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Abstract

In this thesis we show that the Artin braid group is isomorphic to the funda-
mental group of the configuration space of the Euclidean plane. We give enough
group theory to define the braid groups as well as some of its subgroups. We then
define the homotopy groups and fiber bundles, and show that fiber bundles induce
a long exact sequence of homotopy groups. After defining the configuration space
of a topological space, we show that a certain map between configuration spaces is
a fiber bundle, and we then use the long exact sequence of homotopy groups along
with the results about the braid groups to prove the main theorem.

We end with a brief discussion about another result we conclude using this fiber
bundle, namely that the configuration space of the Euclidean plane is a classifying
space of the Artin braid group.
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1 Introduction
The goal of this text is to show that the Artin braid group on n strings, Bn, is isomorphic
to the fundamental group of the n:th configuration space of the plane R2; concepts
which we will introduce in Section 2 and Section 3 respectively.

The notion of a braid was first introduced by Emil Artin in the 1920s to formalize
intertwining of strings, hence the name. He pointed out that braids with a fixed number
of strings form a group.

To get the most out of this text, the reader would benefit from having taken a course
in topology where concepts such as the fundamental group is being covered, as well
as being familiar with group theory. The content of Section 2 and 3 are mostly from
[2] and [3], with the details filled out by us. The part about the Seifert-Van Kampen
theorem in Section 3 comes mainly from [5]. Section 4 is mostly from [1], with some
modifications.

In Section 2 we will try to get as much as possible out of the group theory part of
the paper. We start by defining the free group and group presentations to get a nice
way of describing the Artin braid group Bn. We then define two subgroups of the Artin
braid group - one of them being the pure braid group Pn, and the other one the kernel
of a certain homomorphism fn : Pn → Pn−1 denoted Un. We then go on to show how
the generators of Un will tell us more about Pn, with proofs left for Section 4. We end
by proving the five lemma which will be used in later sections.

Moving to Section 3 we will start by giving some of the properties of covering
spaces, and the define the higher homotopy groups πn(X ,x0) for a topological space
X with base point x0 ∈ X , which are higher dimensional analogues of the fundamental
group of a topological space. Then we compute the homotopy groups of the wedge
sum of n circles, using mainly the Seifert-Van Kampen theorem. We then define a fiber
bundle and show that that construction gives us a long exact sequence of homotopy
groups, which we will make use of in Section 4 after we define the configuration space
Fn(X) of a topological space X and show that a certain map between to such spaces is
a fiber bundle.

Section 4 will be dedicated to the main proof of the text. We piece together the
two previous sections to show that the Artin braid group Bn is isomorphic to the fun-
damental group of the unordered configuration space of R2, π1(Cn(R2)). We will start
by showing some of the properties of configuration spaces resulting from the theory
presented in Section 3, and in particular the long exact sequence of homotopy groups.

The very brief Section 5 will be dedicated to show that the homotopy groups of the
n:th configuration space of R2, πk(Cn(R2)), all vanish for k ≥ 2.
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2 Artin Braid Group
In this section we define the Artin braid group, and mention some of its properties as
well. We will also prove the five lemma which will be used in Section 4.

Definition 2.1. Let G,H be groups. The free product of G and H, denoted G ∗H, is
the set of all finite sequences of the form

a1 ∗a2 ∗a3 ∗ ...∗an

where ai is an element of either G or H for all i, subject to the following relations:

...∗ai ∗1∗a j ∗ ...= ...∗ai ∗a j ∗ ...
...∗ai ∗g1 ∗g2 ∗a j ∗ ...= ...∗ai ∗ (g1g2)∗a j ∗ ...,

and similarly for elements of H. This set forms a group with ∗ as the operation, in the
sense that

(a1 ∗ ...∗an)∗ (b1 ∗ ...∗bm) = a1 ∗ ...∗an ∗b1 ∗ ...∗bm.

We will now define the free group. To do this we begin by defining a free group
on one generator. Let S be a set and σ ∈ S. The free group generated by σ is the set
{σ}×Z with the operation defined by (σ ,n)(σ ,m) = (σ ,n+m). We abbreviate (σ ,n)
as σn. The free group generated by S is the group

F(S) =∗
σ∈S

F(σ).

Proposition 2.1 (Universal property of free groups). Let G be a group and S a set. Let
ϕ : S→G be a function from S to the underlying set of G. Then there is a unique group
homomorphism Φ : F(S)→ G such that the following diagram

S F(S)

G

ϕ
Φ

commutes. The horizontal arrow is just the inclusion of S.

Definition 2.2. Let S be a set and R be a set of elements of F(S). We define a group
presentation as

〈S|R〉= F(S)/R̄,

where R̄ is the smallest normal subgroup of F(S) containing R, in the sense that if we
have a normal subgroup T of F(S) such that R⊂ T ⊂ R̄, then we must have that T = R̄.
We usually call S the generators, and R the relations.

For example, the presentation 〈σ | ∅〉 = F(σ) ∼= Z and 〈σ1,σ2 | [σ1,σ2]〉 ∼= Z2,
where the bracket denotes the commutator [x,y] = xyx−1y−1.
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To define a homomorphism ϕ from a presentation 〈S|R〉 to a group G is the same as
defining a homomorphism ϕ̃ from F(S) to G such that ϕ̃(r) = 1 for all relations r ∈ R.
We can summarize this property in the following diagram

F(S) G

F(S)/R

ϕ̃

ϕ

where we factor ϕ̃ through the kernel.

Definition 2.3. The Artin braid group on n strings, Bn, is the group generated by the
n−1 generators σ1, ...,σn−1 and the relations

σiσ j = σ jσi

for all i, j = 1,2, ...,n−1 with |i− j| ≥ 2, and

σiσi+1σi = σi+1σiσi+1

for all i, j = 1,2, ...,n−2.
These relations are usually referred to as the "braid relations". We will usually just

call the group the braid group on n strings, and the elements braids.

The group B1 is the trivial group, and for B2 we get an infinite cyclic group isomor-
phic to Z.

