
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Counting points on elliptic curves - A study of Schoof’s algorithm

av

Oskar Eklund

2018 - No K6

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Counting points on elliptic curves - A study of Schoof’s algorithm

Oskar Eklund

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Jonas Bergström

2018





Abstract

An elliptic curve over a field is a set of points with an addition opera-
tion defined, making it a group. The points are determined by a so called
”Weierstrass equation”. In this paper we will consider these elliptic curves
over finite fields, this will make the sets of points finite, and study ways
of counting the number of points on a given elliptic curve. The main al-
gorithm for counting points on elliptic curve that we will study is Shoof’s
algorithm, but we will also consider some other less efficient algorithms
and methods of counting points on elliptic curves over finite fields.

i



A special thanks to my mentor Jonas Bergström for all the help and guidance
he has given me during my work with this essay.

ii



Contents

1 Introduction 1

2 General theory about elliptic curves 3
2.1 Definition of an elliptic curve . . . . . . . . . . . . . . . . . . . . 3

2.1.1 The group of an elliptic curve . . . . . . . . . . . . . . . . 3
2.2 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 The structure and existence of finite fields . . . . . . . . . 4
2.2.2 The construction of finite fields . . . . . . . . . . . . . . . 6
2.2.3 Algebraic closure of a finite field . . . . . . . . . . . . . . 7

2.3 Torsion points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Division polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 An integer times a point . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Endomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 The group of E[n] . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Two fundamental theorems for elliptic curves over

finite fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Algorithms for finding the number of points on an elliptic curve
over a finite field 21
3.1 The Naive method . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 The Baby step, Giant step algorithm . . . . . . . . . . . . . . . . 21

3.2.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Schoof’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 References 36

A Appendix 37

iii



1 Introduction

An elliptic curve is a curve expressed usually as the solutions to the equation
y2 = x3 + Ax + B known as the Weierstrass equation, where A,B, x, y are
elements of a field and A,B are constants. We do not allow the Weierstrass
equation to have multiple roots, namely we do not allow the discriminant to be
zero, ∆ = 4A3 + 27B2 6= 0.
Over the field of real numbers R this becomes an iconic curve where we can
have a clear picture of the curve going through the coordinate system as shown
below.

Figure 1: Elliptic curve y2 = x3 − x+ 1 over R

However if we take the curve over an finite field K then the graph of the curve
would only consist of a finite number of point spread out over the area K2, as
seen in the example below.

1



Figure 2: Elliptic curve y2 = x3 + 19x+ 42 over F101

For the rest of this paper this field K will be considered a finite field which
we will denote with Fq, where q is the number of elements in the field. For
the points on the elliptic curve we can define an additive operation. If we, to
our set of points on the elliptic curve, add an point ”the point at infinity”=∞,
(the name will make sense when we have defined the additive operation on the
points) then we can define a way of adding two points together to get a new
point within the set. This will make the set of points a group under the additive
operation and the point ∞ will be the identity element of the group.

A fundamental property of an elliptic curve over a finite field is the number
of points it has. Elliptic curves over finite fields have a very useful application
in cryptography, where the number of points on an elliptic curve will be an
essential factor to how hard a message will be to decipher. Schoof’s algorithm
is an algorithm for determining the number of points on an elliptic curve over a
finite field.The algorithm works by manipulating finite polynomials of different
degrees and the time complexity of the algorithm is O(log8(q)). This means
that when we calculate the number of points on a elliptic curve over a field Fq,
the time we can expect it to take depends on how big q is (or rather how big
log8(q) is). As we see from the expression log8(q) the time grows relatively slow
compared to when q grows, which makes the algorithm relatively effective for
calculating the number of points on elliptic curves when we consider them over
very large finite fields.

There are however improvements done on Schoof’s algorithm by both A.O.L
Atkin and N.D. Elkies. Atkins improvement regards restricting the possible
values of the number of points further and the improvements of Elkies regard
working with polynomials of smaller degree when applying the algorithm.
Reference [3], p.241-242
The improvements of Schoof’s algorithm is however beyond the scope of this
paper and will not be discussed further.

2



2 General theory about elliptic curves

2.1 Definition of an elliptic curve

2.1.1 The group of an elliptic curve

A fantastic property of the elliptic curves over a field K is that we can define
an addition operation on the points. We just have to add

”the point at infinity” =∞

as the identity to our set of points. If we consider the points defined by the
equation y2 = x3 + Ax + B over the field of real numbers R then we can
describe the addition of points on an elliptic curve geometrically, but first we
have to define what the negative of a point is.

Definition 2.1.
For a point P = (x, y) the negative −P is defined as

−P = −(x, y) = (x,−y)

Thus we obtain the negative of a point by simply switching the sign on the
y-coordinate. Since the points are defined by the Weierstrass equation where y
is squared, an elliptic curve’s graph is symmetric with respect to the x-axis. We
then know in fact that if P = (x, y) lies on the curve then so does −P = (x,−y).

The way we add two points P1, P2 to get the new point P3 can now be de-
scribed in short that we draw a line through our two points P1, P2. This line
will then intersect the curve in another point −P3. What we then do is reflect
this point through the x-axis (i.e switch the sign of the y-coordinate). This will
give us our point P3. The points P = (x, y) and −P = (x,−y) are in fact the
inverses to each other and the vertical line that describes the slope between the
points will intersect the curve at ”the point at infinity” =∞. The proof of the
associativity of this operation is rather lengthy and will not be included in this
paper. For those who are skeptical I will refer you to the section 2.4 Proof of
Associativity in Washington (2008). Otherwise we now have our group.

We can now define the elliptic curve over any field as the set of points on
the curve joined with the point at infinity. We will in this paper avoid the case
when the characteristic of the field K considered is 2 or 3, thus from this point
and forward every field mentioned will have characteristic neither 2 nor 3.

Definition 2.2.
The elliptic curve E over a field K is defined as follows

E(K) = {∞} ∪ {(x, y) ∈ K ×K : y2 = x3 +Ax+B}

3



We can consider points of E defined over a field K with coordinates in a field
L such that L ⊇ K, we then write instead E(L) and its defined as

E(L) = {∞} ∪ {(x, y) ∈ L× L : y2 = x3 +Ax+B}

The more formal description of the group addition, that still works whichever
field your elliptic curve is defined over as long as the characteristic is not 2 or
3, is as follows.

For an elliptic curve E: y2 = x3 +Ax+B,
let P1 = (x1, y1), P2 = (x2, y2) and P1 + P2 = P3 = (x3, y3) then:

1. If x1 6= x2, then,

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m = y2−y1
x2−x1

2. If x1 = x2 but y1 6= y2, then P1 + P2 =∞.

3. If P1 = P2, and y2 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x2

1+A
x2−x1

4. If P1 = P2 and y1 = 0, then P1 + P2 =∞.

And as per usual the identity ∞ does nothing when added to a point,
that is P +∞ = P

From now on we will consider elliptic curves over finite fields, but first we will
state some useful definitions and theorems about finite fields in general.

2.2 Finite fields

For a prime number p there exist a field with p number of elements, namely
the congruence classes Z/pZ = {0, 1, ..., (p− 1)}. We will denote this finite field
with Fp.

2.2.1 The structure and existence of finite fields

We know from just above that there are finite fields with a prime number as
cardinality. We may now wonder if there are fields with cardinality that are not
prime? And yes there are, these will be denoted by Fq accordingly. However,
it is not the case that for every integer q there exist a field with cardinality q.
There are a restriction on q for which there exists a field Fq with q elements.
Before we state the restriction we need to define what the characteristic of a
field is.

4



Definition 2.3.
The characteristic of an field is the smallest positive integer n such that

n · 1 = 0

Reference [1], p.248

Now for finite fields we have that:

Proposition 2.0.1.
If Fq is a finite field, then the characteristic of Fq is

char(K) = p

for some prime p.
Furthermore the cardinality of Fq is

|Fq| = q = pn

for some positive integer n.

Proof. See [1], p.295

Thus the restriction on q is that it has to be a power of the characteristic
p,where p is prime. There is a uniqueness to the a finite field described in the
next theorem.

Theorem 2.1.
If two finite fields K and L have the same number of elements q, then they are
isomorphic. Thus every finite field Fq is unique up to isomorphism.

Proof. See [1], p.296

Thus we can talk about the finite field Fq instead of a finite field Fq. The field
Fp, which we first introduced, is called the prime field of characteristic p.

Now we will state some important information about the structure and exis-
tence of finite fields. The next proposition will tell us the structure of subfields
for any given finite field and the following theorem will then tell us the existence
of finite fields in general. But first we need a definition of what a subfield is and
what an extension field is.

Definition 2.4.
If two fields K and L have the relation K ⊂ L, then the field K is called a
subfield of L and the field L is called an extension field of K.

Reference [1], p.203

5



Proposition 2.1.1.
For a finite field K, with pn elements, each subfield will have pm elements for
some divisior m of n. Conversely, for each positive divisor m to n there exists
a unique subfield of K with pm number of elements.

Proof. See [1], p.296

Theorem 2.2.
For each prime p and each positive integer n, there exists a field with pn number
of elements.

Proof. See [1], p.297

But how do we get these fields with q = pn elements then? We will answer
this question next and show some small explicit examples of extensions of finite
fields.

2.2.2 The construction of finite fields

From definition 2.4 and proposition 2.1.1 we get that the field Fpn will be an
extension field of Fp. The way this extension field is constructed is similar to
how the congruence classes Z/pZ is constructed, but instead of working only
with integers we work with polynomials, note here that integers are included
since they are constant polynomials.
We will hence define what it means for a polynomial to be over a field, and we
will define it in general over the field Fq.

Definition 2.5.
The polynomials over Fq is defined as all the polynomials p(x) with coefficients
in Fq, and is denoted Fq[x].

Now we can look at the congruence classes of polynomials in Fq[x] mod p(x)
for a given polynomial p(x) in the same way we looked at the congruence classes
of integers in Z/nZ for some given integer n. Here in Fq[x] mod p(x) we have
that the elements is the set of remainder that is produced when the polynomials
in Fq[x] are divided by an polynomial p(x). We denote this set of congruence
classes by Fq[x]/p(x).

