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Abstract

Games are a well-defined mathematical object for modeling dynamic decision
processes under competition between players. The normal form is a way
of describing a game and predicting the outcomes, using a payo� matrix
based on random strategies. This is an introduction to the game theory,
that includes simple definitions and examples of basic kinds of games and
their solution concepts. Furthermore, we introduce the utility function and
underline the e�ect of prosocial preferences that players may have for possible
outcomes.
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1 Introduction

Game theory is a mathematical study of interaction and strategy. It enables
universal mathematical techniques for analyzing games, which are strategic
interactions, where individuals make decisions that will influence others’
interests. The outcome is, in most interactions, not only determined by one
single actor, but on external factors and all actors’ behaviors, strategies,
beliefs and expectations. Although game theory can be used to analyze
parlour games, its applications are much broader and most research focuses
on how groups of people interact. It involves conflicts of interest arising in
fields as economics, sociology and political science, as well as in biology and
computer science.

1.1 History and impact

The mathematical theory of games was invented by John von Neumann and
Oscar Morgenstern and laid out in their book "The theory of Games and
Economic Behavior", in 1944. This foundational work contains a method
for finding mutually consistent solutions for two-person zero-sum games,
which are games that involve only two players and where one player’s gain
is equivalent to the other player’s loss. This work, which claims that any
economic situation can be understood as a game between two competing
actors, really launched the field of game theory. The precursors to this work
was a sequence of papers by Emile Borel in the 1920s and von Neumann’s
paper on the maxmin theorem for zero-sum games. [1]

Game theory emerged from the analysis in competitive games in the fields
of mathematics and economics. During World War II and the beginnings of
the Cold War, it was mobilized to analyze politics and warfare. Game theory
began essentially as an exercise to locate enemy submarines. [2]

The next major development occurred in the 1950s. The mathematician
John Nash developed a definition of equilibrium, that has become the central
solution for non-cooperative1 game theory. If each player has chosen a
strategy and no player can benefit by changing strategies while the other
players strategies are unchanged, then the current set of strategy choices and
the corresponding payo�s constitutes what would become known as Nash

1
Games that study conflicts among players and focuses on which moves players should

rationally make. The outcome of the game will depend on the acts of all players.
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equilibrium. This powerful solution concept has reshaped the landscape of
research in economics, as it has been used to reinvent the study of fields such
as market competition around oligopoly theory and the auction theory, as
well as strategic interactions. Today’s understanding of consumer search,
limit pricing, entry deterrence, strategic advertising etc. are all predicated on
models that rely mostly on Nash equilibrium as the solution concept.

In 1967-1968, John Harsanyi constructed the theory of games of incomplete
information2 and showed that the Nash equilibrium could be generalized to
this type of games. Reinhard Selten further introduced his solution concept
of subgame perfect equilibria, in an article in 1965. This further refined the
Nash equilibrium. In his article in 1975, Selten viewed rationality as the limit
of bounded rationality. [1]

In the 1970s, game theory was extensively applied in biology. The concept
of an Evolutionarily Stable Strategy was introduced to evolutionary game
theory, by John Maynard Smith. A necessary condition for behaviors to be
evolutionarily stable is that they constitute Nash equilibrium, why there are
close ties between non-cooperative and evolutionary game theory.

Over the last forty years, advances in game theory were made in many
areas of research, such as complete and incomplete information, repeated
games, stochastic games, games with many players etc. It is a powerful
tool that can be used for example in modeling of conflict among nations,
competitions among firms and political campaigns. Despite that it has become
a universally accepted paradigm in a wide diversity of areas, it is still a young
and developing science.

2
Strategic interactions where players do not know each others’ preferences and/or

strategy sets.
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2 What are games?

The object of study in game theory is the game, which is a formal model
of a strategic situation, with a set of rules that describes it. It typically
involves several players. The formal definition lays out the players, their
preferences, their information, the strategic actions available to them and
how each decision influence the outcome. Depending on the model, various
other requirements or assumptions may be necessary.

2.1 Normal-form games

The normal form game is a static model, that specifies a set of strategies for
each player and the outcomes that result from each possible combination of
choices. A strategy is a complete contingent plan of action and an outcome is
represented by a separate payo� for each player, which is a real number that
represents the player’s preference rankings of the alternative plays of the game.
The normal-form game specifies the pure strategies for each player. A strategy
is called pure if it involves no randomization. A player may also randomize
between his pure strategies. A strategy that involves some randomization, is
called mixed. Mixed strategies will be further discussed in section 2.3. The
normal forms are usually represented as bimatrices, in which the first player’s
pure strategies are listed as rows, the pure strategies of the second player as
columns, and the entries are the associated payo�-pairs. [1]

Definition 1 A normal-form game is a triplet G = ÈI, S, fiÍ, where I =
1, 2, ..., n is the set of players, for some positive integer n. A vector s =
(s1, s2, ..., sn) œ S, where si is a pure strategy for player i, si œ Si, is called
a strategy profile. The Cartesian product, S = ◊iSi, is the set S of strategy
profiles in the game, with Si denoting the strategy set of each player i œ I.
For any strategy profile s œ S and player i œ I, fii(s) œ R is the associated
payo� to player i when strategy profile s is played and fi : S æ Rn is the
payo� function.

Suppose that the individual in player role i œ I has preferences ≤ over pure-
strategy profiles s œ S. A utility function ui : S æ Rn represents a preference
relation ≤ on S such that

ui(s) Ø ui(sÕ) … s ≤i sÕ ’s, sÕ œ S (2.1)
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if and only if ≤i is complete and transitive.

The matrix below is a normal-form representation of a two-player game:

a b c
A 4,3 1,1 0,0
B 0,0 3,4 1,2
A 1,3 0,2 3,0

(2.2)

In each cell, the first number represents the payo� to the row player and the
second number represents the payo� to the column player. We will further
denote the row player as player 1 and the column player as player 2. The
players make their decisions simultaneously, where player 1 has a choice with
strategies A, B and C and player 2 can choose between strategies a, b and c.
If player 1 chooses A and player 2 chooses a, then player 1 receives payo� 4
and player 2 receives payo� 3.

Games can be divided into finite and infinite games. A finite normal-form game
is a normal-form game G = ÈI, S, fiÍ where S is finite. Then I = 1, 2, ..., n is
the finite set of players and for each player i œ I, Si = {1, 2, ..., mi} is the
player’s finite set of strategies, for positive integers m1, ..., mn and S = ◊iSi,
is the finite set S of strategy profiles. This thesis will focus on finite two-player
games. We shall sometimes write a strategy profile (s1, ..., sn) as (si, s≠i),
where ≠i denotes player role j ”= i.

