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Abstract

A general approach to problems in mathematical analysis is the use of approx-
imate representations of functions, such as Taylor series. When regarding ap-
proximate representations of functions of a periodic nature, in the study we call
Fourier analysis, we attempt representations of functions as a sum of trigono-
metric functions. In this thesis we present one of the problems encountered in
Fourier analysis with regard to the pointwise convergence of Fourier series. We
prove Kahane’s Theorem on divergence of Fourier series of continuous functions
on large sets by a topological approach. To do so, we introduce the fundamen-
tal tools of topology and review Baire’s Category Theorem and the Kuratowski-
Ulam Theorem, and the fundamental notions of Fourier analysis such as Fourier
series, the Dirichlet Kernel and the Convolution of functions.
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Introduction

Harmonic analysis began as the study of waves, originating from problems such
as the properties of vibrating strings [11, p.1]. As such waves tend to be more
complex than a simple sine or cosine function, this eventually gave rise to what
we call Fourier analysis - named after Jean-Baptiste Joseph Fourier for his con-
tributions to the study of trigonometric series.

Given a periodic function, the idea behind Fourier analysis is that we want
to approximate the function by a series of trigonometric functions - which we
call the Fourier series of the function. This approach is similar to how we ap-
proximate functions such as sine by a polynomial using Maclaurin’s formula
or Taylor’s formula. Since the function is periodic, the function repeats itself
and we can focus on a single period to understand the whole function. These
periodic functions may of course be considered as waves, such as light waves
or audio waves, and thus we can think of applications of Fourier analysis in
branches such as engineering. For instance, we may wish to decompose a wave
into a confined expression, which is more manageable to transmit or duplicate,
yet where the confined expression creates a good enough reproduction of the
original wave.

Naturally, since we are discussing approximations of a function, we are forced
to ask ourselves - how well are these functions approximated? In other words, if
we have a periodic function f and the associated Fourier series of that function
- does the Fourier series of f converge to f?

Carleson proved in 1966 the pointwise convergence of the Fourier series of f
almost everywhere if f is a continuous function [3].

In the opposite direction, Jean-Pierre Kahane and Yitzhak Katznelson proved
a related theorem in the same year, stating that for every set of measure zero,
there exists a continuous function f whose Fourier series will diverge at every
point of that set [6].

On the other hand, Kahane later wrote another article [5] on these results
- which is the subject of this thesis - that there exists continuous functions f

whose Fourier series diverges on large sets.

Intuitively, these statements seem to be contradictory. However, the di↵er-
ence is rather the view of how “large” sets are. Carleson’s approach is through
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measure theory, where the set of points of divergence of the Fourier series of f
is what is called a set of “measure zero” - which simply by the name gives us
an insight on how to regard the size of the set.

If we however make a topological approach to the problem, we arrive at the
conclusion that the set of points of divergence of the Fourier series of a con-
tinuous function f might be large. Namely, as stated by Kahane, that there
exists a dense G

�

set of continuous functions such that every f in the set have a
Fourier series that diverge in a dense G

�

set in [0, 1]. Kahane’s theorem can be
regarded as an extension of the result presented by du Bois-Reymond in 1876,
which states that there exists a continuous function f such that the Fourier
series of f diverges at a point [2, p.642].

In Chapter 1, we will begin by familiarizing ourselves with topological defi-
nitions and view on problems. In essence, the topological view is geometric -
where problems are solved rather by the position and distance between objects,
sets and points, rather than their value. One of the first instances of solving a
mathematical problem topologically was done by Euler in 1736 with the famous
problem of the Seven Bridges of Köningsberg [4, p.7].

Next, in Chapter 2, we will introduce the fundamental tools of Fourier series
to the reader, such as defining Fourier coe�cents, Fourier series, the Dirichlet
Kernel and Convolutions.

Along the way we will pick up useful facts given by theorems such as Baire’s
Category Theorem and the Kuratowski-Ulam Theorem, and also a few techni-
cal lemmas which we will use to prove Kahane’s Theorem. Propositions may be
considered as highly useful facts which may not be obvious to the reader, and
are to be reviewed as more general facts regarding topology.

In Chapter 3 we will prove Kahane’s theorem after introducing further defini-
tions and Lemmas we will require in the technical parts of the proof of Kahane’s
theorem.

Lastly, in Chapter 4, we will briefly mention remarks on results obtained in
studies to determine which requisites entail the convergence of Fourier series.
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Chapter 1

Metric Spaces

Since the topological approach to problems is done by regarding the distance
between e.g. two points, we will first introduce how we define the distance -
it would be highly inappropriate (not to say confusing and inconsistent) if the
distance between two elements can be determined by e.g. more than one value.

For further reading beyond what is mentioned in this chapter, consult Rudin
[10], [11] and Oxtoby [9], since we will follow their presentations.

1.1 Metric spaces, sets and their properties

Definition 1. A metric space (X, d) is a set X, together with a function
d : X ⇥X ! R such that for any elements x, y, z 2 X, d satisfies;

1. d(x, y) � 0

2. d(x, y) = 0 () x = y

3. d(x, y) = d(y, x)

4. d(x, z)  d(x, y) + d(y, z)

Where d is called the distance, or metric on X. The 4th requirement is
usually called the triangle inequality.

The most intuitive metric space is (R, d), the real number line where for any
two real numbers a, b 2 IR we have the familiar distance function d := |a � b|,
arising from the absolute value. Another familiar metric space is R3, where the
distance between any two points in the Euclidean space is the length of the
straight line between a and b.
Often we want to work with more than single elements - when working with for
instance the real numbers, it will be more practical to instead speak about sets
of elements. Thus we continue with a few definitions regarding sets and their
topological properties.
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Definition 2. Let (X, d) be a metric space. Let A ⇢ X be non-empty. We say
A is an open subset of X if for any point x 2 A, there exists an ✏ > 0 such
that for any point y 2 X that satisfies d(x, y) < ✏, then y 2 A.

Alternatively, for any given point x 2 A there exists a small neighbourhood
around x with respect to the metric, where all points in that neighbourhood are
also points of A.

In this text we will use the convention that in any metric space, ; is an open
set.

Example of an open set in R is the open interval (0, 2) ⇢ R, which is a
subset of R. For an arbitrary point in (0, 2), say our favourite irrational numberp
2, there exists an ✏ such that all real numbers on the number line within that

distance are also within the same subset. In this case, any point x that satisfies
d(
p
2, x) < 2�

p
2.

Definition 3. Let (X, d) be a metric space and A ⇢ X. We say that a set A is
closed if the complement of A, denoted as Ac, is open.

An alternative definition for a set A to be closed in (X, d) is that if {x
n

}1
n=1

is a sequence in A converging to some element x0, then x0 is also an element of
A. We will introduce the notion of convergence with Definition 9.

