
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Graph isomorphism algorithms in nauty

av

Fredrik Stenkvist

2018 - No K27

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Graph isomorphism algorithms in nauty

Fredrik Stenkvist

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Jörgen Backelin

2018





Graph isomorphism algorithms in nauty

Fredrik Stenkvist

1



Contents

1 Abstract 3

2 Introduction 4

3 Background 4
3.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.2 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.1.3 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 The graph isomorphism problem . . . . . . . . . . . . . . . . . . 7

4 The algorithm 8
4.1 What does the algorithm do? . . . . . . . . . . . . . . . . . . . 8
4.2 Details of di↵erent parts of the algorithm . . . . . . . . . . . . . 8

4.2.1 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2.2 Search tree . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Canonical label . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Pruning the search tree . . . . . . . . . . . . . . . . . . . . . . . 11

4.4.1 How to prune with automorphisms . . . . . . . . . . . . . 11
4.4.2 How to find explicit automorphisms . . . . . . . . . . . . 12
4.4.3 How to find implicit automorphisms . . . . . . . . . . . . 13
4.4.4 How to prune with the indicator function . . . . . . . . . 18
4.4.5 The pruning part of the algorithm . . . . . . . . . . . . . 18

4.5 Time and space complexity . . . . . . . . . . . . . . . . . . . . . 20
4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7 An analysis on how the algorithm handles some families of graphs 26

4.7.1 How the algorithm handles K
n

. . . . . . . . . . . . . . . 27
4.7.2 How the algorithm handles K

a,b

. . . . . . . . . . . . . . 28

5 Discussion 30

6 References 31

2



1 Abstract

The graph isomorphism problem, the problem of determining if two given graphs
are the same up to a relabelling of the vertices, is a very important problem
in graph theory. One of the best algorithms for practical use is the nauty al-
gorithm. The subject of this paper is to show how the nauty algorithm works,
discuss some of its strengths and weaknesses and show how it handles some
common families of graphs.

The nauty algorithm is a backtracking algorithm which creates a canonical
labelling for a graph. Then one can easily check if two graphs are isomorphic
by checking if they get the same canonical labelling. It handles graphs which
have vertices of many di↵erent degrees very fast, while it has more problems
with graphs which are regular and which have large automorphism groups.

3



2 Introduction

The graph isomorphism problem or GI-problem, the problem of comparing if
two graphs are isomorphic or not, is a important problem not in graph theory
and in applications in many other subjects as well. One of the reasons why the
GI-problem is interesting is that there are many problems, such as isomorphisms
between latin square which you can reduce to the GI-problem in a fast way. [2].
The importance of this problem is such that some mathematicians have started
talking about a new complexity class, called GI-complete, which are problems
reducible to the GI-problem in polynomial time[7]. If we can find fast algorithms
to solve the GI-problem we will be able to solve many other problems faster too.

The best upper bound found so far is given by László Babai. He has shown
that the GI-problem can be solved in quasi polynomial time (exp log nO(1))[1],
though he does not contribute in the way of practical solutions in his paper. For
practical use there are a couple of algorithms such as, traces and nauty. One
part of nauty or, no automorphisms , yes? is an algorithm created by Brendan
McKay which solves the GI-problem. In this paper I will explain how the nauty
algorithm works and explain some of its strengths and weaknesses and show
how it handles some families of graphs.

3 Background

3.1 Graph theory

3.1.1 Graphs

Denote V as the set {1, 2, 3, . . . , n}. Then we can define G(V ) as all simple
connected labelled graphs with the vertex set V . The algorithm works for
unlabelled graphs too, then we give the vertices a random labelling. The edge
set E(G

i

) of a graph, will contain pairs v
i

and v

j

, where v

i

and v

j

are in V and
v

i

6= v

j

, such that if {v
i

, v

j

} is an element of the edge set E(G
i

) then v

i

and v

j

are neighbours in G

i

. The algorithm works for a wider assortment of graphs like
digraphs and hypergraphs but I will not study those. The adjacency matrix A

of G is a n ·n matrix where A
ij

= 1 if {v
i

, v

j

} is in E(G) and otherwise A
ij

= 0

3.1.2 Partitions

An unordered partition of V is a set ⇡ = {V
1

| · · · |V
k

} where the cells V
i

of ⇡ are
disjoint, non-empty subsets of V and whose union is V . An ordered partition

is a sequence (V
1

|V
2

| . . . |V
k

) which cells, {V
1

|V
2

| . . . |V
k

}, creates an unordered
partition of V . The set of all unordered partitions will be denoted ⇧(V ), the
set of all ordered partitions will be denoted ⇧⇤(V ) and the union of the two will
be denoted ⇧(V )⇤.

4



A cell with one element will be called a fixed cell of a partition. If every cell
in a partition are fixed by ⇡, ⇡ is called a discrete partition. If ⇡ has only one
cell it is the unit partition. If we have two partitions ⇡

1

and ⇡

2

we say that ⇡
1

is finer than ⇡

2

if every cell of the partition ⇡

1

is a subset of one of the cells in
the partition ⇡

2

, which is denoted ⇡

1

 ⇡

2

. In that case we will also say that ⇡
2

is coarser than ⇡

1

. Noteworthy is that ⇡ is both coarser and finer than itself.
The length of a partition ⇡ is the number of cells it has and is denoted |⇡|

Let G 2 G(V ), v 2 V and W ✓ V , we define D

G

(W, v) as the number of
of elements in W that are neighbours to v in the graph G. A graph is regular

if for all v 2 V , D
G

(V, v) have the same value. We will denote a partition
⇡ = (V

1

| · · · |V
n

) 2 ⇧(V )⇤ as equitable if for every elements v

1

and v

2

in the
same cell V

j

of ⇡, D(V
i

, v

1

) = D(V
i

, v

2

) for every i in 1, 2 · · · |⇡|.
Given a partition ⇡ 2 ⇧(V )⇤ we define fix(⇡) as the set of elements which

are in a cell fixed by ⇡. We will also define mcr(⇡)(where mcr stands for
minimum cell representation) as the set of elements which are the smallest in
each cell of ⇡. An example of this is that for the partition ⇡ = (123|45|6) the
minimum cell representation will be mcr(⇡) = {1, 4, 6} and fix(⇡) = {6}. Now
we can define the minimum cell representation and fix set for a permutation
� 2 S(n) (the symmetric group on n elements). The minimum cell representa-
tion will be mcr(⇡

1

) where each cell of the partition ⇡

1

is an orbit of �. Similarly
fix(�) will be fix(⇡

1

).

