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Abstract

This thesis concerns the asymptotic distribution of eigenvalues on a quantum graph
with certain vertex conditions. The operator of consideration is known as the Hamil-
tonian which acts as the negative second-order di↵erential operator on the functions
defined on the edges of a compact metric graph along with some appropriate vertex
conditions. We will derive the asymptotic formula for the eigenvalue counting func-
tion of the Hamiltonian acting on the graph in two separate cases. Moreover, the
thesis include a close study of the sesquilinear form corresponding to the Hamilto-
nian as well as an introduction to a few selected topics from the theory of Hilbert
spaces.
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Introduction

In 1911, the German mathematician Hermann Weyl (1885-1955) showed in his paper
Über die asymptotische Verteilung der Eigenwerte (On the asymptotic distribution
of eigenvalues) [1] that the asymptotic distribution of eigenvalues of the positive
Laplacian operator on a bounded domain ⌦ ⇢ Rn with Dirichlet boundary is

N(�) ⇠ !n

(2⇡)n
vol(⌦)�n/2 (1)

where N(�) denotes the eigenvalue counting function of the operator, !n is the
volume of the n-dimensional unit sphere and vol(⌦) is the volume of the domain
⌦. This result became famously known as Weyls law. Over the years that followed,
mathematicians and physicists generalized this result to other types of mathematical
structures and operators, as well as improving the remainder estimates for these.
Today, Weyls law has become an umbrella term for the asymptotic distribution of
eigenvalues for all types of structures and operators. One of these structures which
we will be looking at is known as a quantum graph.

A quantum graph basically consists of two things:

1. A metric graph � = (V , E , I), consisting of a finite set of vertices V and edges
E along with a set of intervals [0, `e] 2 I for all e 2 E , where 0 < `e  1 is a
positive number assigned each edge e 2 E .

2. The assignment of a di↵erential operator acting on functions defined on the
edges of the graph which satisfy some local self-adjoint vertex conditions at
every vertex v 2 V .

The theory of quantum graphs is a relatively new area in mathematics and most
of the progress has been made in the last few decades, even though some works that
could be classified as quantum graphs appeared at least as early as in the 1930s. The
reason of the growth in recent years is due to the numerous applications in physics,
chemistry as well as engineering of which quantum graph theory o↵ers a simplified
model when dealing with propagation of waves in very thin branching structures. In
this thesis we will only deal with compact metric graphs, which is to say, the edges
are all of finite length, and with the operator known as the Hamiltonian L acting as
the negative second-order di↵erential operator on functions defined on the edges and
satisfying some local self-adjoint vertex conditions. Our main goal is to show that
for a quantum graph endowed with arbitrary self-adjoint vertex conditions which
corresponds to a nonnegative self-adjoint matrix ⇤v for all v 2 V , the eigenvalue
counting function follows the asymptotic law:

N
�

(k) ⇠ L

⇡
k as k ! 1 (2)
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where L is the sum of the lengths of all the edges andN
�

(k) is the eigenvalue counting
function of the Hamiltonian operator, or simply, the eigenvalues of the graph �. In
addition, we will also look at a less general case, namely a graph consisting of only
Dirichlet and Kircho↵ conditions at each vertex and show that that N

�

(k) follows

N
�

(k) =
L

⇡
k +O(1) (3)

where the remainder term is bounded above and below by some constants inde-
pendent of k. Both of these results are known as Weyl’s law in each respective
case.

Since the theory of quantum graphs is heavily grounded in functional analysis,
the first chapter aim to introduce the basic but necessary concepts in functional
analysis in Hilbert spaces. The next chapter involves quantum graphs, and the first
three sections are dedicated to define what quantum graphs are and how all self-
adjoint realizations of the Hamiltonian arise in terms of the vertex conditions. In
addition, we will compute the spectrum of the Hamiltonian on the trivial graph with
the Dirichlet vertex conditions. The following three sections of Chapter 2 concern
the sesquilinear form of the Hamiltonian and the introduction of the extended �-type
of vertex conditions and its interlacing properties. The two final sections of Chapter
2 is dedicated to the proof of Weyl’s law in each respective case.
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Chapter 1

Background

In this chapter we will introduce some selected topics from the theory of Hilbert
spaces. To put it more concretely, we will begin Section 1.1 with the definition
of a Hilbert space and give two important examples in the form of the Lebesgue
and Sobolev spaces. In addition to this we will also mention Riesz’s representation
theorem which will be useful in the definition of the adjoint operator. In Section 1.2
we will look at the so-called self-adjoint operators. In Section 1.3 sesquilinear forms
are the main topic and we’ll see a relationship between semi-bounded sesquilinear
forms and their corresponding self-adjoint operators. Chapter 1 closes with Section
1.4 in which we look at the spectral properties of self-adjoint operators.

1.1 Hilbert spaces and Riesz’s theorem

We begin by recalling some basic facts and notions from linear algebra and analysis.

Definition 1.1.1. An inner product h·, ·i : V ⇥ V �! C is a map over a vector
space V to the field of scalars C such that for all vectors u, v, w 2 V and scalars
↵ 2 C

• hu, vi = hv, ui

• h↵u, vi = ↵hu, vi and hu+ v, wi = hu, vi+ hw, vi

• hu, ui � 0 and hu, ui = 0 if and only if u = 0

An inner product induces a norm given by k · k :=
p

h·, ·i. A vector space which
is complete by the norm induced by an inner product is called a Hilbert space. If
hu, vi = 0 then we say that u is orthogonal to v and we denote it by u ? v.

We will throughout the text denote a general complex Hilbert space by H and
its elements by u, v, w. Let I be a finite index set, then

M

i2I
Hi =

n

(ui)i2I | ui 2 Hi,
o

(1.1)

is a Hilbert space with an inner product defined by

h(ui)i2I , (vi)i2Ii =
1
X

i=1

hui, viiH
i

. (1.2)
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As a first example of a Hilbert space which will reappear throughout the text,
we choose the Lebesgue space L2(a, b) of square-integrable complex-valued functions
on a real interval (a, b).

Example 1.1.1. (The L2(a, b)-space) We denote by C(a, b) the space of continu-
ous complex-valued functions on (a, b). Then

hf, gi =
Z b

a

f(x)g(x)dx (1.3)

can be shown to be an inner product on C[a, b]. The integral is taken in the sense
of Lebesgue and the bar over g denotes complex conjugation. The induced norm is
given by

kfkL2 =
⇣

Z b

a

|f(x)|2dx
⌘

1
2
. (1.4)

We define the Lebesgue space of square-integrable complex-valued functions on
the real interval (a, b) as

L2(a, b) =

(

f 2 C[a, b] | kfkL2 =

 

Z b

a

|f(x)|2dx
!

1
2

< 1
)

(1.5)

where the overline denotes the closure of the set with respect to the L2-norm (1.4) .
In addition, L2(a, b) can be shown to be a Hilbert space with the inner product (1.3),
however, the proof of completeness requires a bit of measure theory and therefore
will be omitted, see [3] page 97.

Another example of a Hilbert space is the one-dimensional Sobolev spaceHk(a, b).
This time we consider functions f 2 L2(a, b) along with their k-th weak derivative
Dkf . The Sobolev space is then defined as the space of functions in L2(a, b) for
which Dkf belongs to L2(a, b).

Example 1.1.2. (The Hk(a, b)-space) We begin by defining L1(a, b) similarly as
L2(a, b) by

L1(a, b) =

(

f 2 C[a, b] | kfkL1 =

Z b

a

|f(x)|dx < 1
)

(1.6)

where the closure is taken with the L1-norm. We define the subspace L1

loc(a, b) of
L1(a, b) as

L1

loc(a, b) =

(

f 2 L1(a, b) |
Z b

a

f(x)dx < 1 and f locally integrable.