Definition 2.6.
A nonconstant polynomial is called irreducible over the field Fq if it cannot be
factored in Fq[x] into a product of polynomials with smaller degree (if it can,
then it is called reducible).

Reference [1], p.198

Theorem 2.3.
For a field Fq and a nonconstant polynomial p(x) over Fq we have that Fq[x]/p(x)
is a field if and only if p(x) is irreducible over Fq.

6



Proof. See [1], p.206

This field Fq[x]/p(x) will be an extension of the field Fq. Suppose that we
find an polynomial p(x) of degree 2 which is irreducible over the finite field
Fq. The elements of the field extension Fq[x]/p(x) will be the remainders in
Fq[x] divided by p(x), which will be on the form a1x+ a0 for a1, a0 ∈ Fq. The
number of different possible combinations of coefficients for these element are
q for a1 and q for a0 resulting in an total of q2 different elements. With the
same reasoning, concerning the degree of the remainder, we get that an exten-
sion with a polynomial of degree k will result in a total of qk number of elements.

This combined with theorem (2.1) says that we can think of the field Fqn as the
field Fq[x]/p(x) where p(x) has degree n.

For some clarification, here are two simple examples of extensions from F3 to
F32 = F9 as well as F2 to F23 = F8:

Example 2.1. (From F3 to F9)
First of we have to find a irreducible polynomial p: We find p(x) = x2 + 2x +
2, since p(0) = 2, p(1) = 2 and p(2) = 1. Now since the remainder when
polynomials in F3[x] is divided by p(x) is on the form a1x+ a0 where a1 and a0
can be 0,1 or 2 respectively, we get the extension field with nine elements

F9 = F3[x]/(x2 + 2x+ 2) = {0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2}.

We can here see that F3 ⊂ F9 since 0,1 and 2 are elements of both fields and in
F9 they are also closed under both addition and multiplication to the subfield
of F3 = {0,1,2} as well.

Example 2.2. (From F2 to F8)
We find the irreducible polynomial p(x) = x3 + x+ 1, since p(0) = 1, p(1) = 1.
Now since the degree of p(x) is 3, we have the elements on the form a2x

2+a1x+
a0 where a2, a1 and a0 can each be either 0 or 1. This give us the extension
field with eight elements

F8 = F2[x]/(x3 + x+ 1) = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}.

2.2.3 Algebraic closure of a finite field

To define what algebraic closure is we first we must define what it means for an
element to be algebraic over a field.

Definition 2.7.
If an element e is algebraic over a field K, then there exists a nonzero polynomial
f(x) ∈ K[x] such that f(e) = 0. Hence e is a root of this polynomial f(x).

Reference [1], p.271

7



Definition 2.8.
An algebraic closure of a finite field Fq is denoted Fq and means that every
element e ∈ Fq is algebraic over Fq.

Reference [6], p.231

Theorem 2.4.
For each field exist a unique (up to isomorphism) algebraic closure.

Proof. See [6], p.234

Since the algebraic closure is unique we can consider the algebraic closure Fq of
the finite field Fq, then we have that

Lemma 2.1.
The roots to the equation xq

n − x in Fq is a finite field with qn elements.

Proof. See [1], p.295

We will now describe how the algebraic closure Fq is constructed.
From proposition 2.1.1 we have that for every n there exists a unique field with
qn elements within Fq, so we can define the union of these fields as

L =

∞⋃

n=1

Fqn

which will also lie within Fq.

Now for a element z ∈ Fq there will be a polynomial f(x) for which z is a
root, by the definition of Fq. For this polynomial f(x) there will be a subfield
Fq[x]/p(x), with qdeg(f(x)) number of elements, to Fq in which z is a element.
This subfield will, by the construction of L, also lie in L. Since this hold for
every element z ∈ Fq we have that L is the whole field Fq.

So the construction of an algebraic closure of an finite field is an infinite process
of finite extensions where the algebraic closure Fq is then defined as the union
of all these extensions.
Since all finite extensions of Fq are on the form Fqn we get that

Lemma 2.2.

Fq :=

∞⋃

n=1

Fqn

Lemma 2.3. For any a ∈ Fq we have that

aq = a⇔ a ∈ Fq

8



Proof. See [2], p.482

Now when we have defined what an algebraic closure of a field is we can go back
and continue with elliptic curves, next we will define what an torsion point is.

2.3 Torsion points

Definition 2.9. Torsion points
On an elliptic curve E over Fq, an n−torsion point P is a point with coordi-
nates in Fq which if added to it self n times would end up to be ∞. So it fulfills:

P + P + · · ·+ P︸ ︷︷ ︸
n times

= nP =∞

and this set of points on the curve E is denoted by

E[n] = {∀P ∈ E(Fq) | nP =∞}

Remark 2.1. Note that this set is all the points fulfilling nP = ∞ over the
extension field Fq and not only those who fulfill it over Fq.

For 2-torsion points you have to see if 2P = ∞ ⇔ P = −P . If P = (x, y) we
get that −P = −(x, y) = (x,−y) and since P = −P we must have that x = x
and y = −y ⇔ 2y = 0. This means that y = 0 (if we have E(K) where the
characteristic of K 6= 2). So to find a 2-torsion point we only need to see if
there is any point of the form (x, 0) defined on the elliptic curve which is the
same as solving the equation x3 +Ax+B = 0. For 3-torsion points the question
becomes when 3P = ∞ which can equivalently be asked as when 2P = −P ,
since∞ is the additive identity. Now with the addition rules from section 3.1 we
can figure out that the x-coordinate of 2P and −P must be the same and with
some manipulations that the equation for this x is 3x4 +6Ax2 +12Bx−A2 = 0.
The y-coordinates we can obtain from the Weierstrass equation. We will in the
next section continue with expressing the x-coordinate for nP =∞ for different
n.

2.4 Division polynomials

We saw in the previous section that we could, in some cases (namely n =2 and
3) with the help of the rules of addition for elliptic curves, deduce polynomials
whose roots are the x-coordinates of the regarded torsion points. We will now
generalize this idea to be able to express the x-coordinates for any n-torsion with
so called ”division polynomials”. These division polynomials will be denoted by
ψn where n stands for the number of torsions of the points with x-coordinates

9



equal to the roots of ψn. In other words if the point P = (x, y) is a n-torsion
point then the polynomial ψn(x) will vanish precisely at this x-coordinate.

(x, y) ∈ E[n]⇒ ψn(x) = 0

For example we had in the previous section that ψ3 = 3x4 + 6Ax2 + 12Bx−A2

is the division polynomial for the 3-torsion points of some elliptic curve with
coefficients A,B.
We will in this section merely define these so called ”division polynomials” in
general. The A and B are as usual the coefficients of the elliptic curve we study
and the n is the number of torsions.

The division polynomials ψn can be defined recursively as follows:
ψ0 = 0
ψ1 = 1
ψ2 = 2y
ψ3 = 3x4 + 6Ax2 + 12Bx−A2

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ3

m+1 for m ≥ 2

ψ2m =
ψm(ψm+2ψ

2
m−1−ψm−2ψ

2
m+1)

2y for m ≥ 3.

Reference : [2], p.81

Now since we will be working in the polynomial ring Z[x,A,B] and not in
the polynomial ring Z[x, y,A,B] which this definition was intended for, we have
to divide the ψm in different cases based on whether m is even or odd. This is
because whenever n is even, ψn can be expressed as y · ψ̃n(x), for some function

ψ̃n(x), and when n is odd ψn is instead only expressed as a function ψ̃n(x)

Remark 2.2.
Note that the function ψ̃n(x) depends on n which makes it different if n is odd
or even.

Here are some examples of expressions:

Example 2.3.
Let E : y2 = x3 + 2x+ 1 over F7

10



Then we have:

ψ0 = ψ̃0 = 0

ψ1 = ψ̃1 = 1

ψ2 = y · ψ̃2 = y · 2
ψ3 = ψ̃3 = 3x4 + 6Ax2 + 12Bx−A2

= 3x4 + 12x2 + 12x− 4

= 3x4 + 5x2 + 5x+ 3

ψ4 = y · ψ̃4 = y · 4(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3)

= 4y(x6 + 10x4 + 20x3 − 20x2 − 8x− 8− 8)

= y · (4x6 + 5x4 + 3x3 + 4x2 + 3x+ 6)

Here we see that ψi = ψ̃i for i = 0, 1, 3 but for i = 2, 4 we instead get that
ψ̃2 = 2 and ψ̃4 = 4x6 + 5x4 + 3x3 + 4x2 + 3x+ 6.

We are using the fact that y2 = x3 +Ax+B, here in short we will just denote
x3 + Ax + B by Ec ”Elliptic curve” and continuously format our expressions
accordingly. To clarify the effect of working in the polynomial ring Z[x,A,B]
brings, we will deduce the expressions for ψ5 and ψ6 for the same elliptic curve
over the same field as in the example above.

Example 2.4.
We have again: E : y2 = x3 + 2x+ 1 over F7, and we start with ψ5.
So we have n = 5 and m = 2 so the expression becomes:

ψ5 = ψ2·2+1

= ψ4ψ
3
2 − ψ1ψ

3
3

= (y · ψ̃4)(y3 · ψ̃3
2)− 1 · ψ3

3

= y4 · ψ̃4 · ψ̃3
2 − ψ3

3

= Ec2 · ψ̃4 · ψ̃3
2 − ψ3

3

= (x3 + 2x+ 1)2 · (4x6 + 5x4 + 3x3 + 4x2 + 3x+ 6) · (2)3 − (3x4 + 5x2 + 5x+ 3)3

= 5x12 + 5x10 + 2x9 + 4x7 + 6x6 + 2x5 + 5x4 + 2x2 + 4x

Thus we see that the general formula for ψ5 is ψ̃5 = Ec2 · ψ̃4 · ψ̃3
2 − ψ3

3

and we got the final expression for our example to

ψ5 = 5x12 + 5x10 + 2x9 + 4x7 + 6x6 + 2x5 + 5x4 + 2x2 + 4x.