3.1.3 Groups

Let � 2 S(n) and v 2 V , then the image of v under � will be denoted as v

� .
Then � acts on V

i

where V

i

◆ V as if � acted on every element of V
i

, which
will be denoted as V �

i

. Then � acts on a partition ⇡ as if � acted on every cell
of ⇡, which will be denoted ⇡

� . If � acts on a graph G, it leaves the vertex set
intact but it acts on the edge set E(G�) = {{v�

i

, v

�

j

}}, 8{v
i

, v

j

} 2 E(G). For
multiplication of permutations I will not use the standard notation. Typically
when working with permutations �

i

· �
j

means that we first apply �

j

and then �

i

instead I will keep with the notation Brendan McKay uses where it means that
we first apply �

i

and then �

j

. A permutation which has a fixed set which fixes
all but two elements in it is called a transposition.

A partition is not an permutation but I will at times use it as one. If I say
that we apply ⇡ or a subset of cells of ⇡ to for example a graph G, what I mean is
that we apply � 2 S(n) where � consists of each cell of ⇡ or the specified subset
of cells as a permutation (with the rest of the elements in V mapped to their
selves). The permutations will map the lowest element in the cells to the next
lowest, the next lowest to the third lowest and so on until the highest element
which will e mapped to the lowest. For example applying ⇡ = (12|3 · · ·n) would
be to apply the permutation � = (12)(3 · · ·n) whilst just applying V

2

of ⇡ would
give the permutation (1)(2)(3 · · ·n).

5



We say that a permutation � stabilizes a partition ⇡ 2 ⇧⇤ with cells (V
1

, V

2

. . . V

n

)
if for every cell V

i

in ⇡ V

�

i

= V

i

. If a permutation or set of permutation stabilizes
⇡ will be denoted with a subscript ⇡, one example is that S(n)

⇡

would be the
subset of S(n) which stabilizes ⇡.

Given a permutation � we define ✓(�) to be the partition which cells are the
orbits of �. Given two partitions ⇡

1

and ⇡

2

we define ⇡

1

_ ⇡

2

as if two elements
are in the same cell of ⇡

1

we merge the cells they belong to in ⇡

2

and then we
return ⇡

2

.

Then we can define Aut(G) as the subset of permutations such that � 2
Aut(G) if

E(G�) = E(G).

This subset of permutations will create a permutation group. The identity per-
mutation obviously works as an identity automorphism. The subset will be
closed, given two automorphisms �

i

and �

j

, the product �

i

· �
j

will also be an
automorphism. Let G be any graph and �

i

and �

j

be automorphisms on the
graph. Then E(G)�i·�j = E(G�i)�j according to associativity of permutations
and E(G�i)�j = E(G)�j = E

G

since both �

i

and �

j

are automorphisms on G and
hence the product also is an automorphism. The inverse of any automorphism
�

j

will also be an automorphism since �

�1

j

= �

n

j

for some n and the subset of
automorphisms is closed under multiplication.

✓(Aut(G)) will be the partition ⇡ = {V
1

· · ·V
k

} 2 ⇧(V )⇤ such that two
elements are in the same cell of ✓(Aut(G)) if and only if they are in the same
orbit of Aut(G)

3.2 Time complexity

Time complexity measures the running time of an algorithm for an input of
a certain size. Since running time di↵ers for di↵erent inputs of the same size
n one generally takes the worst case scenario. For time complexity there are
di↵erent classes. Where some of the most common ones are polynomial time,
sub-exponential time, and exponential time, where polynomial time is the fastest
with a running time of O(poly(n))(where poly stands for any real polynomial
for the variable n) and exponential time is the slowest with a running time of
(2poly(n)). Sub exponential comes in-between the two with a running time of
O(2n✏) for all constant ✏ > 0. Quasi polynomial algorithms are slower than
polynomial but faster than sub-exponential time algorithms, and have an run-
ning time of O(2poly(log((n))). One of the slowest classes is factorial algorithms
which have a running time of O(n!)

6



3.3 The graph isomorphism problem

The graph isomorphism problem is the problem of deciding whether the given
graphs G

1

and G

2

are the same up to a relabelling of the vertices or in other
word if there are a permutation � 2 S(n) such that

G

�

1

= G

2

.

One could do this by going through all permutations � 2 S(n) and calculate if
G

�

1

= G

2

by checking their adjacency matrices. Though with this approach the
problem would be quite slow since there are n! permutations in S(n).

7



4 The algorithm

4.1 What does the algorithm do?

Instead of looking at each permutation, the nauty algorithm creates canonical
labels. A canonical labelling algorithm is an algorithm that creates a relabelling
of a graph G such that each isomorphism of G will get the same relabelling. If we
do this for both graphs its easy to see if they are isomorphic since the relabelled
graphs then will have the same adjacency matrix.

4.2 Details of di↵erent parts of the algorithm

4.2.1 Refinement

We define a refinement function R which takes a graph G 2 G(V ), a partition
⇡ 2 ⇧⇤(V ), and a sequence ↵ = (W

1

, · · · ,W
M

) which is a sequence of distinct
cells of ⇡, and which returns a sequence ⇡̂.

⇡̂ = ⇡

m = 1
p = |⇡|

While (m  M and ⇡̂ is not discrete)
W = W

m

m = m+ 1
k = 1
While (k  p)

Suppose ⇡̂ = (V
1

, V

2

, . . . , V

p

) at this point.
Define a partition ⇡

l

= (X
1

, X

2

, . . . , X

q

) 2 ⇧⇤(Vk

) such that for any two
vertices v

i

2 X

j

and v

r

2 X

o

D(W, v

i

) > D(W, v

r

) if and only if
j > o.
If q = 1

k = k + 1
else

t=the smallest integer such that |X
t

| attains the maximum value for
all cells in ⇡

l

If W
j

= V

k

for some j (m  j  M)
W

j

= X

t

For i (1  i < t)
W

M+i

= X

i

For (t < i  q)
W

M+i�1

= X

i

M = M + q � 1
replace V

k

with X

1

· · ·X
q

in that order in ⇡̂

p = p+ q � 1
k = k + 1

return ⇡̂

8



The reason here why we can replace W

j

with X

t

if W
j

= V

t

is that they will
be equivalent. Checking whether or not elements have the same number of of
neighbours in a partition and all but one cell of the partition is the same as
checking whether or not they have the same number of neighbours in all cells
since if they have the same number of neighbours in all cells they will have the
same number of neighbours in the whole partition.

4.2.2 Search tree

Let ⇡ = (V
1

|V
2

| . . . |V
k

) 2 ⇧⇤ and let v be an element of the cell i for some i

in {1 · · · k}. If the cell V
i

only has one element we define ⇡ � v as ⇡ and if it
contains more than one element we define it as (V

1

|V
2

| . . . |v|V
i

\v| . . . |V
k

). Then
we define ⇡ ? v as R(G,⇡ � v, v), in other words we refine ⇡ � v with regards
to v. If a set only contains one element I will represent it by that element, for
example when I write R(G,⇡ � v, v)what I mean is R(G,⇡ � v, {v}).