)

(1.7)

where ”locally integrable” means that that the integral over |f | over any compact
subset of its domain (a, b) is finite. Given an f 2 L1

loc(a, b), if there exists a function
g 2 L1

loc(a, b) with the property that

Z b

a

f(x)�0(x)dx = �
Z b

a

g(x)�(x)dx (1.8)

8



for all � 2 C1
comp(a, b), then g is said to be the weak derivative of f . The subscript

”comp” refers to that � has compact support, which is to say (informally) that � van-
ishes outside the interval (a, b) and in some small neighborhood around the boundary
points. We define the Sobolev space Hk(a, b) as

Hk(a, b) = {f 2 L2(a, b) | Dif 2 L2(a, b), i = 1, 2, . . . , k} (1.9)

where Dkf denotes the k-th weak derivative of f . With the inner product given by

hf, giHk =
k
X

i=0

hDif,DigiL2 (1.10)

Hk is a Hilbert space, where the subscript L2 refers to standard integral product
given in (1.3). Moreover, Hk is dense in L2(a, b) by using the well-known fact that
C1

comp(a, b) = L2(a, b) and by the following inclusion

C1
comp(a, b) ⇢ Hk(a, b) ✓ L2(a, b) (1.11)

for k = 0, 1, . . . .

We will from here on assume that all derivates are taken in the weak sense. Before
ending this section we will briefly mention functionals and the Riesz representation
theorem which will be helpful when defining the adjoint operator in the next section.

Definition 1.1.2. A functional � refers to a mapping � : V ! C from an inner
product space V to its field of scalars C. It is called bounded if there exists a positive
real number m > 0 such that |�(u)|  mkukV for all u 2 V .

It turns out that every bounded functional on a Hilbert space H can be written
as a function in terms of the inner product and some unique element in H. In other
words, there exists a bijection y 7! hy, ·i between elements y 2 H and the space of
bounded linear functionals on H. It should be mentioned that in general, finding
this unique element v explicitly is no easy task.

Theorem 1.1.1. (Riesz’s representation theorem) Let � : H �! C be a
bounded, linear1 functional defined on a Hilbert space H. Then there exists a unique
element v 2 H such that �(u) = hu, vi for all u 2 H and k�k = kvk.
Remark. The norm of a functional k�k is the same as the operator norm given in
Definition 1.2.1.

Proof. See [3] page 206.

1.2 The adjoint operator

Now we will take a look at operators defined in Hilbert spaces. A certain kind of
operators are of interest to us due to their spectral properties as we’ll see in Section
2.4; these are known as self-adjoint operators. Since operators can be thought of as
a generalization of matrices in finite dimensions, we would like to extend some of
the concepts known from linear algebra into infinite dimensional spaces (such as the
function spaces L2 or Hk). Two well-known notions are the Hermitian matrix and
the conjugate transpose of a matrix. These are the finite dimensional equivalent of
the self-adjoint and adjoint operator respectively.

1�(u+ v) = �(u) + �(v) and �(↵u) = ↵�(u) for all u, v 2 H and ↵ 2 C.
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Definition 1.2.1. A densely defined linear operator T is a linear mapping

T : D(T ) ! H

from a dense linear subspace D(T ) of H called the domain of T into H. We define
the norm of an operator as

kTk = sup
u2D(T ), u 6=0

kTuk
kuk = sup

u2D(T ), kuk=1

kTuk. (1.12)

We call T semi-bounded if hTu, ui � mkuk2 for all u 2 D(T ) and m 2 R. We call
T bounded if kTk is finite.

Suppose we have a densely defined operator T and we consider the inner product
hTu, vi. We can think of the adjoint operator T ⇤ as the operator which ”switches
place” in the inner product and preserves the value, i.e hTu, vi = hu, T ⇤vi for all
u, v 2 H. The existence of such operator is not guaranteed due to the fact that
T might be unbounded, and hence can’t be defined on the whole Hilbert space 2.
Instead we would like to find a set in which we can define our T ⇤ on. Let

⌦(T ) =

⇢

v 2 H | sup
u2D(T ), kuk=1

|hTu, vi| < 1
�

(1.13)

then for each v 2 ⌦(T ) we define the functional �v(u) = hTu, vi which is clearly
bounded (and hence continuous). We can uniquely extend3 this functional to one
which is both bounded and defined on all of H; we denote this extension by f̃v(u).
By Riesz’s theorem (Theorem 1.1.2) we can then find an unique element v⇤ 2 H
such that f̃v(u) = hu, v⇤i for all u 2 H. The adjoint operator is then defined by
T ⇤v = v⇤ with the domain given by D(T ⇤) = ⌦(T ). We summarize this in the
definition below.

Definition 1.2.2. Let T : D(T ) �! H be a densely defined linear operator in H.
The adjoint operator T ⇤ : D(T ⇤) �! H is defined as follows. The domain D(T ⇤) of
T ⇤ consists of all v 2 H such that that there exists a v⇤ 2 H satisfying

hTu, vi = hu, v⇤i for all u 2 D(T ).

Then the adjoint operator is defined as T ⇤v = v⇤.

It should be mentioned that the requirement for T to be densely defined is due
to the fact that the mapping T ⇤v = v⇤ is not unique otherwise. If D(T ) 6= H, then

D(T )
?
= {u 2 H | hu, wi = 0 for all w 2 D(T )} 6= {0} and we can find a non-zero

vector u
0

2 D(T )
?
such that hw, u

0

i = 0 for all w 2 D(T ). But then

hu, v⇤i = hu, v⇤i+ hu, u
0

i = hu, v⇤ + u
0

i (1.14)

which implies non-uniqueness. Assume instead D(T ) = H then D(T )
?
= {0} and

so if hu, u
0

i = 0 holds for all u 2 D(T ) then u
0

= 0. This shows that v⇤ + u
0

= v⇤

in (1.9) and therefore v⇤ is unique.

2This is due to the Hellinger-Toeplitz theorem which states that an everywhere-defined sym-
metric operator is bounded, see [2] page 525.

3This is due to the Hahn-Banach theorem, see [3] page 150.
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Definition 1.2.3. A densely defined linear operator T : D(T ) �! H is said to be
symmetric if for all u, v 2 D(T )

hTu, vi = hu, Tvi. (1.15)

If D(T
1

) ⇢ D(T
2

) and T
1

u = T
2

u holds for all u 2 D(T
1

) for two operators T
1

, T
2

we call T
2

an extension of T
1

and denote it by T
1

⇢ T
2

.

An operator is symmetric if and only if T ⇢ T ⇤ . Indeed, by the definition of
the adjoint hTu, vi = hu, T ⇤vi holds for all u 2 D(T ), v 2 D(T ⇤). If D(T ) ⇢ D(T ⇤)
then T ⇤v = Tv for all v 2 D(T ) and it follows that T is symmetric. Conversely, if T
is symmetric then hTu, vi = hu, Tvi for all u, v 2 D(T ). Then D(T ) ⇢ D(T ⇤) and
Tu = T ⇤u for all u 2 D(T ), hence by definition T ⇢ T ⇤.

Example 1.2.1. Consider the operator T : D(T ) ! L2(a, b) defined by Tf = �d2f
dx2 .

We would like to show that T can be made symmetric by choosing a suitable domain.
We will show this by the use of partial integration.

hTf, gi = h�f 00, gi =
Z b

a

(�f 00(x))g(x)dx (1.16)

=
⇥

(�f 0(x))g(x)
⇤b

a
+

Z b

a

f 0(x)g0(x)dx (1.17)

=
⇥

(�f 0(x))g(x)
⇤b

a
+
⇥

f(x)g0(x)
⇤b

a
�
Z b

a

f(x)g00(x)dx (1.18)

=
⇥

f(x)g0(x)� f 0(x)g(x)
⇤b

a
+ hf,�g00i (1.19)

For T to be symmetric we require that

⇥

f(x)g0(x)� f 0(x)g(x)
⇤b

a
= 0. (1.20)

This can happen in several di↵erent ways. If for example T was to be defined
on C1

comp[a, b] then (1.20) vanishes and the operator is symmetric. Furthermore,
C1

comp[a, b] is also dense in L2[a, b] as we’ve already pointed out in Example 1.1.1.

Since D(T ) ⇢ D(T ⇤) always holds for symmetric operators. One might be inter-
ested in when those domains coincide, i.e T = T ⇤. This leads us to the definition of
the self-adjoint operator.