If we add the relation σ2
i = σi to the braid relations, we get a presentation for

the symmetric group Sn, where the σi’s correspond to the transpositions of the form
(i, i+ 1). It is well known that every permutation can be written as a product of such
transpositions, and one can check that they indeed satisfy the relations.

A nice way to visualize these braids is to see them as intertwined strings like in
Figure 1. We can think of the generators σi as twisting the i:th and (i+ 1):th strings,
like in Figure 2. The composition of two braids can be seen as placing one braid above
the other and tying together the strings, like in Figure 5 further bellow. With this in
mind, we can think of the permutations in Sn as braids, but where twisting two string
clockwise gives the same braid as twisting anti-clockwise.

We will now define two important subgroups of Bn, the first one being the pure
braid group, and the second a subgroup of that. These subgroups will tell us more
about Bn and the exact reason will become apparent later in Section 4. We start with
the following lemma.

Lemma 2.2. If s1, ...,sn−1 are elements of a group G that satisfy the braid relations,
then there is a unique homomorphism f : Bn → G such that f (σi) = si for all i =
1, ...,n−1.

Proof. Let F(S) be the free group generated by S = {σ1, ...,σn−1}. By the universal
property of free groups there exists a unique homomorphism f̃ : F(S)→ G such that
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Figure 1: Braid in B5

Figure 2: The element σ2 in B5

f̃ (σi) = si for all i = 1, ...,n− 1. Since G is assumed to satisfy the braid relations we
get

f̃ (σiσ j) = f̃ (σi) f̃ (σ j) = sis j = s jsi = f̃ (σ jσi)

for |i− j| ≥ 2, and

f̃ (σiσi+1σi) = f̃ (σi) f̃ (σi+1) f̃ (σi) = sisi+1si = si+1sisi+1 = f̃ (σi+1) f̃ (σi) f̃ (σi+1)

= f̃ (σi+1σiσi+1),

so f̃ induces a homomorphism f : Bn→G, provided that the braid relations get mapped
to the identity.

In particular, if we pick G = Sn where Sn is the symmetric group, since the trans-
positions (i, i+ 1) ∈ Sn satisfy the braid relations, we have a unique homomorphism
π : Bn → Sn such that π(σi) = (i, i+ 1) for all i = 1, ...,n− 1, and since the transpo-
sitions generate the symmetric group, this homomorphism is surjective. We call the
kernel of this homomorphism, ker(π : Bn → Sn), the pure braid group on n strings,
denoted Pn.

Proposition 2.3. Define for 1≤ i < j ≤ n and for generators σ1, ...σn−1 ∈ Bn

Ai, j = σ j−1σ j−2...σi+1σ2
i σ−1

i+1...σ
−1
j−2σ−1

j−1.
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Figure 3: Braid relations

The elements Ai, j generate Pn, with relations

A−1
r,s Ai, jAr,s =





Ai, j if s < i or i < r < s < j
Ar, jAi, jA−1

r, j if s = i
Ar, jAs, jAi, jA−1

s, j A−1
r, j if i = r < s < j

[Ar, j,As, j]Ai, j[As, j,Ar, j] if r < i < s < j.

Proof. See [1].

For a picture of the generators of Pn, see Figure 4. The pure braids will the braids
where the start and endpoint of each string lies on a vertical line.

The next subgroup will be defined as the kernel of the forgetting homomorphism
fn : Pn → Pn−1 which "forgets" about the n:th string of a braid in Pn. We define fn as
follows:

fn(Ai, j) =

{
Ai, j j < n
1 j = n.

It is fairly easy to see that this is well defined. What we do is examine the relations for
Pn above and let one of the letters i, j,r,s be equal to n, and then check that they indeed
get mapped to the same element. For example, for the first relation

A−1
r,s Ai, jAr,s = Ai, j if s < i or i < r < s < j,

the only case we have to check is when j = n. So we get

fn(A−1
r,s Ai,nAr,s) = A−1

r,s 1Ar,s = 1,

and
fn(Ai, j) = 1,

and similarly for the other relations.
See Figure 4 for a visualization of fn.
We denote the subgroup by Un = ker( fn : Pn→ Pn−1).
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Figure 4: f7 : P7 3 A2,5 7→ A2,5 ∈ P6

Definition 2.4. Let {Gi}i∈Z be a family of groups and {di : Gi→Gi+1}i∈Z a family of
group homomorphisms. A sequence

. . . Gi Gi+1 Gi+2 . . .
di−1 di di+1 di−2

is said to be exact if for all i, im(di) = ker(di+1).

In particular, for a short exact sequence

1 G H K 1,
f g

where 1 denotes the trivial group, we get that f has to be injective and g surjective.

Definition 2.5. Let G be a group. If H is a subgroup and N a normal subgroup such
that H ∩N = {1} and G = NH. We then say that G is the semidirect product of N and
H, written G = N oH.

Proposition 2.4. Let

1−→ K
f−→ G

g−→ H −→ 1

be a short exact sequence of groups. If g has a section, i.e. there exists a homomorphism
s : H→ G such that g◦ s = idH , then G = im( f )o im(s).

Proof. Firstly, since the sequence is exact im( f ) = ker(g), so im( f ) is a normal sub-
group.

We now want to show that if x ∈ G then there exists y ∈ im(s) and z ∈ im( f ) such
that x = yz. Since g is surjective, im(s) = im(s ◦ g). Let y = s(g(x)) and let z = xy−1.
We will now show that z ∈ im( f ).

g(z) = g(xy−1) = g(x)g(y−1) = g(x)g(y)−1 = g(x)(g(s(g(x))))−1 =

= g(x)idH(g(x))−1 = g(x)g(x)−1 = 1,
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so z ∈ ker(g) = im( f ), y ∈ im(s) and since x = yz, we have that G = im( f )im(s).
Now we need to show that im( f )∩ im(s) = {1}. Let x ∈ im( f )∩ im(s). Then

x = f (k) = s(h) for some k ∈ K and h ∈ H. Since im( f ) = ker(g) we get

1 = g( f (k)) = g(s(h)) = idH(h) = h,

so
x = f (k) = s(h) = s(1) = 1

which shows that im( f )∩ im(s) = {1}.