Let V p be the ordered unit partition, given a G 2 G(V ) , a partition ⇡ 2 ⇧⇤

and a sequence of elements l = v

1

, v

2

, . . . , v

n

of distinct elements in V , we de-
fine the partition nests derived from G , ⇡ and l to be the set of partitions
⌘ = [⇡

1

,⇡

2

,⇡

3

, . . . ,⇡

n

], where ⇡

1

= R(G, V p, V ) and ⇡

i

= ⇡

i�1

? v

i�1

for
i = 2 : n. Then we define ⌘

i to be the i first partitions in ⌘. A permutations
� acts on ⌘ as if it acted on all partitions in ⌘. Now we define N(V ) as all
partition nests derived from some G 2 G(V ) ⇡ 2 ⇧(V )⇤ and a sequence l of
distinct elements from V .

Let G 2 G(V ) and ⇡ 2 ⇧(V )⇤. I will now describe how we build the search

tree. All the elements of the search tree will be partition nest and will be called
nodes. When we build the search tree we do it in a depth first approach. We
start at R(G, V p, V ) and work our way down to a node as far as possible and
then we backtrack to the latest node were we still need to refine. When going
forward we create a store ⇣ containing of the smallest non fixed cell unless the
partition is discrete, then we backtrack. The elements in ⇣ will be the elements
we want to refine against at this branch starting with the smallest, and when
we refine against an element we remove it from the ⇣. When we backtrack to a
node we refine against the smallest element remaining in ⇣ for that node. If the
store is empty we backtrack to the most recent ancestor to the current node.
We are done if the store at the starting node is empty when we backtrack to it.

A node will be called a terminal node if the last generated partition in the
node is discrete. A node ⌘ is earlier than a node � if ⌘ is generated before
� in T (G), � is then later than ⌘ The length of a node ⌘ will be denoted |⌘|
and will be the number of partitions the node contains. If we have a node
⌘ = [⇡

1

,⇡

2

, . . . ,⇡

i

] we say that ⌘

m

is an ancestor of ⌘
m+1

for m = 1 · · · i� 1
and if ⌘

m

is an ancestor of ⌘
k

, ⌘
k

is a successor of ⌘
m

. If⌘ is an ancestor of � ⌘

is also an ancestor of all nodes for which � is an ancestor of.

9



Now we can define the search tree T (G) as the following algorithm:

step 1

k = 1

V p is the ordered unit partition

⇡

1

= R(G, V p, V )

step 2

if ⇡
k

is discrete

go to step 4

W

k

=the first non fixed cell of ⇡
k

of the smallest size

step 3

if W
k

is empty

go to step 4

v = min(W
k

)

W

k

= W

k

\ v
⇡

k+1

= ⇡

k

? v

k = k + 1

A: ⌘ = [⇡
1

· · ·⇡
k

]

go to step 2

step 4

k = k � 1

if k � 1

go to step 3

stop

The nodes ⌘ created at A will be the nodes of the search tree (except the
start node which is [⇡

1

]) in the described depth first approach, from the earliest
to the latest.

4.3 Canonical label

A canonical label is an labelling of a graph which will represent an isomorphism
class for the graph. To be able to create a canonical label for a graph G with
the vertex set V we need an ordering of all possible isomorphisms of G. For this

10



we will use two functions. The first one will be n(G).

Definition Let G 2 G(V ), then we define n(G) as the length n

2 binary
number we get if we look at the adjacency matrix of G as a binary number in
a row by row fashion.

Definition Let ⌘ be a terminal node and G 2 G(V ). Define G(⌘) as n(G�)
where delta is the permutation mapping the elements in ⌘ to their position in ⌘

This will clearly give the same result for a graph G and G

� where � 2 Aut(G)
but di↵erent if � is not an automorphism and hence it would be su�cient for an
ordering of the isomorphism classes. In theory we could calculate all the nodes
of the search tree and check which node ⌘ maximizes G(⌘). This is not practical
since there can be up to n! labellings so we need to define the canonical label in
another way.

The other function we will use is an indicator function.
Definition
Let G 2 G(V ), ⇡ 2 ⇧⇤(V ), ⌘ = [⇡

1

· · ·⇡
k

] 2 N(V ), µ 2 N(V ), l = |µ| and k =
|⌘| . Then ⇤(G,⇡) is the number of elements (v

i

, v

j

) in the edge set E(G) such
that v

i

and v

j

are in the same cell of ⇡ [3]. From this we can define ⇤(G, ⌘) as

(⇤(G,⇡

1

),⇤(G,⇡

2

),⇤(G,⇡

3

), . . . ,⇤(G,⇡

k

)).

For such vectors we will use a lexicographical ordering, ⇤(G, ⌘) > ⇤(G,µ)
if at the first position i where the two vectors di↵er, ⇤(G, ⌘)

i

> ⇤(G,µ)
i

or if
k > l. The indicator function will be able to handle more then one node at a
time which we will see later on.

Then for a given tree T (G) we define X(G) as the set of terminal nodes. If
for any two nodes ⌘

1

and ⌘

2

, ⌘
1

= ⌘

�

2

for � 2 Aut(G) then we say that ⌘

1

is
equivalent to ⌘

2

which will be denoted as ⌘
1

⇠ ⌘

2

. This will be an equivalence
relation. A node will be called an identity node if there are no earlier nodes
which are equivalent to it.

Now we define ⇤(T (G)) as the set of elements of X(G) for which ⇤(G, ⌘) is
maximized, then we can define the canonical label as follows.

C(G) = max(G(⌘)) for ⌘ 2 ⇤(T (G)).

4.4 Pruning the search tree

4.4.1 How to prune with automorphisms

One way to find the canonical labelling would be to generate all terminal nodes
and check which node ⌘ that maximizes G(⌘) of those which maximized⇤(G, ⌘).

11



This can be problematic if |X(G)| is large.

Let ⌘ be a node such that C(G) = G(⌘), then ⌘ is called a canonical node.
Theorem Let G 2 G(V ), ⇡ 2 ⇧⇤ and ⇤⇤ = ⇤(T (G)). Let X⇤ be any subset

of elements which contains those identity nodes such that ⇤(G, ⌘) = ⇤⇤.

Then X

⇤ contains a canonical node.

Our goal now is to delete sub trees of T (G) by using automorphisms. If
we can find that all terminal nodes on a sub tree are equivalent to some which
already have been generated we do not need to generate them.

For every generated non-terminal node ⌘ we will have an associated store ⇣

which will be the elements we will refine against from the node. When we gen-
erate the node this will be the first smallest non-fixed cell. When we backtrack
to a node ⌘ = [⇡

1

,⇡

2

, . . . ,⇡

n

] we update the store to be

⇣ \mcr(�
1

) \mcr(�
2

) \mcr(�
3

) . . . \mcr(�
n

) (1)

for all found automorphisms which fixes all partitions in the node. Let v

1

be
smaller than v

2

and let both of them be in the same orbit of Aut(G)
⇡1,...,⇡n .