2.2 The equilibrium concept

A fundamental concept in the theory of games is the equilibrium concept.
Equilibrium is a condition in which all acting influences are balanced, resulting
in a stable or unchanging system. The most widely used method of predicting
the outcome of a strategic interaction is Nash equilibrium. A pure-strategy
Nash equilibrium is an action profile with the property that no single player
can obtain a higher payo� by deviating unilaterally from this profile. We
shall further denote Nash equilibrium as NE. [3]

Sometimes, games may possess many equilibria and the problem which one
of these should be chosen as solution arises, why predictions obtained may
be incomplete. In order to obtain sharper predictions, the Nash equilibrium
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concept has been refined. One of the most well-known refinements, introduced
in Selten (1975), is "trembling hand perfection" (THP). The idea behind THP
is that your opponents might deviate from their intended strategy due to error
(a "tremble") and you should prepare for that in choosing your strategy. THP
takes into account this probability and protects the player if the opponent
makes a mistake. [1]

Definition 2 A strategy profile (sú
i , sú

≠i) œ S is a pure strategy Nash equi-
librium if, and only if, for all i œ I, ui(sú

i , sú
≠i) Ø ui(si, sú

≠i) for any si œ Si.
[4]

Example 1 Consider a game involving two players. Player 1 has the strategy
set S1 = {s1, s2} and player 2 has the strategy set S2 = {t1, t2}. The payo�
matrix for the di�erent action profiles can be seen below:

t1 t2
s1 1,2 0,0
s2 0,0 1,1

(2.3)

To find the Nash equilibria, we examine each action profile in turn. By playing
(s1, t1), neither player can increase his payo� by choosing a di�erent action,
and thus this action profile is a Nash equilibrium. If playing (s1, t2), player 1
could obtain a payo� of 1 rather than 0, by choosing s2 rather than s1, given
player 2’s action. Also, player 2 can increase his payo� by choosing t1 rather
than t2. Thus this action profile is not a Nash equilibrium. If playing (s2, t1),
player 1 could obtain a payo� of 1 rather than 0, by choosing s1 rather than
s2, given player 2’s action. Also, player 2 can increase his payo� by choosing
t2 rather than t1. Thus this action profile is not a Nash equilibrium. If playing
(s2, t2), neither player can increase his payo� by choosing a di�erent action,
and thus this action profile is a Nash equilibrium. We conclude that this
game has two pure Nash equilibria, (s1, t1) and (s2, t2).

Example 2 Consider the following two-player game:

t1 t2
s1 2,1 1,2
s2 1,2 2,1

(2.4)

Since one player can always increase his payo� by choosing a di�erent action,
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we conclude that this game has no pure Nash equilibrium.

2.3 Mixed strategies

Sometimes, instead of simply choosing an action, players may be able to
choose probability distributions over the set of available pure strategies. Such
randomizations over the set of actions are called mixed strategies.

A mixed strategy xi for player i is a vector xi in Rmi composed of the probabil-
ities associated with available actions, its h:th coordinate xih œ [0, 1] being the
probability assigned by xi to the player’s h:th pure strategy. A mixed-strategy
profile is a vector x = (x1, ..., xn) œ ⇤(S) = ◊iœI�(Si) of mixed strategies,
one for each player. For each player i, the mixed-strategy set in a finite game is

Xi = �(Si) =
Y
]

[xi œ Rmi
+ :

ÿ

hœSi

xih = 1
Z
^

\ , (2.5)

the unit simplex in Rmi . The mixed-strategy set Xi of player i is a non-empty,
compact and convex Euclidean subspace �(Si) µ Rmi with dimension mi ≠ 1.
The vertices of �(Si) are the unit vectors 11

i = (1, 0, 0..., 0), 12
i = (0, 1, 0..., 0),

..., 1m
i = (0, 0, 0..., 1). Each such vertex 1h

i represents the mixed strategy for
player i that assigns probability one to his h:th pure strategy, so the pure
strategies, in turn, are special cases of mixed strategies, namely the unit
vectors in Rmi . [1]

Every mixed strategy xi œ �(Si) is a linear combination of the pure strategies,
1h

i :

xi =
miÿ

h=1
xih · 1h

i = (xi1, xi2, ..., ximi). (2.6)

This linear combination is a convex combination since the coe�cients sum
to one and are non-negative. Hence the mixed-strategy simplex �(Si) is the
convex hull of its vertices.

Example 3 Let’s assume that player i has three pure strategies: (1, 0, 0),
(0, 1, 0) and (0, 0, 1). The mixed strategy x1 is then a linear combination of
the pure strategies; x1 =x11 · (1, 0, 0) + x12 · (0, 1, 0) + x13 · (0, 0, 1), where the
linear coe�cients are the probabilities. The mixed strategy set of player i can
be projected to the (xi1, xi2)-plane. It is a triangle, given as the set of convex
combinations of the unit vectors, which are the vertices of the triangle:
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Figure 1: The mixed strategy simplex as the set of convex combinations of
the unit vectors. [1]

Di�erent players’ randomizations are assumed to be statistically independent
in a mixed-strategy set. The probability that a particular pure strategy profile
s = (s1, ..., sn) œ S will be used, when a mixed-strategy profile x œ ⇤(S) is
played is

x(s) = �n
i=1xi(si), (2.7)

the product of the probabilities xi(si) assigned by each player i’s mixed
strategy xi œ �(Si) to his pure strategy si œ Si.

2.4 Expected payo�s

The expected value of the payo� to player i under a mixed strategy profile
x œ ⇤(S) is

ũi(x) =
ÿ

sœS

x(s) · ui(s). (2.8)

It is the weighted sum of the payo�s that player i obtains under each pure
strategy, weighted by the probability of that combination. This payo� is a
linear function of each player’s mixed strategy, xj, because for any x œ ⇤(S)
and any two players i and j

ũi(x) =
mjÿ

k=1
ũi(1k

j , x≠j) · xjk. (2.9)
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To see this, we note that playing a pure strategy sj = k œ Sj is probabilistically
equivalent to playing the mixed strategy 1k

j œ �(Sj), so we may write
ũi(1k

j , x≠j) for the payo� that player i obtains when player j uses his k:th
pure strategy.