Definition 4. Let (X, d) be a metric space, and A ⇢ X be an nonempty subset.
We define the closure of A, denoted as A, to be the set of all points x 2 X

such that, for every ✏ > 0 there is some y 2 A such that d(x, y) < ✏.

Alternatively, the closure of A is the smallest closed set that contains A.

Definition 5. Let (X, d) be a metric space and A ⇢ X. We say A is dense in
X if for every x 2 X and for every ✏ > 0 there exists an element y 2 A such
that d(y, x) < ✏.

Or in words, any non-empty open set of X contains at least one point of
A. An example of this is that Q is dense in R. This follows from the fact that
between any two real numbers, there exists a rational number - and therefore
any open set containing those two real numbers must also contain at least one
rational number.
Sometimes it will be more convenient to speak of nowhere dense sets instead.
This means that for every element in a nowhere dense set, there exists an open
set around the element that does not contain another element of the set. This
gives the notion of the elements being spread out. An example is that Z is
nowhere dense in R.

Definition 6. Let (X, d) be a metric space. We say that (X, d) is separable

if there exists an A ⇢ X such that A is countable and dense.

Equivalently, we say (X, d) is separable if it has a countable base. A base
B is a collection of open sets such that every open set in X can be written as a
union of elements of B.
An example is that R is separable, since we know that Q ⇢ R is a dense subset.
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Another way to think about separable metric spaces is that since A is count-
able, it can be described as a sequence: A = {x

n

}1
n=1 ⇢ X. Since A is dense,

it follows that any open subset of X is going to contain some element of the
sequence.

Using our previous example, it follows that R is separable - we already con-
cluded that Q is dense in R, and that Q is countable can be shown by construct-
ing an array of a countable number of countable sequences, and constructing
a countable sequence from the diagonals as shown in [11, p.29]. As we have
already brought up the topic of sequences, we can appropriately move on to the
next section, where we will introduce the important notion of Cauchy sequences.

1.2 Cauchy sequences and complete metric spaces

Definition 7. Let {x
n

}1
n=1 be a real valued sequence. The superior limit of

{x
n

}1
n=1 is defined and denoted as

lim
n!1

x

n

:= lim sup
n!1

x

n

= inf
n�0

sup
m�n

x

m

Although sequences may not converge to a limit, they will always have a
superior limit in R[ {+1}. For instance, the sequence x

n

= n

n+1 · sin(
(2n+1)⇡

2 )
has no limit, but the superior limit of the sequence is 1.

Definition 8. Let (X, d) be a metric space. We say that the sequence {x
n

}1
n=1

is a Cauchy sequence if for every ✏ > 0, there exists an N 2 N such that for
all n,m > N , d(x

n

, x

m

) < ✏.

This intuitively tells us that the elements of a Cauchy sequence are closer to
each other as the sequence progresses. Note that this means that each element
is closer to all other elements as the sequence progresses, and not only close to
the previous, or next, element in the sequence.

Definition 9. Let (X, d) be a metric space and {x
n

}1
n=1 be a sequence in X.

We say that the sequence converges to a limit in X if there exists an x 2 X,
such that for every ✏ > 0 there exists an N 2 N such that d(x

n

, x) < ✏ for
n � N .

Definition 10. Given a metric space (X, d), we say that X is complete if
every Cauchy sequence converges to a limit in X.

Informally, we can consider this as that the metric space contains no “holes”,
or missing elements.

Remark. Note that while every convergent sequence is a Cauchy sequence in any
metric space, not every Cauchy sequence converges. Take the sequence where
x

n

= 1+ 1
1! +

1
2! + ...+ 1

n! . This sequence {x
n

}1
n=1, which is a Cauchy sequence

in Q has the limit e, an irrational number which is not in Q. Therefore Q is not
complete.
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So far we have only gone through separate facts and definitions about indi-
vidual metric spaces. But for instance R2 = R ⇥ R is a metric space that we
are familiar with. And since we were on the topic of complete metric spaces
and Cauchy sequences - consider the Cartesian product of two complete metric
spaces. Then we might ask ourselves that if the product spaces are complete,
then the produced space should be complete as well.

1.3 Product spaces

Proposition. If (X, d) and (Y, p) are complete metric spaces, then (X⇥Y, d+p)
is also complete.

Proof. The metric on X⇥Y will have the property of � : (X⇥Y )⇥ (X⇥Y ) !
[0,1), taking two points in X⇥Y to a value in [0,1). Let the metric be defined
by �((x1, y1), (x2, y2)) := d(x1, x2) + p(y1, y2) for two points (x1, y1), (x2, y2) in
X ⇥ Y . First we need to ensure that this is a metric.

First we note that since both d and p are metrics, d � 0 and p � 0, so it
follows from the definition that � � 0. Furthermore, it follows that � = 0 only
if both d and p are zero. Since d(x1, x2) = 0 only when x1 = x2, and similarly
p(y1, y2) = 0 only when y1 = y2, we can conclude

�((x1, y1), (x2, y2)) = 0 , x1 = x2, y1 = y2.

Similarly, since d and p are both metrics we know d(x1, x2) = d(x2, x1) and
p(y1, y2) = p(y2, y1). Thus

�((x1, y1), (x2, y2)) = d(x1, x2)+p(y1, y2) = d(x2, x1)+p(y2, y1) = �((x2, y2), (x1, y1)).

Lastly we ensure that the triangle inequality holds. We know it holds for d
and p:

�((x1, y1), (x2, y2)) = d(x1, x2) + p(y1, y2)

 d(x1, x3) + d(x3, x2) + p(y1, y3) + p(y3, y2)

= d(x1, x3) + p(y1, y3) + d(x3, x2) + p(y3, y2)

= �((x1, y1), (x3, y3)) + �((x3, y3), (x2, y2)).

Thus � is indeed a metric.
Now we need to show X ⇥ Y is complete. Let {(x

n

, y

n

)}1
n=1 be a Cauchy

sequence in X ⇥ Y . We need to show that the sequence has a limit in X ⇥ Y .
Since {(x

n

, y

n

)}1
n=1 is a Cauchy sequence in X ⇥ Y , i.e, for every � > 0, there

exists an N 2 N such that �((x
n

, y

n

), (x
m

, y

m

)) < � for n,m � N , then

�((x
n

, y

n

), (x
m

, y

m

)) = d(x
n

, x

m

) + p(y
n

, y

m

) < �,

thus forcing both {x
i

}1
i=1 and {y

k

}1
k=1 to be Cauchy sequences in X and Y

respectively. Since X and Y are both complete, both {x
i

}1
i=1 and {y

k

}1
k=1 have
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limits, x and y respectively. Let ✏ > 0. Then there exists a large enough N 2 N
such that both d(x

n

, x) < ✏

2 and d(y
n

, y) < ✏

2 for n � N . Then

�((x
n

, y

n

), (x, y)) = d(x
n

, x) + d(y
n

, y) <
✏

2
+

✏

2
= ✏.

