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Abstract

The fundamental theorem of algebra tells us the number of roots of a

polynomial. As a generalization, Bezout’s theorem tells us the number of

intersection points between two arbitrary polynomial curves in a plane.

The aim of this text is to develop some of the theory of algebraic geom-

etry and prove Bezout’s theorem. First, after some initial definitions and

propositions we will prove the classical result of Hilbert’s nullstellensatz,

which describes the relationship between algebraic sets and ideals of a

polynomial ring. From that we continue on to define the projective space,

to which we extend our previous definitions of algebraic sets and ideals.

Also needed for Bezout’s theorem is the notion of intersection number,

which is a generalization of counting zeros with multiplicities. The prop-

erties expected of the intersection number are given and we show that

there is only one number which satisfies those properties. Then we have

all the theory needed and we will prove Bezout’s theorem.
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1 Introduction

A classical result in algebra is that the number of roots of a polynomial f of one

variable over C is equal to the degree of f , if we count multiplicities correctly.

An equivalent statement is that the number of times that the curves y = f

and y = 0 intersect in C2 is equal to the degree of f , if we count multiplicities

correctly. This prompts a new question: how many times do two arbitrary

curves in C2 intersect? The answer to this question is called Bezout’s theorem,

which we aim to prove in this text.

In its weakest form, Bezout’s theorem states that two polynomial curves f and

g in the plane of an arbitrary field intersect in at most deg(f) · deg(g) points.

There are three steps which we may take to sharpen the theorem. The first is

to take the intersection points in the plane of an algebraically closed field. We

could have hoped that this would be enough to ensure the existence of at least

one intersection point. However, it turns that it is not enough. We also need

to extend the plane in order to include points at infinity. Then any two curves

will intersect at least once.

The third and last step is in analogue to the need for correctly counting multi-

plicities of zeros of a polynomial of one variable in order to get the full number of

roots. We define the intersection number of f and g at a point in a natural way

as a non-negative integer that states ”how many times” f and g intersect there.

Then we finally have the full Bezout’s theorem, which states that if f and g are

curves in the plane of an algebraically closed field and we count points at infinity

and intersection multiplicities correctly then there are exactly deg(f) · deg(g)
intersection points.
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2 Foundations

2.1 Basic definitions and concepts

Unless otherwise stated, the results and proofs in this text are based on the

book Algebraic Curves by William Fulton [2].

Let K be a field and let K[x1, ..., xn

] be the polynomial ring over K. For any

polynomial f 2 K[x1, ..., xn

], let

V(f) := {x 2 K

n | f(x) = 0},

i.e. V(f) is the zero-set of f .

For any set S of polynomials in K[x1, ..., xn

] let

V(S) :=
\

f2S

V(f),

i.e. V(S) is the set of common zeros of the polynomials in S. When S = {f
i

}k
i=1

is finite we will write V(f1, ..., fk) instead of V({f1, ..., fk}).
Definition 2.1. Let X ✓ K

n, then X is called an algebraic set if X = V(S)

for some S ✓ K[x1, ..., xn

].

The main purpose of algebraic geometry is to study algebraic sets. There is a

correspondence between algebraic sets of Kn and ideals in K[x1, ..., xn

] so that

many properties of algebraic sets can be reduced to properties of ideals, which

are often easier to work with.

Example 2.1. Here are some examples of algebraic sets in R2.
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Figure 1: V(y2 + x

2 � 1) Figure 2: V(y � x

2 + 7)

Figure 3: V(x2 + y

3 � y

2 � 2xy) Figure 4: V((y2 + x

2 � 1)(x2 � y

3 + 1))

Figure 1 is the unit circle, which is the set of solutions to the equation y

2+x

2 = 1.

So the set of solutions is also the zero-set of the polynomial y2+x

2�1. Equally

for Figure 2 which is the curve y = x

2 � 7. The curves in Figure 3 and Figure

4 are more complicated but are nonetheless algebraic sets.

We continue with a proposition on algebraic sets.

Proposition 2.1. Let I be the ideal in K[x1, ...xn

] that is generated by S. Then

V(S) = V(I).

Proof. Since S ✓ I we have the inclusion V(I) ✓ V(S). So what we need to

prove is the other inclusion.

Suppose x 2 V(S). Then f(x) = 0 for all f 2 S, and thus for any f1, ..., fn 2 S

and for any g1, ..., gn 2 K[x1, ..., xn

] we have (g1f1 + ... + g

n

f

n

)(x) = 0. So
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x 2 V(I) and thus V(S) ✓ V(I).

This means that every algebraic set is the zero-set of some ideal in K[x1, ..., xn

]

and that in order to study the properties of V(S) it is enough to consider zero-

set of the ideal generated by S. What follows are some basic properties of

algebraic sets.

Proposition 2.2. The following properties hold:

1. For any two ideals I and J , if I ✓ J then V(I) ◆ V(J).

2. For any collection {I
↵

} of ideals, V([
↵

I

↵

) = \
↵

V(I
↵

).

3. For any two ideals I and J , V(I) [ V(J) = V({fg 2 K[x1, ..., xn

] | f 2
I, g 2 J}).

Proof.

1. Suppose I ✓ J and let x 2 V(J). Then f(x) = 0 for all f 2 J . In

particular f(x) = 0 for all f 2 I, so x 2 V(I) and thus V(I) ◆ V(J).

2. We have the following equivalences:

x 2 V([
↵

I

↵

) , f(x) = 0 for all f 2 [
↵

I

↵

, f(x) = 0 for all f 2 I

↵

for all ↵

, x 2 V(I
↵

) for all ↵

, x 2 \
↵

V(I
↵

).

3. We have the following equivalences:

x 2 V(I) [V(J) , x 2 V(I) or x 2 V(J)

, f(x) = 0 for all f 2 I or f(x) = 0 for all f 2 J

, (fg)(x) = 0 for all f 2 I, g 2 J

, x 2 V({fg 2 K[x1, ..., xn

] | f 2 I, g 2 J}),

where the left implication of the third equivalence is given by the following

argument: suppose (fg)(x) = 0 for all f 2 I and all g 2 J . Then for any

given combination fg we have either f(x) = 0 or g(x) = 0. Now suppose

that some but not all of the polynomials in I are zero at x and suppose

the same for the polynomials in J . Then take any f 2 I and g 2 J such

that f(x) 6= 0 and g(x) 6= 0 and then we get (fg)(x) 6= 0 which is a

contradiction. So either all of I vanishes on x or all of J vanishes on x.
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Observe that V(x1 � a1, ..., xn

� a

n

) = {(a1, ..., an)}. So by property 3 in

proposition 2.2 any finite set is an algebraic set.

We have seen how we may define sets in K

n by using ideals in K[x1, ..., xn

]. In

a similar manner we may define ideals in K[x1, ..., xn

] using sets in K

n.

For any set X ✓ K

n let

I(X) = {f 2 K[x1, ...xn

] | f(x) = 0 8x 2 X},

i.e. I(X) is the set of polynomials which vanish on X.

If f and g vanish on X then so do f + g and hf for any h 2 K[x1, ...xn

]. So

I(X) is an ideal in K[x1, ..., xn

]. Here are some basic properties of ideals of

sets.

Proposition 2.3. The following properties hold:

1. For any two sets X and Y in K

n

, if X ✓ Y then I(X) ◆ I(Y ),

2. For any two sets X and Y in K

n

, I(X [ Y ) = I(X) \ I(Y ).

Proof.

1. Suppose X ✓ Y and let f 2 I(Y ). Then f(x) = 0 for all x 2 Y and in

particular, f(x) = 0 for all x 2 X. So f 2 I(X) and thus I(X) ◆ I(Y ).

2. We have the following equivalences:

f 2 I(X [ Y ) , f(x) = 0 for all x 2 X [ Y

, f(x) = 0 8x 2 X and f(x) = 0 8x 2 Y

, f 2 I(X) and f 2 I(Y )

, f 2 I(X) \ I(Y ).

The mapsV and I are almost inverses to each other. We see the relation between

them in the following proposition.

Proposition 2.4. The following properties hold for any set X ✓ K

n

and any

set S ✓ K[x1, ..., xn

]:

1. S ✓ I(V(S)).

2. X ✓ V(I(X)).

3. V(I(V(S))) = V(S).

4. I(V(I(X))) = I(X).
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Proof.

1. Suppose f 2 S. Then for all x 2 V(S) we have f(x) = 0. So f 2 I(V(x)).

2. Suppose x 2 X. Then for all f 2 I(X) we have f(x) = 0. So x 2 V(I(X)).

3. By property 2 we have V(S) ✓ V(I(V(S))).

Let x 2 V(I(V(S))). Then f(x) = 0 for all f 2 I(V(S)). By property 1.

f(x) = 0 for all polynomials f 2 S i.e. x 2 V(S). Thus V(I(V(S))) ✓
V(S).

4. By property 1 we have I(X) ✓ I(V(I(X))).

Let f 2 I(V(I(X))). Then f(x) = 0 for all x 2 V(I(X)). By property 2

f(x) = 0 for all points x 2 X i.e. f 2 I(X). Thus I(V(I(X))) ✓ I(X).

If f 2 K[x1, ..., xn

] is a non-constant polynomial then at least one of x1, ...xn

appears in f . Say that x

i

appears in f . If n � 2 then we can set all vari-

ables except x

i

in f to constants in K. Consider f(a1, ..., ai�1, xi

, a

i+1, ..., an)

for some choice of a1, ..., ai�1, ai+1, ..., an 2 K. This is a polynomial in only

one variable and so it has at least one root if K is algebraically closed. This

holds for any choice of the constants. So if K is algebraically closed and there-

fore in particular infinite then there are infinitely many choices of constants

a1, ..., ai�1, ai+1, ..., an 2 K, all for which f has at least one root. So V(f) is

infinite.

We will now show the existence of a special set of polynomials that will be useful

later.

Proposition 2.5. Let {p1, ..., pr} be a finite subset of K

n

. Then there exists

polynomials f1, ..., fr 2 K[x1, ..., xn

] such that f

i

(p
i

) = 1 and f

i

(p
j

) = 0 for all

i 6= j.

