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Abstract

The categorical set theory ETCS is an attempt to bypass some issues of
classical set theory. In this paper it will be presented in its original version
formulated by William Lawvere in 1963. The theory consists of axioms that
could be thought of as demands we make on a certain category. We give
an account for a model of this theory and use this model to show that the
theory is consistent.
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Introduction

For a foundation of mathematics we wish to have enough axioms to define and
derive everything we want to use in mathematics, including every theorem
and every proof. Many such foundations have been suggested and applied in
the setting of axiomatic set theory. Sometimes with great success.

However, sets are defined recursively by their elements. Elements in turn
are defined as sets and thus they are defined by their elements, which are
defined by their elements and so on. If we continue asking we will arrive
at a position when we need to say what a set really is. There are plenty of
different answers, which would depend on your beliefs about mathematics.
One such answer is offered by categorical set theory. This is a set theory
based on functions, instead than the membership-relation [14, p.39].

In category theory we study mathematical structures without specificing the
content of the structure. ETCS, Elementary Theory of the Category of Sets,
is a set theory where sets are objects in a category. As we will see, problems
like the one described above will vanish by presenting sets in a categorical
setting. If we want this foundation it is necessary that ETCS is consistent,
and to confirm this is the main task of this paper.

In chapter 1 we will present another set theory: RZC, or Restricted Zermelo
Set Theory with Choice. We will show that this weaker version of classical
Zermelo-Fraenkel set theory is consistent.

To make sense of ETCS we need chapter 2, dedicated to introduce key
concepts in category theory.

In chapter 3 we will use RZC as a metatheory as we will finally prove the
consistency of ETCS.

In chapter 4 we will return to the philosophical issue mentioned above: how
should we choose our foundations?



Chapter 1

The Formal System RZC

Kurt Godel’s Second Incompleteness Theorem (1931) states that any consis-
tent theory that is not too weak cannot prove the consistency of itself. Saying
that a theory is not too weak means that it includes elementary arithmetic.

This theorem is the main reason why our first chapter is dedicated to the
set theory Restricted Zermelo-Fraenkel with Choice (RZC). To show
the consistency of ETCS, we will need RZC as a metatheory. Since we want
every reader to understand what this means, the next section is a very short
introduction to model theory. We have used the definitions from Jech [6,
p.155].

1.1 Consistency

DEFINITION A formal language £ is a set of relation symbols, function
symbols and constant symbols.

The difference from what we usually call languages is that the symbols of
a formal language are fixed and does not change as we use them or by any
other reason, except when we add more symbols to the set.

DEFINITION A theory 7 is a set of sentences in a formal language.

In this paper, the theories RZC and ETCS will be presented as a set of
sentences in formal language of first-order predicate logic.

DEFINITION A model M in a language £ is a pair consisting of a universe
U of the model, and an interpretation Z that determines how every symbol
of the language £ will be interpreted in U.

If M models a theory T we write M |= T and this means that the sentences
in T are true in M. If a theory has very few sentences there will be many



possible models, but if we add more to the theory naturally we will get higher
requirements on the model. Perhaps we add contradictory sentences and in
that case we will not have any models at all. Often we want to add not too
few axioms to make a theory less trivial.

DEFINITION A theory is consistent if it is not possible to derive falsity (L)
by the rules of natural deduction. If this is the case we write:

TFL

Now we will present the formal system (i.e. a theory consisting of axioms,
inference rules and a language) RZC as a list of axioms. To prove the
consistency of RZC we will use a model M and for every axiom A in RZC
we will show that M = A. That is, A is true given our model and as we
show this for every axiom we get M |= RZC.

Why does this imply that RZC is consistent? By The Soundness Theorem
we have that 7 F ¢ implies T = ¢. Using the contraposition of this we know
that as RZC does not model L we also must have RZC ¥ 1, i.e. RZC is
consistent.

1.2 The axioms of RZC

Extensionality If two sets have the same elements, then the sets are the
same.
VeVy Vz(z€x > z€y) »ax=1y)

Null Set There exist a set () with no members.
Jx Vy —(y € )
Pair Set For all sets x and y there exists a set which consists of exactly x

and y.
VeVy3z(uez e (u=azVu=y))

Union For every set x there exists a set Uz that consists exactly of the
members of the members of z.

Vedy (uey <> Jvex (uew))

Power Set For every set x there exists a set P(z) that consists of every
subset of x.
Ve JyVz (z Cx >z €y)



Regularity Every nonempty set x have some element y that does not
intersect x.

Ve (z#0—3Jyecz(ynz=0))

Restricted Comprehension Scheme For every z and unary restricted
formula ¢ there exists a set y with the following property: a € y if and
only if a € z and ¢(a). This axiom is often refered to as Restricted
Separation Scheme.

JyVa(a€y<+racxApla))

Axiom of Infinity There exists a set w that contains @ and for each y € w
also y U{y} € w.

Jw (0 ewAVy ew (yU{y} € w))

Axiom of Choice Let A and B be sets and R C (A x B) a binary relation.
The axiom then states that if for every x in A there exists some y such
that (z,y) € R, then there exists a choice funtion f : A — B that
satisfies R(z, f(x)) for every x in A.

