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Abstract

In this thesis we try to establish a compositional framework for learning algo-
rithms based on category theory, in particular the theory of monoidal categories.
By showing how to construct neural networks with string diagrams in the cate-
gory Para, the category of Euclidean spaces and parametrized di�erentiable func-
tions, we gain insight in how learning algorithms can be constructed by gluing
together smaller learning algorithms to form larger ones.

We then analyze gradient descent and backpropagation, a combined tech-
nique common for training neural networks, through the lens of category theory
in order to show how our composed learning algorithms can be trained on the
category Learn, the category of sets and learning algorithms.

Additionally we �nd that recurrent neural networks give rise to a general
construction on Learn that allows us to de�ne learning algorithms de�ned over
sequences of objects.
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1 Introduction
Our aim with this thesis is to provide a sketch of how category theory and especially
the theory behind monoidal categories provide a suitable framework for discussing
machine learning algorithms, in particular those pertaining to the �eld of deep learn-
ing. A inspirational and foundational source to our undertaking which spurred this
direction is to be found in Fong et al. Backprop as a Functor: A compositional perspec-
tive on supervised learning [2].

1.1 Background
Machine learning, or more precisely the machine learning sub�eld deep learning, has
in recent years seen quite a renaissance. From models beating the world champion
in Go to discovering early stage cancer at a higher-than-average accuracy there are
many reasons to pay attention to its development. In particular the construction of
di�erentiable learning models have seen the most success; initially stemming from
neural networks these wholly di�erentiable models have taken a life of their own,
with proper abstract computing machines being de�ned only using these di�eren-
tiable structures inherited from arti�cial neural networks.

As deep learning diverges from its roots in neural networks new terms have been
suggested such as di�erentiable programming [7]. While this might seem as a sim-
ple attempt of re-branding and semantics it might hold a more substantial di�erence:
the way in which these models are being built is similar to the way functional pro-
gramming is done [6]. Considering the links between functional programming and
category theory through lambda calculus on one hand [4] as well as work done by
John Baez et al. [5] showing that the diagrams and networks often used in engineering
and applied sciences belong to monoidal categories on the other hand, we �nd that
category theory and in particular the theory behind monoidal categories prove to be
a �tting scope for further investigating the properties of these learning algorithms.

A hope is that while shedding this surface-level category-theoretic light upon
learning algorithms may not be the end-all of the odd marriage between machine
learning and category theory it might serve as a slight paving of the path to under-
standing the way these models are being constructed in a high-level and foundational
view without concerning ourselves too much the details of implementation.

1.2 Disposition
We will begin by giving the reader a reminder of the required theory both in neural
networks and category theory in Sections 2,3 and 4. This includes basic de�nitions of
monoidal categories as well as string diagrams which we will see become a natural
way of portraying learning algorithms and neural networks in particular. On the deep
learning end we will give a brief overview of neural networks and the way they are
trained.

In Sections 5 and 6 we will begin developing the machinery described in Fong et
al. [2] for the compositional learning algorithms, starting with constructing examples
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of known networks in Para the category of parametrized di�erentiable functions and
then showing how we can train these in the monoidal category Learn.

Further on in Section 6 we will �nd that Learn contains structure beyond that of
traditional neural networks, in fact it is general enough to imagine many di�erent
sorts of learning algorithms. In particular we will see that recurrent neural networks
exist as a more general recurrent learner on Learn.
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2 Categories
This section of fundamental de�nitions is from Awodey’s Category Theory [1].

De�nition 1. A category C consists of objects and morphisms (also known as ar-
rows). For every morphism f in C there are objects dom(f ) and cod(f ) known as
the domain respectively the codomain of f . We write f : A! B to denote A as the
domain and B as the codomain of f .

Givenmorphisms f : A! B and g : B! C inC there is amorphism g�f : A!C
known as the composite of f and g .

For each object A in C there is a morphism 1A : A ! A known as the identity
morphism.

Such that associativity of morphism composition holds

h � (g � f ) = (h � g) � f
and that the identity morphism acts as a unit for morphisms with respect to com-

position:

f � 1A = f = 1B � f
.

Remark 1. In Fong et al. [2] another de�nition is used. It is essentially the same
however the order of composition is switched and the ; operator is used instead so
that for f : X ! Y and g : Y ! Z we have that f ;g : X ! Z . It can be read as “�rst
do f , then do x”. This notation is quite useful when dealing with diagrams as they
are also read left to right, however we will not be using it as it may prove somewhat
confusing to deviate from standard notation.

Throughout this section we will be running with the simplest of example of a
category, in some sense the starting point and canonical example of a category, the
category Set of sets as objects and morphism as functions between them. To see
that Set indeed ful�lls our prior de�nition is quite trivial as composition coincides
with ordinary function composition, which is associative, and the identity morphism
coincides with the identity function.

Set is a convenient category as its properties are familiar from ordinary mathe-
matics and set theory, however it is worth mentioning that Set is far from the only
category there is.

Example

There is a category FinV ect of �nite-dimensional vector spaces and linear maps be-
tween these. To see that FinV ect is a category note that linear maps respect compo-
sition and associativity, and that the identity function applied to a vector space is a
linear map.
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Example

There is a category E of Euclidean spaces as objects and di�erentiable maps as mor-
phisms. That E is indeed a category can be derived from Set as E is Set with all other
sets than Euclidean spaces and all morphisms other than di�erentiable maps removed.
Since the identity function is a di�erentiable map and composition of di�erentiable
maps yields a di�erentiable map the categorical structure of Set is preserved.