At this point we should mention the equivalence of metrics. Given the metric
spaces (X, d) and (Y, p), we could have equipped X ⇥ Y with other possible
metrics, such as � :=

p
d

2 + p

2 or � := max{d, p}, which would give us the

corresponding metric spaces (X ⇥ Y,

p
d

2 + p

2) and (X ⇥ Y,max{d, p}), and
both would be equivalent to (X ⇥ Y, d+ p).

Definition 11. Let (X, d) and (X, d

0) be metric spaces. We say that d and d

0

are equivalent metrics if

↵d(x, y)  d

0(x, y)  �d(x, y) 8x, y 2 X,

where ↵ and � are positive constants.

For our two other proposed metrics for X ⇥ Y , we have

d+ pp
2


p
d

2 + p

2  d+ p

d+ p

2
 max{d, p}  d+ p

thus making all three metrics equivalent. We would like equivalent metrics to
retain the properties of a metric space, e.g. if (X, d) is a complete metric space,
then (X, d

0) should also be a complete metric space if d and d

0 are equivalent
metrics.

Proposition. Let (X, d) and (X, d

0) be metric spaces, with d and d

0 are equiv-
alent metrics. If (X, d) is complete, then (X, d

0) is also complete.

Proof. Let {x
n

}1
n=1 be a Cauchy sequence in (X, d

0). Since {x
n

}1
n=1 is a Cauchy

sequence in (X, d

0), we have that for every ✏ > 0 there exists an N 2 N such that
for all n,m � N , we have that d

0(x
n

, x

m

)  ✏. Since d and d

0 are equivalent,
there exists an ↵ > 0 such that

d(x
n

, x

m

)  1

↵

d

0(x
n

, x

m

)  1

↵

✏.

Therefore, {x
n

}1
n=1 is a Cauchy sequence in (X, d). Since {x

n

}1
n=1 is a Cauchy

sequence in (X, d) and (X, d) is complete, it has a limit, i.e. for every ✏ > 0
there exists an N 2 N such that for n � N , we have that d(x

n

, x)  ✏. Then
{x

n

}1
n=1 converges to x in d

0, since for the same ✏ and N , and since d and d

0

are equivalent, we have

d

0(x
n

, x)  �d(x
n

, x)  �✏

for n � N and some � > 0. Thus (X, d

0) is complete.

10



Due to the subject of this thesis, we should also discuss metric spaces in-
volving continuous functions. The set of continuous functions over [a, b] is
denoted as C([a, b]).

Proposition. The set of continuous functions equipped with the metric d1 :
C([0, 1])⇥ C([0, 1]) ! R defined by

d1(f, g) := sup
x2[0,1]

(|f(x)� g(x)|) = max
x2[0,1]

(|f(x)� g(x)|)

is a complete metric space.

We will follow the presentation by Rudin of several theorems in [11]. First
we show that d1 is a metric, and then that the pointwise limit function f exists
for a Cauchy sequence {f

n

}1
n=1. Then we show that the sequence converges to

f in d1, and lastly that f is continuous.

Proof. First we ensure that d1 is a metric. By definition, for two functions
f and g in C([0, 1]), d1(f, g) � 0 due to the absolute value. Furthermore,
if d1(f, g) = 0, then f(x) = g(x) for all x in [0, 1]. Thus f = g. That
d1(f, g) = d1(g, f) follows from the definition and properties of the absolute
value. Finally,

d1(f, g) = max
x2[0,1]

(|f(x)� g(x)|) = max
x2[0,1]

(|f(x)� g(x) + h(x)� h(x)|)

= max
x2[0,1]

(|f(x)� h(x) + h(x)� g(x)|)  max
x2[0,1]

(|f(x)� h(x)|+ |h(x)� g(x)|)

 max
x2[0,1]

(|f(x)� h(x)|) + max
x2[0,1]

(|h(x)� g(x)|) = d1(f, h) + d1(h, g).

Thus d1 is a metric.
Let {f

n

}1
n=1 be a Cauchy sequence in (C([0, 1]), d1). This means that for every

✏ > 0, there exists an N 2 N such that for m,n � N , d1(f
n

, f

m

) < ✏.

Since d1(f
m

, f

n

) ! 0 when m,n ! 1, for every x0 2 [0, 1], we have that

|f
n

(x0)� f

m

(x0)|  d1(f
n

, f

m

) ! 0.

Therefore, since R is complete, f
n

(x0) converges to some real number as n ! 1.
We define the function f to be the pointwise limit of f

n

by

f(x) = lim
n!1

f

n

(x), x 2 [0, 1].

Now we need to show that f

n

converges to f in d1. Let ✏ > 0. Since
f

n

is a Cauchy sequence, there exists an N such that for n,m � N , then
d1(f

n

, f

m

) < ✏. Since for every x 2 [0, 1] we have

|f
n

(x)� f(x)| = lim
m!1

|f
n

(x)� f

m

(x)|  lim
m!1

d1(f
n

, f

m

)  ✏

11



we deduce that
d1(f

n

, f)  lim
m!1

d1(f
n

, f

m

)  ✏.

Lastly, let ✏ > 0 and choose an x0 in [0, 1]. Note that since every f

n

in the
sequence is continuous, each f

n

will have a limit as x approaches x0:

lim
x!x0

f

n

(x) = A

n

.

Since {f
n

}1
n=1 is a Cauchy sequence, for every ✏ > 0 there exists an N 2 N such

that for n,m � N , we have d1(f
n

, f

m

) < ✏. Therefore,

|A
n

�A

m

| = lim
x!x0

|f
n

(x)� f

m

(x)|  lim
x!x0

d1(f
n

, f

m

) = d1(f
n

, f

m

) < ✏

for all n,m � N . We deduce that {A
n

}1
n=1 is a Cauchy sequence in R, and

since R is complete, the sequence {A
n

}1
n=1 has a limit A in R.

Choose an n large enough so that the following are satisfied:

d1(f
n

, f)  ✏

3
, |A

n

�A|  ✏

3
.

Now for the same n, since f

n

is continuous there exists a � > 0 such that for all
x 2 (x0 � �, x0 + �) we have

|f
n

(x)�A

n

|  ✏

3
8x 2 (x0 � �, x0 + �).

Then:
|f(x)�A|  d1(f

n

, f) + |f
n

(x)�A

n

|+ |A
n

�A|  ✏

for all x in (x0 � �, x0 + �). This is the same as f is continuous, and we are
done.