Vo € AJy € B(R(z,y)) — 3f : A — B(Vx € A(R(z, f(x))))

The reason we have chosen RZC and not the natural option Zermelo-Fraenkel
with Choice (ZFC) is because in ETCS there are no corresponding way to
quantify over a complete category, in the sense that we are able to quantify
over a complete set universe when we have the usual non-restricted Axiom
of Comprehension. With the exception of this axiom RZC is very similar to
ZFC.

More precisely the RZC version of Comprehension states that ¢ must be a
restricted formula, meaning that every quantifier of the formula is bounded
to some already well-defined set in the universe. For instance, in the universe
of sets, Ya(a € x) would not be a restricted formula but Va € y(a € z) is.

We must however mention that by transfinite recursion it is possible to
construct a bigger model than the one we soon will describe, such that the
Axiom of Comprehension is no longer restricted |7, p.3].



1.3 von Neumann’s Universe

A universe for a theory is a set whose members constitute a model for the
theory. We will show that the members of von Neumann’s Universe
constitute a model for RZC. The universe is built up recursively in the
following manner. First, let @ be a member. Then, let the power set of
be another member. Continuing taking power sets we get infinitely many
members of the universe. Altogether we get the following hierarchy of sets.

Vo=10
Vat1 = P(Va)
for finite ordinals «
Vi=UnxVn
for infinite ordinals A

The members are indexed by the ordinal numbers, or ordinals. We define an
ordinal number « as a transitive well-ordered set with respect to membership
€ [6, p. 19]. The finite ordinal numbers (which are the natural numbers) are

defined as 0 =0, 1 = {0}, 2={0,1}, 3 ={0, 1,2}, etc.

The ordinal number N or w is the number of elements in the set of all finite
ordinal numbers, and it is the least infinite ordinal. We will work with this
universe up to the level of V1 = Up<yViogn (there is no reason to think
about higher infinite ordinals for our purposes).

Important for our purporses is however that every V,, could be shown to be
transitive, meaning that,
reV,=xCV,

This property will allow us to find every set required by the RZC axioms.

A good example how transitivity helps us to achieve new sets is how we does
not find the set 3 in the recursion, but we will still have this set in V because

we have the set V3 = {0, {0}, {{0}}, {0, {0}}}.

The union of all V,, is denoted by V is the class of pure grounded sets and
further commentary on this fact can be find in Moschovakis [15, p.187-188].



1.4 Consistency of RZC

Assuming we got V, up to the level of V1., we want to deduce that the
axioms of RZC holds. This implies that V is model of RZC and by the
soundness theorem RZC is consistent.

In the following discussion every « and 8 will be considered ordinal numbers
smaller than w + w. We will sometimes use the fact that a + n also will be
smaller than w 4+ w when n < w. Some of the axioms demands existence for
certain sets. In these cases it will be enough to find the required sets on some
level below V4., in the hierarchy since our model is the union of all those
sets.

Extensionality This axiom will only fail if there were distinct sets containing
exactly the same elements. This is not possible, because if two sets x
and y contain the same elements we will get by transitivity that they
also have the same subsets. Then, by construction, x = y.

Null Set 0 is by construction an element of V; as well as other sets in V), so
this axiom holds.

Pair Set Let v € V,, and y € V3. Since any member higher in the hierarchy
(e.g. Viytw) is well-ordered by the ordinal numbers we know that also
z e Vg (ifa<pB)oryeV, (ifa>pf). The pair set {z,y} will
consequently be in Vi .x(a,3)+1- It follows that {z,y} € Vi1w.

Union Let z € V,,. Uz is defined as the set of all sets that are members of
some member of x. If u € x we know that u € V,, and by transitivity also
u C V. Members of u will be in V,, as well. These members constitute
Uz, so Ux itself must be contained a level above V,,. Therefore every
union of a set in V,, will be in V41, and the axiom holds.

Power Set Indeed, as we constructed the universe with power sets we clearly
have some power sets in V, but we have to argue for the general case.
However, this is also clear because if x € V,,, then P(z) € V,4+1 and
Va41 will still be on the level of V4, if V,, was.

Regularity This axiom only require that every set has an element satisfying
certain properties. If y € © € V, by transitivity y € « C V, and
therefore y € V.

Restricted Comprehension Scheme Let z € V,, and let ¢ be an arbi-
trary formula. We want to show the existence of the set y in the
universe, where y is defined as the set of all a € x such that ¢(a). By
transitivity we have that x C V,,. We also have y C x by the definition
of y. Taken together, we have that y C V,,. Then y € V41.



Axiom of Infinity If we associate every set in the hierarchy with with the
indexed integer we can note that V11 (the set of every subset of V)
contain the set of all natural numbers N as they were defined above.
The axiom of infinity demands for a certain set and we will see that N
will do.

First observe that ) € N. As we defined ordinal numbers, the other
requirement is that the successor of every finite ordinal number will
be an finite ordinal number as well. By rules of ordinal computing we
however have a + 1 < w whenever « is a finite ordinal less than w and
this fact follows.

Axiom of Choice Let x € V, and y € V3. We want to find the level of
the choice function f : x — y. Since f is a relation it is a subset of
the set « x y. The set x X y consists of ordered pairs (a,b) defined as
{{a},{a,b}} and with a € z and b € y |15, p.34]. This means that f
will be an ordered pair (a,b) for some sets a € x and b € y.