Definition 1.2.4. An operator T is called self-adjoint if T is symmetric and D(T ) =
D(T ⇤).

Explicitly computing the adjoint and its domain is often a laborious task which
makes the work of checking if an operator is self-adjoint quite di�cult. However,
as we will see in the next example, T is not self-adjoint if we can find an element
which is in D(T ⇤) but not in D(T ).

Example 1.2.2. For the sake of simplicity we will consider Tf = �d2f
dx

defined on
C1

comp[�1, 1]. If we can find a g 2 D(T ⇤) but g /2 C1
comp[�1, 1] then we’re done. Let

g(x) =

(

�x3, �1  x < 0

x3, 0  x  1
g⇤(x) =

(

�6x, �1  x < 0

6x, 0  x  1

11



then for f 2 C1
comp[�1, 1] and g 2 L2(�1, 1) we have

hf, g⇤i =
Z

1

�1

f(x)g⇤(x)dx =

Z

0

�1

f(x)(�6x)dx+

Z

1

0

f(x)(6x)dx (1.21)

= 3f(�1) + f 0(�1) + 3f(1)� f 0(1) +
Z

1

�1

f 00(x)g(x)dx (1.22)

= hTf, gi (1.23)

and so g 2 D(T ⇤) with T ⇤g = g⇤. But g is obviously not in C1
comp[�1, 1] and so T

cannot be self-adjoint.

It can however be shown that Tf = �d2f
dx2 is self-adjoint on the domain given by

H2

0

(a, b) = {f 2 H2(a, b) | f(a) = 0, f(b) = 0}.

1.3 Sesquilinear forms

In this section we will take a brief look at sesquilinear forms. We will see that
sesquilinear forms have a close connection to operators, and certain properties of
the sesquilinear form carry over to the corresponding operator. The reason why we
bother ourselves with working with the sesquilinear forms is that these are often
easier to work with than the operator itself, and the domain of the form is larger
and less ”sensitive” to changes (in the sense of varying boundary conditions, for
example).

Definition 1.3.1. A map s : D(s)⇥D(s) ! C is called a sesquilinear form on H if

s[u+ v, w] = s[u, w] + s[v, w] and s[↵u, v] = ↵s[u, v]

s[u, v + w] = s[u, v] + s[u, w] and s[u,↵v] = ↵s[u, v]

for all u, v 2 D(s) and ↵ 2 C. The domain D(s) of s is a linear subspace of H and
s is called densely defined if D(s) is dense in H. Furthermore, we call

• s symmetric if s[u, v] = s[v, u] for all u, v 2 D(s)

• s semi-bounded if there exists a constant ↵ 2 R such that s[u, u] � ↵kuk2 for
all u 2 D(s). We then call ↵ a lower bound of s.

We define the quadratic form q as q[u] = s[u, u] with D(q) = D(s). If s is semi-
bounded we call s closed if D(s) is complete with the norm induced by the inner
product defined by hu, vis = s[u, v] + (1� ↵)hu, vi where ↵ is a lower bound of s.

An already familiar sesquilinear form is the inner product (as in Definition 1.1.1).
However, a more interesting example is shown below where the sesquilinear form of
(1.20) is closely related to the operator Tf = �d2f

dx2 previously defined in Example
1.2.1.

Example 1.3.1. Consider the densely defined sesquilinear form

s[f, g] =

Z b

a

f 0(x)g0(x)dx (1.24)
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on the form domain f, g 2 D(s) = H1

0

(a, b) = {f 2 H1(a, b) | f(a) = 0, f(b) = 0}
in L2(a, b). To show that this is indeed a sesquilinear form follows directly from the
summation rule of integrals and complex conjugation. This form can easily seen be
symmetric

s[g, f ] =

Z b

a

g0(x)f 0(x)dx =

Z b

a

g0(x)f 0(x)dx = s[f, g]

and lower semibounded

|s[f, f ]| =
�

�

�

Z b

a

f 0(x)f 0(x)dx
�

�

�

=

Z b

a

|f 0(x)|2dx � 0.

It can also be shown to be closed. Indeed, with ↵ = 0 as in Definition 1.3.1 we get

hf, gis =
Z b

a

f 0(x)g0(x)dx+

Z b

a

f(x)g(x)dx. (1.25)

As we have mentioned in Example 1.1.2 in Section 1.1, the Sobolev space equipped
with the above inner product is a Hilbert space (and hence complete) thus s is closed.

The following important theorem which shows the correspondance between cer-
tain sesquilinear forms and self-adjoint operators will conclude this section.

Theorem 1.3.1. Suppose s is a sesquilinear form which is densely defined, sym-
metric, closed and semi-bounded by some m 2 R in H. Then there exists a unique
self-adjoint operator T in H with D(T ) ⇢ D(s) corresponding to s such that

s[u, v] = hTu, vi for u 2 D(T ), v 2 D(s). (1.26)

Proof. See [2] page 225.

1.4 Spectral properties of self-adjoint operators

In Section 1.2 we said that all finite-dimensional linear operators can be seen as ma-
trices. From linear algebra we are familiar with the problem of finding the eigenvalue
� 2 C and the corresponding eigenvector u 6= 0 such that

Au = �u

for some n⇥ n-matrix A with coe�cients in Cn. We know that for a n⇥ n-matrix
there are at least 1 and at most n distinct eigenvalues. Finding the eigenvalues is
usually done by computing � for which det(A��I) = 0. Taking the step to infinite-
dimensional spaces we are interested in when

Tu = �u (1.27)

for some operator T defined on H and non-zero u 2 H. Instead of solving for which
� 2 C det(A � �I) = 0, we are now interested in the properties of the resolvent
operator R� = (T � �I)�1. Basically, the eigenvalues � of T is the set for which R�

doesn’t exist.
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Definition 1.4.1. Let T : D(T ) ! H be a closed4, linear operator from its domain
D(T ) into a complex Hilbert space H. For every � 2 C we associate � with the
operator T� = T � �I where I denotes the identity operator in D(T ). The inverse
of T� (if it exists) is called the resolvent operator, which we denote by R�(T ) =
(T � �I)�1.

• The resolvent set ⇢(T ) is the collection of all � 2 C such that R� exists, is
bounded and defined on all of H.

• The spectrum of T is defined as �(T ) = C \ ⇢(T ).

The spectrum can then be decomposed in the following way:

• The point spectrum is defined as �p(T ) = {� 2 C | ker(T ��I) 6= {0}}. Then
� 2 �p(T ) is called an eigenvalue with multiplicity dim(ker(T � �I)) and the
corresponding eigenvector are all the non-zero elements of ker(T � �I).

• The discrete spectrum �d(T ) is the set of all isolated5 eigenvalues with finite
multiplicity.

• The continuous spectrum �c(T ) is the set for which ker(T � �I) = {0} and
Ran(T � �I) 6= H but Ran(T � �I) = H.

• The residual spectrum �r(T ) is the set of all � for which T� = T � �I has a
bounded inverse not defined on all of H.

• The essential spectrum �ess(T ) is defined as �ess = �(T ) \ �d(T ).

The next two theorems demonstrate some nice spectral properties of self-adjoint
operators.

Theorem 1.4.1. The eigenvalues of a self-adjoint operator are real and the eigen-
vectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let � be an eigenvalue. Then Tu = �u, u 6= 0 and hTu, ui = �hu, ui. Since
T is self-adjoint, hTu, ui is real and hu, ui > 0, therefore we conclude that � must
be real. Suppose Tv = µv and v 6= 0, µ 6= � then

hTu, vi � hu, Tvi = h�u, vi � hu, µvi = (�� µ)hu, vi = 0

and since � 6= µ we have hu, vi = 0, hence u ? v.

Theorem 1.4.2. The spectrum of a self-adjoint operator is real.