2.1 Functors
De�nition 2. A functor

F :C!D

is a mapping from the category C to the category D, or more precisely from the ob-
jects of C to the objects of D and from the morphisms of C to the morphisms of D
such that:

1. F(f : A! B) = F(f ) : F(A)! F(B),
2. F(g � f ) = F(g) �F(f ),
3. F(idA) = idF(A).

Remark 2. These requirements are, as many of these fundamental de�nitions, very
intuitive. We simply demand that a functor works in the same spirit as a homomor-
phism, in other words it preserves the categorical structure such that composition and
unit are respected.

2.2 Isomorphism
De�nition 3. We say that a morphism f in some category C is an isomorphism if it
has an inverse, in other words that there exists some other morphism f �1 : Y ! X
in C such that f � f �1 = 1Y and f �1 � f = 1X .

2.3 Natural transformation
De�nition 4. Given two functors F,F 0 :C!D a natural transformation ↵ : F) F 0

assigns for every object X in C a morphism ↵X : F(X)! F 0(X) such that given any
morphism f : X! Y in C it holds that ↵Y �F(f ) = F 0(f ) �↵X .

2.4 Natural isomorphism
De�nition 5. A natural isomorphism is a natural transformation such that ↵X is an
isomorphism for every object X in C .

3 Monoidal categories
We will mostly be concerned with so called monoidal categories from here on as they
provide a natural framework for interpreting networks that describe �ow of infor-
mation known as string diagrams. This section of de�nitions regarding monoidal
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categories is from John Baez et al. Physics, topology, Logic and Computation: A Rosetta
Stone [4].

De�nition 6. A monoidal category C is a category equipped with a functor ⌦ :
C ⇥C! C known as the monoidal product, a unit object I , a natural isomorphism
↵ called the associator such that for every triplet X,Y ,Z of objects in C we have
an isomorphism ↵X,Y ,Z : (X ⌦ Y ) ⌦ Z ! X ⌦ (Y ⌦ Z) and �nally a couple of natu-
ral isomorphisms called the unitors assigning to each object in X in C a couple of
isomorphisms lX : I ⌦X! X and rX : X ⌦ I ! X such that:

(A⌦ I )⌦B A⌦ (I ⌦B)

A⌦B

↵A,I ,B

rA⌦1B
1A⌦lB

commutes for all A,B 2C, and
((A⌦B)⌦C)⌦D

(A⌦ (B⌦C))⌦D

(A⌦B)⌦ (C ⌦D)

A⌦ ((B⌦C)⌦D)

A⌦ (B⌦ (C ⌦D))

↵A,B,C⌦1D

↵A⌦B,C,D

↵A,B⌦C,D

↵A,B,C⌦D

1A⌦↵A,B,C

commutes for all A,B,C,D 2C.

Remark 3. These diagrams describe some quite intuitive properties about themonoidal
category in relation to its product; the �rst diagram demands that uniting from the
right should be the same as uniting from the left and the second diagram demands we
should be able to associate in any order we wish. Should the associator and unitors
be identities we say that the monoidal category is strict.

3.1 Set is a monoidal category with its Cartesian product
We ask ourselves if our faithful servant Set can be equipped with a monoidal product
to make it into a monoidal category? The answer is, of course, yes and the most natu-
ral candidate for this product is the Cartesian product with an arbitrary singleton set
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as the unit. However, there is a small caveat: Cartesian product is not strictly associa-
tive. To see this consider the productA⇥(B⇥C), in other words the set {(a, (b,c)) | a 2
A,b 2 B,c 2 C} and compare it to (A ⇥B)⇥C , the set {((a,b), c) | a 2 A,b 2 B,c 2 C}.
These two sets are obviously not equal since (a, (b,c)) , ((a,b), c) and as such we need
to use as our associator the natural isomorphism A⇥ (B⇥C) � (A⇥B)⇥C .

It is important to note that we can create di�erent monoidal categories by our
choice of product, for instance Set equipped with the disjoint union as its product
and empty set as the unit is also an example of a monoidal category [4].

3.2 String diagram
A string diagram is a way of representing monoidal categories by changing our stan-
dard way of depicting stationary objects and morphisms between them to stationary
morphisms and objects between them. An intuitive way of describing string diagrams
is to think of the morphisms as machines or black boxes and the objects as wires going
into and from them as their inputs and outputs.

X f Y

Tensoring is done simply by parallel placement:

X f Y

X 0 f 0 Y 0 = X ⌦X f ⌦ f 0 Y ⌦Y 0

While composition is represented by connecting one morphism to another:

X f g Z = X g � f Z

In general we can deform these diagrams quite heavily without losing any semantic
content. We will not give a formal treatment of exactly how and why this is the case
and refer the reader to Joyal and Street [8].

3.3 Braided category
De�nition 7. A braided category C is a monoidal category equipped with a natural
isomorphism known as the braiding bX,Y : X ⌦Y ! Y ⌦X . We can visualize this in
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a string diagram as a crossing of strings:

X Y

Y X

Naturally Set,⇥ is a braided category with bX,Y being the isomorphism b((x,y)) =
(y,x). In fact Set,⇥ is what is known as a symmetric monoidal category [4] where ap-
plying a braiding twice is the same as doing nothing at all, illustrated by the following
relation:

X X

=

Y Y

X X

Y Y

Which indeed is the case in Set,⇥ since:
bY,X � bX,Y (x,y) = bY,X (y,x) = (x,y)

bY,X � bX,Y = idX⇥Y

4 Neural networks
In this section wewill remind ourselves of what neural networks are. This short intro-
duction owes a lot to the excellent in-depth overview of deep learning in Goodfellow
et al. [3].