As both {a} and {a,b} are elements in Vi .x(a,8)+1 We know that the
union (a,b) will be in Vjax(a,8)4+2- Since max(a, f) +2 < w +w we
know that f € V4, and this confirms that the axiom of choice holds
in the model.

This finishes the proof that V1, is a model of RZC. In fact, of all models of
RZC that could be constructed from V it is the minimal, because we required
an infinite set and for the verifications we also required some sets higher in
the hierarchy.



Chapter 2

Categories

Category Theory was first presented in 1945 "General Theory of Natural
Equivalences" by Samuel Eilenberg and Saunders Mac Lane [12, p.12]. The
motivation was to describe transformation between different sections of
mathematics. To make such a transformation we use functors. Since functors
are everywhere in mathematics there is a broad spectrum of applications in
algebraic topology, abstract algebra, logic, computer science and more.

2.1 Preliminaries

DEFINITION A category is a collection of objects (a,b,c,...) and arrows
(f,g,h,...) with the following operations.

1. Domain assigns to each arrow f an object a = dom f
2. Codomain assigns to each arrow f an object b = cod f
We write f:a — b

3. Composition assigns to each pair of arrows f:a — b, g : b — ¢ with
cod f =domg a new arrow go f :a — ¢

4. Identity assigns to each object a an arrow 1, :a — a
We also require:

5. Unit For all arrows f :a — b, g : b — ¢, the identity arrow 1, works as
a unit in regards to composition, i.e. 10 f = fand goly =g

6. Associativity For all arrows f:a — b, g:b— cand k: ¢ — d we have
(kog)of=ko(gof)



Note that in every theory based on categories we take the notions of mappings,
domain, codomain and composition for granted similar to how in every theory
based on sets we presuppose the elementhood relation.

The definition of a category is very flexible. Naturally, we can consider the
objects to be sets and the arrows to be functions, and we will get the category
Set. On the other hand, as long as the requirements are fulfilled objects and
arrows could be anything. More examples of categories includes Grp, the
category with groups as objects and homomorphisms as arrows, and Top,
the category with topological spaces as objects and continuous functions as
arrows.

We describe properties of categories with diagrams. These diagrams, unless
nothing else stated, will be considered commutative. This means that for
every pair of objects A and B in the diagram, and every pair of well-defined
compositions of arrows,

fio..ofp:A— B

gio..0gm:A— B

We will have,
fio..ofp=9g10...009m

DEFINITION A functor F' is a mapping between two categories such that
objects are mapped to objects and arrows are mapped to arrows in such a
way that F' preserves domain, codomain, composition and identity arrows in
the following manner |2, p.8-9],

F(f:A— B)=F(f): F(A) —» F(B)

F(1a) = 1pa)
F(gof)="F(g)oF(f)

A functor could map from one category to another, as for instance 7 : Top, —
Grp that takes a topological space (with base point *) to its fundamental
group. A functor could also be P : Set — Set that take a set to its power
set.

DEFINITION Let F': D — C be a functor. Let ¢ be an object in C'. Then a
universal arrow is a pair (r,u), where r is an object in D and u: ¢ — Fr
is an arrow in C, such that for every object d in D and arrow f :c — Fd
there exist a unique arrow f’:r — d such that Ff' ou = f. We say that the
construction have the universal mapping property [10, p.55|.

&
[N
Fr -5 Ry



This is our first commutative diagram. When we assign the existence of an
unique arrow we draw it dashed, as F'f’ in this case. Note that I could be
a functor from C' to itself and this will indeed be the case for all further
universal constructions.

From a categorical point of view universal constructions are everywhere in
mathematics. By this reason, a formal theory based on categories will require
existence of such constructions. Some of these constructions are called limits.
We would require some further terminology to distinguish limits from other
constructions, but it will not be of any importance to do so. However, it will
be important that every limit have a corresponding colimit. For a limit the
colimit is the same construction except that for every arrow the domain and
the codomain is interchanged.

Finally, we will need the abstractions of surjective and injective functions of
category theory.

DEFINITION An arrow « is an epimorphism if for every pair of arrows f, g
we have that f o a = g o« implies f = g.

DEFINITION An arrow [ is a monomorphism if for every pair of arrows
f,g we have that fo f = 8o g implies f = g.

2.2 Limits and other universal constructions

In this section we will look upon three limits and their corresponding colimits.
As the first axiom of ETCS will be the existence of the following limits we
attach every definition with a formula in the language of first order logic.
These are formulas that hold in our model when we say limits exists. This
is also the case for two more constructions presented in this section, also
presented in first order logic.

DEFINITION An object 1 is a terminal object if for every object X there
exists a unique arrow h: X — 1.

VX b (h: X = 1)

DEFINITION An object 0 is an initial object if for every object X there
exists a unique arrow h : 0 — X

VX 3h (h:0— X)

0 and 1 are unique up to isomorphism by the following argument [2, p.34].
Say we did have two initial objects 0 and 0’ and let f: 0 — 0" and g : 0/ — 0
be two arrows. Since the arrow 1g : 0 — 0 must be unique by defintion we
know that g o f = 1o and since also the arrow 1o : 0’ — 0 is unique we have

11



fog = 1¢. This implies that 0 is isomorphic to 0’ (i.e. g is a two-sided inverse
to f). An analogous argument shows that 1 is unique up to isomorphism.