Proof. We begin with a lemma whose proof can be found in [3] that states that if
for some � and m > 0

k(T � �I)uk � mkuk (1.28)

4The operator T is called closed if the set {hu, Tui | u 2 D(T )} is a closed subset of H
L

H.
5By isolated we mean that there exists a neighborhood around the eigenvalue � of which there

are no other points in the spectrum.
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holds for all u 2 H then � 2 ⇢(T ). Now suppose � = a+bi, b 6= 0 and a, b 2 R. The
idea of the proof is to use the above lemma to show that � 2 ⇢(T ). Let v = (T��I)u,
then

hv, ui = hTu, ui � �hu, ui
hu, vi = hTu, ui � �hu, ui

which follows from definition of an inner product and that hTu, ui 2 R for all u 2 H
since T is self-adjoint. Now we can estimate

hv, ui � hu, vi = (�� �)hu, ui = 2bikxk2 (1.29)

with

2|b|kuk2  |hv, ui|+ |hu, vi| = 2|hu, vi|  2kukkvk. (1.30)

where the last inequality follows from the Cauchy-Schwartz inequality. By applying
(1.28) on (1.30)

|b|kuk  k(T � �I)uk (1.31)

we get � 2 ⇢(T ), or equivalently, � /2 �(T ) since b 6= 0 and (1.28) holds for all
u 2 H.

The final theorem which concludes this section and chapter is the Min-Max
principle. This will give us a characterization of the eigenvalues of T in terms of the
sesquilinear form. We will assume �ess(T ) = ; for the operator T which corresponds
to s. Since s is bounded, so is T and the eigenvalues can be numbered from below
as �

1

 �
2

 . . . (with possibility of multiplicity).

Theorem 1.4.3. (The Min-Max principle) Let the assumptions from Theo-
rem 1.3.1 hold along with the additional assumption that �ess(T ) = ;. Then the
eigenvalues �

1

,�
2

, . . . of T can be numbered as

�
1

 �
2

 . . . (1.32)

counted with multiplicty. Each �i can then be written as

�i(T ) = min
V subspace of D(s)

dim(V ) = i

max
u2V
kuk=1

s[u, u] (1.33)

where i 2 N.

Proof. See [2] page 265.
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Chapter 2

Quantum graphs

Our main goal in this chapter is to show that for a quantum graph equipped with the
Hamiltonian operator with arbitrary self-adjoint vertex conditions which give rise to
a nonnegative self-adjoint matrix ⇤v at each vertex v 2 V , the eigenvalue counting
function of the graph (or equivalently, the Hamiltonian) follows the asymptotic law

N
�

(k) ⇠ L

⇡
k as k ! 1. (2.1)

where N
�

(k) = #{� 2 �(�) | �  k2} denotes the eigenvalue counting function
on � and �(�) denotes the spectrum of the graph (or equivalently, the spectrum of
the Hamiltonian on �). Moreover, in the less general case where the graphs vertex
conditions consists purely of Dirichlet and Kircho↵ conditions, we will be able to
derive a remainder term of constant order, i.e

N
�

(k) =
L

⇡
k +O(1). (2.2)

The first two sections are devoted to the introduction of what quantum graphs
are, along with the computation of the spectrum of a simple graph consisting of
two vertices and an edge with Dirichlet conditions at both vertices. The following
two sections aim to introduce how all self-adjoint realizations of the Hamiltonian
occur in terms of the vertex conditions along with the description of the sesquilinear
form of the Hamiltonian. More concretely, we will show that the given sesquilinear
form satisfies the requirements of Theorem 1.3.1, therefore there exists a unique
self-adjoint operator corresponding to this form. This operator will be shown to be
the Hamiltonian. In addition, the spectrum of the Hamiltonian is purely discrete (or
equivalently, the essential spectrum is empty) and hence the Min-max theorem (The-
orem 1.4.3) holds. Section 2.5 aims to describe a certain kind of vertex conditions
known as the extended �-type, of which both the Dirichlet and Kircho↵ conditions
are a special case of. In Section 2.6 we will see what happens with the eigenvalues
of a graph when changing the parameter in the extended �-type of conditions, this
so-called interlacing property will be the cornerstone in the proof of Weyl’s law when
considering a graph with purely Dirichlet and Kircho↵ conditions. The final section
of this chapter is devoted to Weyl’s law in the more general case.

This chapter is very much based on the works by Gregory Berkolaiko and Peter
Kuchment in their book Introduction to Quantum Graphs, see [5]. An easy-going
introduction into the field of quantum graph with plenty of examples can be found in
Gregory Berkolaiko’s paper An elementary introduction to Quantum Graphs, see [6].
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2.1 Introduction

We begin with the definition of a metric graph.

Definition 2.1.1. A metric graph � = (V , E , I) is a set of vertices V and edges E
such that each edge e 2 E is assigned a positive number `e called the length of the
edge. Each edge then corresponds to an interval [0, `e] 2 I. The graph is compact if
there are finitely many edges, each with finite length.

Along this interval (or edge) we have the coordinate xe 2 [0, `i]. This gives a
natural orientation of the edges, however, this orientation can be made arbitrarily
and have no bearing on the resulting theory. Edges who share a common vertex
are called incident and the degree dv of a vertex v is the number of edges connected
to it. The two vertices connected by an edge are called edge ends, and since we
associate each edge with an interval the edge ends are mapped to the end points
on the interval. Since each edge is a positive interval we can then define a space
of functions living on these edges, these will be taken to be the familiar L2-and Hk

spaces as in Example 1.1.1 and 1.1.2 respectively.

Definition 2.1.2. The Lebesque space
�

L2(�), kfk2L2
(�)

�

and Sobolev space
�

H̃k(�), kfk2
Hk

(�)

�

of a metric graph � is respectively defined as

L2(�) =
M

e2E
L2(e) kfk2L2

(�)

=
X

e2E
kfk2L2

(e), (2.3)

H̃k(�) =
M

e2E
Hk(e) kfk2

˜Hk

(�)

=
X

e2E
kfk2Hk

(e). (2.4)

Furthermore, we define the space H1(�) as

H1(�) = {f 2 H̃1(�) | f is continuous }. (2.5)

We usually refer to L2(�) as the space of the graph. If � is compact, an element
f 2 L2(�) is a vector f = (f

1

, f
2

, . . . , f|E|) where fe : L2[0, `e] ! C. In the definition
of H1(�) we say that f is continuous, this should be interpreted as; for all edges
e incident to a vertex v, fe(v) assumes the same value. In other words, f(v) is
uniquely defined.

Making this graph quantum is done by assigning an operator to it. In this thesis
we will be working with an operator known as the Hamiltonian, which we denote
by L.

Definition 2.1.3. The Hamiltonian operator L : D(L) ! L2(�) on a graph � =
(V , E) is the operator which acts as

f(xe) 7! �d2f

dx2

e

. (2.6)

on each edge e 2 E. The domain D(L) of the operator consists of functions f 2
H̃2(�) which satisfy some local self-adjoint conditions at the vertices.

This operator can be shown to be bounded from below (See Section 2.4) and as
we’ve seen in Section 1.2, for operators of this type we need to find a suitable dense
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subspace. Since the operator acts as the negative second-derivative along the edges,
it is natural to assume that fe 2 H2(e) on each edge, or equivalently, f 2 H̃2(�).
This is however not enough to make the Hamiltonian self-adjoint, but if one chooses
certain kind of vertex conditions then L can be proven to be self-adjoint. Again,
since the operator acts as the negative second-derivative, the boundary conditions, or
perhaps rather the vertex conditions may only involve the values of fe(x) and f 0

e(x)
at the edge ends. The derivative f 0

e of fe at some vertex v is taken in the outgoing
direction (i.e away from the vertex). Before ending this section we summarize the
definition of a quantum graph below.

Definition 2.1.4. A quantum graph is a compact metric graph � = (V , E , I) equipped
with the Hamiltonian operator L acting as the negative second-derivative on the func-
tions along the edges. The operator domain consists of functions from H̃2(�) which
satisfy some local self-adjoint matching conditions at the vertices.

Before looking more closely at how one can choose these matching conditions,
we will in the following section compute the eigenvalues of the trivial graph with
the Dirichlet conditions.