A neural network, or arti�cial neural network to distinguish it from a biological
neural network, is a directed graph that describes how to compose a series a functions
or alternatively a �owchart of how input �ows to output.
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We can divide a neural network into so called layers, vertical segments of vertices.
the layers themselves can be divided into three classes: input layer, hidden layers and
output layer.

Input
layer

The input layer is where the input �ows from, edges from the input layer dictates
how the input will be distributed across the next layer. Any edge between vertices
will have an associated weight that the input is multiplied with.

At each vertex other than the input layer the sum of the incoming inputs is run
through a nonlinear function � : R! R, commonly known as an activation function.
Formally we can now de�ne a neural network as a graph in the following manner:

De�nition 8. A neural network is a directed graph {V ,E} along with a real number
wi labeling each edge ei and function �j : R! R labeling each vertex vj not in the
input layer. The real numbers labeling the edges are known as the weights of the
edges and the functions labeling the vertices are known as the activation functions.

The activation function is the magic sauce of the neural network since without
it the entire network is incapable of describing anything but linear relationships be-
tween its input and output and the only requirement of the activation function is that
it is di�erentiable such that the whole network is di�erentiable.

Themost commonly used activation function inmodern deep learning is the ReLU
or recti�ed linear unit f (x) := max(0,x) while perhaps the most canonical choice of
activation function is the sigmoid function f (x) := 1

1+e�x which stems from neuro-
science [3]. ReLU however is not di�erentiable for x = 0, so in practice there are
some techniques to circumvent this.

12



Hidden
layer

The hidden layers are all layers between the �rst and the �nal layer. A larger amount
of hidden layers or size of hidden layers gives the neural network more “adjustable
knobs” so that convergence during training might be achieved quicker.

Output
layer

The output layer is the output of the whole network, hence it has no outgoing edges
only incoming ones.

Generally neural networks can be seen as blueprints for de�ning di�erentiable
functions parametrized by their weights. Viewed in this light one usually takes every
layer of the network to be a function composed with the rest of the network such that
the whole network de�nes a composite function.

f1 f2 f3

Since at every layer the only operations that are done is summing and applying
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the activation functions the entirety of the composite function is di�erentiable.

5 Parametrized di�erentiable functions
In this section we will be looking at Para, the category of equivalence classes of di�er-
entiable parametrized functions in which we will �nd that we can reconstruct neural
networks as composite morphisms.

The de�nition from Fong et al. [2]:

De�nition 9. A Euclidean space is some real valued spaceRn for some natural num-
ber n.

Remark 4. R0 is the space containing only a single point, and as a set it is merely a
singleton set.

De�nition 10. A di�erentiable parametrized function (P,I ) : Rn ! Rm consists of
a Euclidean parameter space P and a di�erentiable function I : P ⇥Rn! Rm.

Consider for example the di�erentiable function g(p,x) := x + p. Then there is a
parametrized di�erentiable function (R, g) : R ! R such that (R, g)(x) = x + p for
some p in R. We say that g is parametrized by the parameter p and that R is the
parameter space of (R, g).

In order to have associativity in the category Parawe need some way of consider-
ing two parametrized di�erentiable functions as equivalent if their parameter spaces
can easily be transformed into the other.

De�nition 11. We say that two parametrized di�erentiable functions (P,I ), (Q,J)
are equivalent if there exists some invertible function f : P!Q such that f , f �1 are
di�erentiable and I(p,x) = J(f (p),x) for all p 2 P . We will abuse notation when clear
from context and write (P,I ) to be equivalence classes of parametrized di�erentiable
functions rather than the individual functions themselves.

If we continue with our parametrized di�erentiable function (R, g) we can illus-
trate De�nition 10 by considering an equivalent parametrized di�erentiable function
(R, g 0) where g 0(p,x) := x + p

2 . These two are equivalent by the de�nition since
there is a di�erentiable function f (x) := 2x that has a inverse di�erentiable inverse
f �1(x) := x

2 and g(p,x) = x + p = g 0(f (p),x) for all p 2 R.
Now that we have De�nitions 10 and 11 we have the necessary prerequisites to

formulate the theorem from Fong et al. [2]:

Proposition 1. The category Para of equivalence classes of di�erentiable parametrized
functions together with monoidal product ⌦ is a strict symmetric monoidal category
such that:

(Q,J) � (P,I ) = (P ⇥Q,J � I )
J � I(q,p,a) = J(q, I(p,a))
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and
(P,I )⌦ (Q,J) = (P ⇥Q, (I , J))

with identity for some object X in Para given by (111, idX ) and unit 111 = R0.

Remark 5. Note that themorphisms of Para are the equivalence classes of parametrized
di�erentiable functions, hence our example functions from De�nitions 10 and 11,
(R, g) and (R, g 0), are in fact the same morphism in Para.
Remark 6. We should be wary of that the monoidal product on Para only acts as a
Cartesian product for objects while for morphisms it is not quite a Cartesian product.

