : L ! M
is a surjective homomorphism, take as induction assumption that M (i) =
�(L(i)) for some i = 0, 1, 2 . . . (it is clearly true for i = 0). Then M (i+1) =
[M (i)M (i)] = [�(L(i))�(L(i))] = �([L(i)L(i)]) = �(L(i+1)), so by induction
M (i) = �(L(i)) for all i = 0, 1, 2, . . . . This shows that if the derived series
of L terminates, then so does the derived series of K and M .

(b) Let ⇡ : L ! L/I be the quotient homomorphism with kernel I. By the
proof of part (a), (L/I)(i) = ⇡(L)(i) = ⇡(L(i)), so ⇡(L(n)) = 0 for some
positive integer n. Then L(n) lies in the kernel of ⇡, that is, Ln ⇢ I. Also,
I(m) = 0 for some positive integer m since I is solvable. Then L(n+m) =

(L(n))
(m) ⇢ I(m) = 0. That we can rewrite L(n+m) in this way follows from

the identity L(i+1) = [L(i)L(i)] = (L(i))
(1)

and induction.

(c) Note first that I/(I \ J) is solvable by part (a) since it is the homomorphic
image of I under the quotient homomorphism, and I is solvable. Then
(I + J)/J is solvable since it is isomorphic to I/(I \ J) by Proposition 2.1.
Now apply part (b) to see that I + J is solvable.

There is a theorem similar to the one used in proving Engel’s Theorem, in that
it, too, guarantees the existence of vectors acted upon in a certain way, but this
time for a solvable linear Lie algebra. We refer the reader to Section 8.1 for a
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complete formulation. We will make use of this theorem only first in Section
4.4, so one can postpone knowing it until then.
Engel’s Theorem gave us a criterion for nilpotency; now we derive a criterion
for solvability.

Theorem 4.5 (Cartan’s Criterion). Let V be finite dimensional and let L be
a subalgebra of gl(V ). A su�cient condition for L to be solvable is to satisfy
Tr([LL], L) = 0.

Proof. Write A = [LL] and B = L; clearly A ⇢ B ⇢ gl(V ) and are subspaces
(since they are subalgebras). Now define M as in Lemma 4.3:

M = {x 2 gl(V ) | [xB] ⇢ A} = {x 2 gl(V ) | [xL] ⇢ [LL]}.

The lemma says that a su�cient condition for x 2 M to be nilpotent is to satisfy
Tr(x,M) = 0. We have [LL] ⇢ L ⇢ M by the definition of M , which shows that
if Tr([LL],M) = 0 then every element of [LL] is nilpotent, and [LL] is in turn
nilpotent as algebra (Corollary 4.1.1). This is not our hypothesis, but does in
fact follow from it. To see this, observe that any x 2 [LL] may (by construction
of [LL]) be written of the form x =

Pn
i=1 ai[yizi] for some yi, zi 2 L, ai 2 F ,

and n a positive integer. Then, using that [xM ] ⇢ [LL] for all x 2 L,

Tr(x,M) =
nX

i=1

aiTr([yizi],M) =
nX

i=1

aiTr(yi, [ziM ])

⇢
nX

i=1

aiTr(yi, [LL]) ⇢ Tr(L, [LL]) = Tr([LL], L) = 0.

Hence [LL] is nilpotent and L solvable (as shown in the beginning of the section).

Corollary 4.5.1. Let L be a finite dimensional Lie algebra. A su�cient con-
dition for L to be solvable is to satisfy Tr(adL [LL], adL L) = 0.

Proof. Take V = L in Cartan’s Criterion with adL L ⇢ gl(L) as the subalgebra.
The hypothesis of the criterion is Tr([adL L, adL L], adL L) = 0, but this is
exactly the hypothesis of the corollary since [adL x, adL y] = adL [xy] for all
x, y 2 L. Hence adL L = Im adL ⇠= L/Ker adL = L/Z(L) is solvable. But Z(L)
is always solvable, so L is solvable by Proposition 4.4(b).

4.3 The Killing form and semisimple algebras

All our considerations up to this point seem to invite us to take the ”preimage”
of the trace form on adL L in order to obtain a bilinear form on L. This we do.

Definition 4.3. Let L be a finite dimensional Lie algebra. Its Killing form 
is the bilinear form defined by (x, y) = Tr(adL x, adL y), x, y 2 L.
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Bilinearity, symmetry, and associativity follow from those of Tr. The first and
last of these also requires the homomorphism properties of adL. Restating
Corollary 4.5.1 in terms of this form tells us that a su�cient condition for L to
be solvable is to satisfy ([LL], L) = 0.
The Killing form of a proper subalgebra K of L need not in general be the
restriction |K⇥K , since adK x and adL x are di↵erent as operators (if nothing
else their corresponding matrices have di↵erent sizes, regardless of basis). When
K is an ideal, however, the Killing forms of K and L does in fact coincide.

Lemma 4.6. Let I be an ideal of L. If I and L are their respective Killing
forms, then I = L|I⇥I .

Proof. Pick a basis of I and extend it to a basis of L, so that an element of I in
column vector form has zeroes for every entry with index greater than dim I. Fix
x, y 2 I, and set A = adL x adL y. We calculate that A(L) = [x[yL]] ⇢ [xI] ⇢ I.
Identify A with its matrix in the aforementioned base; it must have zeroes on
all rows with index greater than dim I, since otherwise A would send some
elements of L outside I. Also, the submatrix consisting of the first dim I rows
and columns of A is exactly the matrix corresponding to adI x adI y in this
base. Taken together this shows that tr(A) = tr(adI x adI y), or in other words,
L(x, y) = I(x, y).

As a first application, we observe that any simple Lie algebra has nondegen-
erate Killing form. Recall from Section 3.2 that this is to say that the radical
belonging to the form, or

S = {x 2 L | (x, L) = 0},

is zero. To see that this is indeed the case when L is simple, use that S is an
ideal, so one of S = L, S = 0 is true. If it were the former, then (L,L) = 0,
meaning L is solvable. But this contradicts [LL] = L, which is necessarily the
case when L is simple (since otherwise [LL] would either be zero or a nonzero
ideal of L, and both alternatives are impossible by assumption).
An interesting question is to what extent the converse of this holds: If L has
nondegenerate Killing form, what can we say about its ideals? Before we inves-
tigate this we need another definition.

Definition 4.4. The unique maximal solvable ideal of L is called the radical

of L and is denoted Rad L.

Maximal here means not included in any larger solvable ideal. A maximal solv-
able ideal certainly has to exist (since L is finite dimensional), but its uniqueness
is less obvious. To prove it, recall Proposition 4.4(c), which states that I + J
is a solvable ideal whenever I and J are. Then J being maximal would imply
I + J = J , that is, I ⇢ J . The same holds for I, so any two maximal solvable
ideals contain each other and thus must be equal.
It may seem as if we have overloaded the word ”radical”, since we already use
it in conjunction with bilinear forms—however, this is not without good reason.
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By defintion the Killing form of L is nondegenerate if and only if its radical S
is zero. Now compare to the next theorem.

Theorem 4.7. The Killing form of L is nondegenerate if and only if Rad L = 0.

Proof. Write R = Rad L. First suppose S = 0. If R 6= 0 then R furnishes
a nonzero solvable abelian ideal; for this, take the ideal R(n) where n is the
smallest positive integer such that R(n+1) = 0, which is solvable and abelian
since [R(n)R(n)] = R(n+1). If we can show that all abelian ideals of L are zero,
then Rad L = 0 too. Thus let I be an abelian ideal, and let x 2 I. Given any
y 2 L, put A = adL x adL y. We have A2z = [x[y[x[yz]]] 2 [I[yI]] ⇢ [II] = 0 for
all z 2 L, so A is nilpotent. Then it has vanishing trace, or 0 = tr(A) = (x, y).
This holds for all y 2 L, so x 2 S, which shows that I ⇢ S = 0.

For the reverse direction, suppose that Rad L = 0. Given any x 2 [SS] and
y 2 S we have tr(adS x adS y) = (x, y) = 0 by Lemma 4.6 and x 2 S. As
remarked earlier, ([SS], S) = 0 is su�cient for S to be solvable, and this is
exactly what we have showed here. Being a solvable ideal of L, S must be
contained in Rad L = 0; hence S = 0.

To return to the question of how the nondegeneracy of the Killing form a↵ects
the ideal structure of L, we will soon see that under this condition, L is roughly
speaking built up using simple ideals for the atomic components. It is then
natural to name such algebras semisimple. We employ Theorem 4.7 to slightly
reformulate this definition.

Definition 4.5. We say that L is semisimple if Rad L = 0.

We prefer this definition since it implies that L/Rad L is semisimple even when L
is not, which is in agreement with our intuition of quotient algebras as ”dividing
out” an ideal along with some characterizing property of the ideal. To see this,
let M be the preimage of Rad (L/Rad L) along the quotient homomorphism
⇡ : L ! L/Rad L. Then ⇡(M (n)) = (⇡(M))(n) = (Rad (L/Rad L))(n) = 0
for some n, which gives M (n) ⇢ Ker ⇡ = Rad L. Hence M is solvable and
M ⇢ Rad L. But Rad L ⇢ M by construction, so M = Rad L. Therefore we
have Rad (L/Rad L) = 0.
Every semisimple Lie algebra is perforce finite dimensional, since otherwise its
radical is not guaranteed to exist. As such we will from now on omit specifying
that a given Lie algebra is finite dimensional if we have already assumed it to
be semisimple.

4.4 Structural considerations

Let V be a finite-dimensional vector space, and let n = dimn. A flag in V is a
chain of subspaces 0 = V0 ⇢ V1 ⇢ · · · ⇢ Vn = V , where the dimension of each
subspace is one greater than the one before it, or dimVi = i for all i. As long
as V is nonzero, we may take quotients and obtain a flag

0 = V1/V1 ⇢ V2/V1 ⇢ · · · ⇢ Vn/V1 = V/V1 (4.2)
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in V/V1. This also works in the opposite direction: A flag in V/Fv, (v 2 V
nonzero) necessarily has to be of the form (4.2) for V1 = Fv and some subspaces
Vi, i = 2, 3, . . . , n, due to that part of the isomorphism theorems for vector
spaces that relate the subspace structure of V to that of its quotients. Clearly
Vi ⇢ Vi+1, (1  i  n� 1), and it follows that 0 = V0 ⇢ V1 ⇢ · · · ⇢ Vn = V is a
flag in V by dimensional considerations. We now set out to show that

Proposition 4.8. Let L ⇢ gl(V ) be a linear Lie algebra, where V is finite-
dimensional. Write n = dimV .

(a) If every operator in L is nilpotent, then there exists a flag {Vi}i in V such
that L.Vi ⇢ Vi�1 for all i = 1, . . . , n.

(b) If L is solvable, then there exists a flag {Vi}i in V such that L.Vi ⇢ Vi for
all i = 1, . . . , n.

Proof. The case n = 0 is trivial. If n = 1, then the flag can just be taken to be
0 = V0 ⇢ Vn = V—(b) is clear, and a nilpotent operator of a one-dimensional
space (which hence acts as a scalar) is necessarily the zero operator, so (a) is
also satisfied. We use induction for the remaining cases.

(a) Theorem 8.1 furnishes a nonzero vector v 2 V such that L.v = 0. Set V1 =
Fv (the F -span of {v}). The action here is evaluation and the corresponding
representation is just the inclusion map i : L ! gl(V ). The space V1 is killed
by L and hence a submodule, so we have a quotient representation i0 : L !
gl(V/V1) defined by i0(x).(w+V1) = x.w+V1. With the vector space being
V/V1, the algebra M = i0(L) is seen to satisfy the hypotheses of (a), since
i0(x) is nilpotent if x is by the preceeding formula. Also, dimV/V1 = n� 1,
so induction yields a flag {Vi/V1}i in V/V1, which immediately translates
into a flag {Vi}i in V . It remains to show that L.Vi ⇢ Vi�1 for i = 2, . . . , n
(the case i = 1 is already known from L.v = 0). We know from induction
that M.(Vi/V1) ⇢ Vi�1/V1, (2  i  n). But

M.(Vi/V1) = {i0(x).(w + V1) | x 2 L,w 2 Vi}
= {x.w + V1 | x 2 L,w 2 Vi} = (L.Vi)/V1,

so it follows that L.Vi ⇢ Vi�1, (2  i  n).

(b) Theorem 8.2 provides a nonzero vector v 2 L along with a linear functional
� 2 L⇤ such that x.v = �(x)v for all x 2 L. We do not actually need �
in its full specificity; the fact that it implies L.V1 ⇢ V1 is enough. After
constructing V1 and M as in (a), we argue similarly and obtain a flag {Vi}i
in V (here we have to use that the image of a solvable algebra is solvable).
Again it only remains to show that L.Vi ⇢ Vi, (2  i  n), the proof of
which is entirely analogous to that of (a).

Remark. Part (b) of the proposition is usually cited as Lie’s Theorem.
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If L 6= 0 is solvable (nilpotent) and we choose a basis of V in such a way that each
basis element hails from exactly one of the subspaces of the flag furnished by the
proposition, then the extra condition on the flag says that relative to this basis,
the matrices corresponding to the elements of L are upper triangular (strictly
upper triangular). For convenience, let t(n, F ) and n(n, F ) denote, respectively,
the set of n ⇥ n upper triangular and strict upper triangular matrices having
elements in F . (It is easy to verify that these are linear Lie algebras and that
[t(n, F ), t(n, F )] ⇢ n(n, F ).) We will only need the full power of the proposition
in order to prove the next corollary, which itself will only see a single application
in Section 6.2. Recall the beginning of Section 4.2, in which we computed that
L is solvable if [LL] is nilpotent. With Lie’s Theorem, we are now in a position
where we can obtain the equivalency of these statements.

Corollary 4.8.1. If L is a finite-dimensional solvable Lie algebra, then L has
a flag of ideals, and [LL] is nilpotent.

Proof. Let n = dimL. Consider adL L ⇢ gl(L); it is the homomorphic image
of a solvable subalgebra and hence solvable by Proposition 4.4(a). It is also
linear, so we may use Lie’s Theorem to find a flag {Li}i in L which furthermore
satisfies (adL L).Li ⇢ Li, (1  i  n). In other words, [LLi] ⇢ Li for all i, and
we have the first part of the corollary. For the second, observe that it su�ces
to prove that all ad[LL] x, (x 2 [LL]) are nilpotent for [LL] to be, according to
Engel’s Theorem. But ad[LL] x = (adL x)|[LL], (x 2 [LL]), so we can just work
with the adL x, (x 2 [LL]) instead. To show that these are nilpotent, use that
adL L being solvable implies that it has a base relative to which its elements
are upper triangular, i.e. lie in t(2, F ). Then

adL [LL] = [adL L, adL L] ⇢ [t(n, F ), t(n, F )] ⇢ n(2, F ),

where we by the first inclusion mean more of an identification. The rightmost
algebra certainly consists of nilpotent operators, and we are done.