2.2 The Trivial Graph

In this section we will compute the eigenvalues of the Hamiltonian on a graph with
two vertices and one edge, which we recognize as simply the interval [0, `], see Figure
2.1. The eigenvalues of the Hamiltonian acting on functions f defined on [0, `] is
given by the second-order linear di↵erential equation

�f 00 = k2f. (2.7)

We count the eigenvalues of the graph in terms of k, which can easily be related
back to the ”true” eigenvalue � by � = k2. The solution to (2.7) is given by

f(x) = A cos(kx) + B sin(kx) (2.8)

where the constants A,B is determined by the vertex (boundary) conditions. We will
look at two types of boundary conditions, namely the Dirichlet and the Neumann
conditions. The Dirichlet and Neumann conditions at a vertex v are defined as

Dirichlet : fe(v) = 0 for all edges e incident to v. (2.9)

Neumann : f 0
e(v) = 0, for all edges e incident to v, where the (2.10)

direction of the derivative is taken from the vertex (2.11)

into the edge. (2.12)

In the case of the trivial graph [0, `], the Dirichlet conditions at both vertices are
equivalent to f(0) = f(`) = 0 and the Neumann conditions are equivalent to f 0(0) =
0, �f 0(L) = 0. We don’t have to bother looking for any negative eigenvalues.
Indeed, consider the inner product of �f 00 with f . By partial integration and using
that f(0) = f(`) = 0 in the Dirichlet case, or f 0(0) = 0, �f 0(L) = 0 in the Neumann
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v1 v2
`

Figure 2.1: A graph with 2 vertices and 1 edge with length `.

case, we get

h�f 00, fi =
Z `

0

�f 00(x)f(x) dx =
⇥

� f 0(x)f(x)
⇤`

0

�
Z `

0

(�f 0(x))f 0(x) dx

=

Z `

0

|f 0(x)|2 dx � 0. (2.13)

Now suppose � is an eigenvalue. Then

h�f 00, fi = h�f, fi = �hf, fi (2.14)

and so we see that (2.13) is clearly non-negative and for (2.14) to be non-negative
� > 0 since hf, fi � 0. We begin by trying to find the positive eigenvalues in the
Dirichlet case. Assume � > 0, then solving (2.7) using (2.8) and (2.9) we get

f(0) = A cos(k · 0) + B sin(k · 0) = A = 0

Since A = 0 and f`) = 0 we can solve for the eigenvalues (in terms of k)

f(`) = B sin(k`) = 0 =) k =
⇡n

`
, n = 1, 2, 3 . . .

Note that we’re not interested in the trivial solution f(x) ⌘ 0 and so B 6= 0.
Then each positive eigenvalue can be written as �n = (⇡n

`
)2 with the corresponding

eigenfunctions fn(x) = sin(⇡nx
`
), n 2 N. In the case of � = 0, we get �f 00 = 0

which is solved by f(x) = Ax + B, with the vertex conditions at the endpoints
we arrive at the trivial solution f(x) = 0. In conclusion, the only eigenvalues of �

with the Dirichlet conditions imposed on both vertices are �n =
�

⇡n
`

�

2

, n 2 N, with
corresponding eigenfunctions fn(x) = sin(⇡nx

`
). In addition, the eigenfunctions are

orthogonal which is shown by the following computation with ni � 1, i = 1, 2 and
constants ci =

⇡n
i

`
we have

Z `

0

sin(c
1

x) sin(c
2

x)dx =

Z `

0

cos((c
1

� c
2

)x)� cos((c
1

+ c
2

)x)

2
dx

=

"

sin((c
1

� c
2

)x)

c
1

� c
2

� sin((c
1

+ c
2

)x)

c
1

+ c
2

#`

0

= 0.

Thus all eigenvalues are real and the corresponding eigenfunctions are orthogonal.
As we will see later, these Dirichlet conditions actually give rise to a self-adjoint
operator, and so these properties are to be expected in accordance to Theorem 1.4.1
and Theorem 1.4.2. Moreover, due to Theorem 2.4.4, the spectrum of the self-adjoint
Hamiltonian is purely discrete and so in this example, �(�) = {

�

⇡n
`

�

2

, n 2 N}. The
eigenvalue counting function of this graph can then be written as
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N`(k) = #{� 2 �(�)|�  k2} =
jk`

⇡

k

(2.15)

where the brackets denotes the lower integer part function. If we instead consider a
graph �D = (V , E) with Dirichlet conditions at every vertex, then this a completely
decoupled graph. If we consider one Dirichlet interval at first, the eigenfunction of
this interval can be extended to the whole graph by setting it identical to zero on
the rest of the intervals (and so the Dirichlet conditions are trivially fulfilled). The
union of the spectra of these intervals are then contained in the spectra of the graph.
Conversely, restricting an eigenfuncton of �D to any interval gives an eigenfunction
of this interval. hence the following equality hold

�(�D) =
[

e2E

n⇣⇡n

`e

⌘

2

, n 2 N
o

(2.16)

and the corresponding counting function N
�

D

(k) is just the sum of all individual
counting functions on the edges, that is

N
�

D

(k) =
X

e2E
N`

e

(k). (2.17)

Computing the spectrum of the Neumann conditions is very similar to what we
have already done. We have f 0(0) = 0 which implies B = 0 in (2.7) since k > 0.
To avoid the trivial solution, A 6= 0, which together with �f 0(`) = 0 implies that
sin(k`) = 0, hence the solutions are k = ⇡n

`
, n 2 N and the eigenvalues on a

graph with Neumann conditions at both vertices are exactly the same as in the
Dirichlet case, namely �n =

�

⇡n
`

�

2

, n 2 N with the corresponding eigenfunctions
fn(x) = cos(⇡nx

`
). If we consider a graph consisting of Neumann conditions at every

vertex, the spectrum of such a graph is, just as in the Dirichlet case, the union of
the spectra of each edge (the Neumann conditions are yet another example of a
decoupling condition).

2.3 Vertex conditions

As we have already seen in the previous section, with the Dirichlet boundary con-
ditions the Hamiltonian is seemingly a self-adjoint operator. In this section we will
give a description how all self-adjoint realizations of the Hamiltonian arise. We will
see that this can be done in two (equivalent) ways, one in terms of two matrices
Av, Bv and the other in terms of three projectors. It should be noted that these
conditions are local, that is, we are considering one vertex v at a time. The Hamil-
tonian act as a negative second derivative on each edge and so we need have two
conditions per edge, or dv conditions per vertex. These conditions involve the values
of f and f 0 at v. Now, consider a vertex v with degree dv and functions f

1

, . . . , fd
v

on the edges incident to v. We may then define the column vectors F (v), F 0(v) as

F (v) =

2

6

6

6

4

f
1

(v)
f
2

(v)
...

fd
v

(v)

3

7

7

7

5

F 0(v) =

2

6

6

6

4

f 0
1

(v)
f 0
2

(v)
...

f 0
d
v

(v)

3

7

7

7

5

. (2.18)

20



The homogeneous conditions for which F (v), F 0(v) must satisfy at a vertex v can
be written using two dv ⇥ dv-matrices Av, Bv such that

AvF (v) + BvF
0(v) = 0 (2.19)

and to ensure dv independent conditions, we require the dv ⇥ 2dv-matrix (Av Bv) to
be of maximal rank for all v 2 V .

Theorem 2.3.1. Let � = (V , E , I) be a compact metric graph. The Hamiltonian L
acting on functions f 2 H̃2(�) which satisfy some local vertex conditions involving
the values of the function and their derivatives at the vertices is self-adjoint if and
only if the vertex conditions can be written in any of the two equivalent forms.

1. There exists dv⇥dv-matrices Av and Bv such that the dv⇥2dv-matrix (Av Bv)
has maximal rank and AvB

⇤
v is self-adjoint for every vertex v 2 V with degree

dv. The boundary values of f at v should also satisfy AvF (v) + BvF
0(v) = 0.

2. There exist three mutually orthogonal projectors PD,v, PN,v and PR,v = I �
PD,v � PN,v acting in Cd

v and a self-adjoint operator ⇤v acting in PR,vCd
v for

each vertex v 2 V such that the boundary values of f at v satisfy
8

>

>

<

>

>

:

PD,vF (v) = 0

PN,vF
0(v) = 0

PR,vF
0(v) = ⇤vPR,vF (v).