We must take care to note the di�erence between a morphism of Para and its im-
plementation function. A morphism (P,I ) : Rn ! Rm has an implementation func-
tion I : P ⇥Rn ! Rm, hence the morphism takes an object Rn to an object Rm. We
will sometime abuse notation and simply write I : Rn! Rm to mean the morphism
when the meaning is clear from context as to not deviate too much from the notation
in Fong et al. [2].

Proof. We will show that Para ful�lls the de�nition of a strict monoidal category by
verifying the properties one by one.

Associativity

(P3, I3) � ((P2, I2) � (P1, I1)) = (P3 ⇥ (P2 ⇥P1), I3 � (I2 � I1))
reduces down to proving that I3 � (I2 � I1) = (I3 � I2) � I1:

I3 � (I2 � I1)(p3,p2,p1, a) = I3(p3, I2 � I1(p2,p1, a))
= I3(p3, I2(p2, I1(p,a)))
= I3 � I2(p3,p2, I1(p,a))
= (I3 � I2) � I1(p3,p2,p1, a)

Identity

Identity is given by an arbitrary singleton set that we will denote 111 and the identity
function, hence we have that for some (P,I ) : X! Y :

(111, idY ) � (P,I ) = (111⇥P, idY � I )
Since idY � I = I and R0 ⇥Rn = Rn we have that (111⇥P, idY � I ) = (P,I ). For idx it is
shown in an essentially identical manner.

Hence Para is a category. We now show that it is strict symmetric monoidal: The
monoidal product is de�ned as

(P,I )⌦ (Q,J) = (P ⌦Q,I ⌦ J)
where

I ⌦ J(q,p,a, c) = (I(p,a), J(q,c))
and for objects, equivalently parameter spaces, it is simply the Cartesian product such
that A⌦B = A⇥B.
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Identity

Braiding is given by the same isomorphism as in Set but trivially parametrized, (111, bX,Y )(x,y) =
(y,x) which clearly is its own inverse.

Monoidality

Associator and unitors are all identities since R0 ⇥Rn = Rn+0 and (Rn ⇥Rm)⇥Rk =
Rn+m+k = Rn ⇥ (Rm ⇥Rk), hence the category is strict symmetric monoidal.

5.1 Bimonoid
Since linear maps between vector spaces are di�erentiable we have a functor from
FinV ect, the category of �nite vector spaces and maps between them, to Para. The
functor F : FinVect ! Para takes sets to sets and any linear map � : Rn ! Rm to
the trivially parametrized di�erential function �0 : 1⇥Rn ! Rm. This equips every
object in Parawith the following morphisms, making every object into what is known
as a bimonoid [2]:

X
⌘ : R0! X I⌘ (p,0) := 0

X

X

X
µ : X ⇥X! X Iµ(p,x,y) := x + y

X
✏ : X! R0 I✏(p,x) := 0

X

X

X
� : X! X ⇥X I�(p,x) := (x,x)

Figure 1: Table over bimonoid morphisms
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We will be using the following simpli�ed notation utilizing the coassociativity of
� to make the string diagrams less cluttered:

X

X X

X =

...

X

X

X

X ...

X

X

Equivalently for µ, which is associative, we will depict multiple sequential applica-
tions as:

X

X

X...

X

X

X

XX

X=

...

X

With these bimonoidmorphisms under our belt we are almost able to generate any
neural network as a composed morphism in Para. There are, however, a few building
blocks missing:

R � R

This is the activation morphism, that given a choice of nonlinear di�erentiable activa-
tion function � has implementation function � : R! R and trivial parameter space
1.
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� : R! R

This is the scalar multiplication morphism that has parameter space R. Note that this
is parametrized by a scalar that it multiplies the argument by. However we can create
a similar but binary function that multiplies its two scalar arguments:

�0 : (R ⇥R)! R

This is a trivially parametrized morphism where we instead have the “parame-
ter” supplied by an external argument. We can in fact do this with any function in
Para by moving its parameter to be an externally supplied input and have it trivially
parametrized.

5.2 Building neural networks in Para
Given these functions above we can in fact reconstruct neural networks in Para not
only graphically but as composite morphism.

R

R

R

w1

w2

w3

w4

w5

w6

Figure 2: Three-layered neural network

Figure 2 is a simple three-layered feed-forward neural network consisting of an
input layer, hidden layer and output layer. Wewish to reconstruct this neural network
in a Para string diagram:
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�

R �1 �

� �3 R

�

R � �2 �

Figure 3: String diagram of the neural network in Figure 2.

The string diagram over Para in Figure 3 is not merely a graphical representation.
It actually tells us that Figure 3 is the morphism

(R6,��µ�(�⌦�)�(�⌦�)�(µ⌦µ)�(idR⌦bR,R⌦idR)�(�⌦�⌦�⌦�)�(�⌦�)) : R2! R

with the implementation function

I : R6 ⇥R2! R

I(p6,p5,p4,p3,p2,p1,x,y) := �3(p5�1(p1x + p3y) +w6�2(p2x + p4y))

.
This implementation function I corresponds the function de�ned by Figure 2 up

to matching the correct weights. Generally when we compose morphisms (P,I ) and
(Q,J) we get the implementation function J � I(q,p,a) hence the �rst parameters are
the parameters belonging to last function to be composed.

6 Learning algorithms and training
So far we have done enough groundwork to categorically construct our neural net-
works in a manner we consider equivalent to a standard neural network, but the most
essential property is still missing: the ability to train or update our networks.