Then ⌘ refined against v
1

and v

2

will be equivalent and we are only interested in
the earlier node, the one where we refine against v

1

, so we can prune the entire
branch where we would have refined against v

2

.

The only other time we will update the store for any node is when we find an
automorphism � such that ⌘

1

= ⌘

�

2

, which we will call explicit automorphisms.
We then update the store ⇣ of the latest common ancestor of the two nodes with
the new found automorphism according to 1.

Now we create an auxiliary partition ✓. ✓ will start as the discrete partition
(1| · · · |n). Every time we find an automorphism � we update ✓ to be ✓ _ ✓(�),
this makes ✓ the orbits of the automorphisms found so far. We do this so that
when we generated the whole search tree ✓ will be the orbits of G, which we
then return.

Now when we know how to prune the tree if we have found automorphisms
we need to find them. We have two ways to find automorphism in the search
tree, what will be called explicit automorphisms and what will be called implicit
automorphisms.

4.4.2 How to find explicit automorphisms

When we are generating the search tree T (G), we remember two terminal nodes
at a time. The first one is the earliest generated terminal node, this one will
be remembered during the entire algorithm. The other one is the so far best
guess of the canonical labelling. This can be the same as the earliest generated

12



node but does not need to be. When we generate a terminal node equivalent
to either of these two terminal nodes , it means that there exist � 2 Aut(G)
mapping the newly generated node to the other in the equivalence. We then
add the the sequence (fix(�),mcr(�)) into our storage ⌧ for automorphisms as
long as its not full. We will put a limit L to how many pairs (fix(�),mcr(�)) we
will store. This limit will not have an e↵ect on the end result but will e↵ect the
e�ciency of the algorithm since for higher values of L we need to check fewer
non identity nodes since we can prune more.

4.4.3 How to find implicit automorphisms

Implicit automorphisms is an optional of the algorithm. Whereas we found
explicit automorphisms by comparing terminal nodes and explicitly calculating
the automorphisms, we can find the implicit automorphism in the whole tree
and do not need to calculate them explicitly. In the case of implicit automor-
phisms we find the entire orbits at a time.

Lemma 4.1. Let G 2 G(V ) and ⇡ 2 ⇧⇤ be equitable with respect to G. Let
⇡

1

and ⇡

2

be any two of the cells of ⇡ with q = |⇡
1

| and r = |⇡
2

|.
Then we know that the number of edges between the vertices ⇡

1

and ⇡

2

will be

k · lcm(q, r)

where k is a whole number between 0 to q·r
lcm(q,r)

.

This is because of the fact that ⇡ are equitable so the number of edges be-
tween each vertex in ⇡

1

and the vertices in ⇡

2

must be a multiple of q and the
number of edges between each vertex in ⇡

2

and the vertices in v

1

needs to be a
multiple of r so the total number of edges must be a multiple of q and a multiple
of r. If every vertex in ⇡

1

are connected to every vertices in ⇡

2

there are qr

edges in total. ⇤

Lemma 4.2. Let G 2 G(V ) and ⇡ 2 ⇧⇤ be equitable with respect to G. Let
V

1

and V

2

be any two of the cells of ⇡, with v

1

2 V

1

and v

2

2 V such that
{v

1

, v

2

} 2 E(G) and let � 2 S(n)
V1,V2 If there are zero or qr edges between the

elements of V
1

and V

2

then the edge set between V

1

and V

2

in G and G

� are the same.

Since both cells are stabilized, the number of di↵erent edges between the two
cells remain the same. We get this by looking at an edge between an element of
each cell (v

1

, v

2

), since both cells were stabilized both elements remain in their
respective cell. A permutation will work bijectively(one to one) so no two edges
in E(G) can be mapped to the same in E(G�). Then each edge between the
two cells in G are mapped to a di↵erent edge between the two cells in G

� so the
number remains the same. If there are no or all possible edges between the two

13



in G the same amount will be there in G

� and hence the edge set is the same.⇤

Lemma 4.3. Let G 2 G(V ), � 2 S(n)
V1,V2 and ⇡ 2 ⇧⇤ be equitable with

respect to G. Let V

1

and V

2

be any two of the cells of ⇡ with q = |V
1

| and
r = |V

2

|. Let � 2 S(n)
V1,V2 and GCD(q, r) = 1.

Then the edge set between the elements of V
1

and V

2

is the same in G and G

�

.

If GCD(q, r) = 1, we know that lcm(q, r) = qr, which means that either
there are no edges between ⇡

1

and ⇡

2

or all possible edges exists according to
lemma 4.1. In either case the edge set will remain the same according to lemma
4.2. ⇤

The following is a formulation and a proof of lemma 2.25 from practical
graph isomorphisms[5]. Brendan McKay left this lemma without a proof and
since I did not find the lemma obvious I decided to prove it.

Lemma 4.4. Let G 2 G(V ) and ⇡ 2 ⇧⇤ be equitable with respect to G. Let
V

1

and V

2

be any two of the cells of ⇡. If ⇡ has m non fixed cells, k = |⇡| and
one of the following conditions is met, n  k + 4, n = k+m, or n = k+m+1,
then

⇡

i

= ✓(Aut(G)
⇡i) for any partition ⇡

i

finer than ⇡

.

Given that an automorphism stabilizes ⇡ we know that all fixed cells are
mapped to their selves, which means that they will be their own orbit in
Aut(G)

⇡

. We know that elements in the same orbit have the same number
of vertices in every orbit. Every cell of ⇡ will be a set of one or more orbits of
Aut(G)

⇡

. You get this by using that ⇡ is equitable with the fact that the fixed
cells will be their own orbit. We only split the non fixed cell if the elements in it
do not have the same number of neighbours in the set fix⇡ or the same number
of neighbours in the rest of V and they should then not be in the same orbit.
We then split the non fixed element up into set containing one or more orbits
and continue to check if the elements in the same set have the same number
of neighbours in the other newly created sets. If they do not have the same
number of neighbours in the other sets we continue to split them up since they
then can not be in the same orbit of Aut(G)

⇡

. But since elements in the same
orbit will have the same number of neighbours in every other orbit or set of
orbits we can not split them up in this fashion. Hence we know that element in
di↵erent cells of ⇡ can not be in the same cell of ✓(Aut(G)

⇡

).

Now we need to prove that the elements in the same part of ⇡ are in the
same orbit. From the given conditions we have a couple of di↵erent partitions
we need to prove it for. The last two conditions say that it holds for partitions

14



which have at most one cell of size three and the rest of its cells have size one
or two.
From condition one we get these cases:

• One cell of size five and the rest have size one

• One cell of size four and possibly one of size two

• Up to two cells of size three

• One cell of size three and up to two cells of size two

• Up to four cells of size two

I will only show the lemma for the upper number of cells since the lower
ones will be fairly similar with only fewer edges to consider. During each case I
will work with a graph G and a partition ⇡ which are equitable with regards to
G. These will change so they are suitable for the case I am working on.