We now turn our attention to semisimple algebras. Let L semisimple and let
I1, . . . , In be ideals of L. We say that L is the direct sum of these ideals given
that it is their direct sum as subspaces, and we write L = I1�· · ·�In. For this to
be the case the ideals must be disjoint, and as a consequence [IiIj ] ⇢ Ii\Ij = 0,
(i 6= j). Hence we have [

P
i xi,

P
i yi] =

P
i[xiyi], (xi, yi 2 Ii, 1  i  n). This

says that applying the bracket in L is equivalent to ”componentwise” evaluation
of the brackets of Ii, in the sense that xi 2 Ii is one component of x =

P
i xi.

This notation is used in the next theorem, which provides a comprehensive
answer to our earlier question about what consequences a nondegenerate Killing
form has for the ideal structure of L.

Theorem 4.9. Let L be semisimple with Killing form . Then L possesses
simple ideals L1, . . . , Ln such that

(i) L = L1 � · · ·� Ln;

(ii) L
i

= |L
i

⇥L
i

for all i = 1, . . . , n;
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(iii) if I is any simple ideal of L, then I = Li for some i = 1, . . . , n.

Proof. We first show (i) through induction on dimL. If L has no proper nonzero
ideals, then L is simple and trivially satisfies the theorem, so assume otherwise.
Let L1 be a minimal nonzero ideal of L. Then L?

1 (the orthogonal subspace of
L1 with respect to the Killing form) is an ideal, and so is J = L1 \ L?

1 . We
have ([JJ ], J) = 0 by the definition of L?

1 , which as seen earlier is su�cient
for J to be solvable, so J = 0 by the semisimplicity of L. The sum L1 + L?

1 is
therefore direct and has dimension equal to dimL1 + dimL?

1 . This dimension
is equal to dimL by the nondegeneracy of , which shows that L = L1 � L?

1 .

Now let I be any ideal of L1. We have [LI] = [L1I] � [L?
1 I] = I � 0 = I, so I

is also an ideal of L. We chose L1 to be minimal, so I must be trivial. Thus L1

is simple. Any ideal of L?
1 is similarly an ideal of L. In particular, any solvable

ideal of L1 or L?
1 is a solvable ideal of L, so L being semisimple implies that L1

and L?
1 are semisimple. Hence L?

1 satisfies the induction hypothesis and can
be written as a direct sum L?

1 = L2 � · · · � Ln of simple ideals of L?
1 . Then

L = L1 � L2 � · · ·� Ln where each Li is a simple ideal of L.

Part (ii) of the theorem now follows from (i) and Lemma 4.6.

Let I be any simple ideal of L. Observe that [IL] = [IL1] � · · · � [ILn]. Each
of [IL], [IL1], . . . , [ILn] is an ideal of I and so must be either zero or I. Recall
that Z(L) is solvable and hence zero, i.e. [xL] = 0, x 2 L implies x = 0. The
simple ideal I is a fortiori nonzero, which forces [IL] = I by the above. This is
only possible if [ILi] = I for exactly one i = 1, . . . , n; say i = k. Then I = [ILk]
is a nonzero ideal of the simple ideal Lk, so I = Lk and we are done.

We have seen that subalgebras and homomorphic images of nilpotent (solvable)
algebras are themselves nilpotent (solvable). As might be expected, a similar
result holds for semisimple algebras.

Corollary 4.9.1. If L is semisimple, then

(a) each ideal of L is a direct sum of simple ideals of L;

(b) all ideals and homomorphic images of L are semisimple;

(c) L = [LL].

Proof. Write L as a direct sum of simple ideals L1, . . . , Ln as in Theorem 4.9.
The first part of the proof of the theorem is valid when L1 is replaced with
an arbitrary proper ideal I. More specifically, any ideal of I is an ideal of L,
I is semisimple, and I decomposes (by induction) into simple ideals, so then
I = Li1 � · · ·�Li

k

for some i1, . . . , ik. This proves (a) and the first part of (b).
As for (c), componentwise application of the bracket gives

[LL] = [L1 � · · ·� Ln, L1 � · · ·� Ln]

= [L1L1]� · · ·� [LnLn]

= L1 � · · ·� Ln

= L.

26



For the other part of (b), let � : L ! M be a surjective homomorphism. Then
M ⇠= L/Ker � ⇠= (L1 � · · · � Ln)/(Li1 � · · · � Li

k

) ⇠= Lj1 � · · · � Lj
l

. The
converse of Theorem 4.9 is certainly true (Rad L is solvable, but also a direct
sum of simple and therefore nonsolvable ideals of L, and this is only possible if
Rad L = 0), so M is semisimple.

Note also part (c), which implies that the family of nilpotent and/or solvable
algebras and the family of semisimple algebras are disjoint.

5 Consequences of semisimplicity

5.1 Representations of semisimple algebras

Consider the adjoint representation adL : L ! gl(L), or equivalently the action
x.y = [xy]. When L is semisimple, Theorem 4.9 gives L as a direct sum L =
L1 � · · · � Ln, where each Li is an ideal and hence an L-submodule of L.
Moreover, Li is simple and so has no nontrivial L-submodules. Since the bracket
evaluates componentwise, the action of L on itself is determined in full by the
actions of Li on themselves. Motivated by this, we introduce some definitions.

Definition 5.1. An L-module is irreducible if it is nonzero and its only sub-
modules are the trivial ones. A finite dimensional L-module is completely

reducible if it is a direct sum of irreducible L-modules. If � is a representation
of L whose corresponding L-module is irreducible (completely reducible) then
we say that � also has this property.

Note that any one-dimensional module necessarily is irreducible. Our aim in
this section is to generalize the discussion preceeding the definition by proving
that, in fact, every finite dimensional representation of a semisimple algebra
is completely reducible. We start with the following lemma, which, roughly
speaking, generalizes the triviality of the adjoint action of a one-dimensional
algebra on itself.

Lemma 5.1. Let L be semisimple and � : L ! gl(V ) a finite dimensional
representation of L. If W is any one-dimensional submodule of V , then L acts
trivially on W , i.e. L.W = 0.

Proof. Let ⇢ : L ! gl(W ) be the corresponding representation. The operators
in gl(W ) act as scalars since W is one-dimensional, but Corollary 4.9.1(c) gives
tr(⇢(L)) = tr(⇢([LL])) = tr([⇢(L)⇢(L)]) = 0, which forces ⇢(L) = 0.

Before proceeding we need to develop some theory relating to representations.
This comes in the form of the so-called Casimir element.
Let � : L ! gl(V ) be a finite dimensional representation. The Killing form
is the special case V = L, � = adL of the following construction: Define a
symmetric associative bilinear form � on L by �(x, y) = Tr(�(x),�(y)), x, y 2 L.
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If in addition L is semisimple and � is faithful, i.e. injective, then � is also
nondegenerate. To see this, let S be the radical of �. Then

Tr(�(S),�(S)) = �(S, S) = 0,

so �(S) is solvable by Cartan’s Criterion. But S ⇠= �(S) by faithfulness, so S is
a solvable ideal of L and hence zero by semisimplicity.
Continuing, let L be semisimple, � faithful, and define � as above. Fix a basis
(xi)i of L. Since � is nondegenerate and associative, we may construct the dual
basis (yi)i as outlined at the end of Section 3.2. Clearly (�(xi))i and (�(yi))i
are bases of �(L) by faithfulness. Moreover, (�(yi))i is the dual base of (�(xi))i
with respect to the trace form of �(L), since

Tr(�(yi),�(xj)) = �(yi, xj) = �ij .

Now, �(L) is a linear Lie algebra, so by the final remark of Section 3.2 we have

X

i

�(xi)�(yi) 2 Z(�(L)) = Cgl(V )(�(L)). (5.1)

Write
P

i �(xi)�(yi) = c�(�); we call this the Casimir element of �, and it
commutes with �(L) by (5.1). The trace of c�(�) is easily calculated:

tr(c�(�)) =
X

i

tr(�(xi)�(yi)) =
X

i

�(xi, yi) =
X

i

�(yi, xi) =
X

i

�ii = dimL.

More can be said in the case when the representation is irreducible by applying
Schur’s Lemma (the proof of which we omit).

Lemma 5.2 (Schur). Let � : L ! gl(V ) be an irreducible representation. Then
x 2 Cgl(V )(�(L)) if and only if x acts as a scalar on V .

Supposing that � is irreducible, the lemma shows that the only possibility is
c�(�) =

dimL
dimV IV , since the trace evaluates incorrectly otherwise. In this special

case, we see that the exact form of c�(�) is independent of the choice of basis
(though one can verify that this is also true for arbitrary representations).
It is possible to obtain an element having the properties of the Casimir element
even when � is not faithful. This is done in the following way: Ker � is an
ideal of L and hence a direct sum of simple ideals of L. Take L0 to be the
direct sum of the remaining ideals; L0 is semisimple and the restriction �|L0

is a faithful representation of L0, so we may construct the Casimir element
c = c�|

L

0 (�) 2 gl(V ). It commutes with �(L0), but clearly �(L) = �(L0), so
c commutes with �(L) (and as before, tr(c) = dimL). We then (by abuse of
language) call c the Casimir element of �.
We are now ready to prove the earlier mentioned result on complete reducibility,
though rather than using Definition 5.1, we instead verify an equivalent state-
ment: � is completely reducible if and only if each to each submodule W ⇢ V
belongs a submodule W 0 ⇢ V such that V = W �W 0—a complement of W .
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Theorem 5.3 (Weyl). If L is semisimple, then any finite dimensional repre-
sentation � : L ! gl(V ) is completely reducible.

Proof. LetW be a proper nonzero submodule of V . Our strategy will be to show
that V = W �Ker f for an appropriate choice of L-homomorphism f : V ! W .

One can show that Hom(V,W ) = {f : V ! W | f is linear} is an L-module
under the action that maps (x, f) 2 L⇥Hom(V,W ) to the linear transformation
x.f 2 Hom(V,W ) defined by (x.f)(v) = x.f(v) � f(x.v), v 2 V . Notice that
L.f = 0 if and only if f is an L-homomorphism. Let V ⇢ Hom(V,W ) consist of
those f for which f |W acts as a scalar—say f |W = afIW , af 2 F . Let W ⇢ V
consist of those f for which f |W = 0 (af = 0). Now, given (x, f) 2 L ⇥ V , we
calculate that (x.f)|W = 0 as follows: For any w 2 W ,

(x.f)(w) = x.f(w)� f(x.w) = x.f |W (w)� f |W (x.w) = afx.v � afx.v = 0.

In other words, L.V ⇢ W , so W ⇢ V ⇢ Hom(V,W ) are in fact submodules.
Hence, the quotient module V /W is defined. Also, if f+W 6= W (af 6= 0), then
g+W = a

g

a
f

(f +W ) for any g 2 V , which shows that V /W is one-dimensional.

Next, we find a complement of W in V . There are two cases to consider:

(1) W is irreducible.

Let ⇢ : L ! gl(V ) be the representation induced by the L-module V , and
let c be the Casimir element of ⇢. It commutes with ⇢(L), so for all x 2 L,
f 2 V we have

0 = [c, ⇢(x)](f) = c(⇢(x)(f))� ⇢(x)(c(f)) = c(x.f)� x.c(f).

Hence c : V ! V is an L-module homomorphism. Consequently, X = Ker c
is a submodule of V . The module V /W is one-dimensional, so L.(V /W ) =
W (Lemma 5.1), or equivalently ⇢(L)(V ) ⇢ W . Also, c is a sum of composi-
tions of elements of ⇢(L), which means that c(V ) ⇢ W . By the rank-nullity
theorem, X is one-dimensional. Fix a basis of W and extend it to a basis of
V —as in the proof of Lemma 4.6, we obtain tr(c|W ) = tr(c) = dimL.
Evidently, c|W commutes with the image of the irreducible representa-
tion L ! gl(W ) induced by W (this image is just ⇢(L)|W ), so Shur’s
Lemma together with the preceding implies that c|W = dimL

dimW IW . Therefore
W \X = 0, and it follows by dimensional considerations that V = W �X.

(2) W is reducible.

Let W 0 be a proper nonzero L-submodule of W . Consider the following
diagram.

0 W V V /W 0

The maps are, from left to right, the trivial, inclusion, projection, and zero
map. They form an exact sequence of linear transformations (i.e. the im-
age of each is the kernel of the next). The leftmost three are L-module
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homomorphisms, and Lemma 5.1 implies that the last is, too—the diagram
is therefore an exact sequence of L-module homomorphisms. As in the the-
ory of ”ordinary” modules, we obtain a new exact sequence by passing to
quotient modules:

0 W /W 0 V /W 0 V
W 0 /

W
W 0 0.

Of the nonzero modules, note that the two leftmost ones have lower dimen-
sion than those of the previous sequence, while the rightmost is isomorphic
to V /W and still one-dimensional. Introduce the induction hypothesis that
there exists a one-dimensional submodule W̃ /W 0 ⇢ V /W 0 such that

V
W 0 =

W
W 0 � W̃

W 0 (5.2)

(to motivate this hypothesis, observe that we can repeat the quotient process
until the leftmost module is irreducible, in which case (1) furnishes such a
submodule). Writing out the associated maps of the quotient module W̃ /W 0

gives the exact sequence

0 W 0 W̃ W̃ /W 0 0.

Again, by induction, there exists a one-dimensional submodule X ⇢ W̃ such
that W̃ = W 0�X. Being one-dimensional, W \X 6= 0 would imply X ⇢ W .
By the direct sum (5.2) we have (W \ W̃ )/W 0 = (W /W 0) \ (W̃ /W 0) = 0,
that is, W \W̃ ⇢ W 0, and it would follow that X ⇢ W \X ⇢ W \W̃ ⇢ W 0.
But this would contradict W 0 \ X = 0, so we must have W \ X = 0. As
in (1) we have dimW + dimX = (dimV � 1) + 1 = dimV , and therefore
V = W �X.

