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Abstract

One of the most known and important geometric proposition within
mathematics is the one called Pythagoras theorem, Throughout the
years it has been the theme of study among prominent mathemati-
cians. This paper will focus on explaining methods that can be used
to generate non-proportional triples that satisfy the Pythagoras equa-
tion a2 + b2 = c2, where a, b, and c are integers. Furthermore, we will
extend our study by branching into the the concept called congruent
numbers, which is the study of the area of a right-angled triangle.

Keywords: Primitive, co-prime, triples, congruent, parity
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Introduction

1 Pythagorean theorem

1.1 Introduction

The impact that the Pythagoras theorem has had within mathematics cannot
be overstated. Some people would say that the Pythagoras theorem is one
of geometry’s most influential proposition1 . This theorem has found its
way into various fields of science and calculations and it is also known by
di↵erent names such as Euclid I 47 because it is included in the Book I
of Euclid’s Elements, proposition 47. Although the name is giving credit
to the Greek philosopher, and Mathematician Pythagoras as the one who
discovered it, it has been proven that this geometrical relation was known
even to the Babylonians thousands of years before Pythagoras. The tablet
below is called Plimpton 322, it is a list of Pythagorean triples believed to
be dated about 1800 BC. The tablet of four columns and fifteen rows shows
triples that satisfies the Pythagorean equation a

2 + b

2 = c

2.

Plimption 322

In this paper we will focus our attention on the study of the so-called
Primitive triples. The primitive set (a, b, c) is the same as Pythagoras triples
(a, b, c) satisfying the equation a

2 + b

2 = c

2, but have no common factor
among them. A triple with a common factor d is simply a scalar multiple of

1Maor (2007)
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Introduction

another triple, it means that to find all Pythagorean triples is equivalent to
find all solutions with no common divisor.
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Pythagoras triangle

1.2 The Theorem

The Pythagorean theorem asserts that in a right triangle the length of side
c in Figure 1, squared, is equal to the sum of the squares of a and b. The
opposite leg c is known as hypotenuse while the other two legs as catheter.
Algebraically we say

a

2 + b

2 = c

2 (1-1)

Figure 1: Right Triangle

Definition 1.1. Any set of three positive integers that satisfies (1-1) is called

a Pythagorean triple.

Example 1.1. (3, 4, 5), (5, 12, 13), (7, 24, 25) are Pythagorean triples since

32 + 42 = 9 + 16 = 25 = 52

52 + 122 = 25 + 144 = 169 = 132

72 + 242 = 49 + 576 = 625 = 252

Take notice that if (a, b, c) is a Pythagorean triple, then so is (ta, tb, tc)
where t is any positive integer, however (ta, tb, tc) forms a triangle that is sim-
ilar to (a, b, c), hence a triple with a common divisor t is simply proportional
to the triple without it.

Triples that satisfy (1-1) that are not three integers cannot be a Pythagorean
triple. For instance, if a = 1 and b = 1, then c =

p
2, but since c 62 Z, then

(a, b, c) is not a Pythagorean triple
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Pythagoras triangle

1.2.1 Integer formula

In one of Proclus comments on the book Euclid’s Element he tells us that
Pythagoras and Platon knew varieties of triples yielded by the form2

a = 2n+ 1, b = 2n2 + 2n, c = 2n2 + 2n+ 1 where n ✏ N . (1-2)

We do not know, however, exactly how these triples were found. It says,
of unknown sources, that the equation was interpreted as c

2 � b

2 = a

2, the
subtraction of a small square from a bigger square must result in a square.
The bigger square c

2 having the side lengths say n + 1, and a = n; implies
that b must be squared.

In Table 1 by letting n go from 1 to 5, we see that (1-2) yields triples.

n 2n+1 2n2 + 2n 2n2 + 2n+ 1
1 3 4 5
2 5 12 13
3 7 24 25
4 9 40 41
5 11 60 61

Table 1 : Pythagorean triples

Theorem 1.1. The numbers a = 2n + 1, b = 2n2 + 2n, c = 2n2 + 2n + 1
satisfies (1-1)

Proof. We substitute a and b according to (1-1) to see the left side it is equal
to right side c according to (1-1)

(2n+ 1)2 + (2n2 + 2n)2 =

(4n2 + 2n+ 2n+ 1) + (4n4 + 4n3 + 4n3 + 4n2) =

4n4 + 8n3 + 8n2 + 4n+ 1

the right side of the equation is:

(2n2 + 2n+ 1)2 = 4n4 + 4n3 + 2n2 + 4n3 + 4n2 + 2n+ 2n2 + 2n+ 1) =

2Lundström (2008, p.112)
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Pythagoras triangle