When we train a network f with parameters p we wish to approximate some
function by feeding the network training pairs a,b, consisting of input and output
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examples, to update the parameters p such that f (a) given the updated parameters is
in some sense closer to b. What we then need in order to train our networks is some
way of taking a composed function in Para and adding to its “interface” the ability to
consume a training pair to update its parameters.

We will add these mechanisms to our constructions by the ways of a functor that
takes a morphism in Para to a so called “learner”.

6.1 Gradient descent and backpropagation
A few words have to be said about how one trains parametrized di�erentiable func-
tions. The main reason why we are interested in di�erentiable functions is that hav-
ing wholly di�erentiable functions allow us to use the techniques of backpropagation
and gradient descent. By using correct examples of input/output we improve our “ap-
proximation” of the function we wish to target by using the derivative to readjust
parameters so that our function achieves results that, in terms of the error between
our output and the correct output, are closer to the training examples.

6.1.1 Gradient descent

Gradient descent, as an optimization algorithm, works by minimizing some function
by taking a step in the opposite direction of the gradient itself. This is the technique
we use to train neural networks with a slight di�erence: instead of minimizing the
function we wish to approximate we minimize the error function that describes the
error between the output of the approximation and that of a correct training example.

Computing a gradient numerically can become very computationally expensive
as these functions grow in size. The technique used, instead, to compute the gra-
dient of the composed function is something called backwards autodi�erentation or
backpropagation.

6.1.2 Backpropagation

Backpropagation, also known as reverse autodi�erentation, is a technique for e�-
ciently calculating the gradient of a composite function using the well-known chain
rule. More precisely when computing the gradient expression we utilize the fact that
the composite function will be built from building blocks of primitive functions with
prior known derivatives.

To illustrate the backpropagation technique consider the composite function f2 �
f1 : R! R depicted as a graph in Figure 4:

z

y

x

f2

f1

Figure 4: Function graph
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Say that we wish to know the derivative of f2 � f1 with respect to x, in other
words how changes in the input x a�ects the output of the composite function. The
chain rule tells us that (f2 � f1)0 = (f 02 � f1) ˙f 01 . Note now that the problem of knowing
the derivative of the composed function has been reduced to knowing the derivatives
of the components making up the composed function. Hence we �nd that as long
as we know the derivatives of the primitive parts of the composed functions we can
compute an entire expression for the gradient or derivative of the composite function
without much computation. Backpropagation generalizes to composite functions of
higher dimensions as well, we only need to consider the multidimensional chain rule
instead [3].

So why do we call it backpropagation and not simply the chain rule? There is an
additional aspect to this computation technique which is that any composed function
will have repeated expressions with parts using the same derivatives hence we can
store these expressions and reuse them for reduced computational complexity.

6.1.3 Training

With this brief introduction to gradient descent and backpropagation we can now
sketch the updating algorithm that gives our parametrized function a new set of pa-
rameters: given an input/output training example a,b we propagate a through the
network to get b0 , the value given by our parametrized function with the current set
of parameters p, and we get the error or loss between b, the training example, and
b0 . We then compute the gradient with respect to this error by the backpropagation
technique and to get our new set of parameters we simply take an ✏-step for some ✏,
also known as the learning rate, in the direction that minimizes the error. This is our
new parameter p0 .

6.2 The category Learn
We want to stress that neural networks are simply one form of learning algorithm, in
fact they are simply one form of parametrized di�erentiable functions. As mentioned
in the introduction neural networks loosely derive their structure from the biological
brain and while this analogy has proven very fruitful at �rst there is much reason
to relax this connection. As di�erentiable programming becomes a �eld of its own
it is within our interest to put emphasis on this fact, that the di�erentiable functions
we construct are a superset of the neural networks. This superset is not in any strict
rigorous mathematical way but rather in the way they are being thought of and con-
structed.

With this said what then is a learning algorithm? If we only consider the su-
pervised form of learning algorithms, meaning we supply it with input and output
examples, then a learning algorithm consists of a parametrized function we wish to
approximate, its parameters and �nally some way of updating these parameters based
on training examples. Furthermore we wish these to be composable in some sense.

We will be using the de�nition given by Fong et al. [2]:

De�nition 12. A learning algorithm, or learner, consists of a tuple (P,I ,U,r), I :
P ⇥X! Y , r : P ⇥X ⇥Y ! X , and �nally U : P ⇥X ⇥Y ! P where P,X,Y are sets.
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Remark 7. I , or the implementation function, corresponds to the function that is being
approximated, P to its parameters andU to the function that updates our parameters.
However the odd one out, r , is a bit technical; it is included to facilitate composition
of morphisms. To understand r we �rst need to show the categorical structure of
Learn, the symmetric monoidal category of sets as objects and equivalence classes of
learners as morphisms.

Proposition 2. There exists a symmetric monoidal category Learn with sets as ob-
jects, equivalence classes of learners as morphismswithmonoidal product⌦ such that
given two learners (P,I ,UI , rI ) and (Q,J,UJ , rJ ) we have that:

(Q,J,UJ , rJ ) � (P,I ,UI , rI ) = (P ⇥Q,J � I ,UJ �UI ,rJ � rI )

where

J � I(q,p,a) = J(q, I(p,a))

UJ �UI (p,q,a, c) = (UI (p,a, rJ (q, I(p,a), c)),UJ (q, I(p,a), c))

rJ � rI (p,q,a, c) = rI (p,a, rJ (q, I(p,a), c))

Identity morphism for an object X is given by (111, idX , !,⇡2), in other words a tuple of
a singleton set, identity function idX : 111 ⇥X ! X trivially parametrized by 111, ! the
unique function from a set to the singleton set and �nally ⇡2 : 111⇥X ⇥X ! X is the
trivially parametrized second projection of the Cartesian product.