From (1) and (2) we have a one-dimensional submodule X ⇢ V such that
V = W � X. Take any nonzero f 2 X. It spans X and necessarily satisfies
af 6= 0, since otherwise f 2 W , which would contradict the direct sum. We
may thus assume f |W = IW—if not, replace f with f/af . The action of L on
X is trivial (Lemma 5.1). In particular, x.f = 0, so f is an L-homomorphism.
Hence, f is a left split in the exact sequence

0 W V V/W 0,i

f

where i is the inclusion map, since evidently f � i = f |W = IW . By the splitting
lemma for L-modules, V = Im i�Ker f = W �Ker f . Since it is a submodule,
Ker f is therefore our sought complement to W .

5.2 Derivations

Given an F -algebra U we may consider those linear operators A 2 End U that
satisfy the so-called product rule:

A(x · y) = x · Ay +Ax · y, (x, y 2 U). (5.3)
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For the sake of clarity we here use · instead of juxtaposition to write the bilinear
operation of the F -algebra. Operators that satisfy (5.3) are called derivations.
One example is provided by the infinite-dimensional vector space R[x] of real
polynomials, which is an R-algebra under polynomial multiplication, and with
the usual derivative p(x) 7! d

dxp(x) as one possible derivation. The set of all
derivations of U is denoted Der U , and for the derivations themselves we use
the greek letters �, ✏, etc.

Remark. In a Lie algebra L over F—which, in particular, is an F -algebra with
the bracket for the bilinear operator—the product rule takes the form

�([xy]) = [x, �(y)] + [�(x), y], (� 2 Der L, x, y 2 L).

Of course, if L happens to be linear, then we may view it as an F -algebra in a
di↵erent way, with composition of operators as the bilinear operation instead. In
this case the product rule appears as �(xy) = x�(y)+�(x)y. It is straightforward
to verify that a derivation in this latter sense is also a derivation in the former.
When we speak of Der L, we will always mean the set of derivations with respect
to the bracket, regardless of whether L is linear or not.

The set Der U is a subspace of End U , which we see by showing that a� + b✏
satisfies the product rule for any �, ✏ 2 Der U ; a, b 2 F .

(a� + b✏)(x · y) = a�(x · y) + b✏(x · y)
= a(x · �(y) + �(x) · y) + b(x · ✏(y) + ✏(x) · y)
= x · (a�(y) + b✏(y)) + (a�(x) + b✏(x)) · y
= x · (a� + b✏)(y) + (a� + b✏)(x) · y, (x, y 2 U)

In fact, Der U is a subalgebra of gl(U), since the bracket of any two derivations
is again a derivation:

[�, ✏](x · y) = (�✏� ✏�)(x · y) = �(x · ✏(y) + ✏(x) · y)� ✏(x · �(y) + �(x) · y)
= x · �(✏(y)) + �(x) · ✏(y) + ✏(x) · �(y) + �(✏(x)) · y

� x · ✏(�(y))� ✏(x) · �(y)� �(x) · ✏(y)� ✏(�(x)) · y
= x · �(✏(y)) + �(✏(x)) · y � x · ✏(�(y))� ✏(�(x)) · y
= x · (�✏� ✏�)(y) + (�✏� ✏�)(x) · y
= x · [�, ✏](y) + [�, ✏](x) · y, (x, y 2 U).

Observe that �✏ (as well as ✏�) denotes the composition of � and ✏ as linear
operators and not, say, the function x 7! �(x) · ✏(x), which need not even be
linear (as is the case if we take � = ✏ = d

dx in our example with the R-algebra
of real polynomials).
Now let L be a Lie algebra. To see why derivations will play an important
role in understanding the structure of L, we note that not only is it true that
adL L ⇢ Der L—adL L is in fact an ideal of Der L. The first of these claims
can be verified by using the Jacobi identity. To prove the second, let � 2 Der L,
x 2 L. Then

[�, adL x](y) = �([xy])� [x, �(y)] = [�(x), y] = adL �(x)(y), (y 2 L). (5.4)
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In other words, [�, adL L] ⇢ adL L for all � 2 Der L. When L is semisimple we
can say even more:

Theorem 5.4. If L is semisimple, then adL L = Der L.

Proof. Write M = adL L, D = Der L. By the preceding, M is an ideal of D,
and hence M? = {x 2 D | D(x,M) = 0} is, too. Being an ideal, M has non-
degenerate Killing form (Theorem 4.7), and this form satisfies M = D|M⇥M

(Lemma 4.6). All in all, this shows that

[M?,M ] ⇢ M? \M

= {x 2 M | D(x,M) = 0}
= {x 2 M | M (x,M) = 0} = 0.

Now let � 2 M? be arbitrary. By the above and (5.4), we see that adL (�(x)) =
[�, adL x] = 0 for all x 2 L. Semisimplicity forces Z(L) = 0, so adL : L ! M is
an isomorphism (in particular, injective). Therefore �(x) = 0 for all x 2 L, i.e.
� = 0. This proves that M? = 0, which is equivalent to M = D.

Together with the next lemma, this theorem provides a way to extend the Jordan
decomposition to abstract semisimple Lie algebras. We introduce the method
for this in the next section. In proving the lemma, we will make use of the
following terminology: A chain in V is a set of nonzero vectors

Ak�1v, Ak�2v, . . . , Av, v,

for some A 2 End V , v 2 V , where k is a positive integer, with the additional
condition that Akv = 0. Note also that while the two theorems cited in the proof
each are formulated for the case when F is the field of complex numbers, their
proofs still go through when F is an algebraically closed field of characteristic
zero (this is even explicitly mentioned in the first source).

Lemma 5.5. Let U be a finite dimensional F -algebra. Then Der U is closed
under the Jordan decomposition, i.e. if � 2 Der U has Jordan decomposition
� = �s + �n in End U , then �s, �n 2 Der U .

Proof. Let � = �s + �n be as in the lemma, and let E denote the set of all
(distinct) eigenvalues of �s. According to Theorem 7.8 of [6], U has a basis in
which the basis vectors are organized in chains of the form

(� � �1I)k1�1x1, . . . , (� � �1I)x1, x1,
...

...
...

...
(� � �mI)km

�1xm, . . . , (� � �mI)xm, xm,

where �i 2 E for each i. The eigenvalues corresponding to di↵erent chains need
not be unique, i.e. it is possible that �i = �j when i 6= j. Most importantly, by
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construction of the Jordan decomposition, �s is diagonal relative to this basis,
with matrix

diag(�1, . . . ,�1| {z }
k1

, . . . ,�m, . . . ,�m| {z }
k
m

).

Another construction vital to this proof is the collection of subspaces

Ua = {x 2 U | (� � aI)kx = 0 for some positive integer k = k(x)},

where a 2 F . We write k(x) to emphasize that k, if it exists, may be di↵erent
for di↵erent x 2 U . According to Theorem 8.23 of [1], U decomposes as

U =
M

�2E

U�. (5.5)

Evidently, the basis chains corresponding to the eigenvalue � all lie in U�, and
from the aforementioned appearance of �s relative to our chosen basis, we see
that �s(x) = �x for all x 2 U�. Together, these facts provide us with a complete
description of how �s acts on U .
Before proceeding, we need some information about how the bilinear operation
behaves with respect to these subspaces. Given any a, b 2 F , set A = � � aI,
B = � � bI, C = � � (a+ b)I. We start by computing the identity

C(x · y) = �(x · y)� (a+ b)(x · y)
= �(x) · y � (ax) · y + x · �(y)� x · (by)
= Ax · y + x · By.

(5.6)

Now consider the following statement.

Cn(x · y) =
nX

i=0

✓
n

i

◆
An�ix · Biy, (n � 0) (5.7)

It certainly holds for n = 0 since both sides reduce to x · y. Supposing that
(5.7) holds for some non-negative integer n, we may apply (5.6) together with
Pascal’s identity in order to verify the statement for n+ 1:

Cn+1(x · y) = Cn(Ax · y) + Cn(x · By)

=
nX

i=0

✓
n

i

◆
An+1�ix · Biy +

nX

i=0

✓
n

i

◆
An�ix · Bi+1y

=
nX

i=1

✓
n

i

◆
+

✓
n

i� 1

◆�
An+1�ix · Biy

+An+1x · y + x · Bn+1y

=
nX

i=1

✓
n+ 1

i

◆
An+1�ix · Biy +An+1x · y + x · Bn+1y

=
n+1X

i=0

✓
n+ 1

i

◆
An+1�ix · Biy.
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Hence (5.7) holds for all n � 0 by induction. Choosing n large enough in (5.7)
yields Cn(x ·y) = 0 for any given x 2 Ua, y 2 Ub, which means that x ·y 2 Ua+b.
In other words, Ua · Ub ⇢ Ua+b for all a, b 2 F .
Now suppose x, y 2 U are nonzero. By (5.5), there exist a, b 2 E such that
x 2 Ua, y 2 Ub. Additionally, x · y 2 Ua+b by the preceding. This subspace
is nonempty if a + b 2 E and empty if not; in either case, we have �s(x · y) =
(a + b)x · y. But �s(x) · y + x · �s(y) = (a + b)x · y, so �s satisfies the product
rule: �s(x · y) = �s(x) · y + x · �s(y). Of course, this rule also holds whenever
one of x, y is zero. We conclude that �s 2 Der U , which also implies that
�n = � � �s 2 Der U .

5.3 The abstract Jordan decomposition

Let L ⇢ gl(V ) be a semisimple linear Lie algebra. Theorem 5.4 says that L is
isomorphic to Der L ⇢ gl(L). We may thus view L as being embedded in both
gl(V ) and gl(L). In general, these enveloping algebras have di↵erent dimension.
Our results up to this point give no guarantee that the semisimple and nilpotent
parts xs, xn 2 gl(V ) of any given x 2 L themselves lie in L, only that they exist.
However, we do have this property for L ⇠= Der L in gl(L), by Lemma 5.5. Based
on this, one might wonder if L does in fact have this property also in gl(V ).
The next theorem says exactly this.

Theorem 5.6. Let V be finite dimensional and let L ⇢ gl(V ) be a semisimple
linear Lie algebra. Then L is closed under the Jordan decomposition in gl(V ),
i.e. if x 2 L has Jordan decomposition x = xs + xn in gl(V ), then xs, xn 2 L.

Proof. Let x = xs+xn be as in the theorem, and writeN = Ngl(V )(L). We begin
by expressing L as the intersection of certain subalgebras of gl(V ). First, V is an
L-module under the action (x, v) 7! x(v), x 2 L, v 2 V , with the corresponding
representation being the inclusion map L ! gl(V ). Apply Weyl’s Theorem
on this representation to get V as direct sum of irreducible L-submodules, say
W1, . . . ,Wn. Now define, for i = 1, . . . , n,

Li = {x 2 gl(V ) | x(Wi) ⇢ Wi, tr(x|W
i

) = 0}.

We may verify that each of the two conditions x(Wi) ⇢ Wi, tr(x|W
i

) = 0 define
a subalgebra of gl(V ) (to show closedness under the bracket for the latter,
use the identities tr(xy) = tr(yx) and (xy)|W = x|W y|W ); hence the Li are
subalgebras of gl(V ). Since each Wi is an L-submodule, L(Wi) ⇢ Wi, and L
being semisimple implies tr(L|W

i

) = tr([L,L]|W
i

) = tr([L|W
i

, L|W
i

]) = 0. This
shows that L ⇢ Li, i = 1, . . . , n. Next, take L0 = Ngl(V )(L)\(

Tn
i=1 Li). Then L

is an ideal of L0 and L0 is a subalgebra of N by construction. We now show that
L0 = L. First, L0 is a (finite dimensional) L-module under the adjoint action
(x, y) 7! [xy], x 2 L, y 2 L0. Moreover, L is an L-submodule of L0, so Weyl’s
Theorem furnishes an L-submodule M of L0 such that L0 = L�M . This gives
L.L0 = L.L � L.M , or equivalently [LL0] = [LL] � [LM ]. However, [LL0] ⇢ L
and [LL] = L, so this is only possible if L.M = [LM ] = 0. The L-submodule
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Wi has corresponding irreducible representation |W
i

: L ! gl(Wi), and we have
[L|W

i

,M |W
i

] = [LM ]|W
i

= 0. Shur’s Lemma now says that the algebra M |W
i

⇢
gl(Wi) consists of scalars. Furthermore, M ⇢ L0 ⇢ Li, so tr(M |W

i

) = 0. Since
M |W

i

are scalars we must have M |W
i

= 0. But V = Wi � · · ·�Wn, so we must
have M = 0 (since M ⇢ gl(V )), which means that L0 = L.
Now let x 2 L have Jordan decomposition x = xs+xn in gl(V ). From the above
we know that x 2 Li for all i = 1, . . . , n. Then Theorem 3.2(d) gives xs(Wi) ⇢
Wi and similarly for xn. Being nilpotent, xn clearly satisfies tr(xn|W

i

) = 0, and
then 0 = tr(x|W

i

) = tr(xs|W
i

). This says that sn, xn 2 Li for all i. Moreover, the
final remark of Section 3.1 says that since x 2 Ngl(V )(L) (which is equivalent
to adgl(V ) x(L) ⇢ L) we have adgl(V ) xs(L) ⇢ L and similarly for xn, i.e.
sn, xn 2 Ngl(V )(L). This shows that xs, xn 2 L0 = L.

As suggested in the previous section, Theorem 5.4 and Lemma 5.5 enables us
to ”carry over” the Jordan decomposition along adL. To be more precise,

Definition 5.2. Let L be semisimple. Given x 2 L, there exists unique s, n 2 L
such that adL x = adL s + adL n is the usual Jordan decomposition of adL x
in gl(L). We say that x = s+n is the abstract Jordan decomposition of x.

Here adL s is semisimple and adL n nilpotent. By abuse of language, we call s
the semisimple part of x, and n its nilpotent part. Of course, if L happens to be
linear, then x has actual semisimple and nilpotent parts xs, xn. But xs, xn 2 L
by Theorem 5.6, so we may send them across adL. By Lemma 3.1, adL xs

and adL xn are semisimple and nilpotent, respectively, and [adL xs, adL xn] =
adL [xsxn] = 0. Thus, by the uniqueness of the Jordan decomposition (Theorem
3.2(b)), we must have adL xs = adL s, adL xn = adL n. In other words,

Corollary 5.6.1. Let L ⇢ gl(V ) be a semisimple linear Lie algebra, and let
x 2 L. If x = s + n and x = xs + xn are, respectively, the abstract and usual
Jordan decompositions of x, then s = xs, n = xn.

We may therefore always use xs and xn to denote the semisimple and nilpotent
parts of x 2 L, with no distinction between what type of Jordan decomposition
we are performing, since they always agree whenever both exist. Another im-
portant corollary to Theorem 5.6 is that this uniqueness, in a sense, carries over
to homomorphic images of the abstract decomposition.