= 4n4 + 8n3 + 8n2 + 4n+ 1

When observing (1-2) it is possible to notice a few things. Two legs of
which one is the hypotenuse have to be odd numbers while the remaining leg
is even. Another thing is the fact that the hypotenuse extends the larger leg
by one. Therefore the formula does not find all valid Pythagoras triples since
there are triples such as (8,15,17) where the hypotenuse extends the larger
leg by two.
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Primitive Solutions

2 Primitive triples

2.1 What is a primitive triple?

Earlier we said that if (a, b, c) satisfies (1-1) then (ta, tb, tc) also does (where
t ✏ N). Therefore, it is su�cient for us to analyze triples where the greatest
common divisor is 1; otherwise we could simply cancel the equation by the
common divisor t

2. The study of triples a, b and c that are co-prime leads
us to the concept called Primitive Triples. Let us define and look at some
characteristics of a co-prime set (a, b, c)

Definition 2.1. Any set of three positive integers co-prime, i.e GCD(a,b,c)=1,

integers that satisfies (1-1) is called primitive Pythagorean triple.

The definition of a primitive triples opens the way for us to make a few
observations on certain attributes of a, b and c.

Lemma 2.1. For a primitive solution any pair of the numbers a, b and c

must be relatively prime. If (a, b, c) are primitive triple then GCD(a, b) =
GCD(a, c) = GCD(b, c) = 1.

Proof. Suppose that (a, b, c) are co-prime and that GCD(a, b) > 1. Let
p be a prime number that divides GCD(a, b). We consequently have that
p|a and p|b and considering (1-1) it follows that p|c2. We then know that
p|c which means that p|GCD(a, b, c); this contradicts itself since (a, b, c) are
co-prime.

Lemma 2.2. The square of an odd number is congruent to 1 mod 4. If the

number squared is even, then it is congruent to 0 mod 4.

Proof. even integer: a = 2k ) a

2 = 4k2 ⌘ 0 mod 4 k ✏ N

odd integer: a = 2k + 1 ) a

2 = (2k + 1)2 = 4k2 + 4k + 1 ⌘
1 mod 4 k ✏ N

Lemma 2.3. In a primitive solution a, b and c the numbers a and b cannot

both be odd. Furthermore, c must be odd.

Proof. If a and b are both even numbers then the GCD(a, b) 6= 1 thus it is
not a primitive solution according to Lemma 2.1. If a and b are both odd
numbers then a

2 ⌘ 1 mod 4, and b

2 ⌘ 1 mod 4. According to what we’ve
established above, any integer squared either leaves remainder 0 or 1 when
divided by 4. Thus, c2 = a

2 + b

2 ⌘ 2 mod 4 is an impossibility.
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Primitive Solutions

Having established the above attributes we determined that in a primitive
solution (a, b, c) only a or b can be odd and c must be odd. We will now look
at the full theorem for primitive triples and later analyze two methods that
prove the theorem to be true.

Theorem 2.1. Let (a, b, c) be a primitive triple, then a or b is odd, and the

other is even. Taking b as odd, there exists two co-prime integers u and v,

where u > v, SGD(u, v) = 1, and either u or v is odd and the other is even

such that:

a = 2uv, b = u

2 � v

2
, c = u

2 + v

2

2.2 First Proof

Proof. In the tenth book of Euclid’s elements is found the oldest known
method to prove that Theorem 2.1 generates all Pythagorean triplets. Con-
sider the equation (1-1) and suppose that a is even, consequently b and c are
odd according to Lemma 2.3. The equation (1-1) can be rewritten

a

2 = c

2 � b

2 = (c+ b) · (c� b)

We said that b and c are both odd numbers, then c+b, and c�b are positive
even integers. Hence, according to Lemma 2.2. both sides are divisible by 4,
which gives us:

a

2

4
=

(c+ b) · (c� b)

4
,

✓
a

2

◆2

=
c+ b

2
· c� b

2
(2-1)

Let us notice that the two factors (c + b)/2 and (c � b)/2 are relatively
prime. Suppose that they are not. Then, there is a common divisor d > 1
that divides the sum and the di↵erence of them.

c+ b

2
+

c� b

2
= c

c+ b

2
� c� b

2
= b

However, SGD(b, c) = 1.Therefore d has to be equal to 1 contrary to the
assumption above.

Lemma 2.4. If the square of an integer k is the product of two numbers a

and b, and there are no common factors between these, the a and b are also

perfect squares.
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Primitive Solutions

Proof. Let us first notice that in the prime factorization of a square number,
each factor appears an even number of times, i.e (kq1

1 k

q2
2 ...k

ql
l )

2 = k

2q1
1 k

2q2
2 ...k

2ql
l .