Monoidal product of objects is Cartesian product while monoidal product for mor-
phism is:

(P,I ,UI , rI )⌦ (Q,J,UJ , rJ ) = (P ⇥Q, (I , J), (UI ,UJ ), (rI , rJ ))

The symmetric braiding for some object X ⇥ Y is given by (111, bX,Y , !, bX,Y � ⇡2) :
A⇥B! B⇥A where bX,Y (x,y) = (y,x) is the braiding from Set in Section 4.3.

Remark 8. Nowwhile P , I andU might be fairly self explanatory r does require some
additional motivation. This motivation can be seen in the composition rule of update
functions:

UJ �UI (q,p,a, c) = (UI (p,a, rJ (q, I(p,a), c)),UJ (q, I(p,a), c))

At the time of composition the scope of a single update function is only as far as
the function it belongs to, when it is composed with another function we need some
way for the composed update function of a learner L2 � L1 : X ! Z only to require
training pairs of the form (x,z) 2 X ⇥Z and not the intermediate example X,Y . The
connection between the �rst function and the second is where this y normally would
serve as input. This is exactly what r provides, it passes to the prior function the
corrected or improved input that can be used in the update algorithm for the �rst
function. It can be further illustrated in the composition rule for request functions:

rJ � rI (q,p,a, c) = rI (p,a, rJ (q, I(p,a), c))
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Here we can see that the last learner in the pipeline, (Q,J,UJ , rJ ), �rst relays a cor-
rected input for the �rst learner (P,I ,UI , rI ) to take in consideration when relaying a
corrected input for the entirety of the function.

Proof. For a proof that this category is well-de�ned see Appendix A on p.26 in Fong
et al. [2]. The proof is essentially the same as the proof given for Proposition 1.

6.3 Functor
As we have now made acquaintances with Learn we ask ourselves the following: is
there some way of moving a morphism from Para to Learn such that we can train it
with gradient descent and backpropagation? The answer is yes, by the means of a
functor!

The functor is given by following theorem from Fong et al. [2].

Theorem 1. Given learning rate ✏ 2 R>0, ↵ : N! R>0, and error function e : R!
R such that @e

@x (a,�) is invertible for each a 2 R we can de�ne a injective-on-objects
symmetric monoidal functor

L : Para! Learn

that sends objects to objects and sends amorphism (P,I ) : A! B in Para to themorphism
(P,I ,UI , rI ) : A! B in Learn de�ned in the following way:

UI (p,a,b) := p � ✏rpEI (p,a,b)

rI (p,a,b) := fa(
1
↵B
raEI (p,a,b))

EI (p,a,b) := ↵B

X

k

e(Ik(p,a), bk)

where↵B is↵(n) such that n is the dimension of the codomainB and fa is the component-

wise application of
⇣
@e
@x (ai ,�)

⌘�1
where i indexes over the components of a.

To fully understand the functor it helps to see the proof which is why we will
reproduce the proof from Appendix B in Fong et al. [2].

We will be using slightly di�erent notations than in the original proof, one reason
for this is found in Remark 1 regarding the use of ; instead of � in [2]. Another dif-
ference is that we will use slightly di�erent index variables than in the original proof
solely for visibility.

Proof. The functor is by de�nition injective-on-objects since it sends every object to
itself. We will prove that the functor preserves compositionality by showing it for
each component of a learner separately. Let (P,I ),(Q,J) be morphisms of Para. Then
F(J � I ) = F(J) �F(I ):
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Update

(UJ �UI )(q,p,a, c) = (UI (p,a, rJ (q, I(p,a), c)),UJ (q, I(p,a), c))

= (p � ✏rpEI (p,a, rj (p,a, rj (q, I(p,a), c))), q � ✏rqEJ (q, I(p,a), c))

Whereas for the composition prior we get that:

UJ�I (p,q,a, c) = (p � ✏rpEJ�I (p,q,a, c), q � ✏rqEI�J (p,q,a, c)

Hence the update functions are equal if:

rpEI (p,a, rJ (q, I(p,a), c)) =rpEJ�I (p,q,a, c) (1)
rqEJ (q, I(p,a), c) =rqEJ�I (p,q,a, c) (2)

We start by showing the �rst equality:

rpEI (p,a, rJ (q, I(p,a), c))

= ↵Brp
X

k

e(Ik(p,a), rJk (q, I(p,a), c)) De�nition of EI

=
 
↵B

X

k

@e
@x

(Ik(p,a)), rJk (q, I(p,a), c))
@Ik(p,a)

pl

!

l

Let l index over the components of rp

=
 
↵B

X

k

@e
@x

(Ik(p,a)), fI(p,a)(
1
↵B
rI(p,a)EJ (q, I(p,a), c)))

@Ik(p,a)
pl

!

l

De�nition of rj

=
 X

k

rI(p,a)EJ (q, I(p,a), c)
@Ik(p,a)

pl

!

l

fx is the inverse of
@e
@x

(a,�)

=
 
↵C

X

k

rI(p,a)
X

m

e(Jm(q, I(p,a)), cm)
@Ik(p,a)

pl

!

l

De�nition of Ej , let m index over J(q, I(p,a))

=
 
↵C

X

m

@e
@x

(Jm(q, I(p,a)), cm)
X

k

@Jm
@Ik(p,a)

@Ik(p,a)
pl

!

l

De�nition of rI(p,a)

=
 
↵C

X

m

@e
@x

(Jm(q, I(p,a)), cm)
@Jm
pl

!

l

Multivariable chain rule backwards

= ↵Crp
X

m

e(Jm(q, I(p,a)), cm) De�nition of rp

= rpEJ�I (p,q,a, c) De�nition of EJ�I
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For the second equality we only need to expand the expression for the error function:

rqEJ (q, I(p,a), c)

= rq↵C

X

k

e(Jk(q, I(p,a)), ck)

= rq↵C

X

k

e((J � I )k(p,q,a), ck)

= rqEJ�I (p,q,a, c)

Thus the functor preserves composition of update functions.