We continue with ψ6.
Here we have n = 6 so m = 3 and the expression becomes:

11



ψ6 = ψ2·3 =

=
ψ3(ψ5ψ

2
2 − ψ1ψ

2
4)

2y

=
ψ3(ψ5(y2 · ψ̃2y

2)− 1 · (y2 · ψ̃2
4))

2y

=
y2ψ3(ψ5ψ̃

2
2 − ψ̃2

4)

2y

= y · ψ3(ψ5ψ̃
2
2 − ψ̃2

4)

2

Here we use that 2 · 4 ≡ 8 ≡ 1 (mod 7)⇔ 1
2 ≡ 4 (mod 7)

= y · 4ψ3(ψ5ψ̃
2
2 − ψ̃2

4)

= y · (4ψ3ψ5ψ̃
2
2 − 4ψ3ψ̃

2
4)

and now we exchange the expressions from earlier results

= y · (4(3x4 + 5x2 + 5x+ 3)(ψ5)(2)2

− 4(3x4 + 5x2 + 5x+ 3)(4x6 + 5x4 + 3x3 + 4x2 + 3x+ 6)2)

= y · (4(3x4 + 5x2 + 5x+ 3)(5x12 + 5x10 + 2x9 + 4x7 + 6x6 + 2x5 + 5x4 + 2x2 + 4x)(2)2

− 4(3x4 + 5x2 + 5x+ 3)(4x6 + 5x4 + 3x3 + 4x2 + 3x+ 6)2)

= y · (6x16 + x14 + 2x9 + 2x8 + 6x+ 2)

Thus we see here that the general formula for ψ6 is y · ψ̃6 = y · ψ3(ψ5ψ̃
2
2−ψ̃2

4)
2

and the we got the final expression for our example to

ψ6 = y · ψ̃6 = y · (6x16 + x14 + 2x9 + 2x8 + 6x+ 2)

We can from this in fact conclude four general expressions for ψn depending
both on whether n is even or odd as well as if m is even or odd. We saw in
the case of n = 5 and m = 2 that both ψm+2 and ψ3

m in ψm+2ψ
3
m −ψm−1ψ3

m+1

were even, which thus gave a y4 contribution in total. In the case that m is odd
it will instead be ψm−1 and ψm+1 that gives us a y4 contribution.
When n is even we saw that for the case of n = 6 and m = 3 both ψm−1 and

ψ2
m+1 in

ψm(ψm+2ψ
2
m−1−ψm−2ψ

2
m+1)

2y where even and gave a factor of y2 to both

terms inside the parenthesis, hence we could factorize it and take out the y2

and divide it with the y from the denominator resulting in only a factor of y.
In the case m is even we instead only have a factor of y from the terms with the

12



factor ψm+2 and the term with the factor ψm−2 inside the parenthesis but here
we also have a y contribution from ψm outside of the parenthesis which results
in a similar expression as for odd m.

So in general we have:

ψ2m+1 =

{
ψm+2ψ

3
m − (Ec)2ψ̃m−1ψ̃3

m+1, for odd m

(Ec)2ψ̃m+2ψ̃
3
m − ψm−1ψ3

m+1, for even m

}
, for m ≥ 2

ψ2m =

{
y · ψm(ψm+2ψ̃

2
m−1−ψm−2ψ̃

2
m+1)

2 , for odd m

y · ψ̃m(ψ̃m+2ψ
2
m−1−ψ̃m−2ψ

2
m+1)

2 , for even m

}
, for m ≥ 3

It turns out that division polynomials will be very useful in the process of
counting points over elliptic curves, for example we can define n times a point
(x, y) using them.

2.5 An integer times a point

We start by defining two polynomials.

Definition 2.10.
For any m ≥ 2

φm := xψm − ψm−1ψm+1

ωm :=
ψm+2ψ

2
m−1 − ψm−2ψ2

m+1

4y
,

Theorem 2.5.
For a point P = (x, y) on an elliptic curve E over a field K (over a field K
with characteristic 6= 2) and for a positive integer n ≥ 2 we have:

nP = (xn, yn) =

(
φn(x)

ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

)

For proof see: [2], p.299

Remark 2.3.
The reason for n ≥ 2 in the theorem is that the case for n = 0 or n = 1 are
trivial and for n ≤ 0 we can use that −nP = −(nP ) = −(xn, yn) = (xn,−yn).
We could define nP for n ≥ 1 by just defining ψ−1 = −1 first.

Now again since we are working in the polynomial ring Z[x,A,B] and not in
the polynomial ring Z[x, y,A,B]. We have to divide the formula into different
cases based on if n is even or odd. Note that we keep the expressions in fraction
form as this will be preferable later.

13



We start with the x-coordinate and as before y2 = x3 +Ax+B = Ec.
For odd n we get

φn
ψ2
n

=
xψ2

n − ψn−1ψn+1

ψ2
n

=
xψ2

n − y2 · ψ̃n−1ψ̃n+1

ψ2
n

=
xψ2

n − Ec · ψ̃n−1ψ̃n+1

ψ2
n

and

ωn
ψ3
n

=
ψn+2ψ

2
n−1 − ψn−2ψ2

n+1

4y · ψ3
n

=
ψn+2(ψ̃2

n−1 · y2)− ψn−2(ψ̃2
n+1 · y2)

4y · ψ3
n

= y · ψn+2ψ̃
2
n−1 − ψn−2ψ̃2

n+1

4 · ψ3
n

for even n we get

φn
ψ2
n

=
xψ2

n − ψn−1ψn+1

ψ2
n

=
x(ψ̃2

n · y2)− ψn−1ψn+1

y2 · ψ̃2
n

=
xψ̃2

n · Ec− ψn−1ψn+1

Ec · ψ2
n

and

ωn
ψ3
n

=
ψn+2ψ

2
n−1 − ψn−2ψ2

n+1

4y · ψ3
n

=
(y · ψ̃n+2)ψ2

n−1 − (y · ψ̃n−2)ψ2
n+1

4y · (y3 · ψ̃3
n)

= y · ψ̃n+2ψ
2
n−1 − ψ̃n−2ψ2

n+1

y4 · 4 · ψ̃3
n

= y · ψ̃n+2ψ
2
n−1 − ψ̃n−2ψ2

n+1

Ec2 · 4 · ψ̃3
n

14



In summary we have,
if n is odd,

nP = (xn, yn) =

(
xψ2

n − Ec · ψ̃n−1ψ̃n+1

ψ2
n

, y · ψn+2ψ̃
2
n−1 − ψn−2ψ̃2

n+1

4 · ψ3
n

)

and; if n is even

nP = (xn, yn) =

(
xψ̃2

n · Ec− ψn−1ψn+1

Ec · ψ̃2
n

, y · ψ̃n+2ψ
2
n−1 − ψ̃n−2ψ2

n+1

Ec2 · 4 · ψ̃3
n

)
.

2.6 Endomorphisms

We will consider endomorphisms of elliptic curves since they will give us a crite-
ria for the points on a elliptic curve, which will be very useful when determining
the cardinality of an elliptic curve over a certain field. The goal of this section
will be to prepare and give tools so that we later in section Two fundamental
thorems for elliptic curves over finite fields can state and prove theorem 2.7.
We start by defining what an endomorphism is for an elliptic curve

Definition 2.11.
An endomorphism α : E(Fq) → E(Fq) of an elliptic curve E(Fq) is a map
that fulfills α(P1 + P2) = α(P1) + α(P2), and can be given by rational functions

R1(x), R2(x), i.e quotients of polynomials Ri(x) = pi(x)
qi(x)

with coefficients in Fq,

in the following way:
α(x, y) = (R1(x), y ·R2(x)).

Furthermore we have that

• α(∞) =∞
• deg(α) = max{deg(p(x)), deg(q(x)}
• with α 6= 0 and R′1(x) 6= 0, the endomorphism α is called separable

Since the endomorphisms are expressed as rational functions, both addition of
endomorphisms as well as an integer times an endomorphism is well defined.

Lemma 2.4.
Let α and β be endomorphisms as of definition 2.4,
then they can be added together.

(α+ β)(x, y) := α(x, y) + β(x, y)

as well as multiplied with an integer n

(n · α)(x, y) := n(α(x, y))

15



Proposition 2.5.1.
If α 6= 0 is a separable endomorphism of the elliptic curve E, then

deg(α) = #Ker(α)

Proof. See [2], p.54

Next we will define a very special endomorphism that will play a major roll
in the theory of counting points on elliptic curves.

Definition 2.12.
The Frobenius endomorphism is defined as:

Φq(x, y) = (xq, yq)

where
Φq(∞) =∞.

Note that we will in this paper distinguish between Φq meaning the Frobenius
endomorphism over the field Fq and φq meaning the numerator polynomial de-
scribing xq for qP = q(x, y) = (xq, yq)

Reference [2], s.98

Proposition 2.5.2.
Assume that E is an elliptic curve defined over Fq where q is a power of a prime
p. If r, s ∈ N, r 6= 0 or s 6= 0 then

(rΦq + s)(x, y) is separable ⇔ p - s

Proof. See [2], p.58

Lemma 2.5.
Assume that E is an elliptic curve defined over Fq, and (x, y) ∈ E(Fq), then

(1.) Φq(x, y) ∈ E(Fq)

(2.) (x, y) ∈ E(Fq) ⇔ Φ(x, y) = (x, y)

Proof. (1.) We look at the Weierstrass equation

y2 = x3 +Ax+B

and raise both sides to the qth power to get

(y2)q = (x3 +Ax+B)q

here we have (a + b)q = aq + bq when ever q is a power of the characteristic of
the field,

(y2)q = (x3)q +Aqxq +Bq

16



we have by lemma 2.3 that since q is an power of the characteristic of Fq that
aq = a for every element a in the field Fq,

(yq)2 = (xq)3 +A(xq) +B

And this means that (xq, yq) lies on the curve E(Fq).
(2.) For the implication (x, y) ∈ E(Fq) ⇒ Φ(x, y) = (x, y) we have that if
(x, y) ∈ E(Fq) then x, y ∈ Fq and we use lemma 2.3 again and get xq = x
as well as yq = q, thus Φ(x, y) = (xq, yq) = (x, y). For the implication the
other way we have that if Φ(x, y) = (xq, yq) = (x, y) then x, y ∈ Fq and so
(x, y) ∈ E(Fq).