Suppose that GCD(a, b) = 1, and that a · b = k

2. Let us also suppose that a
is not square, then one of the factors a = a

p1
1 a

p2
2 ...a

pn
n appears a odd numbers

of times, say a1. However, all the prime factors in ab = k

2 must appear a
even amount of times, this means that a1 must be a factor in b as well, which
is a contradiction since GCD(a, b) = 1

Therefore we can call the factors on the right side of (2-1) for

c+ b

2
= u

2 c� b

2
= v

2

✓
a

2

◆2

= u

2 · v2 ) a = 2uv, b = u

2 � v

2
, c = u

2 + v

2 (2-2)

Let us ensure that the triple (a, b, c) = (2uv, u2 � v

2
, u

2 + v

2) yields only
primitive solution. We notice that there are certain restrictions on u and v.
Firstly, u and v and co-prime, here is why: Let d be a integer that divides
both u and v. Then we know that d|u2 and d|v2. The number d will also
divide the sum and the di↵erence of u2 and v

2 so d|u2+v

2 and d|u2�v

2. But,
u

2+ v

2 = c and u

2� v

2 = b and GCD(b, c) = 1, therefore d must be 1, hence
GCD(u, v) = 1. Another restrictions on u and v is that u2 � v

2 and u

2 + v

2

are odd numbers, it means that u and v cannot be both even, otherwise b

and c would not be co-prime. For the same reason u and v cannot both be
odd; the sum of two odd numbers is even. Therefore the numbers u and v,
one must be odd and the other even.

Table 2 below shows some primitive triples. We let u be 2  u  5 and
the triples will look like as the following

a b c
u=2, v=1 4 3 5
u=3, v=2 12 5 13
u=4, v=1 8 15 17
u=4, v=3 24 7 25
u=5, v=2 21 20 29

Table 2 : Primitive triples
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Primitive Solutions

2.3 Second Proof

The second method is very di↵erent from the first one. Here we will go
beyond integer solutions and study triples that satisfies a

2 + b

2 = c

2 where
a, b, c ✏ Q. In order to do that we study the connections between Pythagorean
triples and the unit circle. Surprisingly enough, there is a connection between
the two, which has been studied since ancient Greece by Pythagoras, Euclid,
Diophantus and others. Consider the following:

Let us work with the equation (1-1) by dividing both sides by c

2

a

2

c

2
+

b

2

c

2
=

c

2

c

2

✓
a

c

◆2

+

✓
b

c

◆2

= 1

We see that (a/c) and (b/c) are rational numbers, say x and y, thus the
the equation above gives the rational points on the unit circle x2+y

2 = 1. Let
C be the set of rational points on the unit circle with positive coordinates,
in other words, the rational points found in the first quadrant. Thus C is
defined as

C = {(x, y) ✏ Q2; x > 0, y > 0, x2 + y

2 = 1}

Lemma 2.5. There is a bijection relation  : (a, b, c) ! (a/c, b/c) between

the primitive Pythagorean triples and the set of rational points on first quad-

rant of the unit circle C (rs-axles not included) .

Proof. Let us first begin with studying the relation between the slope k and
the points (x, y) According to figure 2, we draw a line between (�1, 0) and
(x, y) with slope k.

Let us calculate what the slope k is.

k =
�y

�x

=
b/c� 0

a/c� (�1)
=

b/c

a/c+ c/c

=
b/c

(a+ c)/c
=

b

a+ c

=
y

x+ 1

The equation of the line enables us to calculate the coordinates of P (x(k), y(k))
by solving the system of equation

12



Primitive Solutions

Figure 2: Unit circle

(
y = k(x+ 1)

x

2 + y

2 = 1

By substituting y from the first equation onto the second we get

x

2 + (k(x+ 1))2 = 1 ,

, x

2 + k

2(x+ 1)2 = 1 ,

, x

2 � 1 + k

2(x+ 1)2 = 0 ,

, (x� 1)(x+ 1) + k

2(x+ 1)2 = 0 ,

Let us divide both sides of the equation by (x+ 1)

(x� 1) + k

2(x+ 1) = 0 ,

, x� 1 + k

2
x+ k

2 = 0 ,

, x(1 + k

2) + k

2 � 1 = 0 ,

, x =
1� k

2

1 + k

2

Let us now solve y

13



Primitive Solutions

y = k

✓
1� k

2

1 + k

2
+ 1

◆
=

= k

✓
1� k

2

1 + k

2
+

1 + k

2

1 + k

2

◆
=

2k

1 + k

2

The coordinates for our point P (x(k), y(k) is thus

P (x(k), y(k)) =

✓
1� k

2

1 + k

2
,

2k

1 + k

2

◆

Let us observe that k is 0 < k < 1 if and only if (x(k), y(k)) ✏ C, and
(x, y) ✏ Q2 if and only if k ✏ Q Therefore we can say k = q/p where p > q > 0
and GCD(p, q) = 1, thus the coordinates of P can be written as