Proof. Let S = {p1, ..., pr} and let S

i

= S\{p
i

}. Since I(S
i

) * I({p
i

}) we get,

by property 2 in proposition 2.3, that I(S
i

[ {p
i

}) = I(S
i

)\ I({p
i

}) ( I(S
i

). So

there is some polynomial g
i

such that g
i

2 I(S
i

) but g
i

/2 I({p
i

}), i.e. g
i

(p
j

) = 0

for all j 6= i and g

i

(p
i

) = a

i

for some non-zero a

i

2 K. Now set f

i

= gi

ai

for all 1  i  r. Then f1, ..., fr is a set of polynomials which satisfies the

proposition.

It is often useful to be able to make a change of coordinates in K

n. But not

every change of coordinates will be nice to work with. So let us define a specific

type of change of coordinates.
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Definition 2.2. Let T = (T1, ..., Tn

) where T

i

2 K[x1, ..., xn

] is a polynomial

of degree 1 for all 1  i  n such that T is a bijection of Kn. Then T is called

an a�ne change of coordinates.

An a�ne change of coordinates is a combination of a translation and an invert-

ible linear transformation. We will use the notation f

T to mean f(T1, ..., Tn

).

2.2 Hilbert’s nullstellensatz

Hilbert’s nullstellensatz is a fundamental theorem in algebraic geometry be-

cause it gives the correspondence between algebraic sets in K

n and ideals in

K[x1, ..., xn

], which provides us with the possibility to use an algebraic frame-

work to determine properties of geometrical objects. We will in this section

work our way towards stating and proving Hilbert’s nullstellensatz.

The ring K[x1, ..., xn

] has a special property that makes the ideals easier to work

with. First we begin with a definition.

Definition 2.3. A commutative ring R is called Noetherian if every ideal in

R is finitely generated.

The following is a basic theorem in algebraic geometry that lies in the back-

ground to many other deeper results.

Theorem 2.6 (Hillbert basis theorem). If R is a Noetherian ring then so is

R[x1, ..., xn

].

Proof. It is enough to show that the theorem holds forR[x] sinceR[x1, ..., xn�1][xn

]

is isomorphic to R[x1, ..., xn

], so the result follows by induction.

Let I be an ideal in R[x]. For a polynomial f 2 I, let the coe�cient of the

highest power of x be called the leading coe�cient of f . Let J be the set of

all leading coe�cients of the polynomials in I. Then J is an ideal. Since R is

Noetherian, J is finitely generated. Let {f
i

}s
i=1 be a (finite) set of polynomials

in I whose leading coe�cients generate J and let N be an integer larger than

max1is

({deg(f
i

)}).
For each m  N let J

m

be the set of all leading coe�cients of the polynomials

of I of degree less than or equal to m. Then J

m

is an ideal. Let {f
m,j

}sm
j=1 be

a (finite) set of polynomials of degree less than or equal to m whose leading

coe�cients generate J

m

.

Now consider the ideal I 0 in R[x] generated by {f
i

}s
i=1 and {f

m,j

}sm
j=1. It is a

finitely generated ideal, so if we can show that I 0 = I then we are done.
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Firstly, since the generators of I 0 all belong to I, I 0 ✓ I. So it is enough to show

that I ✓ I

0.

Suppose that I * I

0. Let g 2 I be a polynomial of lowest degree which is not

in I

0. If deg(g) > N , then since g 2 I, the leading coe�cient of g belongs

to J . Since the leading coe�cients of {f
i

}s
i=1 generate J we can find some

polynomials h
i

in R[x] such that the leading coe�cient of g is the same as the

leading coe�cient of
P

s

i=1 hi

f

i

and such that deg (
P

s

i=1 hi

f

i

) = deg(g). Then

deg(g �Ps

i=1 hi

f

i

) < deg(g). Since g is a polynomial of lowest degree not in I

0

and g �Ps

i=1 hi

f

i

is of lower degree, g �Ps

i=1 hi

f

i

2 I

0. But then g is a sum

of two polynomials in I

0 and thus g 2 I

0, which is a contradiction.

If deg(g) = m  N then, again since the leading coe�cient of g belongs to

J

m

and the leading coe�cients of {f
m,j

}sm
j=1 generate J

m

we can find some

polynomials h

j

2 R[x] such that the leading coe�cient of g is the same as the

leading coe�cient of
P

sm

j=1 hj

f

m,j

and such that deg
⇣P

sm

j=1 hj

f

m,j

⌘
= deg(g).

Then deg(g �Psm

j=1 hi

f

m,j

) < deg(g). Using the same argument as above we

get g 2 I

0, which is again a contradiction.

So I ✓ I

0 and thus I = I

0.

Since the only two ideals of a field are the zero-ideal and the entire field,

which are both finitely generated, K is a Noetherian ring. So by theorem 2.6,

K[x1, ..., xn

] is a Noetherian ring.

Proposition 2.7. Any non-empty collection of ideals in a Noetherian ring has

a maximal member.

Proof. Let R be a Noetherian ring, let S be a non-empty collection of ideals

in R and choose an ideal I0 2 S. Assume by way of contradiction that S does

not contain a maximal member. Now choose an ideal I1 2 S such that I0 ( I1.

This is possible since otherwise I0 would be a maximal member of S. Continue
choosing ideals in this manner, i.e. such that I

n

( I

n+1. This produces an

infinite chain of ideals ordered by set inclusion, since if it were finite, then the

last ideal would be a maximal member of S. Now consider I =
S1

n=0 In. This is

an ideal and since R is a Noetherian ring, I is generated by some f1, ..., fm 2 R.

But then for a large enough integerN , all of f1, ..., fm belong to I
N

and therefore

I

N

= I

N+1 = ... = I, so the chain of ideals is finite, which is a contradiction.

So S contains a maximal member.

Corollary 2.8. Every proper ideal in a Noetherian ring is contained in a max-

imal ideal.

Proof. Let I ( K[x1, ..., xn

] be a proper ideal and let S be the set of proper

ideals in K[x1, ..., xn

] that contain I. By proposition 2.7, there exists some ideal

10



J0 that is a maximal member of S. Now suppose, by way of contradiction, that

J0 is not a maximal ideal. Then there is some proper ideal J 0 ( K[x1, ..., xn

]

such that J0 ( J

0. But then I ( J

0 and thus J

0 2 S, which contradicts the

maximality of J0 in S. Hence J0 is a maximal ideal that contains I.

We are interested in determining the maximal ideals of K[x1, ..., xn

] since they

correspond to minimal algebraic sets in K

n. We begin with a lemma.

Lemma 2.9. For any point (a1, ..., an) 2 K

n

the ideal (x1 � a1, ..., xn

� a

n

) in

K[x1, ..., xn

] is a maximal ideal.

Proof. Consider the homomorphism

' : K[x1, ..., xn

] �! K

f(x1, ..., xn

) 7�! f(a1, ..., an).

This map is surjective since for any element a 2 K, the constant polynomial

f(x1, ..., xn

) = a is mapped to a.

Let I = (x1�a1, ..., xn

�a

n

). Then clearly I ✓ ker'. If we can prove the other

inclusion then the theorem will follow.

We first note that x

i

⌘ a

i

( mod I) for all 1  i  n. Thus f(x1, ..., xn

) ⌘
f(a1, ..., an) ( mod I) for all f 2 K[x1, ..., xn

].

Let f 2 ker', then f(a1, ..., an) = 0 which implies

f(x1, ..., xn

) ⌘ f(a1, ..., an) ⌘ 0 ( mod I),

and thus f(x1, ..., xn

) 2 I. So ker' ✓ I and therefore I = ker'. This means

that K[x1, ..., xn

]/I ⇠= K and therefore I is a maximal ideal.

In order to prove Hilbert’s nullstellensatz, we first need to prove a theorem

called Zariski’s lemma and for that we need some definitions.

Definition 2.4. If R is a subring of S, then S is module-finite over R if there

is a finite subset X ✓ S such that every element of S can be written as an R-

linear combination of the elements of X. Additionally, S is called ring-finite

over R if S = R[v1, ..., vn] for some elements v1, ..., vn 2 S. An element s 2 S is

called integral over R if s is the root of some monic polynomial with coe�cients

in R.

We begin by noting that if S is module-finite over R, with generators v1, ..., vn
and T is module-finite over S with generators w1, ..., wm

then T is module-

finite over R with generators {v
i

w

j

}. So the property of being module-finite is

transitive.

11



Proposition 2.10. If R is a subring of a domain S and v 2 S then the following

are equivalent:

1. v is integral over R.

2. R[v] is module-finite over R.

3. There is a subring R

0 ✓ S that contains R[v] such that R

0
is module-finite

over R.

Proof.

1 ) 2: Suppose that v is integral over R. Then v

n = a

n�1v
n�1 + ... + a0 for

some a

n�1, ..., a0 2 R. Then for any positive integer m, vm is an R-linear

combination of 1, v, ..., vn�1 and therefore R[v] is module-finite over R.

2 ) 3: Set R0 = R[v].

3 ) 1: Suppose R

0 is module-finite over R and let w1, ..., wk

be generators for

R

0. Then vw

i

2 R

0 for all 1  i  k and therefore vw

i

=
P

k

j=1 aijwi

for

some {a
ij

} ✓ R. Then
P

k

j=1(�ijv�a

ij

)w
i

= 0, where �
ij

is the Kronecker

delta. This gives us a system of linear equations in the quotient field of

S to which (w1, ..., wk

) is a non-trivial solution. Thus the determinant

of the matrix correspondning to the system is 0. Since v only appears

on the main diagonal, the determinant is a monic polynomial in v with

coe�cients in R and thus v is algebraic over R.

Corollary 2.11. The set of elements of S which are integral over R form a

subring of S that contains R.