Request

rI (p,a, rJ (q, I(p,a), c)) = rJ�I (p,q,a, c)

From the de�nition of the request function rI we get:

rI (p,a, rJ (q, I(p,a), c)) = fa(
1
↵B
raEI (p,a, rJ (q, I(p,a), c)))

Notice the expression raEI (p,a, rJ (q, I(p,a), c)) is the same expression as on the left
hand side of the �rst equation we proved in the above section concerning the update
functions, hence changing a for p in the same proof will yield that:

rI (p,a, rJ (q, I(p,a), c))

= fa(
1
↵B
raEI (p,a, rJ (q, I(p,a), c))) Equation (1) with a instead of p

= fa(
1
↵B
raEJ�I (p,q,a, c)) By the de�nition of rj

= rJ�I (p,q,a, c)

Identity

The identity morphism in Para for some object A is the trivially parametrized func-
tion idA : 1⇥A! A. Since idA does not have any parameters the update function of
F(idA) is also trivial and takes the singleton set to the singleton set, hence it coincides
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with the unique function !. As for the request function ridA we have:

ridA (111, a,b)

= fa(
1
↵B
raEI (111, a,b))

= fa(
1
↵B
ra↵B

X

k

e(idAk(111, a), bk)) De�nition of EI

= fa(ra
X

k

e(ak,bk))

=
 
(
@e
@ai

(ai ,�))�1 � (
@
@ai

⇣X

k

e(ak,bk))
⌘!

i

De�nition of ra and fa

=
 
(
@e
@ai

(ai ,�))�1 � (
@e
@ai

(ai ,bi ))
!

i

Partial derivative of sum is 0 for every term except when i = k

= b

We can thus conclude that ridA is the trivially parametrized second projection ⇡2 :
1⇥A⇥B! B, hence F(idA) = (111, idA, !,⇡2).

6.4 RNN
It is important to note that while the gradient descent/backpropagation functors re-
main our canonical way of de�ning traditional learning algorithms there is plenty of
structure to imagine other kinds of learning algorithms in Learn. In fact we will show
that the recurrent neural network, a type of sequence-to-sequence network, general-
izes to something called a recurrent learner on Learn without necessarily involving a
neural network to begin with.

A recurrent neural network is a neural network de�ned on sequences. It consists
of an input x, a state h and an output y. However, x and y are sequences and for each
step in the sequence a state h is carried over from the previous step.

y

h

x

Figure 5: Recurrent neural network

In particular for a step t in the sequence h is conveying to the network at state t
what the previous t�1 states looked like. This state rarely captures the entire history
of the previous part of the network, usually it is run through some activation function
to achieve a sort of “lossy compression” of the states at previous time-steps. By this we
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mean that while the network is working on an input sequence of arbitrary length the
length of the state h remains �xed throughout the process hence we are embedding a
sequence of vectors into a vector of �xed length.

Often when one wishes to formalize this notion of recurrence one speaks of un-
folding the graph of a recurrent neural network. Given that the input and output
sequences are of �nite length we can instead of view the graph of the network as a
acyclic graph that is unfolded through the sequence where each repeated iteration of
the network is known as a “cell” [3]:

y0

h0

x0

y1

h1

x1

y2

h2

x2

. . .

yt

ht

xt

Figure 6: Unfolded recurrent neural network

The key point of a recurrent neural network is that each cell carries over a state,
of some form, to the next cell. This can be viewed as a form of memory.

We can abstract the recurrent neural network to Learn and talk about a recur-
rent learner that takes sequences of objects to sequences of objects. First we need to
establish what we mean by a sequence of objects in Learn:

De�nition 13. A sequence of the object X of length n in Learn is the object Xn :=Q
n X , the n-fold Cartesian product of X with itself.

Remark 9. Note that the empty sequence of any object is 111.

De�nition 14. A recurrent learner cell is a morphism X ⇥H ! Y ⇥H in Learn. X
is known as the input,Y the output and H the state.

We can now state what a recurrent learner morphism looks like in Learn.

De�nition 15. For each recurrent learner cell f : X⇥H! Y ⇥H in Learn and n 2N
there exists a recurrent learner Rn

f : Xn ⇥H! Yn ⇥H de�ned as

Rn
f := fn � fn�1 � · · · � f2 � f1

or equivalently as the string diagram

Xn
Xn�1 X

f1

Y
f2 ... fn�1

Yn�1

fn Yn

H

H H

H
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where
f1 : Xn ⇥H! Xn�1 ⇥Y ⇥H

f1 := idXn�1 ⌦ f
fi : Xn�i+1 ⇥Yi�1 ⇥H! Xn�i ⇥Yi ⇥H

fi := (idXn�i ⌦ bX,Y i�1 ⌦ idH ) � (idXn�i ⌦ idY i�1 ⌦ f )
fn : X ⇥Yn�1 ⇥H! Yn ⇥H

fn := (idYn�1 ⌦ f ) � (bX,Yn�1 ⌦ idH )
Remark 10. While the de�nition of Rn

f might look a tad complicated a closer look
reveals that we are simply applying f to each component of its input in sequence
while passing the state and accumulating the results.