P (x(k), y(k)) =

✓
1� q

2
/p

2

1 + q

2
/p

2
,

2q/p

1 + q

2
/p

2

◆

P (x(k), y(k)) =

✓
p

2 � q

2

p

2 + q

2
,

2pq

p

2 + q

2

◆

Let t = GCD(p2 � q

2
, p

2 + q

2). Then we know that t divides both their
the sum and di↵erence, 2p2 and 2q2. But p and q are co-prime hence t|2
which means that t = 1 or t = 2.
If t = 1 then there is no common factor between the numerator and the
denominator , and since a/c = (p2 � q

2)/(p2 + q

2), it follows therefore that
a = p

2 � q

2 and c = p

2 + q

2, and consequently b = 2pq. Notice that one of p
or q is even and the other is odd, otherwise t � 2.
If t = 2, then GCD((p2 � q

2)/2, (p2 + q

2)/2) = 1, which means that a =
(p2� q

2)/2, c = (p2+ q

2)/2, and consequently b = pq. But in this case both p

and q must be odd, both can not be even because GCD(p, q) = 1; neither one
odd and the other even, otherwise would both p

2 ± q

2 be odd, contradicting
the supposition. In this case we write p = 2n+1, q = 2m+1, which gives us

a =
((2n+ 1)2 � (2m+ 1)2)

2
= 2(n+m+ 1)(n�m)

b = (2n+ 1)(2m+ 1) = (n+m+ 1)2 � (n�m)2

c =
((2n+ 1)2 + (2m+ 1)2)

2
= (n+m+ 1)2 + (n�m)2

14



Primitive Solutions

Let p1 = n +m + 1 and q1 = n �m. Notice that n > m because p > q

and therefore p1 > q1 > 0. Moreover we have that p1 + q1 = 2n + 1 is odd,
which means that p1 or q1 must be odd the other even; and to conclude.

if t = 1 the
a = p

2 � q

2
, b = 2pq, c = p

2 + q

2

if t = 2
a = 2p1q1, b = p

2
1 � q

2
1, c = p

2
1 + q

2
1

Table 3 shows primitive triples that Corresponds to rational points on
the unit circle x

2 + y

2 = 1.

k a b
1/2 3/5 4/5
1/3 4/5 3/5
2/5 21/29 20/29
7/9 16/65 63/65

Table 3 : Triples as rational points on x

2 + y

2 = 1
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Congruent numbers

3 Congruent numbers

3.1 Introduction

The study of primitive triples where the values of a, b, c are taken from slopes
on a unit circle brought us from integer to rational solutions to a

2 + b

2 = c

2,
leaving us with a so called rational triangle. If the sides and hypotenuse of a
right angled triangle are rational numbers, then the triangle is called rational.
This section will focus on studying the area of such a triangle, which leads
us to the concept called congruent numbers

Definition 3.1. A positive integer n is called congruent number if there exists

a right-angled rational triangle whose sides (a, b, c) ✏ Q

+
such that

ab

2
= n

Table 4 and Figure 3 give examples of congruent numbers.

n a b c
5 3/2 20/3 41/6
6 3 4 5
7 24/5 35/12 337/60

Table 4 : Congruent numbers

We see that the use of the word congruent is di↵erent from what is other-
wise known as modular arithmetic. And just as with primitive triples, the
congruent numbers raise di↵erent questions such as 3

- the existence of a method that generate congruent numbers

- given an integer n, is there a method to know that n is congruent?

3.2 Classifying congruent numbers

When working with Pythagorean triples we said that it su�ces to study
primitive solutions since all other triples are just proportional to the primitive
solutions. The same principle can be applied to begin our study on congruent
numbers. When we say congruent numbers, by definition, it includes right-
angled triangles with integer sides, and triangles with rational sides. Let

3Chandrasekar, (1998)
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Congruent numbers

us suppose that (a, b, c) are the sides of a rational triangle whose area is
the congruent number n. By multiplying all three sides with s, the smallest
common multiple between the denominator of a and b, the congruent number
n becomes s2n. Thus, we go from a rational triangle to a proportional triangle
with integer sides, and the congruent number n is divisible by the square
number s

2. The opposite also works, if the area of a triangle with integer
sides is s2n, then we can divide all sides by s and get a proportional triangle
with rational sides. Therefore it su�ces to study triangles where n is square
free. Before proceeding to theorem 3.1 let us look at two lemma that will
help us to understand theorem 3.1

Lemma 3.1. If x is a rational number so that x

2
is an integer, then x itself

must be an integer.