Proof. Suppose that a and b are integral over R. Then R[a] is module-finite

over R and since R ✓ R[a], b is integral over R[a]. Thus R[a, b] = R[a][b] is

module-finite over R[a] and therefore, by transitivity, R[a, b] is module-finite

over R. Then R[a, b] is a subring of S that contains R[ab] and since R[a, b] is

module-finite over R, this means that ab is integral over R. The same argument

holds for a+ b.

We are now ready to prove Zariski’s lemma, which is needed to prove Hilbert’s

nullstellensatz.

Theorem 2.12 (Zariski’s lemma). If L is a field and K ✓ L is a subfield such

that L is ring-finite over K then L is module-finite over K.

Proof. Let L = K[v1, ..., vn] be a field. We will prove the theorem by induction

on n.

12



Let n = 1, then L = K[v1]. Assume that L is not module-finite over K.

Then the elements 1, v1, v21 , ... are all linearly independent. Hence there is no

polynomial p 2 K[x] such that p(v1) = 0. Now consider the evaluation map

' : K[x] �! K[v1] that sends x to v1. This is a surjective homomorphism and

by the discussion above, ker(') = {0}. So it is an isomorphism. But K[x] is not

a field and therefore L = K[v1] is not a field, which is a contradicition. Thus L

is module-finite over K.

Now assume that the theorem holds for n� 1 generators. We have

L = K[v1, ..., vn] = K[v1][v2, ..., vn] ✓ K(v1)[v2, ..., vn] ✓ K(v1, ..., vn) = L,

since L is a field. Thus L = K(v1)[v2, ..., vn]. By induction, K(v1)[v2, ..., vn] is

module-finite over K(v1).

Suppose first that v1 is not integral over K. We will show that this leads to a

contradiction.

Since K(v1) is a field, K(v1)[v2, ..., vn] being module-finite over K(v1) is equiv-

alent to saying that K(v1)[v2, ..., vn] is a finitely generated vector space over

K(v1). Then all of 1, v
i

, v

2
i

, ... cannot be linearly independent for any 2 
i  n since then we would have infinitely many linearly independent vectors

in K(v1)[v2, ..., vn] which contradicts the fact that K(v1)[v2, ..., vn] is a finite

dimensional vector space over K(v1). So for all 2  i  n, there is a smallest n
i

such that v
i

satisfies some non-trivial equation

v

ni
i

+ a

i1v
ni�1
i

+ ...+ a

ini = 0,

where a

ij

2 K(v1). Let a be a multiple of the denominators of all the a

ij

:s.

Then

(av
i

)ni + aa

i1(avi)
ni�1 + ...+ a

ni
a

ini = 0,

which is an equation with coe�cients in K[v1] and thus av
i

is integral over K[v1]

for all 2  i  n.

Let z 2 K[v1, ..., vn] and let N = deg(z). Then a

N

z is a polynomial in

av1, ..., avn with coe�cients in K[v1]. Since all elements of K[v1] are integral

over K[v1] we get that a

N

z is a combination of integral elements over K[v1].

Since the set of integral elements over K[v1] form a ring by corollary 2.11, we

conclude that aNz is integral over K[v1].

Let z = f

g

be an element of K(v1) and therefore also an element of K[v1, ..., vn],

where g is non-constant, f and g are relatively prime and a

N and g are relatively

13



prime. Then a

N

z = a

N
f

g

where a

N

f and g are relatively prime. Since a

N

z is

integral over K[v1],
a

N
f

g

satisfies some equation

✓
a

N

f

g

◆
m

+ b1

✓
a

N

f

g

◆
m�1

+ ...+ b

m

= 0,

where b1, ..., bm 2 K[v1].

If we multiply this equation with g

m we get

(aNf)m + b1g(a
N

f)m�1 + ...+ b

m

g

m = 0,

and we see that g divides (aNf)m. But since a

N

f and g are relatively prime

and g is non-constant this is a contradiction. Thus v1 must be integral over K.

Now consider the map  : K[x] �! K(v1) that sends x to v1. Since v1 is

integral over K, ker( ) is non-trivial. Furthermore, K[x]/ ker( ) is isomorphic

to K[v1], which is an integral domain and therefore ker( ) is a prime ideal

in K[x]. Since K[x] is a principal ideal domain, ker( ) is a maximal ideal.

Therefore K[v1] ⇠= K[x]/ ker( ) is a field and thus K[v1] = K(v1).

By proposition 2.10, since v1 is integral over K, K[v1] and therefore K(v1) is

module-finite over K. By the induction hypothesis, L = K(v1)[v2, ..., vn] is

module-finite over K(v1). So by transitivity, L is module-finite over K.

Of special interest is algebraically closed fields, for which we have the following

lemma.

Lemma 2.13. An algebraically closed field K has no module-finite field exten-

sions except itself.

Proof. Suppose L is a module-finite field extension of K. Let {v1, ..., vn} be a

set of generators for L. Then for each 1  i  n there is some m

i

such that

1, v
i

, ..., v

mi
i

are linearly dependent. Thus v
i

is a root of some polynomial with

coe�cients inK. Then sinceK is algebraically closed, v
i

2 K. Thus L = K.

In order to prove Hilbert’s nullstellensatz we will follow the outline of the proof

by Rabinowitsch for which we first need to prove a weaker theorem.

Theorem 2.14 (Weak nullstellensatz). If K is algebraically closed and I is a

proper ideal in K[x1, ..., xn

] then V(I) 6= ;.

Proof. It is enough to prove the theorem for maximal ideals since by corollary

2.8, every proper ideal is contained in a maximal ideal and by proposition 2.2,

if J ✓ I then V(J) ◆ V(I).

14



So let I be a maximal ideal of K[x1, ..., xn

]. Then K[x1, ..., xn

]/I is a field which

is ring-finite over K and has K as a subfield. Then by Zariski’s lemma (theorem

2.12), K[x1, ..., xn

]/I is module-finite over K. Since K is algebraically closed,

lemma 2.13 then implies that K[x1, ..., xn

]/I = K.

Then the image of x
i

under the quotient map is a
i

for some a
i

2 K, so x
i

�a

i

2 I

for all 1  i  n. But by lemma 2.9, (x1 � a1, ..., xn

� a

n

) is a maximal

ideal. Therefore we must have I = (x1 � a1, ..., xn

� a

n

) and thus V(I) =

{(a1, ..., an)} 6= ;.

In this proof we see that the maximal ideals of K[x1, ..., xn

] correspond exactly

to points (a1, ..., an) 2 K

n.

We continue with a definition needed in order to state Hilbert’s nullstellen-

satz.

Definition 2.5. If I is an ideal in a commutative ring R then

Rad(I) = {f 2 R | fn 2 I for some positive integer n}

is called the radical of I.

We also need a lemma for the proof.

Lemma 2.15. Let I be an ideal in K[x1, ..., xn

]. Then V(I) = V(Rad(I)).

Proof. Since I ✓ Rad(I) we have the inclusion V(Rad(I)) ✓ V(I). What we

need to show is the inclusion V(Rad(I)) ✓ V(I).

Suppose x 2 V(I) and g 2 Rad(I). Then g

n 2 I for some positive integer n

and thus g(x)n = 0. Since K is a field this means that g(x) = 0 and therefore

x 2 V(Rad(I)). So V(I) ✓ V(Rad(I)).

We are now ready to prove Hilbert’s nullstellensatz.

Theorem 2.16 (Hilbert’s nullstellensatz). Let I be an ideal in K, where K is

algebraically closed. Then

I(V(I)) = Rad(I).

Proof. Let I be an ideal in K[x1, ..., xn

]. By lemma 2.15 together with property

1 of proposition 2.4 we see that Rad(I) ✓ I(V(I)). Let us now prove the other

inclusion.

Let g 2 I(V(I)). Since K[x1, ..., xn

] is Noetherian, I is generated by some fi-

nite set of polynomials f1, ..., ft 2 K[x1, ..., xn

] . Now consider the ideal J =

(f1, ..., ft, xn+1g � 1) ✓ K[x1, ..., xn+1]. Since g vanishes whenever f1, ..., ft all

15



vanish,V(J) = ;. By the weak nullstellensatz this means that J = K[x1, ..., xn+1]

and thus 1 2 J . So there are some polynomials p1, ..., pt, q 2 K[x1, ..., xn+1] such

that

1 =
tX

k=1

p

k

(x1, ..., xn+1)fk(x1, ..., xn

) + q(x1, ..., xn+1)(xn+1g � 1). (1)

Now let d be the highest power of x
n+1 in equation (1) and set y = 1

xn+1
. Let

D be an integer larger than d and multiply equation (1) by y

D. Then we get

y

D =
tX

k=1

r

k

(x1, ..., xn

, y)f
k

(x1, ..., xn

) + s(x1, ..., xn

, y)(g � y), (2)

for some r1, ..., rt, s 2 K[x1, ..., xn+1]. By setting y = g in equation (2), since g

is a polynomial in x1, ..., xn

we get

g

D =
tX

k=1

r

0
k

(x1, ..., xn

)f
k

(x1, ..., xn

), (3)

for some r

0
1, ..., r

0
t

2 K[x1, ..., xn

] and thus I(V(I)) ✓ Rad(I).

So there is a one-to-one correspondence between the algebraic sets in K

n and

the radical ideals in K[x1, ..., xn

].

Corollary 2.17. Let I be an ideal in K[x1, ..., xn

]. Then V(I) is a finite set if

and only if K[x1, ..., xn

]/I is a finite dimensional K-vector space. If this is the

case then

|V(I)|  dimK K[x1, ..., xn

]/I.

Proof. Let I be an ideal of K[x1, ..., xn

] and assume that V(I) is finite. Let

V(I) = {p1, ..., ps}, where p

i

= (a
i1, ..., ain), and let f

i

=
Q

s

j=1(xi

� a

ji

) for all

1  i  n. Then f

i

2 I(V(I)) and thus, by Hilbert’s nullstellensatz, fmi
i

2 I

for some positive integer m

i

for all 1  i  n. Let N = max({m1, ...,ms

}),
then f

N

i

2 I for all 1  i  n. This means that f

i

N

= 0 in K[x1, ..., xn

]/I

and since f

i

=
Q

s

j=1(xi

� a

ji

), this implies that x

i

sN can be written as a

linear combination of 1, x
i

, ..., x

i

sN�1 with coe�cients in K. This holds for all

1  i  n, and therefore all elements in K[x1, ..., xn

]/I can be written as a

linear combination of the set {xr1
1 · · ·xrn

n

| r
j

< sN}, with coe�cients in K. So

dimK K[x1, ..., xn

]/I is finite.