Proposition 2.5.3. For E defined over Fq and n ≥ 1:
(1.) Ker(Φnq − 1) = E(Fqn).
(2.) Φnq − 1 is a separable endomorphism, so #E(Fqn) = deg(Φnq − 1).

Proof. (1.)
We first can note that

Φnq (x, y) = Φq(Φq(· · · (Φq︸ ︷︷ ︸
n times

(x, y) · · · )) = (xq
n

, yq
n

) = Φqn(x, y).

Then since Ker(Φnq −1) will be the points that is taken to the identity by Φnq −1,
we get Φqn(x, y)− (x, y) =∞⇔ Φqn(x, y) = (x, y), these points are by lemma
2.3 exactly those (x, y) ∈ E(Fqn).
(2.) By proposition 2.1.2 we have that Φq − 1 is separable ⇔ p - −1 . Which
is true since the only number that can divide its predecessor is 1, since 0/1 = 0
but here we have p prime so p 6= 1. The result then follows from proposition
2.1.1 and we are done.

2.7 The group of E[n]

For finite fields we have a finite number of points and the points form a group.
say #E(Fq) = N . As we saw in the section Torsion points, the set of points of
order n is denoted E[n]. In the case of elliptic curves over finite fields all points
on the elliptic curve will be an torsion point since by Lagrange theorem, at least
the order of the group N will take every point to the identity.

Proposition 2.5.4.
Every set of torsion points E[n] is a subgroup of the group of points on the
elliptic curve.

Proof. For E[n] to be a subgroup it has to fulfill the three conditions from the
proposition above.
(i): Here we make use of the associativity of the group action on elliptic curves
points. Say we have P ∈ E[n], Q ∈ E[n] and P +Q = R then we want to prove

17



that also R ∈ E[n]. Since P ∈ E[n]⇔ nP =∞ and ∞+ Pi = Pi for any Pi on
the curve (in particular Pi =∞), we have

∞ =∞+∞ = nP + nQ

= P + P + · · ·+ P︸ ︷︷ ︸
n times

+Q+Q+ · · ·+Q︸ ︷︷ ︸
n times

= (P +Q) + (P +Q) + · · ·+ (P +Q)︸ ︷︷ ︸
n times

= n(P +Q) = nR =∞

Thus we have that R ∈ E[n] as well.
(ii) The identity ∞ is a member of every torsion group, since for every integer
n we have n · ∞ =∞+∞+ · · ·+∞ =∞.
(iii) If P ∈ E[n] ⇔ nP = ∞ then n(−P ) = −(nP ) = −∞ = ∞, so we have
−P ∈ E[n] as well and the proof is done.

We can find a basis β1, β2 for the elements of E[n]. This means that every
element of E[n] will be able to be expressed as m1β1 +m2β2 for some integers
m1,m2 which is uniquely determined (mod n). Since a endomorphism α :
E(K) → E(K) keep the structure of the group we have that α maps E[n] to
E[n], therefore there exist integers a, b, c, d (unique (mod n)) such that

α(β1) = aβ1 + bβ2, α(β2) = cβ1 + dβ2.

This means that the action of an endomorphism on E[n] can be described with
a matrix

αn =

(
a b
c d

)
.

Reference: [2], p.79 - 80

Proposition 2.5.5.
Let α be an endomorphism defined over an elliptic curve E over a field K with
characteristic p, and let n be an positive integer such that p - n. Then we can

find a matrix αn =

(
s t
u v

)
with entries s, t, u, v ∈ Z, that describes the action

of α on a basis {b1, b2} of E[n].
We also have that

det(αn) ≡ deg(α) (mod n)

Proof. See [2], p.89

The last proposition above will be very important in the proof of the second
theorem of the next section, the criteria which we spoke of in the beginning of
the endomorphism section.

18



2.8 Two fundamental theorems for elliptic curves over
finite fields

First if we look at elliptic curves over finite fields we know that there is a finite
number of points on the curve since there is a finite number of values for the
x-coordinates. These x-values always gives zero, one or two y-values, resulting
in zero, one or two points per x-value.
For a given x-value xi we get,
(i) zero points if x3i +Axi +B is not a square in Fq,
(ii) one point if x3i +Axi +B = 0 and it is (xi, 0)
(iii) else we get the two points (xi, yi) and (xi,−yi).

Now since the elliptic curve has a finite number of x-values, when we work
over Fq there are q numbers of potentially x-points that are different, next we
will see that the number of points on the curve E(Fq) has a restriction on the
total number of points on the curve.

For an elliptic curve E over a finite field Fq the number of points on E(Fq)
is close to q + 1, namely it differs with a number a such that |a| ≤ 2

√
q.

Theorem 2.6. (Hasse’s Theorem)
We have that

#E(Fq) = q + 1− a
with |a| ≤ 2

√
q

Proof. See [2], p.100

Theorem 2.7.
Let E be defined over the field Fq and let a = q + 1−#E(Fq), then

Φq
2(x, y)− aΦq(x, y) + q(x, y) =∞ (1)

or symbolical
Φ2
q + aΦq + q = 0.

a is the unique integer such that (1) holds ∀ (x, y) ∈ E(Fq) and

a ≡ Trace((Φq)m) (mod m)

for all m with gcd(m, q) = 1.

Proof.
We acknowledge that if a seperable endomorphism α 6= 0, then its kernel would

19



be finite since by proposition 2.4.1 deg(α) = #Ker(α).
Then we let

(Φq)m =

(
s t
u v

)

for some m with gcd(m, q) = 1. Since by proposition 2.4.2 we have that

(Φq − 1) is separable,

and we get from proposition 2.4.1 that

#Ker(Φq − 1) = deg(Φq − 1).

We also have from proposition 2.4.5 that

deg(Φq − 1) ≡ det((Φq)m − I)

≡
∣∣∣∣
s− 1 t
u v − 1

∣∣∣∣ ≡ (s− 1)(v − 1)− tu

≡ sv − tu+ 1− (s+ v) (mod m)

Here we notice that q ≡ deg(Φq)m) ≡ det(Φq)m ≡ sv − tu (mod m)
and Trace((Φq)m) = s+ v

We use proposition 2.4.3 and from theorem 2.5 get that #E(Fq) = q + 1 −
Trace((Φq)m)
Thus we have that #Ker(Φq − 1) ≡ q + 1− a (mod m).
So now we have that Trace((Φq)m) ≡ a (mod m)
This was one of the statements from the theorem.

Since the characteristic polynomial of (Φq)m is X2 − aX + q, we can use the
Cayley - Hamilton theorem of linear algebra which says that if we put the matrix
(Φq)m into its characteristic polynomial we have

(Φq)
2
m − a(Φq)m + qI ≡ 0 (mod m),

This means that the endomorphism Φ2
q + aΦq + q is zero on E[m]. Now m can

be chosen from infinitely many integers and Φ2
q +aΦq + q is zero for all of them.

Therefore we have that Ker(Φ2
q + aΦq + q) is infinite, thus we have that the

endomorphism Φ2
q + aΦq + q is equal to zero.

Reference: [4], p.218

20



3 Algorithms for finding the number of points
on an elliptic curve over a finite field

3.1 The Naive method

One way of counting the points on an elliptic curve E over a finite field Fq is
by listing all the elements of the field as x-values, list what x3 + Ax+ B is for
respective x-value and then check if there exist square roots of x3 +Ax+B in
the field.
We consider an example

Example 3.1.
Let E be the curve y2 = x3+2x+4 over F7, we list the values and points in a table

x x3 + 2x+ 4 y points
0 4 ±2 (0,2),(0,5)
1 0 0 (1,0)
2 2 ±3 (2,3),(2,4)
3 2 ±3 (3,3),(3,4)
4 6 - -
5 6 - -
6 1 ±1 (6,1),(6,6)
∞ ∞ ∞

Here we have 10 points, so E(F7) = 10.

This way of determine the cardinality, by just brute force listing all the points,
is however only efficient for small q since the time complexity is O(q2(log(q))4)
at worst.
Reference: [5], p.2

3.2 The Baby step, Giant step algorithm

The baby step, giant step algorithm for computing the order of an elliptic curve
is based on finding the order of points on the curve and then find the least com-
mon multiple of the orders of the points within the gap from Hasse’s theorem.

3.2.1 Method

Recall that:

Corollary 3.1.
For a finite group G of order n
For any element a ∈ G :
(1.) the order of the element o(a) | n
(2.) an = e
Here an denotes the n-times repeated group operation on a and e is G:s identity.

21



Reference: [1], p.111

Lemma 3.1.
For a ∈ Z and for some m ∈ Z such that |a| ≤ 2m2

there exists a0, a1 ∈ Z where −m < a0 ≤ m and −m ≤ a1 ≤ m
such that

a = a0 + 2ma1

Proof.
Remember that we have |a| ≤ 2m2.

We let a0 ≡ a (mod 2m), with −m < a0 ≤ m and a1 = (a−a0)
2m .

Then we have

|a1| =
∣∣∣ (a− a0)

2m

∣∣∣ ≤ |a|+ |a0|)|2m| ≤ |2m
2|+ |m|)
|2m| = m+

1

2
< m+ 1

thus |a1| < m+ 1⇒ |a1| ≤ m⇔ −m ≤ a1 ≤ m

Reference: [1], p.113
In words this lemma means that: with our integer a we can choose an integer
m such that a is contained in the interval [−m2,m2] and then for an integer
a1 ∈ [−m,m] another integer a0 ∈ [−m,m] will be determined such that a0 ≡ a
(mod 2m)⇒ a = a0 + 2ma1

The way we find the order of one randomly picked point on the elliptic curve is
that we want to find an integer M such that MP = ∞ and for every factor pi
of M we have that (M/pi)P 6=∞.
We know that the order of the whole group is N = q + 1 − a for some a, and
also from the corollary 3.1 that NP = ∞ for every P on the curve. Therefore
we can deduce that

∞ = NP

= (q + 1− a)P

= (q + 1)P − aP

Here we let the point (q + 1)P = Q and according to lemma 3.1 we can write
a = a0 + 2ma1 for some m ≥ q(1/4)

= Q− (a0 + 2ma1)P

= Q− (2ma1)P − a0P

Thus we get that ∞ = Q− (2ma1)P − a0P ⇔ Q− (2ma1)P = a0P . Which in
the algorithm is denoted by Q+ k(2m)P = ±jP .
Since |a| ≤ 2

√
q, the task is then to first choose an integer m such that

2
√
q < 2m2 ⇔ q1/2 < m2 ⇔ q(1/4) < m.