We have the inclusion ι : Bn−1→Bn defined by ι(σi)=σi. From the braid relations,
it is clear that this defines a homomorphism. In particular, if we restrict this map to the
pure braid group Pn−1 we have a homomorphism Pn−1

ι→ Pn. This particular restriction
turns out to be rather important, and we will make use of it in Section 4 for the main
proof of the text.

Lemma 2.5. Since the sequence 1−→Un −→ Pn
fn−→ Pn−1 −→ 1 is exact, and fn has

a section ι : Pn−1→ Pn which is just the inclusion map, we can write Pn = Un oPn−1.
Every β ∈ Pn can be expanded uniquely as

β = ι(β ′)βn,

where β ′ ∈ Pn−1 and βn ∈Un. Here β ′ = fn(β ) and βn = ι(β ′)−1β . We can see that
β ′ ∈ im(ι) since fn is surjective, and βn ∈Un since fn(ι(β ′)−1β )= fn(ι(β ′)−1) fn(β )=
β ′−1β ′= 1. Applying this expansion inductively, we can conclude that every pure braid
β ∈ Pn can be written uniquely as

β = β2β3...βn,

for β j ∈U j ⊂ Pj ⊂ Pn, j = 2,3, ...,n.

Theorem 2.6. The group Un is free on the generators {Ai,n}i=1,2,...,n−1.

A proof of this theorem will be given in Section 4.
We will now prove the five lemma which will be used later in the main proof of the

text.

Lemma 2.7 (Five lemma). Consider the commutative diagram

1 G1 G2 G3 1

1 H1 H2 H3 1

g1

ϕ1

g2

ϕ2 ϕ3

h1 h2

of groups, with rows exact. If ϕ1 and ϕ3 are isomorphisms, then so is ϕ2.
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Proof. We start by showing ϕ2 is surjective. Let x be and element in H2. Since ϕ3 is an
isomorphism there exists a y∈G3 such that ϕ3(y) = h2(x), and since the rows are exact
there exists a z ∈G2 such that g2(z) = y. Now by commutativity of the right square we
get

h2(x) = ϕ3(g2(z)) = h2(ϕ2(z))

which implies
h2(ϕ2(z)x−1) = 1

By exactness of the bottom row we get that ϕ2(z)x−1 ∈ im(h1) so there exists an a∈H1
such that h1(a) = ϕ2(z)x−1, and since ϕ1 is an isomorphism there exists b ∈ G1 such
that ϕ1(b) = a. Now we consider the element g1(b) and apply ϕ2. By commutativity
of the left square we get

ϕ2(g1(b)) = h1(ϕ1(b)) = h1(a) = ϕ2(z)x−1

which implies

x = ϕ2(g1(b−1)z)

so ϕ2 is surjective.
For injectivity, we start by taking an arbitrary element x ∈ G2 such that ϕ2(x) = 1.

Now we want to show that x = 1. By commutativity of the right square we get

1 = h2(1) = h2(ϕ2(x)) = ϕ3(g2(x))

which means g2(x) ∈ ker(ϕ3) and since ϕ3 is an isomorphism g2(x) = 1 so, by ex-
actness of the upper row x ∈ im(g1) so there exists a y ∈ G1 such that x = g1(y). By
commutativity of the left square we get

h1(ϕ1(y)) = ϕ2(g1(y)) = ϕ2(x) = 1

and since h1 is injective by exactness of the bottom row, ϕ1(y) = 1 and since ϕ1 is an
isomorphism y = 1. So we have that

x = g1(y) = g1(1) = 1

Since the kernel is trivial, ϕ2 is injective, and hence an isomorphism.
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3 Homotopy Theory
In this section we will lay out some of the basic concepts and definitions of homotopy
theory, and show that we get a long exact sequence of homotopy groups which will
lead us to the generators of the group Un from the previous section, which in turn will
lead us to the main proof of the next section. We start by going through the definition
and some properties of covering spaces.

Definition 3.1. A continuous map E
p→ B between topological spaces E and B is a

covering map if it is surjective, and if for every b ∈ B there exists an open neighbor-
hood U of b such that p−1(U) is a union of disjoint open sets, each of which maps
homeomorphically onto U by p. We will call such U evenly covered, and for b ∈ B, we
denote the set p−1(b) by Fb, the fiber over b. The space E is called a covering space.

One classic example of a covering space is p : R→ S1, where S1 is viewed as the
unit vectors in C, and where the covering map is p(x) = e2πix.

Proposition 3.1. Let E
p→ B be a covering map. Every path f : I→ B with f (0) = b

lifts uniquely to a path f̃ : I→ E with f̃ (0) = e ∈ Fb. I.e. for such f there exists an f̃
such that the following diagram

E

I B

pf̃

f

commutes.

Definition 3.2. Let X and Y be topological spaces, and f ,g : X → Y be continuous
maps. We say that f is homotopic to g if there exists a continuous map H : X × I →
Y , where I denotes the close unit interval [0,1] ⊂ R, called a homotopy, such that
H(x,0) = f (x) and H(x,1) = g(x) for all x ∈ X . If f is homotopic to g, write f ' g.
We can think of homotopies as families of continuous maps {ht : X → Y}t∈I .

Definition 3.3. We say that to topological spaces X and Y are homotopy equivalent
if there exist continuous maps f : X → Y and g : Y → X such that f ◦ g ' idY and
g ◦ f ' idX . We say that f is a homotopy equivalence with homotopy inverse g. A
space X that is homotopy equivalent to a one-point space is called contractible.

In fact, ' defines an equivalence relation.

Definition 3.4. Let Maps(X ,Y ) be the set of continuous maps from X to Y . We call
the set of equivalence classes Maps(X ,Y )/ ', the set of homotopy classes of maps
f : X → Y .