In a finite two-player game, we may define the payo� to player 1 as u1(h, k) =
ahk and the payo� to player 2 as u2(h, k) = bhk. For any pair of mixed
strategies x1 œ �(S1) and x2 œ �(S2), the expected values are then defined
by the relations

ũ1(x) =
m1ÿ

h=1

m2ÿ

k=1
x1hahkx2k (2.10)

and

ũ2(x) =
m1ÿ

h=1

m2ÿ

k=1
x1hbhkx2k. (2.11)

Because the players choose their pure strategies h and k independently, the
probability that they choose the pure strategy pair (h, k) is the product x1hx2k

of these probabilities, which is the coe�cients of the payo�s ahk and bhk in
(2.10) and (2.11). [1]

Example 4 Consider the following two-player game:

t1 t2
s1 1,2 0,0
s2 0,0 2,1

(2.12)

Suppose that player 1 plays strategy s1 with probability 1
3 and strategy s2

with probability 2
3 and that player 2 plays strategy t1 with probability 2

3 and
strategy t2 with probability 1

3 . The expected payo� to player 1 is

ũ1(x) = x11a11x21 + x11a12x22 + x12a21x21 + x12a22x22 =
1
3 · 1 · 2

3 + 1
3 · 0 · 1

3 + 2
3 · 0 · 2

3 + 2
3 · 2 · 1

3 = 2
9 + 2 · 2

9 = 2
3

(2.13)

and the expected payo� to player 2 is:
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ũ2(x) = x11b11x21 + x11b12x22 + x12b21x21 + x12b22x22 =
1
3 · 2 · 2

3 + 1
3 · 0 · 1

3 + 2
3 · 0 · 2

3 + 2
3 · 1 · 1

3 = 2 · 2
9 + 2

9 = 2
3 .

(2.14)

Players may attempt to maximize the expected value of their own payo�s,
as defined in (2.8). If a player was given the opportunity to know about the
other players’ moves, he would want to switch his strategy to a best reply.
Suppose, that everybody’s strategy is a best reply to everybody else’s. Then
no one will have any incentive to change the situation. We will be in a stable
situation, in a Nash equilibrium. In order to extend the definition of Nash
equilibrium where mixed strategies can be taken into account, we need to
require that the mixed strategy of every player is the best reply to the mixed
strategies of the other players.

2.5 Best reply correspondence

A pure best reply for player i to a mixed-strategy profile x œ ⇤(S) is a
strategy si œ S such that no other available pure strategy gives him a higher
payo� against x. The i:th player’s pure-strategy best-reply correspondence
—i : ⇤(S) ◆ Si is defined by

—i(x) = {h œ Si : ũi(1h
i , x≠i) Ø ui(1k

i , x≠i) ’k œ Si}. (2.15)

For each player i œ I and pure strategy h œ Si, let

Bih = {x œ ⇤(S) : h œ —i(x)}, (2.16)

which defines the set of mixed-strategy profiles to which h is a best reply for
player i. [1]

Definition 3 A mixed best reply for player i to a strategy x œ ⇤ is a strategy
xú

i œ �(Si) such that no other mixed strategy gives a higher payo� to i against
x.

Every mixed strategy xi œ �(Si) is a convex combination of pure strategies.
Since ũi(xÕ

i, x≠i) is linear in xÕ
i, no mixed strategy can give a higher payo� to

player i against x œ ⇤(S) than any one of his best pure replies to x. Formally,
for any x œ ⇤(S), xÕ

i œ �(Si) and h œ —(x), we have

12



ũi(xÕ
i, x≠i) =

miÿ

k=1
ũi(1k

i , x≠i) · xÕ
ik Æ

miÿ

k=1
ũi(1h

i , x≠i) · xÕ
ik = ũi(1h

i , x≠i). (2.17)

Hence, the set of pure best replies is identical with the set of pure replies that
give the maximal payo� among the player’s mixed strategies:

—i(x) = {h œ Si : ũi(1h
i , x≠i) Ø ũi(xÕ

i, x≠i) ’xÕ
i œ �(Si)} (2.18)

Every pure best reply, viewed as a mixed strategy, is also a mixed best reply.
By linearity of ũi(xÕ

i, x≠i) in xÕ
i, any convex combination of pure best replies

is a mixed best reply.

Accordingly, the i:th player’s mixed-strategy best-reply correspondence —̃i :
⇤(S) ◆ �(Si) is defined by

—̃i(x) = {xú
i œ �(Si) : ũi(xú

i , x≠i) Ø ui(xÕ
i, x≠i) ’xÕ

i œ �(Si)}. (2.19)

Example 5 Consider a game given by the following bimatrix:

t1 t2
s1 4,2 4,1
s2 2,2 5,0

(2.20)

The best reply of player 1 to the strategy t1 of player 2 is the strategy s1,
i.e. —1(t1) = s1. Similarly, the best reply of player 1 to the strategy t2 is the
strategy s2, i.e. —1(t2) = s2. Similarly for the best replies of player 2, we have
—2(s1) = t1, —2(s2) = t1. In this case, it is easy to find the pair of strategies
that are mutually best replies; it is the pair (s1, t1) which is an equilibrium
point of the game.

Example 6 Consider the following game:

t1 t2
s1 -1,1 1,-1
s2 1,-1 -1,1

(2.21)

Since —1(t1) = s2, —1(t2) = s1, —2(s1) = t1 and —2(s2) = t2, no pair of pure

13



strategies consists from mutually best replies. It is necessary to consider mixed
strategies. Let player 1 play s1 with probability p and s2 with probability
1 ≠ p. Let player 2 play t1 with probability q and t2 with probability 1 ≠ q.

Expected payo�s for particular players are the following:

ũ1(p, q) = ≠pq+p(1≠q)+(1≠p)q≠(1≠p)(1≠q) = (2q≠1)+p(2≠4q) (2.22)

ũ2(p, q) = pq≠(1≠p)q≠p(1≠q)+(1≠p)(1≠q) = (1≠2p)+q(4p≠2) (2.23)

Now we will search for best replies of player 1 to various choices of probability
q of player 2. We consider the expected payo� (2q ≠ 1) + p(2 ≠ 4q) for fixed q
and variable p with 0 Æ p Æ 1. This is a linear function of p and the maximum
will depend on the slope of the function 2≠4q, whether it is positive, negative
or 0.

If 0 Æ q < 1
2 , then ũ1(p, q) is a linear function with positive slope, which is

therefore increasing. Maximum occurs for the greatest possible value of p, i.e.
for p = 1.

If q = 1
2 , then ũ1(p, 1

2) = 0 is a constant function for which each value is
maximal and minimal. Hence player 1 is indi�erent between both strategies,
—1(1

2) = È0, 1Í.

If 1
2 < q Æ 1, then ũ1(p, q) is a linear function with negative slope, which is

therefore decreasing. Maximum occurs for the least possible value of p, i.e.
for p = 0.

For player 1 we have:

—1(x2) =

Y
__]

__[

1 for 0 Æ q < 1
2

È0, 1Í for q = 1
2

0 for 1
2 < q Æ 1

and similarly for player 2:

—2(x1) =

Y
__]

__[

0 for 0 Æ p < 1
2

È0, 1Í for p = 1
2

1 for 1
2 < x1 Æ 1

To find the Nash equilibria we argue as follows: If q > 1
2 then the best reply

is p = 0 but the best reply to p = 0 is q = 0. This contradicts q > 1
2 and thus

does not lead to a Nash equilibrium. If q < 1
2 then the best reply is p = 1

14



but the best reply to p = 1 is q = 1 and again, this does not lead to a Nash
equilibrium. If q = 1

2 then the best reply is any p and so if we choose p = 1
2

then the best reply to p = 1
2 is any q, in particular q = 1

2 . The equilibrium
point is therefore

1
1
2 , 1

2

2
.