Corollary 5.6.2. Let L be semisimple and � : L ! gl(V ) a finite dimensional
representation of L. If x 2 L has (abstract) Jordan decomposition x = xs + xn,
then �(x) 2 gl(V ) has usual Jordan decomposition �(x) = �(xs) + �(xn).

Proof. Begin by writing S = ad�(L) �(xs), N = ad�(L) �(xn). Observe that
ad�(L) �(x) = S +N and S,N 2 gl(�(L)). These commute:

[S,N ] = ad�(L) [�(xs),�(xn)] = ad�(L) �([xsxn]) = 0.
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Now xn is nilpotent, i.e. adL xn is. Then, for some positive integer m,

Nm�(y) = (ad�(L) �(xn))
m(�(y)) = [�(xn)[�(xn) . . . [�(xn)| {z }

m

�(y)]]]

= �([xn[xn . . . [xn| {z }
m

y]]]) = �((adL xn)
m(y)) = 0, (y 2 L).

Hence N is nilpotent. Similarly, adL xs is semisimple, i.e. it has an eigenvector
basis (xi)i of L. Then (�(xi))i spans �(L), and each �(xi) is an eigenvector of
S, which is easily verified. Therefore S is semisimple. Uniqueness now implies
that ad�(L) �(x) = ad�(L) �(xs) + ad�(L) �(xn) is the Jordan decomposition of
ad�(L) �(x) in gl(�(L)). Moreover, the algebra �(L) is semisimple since it is the
homomorphic image of a semisimple algebra. We may hence take the abstract
Jordan decomposition of �(x) in �(L), which must be �(x) = �(xs) + �(xn) by
the above and Definition 5.2. Finally, Corollary 5.6.1 gives that this is the usual
Jordan decomposition of �(x) in gl(V ).

As an application, let L be semisimple and let K be a subalgebra of L. Consider
the two representations adL : K ! gl(L) and adK : K ! gl(K). To say that
x 2 K is semisimple in L is by definition to say that the operator adL x 2 gl(L)
is semisimple. The corollary implies that adK x 2 gl(K)—a di↵erent operator—
is semisimple (note that Lemma 3.1(i) is not applicable since K need not be
linear). We get a similar result when replacing ”semisimple” with ”nilpotent”.

6 The Cartan decomposition

6.1 Toral subalgebras

We now introduce another family of Lie algebras. These are the toral subalge-
bras, and we have postponed their definition until now for the simple reason that
they require the use of the abstract Jordan decomposition in their formulation.

Definition 6.1. Let L be semisimple. We say that a subalgebra T of L is a
toral subalgebra if every element of T is semisimple.

If we on the opposite end of the spectrum have a subalgebra in which every
element is nilpotent, then Engel’s Theorem tells us that the subalgebra is nilpo-
tent. Our first result on toral subalgebras provides a similar, though perhaps
more unexpected insight.

Lemma 6.1. If T is a toral subalgebra of L, then [TT ] = 0; that is, T is abelian.

Proof. Fix x, y 2 T and write A = adT x, B = adT y. Since x, y are semisimple
in L by hypothesis, so are A,B in gl(T ) as explained in the discussion following
Corollary 5.6.2. Put z = Bx and note that z = �Ay since [yx] = �[xy]. Being
semisimple, A,B are diagonalizable in gl(T ), i.e. each have a set of eigenvectors
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that forms a base of T . Let (xi)i be such a basis of eigenvectors of B, with
corresponding eigenvalues (�i)i. Write x =

P
i aixi, (ai 2 F ), which gives

z = Bx =
P

i ai�ixi. Now suppose that z is nonzero. If y happens to be an
eigenvector of A (with eigenvalue �, say) then Bz = �BAy = ��By = ��[yy] =
0. In other words z (which is nonzero) is an eigenvector of B with eigenvalue 0,
so z = xj , �j = 0 for some j. However, this would imply that xi =

P
i 6=j ai�ixi,

which contradicts the linear independence of (xi)i. Therefore y cannot be an
eigenvector of A unless z is zero. This implies that 0 = �Ay whenever y is an
eigenvector of A, meaning y must have eigenvalue 0. This holds for any choice
of y 2 T in the beginning of the proof, so every eigenvalue of A must be zero.
Since A is diagonalizable, A = 0. This holds for any choice of x 2 T in the
beginning of the proof, so [xy] = Ay = 0 for all x, y 2 T .

Of special importance are the maximal toral subalgebras—the toral subalgebras
not properly contained in any larger toral subalgebra. We use H to denote such
algebras. In the next section, they will play a central role in understanding the
structure of their enveloping algebra. Beyond being abelian, that is, each of
its elements commutes with the entirety of H, it is also the case that only the
elements of H have this latter property. In other words,

Proposition 6.2. If H is a maximal toral subalgebra of L, then CL(H) = H.

In order to prove this proposition, we will need the following lemma.

Lemma 6.3. If L is nilpotent, then every finite-dimensional nonzero ideal I
intersects the center of L nontrivially, i.e. I \ Z(L) 6= 0.

Proof. Consider the adjoint action of L on itself. Being an ideal, I is an L-
submodule of this action, whose corresponding representation � : L ! gl(I) is
given by �(x) = (adL x)|I , (x 2 L). As we have seen, L being nilpotent implies
that every element of L is ad-nilpotent, so �(L) ⇢ gl(I) is a linear Lie algebra
of nilpotent operators, where I is finite-dimensional and nonzero. Theorem 8.1
thus furnishes a nonzero x 2 I such that 0 = �(L).x = [Lx], or equivalently,
x 2 I \ Z(L).

We will also use the fact that the sum of any pair of commuting, semisimple
linear operators is again semisimple (for a proof, see Theorem 8.8 of [6]), and
the fact that the composition of two commuting nilpotent operators is nilpotent.
Finally, we will use Corollary 6.4.1 of the next section, which of course will
itself be proved without the help of Proposition 6.2, as to not result in circular
reasoning.

Proof of Proposition 6.2. The inclusion H ⇢ CL(H) is clear from H being
abelian. Let  be the Killing form of L, and put C = CL(H). We split the
proof into seven steps.

(1) C is closed under the abstract Jordan decomposition.
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By definition, x 2 C if and only if adL x(H) = 0. The semisimple and
nilpotent parts xs, xn of x are by definition the unique elements of L such
that adL x = adL xs + adL xn is the usual Jordan decomposition in gl(L).
But then adL xs(H) = 0 = adL xn(H) by Theorem 3.2(d), so xs, xn 2 C.

(2) If x 2 C is semisimple, then x 2 H.

Write Fx for the span of x. We have [Fx, Fx] = 0, and also [Fx,H] = 0 by
x 2 C. Using this and Lemma 6.1, we see that H + Fx is abelian (take its
bracket with itself). The elements of H + Fx are hence semisimple, since
each is a sum of commuting semisimple operators. Then H + Fx is toral,
so maximality forces H + Fx = H, meaning x 2 H.

(3) |H⇥H is nondegenerate.

Suppose h 2 H is such that (h,H) = 0. Let x 2 C. By (1), xn 2 C, so
adL h, adL xn commute. Then, since adL xn is nilpotent, adL h adL xn is
nilpotent. This shows that (h, xn) = tr(adL h adL xn) = 0, or equivalently
(h, x) = (h, xs). But xs 2 H by (2), so we see that (h, x) = 0. Since x
was arbitrary, (h,C) = 0. This forces h = 0 since |C⇥C is nondegenerate
(Corollary 6.4.1), which proves the statement.

(4) C is nilpotent.

We use Engel’s Theorem. Fix x 2 C; since xs, xn 2 C by (1), we may
write adC x = adC xs + adC xn. But (2) says that xs 2 H, which implies
adC x(C) = [xC] ⇢ [HC] = 0, or in other words adC xs = 0. Therefore
adC x = adC xn is nilpotent (Corollary 5.6.2) and we are done.

(5) H \ [CC] = 0

We have (H, [CC]) = ([HC], C) = (0, C) = 0. Part (3) says that no
nonzero h 2 H may satisfy (H,h) = 0—hence, H \ [CC] = 0.

(6) C is abelian.

Suppose not, i.e. [CC] is nonzero. It is an ideal of C and the latter is
nilpotent by (4), so there exists a nonzero x 2 [CC] \Z(C) by Lemma 6.3.
If this x equals its semisimple part, then x 2 H by (2), and then x = 0 by
(5). This is not possible, so we must have xn 6= 0. x 2 Z(C) is equivalent
to adL x(C) = 0 and as in part (1) we thus obtain adL xn(C) = 0, meaning
xn 2 Z(C). Thus adL xn, adL C commute, and arguing as in part (3) lets
us conclude that (xs, C) = 0. But xn 2 C by (1) and is nonzero, which is
a contradiction since |C⇥C is nondegenerate.

(7) C = H.

Suppose not, so there exists an x 2 C \H. If it equals its semisimple part,
then x 2 H by (2)— a contradiction—so xn 6= 0. By (1), xn 2 C. Then
C(xn, C) = tr(adC xn adC C) = 0 since adC xn is nilpotent and, by (6),
commutes with adC C. We now have the same contradiction as for (6).

38



In the next section, we put maximal toral subalgebras to use in understanding
the structure of its enveloping semisimple algebra, in a way that is reminiscent
of how one decomposes a vector space into the eigenspaces of a given semisimple
(diagonalizable) operator.

6.2 Roots of a semisimple algebra

Let L be a nonzero Lie algebra and let K be a subalgebra of L. Suppose
x 2 L, x 6= 0 is a simultaneous eigenvector of adL K in the sense that there
exist associated scalars �x,h 2 F , h 2 K such that adL h(x) = �x,hx for all
h 2 K. Since the �x,h are eigenvalues and therefore unique, any simultaneous
eigenvector x defines a unique map ↵x : K ! F given by ↵x(h) = �x,h. The
linearity of adL implies

adL (ah+ bk)(x) = a↵x(h) + b↵x(k), h, k 2 K; a, b 2 F,

so ↵x is in fact a linear functional, i.e. ↵x 2 K⇤. In other words, given x as
above, the problem of determining ↵ 2 K⇤ such that

[hx] = ↵(h)x for all h 2 K

has a unique solution ↵x 2 K⇤. Of course, if y 2 L, ↵ 2 K⇤ satisfies the
above condition, then y is a common eigenvector as defined earlier, and ↵ = ↵y.
Motivated by this, we define for any ↵ 2 K⇤ the set

L↵ = {x 2 L | [hx] = ↵(h)x for all h 2 K}.

Note that 0 2 L↵ for all ↵ 2 K⇤. It is straightforward to verify that L↵ is a
subspace of L. By the above, x 2 L↵, x 6= 0 if and only if x is a simultaneous
eigenvector of adL K, and ↵ = ↵x. From this we also see that the subspaces
are disjoint: If x 2 L↵, y 2 L↵0 , ↵ 6= ↵0 then ↵x = ↵ 6= ↵0 = ↵y, so x 6= y.
Moreover, if L is finite dimensional, then the set

� = {↵ 2 K⇤ | ↵ 6= 0, L↵ 6= 0}

is finite (otherwise L would contain an infinite number of disjoint subspaces).
In this case we call � the set of roots of L relative to K.
Now suppose L 6= 0 is semisimple. If every element of L were nilpotent, then
every element would be ad-nilpotent (Corollary []), and then Engel’s Theorem
would imply that L is nilpotent. But [LL] = L, so this cannot be. Hence L
contains elements with nonzero semisimple part. Take the span of any such
semisimple part and the result is a toral subalgebra, so L must have maximal
toral subalgebras. Fix H to be one such subalgebra. By Lemma 6.1, adL H
is a set of commuting linear operators of a finite dimensional vector space, and
therefore simultaneously diagonalizable (for a proof, see Theorem 2 of [2]). This
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means that L has a base of simultaneous eigenvectors, say (xi)i. But xi 2 L↵
x

i

,
so we have the direct sum

L = L0 �
M

↵2�
L↵. (6.1)

This is the Cartan decomposition of L with respect to H.

Proposition 6.4. Let L be semisimple and let ↵,� 2 H⇤. Then

(i) [L↵L� ] ⇢ L↵+�;

(ii) if ↵ 6= 0 and x 2 L↵, then x is ad-nilpotent;

(iii) if ↵+ � 6= 0, then (L↵, L�) = 0.

Proof. Let x 2 L↵, y 2 L� , h 2 H. By the Jacobi identity,

[h[xy]] = [[hx]y] + [x[hy]] = ↵(h)[xy] + �(h)[xy] = (↵+ �)(h)[xy],

which proves (i). Using (i) gives (adL x)n(L�) ⇢ Ln↵+� = 0 for su�ciently
large n (since � is finite), and then (adL x)n(L) = 0 for su�ciently large n by
(6.1), so (ii) is true. To show (iii), take h 2 H such that (↵+ �)(h) 6= 0, which
is possible by hypothesis. By associativity,

(↵+ �)(h)(L↵, L�) = (↵(h)L↵, L�) + (L↵,�(h)L�)

= ([hL↵], L�) + (L↵, [hL� ])

= �([L↵h], L�) + ([L↵h], L�) = 0,

and it follows that (L↵, L�) must be zero.

Observe that L0 = {x 2 L | [hx] = 0 for all h 2 H} = CL(H). In the previous
section we used the fact that the restriction of the Killing form to CL(H) is
nondegenerate, which we prove now.

Corollary 6.4.1. Let H be a maximal toral subalgebra of L. Write C = CL(H).
The restriction |C⇥C is nondegenerate.

Proof. Suppose x 2 L0, (x, L0) = 0. From (iii) we see that (x, L�) = 0 for
all � 2 � (recall that � 6= 0 by definition). Hence x is orthogonal to every
summand in (6.1), i.e. (x, L) = 0, so  being nondegenerate forces x = 0.

We are now positioned to use Proposition 6.2 and conclude that

Corollary 6.4.2. The restriction |H⇥H is nondegenerate.

In view of the Cartan decomposition, information about the roots could poten-
tially be translated into information about the structure of L, so it is natural
to study these further. In doing this, we start by ”embedding” � in H, in an
appropriate fashion. Recall that a nondegenerate bilinear form � on a finite-
dimensional vector space V furnishes a natural isomorphism V ⇤ ⇠= V , which
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associates to each linear functional f 2 V ⇤ a unique vector vf 2 L satisfy-
ing �(vf , v) = f(v) for all v 2 V . Since the Killing form is nondegenerate on
H, we hence associate to each � 2 H⇤ a unique element t� 2 H satisfying
(t�, h) = �(h) for all h 2 H. Conversely, every h 2 H has a �h 2 H⇤ such that
t�

h

= h. Under this identification, we can prove that

Proposition 6.5. � spans H⇤.