1.3.1 Baire’s Category Theorem

Theorem 1 (Baire’s Category Theorem). In a complete metric space, any
countable intersection of dense open sets is dense.

We follow the presentation of the proof made by Kahane in [5].

Proof. Let (X, d) be a complete metric space. Suppose A1, A2, ... is a sequence,
where A

i

be open and dense in X. Let B0 be an arbitrary open ball in X. Since
B0 is open, and A1 is open and dense, the intersection B0 \ A1 is open and
non-empty.

Therefore we can say there exists a smaller open ball B1, such that the
closure B1 is contained in the intersection B \A1.

Using this smaller open ball B1, the intersection B1 \A2 is again open and
non-empty, for which there exists an open ball B2 such that B2 is contained in
B1\A2. This way we construct a decreasing sequence of closed balls B1, B2, ....

SinceX is complete, and since the sequence of centers of the open nested balls
B

i

form a Cauchy sequence, the sequence converges to some x 2 X. Therefore
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x 2 B0, A1, A2, ..., from which we can conclude that A1 \A2 \ ... intersects B0.
Since B0 was an arbitrary open ball, A1 \A2 \ ... is dense in X.

A logical conclusion from Baire’s category theorem is that if there exists a
countable intersection of dense open sets which is not dense, then the metric
space is not complete. An example is shown by the rationals. As explained, Q
is countable. For each rational number q

i

, define q

c

i

= Q \ {q
i

}. Each q

c

i

is then
an open and dense set - but

T1
i=1 q

c

i

is not dense, since the intersection of all
these sets is empty. Therefore, once again, Q is not complete.
From this follows another classification of metric spaces.

Definition 12. A Baire space is a metric space where every countable inter-
section of open and dense subsets is dense.

Remark. Complete metric spaces are Baire spaces.

Here we should mention that there exists an explicit definition for sets of
the type A1 \A2 \ ..., and since several of the theorems and definitions use that
terminology, we will adopt it as well with the following definition.

Definition 13. Let (X, d) be a metric space with A ⇢ X. We say that A

is a G

�

set if A is the countable intersection of open sets. Alternatively, for
A = A1 \A2 \ ... and any given point x 2 A, then 8i there exists an ✏

i

> 0 such
that for all y 2 X, if d(x, y) < ✏

i

, then y 2 A

i

.

Naturally, every open set is itself a G

�

set. An example of a G

�

set is the
irrational numbers in R. Let Q = {q

n

}1
n=1 be the set of rational numbers, then

for every rational number, the complement q

c

n

is an open set. Thus it follows
that

T1
n=1 q

c

n

is the set of irrationals.

For the next theorem we also need to understand the use of quasi, meaning
almost. Mostly we will use this prefix for quasi all and quasi everywhere, thus
meaning almost all and almost everywhere respectively. This is rather loosely
defined, when we for example state “quasi all x 2 X”, we only get the notion
that it applies to the elements of X, with exceptions to some extent. However,
to be rigorous we will use Kahane’s version; if (X, d) is a metric space, a prop-
erty P holds for every element in a G

�

set of dense open sets, then P holds
quasi-everywhere in X.

1.3.2 Kuratowski-Ulam Theorem

Theorem 2 (Kuratowski-Ulam). Let (X, d) and (Y, p) be Baire spaces. Suppose
that (Y, p) is separable, i.e. (Y, p) has a countable base of open sets. Let A be a
dense G

�

set in (X ⇥ Y, d̃ = d + p). For every x 2 X we define ⇡

x

(A) = {y 2
Y : (x, y) 2 A}. Then ⇡

x

(A) is a dense G

�

set in Y for quasi all x 2 X.

We follow the proof presented by Kahane and Que↵élec [7, p.503].
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Proof. Since A is a dense G

�

set, we have that

A =
1\

n=1

G

n

where each G

n

is dense in X ⇥ Y . And since Y is separable, let {�
i

}1
i=1 be a

countable base for Y , where every �
i

is a non-empty open set. We define

E

n,i

= {x 2 X : ⇡
x

(G
n

) \ �
i

6= ;}.

Since G

n

is dense in X ⇥ Y , and �
i

is an open set in Y , G

n

\ (X ⇥ �
i

) is
non-empty. Therefore there exists an (x0, y0) 2 G

n

\ (X ⇥ �
i

). Then y0 2 �
i

,
and ⇡

x0(Gn

) is non-empty - and therefore x0 2 E

n,i

, so E

n,i

is non-empty. We
need to show that E

n,i

is open and dense.

Let x0 2 E

n,i

. Then by definition of E
n,i

, there exists a y0 2 �
n

such that
(x0, y0) 2 G

n

. Since G

n

is open, there exists an open ball B(x0,y0)(r) with ra-
dius r > 0 centered on (x0, y0) 2 E

n,i

⇥ �
i

which is contained in G

n

. We can
create an open square contained in B(x0,y0)(r) by picking an 0 < ✏ <

rp
2
such

that
B

x0(✏) = {x 2 X : d(x0, x) <
✏

2
}

B

y0(✏) = {y 2 �
i

: p(y0, y) <
✏

2
}.

Then both B

x0(✏) and B

y0(✏) are open, and

B

x0(✏)⇥B

y0(✏) ✓ B(x0,y0)(r) ✓ G

n

.

From this, we deduce that B
x0(✏) ✓ E

n,i

, and therefore E

n,i

must be open.

Now take an arbitrary open set D in (X, d). Since G

n

is dense in X ⇥ Y ,
we have that G

n

\ (D ⇥ �
i

) is non-empty, i.e. there exists an (x0, y0) 2 D ⇥ �
i

such that y0 2 �
i

\ ⇡

x0(Gn

). Therefore x0 2 D \E

n,i

, and we deduce that E
n,i

is dense in X.

Since n, i 2 N were arbitrarily fixed and E

n,i

is open and dense in a Baire
space, we can deduce from Baire’s Category Theorem that

E =
1\

n,i=1

E

n,i

is a dense G

�

set in (X, d). Note that for any x 2 E, we have that x 2 E

n,i

for
all n, i 2 N, then for every n 2 N we have that ⇡

x

(G
n

)\ �
i

is non-empty for all
i 2 N. Since {�

i

}1
n=1 is a base for (Y, p), ⇡

x

(G
n

) is dense in (Y, p).

Take y0 2 ⇡

x0(Gn

). Since G

n

is open, there exists an open ball B(x0,y0)(r)
with radius r > 0 contained in G

n

. Then, if B
y0(r) = {y 2 �

i

: p(y0, y) < r} we

14



deduce B

y0(r) ✓ ⇡

x0(Gn

), so ⇡

x0(Gn

) is open.