The best response functions for player 1 and player 2 are represented in the
plane below.

Figure 2: Best response functions in Example 6. [4]

2.6 Assumptions

In the theory of games, there are certain conditions that need to be properly
satisfied, in order to obtain an appropriate solution of a problem. These
conditions are often termed as the assumptions of the game theory. [1]

• Rationality: Each player i chooses a strategy si œ Si to maximize his
expected payo� consistent with his beliefs about the other players’ strat-
egy choices. In forming his probabilistic belief about the others, each
player assumes that the other player’s strategy choices are statistically
independent of each other.

• Complete information: Each player is fully aware of the rules of the
game. Hence, each player knows what strategies are available to himself
and what strategy sets and payo� functions are available to all of the
other players’.

15



• Common knowledge: The fact that each player is rational and knows
the game is common knowledge among players of the game. That is,
it is known by all players that all players know the game G = ÈI, S, uÍ
and are rational. It is also known by all players that it is known by all
players that all players know the game and are rational and so on.

A consequence of rationality is that a player will use only strategies that are
best replies to some beliefs he might have about the strategies of the other
players. These beliefs are consistent with the other players’ rationality, i.e.,
if player i believes that player j will play strategy tj, then tj maximizes j’s
payo� with respect to a belief of j about other players’ strategies. These
beliefs are also consistent with the other players’ rationality. This means
that we can iteratively delete strategies that are never best replies. For a
player, the set of strategies that survives this iterated deletion of never best
replies, is called his set of rationalizable strategies. Every Nash equilibrium is
a rationalizable equilibrium, which will be shown in section 2.7.

2.7 Dominance relations

A strategy is called a strictly dominating strategy if it always provides a
higher payo�, irrespective of what other players do. Hence, a strictly dominant
strategy strictly dominates all other strategies. A strategy is called strictly
dominated if, for every choice of strategies of the other players, this strategy
always earns a player a smaller payo� than some other strategy would do. [1]

Definition 4 xú
i œ �(Si) strictly dominates x

Õ
i œ �(Si) if ũi(xú

i , x≠i) >
ũi(x

Õ
i, x≠i) for all x œ ⇤(S).

Example 7 Consider the following two-player game:

t1 t2
s1 3,2 5,1
s2 0,0 2,2

(2.24)

Strategy s1 is a strictly dominant strategy for player 1 and hence, strategy
s2 is strictly dominated by strategy s1. Player 2 has no strictly dominated
strategy.

16



A pure strategy may also be strictly dominated without being strictly domi-
nated by any pure strategy.

Example 8 Consider the following game:

t1 t2
s1 4,a 0,b
s2 0,c 4,d
s3 1,e 1,f

(2.25)

The payo�s to player 2 are omitted for simplicity. Player 1’s pure strategy
s3, is not strictly dominated by any of his other pure strategies, but it is still
strictly dominated by a strategy that would mix his pure strategies s1 and
s2. Denote this mixed strategy xú

1 = (1
2 , 1

2 , 0). Irrespective of what player 2’s
strategy is, the expected payo� to player 1 from using xú

1 is 2. Because for
any x2 œ �(S2),

ũ1(xú
1, x2) = 1

2 · 4 · x21 + 1
2 · 4 · x22 = 2. (2.26)

A strategy is said to weakly dominate another strategy if the first strategy
never earns a lower payo� than the second, and sometimes earn a higher
payo�.

Definition 5 xú
i œ �(Si) weakly dominates x

Õ
i œ �(Si) if ũi(xú

i , x≠i) Ø
ũi(x

Õ
i, x≠i) for all x œ ⇤(S), with strict inequality for some x œ ⇤(S).

Example 9 Consider the following game:

t1 t2
s1 1,1 0,0
s2 0,0 1,0

(2.27)

Strategy s2 is weakly dominated by strategy s1 for player 1 and strategy t2 is
weakly dominated by strategy t1 for player 2.

Proposition 1 If (xú
i , xú

≠i) is a dominant strategy solution, then (xú
i , xú

≠i) is
a Nash equilibrium. [5]

Proof The strategy xú
i dominates every other strategy in �(Si). Thus

ui(xú
i , xú

≠i) Ø ui(xi, xú
≠i) for all xi œ �(Si) and xú

i is the unique best response
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to xú
≠i. Similarly, xú

≠i is the unique best response to xú
i . Thus (xú

i , xú
≠i) is a

Nash equilibrium.

A method for finding an equilibrium condition in a normal form game is called
"Iterated Elimination of Strictly Dominated Strategies" (IESDS). This method
implies systematic elimination of strictly dominated strategies for each player,
because rational players will never play strictly dominated strategies. [4]

Example 10 Consider the following game:

t1 t2 t3
s1 20,10 10,20 100,0
s2 30,0 25,10 50,0
s3 0,100 0,200 0,500

(2.28)

The strategy s3 of player 1 is strictly dominated by the strategy s2. Hence,
we eliminate s3 for player 1.

t1 t2 t3
s1 20,10 10,20 100,0
s2 30,0 25,10 50,0

(2.29)

Now both strategy t1 and t3 of player 2 are strictly dominated by the strategy
t2. By eliminating these two strategies we get:

t2
s1 10,20
s2 25,10

(2.30)

Strategy s1 of player 1 is now strictly dominated by s2. Hence, we eliminate
s1.

t2
s2 25,10 (2.31)
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An equilibrium point of the game is (s2, t2).

For two-player games, the set of all rationalizable strategies can be found by
IESDS. For this method to hold, one also needs to consider strict domination by
mixed strategies. We may continue eliminating strictly dominated strategies
from the reduced form, even if they were not strictly dominated in the original
matrix. In games with more than two players, there may be strategies that are
not strictly dominated, but which can never be a best response. By iterated
elimination of all such strategies one can find the rationalizable strategies for
a multiplayer game.

Proposition 2 If (xú
i , xú

≠i) is a Nash equilibrium, then (xú
i , xú

≠i) is not elimi-
nated by IESDS. [5]

Proof Suppose (xú
i , xú

≠i) is eliminated during IESDS. Then one of the strate-
gies is removed at some stage. Suppose that xú

i is removed before xú
≠i. Then xú

i

and xú
≠i are possible strategies at this stage of the construction and, because it

is about to be eliminated, there is a strategy xÕ
i œ �(Si) such that xÕ

i strictly
dominates xú

i . But then ui(xÕ
i, xú

≠i) > u1(xú
i , xú

≠i) and xú
i is not a best response

for player i to xú
≠i. This is a contradiction to the assumption that (xú

i , xú
≠i) is

a Nash equilibrium.