Proof. By the above, � spans H⇤ if and only if H� = {t↵ | ↵ 2 �} spans H.
Suppose not, so that the set (H�)? = {h 2 H | (h,H�) = 0} is nonempty.
The definition of t↵ implies that h 2 (H�)? if and only if (h, t↵) = (t↵, h) =
↵(h) = 0 for all ↵ 2 �. If so, then [hx] = ↵(h) = 0 for all x 2 L↵, ↵ 2 �, or
[xL↵] = 0 for all ↵ 2 �. But [hH] = 0 (H is abelian), so then [hL] = 0 by (6.1),
and therefore h 2 Z(L) = 0. This is, of course, contrary to our assumption.

As an immediate application, the proposition enables us to select a set of roots
{↵1, . . . ,↵`} as basis of H⇤ (i.e. ↵i 2 � for all 1  i  `). We say that the
number ` = dimH⇤ = dimH is the rank of �. By (6.1),

dimL = `+
X

↵2�
dimL↵, (6.2)

so if we can compute the dimensions of the spaces L↵, ↵ 2 � along with the
size of �, we obtain admissible values of dimL (as a step in this direction, (a)
of the next proposition says that |�| must be even).

6.3 Root spaces, actions, and weights

In proceeding with our investigation, we would like to employ the adjoint repre-
sentation, as is our usual modus operandi. The action of L on itself is to some
extent described by Proposition 6.4(i), but this description is rather coarse.
Luckily, we can say more in the case where a space L↵, (↵ 2 �) is acting ad-
jointly on the related space L�↵, which is a good starting point. Let us call L↵

a root space if it is nonzero, or equivalently, if ↵ is a root.

Proposition 6.6. Let ↵ 2 �, and define H↵ = [L↵L�↵]. Then

(a) �↵ 2 �, i.e. L�↵ is a root space;

(b) [xy] = (x, y)t↵ for all x 2 L↵, y 2 L�↵;

(c) H↵ = Ft↵ (in particular, dimH↵ = 1).

Proof. (a) Proposition 6.4(iii) says that (L↵, L�) = 0 for all � 2 H⇤ \ {�↵}.
Hence, if �↵ /2 �, or equivalently L�↵ = 0, then (L↵, L�↵) = 0, which in
turn gives (L↵, L) = 0 by (6.1). This contradicts the nondegeneracy of .

(b) Write k = [xy]� (x, y)t↵; we have k 2 H since [xy] 2 [L↵L�↵] ⇢ L0 = H
and t↵ 2 H. For all h 2 H,

(h, [xy]) = ([hx], y) = ↵(h)(x, y) = (t↵, h)(x, y) = (h,(x, y)t↵).

In other words (H, k) = 0, and then k = 0 by nondegeneracy.
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(c) Take any nonzero x 2 L↵. Having (x, L�↵) = 0 would as in the proof of
(a) contradict the nondegeneracy of , so there exist nonzero y 2 L�↵ such
that (x, y) 6= 0. Then [L↵L�↵] 6= 0 by (b), which, again by (b), forces
H↵ := [L↵L�↵] = Ft↵.

Remark. Part (a) allows us to (arbitrarily) choose one root out of each pair
±↵ 2 �. Gathering them in a set �0, we have �\�0 = ��0 and thus |�| = 2|�0|.
We may also without loss of generality assume that the basis chosen in the
previous section satisfies {↵1, . . . ,↵`} ⇢ �0.

With this proposition in hand, we take our identification of H and its dual a
step further; we define a nondegenerate symmetric bilinear form (�,�) on H⇤

by letting (�, �) = (t� , t�) for all �, � 2 H⇤. The reason we postponed doing so
until now is that the proposition enables us to prove that

Lemma 6.7. (↵,↵) 6= 0 for all ↵ 2 �.

Proof. Suppose not, so (↵,↵) = (t↵, t↵) = ↵(t↵) = 0 for some ↵ 2 �. Find
x, y as in the proof of (c) and, if needed, interchange one of them with a scalar
multiple such that (x, y) = 1. Thus, [xy] = t↵. Let S = spanF {t↵, x, y}, which
is three-dimensional since t↵, x, y lie in di↵erent root spaces. By assumption,
[t↵x] = ↵(t↵)x = 0 and similarly for y. It follows that S(1) = Ft↵ and S(2) = 0,
so S a solvable subalgebra of L. Hence, [SS] = Ft↵ is nilpotent (Corollary
4.8.1), which is equivalent to adL t↵ being nilpotent. But we know adL t↵ to
be semisimple (since t↵ 2 H), which forces adL t↵ = 0, or equivalently, t↵ 2
Z(L) = 0. This is impossible since all t↵, ↵ 2 � are nonzero by construction.

Interestingly, in proving the above, we procured a subalgebra S of L that con-
tains elements of both the maximal toral subalgebra and two di↵erent root
spaces, and whose bracket multiplication table we now know to be

[t↵x] = (↵,↵)x 6= 0, [t↵y] = �(↵,↵)y 6= 0, [xy] = t↵.

We may of course scale any of the three basis elements to our liking. Clearly, the
next logical step would be to let S act on L in some appropriate fashion, since
we by this point have plenty of knowledge on how each of the elements used in
defining S behave when bracketed with arbitrary elements of L. Before we do
this, however, we sharpen our understanding of S with another proposition.

Proposition 6.8. Let x↵ 2 L↵ be a nonzero element of a root space. There
exists y↵ 2 L�↵ such that, after setting h↵ := [x↵y↵], we have

S↵ := spanF {h↵, x↵, y↵} ⇠= sl(2, F ).

This isomorphism is given by the mapping h↵ 7! h, x↵ 7! x, y↵ 7! y, where the
latter vectors are the standard basis of sl(2, F ). Moreover, h↵ = 2

(↵,↵) t↵ = �h�↵

(in particular, H↵ = Fh↵).
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If the notation sl(2, F ) is unfamiliar, we direct the reader to the appendix, and
more specifically, Section 8.2.

Proof. Let nonzero x↵ 2 L↵ be given. Again find y↵ 2 L↵ as in the proof of
(c) and, if necessary, rescale them in such a way that (x↵, y↵) = 2

(↵,↵) (this

is possible in view of Lemma 6.7). For this choice, h↵ = 2
(↵,↵) t↵ by (b), and

substituting h↵ for t↵ in the preceding multiplication table immediately yields

[h↵x↵] = 2x↵, [h↵y↵] = �2y↵, ([x↵y↵] =: h↵). (6.3)

Since these equations characterize a bracket identical to the one of sl(2, F ), the
two algebras are necessarily isomorphic under the prescribed mapping. Finally,

h�↵ =
2

(�↵,�↵)
t�↵ =

2

(↵,↵)
t�↵ = � 2

(↵,↵)
t↵ = �h↵,

where the third equality follows from the fact that (t↵ + t�↵, h) = (t↵, h) +
(t�↵, h) = ↵(h)� ↵(h) = 0 for all h 2 H, or in other words, t↵ + t�↵ = 0.

With this we fix ↵ 2 �, construct S↵, and let S↵ act on L through the adjoint
action. We will study how S↵ acts on several S↵-submodules of L, starting with
L itself. Let x be an eigenvector of adL h↵, with eigenvalue �. Using the Cartan
decomposition, we can write x uniquely of the form

x = h+
X

�2�
x� , (h 2 H, x� 2 L�). (6.4)

Since x is nonzero, either x lies in H or at least one of the x� is nonzero. In the
former case, adL h↵(x) = 0 by Lemma 6.1, meaning � = 0 (and since H indeed
is nonzero, we see that 0 always is an eigenvalue of adL h↵). Now suppose the
latter—say, x� 6= 0, � 2 �. Applying adL h↵ to both sides of (6.4) yields

�h+
X

�2�
�x� = �x = adL h↵(x) = 0 +

X

�2�
[h↵x� ] =

X

�2�
�(h↵)x� ,

and we deduce by uniqueness of this representation that �x� = �(h↵)x� for
all � 2 �. Hence, � = �(h↵). Conversely, any nonzero x 2 L� , � 2 � is an
eigenvector of adL h↵ with eigenvalue �(h↵), as is easy to verify. We therefore
see that the eigenvalues of adL h↵ are exactly the scalars described by the set

{0} [ {�(h↵) | � 2 �}. (6.5)

In view of Proposition 6.8,

�(h↵) =
2

(↵,↵)
�(t↵) =

2

(↵,↵)
(t� , t↵) = 2

(�,↵)

(↵,↵)
= ��(h�↵).

For convenience, write h�,↵i = 2(�,↵)/(↵,↵) for all ↵,� 2 � (note that h�,�i
is linear only in its first argument). With this, (6.5) becomes
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{0} [ {±h�,↵i | � 2 �0}. (6.6)

In the terminology of Section 8.2, the set (6.6) are exactly the so-called weights
of h↵ in L. Since S↵ is isomorphic to sl(2, F ), Corollary 8.6.1(a) ensures that
these are integers. We call the numbers h�,↵i, (↵,� 2 �) the Cartan integers
of the decomposition.
Now construct an S↵-submodule of L, as follows. Given any c 2 F ⇤, we note
that the composition c↵ makes sense and is a linear functional, so we may
consider the family of spaces Lc↵, c 2 F ⇤. Define M by

M = spanF
[

c2F⇤

Lc↵.

To verify that M is an S↵-submodule, first use Proposition 6.4(i) to see that

h↵.Lc↵ ⇢ [L0Lc↵] ⇢ Lc↵ ⇢ M,

x↵.Lc↵ ⇢ [L↵Lc↵] ⇢ L(c+1)↵ ⇢ M,

y↵.Lc↵ ⇢ [L�↵Lc↵] ⇢ L(c�1)↵ ⇢ M, (c 2 F ⇤).

where 1 2 F ⇤ is the identity functional. Thus, S↵.Lc↵ ⇢ M for all c 2 F ⇤. An
arbitrary element of M is a finite linear combination in which the i:th summand
is an element of some Lc

i

↵, ci 2 F ⇤, so it follows from the preceding that
S↵.M ⇢ M , and the claim follows. Of course, only a finite number of spaces
in the family Lc↵, c 2 F ⇤ are nonzero, namely H together with all root spaces,
i.e. the spaces for which c↵ 2 �. We may therefore write M as a direct sum of
nonzero spaces

M = H � Lc1↵ � · · ·� Lc
t

↵ (6.7)

for some particular choice of nonzero distinct functionals c1, . . . , ct 2 F ⇤. We
now turn our attention to the weights of h↵ in M . These are just the eigenvalues
of adL h↵, but under the additional constraint that the corresponding eigen-
vectors are taken from M . Evidently, these weights are then a subset of (6.6),
meaning each is 0 and/or a Cartan integer. Now let x 2 M be arbitrary, and use
(6.7) to write x uniquely of the form x = h+ x1 + · · ·+ xt, (h 2 H,xi 2 Lc

i

↵).
Proposition 6.8 says that h↵ = 2t↵/(↵,↵), which allows us to compute that

adL h↵(xi) = (ci↵)(h↵)xi = ci↵(h↵)xi = ci
2↵(h↵)

(↵,↵)
xi = ci2x = 2cix. (6.8)

(In the final equality, we evaluated ci 2 F ⇤ at 2 2 F . For convenience, we
will write ci for both the linear functional and its corresponding scalar when
evaluated at 1 2 F .) If we apply (6.8) under the assumption that x is an
eigenvector of adL h↵ with eigenvalue �, we obtain the equality

�h+ �x1 + · · ·+ �xt = �x = adL h↵(x) = 0 + 2c1x1 + · · ·+ 2ctxt. (6.9)

Both sides are unique representations of the same element of M , so �h = 0 and
�xi = 2cixi for all 1  i  t. We see that h 6= 0 implies � = 0 and that xk 6= 0,
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1  k  t implies � = 2ck. But the scalars c1, . . . , ct are distinct and nonzero,
which clearly means that most one ”component” of x can be nonzero, in which
case � is the coe�cient of this component in the right-hand side of (6.9). This is
indeed the case since x is nonzero. Conversely, we may pick any nonzero x from
one of the summands of (6.7) and obtain such an eigenvector. In summary,

Lemma 6.9. The weights of h↵ in M are integers 0, 2c1, . . . , 2ct, (ci 2 F
distinct and nonzero), and M is the direct sum of weight spaces

M = M0 �M2c1 � · · ·�M2c
t

,

where M0 = H and M2c
i

= Lc
i

↵.

Finally, we let S↵ act on itself. It is by construction contained in the span of the
three spaces H,L↵, L�↵, and these are in turn contained in (6.7), so S↵ is an
S↵-submodule of M . Similarly to before, all weights of h↵ in S↵ are a subset of
the weights described by the above lemma. In fact, we can explicitly compute
these; they are exactly �2, 0, 2, as can be deduced from the equations (6.3). Of
course, the weights �2 and 2 correspond, respectively, to ci1 = �1 and ci2 = 1
for some 1  i1, i2  t. In other words, they correspond to the root spaces
L�↵ and L↵, which we already know are summands of (6.7). It remains to be
seen if there are any other possibilities for the ci. This is solved by our next
proposition, which also makes more precise some of our earlier results.

Proposition 6.10. For all ↵ 2 �,

(a) dimL↵ = 1 (in particular, S↵ = H↵ � L↵ � L�↵);

(b) �↵ 2 �, but no additional multiple of ↵ is a root;

(c) given any nonzero x↵ 2 L↵, there exists a unique y↵ 2 L�↵ such that
h↵ := 2

(↵,↵) t↵ = [x↵y↵].

Proof. (a) Since the action is the adjoint action, S↵ being simple implies that
it is an irreducible S↵-submodule of M . If we use Weyl’s Theorem to de-
compose M into irreducible S↵-submodules, we may thus without loss of
generality assume that S↵ is included as a summand. Keeping this in mind,
we try to find more irreducible submodules. We computed that ↵(h↵) = 2
in one of the steps of (6.9), and if we only care that this value is nonzero,
we can just write Fh↵ \ Ker ↵ = 0. It turns out that the dimensions of
these two spaces add up to dimH, as evidenced by the nondegeneracy of
|H and the fact that

(Fh↵)
? = {h 2 H | (h, Fh↵) = 0}
= {h 2 H | (h, t↵) = 0}
= {h 2 H | (t↵, h) = 0}
= {h 2 H | ↵(h) = 0}
= Ker ↵.