Since for every x 2 E we have that ⇡

x

(G
n

) is dense and open, and (Y, p) is
a Baire space, it follows from Baire’s Category Theorem that

1\

n=1

⇡

x

(G
n

)

is a dense G

�

set in (Y, p). Since A =
T1

n=1 Gn

and E is a dense G

�

set in
(X, d), we have that ⇡

x

(A) is a dense G

�

set for quasi all x 2 X.
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Chapter 2

Groundwork of Fourier

analysis

When we first study mathematics we soon get introduced to Taylor series and
Maclaurin series. These series we learn, are a way to approximate functions by
a polynomial function over a small interval. For instance:

sin(x) ⇡ x� x

3

3!
+

x

5

5!
� x

7

7!
+ ...

is a useful way to approximate the sine function in a neighbourhood around 0,
with applications especially when it comes to programming.

The idea behind Fourier analysis is similar - given a periodic function over
an interval, we can approximate the function by a trigonometric series. And
then we arrive at the purpose of this thesis - does the sum converge to the
original function? We will approach this problem in the next chapter, for now
we will begin the study of Fourier series. It is worth mentioning that while we
study mainly real-valued functions, the Fourier series - and trigonometric series
in general - are not limited to real valued functions, but cover complex valued
functions as well.

For further reading beyond what is mentioned in this chapter, consult Stein
and Shakarchi [12].

In this thesis our main concern will be functions over the interval [0, 1]. We
will use the condition that f is continuous throughout this thesis, however it is
important to note that many of the following definitions and theorems stated
around the subject of Fourier series do not require continuity of functions - but
instead, it su�ces that f is merely Riemann integrable, or even Lebesgue in-
tegrable. However, since our main interest (Kahane’s Theorem) concerns only
continuous functions, we shall restrict ourselves to this smaller class of functions.
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It is also worth noting that our interest is periodic functions - i.e, if f is
1-periodic, then f(x) = f(x + 1). Furthermore, we will require for our pe-
riodic functions that if f is periodic over a fundamental interval [a, b), then
f(a) = f(b). This provides us with the property that if f is 1-periodic and
defined over R, then we can take any interval of length 1 from R and capture
the original function [12, p.33].

2.1 Fourier series

Suppose for the remainder of the thesis, that f is a continuous function defined
on [0, 1] with f(0) = f(1).

Definition 14. The n

th

Fourier coe�cient of f is denoted as b
f(n) and is

given by

b
f(n) :=

Z 1

0
f(x)e�2⇡inx

dx, n 2 Z.

Remark. Note that in general, in the study of Fourier analysis we are interested
in functions that are not only defined on an interval [0, 1]. If we have an interval

of [a, b], then b
f(n) = 1

b�a

R
b

a

f(x)e
�2⇡inx

b�a

dx, n 2 Z. However, for simplicity we
will in this thesis cover the case of functions on [0, 1], without loss of generality.

Definition 15. The Fourier series of f is given by

1X

n=�1

b
f(n)e2⇡inx.

In the case where we work with functions over an interval [a, b], the Fourier

series is formally given by
P1

n=�1
b
f(n)e

2⇡inx

b�a . We use the following formal
notation to indicate the relationship between f and the Fourier series of f :

f(x) ⇠
1X

n=�1

b
f(n)e2⇡inx

Suppose a trigonometric series of a function f has a finite number of non-zero
Fourier coe�cients, i.e. for some integer N , bf(n) = 0 for all n > N . Then we
say that we have a trigonometric polynomial of degree N - the largest n such
that b

f(n) 6= 0.

When generally working with series, we sometimes tend to work with partial
sums, i.e. given a series

P1
i=0 ai we look at S

N

=
P

N

i=0 ai, and see if S

N

converges as N ! 1. The idea is the same when working with trigonometric
series.
The N

th partial sum of the Fourier series of f is given by

S

N

(f)(x) =
NX

n=�N

b
f(n)e2⇡inx, N 2 N

17



and thus we can provide an alternative statement to the purpose of this thesis:
does S

N

converge to f as N ! 1? To answer such a question, we need to
introduce an important family of trigonometric polynomials.

2.2 Dirichlet Kernel

Definition 16. The function

D

N

(x) :=
NX

n=�N

e

2⇡inx
, x 2 [0, 1), N 2 N

is the Dirichlet Kernel of order N.

If one compares the definition of the Dirichlet kernel with the general defini-
tion for Fourier series, we can conclude that Dirichlet kernel is the Fourier series
of a function f , where the Fourier coe�cients have the property that b

f(n) = 1

if �N  n  N , and b
f(n) = 0 otherwise.

The Dirichlet kernel is recurring throughout this thesis (and Fourier analysis),
thus we will show that there exists a closed form formula for the partial sums.
A compact version of this can be found in [12, p.37].

Write
NX

n=�N

e

2⇡inx =
NX

n=0

e

2⇡inx +
�1X

n=�N

e

2⇡inx
.

From here, we can see that if x = 0, every term in the sum will be 1 and we
have 2N + 1 terms. Next, we note that for the first term on the righthand side
(when n � 0):

NX

n=0

e

2⇡inx = 1 + e

2⇡ix + e

4⇡ix + ...+ e

N2⇡ix
.

Now, by multiplying with 1� e

2⇡ix we can cancel a lot of terms:

(1� e

2⇡ix)(1 + e

2⇡ix + e

4⇡ix + ...+ e

N2⇡ix) = 1� e

(N+1)2⇡ix
.

Therefore, we can conclude for x 6= 0:

NX

n=0

e

2⇡inx = 1 + e

2⇡ix + e

4⇡ix + ...+ e

N2⇡ix =
1� e

(N+1)2⇡ix

1� e

2⇡ix
.

Similarly, for the second term when summing for n < 0:

�1X

n=�N

e

2⇡inx = e

�N2⇡ix + e

(N�1)2⇡ix + ...+ e

�2⇡ix

18



(1� e

2⇡ix)(e�N2⇡ix + e

(N�1)2⇡ix + ...+ e

�2⇡ix) = e

�N2⇡ix � 1.

Thus:

�1X

n=�N

e

2⇡inx = e

�N2⇡ix + e

(N�1)2⇡ix + ...+ e

�2⇡ix =
e

�N2⇡ix � 1

1� e

2⇡ix
.

So for our original series:

NX

n=�N

e

2⇡inx =
1� e

(N+1)2⇡ix

1� e

2⇡ix
+

e

�N2⇡ix � 1

1� e

2⇡ix
.