If we have a permutation � which is any combination of cells of ⇡ or parts
of ⇡ it will stabilise ⇡ since we � only maps the elements of each cell to an
element of the same cell. If we can find permutations �

i

which stabilises ⇡ such
that G and G

�

i

have the same edge set for all i and such that if v
i

and v

j

are
vertices in the same cell of ⇡ for some �

i

then v

i

is mapped to v

j

, we know that
⇡ = ✓(Aut(G)

⇡

).

I will start with the case of a partition ⇡ where ⇡ only has cells of size one or
two. If we apply the whole of ⇡ as a permutation on the corresponding graph G

we know that the only part of the edge set we can influence is the edges between
the vertices in two di↵erent cells with size two according to lemma 4.1 and 4.3.
The elements of a cell of size two cell can have zero, one or two neighbours with
another cell of size two. If there are no or two neighbours between the vertices in
every pair of di↵erent cells in ⇡ with the size two we will not change this part of
the edge set, according to lemma 4.2, and then we know ⇡ is an automorphism
on G which stabilizes ⇡.

If there are some cells V
1

, V

2

., where the vertices in V

1

have one neighbour in
V

2

, we will change the edge set if we only apply one of them to G. But as long as
we apply both we will not change the edge set. So applying ⇡ as a permutation
will not change the edge set and it will stabilize ⇡ so ⇡ = ✓(Aut(G)

⇡

).

Now we take the case of one cell of size three and the rest of size one or two.
Let V

i

be the cell of ⇡ which have the size three. If we look at the sub-graph of
G without the vertices in V

i

and ⇡ \V
i

we know that ⇡ \V
i

is an automorphism
for the sub-graph which stabilizes ⇡ \ V

i

. If we also apply V

i

we know that we
will not change the edge set according to lemma 4.2 and 4.3. Hence if we apply
the permutation corresponding to the non fixed cells of ⇡ twice it will be an

15



automorphism , and each vertices of V
i

will be mapped to the other two in V

i

so they are in the same orbit. Now we know that ⇡ = ✓(Aut(G)
⇡

).

Let ⇡ have two cells V

1

, V

2

of size three and the rest have size one. If the
vertices of V

1

has one or three neighbours in V

2

, applying ⇡ will not change the
edge set of G according to lemma 4.2 so it is an automorphism and if we apply
⇡ twice the problem is solved. Solving the problem for one or two neighbours is
equivalent, since if there are two neighbours we can instead of looking at G and
G

⇡, look at G⇤ and G

⇡

⇤ where the edge set of G⇤ is the same as the edge set of
G except between the vertices in V

1

and V

2

where vertices in these cells have
an edge between them in G⇤ if there is not one between them in G. Solving
the problem for G⇤ will be the same as for G(you can look at it as keeping
the vertices of V

1

and V

2

which isn’t neighbours) and is a problem with one
neighbour. Now we look at the case of the vertices in V

1

having one neighbour
in V

2

.

Let V

1

= (v
i

, v

j

, v

k

) and V

2

= (v
q

, v

r

, v

p

) where (v
i

, v

q

), (v
j

, v

r

)and (v
k

, v

p

)
are elements of the edge set. If we apply V

1

as a permutation on G we will
change the edge set between the vertices in V

1

and V

2

. But if we also apply V

2

it remains the same and hence ⇡ is an automorphism. If we apply ⇡ twice the
vertices in V

1

and V

2

will be mapped to each other and hence ⇡ = ✓(Aut(G)
⇡

).

Let ⇡ have one cell V
1

of size four and one cell V
2

of size two and where the
rest of the cells of ⇡ has size one. As long as we stabilize ⇡, all we need to worry
about are the edges between the vertices in V

1

and those between one vertex in
V

1

and one vertex in V

2

according to lemma 4.3 and 4.3. The vertices in V

1

can
have zero, one, two or three neighbours in V

1

. If its zero or three this part of
the problem is trivial according to lemma 4.2. The problem when they have one
or two neighbours are equivalent with the same reasoning as between the two
cells of size three in the previous case. The vertices in V

1

can have zero, one or
two neighbours in V

2

if there are zero or two, the problem is trivial according
to lemma 4.2.

Now I am going to show how to solve the problem when the vertices in V

1

have one neighbour in V

1

and one in V

2

which will also will work as a solution
for each other case with some slight modifications. There are two cases of edges
between these cells of ⇡. Either the neighbours in V

1

have a common neighbour
in V

2

or not.

I will now show both cases, in the examples V
1

= 1, 2, 3, 4 and V

2

= 5, 6

16



First case:

Here both �

1

= (1, 2)(3, 4) and �

2

= (1, 3)(2, 4)(5, 6) work as automorphisms.
Then �

1

⇤ �
2

is an automorphism and we have found automorphisms which sta-
bilizes ⇡ such that vertex in any cell V

k

is mapped to each vertex in V

k

. Here
is the other case:

Second case:

�

1

, �
2

and �

1

⇤ �

2

works as automorphisms in this case to. Since we have
solved the problem for both cases ⇡ = ✓(Aut(G)

⇡

).

Now I will deal with the case a partition ⇡ with one cell V
i

of size five and
the rest of size one. As long as we stabilize ⇡ the only edges we need to study
are those between vertices of V

i

according to lemma 4.3. We know that the
vertices in V

i

can have zero, two or four neighbours in V

i

since otherwise the in-
duced sub-graph would have an odd number of vertices with odd degree. If they
have two neighbours in V

i

, the sub-graph will be C

5

. For which we know that
the five rotations stabilizes the edge set . If they have zero or four neighbours,
we can still use the five rotations to stabilize the edge set according to lemma 4.2.

We know that in either case the five rotations work as automorphism and
then the elements in the cell of size five will be in the same orbit hence ⇡ =
✓(Aut(G)

⇡

).

17



The last two cases are included in the first two more generalized cases so
they are already proved.

Now I have shown that the lemma holds for ⇡ where ⇡ fulfils any of the three
conditions. But since any partition finer than ⇡ also will fulfil at least one of
the conditions the lemma will hold for all those also. ⇤

4.4.4 How to prune with the indicator function

Using the indicator function as a part of the canonical labelling let us prune even
more than if we would only use the automorphisms to prune. If we at any point
have generated a node ⌘ such that ⇤(⌘)

i

< ⇤(�)
i

, where � is the current best
guess of the canonical label, we can prune the entire branch. This is because
we used a lexicographical ordering for the indicator function, which is resulting
in that every terminal node on the ⌘-branch will have a lower value for the in-
dicator function than � and hence they are not able to be the canonical labelling.