Now assume that dimK K[x1, ..., xn

]/I is finite. Let p1, ..., ps 2 V(I). We can by

proposition 2.5 choose polynomials f1, ..., fs 2 K[x1, ..., xn

] such that f
i

(p
i

) = 1

and f

i

(p
j

) = 0 for all i 6= j. Let
P

s

i=1 �ifi be a linear combination of f1, ..., fs

16



with coe�cients in K and assume that
P

s

i=1 �ifi = 0. Then
P

s

i=1 �ifi 2 I and

so �
j

=
P

s

i=1 �ifi(pj) = 0 for all 1  j  s. So the polynomials f1, ..., fs are

linearly independent in K[x1, ..., xn

]/I and therefore s  dimK K[x1, ..., xn

]/I,

which is finite.

2.3 Algebraic varieties

We say that an algebraic set is irreducible if it is not the union of two proper

algebraic subsets, otherwise it is called reducible.

Definition 2.6. An irreducible algebraic set is called an algebraic variety.

There is a one-to-one correspondence between algebraic varieties in K

n and

prime ideals in K[x1, ..., xn

], which follows by the next two theorems.

Theorem 2.18. An algebraic set V is irreducible if and only if I(V ) is a prime

ideal.

Proof. Suppose I(V ) is not prime. Then there are some f, g 2 K[x1, ...xn

] such

that fg 2 I(V ) but f /2 I(V ) and g /2 I(V ). Since fg 2 I(V ), on any point

x 2 V , at least one of f and g vanish. So V = (V \V(f)) [ (V \V(g)). But

since neither f nor g vanish on all of V the sets V \ V(f) and V \ V(g) are

proper subsets of V . So V is reducible.

Suppose V is reducible, i.e. V = V1[V2 where V1 ( V and V2 ( V are algebraic

sets. Then I(V1) ) I(V ) and I(V2) ) I(V ), for suppose for example that

I(V1) = I(V ). Then V1 = V(I(V1)) = V(I(V )) = V , which is a contradiction.

The same result holds for V2. So take any f 2 I(V1)\ I(V ) and g 2 I(V2)\ I(V ).

Then fg 2 I(V ) but f /2 I(V ) and g /2 I(V ). So I(V ) is not prime.

Proposition 2.19. Prime ideals are radical.

Proof. Let I be a prime ideal. We have the inclusion I ✓ Rad(I), which holds

for any ideal. We need to show Rad(I) ✓ I.

Suppose x 2 Rad(I), i.e. that xn 2 I for some positive integer n. We want to

show that this implies that x 2 I. We proceed by induction on n. If n = 1 there

is nothing to prove. Now assume that x

n�1 2 I ) x 2 I. Since I is a prime

ideal, if xn 2 I then either x 2 I or xn�1 2 I. But by the induction hypothesis,

if xn�1 2 I then x 2 I. So Rad(I) ✓ I and thus I = Rad(I).

This, together with Hilbert’s nullstellensatz, shows that the algebraic varieties of

K

n are in a one-to-one correspondence with the prime ideals inK[x1, ..., xn

].

17



A very useful fact in algebraic geometry is that much like any integer can be

decomposed as a unique product of prime numbers, an algebraic set can be

decomposed as a unique union of algebraic varieties.

Theorem 2.20. Let V be an algebraic set in K

n

. Then there are unique irre-

ducible algebraic sets V1, ..., Vm

such that V = V1 [ ... [ V

m

and V

i

* V

j

for all

i 6= j.

Proof. We begin by showing the existence of the decomposition.

Let S be the collection of algebraic sets which are not a finite union of irreducible

algebraic sets and assume by way of contradiction that S 6= ;. It follows by

proposition 2.7 and the inclusion reversion between ideals and algebraic sets

that any non-empty collection of algebraic sets has a minimal member. Let

therefore V be a minimal member of S. Since V 2 S it is in particular not

irreducible and therefore there are some algebraic sets V1 ( V and V2 ( V

such that V = V1 [ V2. But since V is a minimal member of S neither V1 nor

V2 belong to S. So both V1 and V2 are finite unions of algebraic varieties and

therefore also V is a finite union of algebraic varieties, which is a contradiction.

So S = ; and thus all algebraic sets can be decomposed as finite unions of

irreducible algebraic sets. We now show uniqueness of the decomposition.

Let V = V1 [ ... [ V

n

be a decomposition of V into a finite union of algebraic

varieties. We may assume, without loss of generality, that V
i

* V

j

for all i 6= j

for if V
i

✓ V

j

then V

i

[ V

j

= V

j

so it does not add anything to the union. Now

assume that also V = W1 [ ... [ W

m

for some algebraic varieties W1, ...,Wm

.

Then for any 1  i  n we have V

i

= V

i

\ V = (V
i

\ W1) [ ... [ (V
i

\ W

m

).

Since V

i

is irreducible we must have V

i

= V

i

\ W

j

for some 1  j  m. But

then V

i

✓ W

j

. By a similar argument we have W

j

✓ V

k

for some 1  k  n.

But then V

i

✓ W

j

✓ V

k

, so we must have i = k and thus V
i

= W

j

. This holds

for all 1  i  n, and thus the decomposition is unique.

So the study of algebraic sets is often reduced to the study of algebraic vari-

eties.

Since the ideal I(V ) of an algebraic variety V ✓ K

n is prime, K[x1, ..., xn

]/ I(V )

is an integral domain. This special ring is called the coordinate ring of V and

will be very useful. It is also a natural concept since two di↵erent polynomials

may define the same polynomial function on a variety. For example, the poly-

nomials f(x, y) = x and g(x, y) = x + y

2 + x

2 � 1 define the same function on

the unit circle since y

2 + x

2 � 1 = 0 there. So the coordinate ring consists of

equivalence classes of polynomials which define the same function on V . We

will often denote the coordinate ring of V by �(V ).
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Proposition 2.21. Let f and g be polynomials in K[x, y] with no common

factor. Then V(f) \V(g) = V(f, g) is a finite set of points in K

2
.

Proof. Since K[x] is a principal ideal domain, and thus a unique factorization

domain, by Gauss lemma on polynomials (for a proof, see [1, pp. 303-304]),

any element that is irreducible in K[x][y] is also irreducible in K(x)[y]. So if f

and g have no common factor in K[x][y] then they have no common factor in

K(x)[y] either. Since K(x) is a field, K(x)[y] is a PID and thus (f, g) = (h)

where h 2 K(x)[y] is the greatest common divisor of f and g. But since f and

g have no common factor, gcd(f, g) = 1. So af + bg = 1.

Let d 2 K[x] be a multiple of the denominators of a and b. Then da 2 K[x, y]

and db 2 K[x, y]. Then daf + dbg = d, which is in K[x]. If (x0, y0) 2 V(f, g)

then d(x0) = 0. But since d is a polynomial of one variable it has only finitely

many zeros and therefore there are only finitely many x-coordinates in V(f, g).

By the same argument there are only finitely many y-coordinates in V(f, g) and

therefore V(f, g) is a finite set of points.
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3 Projective space

3.1 Definition and examples

Projective space is an extension of K

n such that we also include points at

infinity. We begin with a motivating example.

Example 3.1. Consider the lines L1 defined by y = x and L2 defined by

y = ↵x+ 1.

Figure 5: ↵ = 1
2 Figure 6: ↵ = 3

4

If ↵ = 1
2 then the lines intersect at (2, 2), as seen in Figure 5. If ↵ = 3

4 then

they intersect at (4, 4), as seen in Figure 6. More generally, if we let ↵ approach

1 then the intersection point between the lines moves farther and farther away

in the direction of the vector (1, 1)T . So we would like to say that when ↵ = 1,

i.e. when L1 and L2 are parallel, then L1 and L2 intersect ”at infinity”. This

can be achieved in a mathematically sound way by using projective space.

Let K be a field. The set of lines in K

n+1 passing through the origin is called

projective n-space over K and is denoted byP

n(K). Since any point di↵erent

from (0, ..., 0) in K

n+1 defines a unique line passing through the oirgin and two

points lie on the same line if one is a multiple of the other this means that

P

n(K) consists of equivalence classes of points in K

n+1 \(0, ..., 0) under the

equivalence relation (a1, ..., an+1) ⇠ (b1, ..., bn+1) if and only if there is some

� 6= 0 in K such that (a1, ..., an+1) = (�b1, ...,�bn+1). If (a1, ..., an+1) is a

representative of an equivalence class in P

n(K) we will denote the class by

[a1, ..., an+1], using square brackets in order to distinguish it from a point in

K

n+1. Observe that if a
n+1 6= 0 then [a1, ..., an, an+1] = [ a1

an+1
, ...,

an
an+1

, 1]. So

any point in P

n(K) with non-zero x

n+1-coordinate has a unique representative

on the form (a1, ..., an, 1). Thus any point [a1, ..., an+1] 2 P

n(K) with a

n+1 6= 0
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can be uniquely identified with a point in K

n by dividing all coordinates by

a

n+1, i.e. {[a1, ..., an+1] 2 P

n(K) | a
n+1 6= 0} = K

n. So K

n is a subset of

P

n(K).

Now consider the points in P

n(K) with x

n+1-coordinate equal to zero. These

points make up a copy of P

n�1(K), i.e. {[a1, ..., an+1] 2 P

n(K) | a

n+1 =

0} = P

n�1(K). So P

n(K) = K

n [P

n�1(K), where we may sometimes call the

elements in P

n�1(K) the ”points at infinity”.