45



Hence, H = Fh↵ � Ker ↵. It it easy to verify that S↵.Ker ↵ = 0, which
means that Ker ↵ may be decomposed into dimKer ↵ = dimH � 1 = `� 1
one-dimensional irreducible S↵-submodules of M (simply choose a basis of
Ker ↵ and take each submodule to be the span of one of the basis elements).
In other words, M can without loss of generality be decomposed as

M = S↵ �W1 � · · ·�W`�1 �W, (6.10)

where the first ` summands are irreducible—note also that they containH =
M0—and W decomposes further as direct sum of irreducible submodules.

Now, recall that the weights of h↵ in M are integers. Theorem 8.6 says
that if any of the irreducible submodules of W has an even weight, then the
same irreducible submodule has 0 as one of its weights, and should furnish
a nonzero element of M0, but this is clearly impossible. More generally, for
M to have even weight m, it must have an eigenvector x of eigenvalue m,
which we can write uniquely as a sum of elements xi, where each xi hails
from one of the irreducible submodules of (6.10). Arguing as we did after
our derivation of (6.8), one can then show that each element xi must be an
eigenvector with even eigenvalue m, or else be zero. Since we have excluded
W from having such eigenvectors, and each Wi only has eigenvectors of
eigenvalue 0, we see that if m is nonzero, then necessarily x 2 S↵. Hence,
we conclude that the only even weights of h↵ in M are �2, 0, 2.

According to Lemma 6.9, 2↵ 2 � if and only if ci = 2 for some 1  i  t.
This would mean that 2ci = 4 is a weight, but we know from the preceding
that this is not the case. In other words, (2�) \ � = ;. This also excludes
1
2↵ from being a root, since 2( 12↵) = ↵ 2 � by assumption. In the language
of the lemma, we would say that 1

2 is not one of the ci. Therefore 1 is not
a weight, i.e. M1 = 0.

Corollary 8.6.1(c) lists a formula for computing the number of irreducible
summands of (6.10). Using it now, we obtain that this number is

dimM0 + dimM1 = dimM0 = dimH = `

which tells us that W = 0 and M = S↵ � Ker ↵ = spanF {x↵, y↵} � H.
But at the same time, M should decompose into a direct sum of H and
root spaces, as described by Lemma 6.9. The only way to reconcile these
viewpoints is if L↵ = Fx↵ and L�↵ = Fy↵. In particular, dimL↵ = 1.

(b) This is immediate from the definition of M and the proof of (a), in which
we found that M = H � L↵ � L�↵.

(c) It follows from S↵ = [L↵L�↵] � L↵ � L�↵ and the one-dimensionality of
the summands that the the way we chose y↵ in the proof of Proposition 6.8
was the only way we could have done so.
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Part (a) is perhaps the most attention-capturing, since it allows us to sharpen
our estimation (6.2) into

dimL = `+ 2|�0| � `+ 2` = 3`.

With respect to dimension, a semisimple Lie algebra is therefore at least three
times larger than its greatest maximal toral subalgebra(s). An example of a
semisimple algebra that attains this lower bound is the familiar algebra sl(2, F )
along with its unique maximal toral subalgebra H = Fh (one technically has
to prove the last part, but we allow ourselves to assume so here for the sake of
giving an example). Speaking of sl(2, F ), part (a) also says that we with ease
can construct copies of it by forming the direct sum [L↵L�↵]�L↵�L�↵ for any
root ↵ 2 �. A consequence of this is that any three-dimensional semisimple Lie
algebra L is isomorphic to sl(2, F ): L is not abelian (recall that [LL] = L), so
its maximal toral subalgebras must be proper (this of course holds in general).
Choose one of these to be H. By the Cartan decomposition and H being proper,
L must have at least one root space. We may then construct a copy of sl(2, F ),
which necessarily must equal L since their dimensions agree.

6.4 Root systems

While we have made important progress in understanding the Cartan decom-
position and root spaces, there is one central aspect of roots that we have yet
to investigate. This aspect is how a given root relates to any root other than
its negative. Although a complete classification of the admissible configurations
of roots will elude us, we remark that such a classification not only exists, but
extends to and allows for a complete classification of semisimple Lie algebras.
We will in this section derive the final results necessary for this classification
to be tractable. Such a classification is possible because, informally speaking,
roots may as well just be considered as sets of vectors of some euclidean space.
We make this more precise later; for now, we uncover some of the algebraic
structure of � by studying sums of roots.
Suppose we have a triplet (L,H,�) as in the previous section and that we have
fixed a basis {↵1, . . . ,↵`} ⇢ � of H⇤, where ` by definition is the rank of �. Let
� 2 � be an arbitrary root and write it in this basis, say,

� =
X̀

k=1

ck↵k, ck 2 F. (6.11)

Recall that each h�,↵ii, (1  i  `) is a linear functional on H that moreover
is integer-valued on �. Applying these linear functionals to both sides of (6.11)
yields the ` equations

h�,↵ii =
X̀

k=1

h↵k,↵iick, 1  i  `
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which we can express simultaneously as a matrix equation

b = Ac

where b = (h�,↵ii)i, A = (h↵j ,↵ii)ij , c = (ci)i, and the first two of these have
integral entries. Suppose A is not invertible, which is equivalent to saying that
there exists a nonzero x 2 F ` such that Ax = 0. We can exploit this assumption
to define a nonzero linear functional � =

P`
k=1 xk↵k by letting its coe�cients

be given by (xi)i = x. This linear functional satisfies

0 = Ax = (h↵i,↵ji)ij ⇥ (xi)i =

 
X̀

k=1

h↵k,↵iixk

!

i

= (h�,↵ii)i.

This is the case if and only if (�,↵i) = 0 for all 1  i  ` by the definition
of h�,↵ii. But {↵i}i is a basis, so � therefore contradicts the nondegeneracy
of (�,�) on H⇤. We conclude that A is in fact invertible, and because its
entries are integers, we moreover conclude that A�1 have rational entries. Here
we mean rational in the sense that F contains a subfield Q isomorphic to the
usual rational numbers (the existence of this subfield follows from F having
characteristic zero). Since this means that the coe�cient vector c = A�1b of �
has rational entries and since � was arbitrary, we have

� ⇢ spanQ{↵i}i. (6.12)

After recalling that {↵i}i ⇢ �, we see that we may write spanQ� = spanQ{↵i}i.
Since the {↵}i are linearly independent over F they certainly have to be over
Q; hence spanQ� has dimension ` when viewed as a vector space over Q.
This result certainly seems to suggest that sums of roots could be tractable to
study–after all, we only need a few select roots and the rational scalars of F to
be able to describe every other root. We understand well scalar multiples of a
root, so let instead ↵,� 2 � be nonproportional: � 6= ±↵. There can only be a
finite number of roots of the form �+ i↵, (i 2 Z), if any, and none of the spaces
L�+i↵ can equal H by assumption. By Proposition 6.4(i),

h↵.L�+i↵ ⇢ L�+i↵,

x↵.L�+i↵ ⇢ L�+(i+1)↵,

y↵.L�+↵ ⇢ L�+(i�1)↵, (i 2 Z),

so we see that if we define
K =

M

i2Z
L�+i↵, (6.13)

then K is an S↵-submodule of L under the adjoint action, and that all but a
finite number of summands are zero. The set of weights of h↵ in K is a subset
of (6.6) and hence integers. More specifically,

adL h↵(x) = [h↵x] = (� + i↵)(h↵)x

= (�(h↵) + i↵(h↵))x = (h�,↵i+ 2i)x, (x 2 L�+i↵),
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so that these weights are exactly h�,↵i+2i for those i 2 Z such that �+i↵ 2 �.
It is clear that this set of numbers contains either exactly one of 0 and 1 or
neither. In other words at most one of the weight spaces M0 and M1 is nonzero.
Of course, the weight space corresponding to the weight h�,↵i + 2i is exactly
L�+i↵ and is one-dimensional according to 6.10(a). We therefore have

dimM0 + dimM1 = 0 or 1

and this formula is known from Corollary 8.6.1(c) to count the number of sum-
mands in any decomposition of (6.13) into irreducible submodules. Hence K
is irreducible (it is nonzero since L� ⇢ K) and Theorem 8.6 tells us that the
previously described weights must form a ”string”

h�,↵i � 2r, h�,↵i � 2r + 2, . . . , h�,↵i+ 2q � 2, h�,↵i+ 2q,

for some pair of non-negative integers r, q. (To see this, observe that h�,↵i is a
weight and must be in the string, so r, q just specifies how many steps the string
takes in either direction.) Furthermore, the theorem tells us that the leftmost
weight is the negative of the rightmost, the second leftmost is the negative of
the second rightmost, and so on. It follows that r � q = h�,↵i by equating
one endpoint with its negative. The absolute value of this number describes
the ”imbalance” of the string, i.e. how many more roots � + i↵ have i > 0
rather than i < 0 (or vice versa), and the sign describes in what direction the
imbalance lies (e.g. a negative value means there are |r � q| more roots in the
”positive” direction). Since h�,↵i is a weight, we also obtain that �h�,↵i is a
weight, L��h�,↵i↵ is a root space, and � � h�,↵i↵ is a root. This is our first
result on roots and root spaces that decisively states how to construct new roots
from old other than taking their negatives. Note that it technically holds even
when � = ±↵, since we just get � � h�,↵i↵ = �↵. We summarize these results
in the next proposition.

Proposition 6.11. Let ↵,� 2 � be roots. Then

(a) if � 6= ±↵, then the set of roots that can be written as � + i↵, (i 2 Z) form
an ↵-string through �

� � r↵, � � (r � 1)↵, . . . , � + (q � 1)↵, � + q↵

for some non-negative integers r, q that satisfy r � q = h�,↵i;

(b) � � h�,↵i↵ 2 �;

(c) if ↵+ � 2 � then [L↵L� ] = L↵+�;

(d) L is generated by its root spaces, i.e. closing the set
S

↵2� L↵ under linear
combinations and brackets yields exactly L.

Proof. (a) and (b) have already been shown.
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(c) Lemma 8.5(b) says that the action of x↵ on any irreducible S↵-module
maps the one-dimensional weight space of weight � to zero if � is the
maximal weight and onto the one-dimensional weight space of weight �+2
otherwise. In particular, L↵ maps L� (of weight h�,↵i) onto L�+↵ (of
weight h�,↵i+2), which is equivalent to the statement since the action is
the adjoint action.

(d) We can generate H one subspace at a time by taking [L↵L�↵] = Ft↵, and
then the assertion just follows from the Cartan decomposition.

Let us unpack part (b) of the proposition. It says that for any pair of roots
↵,� 2 � we have a root

� � 2
(�,↵)

(↵,↵)
↵ 2 �, (6.14)

in which (�,�) : H⇤ ! F is the nondegenerate symmetric bilinear form we
”borrowed” from the restriction of the Killing form to H. The above expression
lends itself naturally to defining a linear operator �↵ : H⇤ ! H⇤:

�↵(�) := �� 2
(�,↵)

(↵,↵)
↵, (� 2 H⇤). (6.15)

This operator maps � into itself by (6.14). In fact, it is onto (i.e. �↵(�) = �)
which follows from � = �↵(�↵(�)) and �↵(�) 2 �.
It turns out that �↵ admits a nice geometrical interpretation. Let E denote
a euclidean space, by which we mean a finite-dimensional real vector space
equipped with an inner product. Since the field is R, an inner product here
just refers to a positive-definite symmetric bilinear form on E. Though a slight
abuse of notation, we denote the inner product of two vectors u, v 2 E by (u, v).
To be positive-definite is to satisfy (v, v) � 0 for all v 2 E with equality if and
only if v = 0. Note that inner products are always nondegenerate: (v,E) = 0
implies (v, v) = 0 implies v = 0. Fix nonzero v 2 E. We define the hyperplane
determined by v as the subspace

⇧v = {u 2 E | (u, v) = 0} = (Rv)?.

Positive-definiteness implies v /2 ⇧v, and it follows by nondegeneracy that the
hyperplane has dimension dimE � 1. In other words E = ⇧v � Rv and we
may therefore define a unique linear operator on E—the reflection in ⇧v—by
considering the operator that acts as the identity on ⇧v and sends v to its
negative. Write reflv for this operator. An explicit formula is given by

reflv(u) := u� 2
(u, v)

(v, v)
v, (u 2 E) (6.16)

which is due to the fact that this formula has exactly the two properties required
in the definition, as is easily verified. Now compare (6.15) and (6.16) and note
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the similarities of the formulas. It would seem that roots behave as if they where
a finite set of nonzero real vectors equipped with certain reflective symmetries—
more specifically, one may reflect � in the ”hyperplane” determined by any fixed
root and again obtain �. If we allow ourselves some wishful thinking, we might
imagine that there exists some way to canonically identify � with a geometrical
object of the following type.

Definition 6.2. Let � be a subset of some euclidean space E and let ` = dimE.
We say that � is a root system of rank ` in E, given that

(R1) 0 /2 �; � is finite; � spans E;

(R2) if ↵ 2 � then �↵ 2 �, but no other scalar multiple is;

(R3) h�,↵i := 2(�,↵)/(↵,↵) 2 Z for all ↵,� 2 �.

(R4) for all ↵ 2 �, the reflection

�↵(�) := �� h�,↵i↵, (� 2 E)

maps � onto itself.

Our earlier results on the Q-span of roots provide a good starting point for
turning this intuition into reality. Recall that any vector space over F can
be viewed as a vector space over the subfield Q ⇢ F by only allowing scalar
multiplication with rational scalars. (The canonical example is FQ, which also
illustrates that vector spaces constructed in this way need not have the same
dimension as their parent space: e.g. R over R is one-dimensional but R over Q
is infinite-dimensional, since the Q-span of a finite set of real numbers can never
cover all of R.) With this in mind, let EQ = spanQ�. It is by construction a
subspace of H⇤ over Q, and our previously derived result (6.12) tells us that
dimQ EQ = ` = dimF H⇤, so the rank of � is exactly the (Q-)dimension of EQ.
We would like to bring along our form (�,�) to EQ and for this we have to
show that it is rational-valued on EQ. It clearly su�ces to show that it has this
property on �, which we do next.
Let �,�0 2 H⇤ be arbitrary. To these correspond unique elements t�, t�0 2 H.
Recall from our construction of the Cartan decomposition that adL t�, adL t�0

are simultaneously diagonalizable—more specifically, we should select a basis of
each summand in (6.1) and then combine these bases, after which we obtain a
basis relative to which adL t�, adL t�0 are both diagonal. In view of Proposition
6.10(a), we need only take a basis of H along with an arbitrary nonzero x↵ 2 L↵

for each ↵ 2 �. Now, adL t� kills H (Lemma 6.1) and adL t�(x↵) = ↵(t�)x↵

for all ↵ 2 �, so
tr(adL t�) = 0 + · · ·+ 0| {z }

`

+
X

↵2�
↵(t�)

and similarly for adL t�0 . Since both are diagonal relative to this basis,

tr(adL t� adL t�0) =
X

↵2�
↵(t�)↵(t�0).
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The left-hand side is by definition the Killing form applied to t�, t�0 . We may
now use the definition of (�,�) to obtain the identity

(�,�0) = (t�, t�0) =
X

↵2�
↵(t�)↵(t�0)

=
X

↵2�
(t↵, t�)(t↵, t�0) =

X

↵2�
(↵,�)(↵,�0).