4.4.5 The pruning part of the algorithm

Now we are ready for the last part of the algorithm, the part that handles which
nodes to keep and which part of the tree to prune.

Let ✓ start as the ordered discrete partition, & be the earliest terminal node,
and ⇢ be our so far best guess of the canonical labelling, with |⇢| = r and
|&| = m. Now we define the following things,

• if ⇡
k

satisfies the conditions for ⇡ of lemma 4.4, then hh is the smallest
value for which ⇡

hh

fulfils the requirements otherwise hh = k

• ht is the smallest value i such that all terminal nodes descended from &

i

have been shown to be equivalent

• the latest common ancestor of & and ⌘ is ⌘h

• the latest common ancestor of ⇢ and ⌘ is ⌘hb

• hzb is the maximum value 1  i  min(k, r) such that ⇤(G, ⌘

i) = ⇤(G, ⇢

i)

• ⇤ = ⇤(G, ⌘)

• let v be the vertex we refine against to go from ⌘

h to ⌘

h+1

18



When we generate a node ⌘, such that ⌘ = [⇡
1

. . .⇡

k

] the following subroutine
starts.

step 1

If (k > m or ⇤ 6= ⇤(G, &

k)) and (k > r or ⇤ < ⇤(G, ⇢

k))

go to B

step 2

If ⌘ is non terminal

continue to generate the next node in the search tree if there are any

if there is not any one node left to generate return C(G) = G(⇢)

step 3

if(k > m or ⇤ 6= ⇤(G, &))

go to step 4

if the permutation � taking & to ⌘ is an automorphism

go to A

step 4

If(k > r or ⇤ < ⇤(G, ⇢) or (⇤ = ⇤(G, ⇢) and G(⌘) < G(⇢))

go to B

If(⇤ > ⇤(G, ⇢) or (⇤ = ⇤(G, ⇢) and G(⌘) > G(⇢)

⇢ = ⌘ then go to B

let � be the permutation taking ⇢ to ⌘ and go to A

A

let � be the found automorphism between ⌘ and one of the two other nodes.

Add (fix(�),mcr(�)) to the storage ⌧ and update ⇣

⌘h according to 1

✓ = theta _ ✓(�)

If v is not in ⇣

⌘h

return to ⌘

h and then generate the next node if there are any

if there is not any one node left to generate return C(G) = G(⇢),

✓(Aut(G) = ✓

else return to ⌘

hb and then generate the next node if there are one

if there is not any one node left to generate return C(G) = G(⇢),

✓(Aut(G) = ✓

19



B

if ⇤ � ⇤(G, ⇢) and ⌘ is not discrete

continue to generate the next node from ⌘

if ⌘ is discrete

If(⇤ > ⇤(G, ⇢) or (⇤ = ⇤(G, ⇢) and G(⌘) > G(⇢)

⇢ = ⌘

return to the latest ⌘i for which its store ⇣ is not empty

if there is not any non empty store return C(G) = G(⇢),

✓(Aut(G) = ✓

If(hh < k)

✓ = ✓ _ ✓(⇡
hh

)

add(fix(⌘
hh

),mcr(⌘
hh

)) to the storage ⌧

return to ⌘

i where i = min(hh� 1,max(ht� 1, hzb)) and then generate the

next node if there are one

if there is not any one node left to generate return C(G) = G(⇢) ,

✓(Aut(G) = ✓

4.5 Time and space complexity

For many families of graphs the algorithm will have an polynomial running time,
but there are families such that the algorithm will have an exponential running
time. [6]
Let n be the number of vertices in the graph G, m the number of machine words
that is required to store a vector of size n, let k be the maximum length of a
node in the search tree and L the number of pairs (fix(�),mcr(�)) we choose as
our upper limit to store in ⌧ . Then the storage requirement for the algorithm
is 2mn+ 10n+m+ (m+ 4)k + 2mL machine words.

4.6 Examples

Now I will give some examples on how di↵erent parts of the algorithm works. I
will do this with a couple of di↵erent graphs which are suitable for the di↵erent
parts of the algorithm. I will start with an example of how the algorithm gen-
erates the starting node for the search tree.

20



I will do this for the following graph:

The graph G

1

We want to calculate R(G, V p, V ) which will be the start node for the search
tree. We start with the partition ⇡

1

= (12345). First we will check if the el-
ements have the same number of neighbours. If we do that we get that {2}
has three neighbours, {1, 4, 5} have two neighbours and {3} has one neighbour.
We then split them up accordingly into ⇡

2

= (3|145|2) with the one with least
neighbours first. Now we check if the vertices in each cell of ⇡

2

has the same
number of neighbours in {5} which they does not, 1 and 4 are neighbours with
5 but 5 is not neighbour with 5. We then split them up accordingly and get the
starting node to be ⇡

3

= (3|5|14|2). This works well to split up the vertices for
graphs where the vertices has di↵erent number of neighbours, but for a regular
graph it will return the unit partition.

Now I will give an example on how we build the search tree. When we build
the search tree we do it in a depth first approach. We start at R(G, V p, V ) and
work our way down to a node as far as possible and then we backtrack to the
latest node were we still need to refine. When going forward into a higher level
we create a store containing the smallest non fixed cell unless the partition is
fixed, then we backtrack. That cell will be the elements we want to refine against
at this branch in order from lowest to highest, and when we refine against an
element we remove it from the store. When we backtrack to a node we refine
against the smallest element remaining in the store. If the store is empty we
backtrack to the most recent ancestor to the current node. We are done if the
store at the starting node is empty when we backtrack to it.

21



For the following graph:

The graph G

2

The start node of the search tree will be the unit partition since the graph
is regular. We will have a store consisting of all vertices. We start with refin-
ing against 1 and working our way down to a discrete partition. Here we have
reached a discrete partition.

The first terminal node of G
2

12345678

1|248|6|357

1|2|48|6|3|57

1|2|4|8|6|3|5|7
4

2

1

We backtrack and refine against 8 instead of 4.

22



The first two terminal nodes of G
2

12345678

1|248|6|357

1|2|48|6|3|57

1|2|4|8|6|3|5|7
4

1|2|8|4|6|3|7|5
8

2

1

Now we have refined against both elements at this level so we backtrack and
calculate the entire branch were we refine against 4 and then the entire branch
were we refine against 8.

The first branch of the search tree for G
2

12345678

1|248|6|357

1|2|48|6|3|57

1|2|4|8|6|3|5|7
4

1|2|8|4|6|3|7|5
8

2

1|4|28|6|5|37

1|4|2|8|6|5|3|7
2

1|4|8|2|6|5|7|3
8

4

1|4|2|8|6|5|3|7

1|8|2|4|6|7|3|5
2

1|8|4|2|6|7|5|3
4

8

1

Now we have done everything for the first branch so we backtrack to the
start node and we will add one branch at a time in the same way for each ele-
ment in the start node in order from the smallest to the largest.