Example 3.2. Consider for example P2(K). By the above discussion, P2(K) =

K

2 [P

1(K), where P

1(K) consists of the lines in K

2 passing through the ori-

gin. These lines determine directions in K

2. So P

2(K) may be seen as K

2

together with points ”at infinity” corresponding to every direction in K

2. The

set P1(K) ✓ P

2(K) is sometimes called the line at infinity.

3.2 Projective algebraic sets

Notice that the value of a polynomial f 2 K[x1, ..., xn+1] is not in general

well defined on the points in P

n(K) but will depend on the representative.

However, if all terms in f are of the same degree d then f(�a1, ...,�an+1) =

�

d

f(a1, ..., an+1) for all � 6= 0 in K. Such a polynomial is called a homoge-

neous polynomial. Therefore if f is homogeneous and f(a1, ..., an+1) = 0 then

f(�a1, ..., an+1) = 0 for all non-zero � 2 K. It is therefore a well-defined notion

to talk about the zero-set of a homogeneous polynomial in P

n(K).

If S is a collection of homogeneous polynomials in K[x1, ..., xn+1] then we let

V(S) be the zero-set of S in P

n(K). In analogy to our definitions in K

n, any set

X ✓ P

n(K) which is the zero-set of some collection of homogeneous polynomials

is called a projective algebraic set and if X is irreducible then it is called

a projective variety. We also define I(X) to be the set of polynomials in

K[x1, ..., xn+1] which vanish on X and call it the ideal of X.

We will often need to go back and forth between K

n and P

n(K). In order to

do this we need to be able to homogenize polynomials in K[x1, ..., xn

] such that

the zero-sets of the corresponding homogeneous polynomials are well-defined

and contain the zero-sets of the original polynomials in K

n.

Definition 3.1. A polynomial f 2 K[x1, ..., xn

] is called a form of degree d if

all terms of f are of degree d.

Let f = f0+ ...+f

d

be a polynomial in K[x1, ..., xn

] where f
i

is a form of degree

i. Then we define

f

⇤ := x

d

n+1f0 + x

d�1
n+1f1 + ...+ f

d

.
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So f

⇤ is a homogeneous polynomial in K[x1, ..., xn+1] with the property that

f

⇤(a1, ..., an, 1) = f(a1, ..., an). So if f(a1, ..., an) = 0 then f

⇤(a1, ..., an, 1) = 0,

i.e. V(f) ✓ V(f⇤). On the other hand, let f 2 K[x1, ..., xn+1] be a homoge-

neous polynomial. Then we define

f⇤ = f(x1, ..., xn

, 1).

So f⇤ is a polynomial inK[x1, ..., xn

] that is not necessarily homogeneous.

Note that for any f 2 K[x1, ..., xn

] we have (f⇤)⇤ = f and for any f 2
K[x1, ..., xn+1] we have (f⇤)⇤ = x

r

n+1f where x

r

n+1 is the highest power of x
n+1

that divides f .

Example 3.3. Consider again the lines L1 and L2 of Example 3.1 which are

defined by the polynomials f(x, y) = y � x and g(x, y) = y � ↵x� 1 in K[x, y].

We get f

⇤(x, y, z) = f(x, y) since f was already homogeneous. But g is not a

homogeneous polynomial so we get g⇤(x, y, z) = y�↵x� z. We now see that if

↵ = 1 then [1, 1, 0] 2 P

2(K) is an intersection point of f⇤ and g

⇤. This is the

”point at infinity” in the direction of the vector (1, 1)T in the plane.

For two arbitrary parallel lines defined by f(x, y) = ay + bx+ c1 and g(x, y) =

ay + bx + c2 with c1 6= c2 we get f

⇤(x, y, z) = ay + bx + c1z and g

⇤(x, y, z) =

ay+bx+c2z. If we now set z = 0 the constant di↵erence between the polynomials

vanishes and what is left is two identical polynomials. Thus [�a, b, 0] 2 P

2(K)

is an intersection point of the polynomials. So we have indeed extended K

2

such that two parallel lines intersect at infinity and thus such that any two lines

intersect once.

Example 3.4. Consider the curves defined by the polynomials f(x, y) = y�x

2

and g(x, y) = x, i.e. the parabola and the y-axis. These curves intersect at

(0, 0) in K

2. If we homogenize the equations we get f

⇤(x, y, z) = yz � x

2 and

g(x, y, z) = x. Then the curves also intersect when x = z = 0, i.e. on the point

[0, 1, 0] 2 P

2. This can in K

2 be seen as the point at infinity in the direction

of the y-axis. The result then is reasonable since the slope of the parabola

increases so that it comes closer and closer to being parallel to the y-axis and

parallel lines intersect at infinity in their common direction.

3.3 Homogeneous ideals

We now continue with ideals corresponding to projective algebraic sets. An ideal

I ✓ K[x1, ..., xn+1] is called a homogeneous ideal if whenever f = f0+ ...+f

d

is in I, where f

i

is a form of degree i, then f

i

2 I for all 1  i  d.
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Proposition 3.1. I(X) is a homogeneous ideal for any set X ✓ P

n(K), where

K is infinite.

Proof. Suppose f = f0 + ... + f

d

2 I(X). Let (a1, ..., an+1) be a representative

of a point in X. Then

f(�a1, ...,�an+1) = f0(a1, ..., an+1)+�f1(a1, ..., an+1)+...+�df
d

(a1, ..., an+1)) = 0

for all � 2 K \{0}. So f(�a1, ...,�an+1) is a polynomial in � which is 0 for

all non-zero values of � and therefore it must be the zero polynomial, i.e.

f0(a1, ..., an+1) = ... = f

d

(a1, ..., an+1) = 0.

Similarly to the situation in K

n, V is a projective variety if and only if I(V ) is

a homogeneous prime ideal in K[x1, ..., xn+1].

Now let I be a homogeneous ideal in K[x1, ..., xn+1]. For an element f 2
K[x1, ..., xn+1]/I we say that f is a form of degree d if there is some f 2
K[x1, ..., xn+1] which is a form of degree d such that the residue of f is f .

Proposition 3.2. Let I be a homogeneous ideal in K[x1, ..., xn+1]. Any element

f 2 K[x1, ..., xn+1]/I can be written uniquely as a sum f = f0 + ...+ f

d

where

f

i

is a form degree i.

Proof. Let f 2 K[x1, ...xn+1] be such that the residue of f in K[x1, ..., xn+1]/I

is f . If f = f0 + ... + f

d

where f

i

is a form of degree i then f = f0 + ... + f

d

where f

i

is a form of degree i.

Now suppose that f = g0+ ...+g

s

where g
j

is a form of degree j. If g0, ..., gs are

polynomials whose residues are g0, ..., gs respectively then f0+ ...+f

d

�g0� ...�
g

s

2 I. Since I is homogeneous, each term f

i

� g

i

is in I and thus f
i

= g

i

.

3.4 Projective change of coordinates

Just as for K

n we will sometimes need to make a change of coordinates on

P

n(K). Observe that if T : Kn+1 �! K

n+1 is an invertible linear transfor-

mation then it takes lines through the origin to lines through the origin. So it

takes points in P

n(K) to points in P

n(K) and we say that T is a projective

change of coordinates.

Proposition 3.3. Let K be an infinite field. For any finite set of points

p1, ..., pn 2 P

2(K) there is a line L which does not pass through any of the

points.

23



Proof. Let S = {p1, ..., pn} be a finite set of points in P

2(K). Since K is

infinite, P2(K) is infinite and therefore P

2(K) � S 6= ;. So choose some point

p 2 P

2(K) � S. Then p and p

i

are lines in K

3 passing through the origin for

any 1  i  n. Since the lines intersect (at the origin), they define a unique

plane in K

3 passing through the origin. The planes in K

3 passing through the

origin define distinct lines in P

2(K). So there is a unique line, let us denote it

L

i

, in P

2(K) passing through both p and p

i

.

The lines in P

2(K) passing through the point p correspond uniquely to the

planes in K

3 containing the line p, of which there are infinitely many. Let M

be the set of lines in P

2(K) passing through p. Then M � {L1, ..., Ln

} 6= ;. So
there is some line L that passes through p but not any of p1, ..., pn.

Proposition 3.4. For any line L in P

2(K) there is a projective change of

coordinates such that L is mapped to the line at infinity.

Proof. If L is the line at infinity, the projective change of coordinates is simply

the identity map and we are done. Suppose L is not the line at infinity. Then L

is defined by the equation ax+ by + cz = 0 for some a, b, c 2 K, where at least

one of a and b are non-zero.

If b 6= 0, let T be the change of coordinates given by

8
>><

>>:

x

0 = z

y

0 = x

z

0 = ax+ by + cz.

The determinant of the corresponding matrix is b which is non-zero, so T is

invertible and therefore a projective change of coordinates.

If b = 0, let T be the change of coordinates given by

8
>><

>>:

x

0 = z

y

0 = y

z

0 = ax+ by + cz.

The determinant of the corresponding matrix is �a which is non-zero, so T is

invertible and therefore a projective change of coordinates.

For any of the two changes of coordinates we get

L = {[x, y, z] 2 P

2(K) | ax+ by + cz = 0} = {[x0
, y

0
, z

0] 2 P

2(K) | z0 = 0},

which is the line at infinity.
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4 Intersection number

4.1 Properties of ideals

The intersection number is a generalization of counting the multiplicity of a root

of a polynomial of one variable, which can be seen as counting the intersection

multiplicity between the polynomial and the curve y = 0. But instead we are

counting the multiplicity of the intersection of two arbitrary polynomials of

arbitrary dimension at a given point. First we begin with some properties of

ideals.

Proposition 4.1. Let I and J be ideals in a ring R such that I ✓ J . Then

' : R/I �! R/J

a 7�! a,

where the residue is calculated in each respective ring, is a well-defined surjective

ring homomorphism.

Proof. Suppose a = b in R/I. Then a� b 2 I ✓ J , and thus a = b in R/J . So

' is well-defined.

Furthermore,

'(1) = 1,

'(a+ b) = '(a+ b) = a+ b = a+ b = '(a) + '(b) and

'(ab) = '(ab) = ab = ab = '(a)'(b).