(2.20)

Proof. See [5].

We will in Section 2.5 see how the matrices and projectors can be chosen when we
consider a certain type of conditions called the extended �-type vertex conditions,
of which the Dirichlet conditions in Section 2.2 are a special case. Before doing
that, we will take a look at the sesquilinear form of the Hamiltonian. In order to
do this, writing the vertex conditions in terms of the projectors as in (2.20) is the
most suitable choice.

2.4 Sesquilinear form of the Hamiltonian

Our main goal in this section is to show that the sesquilinear form in Definition
2.4.1 is densely defined, symmetric, bounded from below and closed. Then due to
Theorem 1.3.1 there exists a unique self-adjoint operator corresponding to that form.
This corresponding self-adjoint operator will be then proven to be the Hamiltonian
operator.

Definition 2.4.1. Let s denote the sesquilinear form defined as

s[f, g] =
X

e2E

Z

e

f 0(x)g0(x)dx+
X

v2V
h⇤vPR,vF (v), PR,vG(v)i (2.21)

Here h, i denotes the standard inner product in PR,vCd
v . The domain D(s) consists of

functions belonging to H1(e) on each edge with the added condition that PD,vF (v) = 0
for all v 2 V. The corresponding quadratic form is then
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q[f ] =
X

e2E

Z

e

|f 0(x)|2dx+
X

v2V
h⇤vPR,vF (v), PR,vF (v)i (2.22)

for f 2 D(s).

Showing that (2.21) satisfies Definition 1.3.1 of a sesquilinear form is straight-
forward and therefore will be omitted. In order to show that s is bounded from
below we need an estimate in the form of the below lemma.

Lemma 2.4.1. Let f 2 H1[0, `] then for any 0 < �  `,

|f(0)|2  2

�
kfkL2

[0,`] + �kf 0k2L2
[0,`]. (2.23)

Proof. Since f 2 H1[0, `], f is absolutely continuous1 and can be written on the
form

f(x) = f(0) +

Z x

0

f 0(t)dt (2.24)

for all x 2 [0, `]. We denote the indicator function by 1
[0,`], then using Cauchy-

Schwartz we have

�

�

�

�

�

Z x

0

f 0(t)dt

�

�

�

�

�

2

=

�

�

�

�

�

Z x

0

1
[0,`]f

0(t)dt

�

�

�

�

�

2

 k1
[0,x]k2L2

[0,`]kf 0k2L2
[0,`] = xkf 0k2L2

[0,`]. (2.25)

By taking the L2(0, �)-norm on (2.25), we get

�

�

�

�

�

Z x

0

f 0(t)dt

�

�

�

�

�

2

L2
[0,�]

 kxk2L2
[0,�]kf 0k2L2

[0,`] =
�2

2
kf 0k2L2

[0,`]. (2.26)

Solving for f(0) in (2.23) and taking the L2[0, �]-norm on both sides and using the
standard inequality (a+ b)2  2a2 + 2b2, we end up with

kf(0)k2L2
[0,�] = �|f(0)|2  2kfk2L2

[0,�] + �2kf 0kL2
[0,`] (2.27)

and dividing by � finishes the proof.

Theorem 2.4.2. The sesquilinear form s defined in Defintion 2.4.1 is densely de-
fined, symmetric, semi-bounded from below and closed.

Proof. The form is densely defined since
L

e2E C
1
comp(e) ⇢ D(s) is dense in L2(�).

Symmetry is shown quite easily by using the standard properties of inner products

1See [8] page 31 for proof of this claim.
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and the fact that ⇤v is self-adjoint. The computation is straight-forward as can be
seen below

s[g, f ] =
X

e2E

Z L
e

0

g0(x)f 0(x)dx+
X

v2V
h⇤vPR,vFv, PR,vGvi (2.28)

=
X

e2E

Z L
e

0

f 0(x)g0(x)dx+
X

v2V
hPR,vF,⇤vPR,vGvi (2.29)

=
X

e2E

Z L
e

0

f 0(x)g0(x)dx+
X

v2V
h⇤vPR,vFv, PR,vGvi (2.30)

= s[f, g]. (2.31)

for all f, g 2 D(s). Next we will show that s is bounded from below. Since ⇤v is
self-adjoint, the eigenvalues of ⇤v are real and with

�max = max
v2V

{|�| : � 2 �(⇤v)} (2.32)

the following inequality holds

X

v2V
h⇤vPR,vFv, PR,vFvi  �max

X

v2V
|PR,vFv|2  �max

X

v2V
|Fv|2 (2.33)

since Fv = PR,vFv + PD,vFv + PN,vFv and PR,v, PD,v, PN,v are mutually orthogonal,
then |Fv|2 = |PR,vFv|2 + |PD,vFv + PN,vFv|2 and |F |2 � |PR,vFv|2. Let q[f ] denote
the quadratic form as in Definition 2.4.1, then

q[f ] = kf 0k2L2
(�)

+
X

v2V
h⇤vPR,vFv, PR,vFvi (2.34)

� kf 0k2L2
(�)

� �max

X

v2V
|Fv|2 (2.35)

� kf 0k2L2
(�)

� 2�max

X

e2E

⇣2

�
kfk2L2

(e) + �kf 0k2L2
(e)

⌘

(2.36)

= (1� 2��max)kf 0k2L2
(�)

� 4�max

�
kfk2L2

(�)

(2.37)

where we applied Lemma 2.4.1 at all the vertices with the same parameter � chosen
such that `min � � > 0. In addition, if we choose �  1

2�
max

then 1 � 2�max� � 0

and we can disregard the kf 0k2L2
(�)

-term. That is, by choosing �  min{`min,
1

2�
max

}
we can find a constant c > 0 such that

q(f) � �ckfk2L2
(�)

(2.38)

holds. Let c
0

denote the optimal bound. To show closedness of the form, we need
to show that D(q) is complete with the norm

kfkq :=
q

q[f ] + (1 + c
0

)kfk2L2
(�)

. (2.39)

If we can show that there exists some ↵, � > 0 such that

↵kfkH1
(�)

 k · kq  �kfkH1
(�)

(2.40)
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then the two norms are equivalent and (D(q), k · kq) is just H1(�), which is known
to be a Hilbert space (and hence complete). It is easy to see that we can find such
↵, �. Indeed, by squaring the norm and using the already familiar inequalities we
get

q[f ] + (1 + c
0

)kfk2L2
(�)

 kf 0k2L2
(�)

+ 2�max

⇣2

�
kfk2L2

(�)

+ �kfk2L2
(�)

⌘

(2.41)

+ (1 + c
0

)kfk2L2
(�)

(2.42)

 �2(kfk2L2
(�)

+ kf 0k2L2
(�)

) (2.43)

= �2kfk2H1
(�)

(2.44)

which holds if we choose � large enough. With c = c
0

+ 1 and putting together
(2.37) and (2.39) we get

(1� 2��max)kf 0k2L2
(�)

� 4�max

�
kfk2L2

(�)

+ ckfk2L2 > 0 (2.45)

and we can write (2.45) as some ↵2kfk2H1
(�)

> 0 with ↵ > 0, then

q[f ] + (1 + c
0

)kfk2L2
(�)

� (1� 2��max)kf 0k2L2
(�)

� 4�max

�
kfk2L2

(�)

+ (1 + c
0

)kfk2L2

� ↵2kfk2H1
(�)

and hence the two norms are equivalent. Showing that D(q) is complete in the norm
k · kq is then equivalent to showing that D(q) is a closed subspace of H1(�). Since
H1(�) is complete with k · kH1

(�)

norm, every convergent sequence in D(q) has a
limit in H1(�), moreover, due to Lemma 2.4.1, the limit function itself belongs to
D(q).

Since (2.18) satisfy the requirements of Theorem 1.3.1, we will now show that
the corresponding operator is actually the Hamiltonian.

Theorem 2.4.3. The unique self-adjoint operator corresponding to the sesquilinear
form s in Definition 2.4.1 is the Hamiltonian operator L.