We will mostly be interested in the cases where the topological spaces are pointed,
i.e. when spaces have a given base point x0 ∈ X . We sometimes write such a space
as (X ,x0) or, if there is no confusion about what we mean, we just write X as in the
non-pointed case.
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With this in mind, we would like to have a case where maps f : X → Y takes the
base point of X to the base point of Y . So if x0 is the base point in X and y0 the one
in Y , we write f : (X ,x0)→ (Y,y0) for a map such that f (x0) = y0. More generally, if
A⊂ X and B⊂Y we write f : (X ,A)→ (Y,B) for a map that carries A to B, in the sense
that f (A)⊂ B.

A homotopy of base point preserving maps is a homotopy H : X× I→Y from f to
g such that for all t ∈ I, H(x0, t) = y0. In the pointed case, the set Maps(X ,Y )/ ' as
above but where the maps are base point preserving, is called the set of based homo-
topy classes. We denote this set by [X ,Y ]∗.

For a topological space X with base point x0 ∈ X , we define πn(X ,x0) to be the set
of homotopy classes of maps f : (In,∂ In)→ (X ,x0), where homotopies ft are required
to satisfy ft(∂ In) = x0 for all t. This set forms a group by the operation defined as

( f +g)(x1,x2, ...,xn) =

{
f (2x1,x2, ...,xn) x1 ∈ [0,1/2]
g(2x1−1,x2, ...,xn) x1 ∈ [1/2,1]

.

Inverses here are given by − f (x1,x2, ...,xn) = f (1− x1,x2, ...,xn). Note that for
n = 1 we recover the fundamental group π1(X) of X , which will be the main focus
of this text, but the reason for the additive notation here is that for n ≥ 2, we get that
πn(X) is actually abelian, although this is not at all obvious. For more details, see for
example [3]. For n = 0 we can extend this definition by letting I0 be a one point space
and ∂ I0 =∅, so π0(X) becomes the set of path-components of X . However, this is not
a group.

The homotopy invariance of the fundamental group turns out to hold for all homo-
topy groups. Namely, if f : (X ,x0)→ (Y,y0) is a homotopy equivalence in the base
point preserving sense, then the induced map f∗ : πn(X ,x0)→ πn(Y,y0) is an isomor-
phism for all n. Also, as for the fundamental group, if the space X is path-connected,
different choices of base point x0 yield isomorphic homotopy groups πn(X ,x0) for all n.
Therefore, if the space in question is path-connected we sometimes omit the base point
and simply write πn(X). See for example [3]. In some cases, the higher homotopy
groups behave much nicer than the fundamental group.

Proposition 3.2. Let p : (E,e0)→ (B,b0) be a covering map. Then p induces an
isomorphism of homotopy groups p∗ : πn(E,e0)→ πn(B,b0) for n≥ 2.

We will use this proposition to compute the higher homotopy groups for n≥ 2 of a
certain space which will be useful for us later in the text, namely the wedge sum of a
fixed number of circles. Since we will also need to make use of the fundamental group
of the same space, we will compute that first.

Definition 3.5. Let q : X → Y be a continuous map between topological spaces. We
say that q is a quotient map if it is surjective, and if Y has the quotient topology induced
by q, that is if U ⊂ Y is open if and only if q−1(U) is open in X .

If∼ is an equivalence relation on a topological space X , then the natural projection
q : X → X/∼ mapping every x ∈ X to its equivalence class, is a quotient map.

12



Definition 3.6. Let q : X→Y be a continuous map. A subset U ⊂ X is called saturated
with respect to q if U = q−1(V ) for some subset V ⊂ Y .

Proposition 3.3. A continuous, surjective map q : X →Y is a quotient map if and only
if it takes saturated open subsets to open subsets.

Proof. Assume q is a quotient map. If U ⊂ X is saturated and open, then U = q−1(V )
for some V ⊂ Y , and by the definition of quotient map, V is open in Y .

Conversely, assume q is a continuous, surjective map that takes saturated open
subsets to open subsets. We want to show that V ⊂ Y is open if and only if q−1(V )
is open. If V ⊂ Y open, then q−1(V ) is open since q is assumed to be continuous.
Since q−1(V ) is saturated by definition, if it in addition is open, then q(q−1(V )) =V is
open.

Definition 3.7. Let X1, ...,Xn be topological spaces, with base points xi ∈ Xi. The
wedge sum, denoted X1∨ ...∨Xn is the space obtained by taking ∏n

i=1Xi/ ∼, where ∼
identifies the base points, and no other identifications are being made. The canonical
choice of base point of this space is the equivalence class of the base points x1, ...,xn.

Proposition 3.4. The fundamental group of the wedge sum of n circles, S1∨ ...∨S1, is
free on n generators.

To prove this proposition, we can use the Seifert-Van Kampen theorem. We will
not prove the theorem in this text, but see for example [5] for a proof.

Theorem 3.5 (Seifert-Van Kampen). Let X be a topological space. Suppose that
U,V ⊂ X are open subsets such that U ∪V = X, and with U,V and U ∩V path-
connected. Let x0 ∈U ∩V , and define a subset C ⊂ π1(U,x0)∗π1(V,x0) by

C = {(i∗γ)( j∗γ)−1 | γ ∈ π1(U ∩V,x0)},

where i∗, j∗ are maps induced by the inclusions i : U ∩V →U and j : U ∩V →V . Then

π1(X ,x0)∼=
(
π1(U,x0)∗π1(V,x0)

)
/C̄.

In particular, π1(X ,x0) is generated by the images of π1(U,x0) and π1(V,x0) under the
homomorphisms induced by inclusions.

Corollary 3.5.1. Assume that the hypotheses of the Seifert-Van Kampen theorem. Sup-
pose also that U ∩V is simply connected. Then

π1(X ,x0)∼= π1(U,x0)∗π1(V,x0).