After setting both fractions on the same denominator and simplifying:

NX

n=�N

e

2⇡inx =
e

�N2⇡ix � e

(N+1)2⇡ix

1� e

2⇡ix
=

e

� 1
2 2⇡ix

e

� 1
2 2⇡ix

e

�N2⇡ix � e

(N+1)2⇡ix

1� e

2⇡ix

=
e

�(N+ 1
2 )2⇡ix � e

(N+ 1
2 )2⇡ix

e

� 1
2 2⇡ix � e

1
2 2⇡ix

=
sin(2⇡(N + 1

2 )x)

sin(2⇡ x

2 )
.

Where we use Euler’s formula for both the numerator and denominator in the
last step. To conclude:

D

N

(x) =
NX

n=�N

e

2⇡inx =

⇢ sin(2⇡(N+ 1
2 )x)

sin(⇡x) if x 2 (0, 1)

2N + 1 if x = 0
.

Figure 2.1: Dirichlet Kernel for large N

From the closed formula we can see that as N increases, the function will
oscillate more frequently between positive and negative values (and clearly the
amplitude increases as well in the neighbourhood of x = 0). Figure 2.11 gives
us a perception of how D

N

(x) behaves for large N .

1
Figure 2.1 taken from [12, p.50], figure 5
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In the following section, we will see how the Dirichlet Kernel, and the asso-
ciated closed formula for an arbitrary N , can be used to compute the partial
sum of the Fourier series of a function of interest.

2.3 Convolutions

Definition 17. Let f and g be 1-periodic, continuous functions on R. Recall
that the product of two continuous functions is continuous. We define the
convolution of f and g (denoted as f ⇤ g) on the interval [0, 1] by

(f ⇤ g)(x) =
Z 1

0
f(y)g(x� y)dy

=

Z 1

0
f(x� y)g(y)dy.

Our interest in the convolutions of functions originates from the study of
the partial sums of Fourier series. Let f 2 C[0, 1], with Fourier coe�cients
b
f(n) =

R 1
0 f(y)e�2⇡iny

dy, n 2 Z. Then the partial sum of the Fourier series of
f is as before given by

S

N

(f)(x) =
NX

n=�N

b
f(n)e2⇡inx =

NX

n=�N

✓Z 1

0
f(y)e�2⇡iny

dy

◆
e

2⇡inx
.

Since e

2⇡inx is considered a constant with respect to integration to the variable
y;

S

N

(f)(x) =
NX

n=�N

Z 1

0
f(y)e2⇡in(x�y)

dy.

And lastly, since the sum is finite we can interchange the order between the sum
and integral.

S

N

(f)(x) =

Z 1

0

NX

n=�N

f(y)e2⇡in(x�y)
dy =

Z 1

0
f(y)

✓
NX

n=�N

e

2⇡in(x�y)

◆
dy

=

Z 1

0
f(y)D

N

(x� y)dy = (f ⇤D
N

)(x).

Therefore the partial sum of the Fourier series of f can be expressed as the
convolution of f with the Dirichlet kernel, S

N

(f)(x) = (f ⇤D
N

)(x).

Convolutions of two functions play a large role in Fourier analysis, and have sev-
eral useful properties, such as linearity, commutativity and associativity among
others, which may be found in [12, p.45]2. The properties of convolutions are

2
Stein and Shakarchi go further to suggest that the convolution of two functions can, in a

sense, be considered as weighted averages.
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often used to simplify calculations, in our case mainly for the calculation of the
partial sum of a Fourier series for a given function f .

Definition 18. Let A ✓ X. We define a characteristic function �

A

of A by:

�

A

(x) :=

⇢
1, x 2 A

0, x 2 X \A .

In a sense, we can think of a characteristic function of a set as a function
that indicates the membership of elements in the set. We can therefore think of
the Fourier coe�cients of the Dirichlet kernel as:

D

N

(x) =
X

n2Z
�[�N,N ](n) · e2⇡inx

for x 2 [0, 1), N 2 N.
Characteristic functions of sets are useful in the sense that if we have a function
f with a domain X, we might be interested in the properties of the functions
over a subset A ⇢ X. Then we can define a function g = �

A

· f . The following
Lemma is an example of such a function g, which will be used in our proof of
Kahane’s Theorem in chapter 3:

Lemma. Let g
N

(x) = �[0, 12 ]
(x) · sin(2⇡(N + 1

2 )x). Then:

|S
N

(g
N

)(0)| � C ln(N)

where C is a positive constant.

Proof.

S

N

(g
N

)(0) =

Z 1

0
g

N

(0� y) · sin(2⇡(N + 1/2)y)

sin(⇡y)
dy.

Since �[0, 12 ]
(x) = 0 for all x >

1
2 , we only need to integrate over [0, 1

2 ]. Further-
more, recall that sine is an odd function.

S

N

(g
N

)(0) =

Z 1
2

0
sin(2⇡(N + 1/2)(�y)) · sin(2⇡(N + 1/2)y)

sin(⇡y)
dy

S

N

(g
N

)(0) = �
Z 1

2

0

sin2(2⇡(N + 1/2)y)

sin(⇡y)
dy.

Thus

|S
N

(g
N

)(0)| =
�����

Z 1
2

0

sin2(2⇡(N + 1/2)y)

sin(⇡y)
dy

���� =
Z 1

2

0

sin2(2⇡(N + 1/2)y)

sin(⇡y)
dy.

Recall, that | sin(✓)|  |✓|:

|S
N

(g
N

)(0)| �
Z 1

2

0

sin2(2⇡(N + 1/2)y)

⇡y

dy.
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And after changing variables t = 2⇡(N + 1/2)y:

|S
N

(g
N

)(0)| �
Z

⇡(N+1/2)

0

sin2(t)

t

dt.

Furthermore, we can rewrite the integral as a sum of integrals over segments:

|S
N

(g
N

)(0)| �
NX

k=1

Z
k⇡

(k�1)⇡

sin2(t)

t

dt,

which is certainly less than the previous line since we no longer include the last
segment of length ⇡

2 . Next, note that sin
2(t) is bounded and periodic - and each

integral in the sum will be “smaller” than the previous due to the increasing
denominator as the sum progresses. Thus, we rewrite the denominator with the
inequality:

|S
N

(g
N

)(0)| �
NX

k=1

Z
⇡

0

sin2(t)

k⇡

dt

=
1

⇡

NX

k=1

1

k

Z
⇡

0
sin2(t)dt.

Note that
R
⇡

0 sin2(t)dt is always positive. Moreover, if t 2 [⇡4 ,
⇡

2 ], then sin2(t) �
sin2(⇡4 ) =

1
2 . Then

Z
⇡

0
sin2(t)dt �

Z ⇡

2

⇡

4

sin2(t)dt � 1

2
(
⇡

2
� ⇡

4
) =

⇡

8
.