Now I will give an example of how we prune the search tree with explicit
automorphisms. Whereas we before kept a store containing the smallest cell of
the last partition of the current node, we also update it with the help of the

23



automorphisms we have found so far. We will keep the store as the intersection
of the smallest cell and the minimum cell representative of the automorphisms
which fixes the node. We update the store at two di↵erent times. The first case
is when we arrive at a node (both going forwards and backwards). The other
one is when we find a automorphism between two terminal nodes. If we do that
we update the store of the latest common ancestor of the two nodes which we
found an automorphisms between.

When we have calculated the first two terminal nodes we can find the ex-
plicit automorphism �

1

= (48)(57). When we then backtrack, we can prune
the branch where we refine against 8 since its not a minimum cell representa-
tive of �

1

. We refine against 4 and then against 1 and find the automorphism
�

2

= (248)(357). This let us prune the branch we are on when we add it to
the store of the latest common ancestor. We backtrack to the start node and
refine against 2 and work our way down to the first terminal node on this branch.

Then we find the automorphism �

3

= (21)(36). It let us prune this entire
branch since 2 no longer is in the store of the start node and neither are 4 or 8.
We backtrack to the start node and refine against 3. We look for the first ter-
minal node on this branch. Then we find the automorphism �

4

= (152643)(78).
This let us prune this entire branch, and if we calculate the orbits of all the found
automorphisms we get (12345678) and we can prune the rest of the search tree
from the starting node.

The search tree for G
2

when pruning
12345678

1|248|6|357

1|2|48|6|3|57

1|2|4|8|6|3|5|7

4

1|2|8|4|6|3|7|5

8

22

1|4|28|6|5|37

1|4|2|8|6|5|3|7

2

4

1

2|148|3|567

2|1|48|3|6|57

2|1|4|8|3|6|5|7

4

1

2

3|567|2|148

3|5|67|2|4|18

3|5|6|7|2|4|1|8

6

5

3

Now when we know how to prune the tree given automorphisms, I will show
which terminal node we will keep as our best guess for the canonical labelling.
As a indicator function I will use the number of edges between elements of the
same cell of each partition of the node.

24



For the following graph:

The graph G

3

The starting node of the search tree will be the unit partition since the graph
is three regular.

The first three branches of the search tree for G
3

12345678910

⌘1 = 1|8|4|7|3|10|6|2|5|9
1

⌘2 = 2|9|10|5|7|8|6|1|3|4
2

3|19|67|58|24|10

3|1|9|6|7|8|5|4|2|10
2

3|9|1|7|6|5|8|2|4|10
4

3

When we compare the two first generated terminal nodes ⌘
1

and ⌘

2

, we get

25



that they have the same value for the indicator function ((15,0)), so we need to
calculate n(G�1) and n(G�2) where �

i

maps the elements of the last partition ⇡

i

in each node to their position in ⇡

i

. We then get that n(G�2) is larger and we
update our best guess to ⇡

2

but keep ⇡

1

as our first guess.

When we generate the first node on the third branch we get that the node
have indicator value (15,2) so then we know that no node on this branch can
be equivalent to an earlier one and since (15,2) is lexicography before (15,0) we
know that we will find a new best guess for the canonical label on this branch.
Which we do when we generate the first terminal node since it have a higher
indicator value then all earlier terminal nodes (15,4,0). We keep it as our best
guess and keep looking through the search tree.

When we know how to handle which of the non equivalent nodes we will
keep as our guess for the canonical labelling, we can handle how we find the
canonical labelling. Given the graph G

2

we found that the terminal node ⌫

which ended with the discrete partition ⇡

n

= (1|2|4|8|6|3|5|7) maximized C(G)
since all terminal nodes were equivalent and this one was the earliest. Then the
canonical labelling of G

2

will be G�

2

where � maps each element to their position
in ⇡

n

. And then we get:

The canonical form of the graph G

2

4.7 An analysis on how the algorithm handles some fam-

ilies of graphs

For some of the most common graph families it is easy to analyse how the
algorithm will handle them. In this part I will assume that there are room to
store all found pairs (fix(�),mcr(�)) the algorithm finds. I do this to be able to
show o↵ the maximum e�ciency of the algorithm .

26



4.7.1 How the algorithm handles K

n

How the algorithm handles the complete graph with n vertices or K

n

is easily
generalized for all n.

Lemma 4.5. Let G be the complete graph over n vertices, v 2 V and let
⇡ = (V

1

| · · · |V
m

) be in ⇧⇤, where v 2 V

k

.

Then ⇡ ? v = (V
1

| · · · |v|V
k

/v · · · |V
m

)

Since G is the complete graph, every element will have the same number of
neighbours with v (one) and hence we will not be able to refine more than to
move v to its own cell. ⇤

This gives us a lot of information on how the search tree will look like. It
will start with the unit partition, and during the refinement process we will only
move any one element to its one cell which means that we will get all n! possible
terminal nodes in the search tree.

Lemma 4.6. LetG be the complete graph with n vertices, let ⌘ = [⇡
1

,⇡

2

· · ·⇡
l

,⇡

m

]
where ⇡

m

= (V
1

· · ·V
m

) be any node in T (G) where we are going to refine against
v

j

. Then the first terminal node on the branch will be ⌘

n

= [⇡
1

· · ·⇡
t

]

where ⇡

t

= (V
1

|V
2

| · · · |V
l

|v|v
m1

| · · · v
mp

)

and v

m1

· · · v
mp

are the elements in V

m

except v in numerical order.

Since K

n

is n � 1 regular the start node of the search tree will be the unit
partition. This together with lemma 4.5 let us know that V

1

· · ·V
l

is fixed cells
and that v is in V

m

. If we now continuously use lemma 4.5 while refining against
the smallest element remaining in V

m

we get the wanted result. ⇤

From this we get that the first branch of the search tree for K

n

looks like
this:

First branch of the search tree for K
n

:

123 · · ·n

1|23 · · ·n

1|2|34 · · ·n

...

1|2|3| · · · |n� 1|n
n-1

3

2

1

27



Since Aut(K
n

) = S(n) all terminal nodes will be equivalent and the earliest
terminal node will be the canonical labelling, this node will be denoted  and
will have a length of n .

If we now look at the second generated terminal node which is the first one
on the branch where we refine 

n�1 against n instead of n� 1 it will end with
the partition ⇡

n

= (1|2|3 · · · |n � 2|n|n � 1) according to lemma 4.6. We will
then find the automorphism �

1

= (n�1, n). This let us prune this entire branch
since n is no longer in the minimum cell representation for n� 1. This will
hold in general for 

j , where 1  j < n . When we backtrack to 

j , the only
element in the store we have left to refine against will be j since we will have
found automorphism (k, k+1) for all n > k > j and the first generated terminal
node on that branch will give us the automorphism (j, j + 1) which will let us
prune the entire branch. Then we know that the algorithm will have to generate
n terminal nodes before being able to prune the rest of the search tree. This is
a lot less than the in total n! possible labellings but is at the same time one of
the worst case scenarios for the algorithm when working with simple connected
graphs since we only find automorphisms which are transpositions.