As we will later see (section 3.2), demanding these limits will be crucial steps
as we construct set theory in a categorical theory, allowing us to talk about
inclusion of elements and more.

DEFINITION A product of two objects A and B is an object A x B together
with two arrows p4 and pp called projections. In addition, the projections
have the following universal property: for every object X with arrows f4 :
X — A and fp: X — B there is a unique arrow h such that the following
diagram commutes.

X
fa i

~+

A+—AxB —— B
pA pPB

VX VfaVfp3h (paoh=faApgoh=fp)

h B

DEFINITION A coproduct of two objects A and B is an object A+ B together
with two arrows i4 and ig called injections. In addition, the injections have
the following universal property: for every object X with arrows g4 : A = X
and gp : B — X there is a unique arrow h such that the following diagram
commutes.

X

A~
Vh%
|

A—— A+B+—B

1A B

VX Vga Vg A (ho’iA:gA/\hoiBng)

DEFINITION For every pair of parallel arrows f,g: A = B a equalizer is a
an object F together with an arrow e : E — A with the property foe = goe.
An equalizer also has an universal arrow, such that for every k : X — A with
f ok = gok there is a unique arrow h : X — FE such that the following
diagram commutes.

VX VEk (fok=gok — Jh[k=eoh])

DEFINITION For every pair of parallel arrows f,g: A = B a coequalizer is
an object ) together with an arrow ¢ : B — () with the property go f = qog.

12



Again we have an universal arrow, such that for every k : B — X with
ko f = ko g there is a unique arrow h :  — X such that the following
diagram commutes.

A:{BHQ
!

X

VX Vk (ko f=Fkog— 3h[k=hoq)

There are other limits and colimits than those introduced above, but it will
be possible to construct those in ETCS as long as only these limits above
exists [8, p.11-12].

We will need two more universal constructions to present ETCS.

DEFINITION An exponent (in a category with products) from an object X
to an object Y is an object F (or YX) together with an arrow ¢ : F x X — Y.
In addition, the exponent have the universal property that for every object
U with an arrow U x X — Y there is a unique arrow ¢q : U — F such that
the following diagram commutes.

UxX

|
gxlx

~

FxX —=5Y
VX VY Vg 3G (eo (7% 1x) = q)

q

An exponent is an abstraction of function sets. In ETCS, every exponent
will be such a set, that for some other sets A and B, consists of exactly the
mappings f: A — B.

DEFINITION A natural number object (NNO) is a triple (N,0,s) with
arrows 0 : 1 - N and s : N — N. In addition, for every pair of arrows
with 1 —2— A —2+ A there is a unique arrow h : N — A such that the
following diagram commutes.

N—3 N
0 3h h
1424

VAVZL‘1V1‘QE|”Z(hOOZl‘l/\hOS::L‘gOh)

13



Chapter 3

The Formal System ETCS

In a classical set theory we assume we have a universe of sets, we say
that certain sets exists and we demand some further requirement. Then
we hopefully can prove as many true mathematical statements as possible.
Contrast this with ETCS. Now we say we have a category, we say some
objects exists and again demand some further requirements. Again we hope
that most of mathematics will follow. Even if we have to think about things
differently, the idea of an axiomatic system remains intact.

3.1 The axioms of ETCS

The axioms should be thought of as requirements for a fixed category. The
model we will use to prove the consistency of ETCS will have sets as objects,
but this is not presupposed in the axioms. That is, when we say object it will
not necessarily be a set. Nevertheless the axioms uses set-theoretic symbols
and notions. This is because we will have a special interpretation of these
concepts. In section 3.2 we will explain how this works.

Existence of limits There exist a terminal object 1 and an initial object 0.
For all objects A and B there exist a product A x B and a coproduct
A+ B. For all pair of arrows A = B there exist an equalizer e : £ — A
and a coequalizer ¢ : B — Q.

Exponent For all objects A and B there exists an exponent F' with an
evaluation arrow ¢ : F' x A — B.

Natural Number Object There exists a Natural number object with ar-
rows 0:1 —- Nand s: N— N.

Extensionality If f,g : A = B and we have that f o a = g o a holds for

14



every a € A, then we also have f = g.

Vf,g: A= B ((Va€A— foa=goa)— f=g)

Axiom of Choice If f: A — B is an arrow with nonempty domain there
exists an arrow g : B — A, the quasi-inverse to f, such that fogof = f.

Vf:A—-B(A#0—3g:B— A(fogof=1Ff))

Unique Empty Object Every object not isomorphic to 0 has elements.

VA(AZ 0 — Ja (a € A))

Disjoint Union Every element in a coproduct is a member of one but not
both its injections. That is, a sum is a disjoint union of its terms.

VAVB (x € A+ B— ((x €iaN—x €ip)V (mx €igNx €ip)))

Existence of Bigger Objects There are objects with more than one ele-
ment.
JA (Ja3db(ac ANbe ANa #D))

3.2 Understanding the axioms

In this section we will give more motivation how the complete list of axioms
will work as a substitute to classical set theory, or rather how to built up
mathematics from these axioms.