Proof. Let x = a/b, where a and b are integers and relatively prime. Let
c = x

2. It follows that c = a

2
/b

2 and a

2 = cb

2. If b > 1, there exists a prime
number p such that p|b. Since p|cb2, then p also divides a2 and a. However,
in that case, a and b are not co-prime, which is contradiction. Therefore
b = 1 and x = a

Lemma 3.2. Let a and b be two integers where a is a square and b is square

free. Let d be an integer whose square divides a

2
b, then d

2|a2 and d|a

Proof. The integer b, being square free, can be factorized as a product where
the factors p1 · p2 · ...pm are di↵erent from each other. Whereas d2, being a
square, can be written as q2k11 · q2k22 · ...q2kll where each factor is di↵erent but
appears an even number of times. Thus we have.

a

2
b

d

2
=

a

2 · p1 · p2 · ...pm
q

2k1
1 · q2k22 · ...q2kll

If pi is di↵erent from qj, then we can conclude that d

2|a2 and our point is
proven. However, we have to consider that a factor from qj can be equal to
a factor from pi. Without any loss of generality, let’s say that p1 = q1 and
divide them out. We are left with

a

2 · p2 · ...pm
q

2k1�1
1 · q2k22 · ...q2kll

We said that the factors in b are all di↵erent, meaning that no other
number in p2, ..., pm is equal to q1; this implies that q2k1�1

1 |a2, which in turn
also implies that q1|a, because q1|q2k1�1

1 ) q1|a2 ) q1|a.

17



Congruent numbers

Figure 3: Rational triangles with area 5,6,7

We know that q1 can only divide a if 9m ✏ Z, such that a = q

l1
1 ·m , q1 - m

a = q

l1
1 ·m )

) a

2 = q

2l1
1 ·m2

q

2k1�1
1 |a2 = q

2l1
1 ·m2

From here we can observe that q2k1�1
1 |q2l11 ·m2 which implies that

2k1 � 1  2l1

However, 2k1 � 1 is odd, and 2l1 is even, it implies that

2k1 � 1 < 2l1 )

) 2k1  2l1 ) q

2k1
1 |a2

Theorem 3.1. Let n be a square-free congruent number to the rational tri-

angle with sides (a, b, c). If s is the smallest common multiple of the denom-

inators of a, b and c then, the triangle with sides (sa, sb, sc) is a primitive

triangle with the area s

2
n

18



Congruent numbers

Figure 4: Proportionality of square vs square free congruent numbers

Proof. It is self evident that (sa, sb, sc) is a Pythagoras triple if (a, b, c, ) is a
triple as well. It is also evident that if the area of (a, b, c) = n, then the area
of (sa, sb, sc) = s

2
n. Let us see if (sa, sb, sc) is a primitive triangle.

Firstly, we can see that if d divides sa and sb, consequently, according to
Lemma 3.1, it also divides sc. Hence (sa/d, sb/d, sc/d) is a Pythagoras
triples.
The area of the triangle is then s

2
n/d

2, meaning that d

2|s2n. But n is a
squarefree number, and according to Lemma 3.2, d2|s2, hence d|s. It means
that s = ds

0, and as a consequence s

0
a, s

0
b, s

0
c ✏ N . Notice that s0 is a com-

mon multiple among the denominators of a, b, c. However, we said that s is
the smallest common multiple, which means that s = s

0, therefore d must be
1.

Example 3.1. Let the primitive triple (sa, sb, sc) be equal to (9, 40, 41)

Then n =
9 · 40
2

= 180 = 5 · 62, where n = 5, and s = 6 Thus, the rational

triple (a, b, c) = (9/6, 40/6, 41/6) = (3/2, 20/3, 41/6) must be a proportional

triangle to (a, b, c) and n = (3/2)(20/3)
2 = 10

2 = 5. Notice table 5.
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(a,b,c) s2n Squarefree part
(3,4,5) 6 6
(15,8,17) 60 15
(5,12,13) 30 30
(35,12,37) 210 210
(21,20,29) 210 210
(7,24,25) 84 21
(63,16,65) 504 126

Table 5 : Congruent numbers

Another way to generate congruent numbers is by rewriting the equation
a

2 + b

2 = c

2 by using the same proposition for primitive triples. 4

(p2 � q

2)2 + (2pq)2 = (p2 + q

2)2

Each number corresponds to the sides of a right triangle, the hypotenuse
being (p2 + q

2). We can obtain congruent numbers by substituting p and q

at our choice, and the equation will be n = pq(p2 � q

2).

(pq) (p2 � q

2) n
p=2, q=1 2 3 6
p=3, q=2 6 5 30
p=4, q=1 4 15 60
p=4, q=3 12 7 84
p=5, q=2 10 21 210

Table 6 : Congruent Numbers

Theorem 3.2. Let p,q be co-prime p > q, and positive integers of opposite

parity (one is odd and the other is even). When three of the numbers p, q, p+
q, p � q are squares, then the fourth number is s

2
n where n is a congruent

number, and s an integer.