4.7.2 How the algorithm handles K

a,b

Another family for which it is easy to deduce how the algorithm handles it, is
the complete bipartite graph K

a,b

where a+ b = n. Let A = {v
A1

· · · v
Aa

}, B =
{v

B1

· · · v
Bb

} be two sets such that each part of the graph is in the same set.
For K

a,b

we have two di↵erent cases

• a = b

• a � b+ 1

The di↵erence between the two cases is that in the first case the graph becomes
a regular. This makes it so that the start node for the search tree is the unit
partition instead of it being first the elements of A as a cell and then the elements
of B as a cell as it would be if a > b. In the case of a = b when we refine the
starting node against an element v we will get either v|A \ v|B or |v|B \ v|A,
depending on which set v is in, since all the elements of A and B has the same
neighbours. Apart from how the start node looks the algorithm handles the two
cases very similarly and the e�ciency will be the same.

Lemma 4.7. Let G = K

a,b

, v 2 V and ⌘ = [⇡
1

· · ·⇡
k

] 2 T (G) where ⇡

k

=
(V

1

|V
2

· · · |V
l

), l � 2 and v 2 V

i

for some i between 1  i  k

Then ⇡

k

? v = (V
1

|V
2

· · · |v|V
i

/v · · ·V
k

)

Since k is larger than one we know that ⌘ is not the starting node when a = b.
Then we know that ⇡

k

is finer than [A|B]. Which means that every cell of ⇡
k

either contains elements from A or B but not both. Since all the elements in
the same set has the same neighbours, to refine against v will not do more then
to move v to its own cell. ⇤

28



Let us look at the first branch of the search tree for the case a > b. By
repeated use of lemma 4.7 we get that it look like

The first branch of K
a,b

when a > b

A|B

A|vB1|B/vB1

...

A|vB1| · · · |vBb

va1|A/va1|vB1| · · · |vBb

vA1| · · · |vAa|vB1| · · · vBb

vA(a�1)

vA1

vb(b�1)

vB2

vB1

Let us call this node ⌘. If we now look at the second generated terminal
node we will find the automorphism � = (v

Aa

, v

A(a�1)

). Similarly as for K

n

this result will hold in general. Let v

Ci

(where C either stands for the set A

or B which v

Ci

is in). be the element we refined ⌘

i against to get ⌘i+1. When
we backtrack to ⌘i we will have found automorphisms �

j

= (v
Cj

, v

C(j+1)

) for
i < j < |C � 1|. Then we only want to refine against v

C(i+1)

at ⌘

i and when
we do that we find the automorphism �

i

= (v
Ci

, v

C(i+1)

) which let us prune the
entire branch. In total we need to generate n labellings which is a lot less than
the a!b! possible ones. If a = b the first terminal node might look di↵erent if
1 2 B. Then we will start with refining against the elements of B first instead
of those in A. Though this have no e↵ect on the algorithm since we will find
automorphisms mapping each element not in C to each other before returning
to the start node whilst all later nodes will be handled the same. Then we only
have to refine against one element not in C, which i will call v

D1

. When we
generate the first terminal node on this branch we will find the automorphism
�

i

= (V
A1

, V

B1

) · · · (V
Aa

, V

Bb

) which let us prune the entire branch we are on.
This case is therefore as e�cient as a > b since it also needs to generate n

terminal nodes.

Its easier to analyse these families of graphs then for example C

n

the family
of cyclic graphs. This is because of the fact that these families have many edges.
They are then less dependant on the initial labelling. For both of these families
of graphs the search tree and the e�ciency of the algorithm does not depend on
the initial labelling whilst for other families of graphs it does.

29



5 Discussion

The algorithm handles graphs with vertices of many di↵erent degrees fairly
quickly. This is because the partition which will be the start node for the
search tree will be finer than ⇡ = (8v2 V : D(V, v) = 1|8v2 V : D(V, v) =
2 · · · |8v2 V : D(V, v) = n� 1). This will make it so that we have few options to
refine against at each node in the search tree when compared to for example K

n

.
Then the search tree will be small and we will get fewer terminal nodes to handle.

The problem for the algorithm comes when we have graphs with a large
automorphism group. Then the starting node will be quite coarse and then the
search tree will grow big. When the search tree grows big the algorithm have
to handle many terminal nodes, the amount will be a multiple of the size of the
automorphism group, and either prune them or determine if they are a better
guess for the canonical labelling.

The other problem we get for a large automorphism group is that we can
reach the limit of pairs of (fix(�),mcr(�)) which we can store. This forces us to
either make the number of pairs (fix(�),mcr(�)) we can store higher, or we will
not be able to use all found automorphisms. This will e↵ect the e�ciency of the
algorithm since we will not be able to prune as much of the search tree. Then
it will have to determine if all of the otherwise pruned terminal nodes could be
the canonical labelling.

To get a higher e�ciency for the algorithm one can choose a di↵erent way
to determine which elements to refine against in the search tree, instead of just
taking the smallest non fixed cell. The most e�cient choice varies a lot for
di↵erent families of graphs. Other options are to look at paths of length two
or adjacency triangles for each vertices and from that determine which cell to
refine against. For a full list of the di↵erent choices for this which comes with
nauty and when they are useful, one can read the nauty manual.[4]

30



6 References

Unless otherwise stated all information about nauty works comes from [5]

[1] László Babai. Graph isomorphism in quasipolynomial time. In Proceedings

of the forty-eighth annual ACM symposium on Theory of Computing, pages
684–697. ACM, 2016.

[2] Stephen G Hartke and AJ Radcli↵e. Mckay’s canonical graph labeling algo-
rithm. Communicating mathematics, 479:99–111, 2009.

[3] Brendan D McKay. Computing automorphisms and canonical labellings of
graphs. In Combinatorial mathematics, pages 223–232. Springer, 1978.

[4] Brendan D McKay. nauty user’s guide (version 2.5). Technical report,
Technical Report TR-CS-9002, Australian National University, 2009.

[5] Brendan D McKay et al. Practical graph isomorphism. 1981.

[6] Takunari Miyazaki. The complexity of McKay’s canonical labeling algo-
rithm. 28:239–256, 1997.

[7] Ryuhei Uehara, Seinosuke Toda, and Takayuki Nagoya. Graph isomorphism
completeness for chordal bipartite graphs and strongly chordal graphs. Dis-

crete Applied Mathematics, 145(3):479–482, 2005.

31