Since the objects and the arrows will be sets, it is natural to think that the
purpose of the first three axioms is to guarantee certain sets.

For a theory with all those constructions still some categories that are too
weak will model that theory. This is why we want to add the remaining axioms.
For instance in the category of abelian groups products and coproducts may
intersect and there are no guarantee that disjoint unions exist |3, p.4-5]. In
the category consisting of only objects 0 and 1, and with no other arrows
than the identity arrows and an arrow 0 — 1 there will be a vast amount of
mathematics not doable [8, p.19|.

Furthermore, these axioms allow us to make new interpretations of basic
concepts of set theory: elementhood, subsets and membership. Now we
redefine these notions in our new categorical setting.

15



DEFINITION If there exists a terminal object in a category, we define ele-
menthood a € A to be the case if and only if a : 1 — A is an arrow in the
category [8, p.9].

Hence € is a special case of arrow, unlike in set theory where it is presupposed.

Moreover we see that evaluation f(x) will be a special case of composition of
the arrows f and x. Given these definitions of elementhood and evaluation, it
will always be possible to understand properties of objects without considering
the content of the objects. We have bypassed the problem of defining
fundamental relations recursively mentioned in the introduction.

DEFINITION We define a subset ¢ C A as a monomorphism with coda = A.

DEFINITION For a subset a C A we say that x € A is member of a, and write
x€a, if there exists an arrow h such that the following diagram commutes.

1

h X

a

From now on, these well-known concepts will be interpreted as described in
this section. The axioms of ETCS above will now be intelligible.

3.3 The Category Neu

Our goal is to show that ETCS is a consistent theory by presenting a model
where ETCS holds. Similar to how a model for a classical set theory is a
universe of sets, a model for ETCS will be a category with sets as objects
and functions between sets as arrows. We will name this category Neu as it
is really the von Neumann universe thought of as a category instead of as a
set universe.

First, inspired by Awodey, note that every category could be visualised as
below (2, p.22|.
d
Cy — 4 &; C()

<o

identity
Here Cj is the objects in the category, C is the arrows, and Cj is the
collection of pairs of arrows (f,g) such that cod f = domg. When we have
decided what Cy, C7 and Cy consists of we have the model we will call Neu
and we are ready to test the axioms.

We choose Cj to be the sets in the class V1. In the previous chapter we
confirmed that pair, cartesian product and union of any sets in V4, will

16



also be sets in the universe. We choose Cy to be the sets of arrows ((z,y), f)
with f:x — y as a function between sets (we will use pointy brackets when
talking about functions, but as sets this is really the same as ordered pairs).

f being a function means that f is a functional and total relation f C x X y.
For every objects a, b and ¢ we have that f is functional if (a,b) € f and
(a,c) € f implies that b = ¢. We say f is total if for every element a € x
there exists a b € y such that (a,b) € f.

We also note that since x, y and f all are sets we have that C is a subset
to the collection (Cy x Cp) x Cp, which in turn is a subset of V1., by the
previous argument.

Composition of functions, which is associative, is defined as ((y,z),g) o
((x,y), f) = ((z,2),g0 f). As a set we write the composition of the arrows
fCxxyandgCyx zlike below.

gof={la,c) exxz]|Ibey ({a,b) € fA(bc)Eqg)}

Such functions are functional and total. Totality follows from construction.
To show functionality, let {(a,b), (a,c) € g o f. By definition of composition,
(a,b) € go f implies that there exist a d such that (a,d) € f and (d,b) € g.
Also, (a,c) € go f implies that there exist a d’ such that (a,d’) € f and
(d',c) € g. As (a,d) € f and (a,d’) € f, functionality of f implies that
d = d'. This means that (d,b) € g and (d,c) € g, so by functionality of g we
have b = ¢. That is, g o f is functional.

Furthermore, we confirm that Co C Cy x C1, and this means that this class
of arrows also is contained in the von Neumann universe.

We also confirm that Neu is indeed a category. The domain of an arrow
({x,y), f) is = and the codomain is y and therefore these two required
operations are well-defined. We also have identity arrows and unit. All other
requirements are already checked.

3.4 Consistency of ETCS

Initial- and terminal object We choose the initial object in Neu to be ()
and we choose the terminal object to be {#}. We will show that these
choices satisfies the demanded universal properties.

We first show that for every object X there is a unique arrow h : 0 — X.
In Neu this means h C () x X but we will often stick to the arrow
notation as it is usually how we write functions. However, in this
particular case () x X is not a pair (there is no function with empty
domain) and the only subset to h is . Hence h = () and h is unique.
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Then, we must show that for every X there also must be a unique arrow
h:X —1,or h C X x1. Since h is total we know that for every x € X
there is a y € 1 such that (z,y) € h. Since there is only one element ()
in 1 we get that by the extensionality axiom in our metatheory RZC
that every two functions contained in X x 1 will be the same sets, as
they consists of the same elements.

Before we cover the other universal constructions, we want to check if
the categorical extensionality axiom holds in Neu, since this property
will become useful later.