Ideally we would like to apply this corollary to a wedge of two spaces X1∨X2 with
U = X1 and V = X2 considered as subspaces of the wedge sum (X1 = S1 = X2 in our
case), but the problem is that these spaces will not be open in X1∨X2. Luckily for us,
this can be resolved.
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Definition 3.8. Let X be a topological space and A⊂ X a subspace of X . A continuous
map r : X → A is called a retraction if the restriction of r to A is the identity map of
A. If there exists a retraction from X to A, we call A a retract of X . Let ιA : A→ X
be the inclusion of A. If ιA ◦ r is homotopic to the identity map of X , we say that r is
a deformation retraction, and we say that r is a strong deformation retraction if it in
addition to being a deformation retraction, there exists a homotopy H from idX to ιA ◦ r
that is stationary on A, meaning that

H(x, t) = idX (x) for all x ∈ A, t ∈ I.

If r : X → A is a strong deformation retraction, we say that A is a strong deformation
retract of X .

Definition 3.9. A point x0 of a topological space X is called a nondegenerate base
point of X if it has a neighborhood that admits a strong deformation retraction onto x0.

Lemma 3.6. Suppose xi ∈ Xi is a nondegenerate base point for i = 1, ...,n. Then the
base point x0 of X1∨ ...∨Xn is nondegenerate.

See [5] for a proof.
Let q : ∏n

i=1Xi → X1 ∨ ...∨Xn denote the quotient map. The inclusion of Xi into∏n
i=1Xi composed with q induces continuous injective maps ι j : X j→ X1∨ ...∨Xn.

Theorem 3.7 ([5] (p.256)). Let X1, ...,Xn be topological spaces with nondegenerate
base points xi ∈ Xi. The map

Φ : π1(X1,x1)∗ ...∗π1(Xn,xn)→ π1(X1∨ ...∨Xn,x0)

induced by ι j∗ : π1(X j,x j)→ π1(X1∨ ...∨Xn,x0) is an isomorphism.

Proof. We start with the wedge sum of two spaces X1 ∨X2. Choose neighborhoods
Wi in which xi is a strong deformation retract, and let U = q(X1

∏W2), V = q(W1

∏X2)

where q is the quotient map X1

∏X2
q→ X1 ∨X2. Since both X1

∏W2 and W1

∏X2 are
saturated open sets in X1

∏X2, the restriction of q to each of them is a quotient map
onto its image, so U and V are both open in X1∨X2.

We will now show that the following inclusions

{x0} ↪→U ∩V

X1 ↪→U

X2 ↪→V

are all homotopy equivalences, because each space on the left hand side is a strong
deformation retract of the corresponding right hand side. For the first space, this just
follows Lemma 3.6. For X1 ↪→ U , let H : W2× I →W2 be a homotopy which gives
a strong deformation retraction of W2 to x2. Define G : (X1

∏W2)× I → X1

∏W2 to
be the identity on X1× I and H on W2× I. The map G descends to the quotient and
yields a strong deformation retraction of U onto X1. A similar argument shows the case
X2 ↪→V .

14



Now, since U ∩V is contractible, using 3.5.1 gives us that the inclusions U ↪→
X1∨X2 and V ↪→ X1∨X2 induce an isomorphism

π1(U,x0)∗π1(V,x0)
∼=→ π1(X1∨X2,x0).

Moreover, the maps X1
ι1→U and X2

ι2→V induce isomorphisms

π1(X1,x1)
∼=→ π1(U,x0)

π1(X2,x2)
∼=→ π1(V,x0).

Composing these isomorphisms proves the case n = 2, and the case n > 2 follows by
induction, since Lemma 3.6 guarantees that the hypotheses of the theorem are satisfied
by the spaces X1 and X2∨ ...∨Xn.

Applying the previous result to a wedge of n circles show that π1(S1 ∨ ...∨ S1) ∼=
Z∗ ...∗Z∼= Fn where Fn denotes the free group on n generators.

The Cayley graph of Fn - i.e. a graph where every vertex corresponds to an element
of Fn, and where we have an edge between to vertices if and only if they differ by
multiplication by a generator - is a covering space of the wedge of n circles, and is
constructed for n= 2 in [3], but generalizes for higher dimensions as well. In particular,
this covering space is a tree and hence contractible. See [4]. This gives us the following
result.

Proposition 3.8. For n ≥ 2, the homotopy groups πn(R2 \ {x1, ...,xk}) = 0, where
{x1, ...,xk} ⊂ R2 is a set of distinct points.

Proof. Since R2 \{x1, ...,xk} is homotopy equivalent to a wedge of n circles, and since
the covering space projection induces an isomorphism of homotopy groups πn for n≥
2, we have our result.

The reason for this computation will become apparent in Section 4.

A concept we will make use of is that of relative homotopy groups for a pair (X ,A),
where x0 ∈A⊂X for base point x0. We start by regarding In−1 as the face of In with last
coordinate sn = 0. Let Jn−1 be the closure of ∂ In \ In−1. For n≥ 1, define πn(X ,A,x0)
to be the set of homotopy classes of maps (In,∂ In,Jn−1)→ (X ,A,x0), i.e maps from
In to X where the boundary ∂ In gets carried to A and Jn−1 to the base point x0, where
homotopies are required to be on the same form for all t. Note that for A = x0, we get
that πn(X ,x0,x0) = πn(X ,x0), so the relative homotopy groups are generalizations of
the homotopy groups from earlier.

The sum is defined in the same way as for πn(X), except that we no longer can use
the last coordinate sn. Thus the set πn(X ,A,x0) forms a group for n≥ 2.

Theorem 3.9. For x0 ∈ A⊂ X we have a long exact sequence

...→ πn(A,x0)
i∗→ πn(X ,x0)

j∗→ πn(X ,A,x0)
∂→ πn−1(A,x0)→ ...→ π0(X ,x0).
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The maps i∗ and j∗ are induced by the inclusions (A,x0)
i→ (X ,x0) and (X ,x0,x0)

j→
(X ,A,x0) respectively. The boundary map ∂ comes from restricting maps (In,∂ In,Jn−1)→
(X ,A,x0) to In−1. For a proof, see [4] or [3].