So ' is a homomorphism that is clearly surjective.

Definition 4.1. Let I and J be ideals of some ring R. If I +J = R then I and

J are called comaximal.

Proposition 4.2. If I and J are comaximal ideals of a commutative ring then

IJ = I \ J .

Proof. Clearly IJ ✓ I and IJ ✓ J , so IJ ✓ I \ J .

Since I and J are comaximal there are some elements a 2 I and b 2 J such

that 1 = a + b. Let c 2 I \ J , then c = ac + bc 2 IJ . So I \ J ✓ IJ and thus

IJ = I \ J .
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Proposition 4.3. Let I, J, I1, ..., IN be ideals in a commutative ring R. The

following properties hold:

1. (I1 · ... · IN )n = I

n

1 · ... · In
N

.

2. If I and J are comaximal then so are I

m

and J

n

for all positive integers

m and n.

3. If I

i

and

T
i 6=j

I

j

are comaximal for all 1  i  N , then

I

n

1 \ ... \ I

n

N

= (I1 · ... · IN )n = (I1 \ ... \ I

N

)n.

Proof.

1. This follows directly from the fact that R is commutative.

2. It is enough to show that I and J

n are comaximal for any positive integer

n. The result then follows by interchanging I and J .

If I and J are comaximal then there are some elements a 2 I and b 2 J

such that a+ b = 1. But then

1 = (a+ b)n = a

nX

k=1

✓✓
n

k

◆
a

k�1
b

n�k

◆
+ b

n 2 I + J

n

.

Therefore I + J

n = R and thus I and J

n are comaximal.

3. If I
i

and
T

i 6=j

I

j

are comaximal for all 1  i  N then I

i

is comaximal

with any intersection of ideals in {I1, ..., IN}\I
i

, for all 1  i  N . So by

proposition 4.2:

(I1\...\IN )n = (I1·(I2\...\IN ))n = (I1I2·(I3\...\IN ))n = ... = (I1·...·IN )n.

By 1 and 2 together with the fact that I

i

and I

j

are comaximal for all

i 6= j and again using proposition 4.2 we then get

(I1 · ... · IN )n = I

n

1 · ... · In
N

= I

n

1 \ ... \ I

n

N

.

Proposition 4.4. Let I be an ideal in a ring R such that Rad(I) is finitely

generated. Then (Rad(I))n ✓ I for some positive integer n.

26



Proof. Let Rad(I) be generated by {a1, ..., ar}. Then (Rad(I))n is generated

by {ai11 · ... · air
r

| Pr

k=1 ik = n}.
For all 1  i  r we have a

mi
i

2 I for some positive integer m

i

. Let m =

max({m1, ...,mN

}). Then a

m

i

2 I for all 1  i  r. Now let n = r(m� 1) + 1.

Then for any element of the form a

i1
1 · ... ·air

r

where
P

r

k=1 ik = n there is at least

one exponent i
k

such that i
k

� m. Therefore a

ik
k

2 I and thus ai11 · ... · air
r

2 I.

Then since all the generators of (Rad(I))n belong to I, we have (Rad(I))n ✓
I.

Proposition 4.5. Let I and J be ideals in K[x1, ..., xn

], where K is algebraically

closed. Then I and J are comaximal if and only if V(I) \V(J) = ;.

Proof. Firstly, note that V(I) \V(J) = V(I + J). Then by the weak nullstel-

lensatz, V(I + J) = ; if and only if I + J = K[x1, ..., xn

], i.e. if and only if I

and J are comaximal.

4.2 The local ring

Let V be an a�ne variety and let �(V ) be the coordinate ring of V . Since �(V )

is a domain, we may form its quotient field. Let the quotient field of �(V ) be

denoted by K(V ). This ring consists of rational polynomial functions on V .

In analogy to the rational functions on R we say that an element f

g

2 K(V ) is

undefined at a point p 2 K

n if g(p) = 0 and defined at p if g(p) 6= 0. This allows

us to form another ring, called the local ring of V at p, which consists of the

set of rational functions in K(V ) which are defined at p and it is denoted by

O
p

(V ). This ring will be used when defining the intersection number between

two algebraic varieties.

Theorem 4.6. Let I be an ideal in K[x1, ..., xn

] such that V(I) = {p1, ..., pN}
is finite. Then

K[x1, ..., xn

]/I ⇠=
NY

i=1

O
pi(K

n)/I O
pi(K

n).

Proof. Let R = K[x1, ..., xn

]/I and R

i

= O
pi(K

n)/I O
pi(K

n). Let I
i

= I({p
i

})
for all 1  i  N . Since the maximal ideals of K[x1, ..., xn

] correspond to points

in K

n this means that {I1, ..., IN} are the distinct maximal ideals which contain

I.

For each i, there is a homomorphism '

i

: R �! R

i

. This follows from the fact

that we have the following sequence of homomorphisms:

K[x1, ..., xn

]
 i
,�! O

pi(K
n)

⇡i�! O
pi(K

n)/I O
pi(K

n),
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where  

i

is the inclusion homomorphism and ⇡

i

is the quotient homomor-

phism. The kernel of ⇡
i

�  
i

is exactly I, so there is a homomorphism '

i

:

K[x1, ..., xn

]/I �! O
pi(K

n)/I O
pi(K

n). This is the homomorphism that sends

an equivalence class f in R to the corresponding equivalence class f in R

i

.

The homomorphisms '
i

define a homomorphism ' : R !
Q

N

i=1 Ri

by setting

'(f) = ('1(f), ...,'N

(f)). We will show that ' is an isomorphism.

First, we note that Rad(I) = I({p1, ..., pN}) =
T

N

i=1 Ii by Hilbert’s nullstel-

lensatz (theorem 2.16). By proposition 4.4 we have (
T

N

i=1 Ii)
d ✓ I for some

positive integer d. Then, by proposition 4.5, I
i

and
T

i 6=j

I

j

are comaximal, and

therefore, by proposition 4.3,
T

N

i=1 I
d

i

= (
T

N

i=1 Ii)
d ✓ I.

Now, by proposition 2.5, let f1, ..., fN 2 K[x1, ..., xn

] be polynomials such that

f

i

(p
i

) = 1 and f

i

(p
j

) = 0 for all i 6= j and set e
i

= 1�(1�f

d

i

)d. If we expand the

parentheses in e

i

then we see that the resulting sum has no constant term and

every term contains some power of fd

i

. So e

i

= f

d

i

q

i

for some q

i

2 K[x1, ..., xn

]

and thus, since f

i

2 I

j

for all i 6= j, we have e

i

2 I

d

j

for all i 6= j. Furthermore,

1�
NX

i=1

e

i

= (1� e

j

)�
X

i 6=j

e

i

,

where (1� e

j

) 2 I

d

j

and
P

i 6=j

e

i

2 I

d

j

. So 1�PN

i=1 ei 2
T

N

i=1 I
d

i

✓ I.

Now let e

i

be the residue of e
i

in R. Then
P

N

i=1 ei = 1 and e

i

(1 � e

i

) 2 I, so

e

2
i

= e

i

. Furthermore, e
i

e

j

2 I and thus e
i

e

j

= 0 for all i 6= j.

Let g

i

2 K[x1, ..., xn

] be a polynomial such that g

i

(p
i

) 6= 0. Without loss of

generality we may assume that g
i

(p
i

) = 1. Set h
i

= 1� g

i

, then

g

i

(e
i

+ h

i

e

i

+ ...+ h

d�1
i

e

i

) = (1� h

i

)(e
i

+ h

i

e

i

+ ...+ h

d�1
i

e

i

) = e

i

� h

d

i

e

i

.

Since h

i

(p
i

) = 0 we have h

i

2 I

i

and thus h

d

i

2 I

d

i

. This together with the

fact that e

i

2 I

d

j

for all j 6= i means that h

d

i

e

i

2 TN

i=1 Ii ✓ I. Thus, if we set

t

i

= e

i

+ h

i

e

i

+ ...+ h

d�1
i

e

i

, then g

i

t

i

= e

i

.

Now let f 2 R be such that '(f) = 0. Then '

i

(f) = 0 for all 1  i  N .

So f 2 I O
pi(K

n) which implies that there is some g

i

2 K[x1, ..., xn

] such that

g

i

(p
i

) 6= 0 and g

i

f 2 I. Let t
i

be defined as above, then

f =
NX

i=1

e

i

f =
NX

i=1

t

i

g

i

f = 0,

so ' is injective.
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Let r = (a1

b1
, ...,

aN

bN
) 2 QN

i=1 Ri

. Since e

i

(p
i

) = 1, we have 1
ei

2 O
pi(K

n). Thus

'

i

(e
i

) ·
⇣

1
ei

⌘
= e

i

·
⇣

1
ei

⌘
= 1, so '

i

(e
i

) is a unit in R

i

. Therefore

'

i

(e
i

)'
i

(e
j

) = '

i

(e
i

e

j

) = '

i

(0) = 0

implies that '
i

(e
j

) = 0 for all j 6= i. This then gives

'

i

(e
i

) = '

i

 
NX

i=1

e

i

!
= '

i

(1) = 1.

For all 1  i  N we have b

i

(p
i

) 6= 0, and thus, with t

i

defined similarly as

above, we have t

i

b

i

= e

i

. Then

a

i

b

i

=
a

i

t

i

e

i

=
a

i

t

i

e

i

e

i

2 =
a

i

t

i

e

i

e

i

= a

i

t

i

,

and thus '
i

⇣P
N

j=1 ajtjej

⌘
= '

i

(a
i

t

i

) = a

i

t

i

= ai

bi
. So '

⇣P
N

i=1 aitiei

⌘
= r and

therefore ' is surjective.

One immediate corollary is as follows.

Corollary 4.7. If I is an ideal of K[x1, ..., xn

] with finite zero-set V(I) =

{p1, ..., pN}, then

dimK(K[x1, ..., xn

]/I) =
NX

i=1

dimK(O
pi(K

n)/I O
pi(K

n)).