Proof. Let us check when p,q,p + q are square. Considering the premises
established above, we have triangle T whose sides are the primitive triple
(p2 � q

2
, 2pq, p2 + q

2) and whose area is 2pq(p2 � q

2)/2 = pq(p2 � q

2) =
pq(p+ q)(p� q). If p, q, p+ q are square numbers, by implication, it follows

4Chandrasekar, (1998)
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that pq(p + q) also is a square, hence r

2 = pq(p + q). By substituting r

2 we
can see that the area of the triangle T is now

r

2(p� q).

It means that p�q is the area of a rational triangle with sides
p

2 � q

2

r

,

pq

r

since
p

2 � q

2

r

· 2pq
r

· 1
2
=

r

2(p� q)

r

2
= p� q.

Let us reduce both fractions p2 � q

2
/r, 2pq/r such that there remains no

common factor between the numerator and denominator. We write

p

2 � q

2

r

=
p

0

q

0 ,

2pq

r

=
p

00

q

00

) p� q =
p

0

q

0 ·
p

00

q

00 ·
1

2

Let s = GCD(p0, p00), thus p0 = p

0
1 · s and p

00 = p

00
1 · s. It follows that

p� q =
p

0
1 · s
q

0 · p
00
1 · s
q

00

since p�q ✏N , it implies and q

0
q

00 divides p01p
00
1. However, theGCD(p01, q

0) =
GCD(p001, q

00) = 1, hence q

0|p001, and q

00|p01. And therefore p � q = s

2
n, where

n is a congruent number.

Taking the same steps above, we will obtain the same results, that any
of the numbers p,q,p + q,p� q is equal to s

2
n as long as the other three are

square.

Example 3.2. Let us take some Pythagorean triples and use the method
above to find congruent numbers. For instance, (a, b, c) = (3, 4, 5), a2 = 9,
b

2 = 16, c2 = 25. We have that b2 � a

2 = 7, so 7 is a congruent number. If
a > b then n = a

2 � b

2, if b > a, then n = b

2 � a

2.

(a,b,c) a2 � b

2 or b2 � a

2

(3,4,5) 7
(15,8,17) 161
(5,12,13) 119
(35,12,37) 1081
(21,20,29) 41
(7,24,25) 527
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Table 7 : Congruent numbers

Example 3.3. Let us also see how theorem 3.2 works using the steps through-
out the proof to find the congruent number 7. We have p = 4, q = 3, p+q = 5
and r = pq(p+ q) = 3 · 4 · 5

p

2 � q

2

r

=
162 � 92

3 · 4 · 5 =
(16 + 9)(16� 9)

3 · 4 · 5 =
5 · 7
3 · 4

2pq

r

=
2 · 16 · 9
3 · 4 · 5 =

24

5

1

2
· p

2 � q

2

r

· 2pq
r

=
1

2
· 5 · 7
3 · 4 · 24

5
= 7

Theorem 3.3. A number n is congruent if and only if there exists a rational

number d such that d

2 + n and d

2 � n are both squares of rational numbers.

Proof. Let n be a congruent number and let a,b,c be rational numbers such
that

a

2 + b

2 = c

2
,

ab

2
= n , 2ab = 4n

a

2 + b

2 ± 2ab = c

2 ± 4n ,

,
✓
a± b

2

◆2

=

✓
c

2

◆2

± n

By taking d = c/2 we have that d is rational and that d2 + n and d

2 � n are
squares of (a± b/2)2.

Now, given that d

2 ± n are square of rational numbers. We can writep
d

2 ± n, and say that a =
p
d

2 + n+
p
d

2 � n; and b =
p
d

2 + n�
p
d

2 � n

By substituting these values in a

2 + b

2 = c

2 we obtain the following

a

2+b

2 = (d2+n+2
p
d

2 + n·
p
d

2 � n+d

2�n)+(d2+n�2
p
d

2 + n

p
d

2 � n+d

2�n) =

= 4d2 = c

2

c =
p
a

2 + b

2 = 2d

Now we know the sides of the rational triangles (a, b, c) whose area is

a · b
2

=
(
p
d

2 + n+
p
d

2 � n)(
p
d

2 + n�
p
d

2 � n)

2
=
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=
(
p
d

2 + n)2 � (
p
d

2 � n)2

2
=

=
(d2 + n)� (d2 � n)

2
=

2n

2
= n

3.3 Non-congruent numbers

The discussion concerning whether or not a certain integer is congruent brings
us back all the way to the 10th century. There exists Arab manuscripts
approximately 1000 years old that lists tabulations of congruent numbers5.
Around 300 years later, in the 13th century, Fibonacci discovered that 7
is a congruent number, furthermore, he claimed that 1 is not a congruent
number. However, the first accepted proof came hundreds of years later in
the 17th century due to Fermat’s contribution, which were useful to even
show that 2 and 3 are not congruent.