Extensionality Assume that f,g: A — B and f(x) = g(x) holds for every
x € A. Under these conditions, extensionality holds if f = g. We want
to show that (a,b) € f if and only if (a,b) € g for all (a,b). This will
imply that f = g, by the usual extensionality axiom that belongs to
our metatheory.

Let (a,b) € f. Since a € A we know that f(a) = g(a). f(a) is the set
of pairs (0,b) in 1 x B such that (a,b) € f and if g(a) is the same set
this implies that also (a,b) € g. We get the other direction by the same
argument with g instead of f.

Product We will choose the product A x B to be the set of ordered pairs
(a,b) where a € A and b € B. Let the projections be the functions
pala,b) = a and pg(a,b) = b. These sets and functions are well-defined
in Neu. Given arrows fq : X — A and fp: X — B we must show that
we have an universal arrow h C X x (A x B) such that the following
diagram commutes.

X

fa ih )

~

A+——AxB —— B
pA pbB

For every x € X we must have h(z) = (a,b) for some (a,b) € Ax B, but
this holds if and only if @ = pa(a,b) = fa(x) and b = pp(a,b) = fp(x),
SO we can write,

h={(z,(a,b)) | x € X,(z,a) € fa,{x,b) € cod fp}

But this is really just the function h(z) = (fa(x), fp(z)). Such an
arrow must exists and it is unique by construction.

Coproduct We will choose the coproduct A 4+ B to be the set of sets on the
form (a,0) or (b, 1) where a € A and b € B. We will have i4(a) = (a,0)
and ig(b) = (b,1) as the injections, because then the coproduct will be
a disjoint union of A and B (for any two elements x € A and y € B we
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have i4g(x) # ip(y)). We want to show that for this coproduct there is
a unique arrow h such that the following diagram commutes.

X

A~

1
ga B! 9B
|

ATA+BTB

Consider the following function, which clearly is well-defined in Neu.

h(u,v) = {gA(u) v=0

g(u) v=1

Working by cases, we note that both when v = 0 and v = 1 we get
a similar situation as in the product verification, since we defined
the universal arrow from the arrows ga,g9p : A, B = X. We have
h(u,0) = z if and only if g4(u) = x and h(u,1) = z if and only if
gB(u) = x, but this implies directly that h above is the only possible
option.

Equalizer Let f,g: A = B be two parallel arrows between two objects in
Neu. We choose the equalizer E to be the set of elements a of A such
that f(a) = g(a). It is possible from our metatheory to construct such a
set by the Axiom of Restricted Comprehension. From this definition of
E it is clear that the equalizer arrow e : E — A is simply an inclusion
function.

Assuming that k£ : X — A is an arrow such that f ok = g o k we want
to show that there exist a unique function h C X x E such that the
following diagram commutes.

This function will be k with codomain restricted to I, that is,
h={(z,y) € X x E | k(z) = e(y)}

This arrow is indeed a function. To show this, we have to show that
h is functional and total. We will use that every inclusion function
is injective. If we have (z,y1) € h and (z,y2) € h we have both
k(z) = e(y1) and k(z) = e(y=2) so since e is injective we get y; = y2 and
h is functional.

Now pick one x € X and name k(z) =y € E. e is an inclusion arrow
so e(y) = y. Since k(z) = e(y) we know it exists y € E such that
(x,y) € h, so h is total.

19



To show that h is unique we will again use that e is injective. If we
have two different hy and he satisfying e(hi(z)) = e(ha(z)) for some
x € X we get from this property that hj(x) = ha(z). This is true for
every x so by extensionality we get h; = hs. Note that we also proved
that e was a monomorphism.

Coequalizer To show the existence of coequalizer ¢ : B — Q, start by
defining an equivalence relation by ~ := N {~ C B x B | ~ is an
equivalence relation such that f(a) ~ g(a), Va € A}. We use that the
intersection of several equivalence relations is an equivalence relation as
well. Also note that ~ is not empty, because the equivalence relation
that identifies every element in B to every other element will be in the
intersection.

The definition of ~ guarantees that it is the smallest equivalence relation
such that f(a) ~ g(a). That is, small in the sense that most elements
neither in the image of f nor g will be identified with other elements.

We further define @ = {[b]~ | b € B} as the set of equivalence classes of
this relation. Then ¢ will map every element of B to its corresponding
equivalence class. For this construction we want to show that there is
an universal arrow.

!
A?B%Q
N b
X

Recall that k by definition has the property that ko f = ko g. From
this we know that k(f(a)) = k(g(a)) for every a € A. Since f(a) ~ g(a)
we know that two elements in the same equivalence class will never be
mapped to different values in X. This means that h could be k with
domain Q.

h={{y,z) € Q x X | k(qg”'(y)) = «}

h is functional because every z is uniquely determined by k(¢ '(y))
and it is total simply because k(g !(y)) takes a value for every y.

It is clear by the definition that ¢ is a surjective and we will use that
to show that A is unique. First assume that hq o ¢ = ho 0 ¢. Since q
is surjective we know that for every y there is a x such that y = ¢(x).
We now get that hi(y) = hi(g(z)) = ha(q(z)) = ha(y) and since
consequently hq(y) = ha(y) holds for every y we get by extensionality
that h; = ho. In addition we showed that ¢ is an epimorphism.