Definition 3.10. A fiber bundle structure on a space E with fiber F consists of a pro-
jection map p : E → B such that for all b ∈ B there exists a neighborhood b ∈U ⊂ B
with a homeomorphism h : p−1(U)→U×F making the following diagram

p−1(U) U×F

U

h

p

commute.
The map h above is what is called a local trivialization of the bundle. Since the fiber

bundle structure is determined by the projection map, we usually say that p : E→ B is
a fiber bundle or, if we want to indicate what the fibers are, we write F → E

p→ B. We
usually call E the total space and B the base space.

Definition 3.11. A map p : E → B is said to have the homotopy lifting property with
respect to the space X if, given a homotopy gt : X → B and a map g̃0 : X → E lifting
g0, so pg̃0 = g0, then there exists a homotopy g̃t : X → E lifting gt .

So, given gt and g̃0 as above, there exists a homotopy g̃t such that the two triangles
in the diagram

X E

X× I B

g̃0

p

g

g̃

commute.
We say that the map p : E → B has the homotopy lifting property for a pair with

respect to the pair (X ,A) if every homotopy ft : X → B lifts to a homotopy g̃t : X → E
starting with a given lift g̃0 and extending a given lift g̃t : A→ E.

The homotopy lifting property generalizes the path lifting property defined earlier
in this section. This can be seen by taking X in the diagram above to be a one-point
space.

Proposition 3.10. A fiber bundle E
p→ B has the homotopy lifting property with respect

to n-cubes, In.

Theorem 3.11. Suppose E
p→ B has the homotopy lifting property with respect to

In. Choose base points b0 ∈ B and x0 ∈ F = p−1(b0). Then the induced map p∗ :
πn(E,F,x0)→ πn(B,b0) is an isomorphism for all n≥ 1. Hence, if B is path connected,
there exists a long exact sequence

...→ πn(F,x0)→ πn(E,x0)
p∗→ πn(B,b0)→ πn−1(F,x0)→ ...→ π0(E,x0)→ 0
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We will prove the last statement of the theorem here. To see that p∗ is surjective
respectively injective, what we basically do is apply the homotopy lifting property
repeatedly. See [3].

Proof. Consider the long exact sequence in 3.9 for the pair (E,F)

...→ πn(F,x0)
i∗→ πn(E,x0)

j∗→ πn(E,F,x0)
∂→ πn−1(F,x0)→ ...,

but let j∗ be the map p∗ ◦ j∗ : πn(E,x0)→ πn(B,b0). The sequence then becomes

...→ πn(F,x0)
i∗→ πn(E,x0)

p∗◦ j∗→ πn(B,b0)
∂→ πn−1(F,x0)→ ...,

which is the long exact sequence we are after. For the map π0(F)→ π0(E) at the end,
surjectivity comes from the hypothesis that B is path connected, since a path in E from
an arbitrary point x ∈ E can be obtained by lifting a path from p(x) to b0 in B.
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4 Configuration Spaces
In this section we will show that the Artin braid group Bn is isomorphic to the funda-
mental group of the configuration space of the plane, π1(Cn(R2)). We start with the
definition of a configuration space, and then we move on to a few properties that follow
from the theory of Section 3.

Definition 4.1. Let X be a topological space. We call the space Fn(X) = {(x1, ...,xn)∈
Xn | i 6= j⇒ xi 6= x j} ⊂ Xn, with the product topology, the n:th (ordered) configuration
space of X .

We have an action of the symmetric group Sn on this space, where Sn acts by per-
muting the coordinates of Fn(X). We call the orbit space Cn(X) = Fn(X)/Sn the n:th
(unordered) configuration space of X .

Sometimes, if Qm is a set of m distinguished points {x1, ...,xm} ⊂ X , we use the
notation Fm,n(X) for the space Fn(X \Qm). In this paper, X will usually be a man-
ifold, and recall that a manifold of dimension n, sometimes called n-manifold, is a
topological Hausdorff space M such that each point x ∈M has an open neighborhood
homeomorphic to Rn. The following proposition will show that the choice of points
Qm will not matter.

Proposition 4.1. Let M be a connected topological manifold, and let {p1, ..., pk} and
{q1, ...,qk} be two k-tuples of distinct points of M. Then there exists a homeomorphism
ϕ : M→M such that ϕ(pi) = qi for i = 1,2, ...,k.

Proposition 4.2. The projection p : Fn(M)→ Cn(M) is a covering space projection.

Proof. Let x = (x1, ...,xn)∈Cn(M) since all xi are distinct, we can find a neighborhood
U =U1× ...×Un of x such that i 6= j implies Ui∩U j =∅ for all i, j ∈ {1, ...,n}. Fix a
σ ∈ Sn and define Uσ :=Uσ(1)× ...×Uσ(n). Then we have p−1(U) = {Uσ | σ ∈ Sn}=⋃

σ∈Sn Uσ and since the Uσ are disjoint we have our covering space projection.

Recall that this implies every path γ : I → Cn(M) with γ(0) = p(x0) for some
x0 ∈Fn(M) lifts uniquely to a path γ̃ : I→Fn(M) with γ̃(0) = x0.

Theorem 4.3. ([2], p.26) Let M be a connected manifold of dimension ≥ 2. For
1≤ r < n, define p : Fn(M)→Fr(M), by p(u1, ...,un) = (u1, ...,ur). Then

Fr,n−r(M)−→Fn(M)
p−→Fr(M)

is a fiber bundle.

Proof. Pick a point u0 = (u0
1, ...,u

0
r ) ∈Fr(M). The pre-image p−1(u0) consists of the

elements
(u0

1, ...,u
0
r ,v1, ...,vn−r) ∈ Mn with u0

1, ...,u
0
r ,v1, ...,vn−r all distinct. Setting Qr =

{u0
1, ...,u

0
r} we get

Fn−r(M \Qr) = Fr,n−r(M) = {(v1, ...,vn−r) ∈ (M \Qr)
n−r | i 6= j⇒ vi 6= v j}
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The map {u0}×Fn−r(M)−→Fn−r(M) defined by (u0
1, ...,u

0
n,v1, ...,vn−r) 7→ (v1, ...,vn−r)

is a clearly a homeomorphism, so p−1(u0)∼= Fn−r(M).
Now for local triviality. For each i = 1, ...,r let Ui ⊂M be an open neighborhood of

u0
i such that its closure Ūi is a closed ball with interior Ui. Since u0

1, ...,u
0
r are all distinct,

we can assume Ui ∩U j = ∅ for all i, j = 1, ...,r whenever i 6= j, so U = U1× ...×Ur
will be an open neighborhood of u0 ∈Fr(M).