Proof. By Theorem 1.3.1, the corresponding operator G satisfies s[f, g] = hGf, gi for
all f 2 D(G), g 2 D(s) and D(G) ⇢ D(s) = {f 2 H̃1(�) | PD,vFv = 0, 8v 2 V}. We
will begin by showing that the operator acts as the negative second derivative along
the edges. Pick any f 2 D(G), then we can find an h 2 L2(�) such that

s[f, g] = hh, gi (2.46)

for all g 2 H̃1(�). If we choose our g such that ge 2 C1
comp(e) on each edge, then

Gv = 0 for all v 2 V and
P

v2Vh⇤vPR,vFv, PR,vGvi = 0. Equation (2.46) can then
be written as

X

e2E

Z

e

f 0(x)g0(x)dx =
X

e2E

Z

e

h(x)g(x)dx (2.47)

and by partial integration we get

�
X

e2E

Z

e

f 00(x)g(x)dx =
X

e2E

Z

e

h(x)g(x)dx. (2.48)
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since ge vanishes on the boundary. Then by matching respective edge, we see that
he(x) = Gfe = �f 00(xe) and fe(x) 2 H2(e) since f 00(xe) 2 L2(e). Next, we’d like
to show that the functions f 2 D(G) satisfy the self-adjoint vertex conditions as
in the second part of Theorem 2.3.1. The first condition PR,vF = 0 holds trivially
since f 2 D(G) ⇢ D(s). Now, pick a function g 2 D(s) which is non-zero in a small
neighborhood around a single vertex, then using partial integration again in (2.46),
we can cancel the integral terms and be left with

h⇤vPR,vFv, Gvi = hF 0
v, Gvi (2.49)

Since G can be chosen arbitrarily and PD,vG = 0, we get

(⇤vPR,vFv � F 0
v) 2 (ker(PD,v))

? = ran(PD,v) (2.50)

= ker(I� PD,v) = ker(PN,v + PR,v) (2.51)

thus

(PN,v + PR,v)(⇤vPR,vFv � F 0
v) = 0 (2.52)

which reduces to

⇤vPR,vFv � PN,vF
0
v � PR,vF

0
v = 0 (2.53)

and by applying PN,v to both sides, we see that PN,vF
0
v = 0 and ⇤vPR,vFv = PR,vF

0
v.

Conversely, we’d like to show that if f 2 H̃2(�) and satisfy PD,vFv = 0, PN,vF
0
v = 0

and ⇤vPR,vFv = PR,vF
0
v then f belongs to the domain of G. For any g 2 D(s),

h�f 00, gi = �
X

e2E

Z

e

(�f 0(x))g0(x)dx+
X

v2V
hF 0, Gi (2.54)

=
X

e2E

Z

e

f 0(x)g0(x)dx (2.55)

+
X

v2V
hPD,vF

0 + PN,vF
0 + PR,vF

0, PD,vG+ PN,vG+ PR,vGi (2.56)

which simplifies to

X

e2E

Z

e

f 0(x)g0(x)dx+
X

v2V
h⇤vPR,vFv, PR,vGvi (2.57)

using that PN,vF
0
v = 0, PR,vF

0
v = ⇤vPR,vFv, PD,vGv = 0 and orthogonality of the

projectors.

Our final theorem in this section states that the spectrum of the graph (or
equivalently, the spectrum of the Hamiltonian) is purely discrete. In other words,
�ess(L) = ; and the Min-max theorem (Theorem 1.4.3) holds.

Theorem 2.4.4. The spectrum of L is purely discrete.

Proof. See [5].
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2.5 The extended �-type vertex conditions

Our focus in this section is to describe a certain kind of vertex conditions known as
the extended �-type and derive its sesquilinear form. The �-type of vertex conditions
can be summarized as

Definition 2.5.1. The �-type of vertex conditions at a vertex v 2 V are defined as;
(

f is continuous on �,
Pd

v

i=1

df
i

dx
(v) = ↵vf(v)

(2.58)

for �1 < ↵v < 1 with the direction of the derivative is outgoing; from the vertex
into the edge. With ↵v = 0 we get the Kircho↵ conditions.

The corresponding projectors as in Theorem 2.3.1 at a vertex v with degree dv
endowed with the �-type of vertex conditions are

PD,v =

2

6

6

6

4

d
v

�1

d
v

� 1

d
v

. . . � 1

d
v

� 1

d
v

d
v

�1

d
v

. . . � 1

d
v

. . . . . . . . . . . .
� 1

d
v

� 1

d
v

. . . d
v

�1

d
v

3

7

7

7

5

, PR,v =
1

dv

2

6

6

6

4

1 1 . . . 1
1 1 . . . 1
. . . . . . . . . . . .
1 1 . . . 1

3

7

7

7

5

(2.59)

with PN,v = 0 and ⇤v =
↵
v

d
v

. With a simple computation we get the contribution to
the quadratic form at the vertex v endowed with the �-type condition as

h⇤vPR,vFv, PR,vFvi =
↵v

dv
hPR,vFv, PR,vFvi =

↵v

dv
hFv, Fvi = ↵v|f(v)|2 (2.60)

and of course the contribution vanish with the Kircho↵ conditions since ↵v = 0.
The form domain of a graph purely consisting of �-type conditions at all vertices is
simply H1(�). The extended �-type of conditions is to allow ↵v = 1. By dividing
(2.58) with ↵v and taking the limit, we simply get the condition

(

f is continuous on �,

f(v) = 0
(2.61)

which we simply recognize as the Dirichlet conditions. The domain of this form is
quite not the same as for the �-type. Instead, for functions on the edges connected
to a vertex with ↵v = 1, we set f(v) = 0. Similarly, as in the Kircho↵ case, the
Dirichlet condition will give no contribution to the quadratic form since F (v) = 0.

2.6 Eigenvalue interlacing

Now we will look at a certain kind of interlacing property of quantum graphs which
will later be proven to be useful in the proof of Weyl’s law in Section 2.7. The idea is
to look what happens with the eigenvalues of a graph when changing the parameter
↵ in the �-type of vertex conditions at a single vertex v. Note that we do not assume
�-type of vertex conditions at the other vertices, these can be made arbitrary with
the only condition that the Hamiltonian is still self-adjoint.
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Theorem 2.6.1. Let �↵ = (V , E , I) be a metric graph equipped with the Hamiltonian
operator. Let v be a distinguished vertex of �↵ endowed with the �-type of condition
with some parameter 0 < ↵  1. The remaining vertices are endowed with arbitrary
self-adjoint conditions. Let �↵0 be the same graph obtained by changing ↵ to ↵0 where
�1 < ↵  ↵0  1. Then the following chain of inequalities hold

�n(�↵)  �n(�↵0)  �n+1

(�↵). (2.62)

Proof. We begin by first assuming that �1 < ↵  ↵0 < 1. The quadratic forms
of each respective graph �↵, �↵0 is

q↵[f ] =
X

e2E

Z

e

f 0(x)g0(x)dx+ ↵|f(v)|2 +
X

v2V 0

h⇤vPR,vFv, PR,vFvi (2.63)

q↵0 [f ] =
X

e2E

Z

e

f 0(x)g0(x)dx+ ↵0|f(v)|2 +
X

v2V 0

h⇤vPR,vFv, PR,vFvi (2.64)

where V 0 denotes the set V with our distinguished �-type vertex v removed and f 2
H1(�↵). Since we have shown that the sesquilinear form satisfies the requirements
of the Min-max theorem (Theorem 1.4.3) in Section 2.4, the eigenvalues of the graph
can then be written as

�n = min
V subspace of D(q)

dim(V ) = n

max
f2V
kfk=1

q[f ]. (2.65)

As a direct consequence we get the first inequality

�n(�↵)  �n(�↵0) (2.66)

since q↵  q↵0 and D(q↵) = D(q↵0). Let �1 denote the same graph as �↵ but with
↵ = 1. The corresponding form is

q1[f ] =
X

e2E

Z

e

f 0(x)g0(x)dx+
X

v2V 0

h⇤vPR,vFv, PR,vFvi (2.67)

with the domain D(q1) consisting of all f 2 D(q↵) with f(v) = 0 at the particular
�-type vertex v. Again, by the Min-max theorem,