4.3 Intersection number

We are now ready to define the intersection number in K

2. We begin with some

examples and properties that the intersection number should have.

When two curves intersect at a point at which their tangents are di↵erent, i.e.

they ”cross” each other, it is natural to say that the intersection number between

the curves is 1 there.

Example 4.1. For example, we would like to say that the intersection number

of the curves y = x and y = �x at (0, 0) is 1.

Example 4.2. For the curve in Figure 3, it is natural to expect that the in-

tersection number at (0, 0) with the x-axis be 2, since the curve ”crosses” the

x-axis twice there.
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Furthermore, since

8
<

:
f(x, y) = 0

g(x, y) = 0
and

8
<

:
f(x, y) = 0

g(x, y) + f(x, y)h(x, y) = 0

are equivalent systems of equations for all h 2 K[x, y], it is natural to expect

that the intersection number between f and g at a given point should be the

same as the intersection number between f and g + fh at that point, for any

h.

More specifically, if we denote the intersection number between f and g at a

point p by I

p

(f, g), it is natural that the intersection number should have the

following properties:

1. If f and g do not have a common factor that passes through p then I

p

(f, g)

is a non-negative integer and I

p

(f, g) = 1 otherwise.

2. I

p

(f, g) = 0 if and only if p /2 V(f) \V(g) and I

p

(f, g) depends only on

the factors of f and g which pass through p.

3. I

p

(f, g) = I

p

(g, f).

4. For any a�ne change of coordinates T , if T (q) = p then I

q

(fT

, g

T ) =

I

p

(f, g).

5. I(0,0)(x, y) = 1.

6. I

p

(f, gh) = I

p

(f, g) + I

p

(f, h).

7. I

p

(f, g) = I

p

(f, g + fh) for any h 2 K[x, y].

There is only one number which satisfies the above properties, and it is given

by

I

p

(f, g) = dimK(O
p

(K2)/(f, g)).

Theorem 4.8. The intersection number defined above is the only number that

satisfies properties 1-7.

Proof.

1. If f and g do not have a common factor then by proposition 2.21, V(f, g)

is finite and therefore by corollary 4.7 and corollary 2.17,

dimK(K[x1, ..., xn

]/(f, g)) =
X

p2V(f,g)

dimK(O
pi(K

2)/I O
pi(K

2)) =
X

p2V(f,g)

I

p

(f, g)

is finite, and thus all of I
p

(f, g) are finite.
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If f and g have a common factor h then (f, g) ✓ (h). Then, by proposition

4.1, we have a surjective homomorphism

' : O
p

(K2)/(f, g) �! O
p

(K2)/(h).

Thus dimK(O
p

(K2)/(f, g)) � dimK(O
p

(K2)/(h)).

Let V = V(h) and consider the homomorphism  : O
p

(K2) �! O
p

(V )

defined by  ( f
g

) = f

g

. This is a surjective homomorphism with kernel

ker( ) = (h). Thus O
p

(K2)/(h) ⇠= O
p

(V ), so dimK(O
p

(K2)/(h)) =

dimK(O
p

(V )). But �(V ) ✓ O
p

(V ), so dimK(�(V ))  dimK(O
p

(V )) and

by proposition 2.17, dimK(�(V )) = 1 since V(h) is infinite. Therefore

dimK(O
p

(K2)/(f, g)) = 1.

2. If f(p) 6= 0 then 1
f

2 O
p

(K2), so f is a unit and thus (f, g) = O
p

(K2).

Then dimK(O
p

(K2)/(f, g)) = dimK(1) = 0. The same argument holds

for g.

On the other hand, if f(p) = g(p) = 0 then for any h 2 (f, g), also

h(p) = 0. So all elements in (f, g) are non-units and thus (f, g) ( O
p

(K2)

and therefore dimK(O
p

(K2)/(f, g)) > 0.

Suppose, without loss of generality, that f = f1 · f2 where f1(p) 6= 0 and

f2(p) = 0. Then 1
f1

2 O
p

(K2), so f1 is a unit. Hence (f2, g) = (f1f2, g) =

(f, g).

3. This follows from the fact that (f, g) = (g, f).

4. Let T be an a�ne change of coordinates such that T (p) = q. Then we get

a homomorphism

e
T : O

q

(Kn) �! O
p

(Kn)

by setting e
T

⇣
f

g

⌘
= f(T1,...,Tn)

g(T1,...,Tn)
. Suppose g(q) 6= 0, then e

T (g)(p) =

g(T (p)) = g(q) 6= 0. So the image of eT lies in O
p

(Kn).

Now suppose that eT
⇣

f

g

⌘
= 0, then f

g

� T = 0. Since T is invertible, this

implies that f

g

= 0. So eT is injective.

Furthermore, suppose that f

g

2 O
p

(Kn). Then, again since T is invertible,

there is some f

0

g

0 2 O
q

(Kn) such that f

0

g

0 � T = f

g

. i.e. eT
⇣

f

0

g

0

⌘
= f

g

. So eT
is surjective and is thus an isomorphism. Therefore

dimK(O
q

(K2)/(fT

, g

T )) = dimK(O
p

(K2)/(f, g)).

31



5. It is clear that O
p

(K2)/(x, y) ⇠= K, so dimK(O
p

(K2)/(x, y) = 1.

6. The property clearly holds if f and gh have common factors. So we may

assume that f and gh do not have any common factors. Then define the

following K-linear map:

 : O
p

(K2)/(f, h) �! O
p

(K2)/(f, gh)

z 7�! gz.

Now suppose that  (z) = 0. Then gz = uf +vgh for some u, v 2 O
p

(K2).

Let s 2 K[x, y] be a multiple of the denominators of u, v and z such

that s(p) 6= 0. Then g(sz � svh) = suf in K[x, y]. Since f and g have

no common factors, f must divide sz � svh. So sz � svh = df for some

d 2 K[x, y]. Thus sz = df + svh and hence z = d

s

f + vh. So z = 0 and

therefore  is injective.

Since (f, gh) ✓ (f, g), by proposition 4.1 there is a surjective homomor-

phism ' from O
p

(K2)/(f, gh) to O
p

(K2)/(f, g). So we have the following

sequence of homomorphisms:

O
p

(K2)/(f, h)
 �! O

p

(K2)/(f, gh)
'�! O

p

(K2)/(f, g).

For any gz 2 im( ), we have gz 2 (f, g) and hence gz 2 ker('). So

im( ) ✓ ker(').

Furthermore, for any a 2 ker(') we have a = bf + cg for some b, c 2
O

p

(K2) and hence a = cg 2 im( ). So ker(') ✓ im( ) and thus im( ) =

ker(') and the sequence is exact. Then, by the rank-nullity theorem,

dimK(O
p

(K2)/(f, gh)) = dimK(O
p

(K2)/(f, g)) + dimK(O
p

(K2)/(f, h)).

7. This follows from the fact that (f, g) = (f, g + fh) for any h 2 K[x, y].

In order to show that the intersection number is unique it is enough to show

that it can be calculated using only properties 1-7.

We may assume that p = (0, 0), by property 4. So in particular both f and g

have constant term 0. Furthermore, we may assume that f and g do not have

a common factor that passes through p, since otherwise property 1 gives the

intersection number. We will use induction on the value n of the intersection

number. The situation when n = 0 falls under property 2 and thus can be cal-

culated using only properties 1-7. So assume by induction that the intersection

number can be computed for all non-negative integers smaller than n. Consider
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f(x, 0) and g(x, 0) in K[x] and let r = deg(f(x, 0)) and s = deg(g(x, 0)). By

property 4 we may assume, without loss of generality, that r  s.

If r = 0 then y divides f and thus f = yh for some h 2 K[x, y]. Then I

p

(f, g) =

I

p

(y, g) + I

p

(h, g). Since y divides g(x, y) � g(x, 0), by property 7 we have

I

p

(y, g) = I

p

(y, g(x, 0)). Let xm be the largest power of x which divides g(x, 0).

Then
⇣

g(x,0)
x

m

⌘
(0, 0) 6= 0, and hence by property 6 and 2 we have I

p

(y, g(x, 0)) =

I

p

(y, xm) = m. Since g has no constant term, m > 0 and thus, I
p

(h, g) < n and

can therefore be computed, by our induction hypothesis.

Suppose r > 0. By property 6 and 2, we may multiply f and g by constants so

that they are monic. Let h = g� x

s�r

f , then by property 7, I
p

(f, g) = I

p

(f, h)

where deg(h(x, 0)) < s. This process can be repeated finitely many times,

possibly interchanging f and h, until we get a pair of polynomials a and b such

that one of deg(a(x, 0)) and deg(b(x, 0)) is 0, and I

p

(f, g) = I

p

(a, b). Then the

result follows by the above discussion.

We will need to use intersection numbers in P

2, so we need to generalize some

earlier notions in order to do this.

If f defines a curve in P

2, i.e. f is a homogeneous polynomial of some degree d,

then f(x,y,z)
z

d = f⇤(
x

z

,

y

z

). So on the subset K2 of P2, i.e. on the set of elements

of P2 with representative with z-coordinate equal to 1, the equation becomes

f(x, y, 1) = f⇤(x, y), which is exactly our previous definition of f⇤. So we may

therefore extend f⇤ in the following way: If p1, ..., pr is a finite set of points in

P

2 then by proposition 3.3 we may find a line L which does not pass through

any of the points. Then, if d is the degree of f we define f⇤ = f

L

d . By the

previous discussion this coincides with our earlier definition when L is the line

at infinity, i.e. when L = z.

If L0 is another line that does not pass through any of p1, ..., pr then f

(L0)d =

( L

L

0 )df⇤, where (
L

L

0 )d is a unit in every O
pi(P

2). Therefore, any ideal in O
pi(P

2)

where f⇤ is one of the generators does not depend on the choice of L for any

1  i  r. So for any two projective curves f and g and point p 2 P

2 we may

define I

p

(f, g) = dimK(O
p

(P2)/(f⇤, g⇤)), which is then independent on how

f⇤ and g⇤ are formed. Furthermore, it satisfies properties 1-7 of intersection

numbers but with the change that T in property 4 should be a projective change

of coordinates.
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5 Bezout’s theorem

5.1 Projective plane curves

Before we prove Bezout’s theorem we must show some properties of projective

plane curves, which are zero-sets in P

2(K) of one polynomial inK[x, y, z].