Strictly dominated strategies cannot be a part of a Nash equilibrium, since
it is irrational for any player to play them. Weakly dominated strategies
may be part of Nash equilibrium. For instance, consider the payo� matrix in
example 9. Since player 2 does better by playing t1 instead of t2 and never
does worse, t1 weakly dominates t2. Despite this, (s2, t2) is a Nash equilibrium.
No strategy is strictly dominated and hence all strategies are rationalizable.
But since s1 of player 1 is a best response to t1 of player 2 and s2 i a best
response to t2, the only NE are (s1, t1) and (s2, t2). [4]

Rationalizability requires a player to play optimally with respect to some
reasonable belief about the other players’ actions. On the other hand, Nash
equilibrium requires that a player play optimally with respect to what his
opponents are actually playing. That is, the belief he holds about the
other players’ actions has to be correct. This point makes clear that each
player’s strategy in a Nash equilibrium profile is rationalizable, but lots of
rationalizable profiles are not Nash equilibria.
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2.8 Nash equilibrium

The Nash equilibrium concept requires a strategy profile x œ ⇤(S) so that
each component strategy xi is optimal under some belief of the i:th player
about the others’ strategies and also it should be optimal under the belief
x≠i œ ◊≠i”=i�(S≠i) that all other play accordingly to x. In other words,
no player has any incentive to deviate from his strategy profile if he knows
that players’ rationality and their beliefs about what the others play are
mutually known. We can therefore say that a strategy profile is called a Nash
equilibrium if it is a best reply to itself. [1]

Definition 6 x œ ⇤(S) is a Nash equilibrium if x œ —̃(x).

Let XNE ™ ⇤(S) denote the set of Nash equilibria. It follows from the
definition that the three following statements are equivalent:

• x œ XNE

• xih > 0 ∆ h œ —i(x)

• h /œ —i(x) ∆ xih = 0

Central to the proof of the existence of Nash equilibria in finite games will be
Brouwer’s Fixed-Point Theorem about continuous functions.

Theorem 1 (Brouwer’s Fixed-Point Theorem) Suppose that X µ Rn is
non-empty, compact and convex. If f : X æ X is continuous, then there exists
at least one fixed point, that is, there exists a xú œ X such that xú = f(xú).

See [6] for a proof.

The existence of Nash equilibrium in mixed strategies for finite games follows
directly from Theorem 1.

Theorem 2 (Nash, 1950) The mixed-strategy extension of any finite game
has at least one Nash equilibrium.

Proof Given a strategy profile x œ ⇤(S), for each player i, let u+
ih(x) =

max{0, ũi(1h
i , x≠i) ≠ ũi(x)}, being the excess payo� of pure strategy h œ Si,

that is, the extra payo� that i would earn if he were to deviate from his strat-
egy xi to pure strategy h œ Si. We then define a function f : ⇤(S) æ ⇤(S),
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onto itself, where

fih(x) = xih + u+
ih(x)

1 + q
kœSi

u+
ik(x) ’i œ I, h œ Si. (2.32)

This function maps a strategy profile s to a new strategy profile sÕ in which
each agent’s actions that are better responses to s receive increased prob-
ability mass. This function will modify the mixed strategy of player i by
shifting some of the weight of the distribution to give more weight to the set
of strategies h œ Si. The function f is continuous, since each u+

ih is continuous.
Further, since S is convex and compact and f : ⇤(S) æ ⇤(S), f must have
at least one fixed point, by Theorem 1. Suppose that xú = f(xú). Then

xú
ih = xih + u+

ih(x)
1 + q

kœSi
u+

ik(x) (2.33)

¡ xú
ih

ÿ

kœSi

u+
ik(xú) = u+

ih(xú) (2.34)

for all players i œ I and pure strategies h œ Si, by Theorem 1. This means
that u+

ih(xú) = 0 if and only if xú
ih = 0. Therefore u+

ih(xú) > 0 for all pure
strategies h with xú

ih > 0. This is impossible, since all pure strategies in use
cannot earn above average. Hence q

k u+
ik(xú) = 0. Thus ũi(1k

i , xú
≠i) Æ ũi(xú)

for all players i and pure strategies k œ Si, implying a Nash equilibrium,
xú œ XNE.

Example 11 Consider the following game:

t1 t2
s1 1,-1 -1,1
s2 -1,1 1,-1

(2.35)

This game has no pure strategy Nash equilibrium, but it has one Nash equi-
librium in mixed strategies. Suppose player 1 plays 3

4 of strategy s1 and 1
4 of

strategy s2, then player 2 by playing pure strategy t2 can get an expected
payo� of 3

4 · 1 + 1
4 · (≠1) = 1

2 . This cannot happen at equilibrium since player
1 then wants to deviate to the pure strategy s2, deviating from the original
mixed strategy. Hence, the unique Nash equilibrium is where both players
play both pure strategies with probability one half, xú

1 = xú
2 = (1

2 , 1
2). Since

u+
ih(xú) = 0, it can be seen that
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xú
ih

ÿ

kœSi

u+
ik(xú) = u+

ih(xú) = 0 (2.36)

and thus there is no room for improvement which is by definition a Nash
equilibrium. The expected payo� to both players is 1

2 · 1 + 1
2 · (≠1) = 0 and

neither can do better by deviating to another strategy. This profile xú is
a fixed point under —̃ and indeed —̃i(xú) = �(Si) for i = 1, 2, with �(Si)
denoting the unit simplex in R2. [1]
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3 Prosocial preferences

Everyone of us has preferences in our approaches that a�ect how we perceive
and act. In most applications of economic models, it is assumed that human
behavior is driven by self-interest, that is maximization of own payo�, without
caring for social goals. In recent years, a large body of research has shown
that, when individuals who interact know each other’s preferences, natural
selection leads to preferences that deviate from maximization of own objective
payo�. The predictive power of pure selfishness in certain interactions has
been questioned and alternative preferences which include moral values as part
of human motivation have been suggested. An interesting question is what
preferences and moral values humans should be expected to have. Alger and
Weibull (2013) [7] show that, when each individual’s preferences is his private
information, natural selection leads to a certain one-dimensional family of
moral preferences that springs out from the mathematics. This family consists
of all convex combinations of selfishness and morality. Individuals with such
preferences are called Homo moralis and the weight attached to the moral
goal is called the degree of morality.

3.1 Utility theory

As we just have noted, a player is an entity with preferences. Players make
choices on the basis of preferences, that take into account all factors that
can influence their behavior. To represent a player’s preferences, we use
utilities. As defined in (2.1), the utility function, ui : S æ Rn, represent
how an individual subjectively values the material payo� fi according to its
preferences.