In order to prove that 1 is not a congruent number, we will use the method
discovered by Fermat, namely the method of infinite descent 6. But before
looking at the theorem and its proof we can observe that if 1 is a congruent
number, then there exists a rational triangle whose sides are a/d, b/d, c/d

(a,b,c,d ✏ N) such that

✓
a

d

◆2

+

✓
b

d

◆2

=

✓
c

d

◆2

, and
a/d · b/d

2
= n = 1 (3-1)

And therefore

a

2 + b

2 = c

2
, and

ab

2
= d

2
n = d

2 · 1 = d

2 (3-2)

The above identities tells us that a right angled triangle with rational
sides has a area equal to 1 if and only if there exists a right angled triangle
with integral sides whose area is a perfect square. Hence, to show that 1 is
not a congruent number, we simply need to show that the area of a integer
right-angled triangle can not be a perfect square. Before we look at the
theorem, let us quickly establish a lemma that will serve us when studying
the fact that 1 is not a congruent number.

5Conrad, (2008)
6Chandrasekar. (1998)
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Lemma 3.3. Let p and q be relatively prime of di↵erent parity, and p > q >

0. Then, the GCD(p, p± q) = GCD(q, p± q) = GCD(p+ q, p� q) = 1

Proof. Let GCD(p, p + q) = d. Then d|p, and d|p + q. It implies that
d|(p+ q)� p = q. So if d|p, q ) d = 1.

LetGCD(q, p+q) = d. Then d|q, and d|p+q. It implies that d|(p+q)�q =
p. So if d|q, p ) d = 1.

Let GCD(p � q, p + q) = d. Then d|2p, and d|2q. But p, q are coprime,
hence d|2. However, p+ q, p� q are odd, hence d = 1

Theorem 3.4. 1 is not a congruent number.

Proof. Let us suppose that 1 is a congruent number, that is to say, according
to (3-2), there exists a right angled triangle T with integral sides whose area
is a perfect square, and whose sides, according to theorem 2.1, are

a = 2pq, b = p

2 � q

2
, c = p

2 + q

2

where p > q > 0, GCD(p, q) = 1, and either p or q is odd and the other is
even. The area A of triangle T must therefore be

A =
2pq(p2 � q

2)

2
= pq(p� q)(p+ q)

The product of pq, p+q, p�q is the area of T . Moreover, given the fact that
GCD(p, q) = 1, according to lemma 3.3; GCD(p, p±q) = GCD(p+q, p�q) =
1. So we can write

p = x

2
, q = y

2
, p+ q = u

2
, p� q = v

2 (3-3)

With the identities in (3-3), we make a few useful observations.

1. The length of the hypotenuse is p2 + q

2 = (x2)2 + (y2)2 = x

4 + y

4

2. Since GCD(p + q, p � q) = 1, it follows that u

2
, v

2 are also co-prime,
hence u, v are co-prime as well

3. GCD(u+ v, u� v) = GCD(2u, 2v) = 2, because according to the 2nd
observation u and v are co-prime.

4. p = x

2 =
u

2 + v

2

2
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5. 2y2 = 2q = u

2 � v

2 = (u+ v)(u� v)

The above list tells us that u, v are co-prime, and that u + v,u � v are
even numbers. This means that the number 2 divides one of the numbers
u+ v, u� v only one time, suppose it is u+ v, we can thus write

2y2 = (u+ v)(u� v) , y

2 =
u+ v

2
· (u� v)

Let r = (u+v)
2 and s = u�v; the numbers r, s are co-prime, it follows that,

according to lemma 2.3, r, s must be square; hence 2r2 = u + v, and s

2 =
u � v. Furthermore, since (u + v) + (u � v) = 2u = 2r2 + s

2, and 2u is a
even number, we can conclude that s2 must be even as well, so there exists
an integer t, such that s = 2t ) s

2 = 4t2. So, u = r

2 + 2t2

Similar results will we obtain by instead subtracting (u� v) from (u+ v),
we get 2v = 2r2 � s

2, which must be a even number, therefore there exists a
integer t such that s = 2t, so v = r

2 � 2t2.
The fourth item on the list above tells us that

p = x

2 =
u

2 + v

2

2

Let’s substitute u with r

2 + 2t2, and v with r

2 � 2t2. Thus we acquire

p = x

2 =
u

2 + v

2

2
= r

4 + 4t4

r

4 + 4t4 = x

2

The triple (r2, 2t2, x) constitute the sides of triangle T

0 with area (rt)2.
The sides of T 0 are shorter than the sides of triangle T . For instance, the
hypotenuse of T is p2 + q