Hence, we have

|S
N

(g
N

)(0)| � 1

⇡

NX

k=1

1

k

Z
⇡

0
sin2(t)dt � 1

⇡

NX

k=1

1

k

Z ⇡

2

⇡

4

sin2(t)dt

� ⇡

8

1

⇡

NX

k=1

1

k

=
1

8

NX

k=1

1

k

.

Since the sum is the harmonic series, and we know
P

N

k=1
1
k

>

R
N

1
1
x

dx = ln(N),
we deduce

|S
N

(g
N

)(0)| � 1

8
ln(N) = C ln(N).

Remark. From this result, we can intuitively see how this relates to the diver-
gence of the Fourier series of an arbitrary continuous function f . Namely, since
0  |g

N

(x)|  1 for all x, and the partial sum of the Fourier series of g
N

is given
by the convolution with the Dirichlet Kernel S

N

(g
N

) = (g
N

⇤D
N

), we are led
to believe that the Dirichlet Kernel would be the plausible cause of divergence.
See Chapter 4 for more further remarks on the subject.
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Chapter 3

Kahane’s Theorem

3.1 Prerequisites to divergence of Fourier Series

We will go through the last definitions and useful facts we require before we state
and prove Kahane’s theorem. Given that we are interested in the divergence of
the Fourier series of a function f , we will focus on the points x such that the
Fourier series diverges.

Definition 19. Let f 2 C([0, 1]). We define the set of divergence of the
Fourier series of f as

A

f

:= {x 2 [0, 1) : lim
N!1

|S
N

(f)(x)| = 1}.

Thus if x 2 A

f

, the Fourier series of f diverges at x. The reason we are in-
terested in the superior limit rather than the ordinary limit of the partial sums,
originates from the fact that we may not be able to the determine the limit -
but if it exists, it will be equal to the superior limit.

Since our problem relates to the divergence of the Fourier series of a large
subset of the set of continuous functions, we will need some explicit definitions
to refer to them.

Definition 20. Let (X⇥Y, d̃) be the metric space withX = C([0, 1)), Y = [0, 1)
and d̃ = d1 + | · |. Let M 2 N. We define G0(M,n) and G(M,N) as

G0(M,n) := {(f, x) 2 X ⇥ Y : |S
n

(f)(x)| > M}

G(M,N) :=
[

n�N

G0(M,n).

We can then interpret G0(M,n) as the set where each element is the Carte-
sian products of a continuous function f and a specific x for which the Fourier
series of f at x is greater than M . The following Lemma provides an important,
but not obvious property of G(M,N) and G0(M,n).
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Lemma. G(M,N) is an open set.

Proof. First we note that G(M,N) is open if we can show that G0(M,n) is
open for every n, since the union of open sets is open [11, p.34]. In order for
G0(M,n) to be open, we need to show that for any element in G0(M,n) there is
an open neighbourhood where all elements in the neighbourhood are elements
of G0(M,n). So, let (f0, x0) 2 G0(M,n) for a fixed n 2 N.

A key observation is that if f0 and f are “close” to each other, then S

n

(f0)
and S

n

(f) will also be “close” to each other1. To be more precise, for any x in
[0, 1):

|S
n

(f)(x)� S

n

(f0)(x)| = |S
n

(f � f0)(x)| = |D
n

⇤ (f � f0)(x)| 

sup
x

02[0,1)
|D

n

⇤ (f � f0)(x
0)|.

Now, by using Young’s Inequality [1, p.157] for convolutions, we have

sup
x

02[0,1)
|D

n

⇤ (f � f0)(x
0)|  sup

x

02[0,1)
(|f(x0)� f0(x

0)|) · ||D
n

||
L

1([0,1))

= d1(f, f0) · ||Dn

||
L

1([0,1)).

Therefore, we can conclude that

d1(S
n

(f), S
n

(f0))  d1(f, f0) · ||Dn

||
L

1([0,1))

and thus if we let d1(f, f0) be arbitrarily small, d1(S
n

(f), S
n

(f0)) will also be
small.

Now, note that S

n

(f0) is a continuous functions, since S

n

(f0) is a finite sum
where every term is a continuous function. By the definition of G0(M,n) and
our assumption on f0, x0:

|S
n

(f0)(x0)| > M.

Then there exists an ✏ > 0 such that

|S
n

(f0)(x0)|� ✏ · ||D
n

||
L

1([0,1)) > M.

Furthermore, since S

n

(f0) is continuous there exists a � > 0 such that

|S
n

(f0)(x)|� ✏ · ||D
n

||
L

1([0,1)) > M

for |x� x0| < �. Define ✏̃ = min{✏, �}. Then for any f, x for which

d̃((f, x), (f0, x0)) = d1(f, f0) + |x� x0| < ✏̃,

1
An explicit example is that since the calculation of Fourier coe�cients require integration,

any two functions that di↵er at finitely many points will have the same Fourier series [12, p.39].
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we have
|S

n

(f)(x)| � |S
n

(f0)(x)|� |S
n

(f)(x)� S

n

(f0)(x)|

� |S
n

(f0)(x)|� d1(f, f0) · ||Dn

||
L

1([0,1))

� ✏ · ||D
n

||
L

1([0,1)) > M.

Hence, (f, x) 2 G0(M,n).

The usefulness of G0(M,n) and G(M,N) to the proof of Kahane’s Theorem
on divergence of Fourier series becomes apparent by the identity presented in
the following Lemma.

Lemma.

1\

N,M=1

G(M,N) = {(f, x) 2 C([0, 1))⇥ [0, 1) : x 2 A

f

}

Proof. Let X = C([0, 1)) and Y = [0, 1), and let

(f0, x0) 2
1\

N,M=1

G(M,N).

Then (f0, x0) 2 G(M,N) for all N,M 2 N. Then

(f0, x0) 2
[

n�N

G0(M,n) =
[

n�N

{(f, x) 2 X ⇥ Y : |S
n

(f)(x)| > M}.

Therefore, for all N,M 2 N we have |S
n

(f0)(x0)| > M for each n � N . Then

lim
N!1|S

N

(f0)(x0)| > M 8M 2 N

and consequently
lim

N!1|S
N

(f0)(x0)| = 1.

And therefore, (f0, x0) 2 {(f, x) 2 X ⇥ Y : x 2 A

f

}.
Conversely, if (f0, x0) 2 {(f, x) 2 X ⇥ Y : x 2 A

f

}, we have

lim
N!1|S

N

(f0)(x0)| = 1.

By the definition of the superior limit we get

lim
N!1|S

N

(f0)(x0)| = inf
N2N

sup
n�N

|S
n

(f0)(x0)| = 1.