�n(�↵0)  �n(�1). (2.68)

holds true since on the domain of D(q1), q1 = q↵, and minimizing over a smaller
domain yields a bigger result. The final inequality we would like to show is

�n(�1)  �n+1

(�↵). (2.69)

Let q↵ obtain its minimum on a subspace U which is spanned by the first n+ 1
eigenvectors with dim(U) = n+1. Then we can find a subspace U1 with dim(U1) =
n such that U1 ⇢ U and U1 ⇢ D(q1). Then

�n(�1) = min
V subspace of D(q)

dim(V ) = n

max
f2V
kfk=1

q1[f ]  max
f2U1
kfk=1

q1[f ] (2.70)
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since the values of the quadratic form agree on the subspaces V and U1. Next,

max
f2U1
kfk=1

q1[f ] = max
f2U1
kfk=1

q↵[f ] (2.71)

 max
f2U
kfk=1

q↵[f ] = �n+1

(�↵), (2.72)

where the first equality follows from the fact that we consider functions f for which
f(v) = 0 and q↵ = q1 on U1. The second inequality follows easily since we just
increase the domain over which we’re maximizing the quadratic form. Putting the
chain of inequalities together we arrive at

�n(�↵)  �n(�↵0)  �n(�1)  �n+1

(�↵) (2.73)

which is equivalent to the statement of the theorem.

2.7 Weyl’s Law for Kircho↵ and Dirichlet vertex

conditions

Now we are finally ready for the proof of Weyl’s law. We will assume that every
vertex of the graph is either endowed with Kircho↵ or Dirichlet vertex conditions
(we allow the graph to be mixed). The idea of the proof is simple; we want to bound
the eigenvalue counting function N

�

(k) on � by an already known counting function
plus or minus some constant.

Theorem 2.7.1. Let � = (V , E , I) be a metric graph equipped with the Hamiltonian
operator. At each vertex the conditions are either Dirichlet or Kircho↵. We denote
the length of the graph as L = `

1

+ `
2

+ . . .+ `|E| where `i corresponds to the length of
edge ei 2 E . Then the eigenvalue counting function N

�

(k) = #{� 2 �(�) | �  k2}
can be written as

N
�

(k) =
L

⇡
k +O(1) (2.74)

where the remainder term is bounded above and below by constants independent of
k.

Proof. As we have shown in Section 2.2, the eigenvalue counting function of an edge
with Dirichlet conditions at both vertices can be written as

Ne(k) =
jk`

⇡

k

(2.75)

which we clearly can bound by

k`

⇡
� 1  Ne(k) 

k`

⇡
. (2.76)

We adopt the previous notation from Theorem 2.6.2 where �
0

denotes the graph
with a distinguished vertex v endowed with the Kircho↵ condition and �1 denotes
the graph �

0

obtained by changing the vertex condition on v to Dirichlet. The chain
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of inequalities given by Theorem 2.6.2 implies that the eigenvalue counting function
N

�0 can be bounded by

N
�1(k)  N

�0(k)  N
�1(k) + 1. (2.77)

Since our original graph � is endowed with either the Kircho↵ or Dirichlet conditions
at every v 2 V , we can apply Theorem 2.6.2 a maximum of |V| times (the maximum
corresponds to a graph with Kircho↵ conditions at every vertex). We can bound
N

�

(k) by

N
�

D

(k)  N
�

(k)  N
�

D

(k) + |V|. (2.78)

From Section 2.2 we know that the counting function of N
�

D

(k) is

N
�

D

(k) =
|E|
X

i=1

N`
e

(k) =
jk`

1

⇡

k

+
jk`

2

⇡

k

+ . . .+
jk`|E|

⇡

k

(2.79)

which is bounded from above by

N
�

D

(k)  `
1

+ `
2

+ . . .+ `|E|
⇡

k (2.80)

and below by

N
�

D

(k) � `
1

+ `
2

+ . . .+ `|E|
⇡

k � |E| (2.81)

by using (2.76) on each term of (2.79). By putting together (2.78) along with (2.80)
and (2.81) we arrive at the desired conclusion

L

⇡
k � |E|  N

�

(k)  L

⇡
k + |V| (2.82)

with L := `
1

+ `
2

+ . . .+ `|E|.

2.8 Weyl’s Law for nonnegative ⇤v-matrices

In this final section we will consider a graph endowed with arbitrary self-adjoint
conditions at the vertices for which the corresponding self-adjoint matrix ⇤v is non-
negative. We will show that the eigenvalue counting function of said graph � follows
the asymptotic law

N
�

(k) ⇠ L

⇡
k as k ! 1. (2.83)

Theorem 2.8.1. Let � = (V , E , I) be a metric graph equipped with the Hamiltonian
operator. The vertices are all endowed with arbitrary vertex conditions which give
rise to a nonnegative self-adjoint matrix ⇤v at a vertex v. We denote the length of
the graph as L := `

1

+ `
2

+ . . . + `E where `i corresponds to the length of the edge
ei 2 E . Then the eigenvalue counting function N

�

(k) = #{� 2 �(�) | �  k2} of
the graph obeys the following asymptotic law

N
�

(k) ⇠ L

⇡
k as k ! 1. (2.84)
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Proof. Let N
�

D

(k) denote the eigenvalue counting function of a quantum graph with
Dirichlet conditions at every vertex. Let N

�

N

(k) be defined similarly, but with the
Neumann conditions at every vertex instead. Finally, let N

�

(k) denote the counting
function for a graph with arbitrary self-adjoint vertex conditions which give rise
to a nonnegative self-adjoint matrix ⇤v. Since we know from Section 2.2 and Sec-
tion 2.7 that N

�

D

(k) and N
�

N

(k) follows the same asymptotic law, the assertion of
the theorem follows if we can bound N

�

(k) above and below by N
�

N

(k) and N
�

D

(k).

In the case of Dirichlet graph, PD,v = I and Fv = 0 for all v 2 V . With f 2 D(qD)
the quadratic forms of qD[f ] and q[f ] coincide since

h⇤vPR,vFv, PR,vFvi = 0 (2.85)

for all v 2 V . Since D(qD) ✓ D(q) we get as a direct consequence of the Min-max
theorem (Theorem 1.4.3) the following inequality:

�n(�D) � �n(�) (2.86)

for all n 2 N, hence
N

�

(k) � N
�

D

(k). (2.87)

Conversely, the Neumann graph �N is completely decoupled with Neumann con-
ditions at every vertex. The Neumann conditions at a single vertex v in terms of
the projectors are PN,v = I, PR,v = PD,v = 0. Since Ran(PR,v) = {0} for all v 2 V ,
the corresponding self-adjoint operator ⇤v acts in {0} for all v 2 V and hence there
is no contribution of h⇤vPR,vFv, PR,vFvi to the quadratic form qN . Since the graph
is completely decoupled, there is no continuity requirement at the junctions and the
form domain consists of all f 2 H̃1(�). The domain of q is then a subset of qN and
q � qN on D(q) since ⇤v is nonnegative. Then again by the Min-max theorem

�n(�) � �n(�N) (2.88)

for all n 2 N, hence
N

�

N

(k) � N
�

(k). (2.89)

Since N
�

N

(k), N
�

D

(k) is already known from Section 2.2 and Section 2.7, combining
(2.87) and (2.89) we get

L

⇡
k ⇠ N

�

D

(k)  N
�

(k)  N
�

N

(k) ⇠ L

⇡
k. (2.90)

which proves the assertion of the theorem.

Since we have only shown Weyl’s law in two special cases, it is then natural to
ask if there is some general form of Weyl’s law which works for all types of vertex
conditions? This is indeed the case, in a recent paper, see [7], the authors Almasa
Odžak and Lamija Šćeta showed that for a general compact graph with arbitrary
self-adjoint conditions the counting function N(k) satisfy

N(k) =
L

⇡
k +O(k

2
3 ). (2.91)
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