We shall see that p|U is a local trivialization, i.e. that there is a homeomorphism
p−1(U)−→U×Fr,n−r(M) commuting with the projections to U .

For each i = 1, ...,r define a continuous map θi : Ui×Ūi → Ūi with the following
properties 1. For every u ∈Ui, let θ u

i : Ūi→ Ūi be the map v 7→ θi(u,v). We require:

1. θ u
i : Ūi→ Ūi is a homeomorphism fixing the boundary ∂Ūi pointwise.

2. θ u
i (u

0
i ) = u.

The first property allows us to extend this homeomorphism to the entire manifold
M in the following way. For u = (u1, ...,ur) ∈U , define a map θ u : M→M by

θ u(v) =

{
θi(ui,v) if v ∈Ui for some i = 1, ...,r
v if v ∈M \⋃i Ui.

It is clear that θ u : M→M is a homeomorphism continuously depending on u, sending
u0

1, ...,u
0
r to u1, ...,ur respectively. The formula

(u,v1, ...,vn−r) 7→ (u,θ u(v1), ...,θ u(vn−r))

defines a homeomorphism φ : U×Fr,n−r(M)→ p−1(U) with inverse

φ−1 : (u,v1, ...,vn−r) 7→ (u,(θ u)−1(v1), ...,(θ u)−1(vn−r))

The diagram

p−1(U) U×Fr,n−r(M)

U

φ−1

p|U
φ

clearly commutes, and thus we have our fiber bundle

Fr,n−r(M)−→Fn(M)
p−→Fr(M)

Corollary 4.3.1. Let M and p be as above. For any m≥ 0, the map

p : Fm,n(M)−→Fm,r(M)

is a fiber bundle with fiber Fm+r,n−r(M).
1The construction of θi is carried out in [2] in detail, but requires some knowledge about smooth mani-

folds, as opposed to topological ones.
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Proof. This follows by applying the previous theorem to M = M \Qm.

Proposition 4.4. If π2(M\Qm,∗)= π3(M\Qm,∗)= 0 for each m≥ 0, then π2(Fn(M),∗)=
0.

Proof. The exact sequence of homotopy groups of the fiber bundle p : Fm,n(M)→
Fm,1 = M \Qm from Theorem 4.3 is

...→ π3(M\Qm,∗)→ π2(Fm+1,n−1(M),∗)→ π2(Fm,n(M),∗)→ π2(M \Qm,∗)→ ...,

so since π2(M \Qm,∗) = π3(M \Qm,∗) = 0 for each m≥ 0 we get that

π2(Fm+1,n−1(M),∗)∼= π2(Fm,n(M),∗),

and applying this inductively, we get that

π2(Fm,n(M),∗)∼= π2(Fm+1,n−1(M),∗)∼= ...∼= π2(Fm+n−1,1(M),∗) =
= π2(M \Qm+n−1,∗) = 0.

Corollary 4.4.1. The group π2(Fn(R2)) = 0.

Proof. This follows from Proposition 4.4, since π2(R2 \Qm) = π3(R2 \Qm) = 0.

Let (x0
1, ...,x

0
n) be the base point of π1(Fn(M)), and let Fn−1,1(M)=M\{x0

1, ...,x
0
n−1}.

Define i : Fn−1(M)→Fn(M) by i(x) = (x0
1, ...,x

0
n−1,x).

Theorem 4.5. If π0(M \Qm,∗) = π2(M \Qm,∗) = π3(M \Qm,∗) = 1 for all m ≥ 0,
then the following sequence is exact

1→ π1(Fn−1,1(M),x0)
i∗→ π1(Fn(M),(x0

1, ...,x
0
n))

p∗→
p∗→ π1(Fn−1(M),(x0

1, ...,x
0
n−1))→ 1,

where p∗ is the map induced by the fiber bundle from 4.3.

Proof. The sequence is part of the homotopy sequence induced from Theorem 4.3,
where the 1’s come from the facts that π2(Fn−1(M),∗) = 1 established in the previous
proposition, and that π0(Fn−1,1(M)) = π0(M \Qn−1) = 1.

Definition 4.2. Let f : I → Fn(R2), f (t) = ( f1(t), ..., fn(t)) be a path in Fn(R2).
Each coordinate function fi defines an arc βi = ( fi(t), t) in R2× I. We call their union
β = β1 ∪ ...∪ βn a geometric braid. We say that two geometric braids β and β ′ are
equivalent if β ' β ′.

We will now describe the elements that generate π1(Cn(R2),x0). Recall the cov-
ering space projection p : Fn(R2)→ Cn(R2). For y0 = ((1,0), ...,(n,0)) ∈ Fn(R2)
pick the point p(y0) as base point x0 for π1(Cn(R2),x0). We can lift loops based at x0
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in Cn(R2) to paths starting at y0 = ((1,0), ...,(n,0)) in Fn(R2). The generator σ̃i of
π1(Cn(R2),x0) is then represented by the path

f (t) = ((1,0), ...,(i−1,0), fi(t), fi+1(t),(i+2,0), ...,(n,0))

in Fn(R2), where fi(t) = (i+ t,−
√

t− t2) and fi+1(t) = (i+1− t,
√

t− t2). That is to
say, f (t) is constant on all strings except the i:th and (i+ 1):th, and those two strings
get interchanged in a nice way. Notice the similarity with the braid in Figure 2.

We refer to Figure 5 to see how the composition of two geometric braids - one
above and one under the middle line - would look like.