Example 12 Consider a n-player interaction. If fii is the payo� to player i,
let the utility or goal function to player i be represented in the form

ui = (1 ≠ –i)fii + –i

nÿ

j=1
fij (3.1)

for some 0 Æ –i Æ 1. Here, player i may care to some extent, –i, about the
sum of monetary rewards to all players. If player i is purely selfish, then
–i = 0. If player i is only concerned about social welfare, then –i = 1.
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Example 13: Consider the following two-player game:

t1 t2
s1 3,3 0,4
s2 4,0 2,2

(3.2)

If the payo�s reflect the player’s preferences, then rationality implies that
the strategy combination (s2, t2) will be chosen. Suppose instead that the
numbers in the bimatrix are monetary gains. If both players only care about
their own monetary gains, then (s2, t2) is still the unique outcome if both
players are rational. Now, suppose that the players do care about each others’
monetary gains and that their payo�s are their own monetary gain plus the
other’s monetary gain, weighted by some coe�cient,

ui = fii + –i · fi≠i (3.3)

where fi≠i denotes the monetary gain for player role ≠i ”= i. The payo�-matrix
will then be as shown below,

t1 t2
s1 3+3–1, 3+3–2 4–1,4
s2 4, 4–2 2+2–1, 2+2–2

(3.4)

where –1, –2 œ R. If –i is positive, it means that player i is altruistic towards
the other player and –i = 0 means that i is selfish. A negative coe�cient –i

means that i is spiteful towards the other player. Now pure strategy s2 (t2)
strictly dominates pure strategy s1 (t1) for player 1 (2) if and only if ai Æ 1

3 ,
that is, if and only if player i is spiteful or selfish or not too altruistic. If player
1 (2) is su�ciently altruistic, ai > 1

3 , then strategy s1 (t1) is a better reply
than strategy s2 (t2), if player 1 expects player 2 to play t1. If both players
are su�ciently altruistic, –1, –2 > 1

3 , then (s1, t1) is even a Nash equilibrium.

In a sequential prisoners’ dilemma experiment, Miettinen, Kosfeld, Fehr and
Weibull (2016) [8], analyzed di�erent goal functions and examined di�erent
models’ explanatory power. The data they obtained in the experiment were
used to compare the explanatory power of a few models of other-regarding
and moral preferences. These are described below and are some of the most
common models of prosocial preferences. The monetary payo� earned by a

24



subject in player role i = 1, 2 when using pure strategy xi œ Xi against an
opponent who uses strategy x≠i œ X≠i (where ≠i denotes player role j ”= i)
was fii(xi, x≠i).

Homo economicus
If an individual is purely self-interested and only cares about a maximization
of own material payo�, we say that he is a Homo economicus. His utility is then

ui(xi, x≠i) = fii(xi, x≠i), (3.5)

equivalent with his expected payo�.

Altruism
If an individual cares about his own material payo� and also attaches a
positive weight to the material payo�s to others, we say that he is an altruist.
His utility is the sum of his own payo� and the payo� to the other player,
where the latter term is weighted by a factor – œ [0, 1]. We call – the degree
of altruism. The utility is given by

ui(xi, x≠i) = (1 ≠ –)fii(xi, x≠i) + – · fi≠i(x≠i, xi). (3.6)

Altruism takes place when an individual acts with an unselfish regard for
others, even at a risk or cost to himself.

Homo moralis
If an individual cares about his own material payo� and also attaches a weight
to what his material payo� would be if others use the same strategy as him,
we say that he is a Homo moralis. The utility to a Homo moralis with degree
morality Ÿ œ [0, 1] is

ui(xi, x≠i) = (1 ≠ Ÿ)fii(xi, x≠i) + Ÿfii(xi, xi), (3.7)

where fii(xi, x≠i) is maximizing own fitness and fii(xi, xi) defines doing what
would be right for both, in terms of payo�s, if the other player did the same.
Clearly, a Homo economicus is a Homo moralis goal function, namely, the one
with morality profile when Ÿ = 0, i.e. attaches zero weight to morality. At the
opposite extreme of the spectrum of Homo moralis we find Homo kantientis,
that is pure ethical reasoning in line with Kant’s categorical imperative3. [7]

3
Kant’s (1785) categorical imperative can be formulated as follows: “Act only in

accordance with that maxim through which you can at the same time will that it become

a universal law.” [2]
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This variety of Homo moralis occurs when Ÿ = 1, i.e. attaches unit weight to
morality. Individuals of this “pure Kantian” type always choose a strategy
that would maximize all players’ payo�s, if it was adopted by every player.
The behavior of all other varieties of Homo moralis lies between these two
extremes.

Inequity aversion
In the Fehr-Schmidt model, focus is being put on own payo� and inequity
aversion. A negative weight is given to payo� di�erences between players
(with a bigger weight when the di�erence is to the player’s own disadvantage).
The utility is

uF S
i (xi, x≠i) = fii(xi, x≠i) ≠ –(fi≠i(x≠i, xi) ≠ fii(xi, x≠i))+

≠—(fii(xi, x≠i) ≠ fi≠i(x≠i, xi))+,
(3.8)

for i = 1, 2. Both – and — are non-negative, – Ø — and (x)+ denotes
max{0, x}.
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4 Classes of games

It is possible to construct several classifications of games, based on the
properties and criteria one wants to look at. A classification of a 2-person,
2-strategy (2 ◊ 2) game was made by Pangallo, Sanders, Galla, and Farmer
(2017). [9] By looking at relevant combinations of parameters, the classification
forms a game taxonomy where games are defined in terms of the orderings
in the payo� matrix. They were only concerned with the number of Nash
equilibria and with their type, i.e. whether they were pure or mixed strategy
Nash equilibria. They found three classes of 2 ◊ 2 games, where all such
games belong to one of these classes.

4.1 Game taxonomy

Consider a general 2 ◊ 2 payo� bimatrix:

A B
A a,e b,g
B c,f d,h

(4.1)

The number and type of the Nash equilibria depend on the pairwise ordering
of the payo�s for each player, namely (a, c) and (b, d) for the row player and
(e, g) and (f, h) for the column player. The classes of 2 ◊ 2 games found can
be seen below.

Coordination games
In coordination games, all pure strategy Nash equilibria exist when players
choose the same or corresponding strategies. A 2 ◊ 2 coordination game has
two pure strategy Nash equilibria, namely the strategy profiles {A, A} and
{B, B} and one mixed strategy Nash equilibria. The following inequalities
a > c, d > b, e > g, h > f should hold in the payo� matrix. This setup can
be extended for a game with more than two pure strategies, as well as more
than two players.

Stag hunt
The Stag hunt game describes a conflict between safety and social cooperation.
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This game has two pure strategy Nash equilibria, one where the players choose
a safe action and one where the players choose a risky action. The safe action
is risk dominant, while the risky action is payo� dominant, implying that
when both choose the risky actions, they end up at a high-payo� equilibrium
and when both choose the safe action, they end up at a low-payo� equilibrium.
Both players may want to obtain high payo� but uncertainty about the
opponent’s action may prevent them to take such strategic risk.