In particular, taking � = �0 in the above yields

(�,�) =
X

↵2�
(↵,�)2. (6.17)

Fix � 2 �, let � = �, and divide both sides of (6.17) by (�,�)2 to see that

1

(�,�)
=
X

↵2�

(↵,�)2

(�,�)2
=

1

4

X

↵2�
h↵,�i2 2 Q.

Hence, (�,�) 2 Q. We conclude that for all ↵,� 2 �,

(↵,�) =
1

2
(�,�)h↵,�i 2 Q,

which is exactly what we wanted to show.
We now return to EQ with the knowledge that that the restriction of (�,�) to
this Q-space is a well-defined symmetric bilinear form on EQ. Write (�,�)Q for
this restriction. It is a pleasant surprise that (�,�)Q is in fact positive-definite;
just apply identity (6.17) to arbitrary � 2 EQ and note that the right-hand side
is a sum of squares of rational numbers and has to be strictly positive unless
� = 0. With this we have done away with all dependencies on the original field
and also have what amounts to a ”Q-inner product”, so all that remains is to
exhibit a formal way to embed � into some euclidean space in such a way that
(�,�)Q also embeds into the inner product on the space. This we do in the
next theorem. We do not assume the readed is familiar with tensor products,
so the construction of E is slightly complicated.

Theorem 6.12. Let L be semisimple with given maximal toral subalgebra H.
Let � be the corresponding roots. Construct E = R ⌦Q EQ; then E is a real
vector space, (�,�)Q induces an inner product (�,�) on E, and � may be
identified with a root system of rank dimF H in E.

For a definition of the tensor product, see Section 10.4 of [3].

Proof. Observe first that the axioms (R1)-(R4) all hold if one replaces E with
EQ and (�,�) with (�,�)Q due to our having proved these at one point or
another for � in the ”larger” vector space H⇤. Let ` = dimQ EQ = dimF H.

Take G to be the abelian group of all formal finite sums of elements of R⇥EQ,
i.e. all expressions of the form

n1(r1,�1) + · · ·+ nt(rt,�t), (t 2 N, ni 2 Z, ri 2 R,�i 2 EQ). (6.18)
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Each pair should be distinct but the order in which they appear do not matter;
we equate two expressions if they are of the same length, contain the same pairs,
and the corresponding integer coe�cients are equal. We also include the case
t = 0 as the empty sum. The group addition is given by ”summing” the formal
sums and combining multiple appearances of the same pair by summing their
coe�cients in Z—we do not actually allow ourselves to sum up pairs ”compo-
nentwise”. It is not di�cult to see that this indeed is an abelian group having
the empty sum as the identity, and sums with coe�cients of opposite sign as
inverses. Next, define a subgroup H of G by including in it all formal sums

(r + s,�)� (r,�)� (s,�)

(r,�+ µ)� (r,�)� (r, µ)

(rq,�)� (r, q�),

(6.19)

where r, s 2 R; q 2 Q; �, µ 2 EQ, and then closing it under addition and
inverses. (This guarantees that H is a subgroup.) Note that we have identified
Q with Q ⇢ R, so rq makes sense. Any subgroup of an abelian subgroup is
normal, so G/H is well-defined. The elements of G/H (which are cosets) are
called tensors. A tensor that can be represented by single pair (r,�) (i.e. this
pair lies in the tensor/coset) is called simple, and is denoted r⌦�. It is important
to point out that ”most” tensors are not simple, but that we nevertheless can
write them (non-uniquely in general) as a sum of simple tensors—for example,
the tensor represented by (6.18) can be decomposed as

n1(r1 ⌦ �1) + · · ·+ nt(rt ⌦ �t). (6.20)

By definition of cosets, r ⌦ � = s ⌦ µ if and only if (r,�) � (s, µ) 2 H, so the
fact that H contains all elements of the form (6.19) translates to

(r + s)⌦ � = r ⌦ �+ s⌦ �

r ⌦ (�+ µ) = r ⌦ �+ r ⌦ µ

(rq)⌦ � = r ⌦ (q�)

for all r, s, q,�, µ as above. This tells us why (6.20) need not be unique.

Next, we turn G/H into a vector space over R by defining scalar multiplication
in terms of simple tensors:

r.

 
nX

i=1

(si ⌦ �i)

!
=

nX

i=1

((rsi)⌦ �i), (n 2 Z+; r, si 2 R;�i 2 EQ).

One can verify that this is well-defined (see Section 10.4 of [3]) and that the
resulting structure satisfies the axioms required of a vector space. By defini-
tion, E = R ⌦Q EQ = G/H and is called their tensor product over Q. The
corresponding vector space is called the scalar extension of EQ to R.
Let � : EQ ! R` be the Q-isomorphism given by �(

P
qi↵i) =

P
qiei, where

{↵i}i ⇢ � is an F -basis of H⇤ and {ei}i is the standard basis of R`. Let
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i : EQ ! E be the map i(�) = 1⌦�. In the section referenced above, i is shown
to be Q-linear. Moreover, Theorem 8 of this section says that there exists a
unique R-linear map ' : E ! R` such that the following diagram commutes.

EQ E

R`

i

� '

Since � is bijective, i must be injective and ' must be surjective. As remarked
in the proof of the same theorem, E is the R-span of simple tensors of the form
1⌦ �, (� 2 EQ), i.e. E is the R-span of i(EQ). Now, {↵1, . . . ,↵`} is a basis of
EQ, meaning E is the R-span of {i(↵i)}i. Also, E has to have Q-dimension at
least ` for i to be injective. We conclude that {i(↵1), . . . , i(↵`)} is an R-basis
of E. In particular, dimE = `.

Finally, define a bilinear form (�,�) on E by letting

(i(↵n), i(↵m)) = (↵n,↵m)Q, (1  n,m  `)

and then extending it R-linearly to all of E. Symmetry immediately follows from
that of (�,�)Q. One can see that (�,�) is positive-definite by considering its
corresponding quadratic form; the matrix of this form is just the matrix of the
quadratic form of (�,�)Q, which we already know is positive-definite. Hence,
(�,�) is an inner product on E. Its definition along with the Q-linearity of i
also guarantees that (i(↵), i(�)) = (↵,�)Q for all roots ↵,� 2 �. It is then clear
that i(�) satisfies (R1)-(R4) due to the remark in the beginning of this proof.
Therefore � is Q-isomorphic to a root system—namely i(�)—of rank ` in E.

7 Summary and further discussion

Lie algebras arise naturally as the tangent space at the identity of so-called
Lie groups. Although such algebras are real vector spaces, we prefer to work
with Lie algebras over algebraically closed fields as they are more receptive to
certain tools from linear algebra. To study these e↵ectively, one defines both
”abstract” and ”concrete” (linear) Lie algebras, and shows how to canonically
inject each abstract Lie algebra into a concrete one (by means of the adjoint
representation). This allows us to, among other things

• define and investigate properties of abstract Lie algebras by ”transferring”
known results on concrete algebras across this injection, and

• to prove results in their greatest generality, by proving them for abstract
algebras when possible, or else inject a concrete algebra into a concrete
one and exploit the multitude of relationships this brings about.

54



Once we have used this to derive a satisfyingly large body of results for Lie
algebras in general, we then specialize to those can be built up from atomic ones
(the semisimple algebras). After learning that all such algebras must contain
subalgebras of a certain type, we use this to our advantage to systematically
decompose them into subspaces (the Cartan decomposition). Finally, we find
that to any given such decomposition is associated a rigid, geometric object that
can be described in but a few axioms, and that this object contains essential
information about the decomposition, and in turn the algebra itself.

It is at this point that we end our inquiry into Lie algebras. It would however be
unreasonable to expect the reader to see the value of all our specialized theory
without suggesting what it all leads up to. The following list is meant as an
informal discussion on some further results in the subject, and the author does
not make any claims on having a perfect understanding of these results and/or
how to show them.

• There is a natural definition of isomorphisms between and in particular
automorphisms of root systems.

• By choosing {↵i}i more carefully, one can sharpen (6.12) to the case where
each root can be written with integer coe�cients, all nonnegative or non-
positive. This is called a base of �.

• Any root system is obtained as a union of ”irreducible” systems.

• Simple algebras have irreducible root systems; semisimple algebras have
root systems built up from the irreducible root systems of its simple ideals.

• Irreducible root systems admit a complete classification, and each can be
explicitly constructed.

• The notion of maximal toral subalgebra can be generalized, and this allows
one to prove that the root system of a semisimple algebra is independent
of the choice of maximal toral subalgebra.

• Each root system is the root system of some semisimple Lie algebra.

• Every isomorphism of two root systems, sending a base to a base (along
with certain other specifications), extends uniquely to an isomorphism of
the corresponding semisimple Lie algebras.

With this, the author would like to extend his gratitude to the reader for lending
their attention to his thesis.
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8 Appendix

Here we describe some results that are necessary only for certain parts of the
theory and which can proven somewhat independently. The first section can be
safely skipped, but the second introduces the concept of weights, which play an
important role in understanding the Cartan decomposition.

8.1 Theorems on nilpotent and solvable algebras

In the first of these theorems, the underlying field F may be arbitrary. In the
second we require char F = 0.

Theorem 8.1. Let L ⇢ gl(V ) be a linear Lie algebra, where V is finite dimen-
sional and nonzero. Suppose every operator in L is nilpotent. Then L has a
common eigenvector with eigenvalue 0, i.e. L.v = 0 for some nonzero v 2 V .

Proof. If dimL = 0 then any nonzero v 2 V will do. If dimL = 1 then L is
the span of some nonzero (nilpotent) operator x 2 L. This operator always has
at least one eigenvector with eigenvalue 0, namely the last nonzero vector of
the sequence xn.w for any fixed nonzero w 2 V , and this serves as our v. Now
let dimL � 2. Take as induction hypothesis that the theorem is true for all
M ⇢ gl(U) that satisfies the conditions of the theorem along with the condition
dimM < dimL. We prove the remainder of the theorem in steps.

Let K be a maximal proper subalgebra of L, and let W = {v 2 V | K.v = 0}.
The latter is a subspace, and moreover nonempty since K ⇢ gl(V ) satisfies the
induction hypothesis.

(1) 0 < dimK < dimL.

The span of any nonzero x 2 L is a one-dimensional subalgebra of L, with
trivial bracket. By dimL � 2 such subalgebras exists and are proper. If no
larger proper subalgebras exist we may thus take K to be one of these.

(2) K is properly included in NL(K).

Consider the representation � : K ! gl(L/K) as constructed in the final
remark of Section 2.2 (in the notation used there, � = (adL|K)0). Take M =
Im � and U = L/K. Observe that dimM  dimK < dimL, and U 6= 0 by
(1). Any x 2 K is nilpotent by hypothesis, so adL x is (Lemma 3.1(i)), and
then so is �(x) by using the identity �(x)(y +K) = adL x(y) +K. Hence
M ⇢ gl(U) satisfies the induction hypothesis, so there exists y+K 2 L/K,
y+K 6= K (i.e. nonzero) such that L.(y+K) = 0. Equivalently, y /2 K and
[Ly] ⇢ K. Then y 2 NL(K) \K, and y is a fortiori nonzero since y /2 K.

(3) K is an ideal of L.

Since K is maximal, (2) forces NL(K) = L.

57



(4) L = K � Fz, (z 2 L \K).

First, L/K is a Lie algebra by (3). Suppose dimL/K > 1; reasoning as in
(1) we take a (proper) one-dimensional subalgebra of L/K, and the preimage
of this subalgebra along the quotient homomorphism ⇡ : L ! L/K yields
a proper subalgebra of L that properly contains K. This contradicts the
maximality of K, so dimL/K = 1. Equivalently, dimL = dimK + 1, and
since K + Fz has higher dimension than K we must have K � Fz = L.

(5) z.v = 0 for some nonzero v 2 W .

Choose z that satisfies (4). Let w 2 L.W , that is, w = x.v for some x 2 L,
v 2 W . Then (3) and axiom (M3) imply

K.w = K.(x.v) = x.(K.v)� [xK].v ⇢ x.0�K.v = 0.

Hence w 2 W , showing that L.W ⇢ W . Take M = Fz and U = W . In
particular, M.U ⇢ U . Then M ⇢ gl(U) satisfies the induction hypothesis,
so there exists nonzero v 2 W such that M.v = 0, or equivalently z.v = 0.

(6) L.v = 0.

By (4) and (5), L.v = (K � Fz).v = K.v + F (z.v) = 0. The theorem now
follows for all dimL = 0, 1, 2, . . . by induction.

Let L ⇢ gl(V ) be a linear Lie algebra and let (x1, . . . , xn) be a basis of L.
Suppose that v 2 V is an eigenvector of each basis element, meaning xi.v = �iv
for some �i 2 F , 1  i  n. Define a linear functional � : L ! F by xi 7! �i

and then extending it linearly to all of L. This implies that x.v = �(x)v for
all x 2 L, so v is an eigenvector of every x 2 L with corresponding eigenvalue
�(x). We call such a pair (v,�) a common eigenvector and eigenvalue of L. The
statement that such a pair exists is equivalent to the statement that the space

VL,� := {w 2 V | x.w = �(x)w for all x 2 L}

is nonempty for some choice of � 2 L⇤.

Theorem 8.2. Let L ⇢ gl(V ) be a linear Lie algebra, where V is finite dimen-
sional and nonzero. Suppose L is solvable. Then L has a common eigenvector
in V , i.e. there exists a nonzero vector v 2 V along with a linear functional
� 2 L⇤ such that x.v = �(x)v for all x 2 L.

Proof. If dimL = 0 (i.e. L⇤ = 0) then any nonzero v 2 V will do, so suppose
dimL � 1. Take as induction hypothesis that the theorem holds for any solvable
algebra K ⇢ gl(V ) of dimension less than L.