Then to compute the point Q = (q+ 1)P , the points jP for j = 0, 1, 2...,m (the
negative ones are just with switched sign on the y-coordinate) and Q+ k(2m)P

22



for k = −m,−m+1, ...,m. Now according to the lemma 3.1, there exist a match
such that for some k and some j we have Q+ k(2m)P = ±jP .

We can then confirm that Q + k(2m)P ∓ jP = (q + 1 + 2mk ∓ j)P = ∞,
and set our first guess on that M0 = q+ 1 + 2mk∓ j. Then we want to se if M0

is the smallest number such that M0P =∞, we check this by prime factorizing
our guess M0 = p1 · p2 · · · pg and check if for some prime factor pi : i ∈ [1, g] we
get that (M0/pi)P = ∞. If that happens for some pi we set our next guess on
M1 = (M0/pi) and repeat until we find a Mk such that for every prime factor
pi ∈ [p1, pg] we have (Mk/pi)P 6=∞ and then we know that Mk is the order of
P .
We can then do the same procedure for more points until we have enough orders
to find the least common multiple within the gap from hasses theorem.
Here we go through an example

Example 3.2.
E : y2 = x3 + 2x+ 6 over F121

P = (5x+ 2, 7)
1 :
Compute Q = (q + 1)P = 122P :
Which gave Q = (2x+ 3, 4x+ 1)
2 :
Choose an integer m with m > q(1/4),
q = 121 = 112 ⇒ q(1/4) = 11(1/2) ≈ 3.3.
We choose m to 5.
Compute and store the points jP for j = 0, 1, 2, ...,m:
The list of points we get is:
∞, (5x+ 2, 7), (4x+ 8, 8x+ 3), (2x+ 10, 9x+ 2), (9x+ 8, 6x+ 4), (5x+ 7, 9x+ 2)
3 :
Compute the points: Q+ k(2mP ) for k = −m,−(m− 1), ..., 0, ...,m until there
is a match with a point(or its negative) on the stored list. Q+ k(2mP ) = ±jP
Found the match when k = −m = −5 and j = 2 which both gave us the same
point (4x+ 8, 8x+ 3).
4 :
Conclude that (q + 1 + 2mk ∓ j)P =∞. Let M = q + 1 + 2mk ∓ j.
Now we have found M such that MP =∞ which turned out to be M = 70
We now know (by Lagrange’s theorem) that the order of a point divides the order
of the group of points
70 |#E(Fq)
Further more we know from Hasse’s theorem that the order of the group fulfills
q+ 1− 2

√
q ≤ #E(Fq) ≤ q+ 1 + 2

√
q ⇒ 100 ≤ #E(F121) ≤ 140, were we easily

see that only multiple of 70 within the gap is 140.
Thus the order is: #E(F121) = 140

The reason the algorithm is called ”baby step, giant step” is because we take
the baby steps of j first and then take the giant steps of 2m to find the match.

23



This way of finding the cardinality of an elliptic curve takes less time for bigger
q then the naive method. This is since we only have to calculate some points
and their order, instead of listing all points, to determine the order of the whole
group. The time complexity for the baby step, giant step algorithm is O(q1/4).
Reference: [3], p.223

3.3 Schoof’s algorithm

We have now reached our main topic.
In Schoof’s algorithm of finding the cardinality of the group of points, the key lies
in computing a (mod `) for ”enough” primes `. According to Hasse’s theorem
we have that #E(Fq) = q + 1 − a where a ≤ 2

√
q, with ”enough” primes we

mean a set S = {2, 3, 5, · · · , L} such that
∏
i `i > 4

√
q. So if we calculate a

(mod `) ∀` ∈ S we can with the help of the Chinese theorem calculate a
(
mod∏

i `i
)

and thus decide a uniquely within the potential gap. Then when we have
our a we get the number of points through the equation #E(Fq) = q + 1 − a
and we are done.
We will only describe this algorithm for odd q > 3 and for simplicity we let
` 6= q. This (q = `) never happens in practice when q is a big prime because the
small primes ` are so much smaller relative to q, what does happen if you take
q = pn (a field extension of the prime subfield Fp) is that you skip that prime p
in your set S and continue with the next prime to make the gap

∏
i `i > 4

√
q.

3.3.1 Method

The way you compute a modulo the different ` is:

For ` = 2:
For ` = 2 we use the fact that when (x, y) ∈ E[2] then the point is on the form
(x, 0), so if x3 +Ax+B has a root in Fq then there exists a point (x, 0) ∈ E[2]
and (x, 0) ∈ E(Fq) so E(Fq) has an even order. To determine if x3+Ax+B has
a root in E(Fq) we can use that the roots of xq − x is precisely the elements of
Fq. We can therefore check existence of 2-torsion points namely by computing
gcd(x3 + Ax + B, xq − x). If the gcd is 1 then there is no 2-torsion point and
the cardinality is odd. If else, there exist a 2-torsion point and the cardinality
is even.

E(Fq) = q + 1− a ≡
{

1 (mod `)⇒ a ≡ 1 (mod 2), if gcd = 1
0 (mod `)⇒ a ≡ 0 (mod 2), if gcd 6= 1

}

When q gets large the polynomial xq will have a large degree. This will effect
the computing time for the gcd. However by first reducing xq (mod x3+Ax+B)
this will go faster. We can do this by succesive squaring, which we will describe
below.

We start by converting q to a binary string and then we make a list of the
exponents needed for q, this will be very natural for the computer and therefore

24



go fast.Then we can go through the list of exponents by: successively square x
whilst continuously reducing (mod x3 + Ax + B) until we have the required
exponent, save the answer and proceed doing the same with the next exponent
and multiply the answer for the next exponent with the previous answer and
reducing (mod x3 +Ax+B). Repeat until every exponent have been included.
This will be called ”double and add” and we will go through a example for
clarification.

Example 3.3.
q = 37, y2 = x3 + 3x+ 2
bin(q) = 100101⇒ 37 = 32 + 4 + 1 = 25 + 22 + 20

So we have the list of exponents [5, 2, 0]
x2 ≡ x2 (mod x3 + 3x+ 2)
x4 ≡ (x2)2 ≡ 34x2 + 35x (mod x3 + 3x+ 2)
x8 ≡ (34x2 + 35x)2 ≡ 14x2 + 20x+ 13 (mod x3 + 3x+ 2)
x16 ≡ (14x2 + 20x+ 13)2 ≡ 28x2 + 2x+ 11 (mod x3 + 3x+ 2)
x32 ≡ (28x2 + 2x+ 11)2 ≡ 7x2 + 27x+ 8 (mod x3 + 3x+ 2)

x37 = x32 · x4 · x
x32 · x4 ≡ (7x2 + 27x+ 8) · (34x2 + 35x) ≡ 22x2 + 15x+ 5 (mod x3 + 3x+ 2)
x37 ≡ (22x2 + 15x+ 5) · x ≡ 15x2 + 13x+ 30 (mod x3 + 3x+ 2)

Hence gcd(x3 + 3x+ 2, x37−x) = gcd(x3 + 3x+ 2, 15x2 + 13x+ 30−x) = x+ 4

For ` > 2:
Now we continue with the next prime ` > 2, and here we will use theorem 3.3,
that on an elliptic curve the equation

Φq
2(x, y)− aΦq(x, y) + q(x, y) =∞ (2)

or symbolically
Φq

2 − aΦq + q = 0 (3)

which equivalently is
Φq

2 + q = aΦq (4)

is fulfilled, ∀(x, y) ∈ E(Fq).
For proof see [2], p.101

Moreover for a point (x, y) ∈ E[`] and with q ≡ q` (mod `), we have that
(x, y) fulfills equation (1) above and q(x, y) = q`(x, y). So ∀ (x, y) ∈ E[`] we
also have

(xq
2

, yq
2

) + q`(x, y) = a(xq, yq) (5)

So our goal here is to compute the components of this equation to see what a
is for each torsion group E[`] which in effect will be what a is congruent to for
each prime number ` ∈ S.

25



We can be in one of three cases here, either we have that:

(i) :Φq
2(x, y) 6= ±q`(x, y), ∀(x, y) ∈ E[`]

(ii) :Φq
2(x, y) = ±q`(x, y) ∀(x, y) ∈ E[`]

or

(iii) :Φq
2(x, y) = ±q`(x, y) for some (x, y) ∈ E[`]

We want to determine in which case we are in, by looking if the x-coordinates are
the same or not. Note that from now on if we do not specify that (x, y) ∈ E[`]
then we will consider x as an formal variable.
We determine in which case we are in by computing gcd(xq

2−xq` , ψq`) with the
help of the double-and-add algorithm. Here xq` is the x-coordinate of q`(x, y)
and remember that ψq` is the division polynomial were the roots are precisely
the x-coordinates for the points in E[`].

If the gcd = ψq` then all roots to xq
2 − xq` are in ψq` and thus for all points in

E[`]: xq
2

= xq` and we are in case (i).

If the gcd = 1 then they have no roots in common so xq
2 6= xq` for all points in

E[`] and we are in case (ii).
Now if the gcd = h such that 1 6= h 6= ψq` then for some of the points (namely

the roots of h) xq
2

= xq` . So we will be in case (iii).

We begin with the case when the points have different x-coordinates for all
points in E[`].