Consequently, we have

inf
N2N

sup
n�N

|S
n

(f0)(x0)| > M
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for all M 2 N. Hence,

sup
n�N

|S
n

(f0)(x0)| > M 8N,M 2 N,

which implies that
(f0, x0) 2 G0(M,n)

for some n � N , for all N,M 2 N. Thus

(f0, x0) 2
[

n�N

G0(M,n) 8N,M 2 N

and consequently, (f0, x0) 2 G(M,N) for all N,M 2 N. Since that is the case
for all N,M 2 N, we deduce that

(f0, x0) 2
1\

N,M=1

G(M,N).

Now that we have the necessary definitions and facts needed, we will state
and prove Kahane’s theorem.

3.2 Kahane’s Theorem

Theorem 3 (Kahane’s Theorem). Quasi all continuous functions on [0, 1) have
a Fourier series that diverges quasi everywhere.

We will follow the presentation made by Kahane in [5, p.146].
Let (X ⇥ Y, d̃) be our metric space with X = C([0, 1)), Y = [0, 1) and d̃ =
d1 + | · |. The theorem is proved by showing that the set of (f, x) 2 X ⇥
Y with lim

n!1|S
n

(f)(x)| = 1 is a dense G

�

in X ⇥ Y . Then one can use
the Kuratowski-Ulam Theorem to conclude that the set of x 2 Y such that
lim

n!1|S
n

(f)(x)| = 1 is a dense G

�

set in Y , for quasi all f 2 X.

Proof. Recall, from our Lemmas in Section 3.1, thatG(M,N) =
S

n�N

G0(M,n)
and G0(M,n) = {(f, x) 2 X ⇥ Y : |S

n

(f)(x)| > M} are open sets, and that

1\

N,M=1

G(M,N) =
�
(f, x) 2 X ⇥ Y : lim

n!1|S
n

(f)(x)| = 1
 
.

We want to show that
T1

N,M=1 G(M,N) is dense, and to use Baire’s Category
Theorem we need to show that G(M,N) is dense in X ⇥ Y .

Let (f0, x0) 2 (X ⇥ Y ) \G(M,N). Since

G(M,N) =
[

n�N

G0(M,n) =
[

n�N

{(f, x) 2 X ⇥ Y : |S
n

(f)(x)| > M},
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then |S
n

(f0)(x0)|  M for all n � N .

Let ✏ > 0, with ✏ > h >

M

C ln(n) . Note that h can be made arbitrarily

small for large enough n. Recall from the Lemma in section 2.3; if g
n

(x) =
�[0, 12 ]

(x) · sin(2⇡(n+ 1
2 )x), then |S

n

(g
n

)(0)| � C ln(n). Define

u(+)(x) = f0(x) + hg

n

(x� x0)

u(�)(x) = f0(x)� hg

n

(x� x0)

Then both pairs of u(x) belong to the ✏-neighbourhood of (f0, x0), since:

d1(u(+), f0) = sup
x2[0,1)

|u(+)(x)� f0(x)| = sup
x2[0,1)

|f0(x) + hg

n

(x� x0)� f0(x)|

= sup
x2[0,1)

|hg
n

(x� x0)| = h.

and

d1(u(�), f0) = sup
x2[0,1)

|u(�)(x)� f0(x)| = sup
x2[0,1)

|f0(x)� hg

n

(x� x0)� f0(x)|

= sup
x2[0,1)

|� hg

n

(x� x0)| = h.

Furthermore, at least one of the pairs is in G0(M,n) since:

|S
n

(u(+))(x0)| = |S
n

(f0)(x) + hg

n

(x� x0))(x0)|

= |S
n

(f0)(x0) + S

n

(hg
n

)(0)| � |S
n

(f0)(x0) +M |

and
|S

n

(u(�))(x0)| = |S
n

(f0)(x)� hg

n

(x� x0))(x0)|

= |S
n

(f0)(x0)� S

n

(hg
n

)(0)| � |S
n

(f0)(x0)�M |.

Since either u(�)(x) or u(+)(x) is in G0(M,n), it will also be in G(M,N) when
n � N . Therefore, G(M,N) is dense in X ⇥ Y .

SinceG(M,N) is open and dense, then by Baire’s Category Theorem, \
N,M

G(M,N)
is a dense G

�

set in X ⇥ Y .

Since [0, 1) is separable, and since C([0, 1)) and [0, 1) are complete, then by
the Kuratowski-Ulam Theorem, A

f

= {x 2 [0, 1) : lim
N!1|S

N

(f)(x)| = 1} is
a dense G

�

set in [0, 1) for quasi all f 2 X.
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Chapter 4

Further remarks

We have introduced the fundamental notions of both topology and Fourier se-
ries, and shown one of the problems encountered in Fourier analysis. Namely,
that for any arbitrarily small subset E ⇢ [0, 1), there exists a continuous func-
tion f such that the Fourier series of f diverges at every point of E.

The problem of divergence of Fourier series has led to studies to investigate
what conditions entail the Fourier series of a function f to converge to f . Some
approaches are led by the idea that if we sum the terms in the partial sums in
a di↵erent order or by di↵erent rules, it might converge. E.g. if we define

�

N

=
S0(f)(x) + ...+ S

N�1(f)(x)

N

which is known as the N

th Cesàro mean of the Fourier series of f , we find that
if f is continuous, then �

N

converges uniformly to f [12, p.53]. This results in
that if f is continuous and ✏ > 0, there exists a a trigonometric polynomial P

n

such that
|f(x)� P

n

| < ✏

for all x 2 [0, 1) [12, p.54].
Another approach of summation is to sum the terms by their size of the Fourier
coe�cents - since they have the largest impact on how the Fourier series behaves.
This would be a desirable approach, since e.g. in engineering with regard to
signal processing and communications, as it would simplify e↵orts to reconstruct
a continuous function. More specifically, if we define

(S
N

(f))⇤(x) =
X

{k2Z:| bf(k)|� 1
N

}

b
f(k)e2⇡ikx

then we find that
lim

N!1|(S
N

(f))⇤(x)| = 1
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for almost all x 2 [0, 1) [8, p.2]. Therefore, rearranging and summing the Fourier
series of f in a decreasing order is not a strong enough restriction for conver-
gence.

Since the partial sum of the Fourier series of a function can be obtained by
the convolution (f ⇤D

N

), we might ask ourselves if the Dirichlet Kernel is the
underlying issue of divergence. In fact, there exists a notion of good kernels -
and the Dirichlet Kernel does not belong to this family of kernels. In the case
above where we take the Cesàro mean of the Fourier series of f , we find that

�

N

(f)(x) = (f ⇤ F
N

)(x)

where F

N

(x) = D0(x)+...+D

N�1

N

is known as the Fejér Kernel, and is what is
known as a good kernel - and has the property that the limit

lim
N!1

(f ⇤ F
N

)(x) = f(x)

is uniform when f is continuous [12, p.48-53].
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