6.5 LSTM
Acommonly used learner is the LSTM, or long-short termmemory learner [3]. Viewed
as a neural network it is a recurrent neural network with each cell depicted as in Fig-
ure 7.

Figure 7: Diagram over LSTM from colah’s blog [6] with permission from Christopher
Olah.

With our previous endeavor of de�ning recurrent learners we can now reconstruct
the LSTM in Learn as a composite morphism. We do not need to bother ourselves too
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much with the technical implementation of the LSTM, instead we can look at the
graphical representation in Figure 7 and translate this to a string diagram. We start
by de�ning a LSTM-cell l : Ra ⇥ (Rb ⇥Rb)! Rb ⇥ (Rb ⇥Rb) in Para. For brevity we
will only present it as a string diagram:

Ra Rb

⇥

Rb W W W W Rb

⌦b� ⌦b� ⌦b⌧ ⌦b�

?

? ⌦b⌧

Rb ? Rb

Figure 8: String diagram over an LSTM-cell

First of all there is some new notation that needs explaining. The notation ⌦nf
means the morphism f tensored with itself n times. This notation applied to the acti-
vation functions � and ⌧ together with the morphism W makes up a neural network
layer in Figure 7.

W is a morphism that takes a vector of length a+ b, makes b copies of it and
multiplies each component in each copy by a weight and sums up every copy, hence
it is a morphismW : Ra+b! Rb with parameter space Rab+b2 . IfW looks familiar it
is because it is basic matrix multiplication with what is known as a weight matrix in
[3] with b rows and a+ b columns multiplied with a vector of length a+ b.

The morphism ? : Rb ⇥Rb ! Rb with trivial parameter space is pointwise mul-
tiplication of two vectors so that the ith component in the �rst vector is multiplied
with the ith component in the second vector.
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Note how the entry point of the input xt in Figure 7. is concatenatedwith the entry
of the state ht�1, this is in our string diagram in Figure 8 represented by the monoidal
product of objects which on Para which coincides with the Cartesian product to give
us an object Ra+b .

This concatenated object is then distributed across the di�erent layers, repre-
sented by the yellow rectangles in Figure 7 and W composed with ⌦b� (or ⌦b⌧) in
Figure 8.

After passing through the activation functions the vector of length a + b is mul-
tiplied and added in various ways depicted by the multiplication and additions op-
erations in Figure 7. eventually resulting in the state output C , a vector of length
b.
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Each component ofC is then run through another activation function before being
pointwise multiplied with another vector ultimately being duplicated into both the
output and the next state.
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Now our functor L : Para ! Learn, given some choice of learning rate ✏, error
function e(x,y) and ↵ will take this cell to a recurrent learner cell in Learn. Then
there is, by the construction given in De�nition 15, a recurrent learner Rn

L(l) : R
an ⇥

(Rb ⇥Rb)! Rbn ⇥ (Rb ⇥Rb) for some n 2N.

Ran Rbn

Rn
L(l)

Rb Rb

Figure 9: Recurrent learner LSTM on Learn

The LSTM recurrent learner demonstrates the toolbox that we have accumulated
so far and the ability to reconstruct high-level learning algorithms in Learn using only
composable morphisms. The �nal composite morphism itself has the property that its
parameters can be updated using gradient descent by the update function belonging
to the morphism.
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7 Discussion
In this thesis we have in Section 2 established what a category is in a brief overview of
the required theory as well as spent some extra attention in Section 3 on the monoidal
categories and how they can be represented as string diagrams.

We have then proceeded in Section 5 and 6 by following Fong et al. [2] in showing
how the category Para is populated by equivalence classes of parametrized di�erential
functions as morphisms and from there on extended into Learn by means of functors,
determined by learning rate ✏ and error function e(x,y), that take morphisms in Para
to morphisms, also called learners, in Learn.

In the �nal part of Section 6 we have added to the results of Fong et al. [2] by re-
viewing the role of the recurrent neural network and its corresponding constructions
on Learn, the recurrent learner morphisms.

7.1 Further directions
The recurrent learner construction in Section 6 is not the most elegant construction
and mostly serves as a proof-of-concept. One undertaking could be to see if there are
some other, more intuitive way, of constructing a recurrent learner on Learn perhaps
by considering a monad.

As Learn is a categorywith sets as objects there are exponential objects containing,
say, all equivalence classes of learners fromX toY . A possible lane for further analysis
then is to investigate whether there are morphisms between these objects perhaps to
be used in applications that intend to optimize the architectures of the learners. This
“meta-learning” is known as parameter hyper-optimization in Goodfellow et al. [3].

Another interesting direction to take is the relation between lambda calculus and
category theory that ended up being outside the scope of this thesis. Could there pos-
sibly be some type of logic like linear logic or typed lambda calculus that Learn could
serve as a model for? Closed Cartesian categories are models for lambda calculus and
symmetric monoidal categories are models for linear logic as succinctly summarized
by John Baez et al. in [4].
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