Case (i) : Φq
2(x, y) 6= ±q`(x, y)

So we remember that we have the relation

(xq
2

, yq
2

) + q`(x, y) = a(xq, yq) ∀ (x, y) ∈ E[`]

Here we have that xq
2 6= xq` which means that we can use the formula for

addition of different points to compute (x′, y′) = (xq
2

, yq
2

) + q`(x, y) where
(x, y) ∈ E[`]. We compute an expression for x′.

x′ =
( yq2 − yq`
xq2 − xq`

)2
− (xq

2

+ xq`)

Now since we have two different expression for xq` , one if q` is odd and one if
q` is even, we get two different expressions for x′ as well.

(1.) For q` odd we have,

q`(x, y) = (xq` , yq`) =

(
xψ2

q`
− Ec · ψ̃q`−1ψ̃q`+1

ψ2
q`

, y · ψq`+2ψ̃
2
q`−1 − ψq`−2ψ̃2

q`+1

4 · ψ3
q`

)

26



But we will write it short as

xq` =
φq`,odd
ψ2
q`

, yq` = y · ωq`,odd
ψ3
q`

and we change the xq` and yq` with the expressions from the formula

=

(
yq

2 − y · ωq`,odd

ψ3
q`

xq2 − φq`,odd

ψ2
q`

)2

−
(
xq

2

+
φq`,odd
ψ2
q`

)
,

factor out y from the square

= y2

(
yq

2 − ωq`,odd

ψ3
q`

xq2 − φq`,odd

ψ2
q`

)2

−
(
xq

2

+
φq`,odd
ψ2
q`

)
,

write the expressions with common denominators

= y2

( yq
2−1·ψ3

q`
−ωq`,odd

ψ3
q`

xq2ψ2
q`
−φq`,odd

ψ2
q`

)2

−
(xq2ψ2

q`
+ φq`,odd

ψ2
q`

)
,

factor out both the denominators from the m-expression

=
y2ψ4

q`

·ψ6
q`

·
(
yq

2−1 · ψ3
q`
− ωq`,odd

xq2ψ2
q`
− φq`,odd

)2

−
(xq2ψ2

q`
+ φq`,odd

ψ2
q`

)
,

then simplify, break up the fractions and reduce y2 to Ec

=
Ec

ψ2
q`

· (Ec
q2−1

2 · ψ3
q`
− ωq`,odd)2

(xq2ψ2
q`
− φq`,odd)2

− (xq
2

ψ2
q`

+ φq`,odd)

ψ2
q`

and finally, we expand the second term to be able to write the whole expression
with common denominator

=
Ec(Ec

q2−1
2 · ψ3

q`
− ωq`,odd)2

ψ2
q`

(xq2ψ2
q`
− φq`,odd)2

− (xq
2

ψ2
q`

+ φq`,odd)(x
q2ψ2

q`
− φq`,odd)2

ψ2
q`

(xq2ψ2
q`
− φq`,odd)2

Now we have an expression for x′ =
x′numodd

x′denodd

were the denominator x′denodd
is

x′denodd
= ψ2

q`
(xq

2

ψ2
q`
− φq`,odd)2

27



and the numerator x′numodd
which we are mostly interested in is

x′numodd
= (Ec(Ec

q2−1
2 ψ3

q`
− ωq`,odd)2 − (xq

2

ψ2
q`

+ φq`,odd)(x
q2ψ2

q`
− φq`,odd)2.

(2.) For q` even we instead have

q`(x, y) = (xq` , yq`) =

(
xpsi2q` · Ec− ψq`−1ψq`+1

Ec · psi2q`
, y·psiq`+2ψ

2
q`−1 − psiq`−2ψ2

q`+1

Ec2 · 4 · psi3q`

)

which we write in short as

xq` =
φq`,even

Ec · ψ̃2
q`

, yq` = y · ωq`,even
Ec2 · ψ̃3

q`

We have again

x′ =

(
yq

2 − yq`
xq2 − xq`

)2

− (xq
2

+ xq`)

and substitute xq` and yq` to their respective expression

=

(yq2 − y · ωq`,even

Ec2·ψ̃3
q`

xq2 − φq`,even

Ec·ψ̃2
q`

)2

−
(
xq

2

+
φq`,even

Ec · ψ̃2
q`

)
,

factor out y and write the expressions with common denominators

= y2

( yq
2−1·Ec2·ψ̃3

q`
−ωq`,even

Ec2·ψ̃3
q`

xq2Ec·ψ̃2
q`
−φq`,even

Ec·ψ̃2
q`

)2

−
(
xq

2

Ec · ψ̃2
q`

+ φq`,even

Ec · ψ̃2
q`

)
,

factor out both the denominators from the m-expression and break up the frac-
tions

=
Ec3 · ψ̃4

q`

Ec4 · ψ̃6
q`

· (yq
2−1 · Ec2 · ψ̃3

q`
− ωq`,even)2

(xq2Ec · ψ̃2
q`
− φq`,even)2

− (xq
2

Ec · ψ̃2
q`

+ φq`,even)

Ec · psi2q`
,

simplify the first fraction and reduce y2 to Ec (here we have

yq
2−1 · Ec2 = Ec

q2−1
2 · Ec2 = Ec

q2−1
2 + 4

2 = Ec
q2+3

2 )

=
1

Ec · ψ̃2
q`

· (Ec
q2+3

2 · ψ̃3
q`
− ωq`,even)2

(xq2Ec · ψ̃2
q`
− φq`,even)2

− (xq
2

Ec · ψ̃2
q`

+ φq`,even)

Ec · ψ̃2
q`

,

28



and finally, expand the last term to be able to write the whole expression with
common denominator

=
1

Ec · ψ̃2
q`

·

(Ec
q2+3

2 · ψ̃3
q`
− ωq`,even)2

(xq2Ec · ψ̃2
q`
− φq`,even)2

− (xq
2

Ec · ψ̃2
q`

+ φq`,even)(xq
2

Ec · ψ̃2
q`
− φq`,even)2

Ec · ψ̃2
q`

(xq2Ec · ψ̃2
q`
− φq`,even)2

.

thus we get the denominator to

x′deneven
= ·ψ̃2

q`
(xq

2

Ec · ψ̃2
q`
− φq`,even)2

and the numerator to

x′numeven
= (Ec

q2+3
2 ·ψ̃3

q`
−ωq`,even)2−(xq

2

Ec·ψ̃2
q`

+φq`,even)(xq
2

Ec·ψ̃2
q`
−φq`,even)2

So now we have our x′ expressed and we get back to the relation

(xq
2

, yq
2

) + q`(x, y) = a(xq, yq)

Here our task is to find j such that

(x′, y′) = j(xq, yq) = (xqj , y
q
j )

With (x, y) ∈ E[`] and (x′, y) 6= ∞ we know that j ∈ [1, ` − 1] or since the
x-coordinate for j(x, y) = (xj , yj) and −j(x, y) = (xj ,−yj) are the same, we
only need to check j ∈ [1, `+1

2 ] to find a match for the x-coordinates.
So we search for j such that

x′ − xqj ≡ 0 (mod ψ`) (6)

Note that both x′ and xqj can be expressed as rational functions of x which
reduces the problem of finding j to computing gcd of the numerator of x′ − xqj
and ψ`
We express xj with the formula for nP but once again we have to take into
account whether j is odd or even. We also have to take into account whether
q` is odd or even for x′. So we get in total four different expressions for the
combinations of j and q`.

29



q` odd and j odd:

x′ =
x′numodd

x′denodd

xqj =
(
φj

ψ2
j

)q

x′ − xqj =
x′numodd

x′denodd

−
(φj,odd

ψ2
j

)q

=
x′numodd

x′denodd

−
φqj,odd

ψ2q
j

=
x′numodd

· ψ2q
j − φqj,odd · x′denodd

x′denodd
· ψ2q

j

q` odd and j even:

x′ =
x′numodd

x′denodd

xqj =
(
φj,even

ψ̃2
j ·Ec

)q

x′ − xqj =
x′numodd

x′deneven

−
( φj,even
ψ̃2
j · Ec

)q

=
x′numodd

· ψ̃2q
j · Ecq − φqj,even · x′denodd

x′denodd
· ψ̃2q

j · Ecq

q` even and j odd:

x′ =
x′numeven

x′deneven

xqj =
(
φj,odd

ψ2
j

)q

x′ − xqj =
x′numeven

x′deneven

−
(φj,odd

ψ2
j

)q

=
x′numeven

· ψ2q
j − φqj,odd · x′deneven

x′denodd
· ψ2q

j

q` even and j even:

x′ =
x′numeven

x′deneven

xqj =
(
φj,even

ψ̃2
j ·Ec

)q

x′ − xqj =
x′numeven

x′deneven

−
( φj,even
ψ̃2
j · Ec

)q

=
x′numeven

· ψ̃2q
j · Ecq − φqj,even · x′deneven

x′deneven
· ψ̃2q

j · Ecq

30



We check for which j by gcd(numerator(x′ − xqj), ψ`), if the gcd 6= 1 then we
have our j, if not we try the next j.
Suppose we have found our j, we then proceed to determine the sign since
we for now only know the x-coordinate of j(x, y). So to find the right j we
have to check if y′ = yqj . We can do this similarly as we checked x′ − xqj ,
since we can express both y′/y and yqj/y as rational functions in x and then
we can expand the expression to a numerator and a denomenator. We check
gcd(numerator((y′ − yqj )/y), ψ`). If the gcd 6= 1 then we know that a ≡ j
(mod `), if not its the negative and we have instead a ≡ −j (mod `).

Case (ii) : Φq
2(x, y) = ±q`(x, y)

If we have

Φq
2(x, y) = −q`(x, y)

then ∀(x, y) ∈ E[`]

Φq
2(x, y) + q`(x, y) =∞ = aΦq(x, y)

so a ≡ 0 (mod `) and we are done.