(1) L has an ideal K such that L = K � Fz, (z 2 L \K).

It is necessary that [LL] 6= L for L to be solvable in view of our assumption
that L has positive dimension. Hence L/[LL] is nonzero and has a subspace
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K/[LL] of dimension one less than L/[LL]. As we showed in Section 2, the
latter is abelian, which means that K/[LL] is an ideal. Then K is an ideal
of L by Theorem [] and dimL � dimK = dimL/[LL] � dimK/[LL] = 1
shows that is has the correct dimension.

(2) VK,µ is nonempty for some µ 2 K⇤.

Here we use the induction hypothesis: K is solvable by Proposition 4.4(a)
and clearly satisfies the other conditions of the theorem, so we obtain a
nonzero vector w 2 V along with a linear functional µ 2 K⇤ such that
y.w = µ(y)w for all y 2 K. This w lies in VK,µ by definition.

(3) For any given x 2 L exists a nonzero subspace W ⇢ V such that x.W ⇢ W
and K.W ⇢ W .

Fix nonzero w 2 VK,µ (which is possible by the above) and consider the
sequence of subspaces

W0 := 0, Wi := spanF {w, x.w, . . . , xi�1.w}, i � 1.

Each Wi, i � 1 is nonzero and x.Wi ⇢ Wi+1 for all i � 0. Observe also that
K.Wi ⇢ Wi by K being an ideal—we can see this by looking at how y 2 K
acts on the given spanning set of Wi, (i � 1):

y.(xj .w) = [yxj ].w + xj .(y.w) = µ([yxj ])w + µ(y)xj .w, 0  j  i� 1.

V is finite-dimensional so there must exist a positive integer n such that

dimW1 = 1, . . . , dimWn = n, dimWn+1 = n, . . .

for which we then let W := Wn. This choice guarantees x.Wn ⇢ Wn, and it
follows from our earlier considerations that W has the desired properties.

(4) W has a basis relative to which each y|W , (y 2 K) is represented by an
upper triangular matrix with µ(y) on the diagonal.

Let y 2 K; y|W is well-defined because y.W ⇢ W . The basis in question
is of course (w, x.w, . . . , xn�1.w). Write wi = xi�1.w. With this basis, the
rest of the statement follows if we can show that

for each i � 1 exists w0 2 Wi�1 such that y.wi = µ(y)wi + w0. (8.1)

We prove this by induction. Recall that W0 = 0, so for i = 1 we have to
choose w0 = 0, but this works out because y.w1 = µ(y)w1. Now suppose
(8.1) is true for i = k. Using this along with [xy].wk 2 K.Wk ⇢ Wk where
the inclusion was obtained in (3), we see that

y.wk+1 = y.(x.wk)

= x.(y.wk)� [xy].wk

= x.(�(y)wk + w0)� [xy].wk (w0 2 Wk�1)

= �(y)x.wk + x.w0 � [xy].wk

= �(y)wk+1 + w00

59



where w00 = x.w0� [xy].wk 2 Wk since both summands lies in this subspace.
Therefore (8.1) is true for i = k + 1, and for every i � 1 by induction.

(5) µ([L,K]) = 0

Let x 2 L, y 2 K be arbitrary and construct W as in (3). Since both
x and y stabilize W , their commutator does, too, and therefore [xy]|W is
well-defined. We may use the identities (3.2), (3.3) to verify that the trace
of [xy]|W is zero. But [xy] 2 K, so (4) says that this trace should equal
nµ([xy]) where n = dimW . Invoking our assumption that char F = 0 (in
particular, n 6= 0) allows us to conclude that µ([xy]) = 0.

(6) L.VK,µ ⇢ VK,µ.

Let x 2 L, v 2 VK,µ be arbitrary. For x.v to lie in VK,µ it should satisfy the
defining condition of this subspace, which is

y.(x.v) = µ(y)x.v for all y 2 K.

We can rewrite the left-hand side as x.(y.v) � [xy].v = µ(y)x.v � µ([xy])v
and then (5) immediately gives that x.v indeed satisfies the condition.

(7) VL,� is nonempty for some � 2 L⇤.

Write V0 = VK,µ and use (1) to decompose L = K�Fz for some z 2 L\K.
The restriction z|V0 is well-defined in view of (6). We can always find some
eigenvector for any given linear operator of a vector space over F since the
field is algebraically closed; hence z|V0 has an eigenvector v 2 V0 with some
eigenvalue µ0 2 F . Let x 2 L and write it uniquely of the form x = y+ az,
(y 2 K, a 2 F ). Then

x.v = y.v + az.v = (µ(y) + aµ0)v

which means that after defining a linear functional � 2 L⇤ by

�(x) = µ(y) + aµ0

and similarly for all other x 2 L, we obtain that v 2 VL,�.

8.2 Representations of sl(2, F )

Let V be a finite-dimensional vector space over F . We denote by sl(V ) the set
of all linear operators of V with vanishing trace. By identity (3.2) of Section 3.2,
sl(V ) is a subspace of gl(V ). Using identity (3.3) of the same section we also
obtain tr([xy]) = 0, x, y 2 gl(V ). In other words, [gl(V ), gl(V )] ⇢ sl(V ), which
in particular shows that sl(V ) is a subalgebra. Letting n = dimV , we may
identify sl(V ) with the set of n⇥n zero-trace matrices over F , which we denote
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sl(n, F ). In this section we shall concern ourselves exclusively with S = sl(2, F ),
to which we assign the standard basis

h =

✓
1 0
0 �1

◆
, x =

✓
0 1
0 0

◆
, y =

✓
0 0
1 0

◆
.

Due to linearity, the bracket of S is completely determined by its behaviour on
these basis vectors, which we compute to be [hx] = 2x, [hy] = �2y, [xy] = h.

Lemma 8.3. If char F 6= 2, then S is simple.

Proof. We need to show that any nonzero ideal I equals L. Let such I be given,
and pick nonzero z = ah+ bx+ cy 2 I. If b = c = 0, then h 2 I, in which case
[hx] = 2x 2 I, [hy] = �2y 2 I. The hypothesis 2 6= 0 then implies x, y 2 I, and
we obtain I = L. Hence, suppose at least one of b, c is nonzero. We have

[x[xz]] = �2cx 2 I, [y[yz]] = �2by 2 I,

so b 6= 0 (c 6= 0) implies y 2 I (x 2 I). In either case, [xy] = h 2 I, and we
again conclude that I = L.

In the sequel, assume char F = 0 and algebraic closedness. As suggested by the
title of the section we now turn our attention to representations. Let V be a
finite-dimensional S-module with corresponding representation � : S ! gl(V ).
Given � 2 F , the subspace V� = {v 2 V | h.v = �v} is nonzero if and only if
� is an eigenvalue of �(h), since �(h)(v) = h.v. When this is the case we call
� a weight of h in V, and V� a weight space. Now, S is simple (in particular,
semisimple), so Corollary 5.6.2 says that because h equals its semisimple part in
S, so must �(h) in gl(V ). Hence V has a basis of eigenvectors of �(h), meaning
V is the direct sum of its weight spaces. Naturally, we investigate how S acts
on its weight spaces or more generally the spaces V�.

Lemma 8.4. With x, y, h; V�, � 2 F as above,

(a) h.V� ⇢ V�;

(b) x.V� ⇢ V�+2;

(c) y.V� ⇢ V��2.

Proof. (a) is immediate from the definition of V�. For (b), let v 2 V�. Then

h.(x.v) = [hx].v + x.(h.v) = 2x.v + �x.v = (�+ 2)x.v,

so we see that x.v 2 V�+2. (c) follows in a similar fashion.

The number of weight spaces is finite (V being finite-dimensional) so the lemma
implies that some weight space Vµ must be killed by x—simply start with any
weight space V� and take the last nonzero space of the sequence xi.V� ⇢ V�+2i,
i � 0. We call any nonzero vector of any such Vµ a maximal vector of weight
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µ. The existence of maximal vectors provides us with a systematic way of
constructing a nonzero submodule of V , in the following way. Fix a maximal
vector v0 2 Vµ, and define v�1 = 0, vi =

1
i!y

i.v0, i � 1. The action of S on these
vectors is given by

Lemma 8.5. With vi, i = �1, 0, 1, 2, . . . as above,

(a) h.vi = (µ� 2i)vi;

(b) x.vi = (µ� i+ 1)vi�1;

(c) y.vi = (i+ 1)vi+1, (i � 0).

Proof. By Lemma 8.4(c), vi 2 Vµ�2i for all i � 0, which proves (a). (c) follows
from the definition of vi. (b) is true for i = 0, and we use induction to prove it
for higher i, along with a few applications of (a) and (c).

(k + 1)x.vk+1 = x.
1

k!
yk+1.v0 = x.y.vk

= [xy].vk + y.x.vk = h.vk + y.(x.vk)

= (µ� 2k)vk + (µ� k + 1)y.vk�1

= (µ� 2k)vk + k(µ� k + 1)vk

= (µ+ kµ� k � k2)vk

= (1 + k)(µ� k)vk, (k � 0)

The induction assumption that (b) holds for k was deployed in the fifth equality.
Dividing by k+1 in the above yields x.vk+1 = (µ� k)vk, which proves that (b)
holds for i = k + 1, and we are done.

Analogously to how x kills Vµ, y must eventually kill the sequence Vµ�2i, i � 0.
Take m to be the smallest i for which Vµ�2i is killed by y, but still is a weight
space. Then (v0, . . . , vm) are nonzero, and in addition linearly independent, due
to their lying in di↵erent weight spaces. Lemma 8.5 says that the action of
S either shift around and/or scale these vectors, or kills them, and therefore
W = span{v0, . . . , vm} is an S-submodule of V . Of course, V may contain
many possible choices of maximal vector, and thus many di↵erent submodules,
but if V is irreducible, then W being nonzero forces V = W (in particular,
dimV = dimW = m+ 1). Gathering the results so far:

Theorem 8.6. Let V be an irreducible S-module. The weight spaces of V are

V�m, V�m�2, . . . , Vm�2, Vm where m = dimV � 1,

and each is one-dimensional. Moreover, V has a basis (v0, . . . , vm), vi 2 Vm�2i

relative to which the standard basis h, x, y of S is represented by, respectively,

0

BBB@

m 0 . . . 0
0 m-2 . . . 0
...

...
. . .

...
0 0 . . . -m

1

CCCA
,

0

BBBBB@

0 m 0 . . . 0
0 0 m-1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

1

CCCCCA
,

0

BBBBB@

0 0 . . . 0 0
1 0 . . . 0 0
0 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . m 0

1

CCCCCA
.
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Proof. Construct W as above, so V = W and dimV = m + 1. We already
know that (v0, . . . , vm) is a basis, that vi 2 Vµ�2i, and that these weight spaces
are disjoint, which forces them to be one-dimensional. That the standard basis
of S is represented as claimed may be verified by translating the identities of
Lemma 8.5—which determine the action of h, x, y on the chosen basis—into
matrix form. Finally, applying Lemma 8.5(b) to vm+1, which, of course, is
identically zero, yields 0 = x.vm+1 = (µ�m)vm. But vm is nonzero, so we must
have µ = m.

Any irreducible S-module V therefore has, up to multiplication by nonzero
scalar multiples, a unique maximal vector with unique weight m = dimV � 1.
We call this non-negative integer the maximal weight of V . All other weights of
V are generated by starting with m and subtracting 2 until we reach �m.
Having classified the irreducible S-modules, we now turn to arbitrary modules.
Since S is simple (in particular, semisimple) we can apply Weyl’s Theorem on
complete reducibility to decompose any such module into irreducible submod-
ules, and these are completely described by the theorem. The first two results of
the next corollary are analogous to those that hold for irreducible submodules,
while the third is new.

Corollary 8.6.1. Let V be a finite-dimensional S-module, with corresponding
representation � : S ! gl(V ), and let V = W1 � · · ·�Wt be a decomposition of
V into irreducible S-submodules. Let V� = {v 2 V | �(x)(v) = �v}, i.e. V� 6= 0
if and only if � is an eigenvalue of �(h). Then

(a) all eigenvalues of �(h) are integers;

(b) dimVm = dimV�m (in particular, m is an eigenvalue if and only if �m is);

(c) t = dimV0+dimV1, so the number of irreducible submodules present in any
such decomposition of V is uniquely determined.

Proof.

(a) Fix nonzero v 2 V and let wi 2 Wi, 1  i  t be the unique vectors such
that v =

P
wi. Because v is nonzero, some of the wi has to be nonzero—say,

wi1 , . . . wi
k

, (1  k  t). Now, v is an eigenvector of �(h) with eigenvalue �
if and only if

X
h.wi = h.

⇣X
wi

⌘
= h.v = �(h)(v) = �v =

X
�wi,

which by h.wi 2 Wi and the direct sum is true exactly when h.wi = �wi

for all 1  i  t. In particular, h.wi
j

= �wi
j

, meaning � is a weight of h in
Wi

j

for all 1  j  k. But the theorem says that all of these weights are
integers, so it follows that � must be an integer.

(b) It is clear from the proof of (a) that without loss of generality, every eigen-

vector v of eigenvalue m has a unique representation v =
Pk

i=1 wi where
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each wi 2 Wi is an eigenvector with eigenvalue m and 1, . . . , k are exactly
the indices of those irreducible submodules which has m as a weight. The
theorem tells us that the weight space of m in Wi, 1  i  k is one-
dimensional, so there is up to scalar multiples only one possible choice for
each wi. Hence, dimVm = k. The theorem also tells us that 1, . . . , k are ex-
actly the indices of those irreducible submodules which has �m as a weight,
and it follows that dimV�m = k = dimVm.

(c) Let W be one of the irreducible submodules and write m for its maximal
weight. By the theorem, the set of weights of h in W form an arithmetic
progression with common di↵erence 2 that moreover is symmetric around
zero. This implies that exactly one of m ⌘ 0 (mod 2) or m ⌘ 1 (mod 2) is
true. By slightly modifying the argument in (b), one obtains that dimV0

counts the number of irreducible submodules where the former is the case
and dimV1 counts the latter. Together, these add up to the total number
of irreducible submodules of the decomposition.

Interestingly, (c) says that one could prove that a given S-module is irreducible
by showing that it has a unique (up to scalar multiples) eigenvector of eigenvalue
either 0 or 1, but no eigenvectors of the other. This is because it then already
is its own decomposition into irreducible submodules. Once this has been done,
we then have a complete description of the module through Theorem 8.6.

64