2, whereas of T 0 is x; but we know that x =
p
p <

p

2 + q

2.
The value we now have for x is less than the length of the hypotenuse

we had in the beginning p

2 + q

2. The same is true for the sides of the trian-
gle. Hence, starting from a right angled triangle we generated a proportional
triangle whose sides are shorter. Nothing stops us from generating yet an-
other triangle doing the same thing, consequently, we can infinitely continue
descending the value of the triangle T . As a result, we are brought to a
contradiction and therefore conclude that 1 is not a congruent number
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.
The proof above leads us to a rather uncommon way to prove that

p
2 is

irrational7. Let us say that
p
2 is a rational number, we could have a triangle

with sides (
p
2,
p
2, 2), this triangle’s area would thus be,

p
2 ·

p
2

2
= 1, but

one is not a congruent number, leading us to a contradiction.

3.4 The infinite descent method

When proving that 1 is not a congruent number, we showed that starting, let
us say, from the smallest possible triangle with integral sides, we were able
to produce another triangle that was smaller to the first, we compared their
hypotenuse to draw such a conclusion. Certainly the process can be repeated,
and this continuous decrease is what is called ”the infinite descent method”
devised by Fermat. The way in which Fermat’s proves the method of infinite
descent is by showing that the Diophantine equation x

4 + y

2 = z

2 has no
solution in nonzero integers x,y, and z. Fermat showed that for every solution
there is a ”smaller” solution, contradicting the well-ordering property 8.

3.5 The problem with congruent numbers

All throughout this section on congruent numbers, we have been focusing on
ways to generate such numbers by developing di↵erent forms and establishing
theorems, answering our first question in the beginning of the section, namely,
if there was a way to generate congruent numbers. Nevertheless, we also
asked ourselves if given an integer n, is there a method to know that n is
congruent? This is exactly the problem with congruent numbers, that is,
to decide whether or not a given number n is congruent. In order for us to
have a better understanding of how problematic it can be, consider the right
angled triangle below. In 1914, L.Bastien proved that its area corresponds
to the congruent number 101 9. These are the sides of the triangle.

b =
3967272806033495003922

118171431852779451900

7Conrad, (2008)
8Rosen, (1993)
9Chandrasekar, (1998)
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a =
711024064578955010000

118171431852779451900

c =
2⇥ 2015242462949760001961

118171431852779451900

So, it is not an exaggeration to say that to find out whether or not an
integer n is congruent is nothing less than an exhaustive work.

Right angled triangle with area 101

3.6 History behind congruent numbers

Early in this paper we mentioned that there exists an Arab manuscripts
dated from the 10th century asserting that congruent numbers were already
known to local mathematicians10. It is said that there is no evidence that
the Arabs knew Diophantus prior to the translation of his work at 998 A.D.
However, the Arabs found out that 5, 6, 14, 15, 21, 30, 34, 65, 70, 110, 154, 190
and more, are congruent numbers. In their list, one can even find numbers
greater than 100, like 10374 11.

10Conrad, (2008)
11Chandrasekar, (1998)
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From the 10th century until the 13th century, there is not much said or
heard concerning congruent numbers, until a man called Leonardo Pisano,
also known as, Fibonnacci, considered to be the most talented Western math-
ematician of the Middle Ages, was challenged by the king’s scholars. The
challenge was not asking Fibonacci to solve a congruent number problem, but
its solution was the same as proving that 5 is a congruent number. Fibbon-
nacci recorded this work in the so called Liber Quadratorum (1225), which
became known to the public hundred of years later after been found by Prince
Boncompaign. In this work, Fibonnacci also proved that 7 is a congruent
number, moreover, he asserted, without any proof, that 1 is not congruent.
As shown above the proof came many years later when Fermat discovered
the infinite descent method.

4 Conclusion

We have now presented a study on the properties of a right-angled triangle.
By defining the relation of its sides we were able to establish di↵erent theo-
rems that led us to a formula that generates primitive triples to Pythagoras
triangle. We saw that it was possible to understand the theorem for primi-
tive triples by examining the points on a unit circle, how the points on the
first quadrant of the unit circle can yield triples that satisfy the equation
a

2 + b

2 = c

2.
Lastly, we went from studying the sides of a right-angles triangle, to study

the area of such a triangle. We were thus led to the concept called congruent
numbers. We saw that there are many di↵erent methods one can use in
order to find a congruent number. Furthermore, we were able to present one
method that shows that 1 is not congruent, the same method is used to show
that 2 and 3 are not either. Despite the fact that there are many numbers we
know are not congruent, it still does not exist a certain method one can use
to tell whether or not a given integer is congruent. We conclude this study
hoping that it will inspire readers to continue develop the solution.
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