Else we have

Φq
2(x, y) = q`(x, y)

and here we notice that

aΦq(x, y) = Φq
2(x, y) + q`(x, y) = 2q`(x, y)

and if we now square both sides we get on the left hand side

a2Φ2
q(x, y) = a2q`(x, y)

and on the right hand side

(2q`)
2(x, y) = 4q2` (x, y)

Therefore

a2q`(x, y) = 4q2` (x, y)

Which for (x, y) ∈ E[`] results in the congruence

a2q ≡ 4q2 (mod `)

⇔
a2 ≡ 22q (mod `)

31



Here q itself must be a square (mod `) to fulfill the congruence, say

q = w2

We can from that conclude that

Φq
2(x, y)− q(x, y) = (Φq

2 − q)(x, y)

= (Φq
2 − w2)(x, y)

= (Φq + w)(Φq − w)(x, y)

=∞

Here for a point P = (x, y) either

(Φq + w)P =∞⇔ ΦqP = −wP

or
(Φq − w)P =∞⇔ ΦqP = wP

If we have ΦqP = −wP we get

Φq
2 − aΦq + q = q + aw + q

= 2q + aw

= 0

thus 2q ≡ 2w2 ≡ −aw ⇔ −2w ≡ a (mod `)
If we instead have ΦqP = wP we get in a similar way 2w = a (mod `)

We decide computational wise what a is congruent to, by simply looking for
w ∈ [1, `+1

2 ] such that w2 = q (mod `), we only need to check half of the w

since w2 = (−w)2. If we don’t find w then we have that Φq
2(x, y) = −q`(x, y)

and thus a ≡ 0 (mod `), but if we find a w we have to check if

xq − xw ≡ 0 (mod ψ`)

We do this by gcd(numerator(xq − xw), ψ`). Here we reduce xq with double-
and-add (mod ψ`) as usual and we compute xw with the appropriate version
(if w is odd or even) of the derived formulas for nP = (xn, yn). If gcd = 1 then
we are in the case of Φq

2(x, y) = −q`(x, y) and we have a ≡ 0 (mod `) once
again, if we instead have gcd 6= 1 then we can proceed to decide whether

(Φq + w)(x, y) =∞⇔ (xq, yq) + (xw, yw) =∞

or
(Φq − w)(x, y) =∞⇔ (xq, yq)− (xw, yw) =∞

32



by checking gcd(numerator(yq/y − yw/y), ψ`) If we have this gcd = 1 we have
that (xq, yq) = −(xw, yw) and we found earlier that a ≡ −2w, but if we have
gcd 6= 1 then (xq, yq) = (xw, yw) and a ≡ 2w.

Case (iii) : Φq
2(x, y) = ±q`(x, y) for some (x, y) ∈ E[`]

In this special case we have that only for some of the points (x, y) ∈ E[`] the
equation holds, and the points that fulfills the equation is precisely those with
x-coordinates equal to the roots of gcd(xq

2 − xq` , ψ`) = h(x) so in other words

gcd(xq
2 − xq` , h(x)) = h(x) which means that we can use the same method as

in case (ii) but substitute ψ` for h(x).

Summing up:
We go through this tests for all remaining primes ` ∈ S and determine a
(mod `) ∈ S thus make a equation system of congruences.

a ≡a2 (mod 2)

a ≡a3 (mod 3)

...

a ≡aL (mod L)

Then we solve for a (mod
∏
i `i) with help of the Chinese remainder theorem.

We lastly check if 1
2

∏
i `i < a then we just reduce a with

∏
i `i to give our

solution in the gap [− 1
2

∏
i `i,

1
2

∏
i `i] This will in turn determine a uniquely

within the gap [−2
√
q, 2
√
q].

Now we can calculate the cardinality of the curve with #E(Fq) = q+ 1− a and
we are done.

Example 3.4.
y2 = x3 + 19x+ 42 over F101

We will start by finding our set of small primes, 2·3·5·7 = 210 > 4
√

101 ≈ 40.2.
So S = {2, 3, 5, 7}. Now we check for our first prime if there are any 2-torsion
points.
` = 2 :
We do this with gcd(x3 + 5x+ 12, x101−x). We reduce x101 (mod ψ3) with daa
(double-and-add) and get that:
gcd(x3 + 5x+ 12, x101 − x) = 1 and we have our first congruence equation

a ≡ 1 (mod 2).

We continue with
` = 3 :
Our q` is 101 ≡ 2 (mod 3), so we have from equation (4) the relation

(x101
2

, y101
2

) + 2(x, y) = a(x101, y101), ∀(x, y) ∈ E[3]

We want to see if x101
2

= x2 (mod ψ3) which we check with gcd(x101
2−x2, ψ3).

From the formula for an integer times a point we get x2 and x101
2

we reduce

33



with daa. This leads to that gcd(x101
2 − x2, ψ3) = ψ3 and x101

2

and x2 are
the same for every (x, y) ∈ E[3]. We proceed to see if q is a square (mod 3)
and thus find an w such that w2 = q (mod 3). However 101 ≡ 2 (mod 3) and
02 ≡ 0, 12 ≡ 1, 22 ≡ 1 (mod 3) So 101 is not a square and thus a ≡ 0 (mod 3)
and we have our second congruence equation

a ≡ 0 (mod 3).

` = 5 :
We have now q` is 101 ≡ 1 (mod 5), and the equation (4) becomes

(x101
2

, y101
2

) + (x, y) = a(x101, y101), ∀(x, y) ∈ E[5]

We check if we have x101
2

= x (mod ψ5) with gcd(x101
2 − x, ψ5). We use daa

again but with (mod ψ5) and get that gcd(x101
2 − x, ψ5) = h(x) = x2 + 17x +

92. So here we have that the x-coordinates of h(x) are the points for which
Ψ2
q(x, y) = (x, y) and we search if there exist a w again this time (mod 5).

We see directly that since 101 ≡ 1 (mod 5) and 11 = 1 is a square, we have
that w = 1. We proceed to check whether we have that xq − x ≡ 0 (mod h(x))
by gcd(xq − x, h(x)) = h(x) and so for every point with x-coordinate as the
root of h(x) = x2 + 17x + 92 we have that (xq, yq) = ±(x, y). We decide the
sign by gcd(numerator((yq − y)/y) = gcd(yq−1 − 1) = gcd(Ec50 − 1) = 1, so
(xq, yq) = −(x, y) and we get that a ≡ −2w ≡ −2 ≡ 3 (mod 5) and we have
our third congruence equation

a ≡ 3 (mod 5).

And finally for our last small prime,
` = 7 :
This time we get q` to 101 ≡ 3 (mod 7) and the equation (4) becomes

(x101
2

, y101
2

) + 3(x, y) = a(x101, y101), ∀(x, y) ∈ E[7]

We check here if we have x101
2

= x3 (mod ψ7) with gcd(x101
2 − x3, ψ7). As

usual we do this with daa and receive that gcd(x101
2 − x3, ψ7) = 1, so we have

that the points are different for all (x, y) ∈ E[7]. We can then use the formula

for addition and compute an expression for x′ =
x′num

x′den
since we have that q` = 3

we use the formula for odd q`. Now our task will be to find an j such that
the x-coordinates x′ and xqj are the same for points (x, y) ∈ E[7], and this we
will do by checking gcd(x′ − xqj , ψ7). We format our expression for (x′ − xqj)
according to if j is odd or even and then systematically check for which j the
gcd(x′ − xqj , ψ7) 6= 1. We find that j = 3 gives us just that and we now just
have to determine the sign of j which we will do by comparing the y-coordinates.
Since j = 3 we take gcd((yq

2−y3)/y, ψ7) 6= 1, thus we have that the j-coordinates
are the same and thus we have our fourth and last congruence equation

a ≡ 3 (mod 7).

34



To decide what a is now we simply solve the equation system of congruences
with the Chinese remainder theorem

a ≡ 1 (mod 2)

a ≡ 0 (mod 3)

a ≡ 3 (mod 5)

a ≡ 3 (mod 7)

This gives us that a ≡ 3 (mod 210) and we have then determined a uniquely
within [−2

√
101, 2

√
101]. So the number of points on y2 = x3 + 19x + 42 over

F101 is
#E(F101) = 101 + 1− 3 = 99

35



4 References

[1] J.A.Beachy & W.D.Blair: Abstract Algebra (2006), Waveland Pr Inc, Illinois.
[2] L.W.Washington: Elliptic Curves, number theory and cryptography (2008),
Chapman Hall/CRC.
[3] R.Schoof: Counting points on elliptic curves over finite fields (1995), Journal
de Théorie des Nombres, de Bordeaux 7.
[4] A.Holst & V.Ufnarovski:Matrix Theory (2014), Studentlitteratur AB, Lund.
[5] A.Alvarado: An exposition of Schoof’s algorithm (2005), Arizona state uni-
versity, Arizona.
[6] S.Lang: Algebra (2002), Springer-Verlag, New York.