We must say something about the existence of equivalence relations
in Neu. This will get a special meaning when working in a category,
see Lawvere [8, p.25-26]. B under the equivalence relation ~ will be
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a subset of B x B, but we will also need characteristic functions that
partition sets into subsets that do or do not satisfies properties. We
can meet this need in a category with a subobject classifier. Such a
construction will be derivable from the other axioms of ETCS, see
Goldblatt [5, p.79-82].

Exponent For every two objects X and Y the exponent in Neu will be a
set F' consisting of functions f € X x Y. These functions are subsets of
P(X x Y) and since this is a set in V4, we know that F' is an object
in Neu. We let the evaluation map ¢ be a function that takes pair sets
(f,x) to the composition f(x). Now we want to show that we have an
universal arrow ¢ such that the following diagram commutes.

UxX

|
gx1x
<+

FxX —=5Y

q

We want ¢ to be like ¢ except that its domain is restricted to U. We
define,

q(u) = q(u, )
Take an arbitrary u € U and x € X. This choice of § will imply that,
(q X 1x)(u,$) = ((j(u),:c) = (Q(U, —),.’E)

By the definition of ¢ we moreover have e(q(u, —),x) = q(u, x) and this
means € o (¢ X 1x) = ¢ as required.

This is also the only arrow of this kind. Assume ¢ : U — F is

another arrow such that € o (¢ x 1x) = ¢. Then we would have
e(q(u, —),x) = q(u, ) and moreover q(u,z) = q(u,x), which implies
that ¢ = q.

Natural Number Object Recall that a NNO is a triple (N,0,s). Let N
be the finite ordinal numbers. Define s(n) = n U {n}, which will be
well-defined in Neu. Assuming there are arrows x; : 1 — A and
To: A — A, we want to show that there is a unique arrow h such that
the following diagram commutes.

N—— N
0 [ |k
1254254

First we will show that for every n € N there exists an arrow h,, with

domh,, = {k | k <n} and cod h,, = A such that the diagram above
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commutes for that particular element of N. We will show by induction
that the following recursive function qualifies.

hn(m):{xl m =20

x2(hp—1(m)) otherwise

Let 21,22 € A. We will first do the base case, confirming that ho(0) =
x1. All we need to check is that (0, x1) is in hg, and this is clear by the
definition of hg.

Assume now as induction hypothesis that there is some natural number
n such that h,(0) = z; and hy,(s) = x2(hy). We will use this to show
that hp11(0) = 21 and hyy1(s) = x2(hpg1). We first observe that
(0,21) € hpt1, so we know that hy,+1(0) = ;1.

Let m € N and a,a’ € A. If we assume (m,a) € h,y1 0 s we get that
there exists a u such that (m,u) € s and (u,a) € hpt1. Using the
definition of h and the induction hypthesis we have,

a = hpt1(u) = hny1(s(m)) = z2(hn(s(m))) = z2(w2(hn(m)))

If we assume (m,a’) € x9 0 hy,11 we get that there exists a v such that
(m,v) € hyy1 and (v,a’) € za. Using the definition of h we have,

d' = x2(v) = z2(hnt1(m)) = za(w2(hn(m)))

We see that a = o/, which implies that hp11(s) = x2(hpt1). By
induction, h, will make the diagram above commute for every n.

Next thing is to show that h,, also is unique for every n. Assume that
h!, is another function satisfying the requirements. We will show that
hyn, = hl, for every n, again by using induction. The base case follows
directly, if ho(0) = z1 and h{(0) = 1 then by extensionality hy = hy.

As induction hypothesis we assume there are some n € N such that h,, =
h;, and we want to show that h, 1 = hj, ;. Assume that hy,41(m) = apm
and hyp(m + 1) = am41. This holds if and only if (m, ayy1) € hy, 0 8.
By the commutativity property this means (m, a,,+1) € x2 o h,,. Hence,
there exists a y € A such that h,(m) =y and 22(y) = amy1. It follows
that y = ay,. It did not matter if we did this for h or A’ and therefore,

hn+1(m) = am < hp(m) = am,

Py (M) = am < Iy (m) = am

Using the induction hypothesis we then get for every m,

has1(m) = am & hy g (m) = ap,
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S0 hypq1 = hi, ., by extensionality and therefore, by induction, h, = hj,
for every n.

Finally, now we can use these functions to define the universal arrow
we wanted,
h=Upenhp :N— A

By construction, this function is unique and makes the diagram above
commute.

Axiom of Choice Let f: X — Y be a function with nonempty domain.
We want to show that thereis a g : Y — X such that fogo f = f. We
will use a alternative version of the set theoretic version of axiom of
choice than the one presented in chapter 1. Our choice of metatheory
allows us to use this version of the axiom. It states that for every y € Y
there exists a choice function g : Y — Uyey H(y) with g(y) € H(y), as
long as every H(y) # (). Here H is a function that we define, for some
xg € X, as below.