Figure 5: Example of composition of braids
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Theorem 4.6 (Artin, 1925). The group π1(Cn(R2),x0) admits a presentation with gen-
erators σ̃1, ..., σ̃n−1 and defining relations

σ̃iσ̃ j = σ̃ jσ̃i if |i− j| ≥ 2, 1≤ i, j ≤ n−1
σ̃iσ̃i+1σ̃i = σ̃i+1σ̃iσ̃i+1 for all 1≤ i≤ n−2.

The proof of Theorem 4.6 will follow after the next lemma, which we will now set
out to prove.

Let b ∈ π1(Cn(R2),x0) be represented by a loop f : (I,{0,1})→ (Cn(R2),x0) and
let f̃ = ( f̃1, ..., f̃n) : (I,{0})→ (Fn(R2),y0) be the unique lift of f . We can see that
any such lift induces a permutation of the set {1, ...,n}, which we call the underlying
permutation of b. We define u : π1(Cn(R2),x0)→ Sn to be the map which sends each b
to its underlying permutation τb which we write as

u(b) = τb =

(
f̃ (0)1, ..., f̃ (0)n
f̃ (1)1, ..., f̃ (1)n

)
∈ Sn.

As an example: for b as in Figure 5 we would have that τb corresponds to the
permutation (243) ∈ S5.

Recall also the map π : Bn→ Sn in Section 1 defined by π(σi) = (i, i+1).

Lemma 4.7. The homomorphism ι : Bn → π1(Cn(R2)) defined as ι(σi) = σ̃i is an
isomorphism if ι |Pn : Pn→ π1(Fn(R2)) is an isomorphism.

To see that ι is well defined it is enough to note that the elements σ̃i satisfy the
braid relations by for example examining Figure 3.

Proof. We get a commutative diagram

1 Pn Bn Sn 1

1 π1(Fn(R2)) π1(Cn(R2)) Sn 1

ι |Pn

π

ι

u

with rows exact so, applying the Five Lemma, we get that ι : Bn → π1(Cn(R2)) is an
isomorphism.

Now we just need to show that in := ι |Pn is an isomorphism. Corresponding to the
forgetting homomorphism fn : Pn→ Pn−1 we have the homomorphism π1(Fn(R2))

p∗→
π1(Fn−1(R2)) from Theorem 4.5 with ker(p∗) = π1(Fn−1,1(R2)) = π1(R2 \Qn−1),
which is free on n−1 generators. Now consider the following diagram:

1 Un Pn Pn−1 1

1 π1(Fn−1,1(R2)) π1(Fn(R2)) π1(Fn−1(R2)) 1.

ι |Un

fn

in in−1

p∗
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For i = 1,2, ...,n− 1, we can think of the image ι(Ai,n) of the elements Ai,n that
generate Un as a loop that starts at a point x0 ∈ R2 and encircles the point xi once,
and separates it from the rest of the points in Qn−1 = {x1, ...,xn−1}. Then the set
{ι(Ai,n) | 1≤ i≤ n−1} is a generating set of π1(Fn−1,1(R2))= π1(R2\Qn−1) which is
free, and since ι |Un is surjective, Un is free as well. In particular, ι |Un is an isomorphism
for all n.

The proof of 4.6 will now follow by induction on n.

Proof of 4.6. For n = 1, both P1 and π1(F1(R2)) are trivial, so i1 is an isomorphism.
For the induction step, suppose that in−1 is an isomorphism. Then since ι |Un is an
isomorphism for all n, if we apply the five lemma to the above diagram, we get that in
is an isomorphism. Hence, by the previous lemma, Bn ∼= π1(Cn(R2)).
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5 Classifying Spaces
In this rather short section we will show that the groups πk(Cn(R2)) and πk(Fn(R2))
all vanish for k > 1.

Definition 5.1. Let G be a group. We say that G is a topological group if it comes
equipped with a topology on the underlying set of G, such that the multiplication and
inversion maps

µ : G×G→ G, µ(g1,g2) = g1g2

and

i : G→ G, i(g) = g−1,

are both continuous.

Definition 5.2. A classifying space BG of a topological group G is the quotient of a
space EG, which has the property that all homotopy groups are trivial, by a free action
of G, meaning that if there exists a point x ∈ EG such that gx = x for some g ∈G, then
g is the identity element.

If G is a topological group equipped with the discrete topology, then the classifying
space of G is a path-connected space X such that

πk(X)∼=
{

G k = 1
0 k 6= 1.

A space with the property that for some n = 1,2, ..., πn(X)∼= G for some group G, and
πk(X) = 0 for k 6= n is known as a Eilenberg-MacLane space K(G,n). For n = 1, such
spaces exist for arbitrary groups, and can explicitly be constructed. They exist for n> 1
as well, with the additional condition that G is abelian. See [4].

Proposition 5.1. The groups πk(Cn(R2)) and πk(Fn(R2)) vanish for all k > 1.

Proof. The proof will be by induction on n. Firstly, we look at Fn(R2). For n = 1,
F1(R2) = R2, and since R2 is contractible, i.e. homotopy equivalent to a one point
space, all homotopy groups vanish and, in particular they vanish for k > 1. Now sup-
pose πk(Fn−1(R2)) = 0 for k > 1. The long exact homotopy sequence of the fiber
bundle Fn−1,1(R2)→Fn(R2)

p→Fn−1(R2) is

...→ πk+1(Fn−1(R2))→ πk(Fn−1,1(R2))→ πk(Fn(R2))→ πk(Fn−1(R2))→ ...

and since πk(Fn−1(R2)) = 0 we get

...→ 0→ πk(Fn−1,1(R2))→ πk(Fn(R2))→ 0→ ...,

which gives us that πk(Fn−1,1(R2))∼= πk(Fn(R2)), but as established earlier, Fn−1,1(R2)=
R2 \Qn−1 is homotopy equivalent to the wedge sum of n circles which has a con-
tractible covering space, so the homotopy groups vanish for k> 1, and hence πk(Fn(R2))=
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0. Since we have a covering space projection Fn(R2)→Cn(R2), the homotopy groups
of the two respective spaces are isomorphic for k > 1, so the groups πk(Cn(R2)) vanish
as well.

This now shows that Cn(R2) = BBn and that Fn(R2) = BPn.
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