Formally, a generic symmetric stag hunt is given by the inequalities a > c Ø
d > b, for the payo�s in the payo� matrix illustrated in (4.2).

S H
S a,a b,c
H c,b d,d

(4.2)

In addition to the pure strategy Nash equilibria, there is one mixed strategy
Nash equilibrium, which depends on the payo�s in the payo� matrix.

Anticoordination games
Games where a player’s best response is to choose an action unlike that of
the other player, are called anti-coordination games. These games are defined
by the orderings a < c, d < b, e < g, h < f in the payo� matrix. From a
mathematical point of view, anticoordination 2 ◊ 2 games are largely similar
to coordination games, in that they also have two pure strategy and one
mixed strategy Nash equilibria. The di�erence is that in the pure strategy
Nash equilibria, the players choose strategies with di�erent labels, i.e. (A, B)
and (B, A), instead of same labels.

Hawk-Dove
A well-known example of a 2-player anti-coordination game is the Hawk-Dove
game. Two animals compete for a piece of food. One of the animals plays the
strategy Hawk (H) and behaves aggressively, while the other animal plays the
strategy Dove (D) and behaves passively. Given that the resource is given
the value v, the damage from losing a fight is given cost c. If both animals
are aggressive, as in strategy pair (H, H), they risk destroying the food and
injuring each other. Then each animal receives payo� v

2 ≠ c
2 , because it wins

the resource half of the time but always pays a cost c. If a Hawk meets a
Dove he gets the full resource v to himself, while the Dove will back o� and
get nothing. If both animals are passive, i.e. Dove meets a Dove, both share
the resource and get v

2 . [10] This leads to a payo� matrix as shown below:
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H D
H v≠c

2 , v≠c
2 v, 0

D 0, v v
2 , v

2

(4.3)

Depending on the value of c relative to v, there are di�erent types of equilibria.
If v Ø c, then there exists a unique Nash equilibrium, (H, H). If v < c, then
there exists three Nash equilibria: (H, D), (D, H) and a mixed strategy
equilibrium.

Discoordination games
The opposite of a coordination game is a discoordination game. One player’s
incentive is to coordinate while the other player tries to avoid this. These
games are defined by the orderings a > c, d > b, e < g, h < f , or a < c,
d < b, e > g, h > f in the payo� matrix. They have a unique mixed strategy
NE and no pure strategy NE, since the players have incentives to coordinate
on di�erent strategy profiles.

Matching Pennies
A prototypical discoordination game is Matching pennies. It is played between
two players simultaneously placing a penny on the table, with the payo�
depending on whether the pennies match. If the pennies match, i.e. both are
heads or both are tails, then one player keeps both pennies. If the pennies do
not match, i.e. one shows heads and one shows tails, then the other player
wins and keeps both pennies. The game can be written in a payo� matrix
shown below:

H T
H 1,-1 -1,1
T -1,1 1,-1

(4.4)

This game has no pure strategy NE, since if the players’ strategies match,
i.e. both playing heads (H, H) or both playing tails (T, T ), then player 1
prefers to switch strategies. If the strategies do not match, then player 2
prefers to switch. Instead, the unique NE of this game is in mixed strategies.
Each player chooses heads or tails with equal probability and makes the other
indi�erent between choosing heads or tails, so neither player has an incentive
to deviate to another strategy. [11]

Dominance solvable games
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In any case, if by IESDS, there is only one strategy left for each player, the
game is called a dominance-solvable game. Dominance-solvable games are
defined by all 12 remaining possible orderings, for example a > c, b > d,
e > g, f > h. They have a unique pure strategy Nash equilibrium, obtainable
from the elimination of strictly dominated strategies.

Prisoner’s dilemma
The prisoner’s dilemma is a 2 ◊ 2 dominance-solvable game and is probably
the most widely used game in game theory. Two prisoners are suspected
of committing a crime. They are being interrogated in separate rooms
and face the same scenario. They are o�ered the same deal and know the
consequences of each action and are completely aware that the other prisoner
has been o�ered the same deal. Both of them want to minimize their prison
sentences. Each prisoner can either betray the other by testifying that the
other committed the crime ("defecting"), or to cooperate with the other by
remaining silent. If both prisoners betray the other, each serves 3 years in
prison. If only one prisoner betrays the other, then that prisoner goes free
while the other prisoner gets 5 years in prison. If both prisoners cooperate
with the other by remaining silent, each will only serve 1 year in prison. The
decision matrix is shown below:

Cooperate Defect
Cooperate -1,-1 -5,0

Defect 0,-5 -3,-3
(4.5)

Eliminating all dominated strategies, can solve this game. Since "Cooperate"
is strictly dominated by "Defect" for player 1, the rational thing to do for
player 1 is do defect. Similarly for player 2, no matter what prisoner 1 does,
prisoner 2 is better o� defecting. Therefore, “to defect” is the dominant
strategy. The dilemma then is that mutual cooperation (remaining silent)
yields a better outcome than mutual defecting but it is not the rational
outcome because at the individual level, the choice to cooperate, is irrational.
As a result, both prisoners defect and receive multiple years in prison. If they
had cooperated, they could have served only one year. [2]

The prisoner’s dilemma game can be expressed in the more general form
below
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C D
C a,a b,c
D c,b d,d

(4.6)

and to be a prisoner’s dilemma game, the following inequalities c > a > d > b
must hold for the payo�s, where a > d implies that mutual cooperation is
superior to mutual defection and c > a and d > b imply that defection is the
dominant strategy for both players.

4.2 Analysis

Consider the two-player prisoner’s dilemma game form shown in (4.6). Let
us suppose that this game represent a one-time interaction. Then, this game
seems to leave no hope for cooperation if the players act rationally, but
could altruism or morality motivate a person to cooperate? Consider now a
transformation of the game form in (4.6) with an altruistic interpretation.
The factor – will be the altruism parameter of both players, described in
(3.6). The payo� received by one player is added to the other player’s payo�
multiplied by –, and similarly for the other player. We obtain the following
modified payo� matrix:

C D
C (1 ≠ –)a + –a, (1 ≠ –)a + –a (1 ≠ –)b + –c, (1 ≠ –)c + –b
D (1 ≠ –)c + –b, (1 ≠ –)b + –c (1 ≠ –)d + –d, (1 ≠ –)d + –d

(4.7)

This game is payo�-symmetric and, hence, we can simplify it by only looking
at one player’s actions. In the game form below,

C a (1 ≠ –)b + –c
D (1 ≠ –)c + –b d

(4.8)

the entries of the payo� matrix refer to the row player, player 1. It can be seen
that strategy choice C dominates when a > (1≠–)c+–b and (1≠–)b+–c > d.
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We can identify two important conditions;

– > –1 = c ≠ a

c ≠ b
and

– > –2 = d ≠ b

c ≠ b
.