Proposition 5.1. Let f and g be homogeneous polynomials in K[x, y, z] which

have no common factor. Then V(f) \V(g) ✓ P

2(K) is finite.

Proof. We begin by observing that f⇤ and g⇤ have no common factor. Indeed,

suppose h 2 K[x, y] is a common factor of f⇤ and g⇤. Then f⇤ = ha and g⇤ = hb

for some a, b 2 K[x, y]. Now let zs and z

r be the highest powers of z dividing f

and g respectively. Then f = z

s(f⇤)⇤ = z

s

h

⇤
a

⇤ and g = z

r(g⇤)⇤ = z

r

h

⇤
b

⇤. But

then h

⇤ is a common factor of f and g, which is a contradiction.

Since f⇤ and g⇤ are two polynomials in K[x, y] with no common factors, by

proposition 2.21 they have a finite number of intersection points inK

2 ✓ P

2(K).

We now consider intersection points at infinity. Since f and g have no common

factors at least one of them is not a multiple of z. We may, without loss of

generality, assume that f is not a multiple of z. Then f0(x, y) := f(x, y, 0) is a

non-zero polynomial in K[x, y].

For any choice of y, (1, y, 0) is a representative of a distinct point in P

2(K). If

f0(1, y) is constant then f0 is a polynomial in only x and therefore has finitely

many zeros. If f0(1, y) is a proper polynomial in y, then it has finitely many

zeros. So f0 has only finitely many zeros of the form [1, y, 0].

In both cases f0 may additionally have a zero at [0, 1, 0] 2 P

2(K). But in total

f0 will only have a finite number of zeros. This means that f has only a finite

number of zeros at infinity and therefore f and g only have a finite number

of intersection points at infinity. Thus f and g have only a finite number of

intersection points in all of P2(K).

Let f, g 2 K[x, y, z] and let � := K[x, y, z]/(f, g) and let �
d

be the K-vector

space of all forms of degree d in �.

Lemma 5.2. If f and g are non-zero polynomials in K[x, y, z] which have no

common factor then

dimK �
d

= deg(f) · deg(g)

for all d � deg(f) + deg(g).
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Proof. Let R := K[x, y, z] and let ⇡ : R �! � be the quotient map. Define

' : R⇥R �! R by '(a, b) = af + bg. Then it is clear that im(') = ker(⇡).

Let  : R �! R ⇥ R be defined by  (c) = (cg,�cf). Then clearly im( ) ✓
ker('). Now suppose (a, b) 2 ker('), i.e. af + bg = 0. Then af = �bg and

since f and g do not have any common factor we must have f | b and g | a. So

a = c1g and b = c2f for some c1, c2 2 K. We then have

c1gf = �c2fg , c1 = �c2.

So if we let c = c1 then a = cg and b = �cf and thus ker(') ✓ im( ), so

im( ) = ker(').

Furthermore, suppose c 2 ker( ). Then cg = 0 = �cf . So if none of f and g

are 0 then c = 0. So  is injective. Thus

0 �! R

 �! R⇥R

'�! R

⇡�! � �! 0

is an exact sequence.

Let deg(f) = m and deg(g) = n and let the K-vector space of forms in R of

degree d be denoted by R

d

. Then, if d � m+n we may restrict the above maps

to get the following sequence:

0 �! R

d�m�n

 �! R

d�m

⇥R

d�n

'�! R

d

⇡�! �
d

�! 0.

This sequence is still exact. Thus, by the rank-nullity theorem, we get

dimK(�
d

) = dimK(R
d

)� dimK(R
d�m

⇥R

d�n

) + dimK(R
d�m�n

).

Observe that there are (d+1)(d+2)
2 monomials of degree d in R. So dimK(R

d

) =
(d+1)(d+2)

2 . We then get, after some calculations, that dimK(�
d

) = mn.

5.2 Bezout’s theorem

We are now finally ready to state and prove Bezout’s theorem.

Theorem 5.3 (Bezout’s theorem). Let K be an algebraically closed field and

let f and g be non-zero polynomials in K[x, y, z] which have no common factor.

Then X

p2P2

I

p

(f, g) = deg(f) · deg(g).
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Proof. Since, by proposition 5.1, the number of intersection points of f and g

in P

2(K) is finite, we may, by propositions 3.3 and 3.4 find a projective, and

thus linear, change of coordinates such that none of the intersection points lie

on the line at infinity. Since the intersection number is unchanged under a

linear, and thus a�ne change of coordinates we may assume, without loss of

generality, that none of the intersection points of f and g lie on the line at

infinity. By lemma 5.2 it is enough to show that
P

p2P2 I
p

(f, g) = dimK �
d

for

some d � deg(f) + deg(g).

Let �⇤ := K[x, y]/(f⇤, g⇤). Since the intersection points of f and g all lie in K

2

we get

X

p2P2

I

p

(f, g) =
X

p2K2

I

p

(f⇤, g⇤) = dimK(�⇤),

where the last equality follows from corollary 4.7. We will now show that

dimK(�⇤) = dimK(�
d

) for some d � deg(f) + deg(g), from which then the

theorem follows.

Consider the map ↵ : � �! � defined by ↵(h) = zh. Suppose that h 2 ker(↵).

Then zh = af + bg for some a, b 2 K[x, y, z]. For any u 2 K[x, y, z] let u0

denote u(x, y, 0). Then we get a0f0 + b0g0 = 0.

Suppose r(x, y) 2 K[x, y] is a common factor of f0 and g0. Then f0 = ra and

g0 = rb for some a, b 2 K[x, y]. Since r has infinitely many zeros we can choose

some (x0, y0) 6= (0, 0) which is a zero of r. Then f(x0, y0, 0) = f0(x0, y0) = 0

and g(x0, y0, 0) = g0(x0, y0) = 0 which contradicts the assumption that f and

g have no intersection points at infinity. Therefore, f0 and g0 have no common

factors.

Since a0f0 = �b0g0 we must have a0 = �cg0 and b0 = cf0 for some c 2 K[x, y].

Set a1 = a + cg and b1 = b � cf . Then (a1)0 = 0 = (b1)0 which implies that

a1 = za

0 and b1 = zb

0 for some a

0
, b

0 2 K[x, y, z]. Since a1f + b1g = af + bf we

get zh = za

0
f + zb

0
g and thus h = a

0
f + b

0
g, so h = 0 and ↵ is injective. Let

deg(f) = m and deg(g) = n. Then in particular, if d � m + n then ↵ restricts

to an isomorphism between �
d

and �
d+1 since an injective linear map between

two vector spaces of the same dimension is an isomorphism.

Now let d � m + n and let a1, ..., amn

2 K[x, y, z] be forms of degree d whose

residues a1, ..., amn

form a basis for �
d

, by lemma 5.2. Let a1⇤, ..., amn⇤ be the

residues of a1⇤, ..., amn⇤ in �⇤.

Since ↵ is an isomorphism between �
d

and �
d+1 for all d � m+ n, the residues

z

r

a1, ..., z
r

a

mn

form a basis of �
d+r

for all r � 0. Now let h 2 �⇤ be the residue

of h 2 K[x, y]. Then for any r � 0 such that r � deg(h) � d there is some N
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such that zNh

⇤ is a form of degree d+r. Then z

N

h

⇤ in � is a linear combination

of zra1, ..., zramn

in �
d+r

and therefore

z

N

h

⇤ =
mnX

i=1

�

i

z

r

a

i

+ bf + cg

for some �1, ...,�mn

2 K and b, c 2 K[x, y, z]. But then

h = (zNh

⇤)⇤ =
mnX

i=1

�

i

a

i⇤ + b⇤f⇤ + c⇤g⇤

and therefore h =
P

mn

i=1 �iai⇤. So �⇤ is generated by a1⇤, ..., amn⇤.

Suppose
P

mn

i=1 �iai⇤ = 0. Then
P

mn

i=1 �iai⇤ = bf⇤ + cg⇤ for some b, c 2 K[x, y].

If we let s = deg(bf⇤), r = deg(cg⇤) and t = min(s, r) then z

t(bf⇤ + cg⇤)⇤ =

z

r(bf⇤)⇤ + z

s(cg⇤)⇤ = z

r

b

⇤(f⇤)⇤ + z

s

c

⇤(g⇤)⇤. Let z

uf and z

ug be the highest

powers of z dividing f and g respectively. Then

z

t+uf+ug (bf⇤+cg⇤)
⇤ = z

r+ug
b

⇤·zuf (f⇤)
⇤+z

s+uf
c

⇤·zug (g⇤)
⇤ = z

r+ug
b

⇤
f+z

r+uf
c

⇤
g.

Let d

0 = max(deg(a1⇤), ..., deg(amn⇤)). Then, since a1, ..., amn

are all forms of

degree d we get

z

d�d

0

 
mnX

i=1

�

i

a

i⇤

!⇤

=
mnX

i=1

�

i

a

i

.

So if we let t0 = max(t+ u

f

+ u

g

, d� d

0) then

z

t

0�(d�d

0)
mnX

i=1

�

i

a

i

= z

s

0
b

⇤
f + z

r

0
c

⇤
g

for some s0 and r

0. This then means that
P

mn

i=1 �iz
t

0�(d�d

0)
a

i

= 0 in �
d+t

0�(d�d

0) =

�
t

0+d

0 and since zt0�(d�d

0)
a1, ..., z

t

0�(d�d

0)
a

mn

form a basis of �
t

0+d

0 , this implies

that �1 = ... = �

mn

= 0. So a1⇤, ..., amn⇤ are linearly independent. Therefore

a1⇤, ..., amn⇤ is a basis of �⇤ and hence dimK(�⇤) = dimK(�
d

) = mn.
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