JH{zey Ty =0
)= {f—1<y> ) £0

Hence H(y) # 0 and the function g exist by the axiom. To show that g
satisfies the requirements for the categorical axiom of choice, note that
g(y) € f~1(y) for every g, and that this implies that f(g(y)) = y. Now
choose = € f~1(y) (this also means f(r) = y) and compute:

(fogo f)(x) = flg(f(x)) = flg(y) =y = f(z)
In other words, the requirements are fulfilled.

Unique Empty Object As a set is empty if and only if it is the empty set,
indeed 0 will be the only empty object in Neu.

Disjoint Union If we let v € A + B this axiom requires that either u&i,
or u€ig. Recall that this means that the following diagram commutes
for some h, with the injections 74 and ip being monomorphisms.

- ~
h .- ~_h
// u \\

~
-

AKTA—FB%B

~

To prove this we take a detour to some results by Lawvere. He shows
that 14 and ip h@s no members in common, so if we show that u€iy4 it
will follow that uéip, and the object of a coproduct is really a disjoint
union [8, p.20].
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It is clear by construction of coproducts in Neu that every element of
A+ B is a element of A or B, so we can suppose that the arrow h exist.
We only have to verify that the injections are monomorphisms.

To show this, we will use the exponent axiom. Lawvere has shown that
in a category with exponents the distributivity relation below holds |9,
p.126-129].

Ax X1 +Ax Xog=AX (X1+X2)

The other part of the proof is that in a distributive category injec-
tions are monomorphisms [4, p.153]. We skip to repeat these cited
verifications but conclude that the Disjoint Union Axiom hold.

Existence of Bigger Objects As all sets in von Neumann’s universe up
until V4., are objects in Neu, certainly there are objects with more
than one element.

24



Chapter 4

Further comments

4.1 The relation between the two theories

By the arguments in the previous chapter von Neumann’s universe constitute
a model of ETCS, and this in particular shows that this theory is consistent.
We have used RZC barely as means to reach this goal, but in fact more
could be said about the relation between RZC and ETCS. These two theories
are equiconsistent, or inter-interpretable, meaning that one of the two is
consistent if and only if the other one will is consistent.

As we have already proved that consistency of ETCS provided that RZC is
consistent, it would be natural to do the opposite to prove the statement
above. However, Mac Lane and Moerdijk have a proof that covers both
directions at once [11, p.331-343|. They make a mutual interpretation of RZC
and ETCS. The idea is to think a set x as a tree with itself as its root, and
then consider the children of x as elements of the set x. We will not explain
further but in this way the authors interpret both theories at the same time.
This implies that the theories are equiconsistent.

In fact, they do not work with categories fulfilling the ETCS axioms as we
have presented it in this text, but with a well-pointed topos. This is a category
with limits, exponents, NNO, subobject classifier (mentioned on page 21),
endowed with extensionality and choice. The reason why the argument by
Mac Lane and Moerdijk applies for ETCS is that it can be showed that a
category fulfills the conditions for being a well-pointed topos if and only if it
satisfies the axioms of ETCS.

As we now see that RZC and ETCS are equally strong theories it is not
obvious which one is the better. It all boils down to the philosophical issue
on the ontology of mathematics.
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4.2 Philosophically speaking

In this paper a set theory based on categories have been presented and proven
to be consistent. To some readers it still may not seem obvious why such a
set theory would be relevant, especially when it turned out that this theory
have the same strength as RZC.

One reason to prefer categorical set theory is that you are a structuralist.
In that case you believe every mathematical theory describes structures
between mathematical objects that in themselves lacks internal properties.
In a category we have such a structure that has no such internal properties
of objects. This is a difference from classical set theory.

As we have seen the sets of categorical set theory are not like sets in other
set theories. Set theories based on recursive definitions, as described in the
introduction, regards sets merely as codings of mathematical objects. For
instance, in chapter 1 we defined 0 as (). However, ) is still () and not zero.
In ETCS, on the other hand, the arrow 0 : 1 — N should be thought of as
zero. If something is isomorphic to zero, it is isomorphic to this particular
arrow [13, p.495-496].

Non-structuralists could argue that nothing in a category really exists in the
common use of the word [1, p.10]. If not the idea of categories is rooted
somewhere, but are independent from everything else, have we not neglected
an important ontological question? Indeed, we must actually deal with such
questions when thinking about foundations.

Those who thinks this is an issue must however admit that, ontologically,
neither are sets any straight-forward concept. But structuralists would even
claim that the lack of demands for existence is a benefit of ETCS, because in
this way the theory is applicable to many structures instead of only one [14,
p.42].

Moreover, even if you not regard the essence of mathematics to be structures,
you still may consider a set theory like ETCS to be legit. Even if you think
something else lies behind structures, you still may think that a theory based
on categories better describes how mathematics is built up.

Another argument to work with ETCS rather than RZC or ZFC is that the
latter theories includes all the structural properties that ETCS includes, but
they also include other properties. There are no model of ZFC that only
includes the axioms that all possible ZEC model shares [13, p.493-497]|. A
model for a categorical set theory however, will always be in this way, since
sets only have structural properties.
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In sum, categorical set theory may or may not be closer to your philosophical
convictions. Some may argue that categories are more like how we think
about mathematics, but some may argue that it says little or nothing about
the contents of mathematics. However, ETCS will not make us poorer as it
will give us all the mathematics that we need.
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