When both inequalities are satisfied, strategy choice C dominates. When
neither inequality is satisfied, strategy choice D dominates. When only one
inequality is satisfied, we will have a coordination game with two pure NE
and a mixed NE.

The actual outcome of the game depends on the relationship between –1, –2
and –. Let us consider that the average degree of altruism between interacting
individuals is a number between 0 and 1. If a + d > b + c, then –2 > –1.
Now, if –2 > –1 > –, then strategy D will dominate. If –2 > – > –1, both
cooperation and defection will be possible actions. If – > –2 > –1, then
strategy C will dominate. Similarly, if a + d < b + c, then –1 > –2. If
–1 > –2 > –, then strategy D will dominate. If –1 > – > –2, then both
cooperators and defectors might exist. If – > –1 > –2, then strategy C will
dominate. Therefore, it follows that the prisoner’s dilemma game leads to
mutual cooperation if – > max{ c≠a

c≠b , d≠b
c≠b }.

Suppose, instead, that the players have preferences of Homo moralis, described
in (3.7). For the prisoner’s dilemma game in (4.6), we will now have the
following modified payo� matrix,

C (1 ≠ Ÿ)a + Ÿa (1 ≠ Ÿ)b + Ÿa
D (1 ≠ Ÿ)c + Ÿd (1 ≠ Ÿ)d + Ÿd

(4.9)

where strategy choice C dominates when (1 ≠ Ÿ)a + Ÿa > (1 ≠ Ÿ)c + Ÿd and
(1 ≠ Ÿ)b + Ÿa > (1 ≠ Ÿ)d + Ÿd. We can can identify the following conditions;

Ÿ > Ÿ1 = c ≠ a

c ≠ d
and

Ÿ > Ÿ2 = d ≠ b

a ≠ b
.

As previous, when both inequalities are satisfied, strategy choice C dominates
and when neither inequality is satisfied, strategy choice D dominates. The
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outcome of the game will depend on the relationship between ŸC , ŸD and Ÿ. If
a+d > b+c, then Ÿ2 > Ÿ1. If Ÿ2 > Ÿ1 > Ÿ, then strategy D will dominate and
if Ÿ > Ÿ2 > Ÿ1, then strategy C will dominate. Similarly, if a +d < b+ c, then
Ÿ1 > Ÿ2. If Ÿ1 > Ÿ2 > Ÿ, then strategy D will dominate and if Ÿ > Ÿ1 > Ÿ2,
then strategy C will dominate. It follows that the prisoner’s dilemma leads
to mutual cooperation if Ÿ > max{ c≠a

c≠d , d≠b
a≠b}.

Finally, let us suppose that the players have preferences of Inequity aversion,
described in (3.8). The modified payo� matrix will be as shown below:

C a b ≠ –(c ≠ b) ≠ —(b ≠ c)
D c ≠ –(b ≠ c) ≠ —(c ≠ b) d

(4.10)

where strategy choice C dominates when a > c ≠ –(b ≠ c) ≠ —(c ≠ b) and
b ≠ –(c ≠ b) ≠ —(b ≠ c) > d. We can can identify the following conditions;

— ≠ – >
c ≠ a

c ≠ b
and

— ≠ – >
d ≠ b

c ≠ b
.

Since – Ø — through definition, — ≠ – < 0 and, hence, the above conditions
are impossible. Thus, in theory, this game will not lead to cooperation. Even
though players with preferences of Inequity aversion does not like payo�
di�erences, they dislike payo� di�erences to their own disadvantage more
than payo� di�erences to their opponents’ disadvantages, which explains why
the above conditions does not lead to cooperation.

For altruists and moralists, however, we can apply the above results on the
payo�s in the prisoner’s dilemma game in (4.5). It can be seen that –2 > –1
and Ÿ2 > Ÿ1, since a + d = ≠4 > b + c = ≠5. Also, notice that Ÿ2 > –2. The
di�erent values of –1, –2, Ÿ1 and Ÿ2 are shown in the table below:

– Ÿ

–1 = 0≠(≠1)
0≠(≠5) = 1

5 Ÿ1 = 0≠(≠1)
0≠(≠3)=

1
3

–2 = ≠3≠(≠5)
0≠(≠5) = 2

5 Ÿ2 = ≠3≠(≠5)
≠1≠(≠5) = 1

2

(4.11)
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Another example of a prisoner’s dilemma game, where instead, a + d < b + c,
is shown in the following bimatrix:

C D
C -2,-2 -4,0
D 0,-4 -3,-3

(4.12)

The payo�s will, as previously stated, fulfill the conditions –1 > –2 and
Ÿ1 > Ÿ2. Also, observe that Ÿ1 > –1. The di�erent values of –1, –2, Ÿ1 and
Ÿ2 are shown below:

– Ÿ

–1 = ≠0≠(≠2)
0≠(≠4) = 1

2 Ÿ1 = 0≠(≠2)
0≠(≠3)=

2
3

–2 = ≠3≠(≠4)
0≠(≠4) = 1

4 Ÿ2 = ≠3≠(≠4)
≠2≠(≠4) = 1

2

(4.13)

Apparently, if we have a one-shot prisoner’s dilemma game, with c > a > d > b,
then, if the condition a + d > c + d holds, Ÿ2 = d≠b

a≠b > d≠b
c≠b = –2 and if

a + d < c + d holds, then Ÿ1 = c≠a
c≠d > c≠a

c≠b = –1. Hence, in both cases, since
max{Ÿ1, Ÿ2} > max{–1, –2}, it can be seen that it takes less altruism than
morality for mutual cooperation.

4.3 Summary

In social dilemmas, such as the prisoner’s dilemma, people choose between
personal gains and the common good. Regardless of what others do, rational
people are better o� following their self-interest than acting in the collective
interest. However, many people cooperate, thus fostering the good of the
collective, while they set aside their own self-interests. Experimental evidence
suggests that people are not entirely selfish and evolution does not favour
selfish people. [7] In the one-shot prisoner’s dilemma analysis above, it can be
seen that altruistic individuals are more cooperative than moral individuals.
If we compare cooperativeness between altruists and moralists for the general
prisoner’s dilemma game in (4.6), we will see that the degree – needed
for mutual cooperation is less for altruists than the degree Ÿ for moralists
and thus, it takes less altruism than morality to turn cooperation into a
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Nash equilibrium. Altruists care about the actual consequences of defecting
unilaterally and that it generates a payo� loss for his opponent. This payo�
loss might exceed the own payo� gain from defecting together to defecting
unilaterally. On the other hand, moralists care about what would be his payo�
if others were to act like himself and thus does not care about this payo� loss.
Hence, in the unrepeated prisoner’s dilemma, altruistic preferences favour
cooperation and allow natural selection to favour cooperation over defection,
more than moral individuals do.
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