36



A Appendix

def Schoofs_Algorithm():

def odd(k):

return gcd(k,2)==1

def PrimeList(q):

primelist = []

PI = 1

i = 0

while PI < 4*int(sqrt(q)):

p = Primes().unrank(i)

if gcd(p,q) == 1:

PI = PI*(p)

primelist.append(p)

i += 1

return primelist

def psi(i):

def psi_odd(m):

if odd(m):

return psi(m+2)*(psi(m))^3 - (psi(m-1)*(psi(m+1))^3)*(Ec)^2

else:

return (Ec)^2*psi(m+2)*(psi(m))^3 - psi(m-1)*(psi(m+1))^3

def psi_even(m):

return (psi(m)*(psi(m+2)*(psi(m-1))^2 - psi(m-2)*(psi(m+1))^2))/(2)

def calculator_of_psi(i):

if i == -1 or i == 0 or i == 1 or i == 2:

return i

elif i == 3:

return (3*x^4 + 6*A*x^2 + 12*B*x - A^2)

elif i == 4:

return 4*(x^6 + 5*A*x^4 + 20*B*x^3 - 5*A^2*x^2 - 4*A*B*x - 8*B^2 - A^3)

else:

if odd(i):

m = int((i-1)/2)

return psi_odd(m)

else:

m = int(i/2)

return psi_even(m)

return calculator_of_psi(i)

def theta(m):

term1 = x*psi(m)^2

term2 = psi(m+1)*psi(m-1)

37



if odd(m):

return (term1 - term2*(Ec))

else:

return (term1*(Ec) - term2)

def omega(m):

return ((psi(m+2)*psi(m-1)^2 - psi(m-2)*psi(m+1)^2)/4)

def P(n):

if odd(n):

the_x = ((theta(n)) * (Ec))/(psi(n))^2

the_y = omega(n)/psi(n)^3

else:

the_x = (theta(n))/((psi(n))^2 * (Ec))

the_y = omega(n)/(psi(n)^3 * (Ec)^2)

return (the_x,the_y)

def modpsi(function,psi):

answer = (function).quo_rem(psi)[1]

return answer

def daa(expression,q,PSI):

#binaryexponent: q -> list of exponets of q represented in binary

def binaryexponent(q):

d = len(bin(q)[2:])-1

lst = []

for i in bin(q)[2:]:

if int(i) == 1:

lst.append(d)

d -= 1

return lst

#help: expression,exponentlist,PSI - > x^q (mod PSI)

def daahelp(expression,explist,PSI):

totalanswer = 1

for i in explist:

answer = expression

n = 0

while n < i:

answer = ((answer)^2).quo_rem(PSI)[1]

n += 1

totalanswer = (totalanswer * answer).quo_rem(PSI)[1]

return totalanswer

exponentlistan = binaryexponent(q)

xqmodpsi = daahelp(expression,exponentlistan,PSI)

return xqmodpsi

38



# X_tilde: q,L -> xtilde = numerator(x^(q^2) - x_qL)

def X_tilde(q,L):

qL = (q).quo_rem(L)[1]

PSI = psi(L)

if odd(qL):

x_tilde = (daa(x,(q^2),PSI)*(psi(qL))^2 - theta(qL))

else:

x_tilde = (daa(x,(q^2),PSI)*(psi(qL))^2*(Ec) - theta(qL))

return modpsi(x_tilde,PSI)

# Xprime: q,L -> x’ = x^(q^2) - x_qL (mod PSI)

def Xprime(q,L,PSI):

qL = (q).quo_rem(L)[1]

xq2 = daa(x,(q^2),PSI)

if odd(qL):

q_minus = int((q^2 - 1)/2)

# Ec_minus = (Ec)^((q^2 - 1)/2) (mod PSI)

Ec_minus = daa(Ec,q_minus,PSI)

Poly = Ec*((psi(qL))^3 *(Ec_minus) - omega(qL))^2

- (X_tilde(q,L))^2 *(xq2* (psi(qL))^2 + theta(qL)) # nr 1

else:

q_plus = int((q^2 + 3)/2)

# Ec_plus = (Ec)^((q^2 - 1)/2) (mod PSI)

Ec_plus = daa(Ec,q_plus,PSI)

Poly = ((Ec_plus) *(psi(qL))^3 - omega(qL))^2

- (X_tilde(q,L))^2 *(xq2 * (psi(qL))^2 * Ec + theta(qL)) # nr 2

return modpsi(Poly,PSI)

# Xj_tilde: j,L -> Numerator = numerator(x’ - (x_j)^q)

def Xj_tilde(j,L,PSI):

qL = (q).quo_rem(L)[1]

psi_j2q = daa(psi(j),2*q,PSI)

theta_jq = daa(theta(j),q,PSI)

xq2 = daa(x,q^2,PSI)

if odd(qL):

Ec_q2_1 = daa(Ec,(q^2 - 1)/2, PSI)

if odd(j):

xprimnumerator = (Ec*(Ec_q2_1*psi(qL)^3 - omega(qL))^2 - (xq2 * psi(qL)^2

- theta(qL))^2 *(xq2 * psi(qL)^2 + theta(qL)))

xprimdenomenator = psi(qL)^2 *(x^(q^2) *psi(qL)^2 - theta(qL))^2

Numerator = xprimnumerator *psi_j2q - theta_jq *xprimdenomenator

else:

39



Ec_q = daa(Ec,q,PSI)

xprimnumerator = (Ec*(Ec_q2_1*psi(qL)^3 - omega(qL))^2 - (xq2 * psi(qL)^2

- theta(qL))^2 *(xq2 * psi(qL)^2 + theta(qL)))

xprimdenomenator = psi(qL)^2 *(xq2 *psi(qL)^2 - theta(qL))^2

Numerator = xprimnumerator *psi_j2q *Ec_q - theta_jq *xprimdenomenator

else:

Ec_q2_3 = daa(Ec,(q^2 + 3)/2, PSI)

if odd(j):

xprimnumerator = (Ec_q2_3 *psi(qL)^3 -omega(qL))^2 - (xq2 *psi(qL)^2 *Ec

- theta(qL))^2 *(xq2 *psi(qL)^2 *Ec + theta(qL))

xprimdenomenator = (psi(qL)^2 *Ec *(xq2 *psi(qL)^2 *Ec -theta(qL))^2)

Numerator = xprimnumerator *psi_j2q - theta_jq *xprimdenomenator

else:

Ec_q = daa(Ec,q,PSI)

xprimnumerator = (Ec_q2_3 *psi(qL)^3 -omega(qL))^2 -(xq2 *psi(qL)^2 *Ec

- theta(qL))^2 *(xq2 *psi(qL)^2 *Ec + theta(qL))

xprimdenomenator = (psi(qL)^2 *Ec *(xq2 *psi(qL)^2 *Ec -theta(qL))^2)

Numerator = xprimnumerator *psi_j2q *Ec_q - theta_jq *xprimdenomenator

return modpsi(Numerator,PSI)

# Yprime: L -> y’ = y^(q^2) - y_qL (mod PSI)

def Yprime(L,PSI):

qL = (q).quo_rem(L)[1]

psi_ql3 = psi(qL)^3

omega_ql = omega(qL)

theta_ql = theta(qL)

x_tilde2 = (X_tilde(q,L))^2

x_tilde3 = (X_tilde(q,L))^3

poly = Xprime(q,L,PSI)

if odd(qL):

Ec_q1 = daa(Ec,((q^2 - 1)/2),PSI)

yprime = ((Ec_q1*psi_ql3 -omega_ql)*(theta_ql*x_tilde2 -poly)

-(omega_ql*x_tilde3))

else:

Ec_q3 = daa(Ec,((q^2 + 3)/2),PSI)

yprime =((Ec_q3*psi_ql3 -omega_ql)*(theta_ql*x_tilde2 -poly)

-(omega_ql*x_tilde3))

return modpsi(yprime,PSI)

# Yj_tilde: j,L -> Numerator = numerator(y’ - (y_j)^q)

def Yj_tilde(j,L,PSI):

qL = modpsi(q,L)

40



x_tilde3 = (X_tilde(q,L))^3

psi_j3q = daa(psi(j),3*q,PSI)

omega_jq = daa(omega(j),q,PSI)

psi_ql3 = (psi(qL))^3

Y_tildeprime = Yprime(L,PSI)

if odd(j):

if odd(qL):

Ec_q1 = daa(Ec,(q - 1)/2,PSI)

Numerator = Y_tildeprime* psi_j3q - omega_jq*x_tilde3*psi_ql3*Ec_q1

else:

Ec_q3 = daa(Ec,(q + 3)/2,PSI)

Numerator = Y_tildeprime* psi_j3q - omega_jq*x_tilde3*psi_ql3*Ec_q3

else:

if odd(qL):

Ec_3q1 = daa(Ec,(3*q + 1)/2,PSI)

Numerator = Y_tildeprime* psi_j3q*Ec_3q1 - omega_jq*x_tilde3*psi_ql3

else:

Ec_3q3 = daa(Ec,(3*q - 3)/2,PSI)

Numerator = Y_tildeprime* psi_j3q*Ec_3q3 - omega_jq*x_tilde3*psi_ql3

return modpsi(Numerator,PSI)

#L2: () -> a_2 = a (mod 2)

def L2(Ec,x,q):

if gcd(Ec, x^q - x) == 1:

a_2 = 1

else:

a_2 = 0

return a_2

#Find_j: L -> j, such that x’= (x_j)^q with help of Xj_tilde.

def Find_j(L,PSI):

for j in range(1,(L+1)/2):

xj_tilde = Xj_tilde(j,L,PSI)

if gcd(xj_tilde,PSI) != 1:

return j

else:

pass

# w_function: L -> a_L , in the case that q = w^2

def w_function(L,PSI):

qL = modpsi(q,L)

w = 0

for i in range(1,L):

if IntegerModRing(L)(i^2) == qL:

w = i

break

41



if w == 0:

a_3 = 0

return a_3

else:

xq = daa(x,q,PSI)

if odd(w):

#Xw = psi(w)^2 * (x^q - x) + psi(w+1)*psi(w-1)*(Ec)

Xw = ((psi(w))^2 *xq - theta(w))

else:

#Xw = psi(w)^2 * (x^q - x)*(Ec) + psi(w+1)*psi(w-1)

Xw = ((psi(w))^2 *xq *(Ec) - theta(w))

if gcd(Xw,PSI) == 1:

a_L = 0

return a_L

else:

if odd(w):

Yw = (Ec^((q - 1)/2)*(psi(w))^3 - omega(w))

else:

Yw = (Ec^((q + 3)/2)*(psi(w))^3 - omega(w))

if gcd(Yw,PSI) == 1:

a_L = modpsi((-2*w),L)

else:

a_L = modpsi((2*w),L)

return a_L

# for_loop: primelist -> a_list , gives us the list of what a is mod each prime.

# (for example the first element in a_list is

# what a is mod the first element in primelist, and so on)

def for_loop(primelist,Ec,x,q):

a_list = []

for L in primelist:

if L == 2:

a_2 = L2(Ec,x,q)

a_list.append(a_2)

else:

a_L = L_function(L,Ec)

a_list.append(a_L)

return a_list

# L_function: L,A,B -> a (mod L) , gives us what ’a’ is congruent to

# modulo the input prime L.

# This function is the main function for a choosen prime

# and works according to Schoof’s algorithm

# to determine a (mod L) with the help of the equation

# (Q_q)^2 - a* Q_q + q = 0 (where Q_q is the frobenius endomorphism)

def L_function(L,Ec):

42



PSI = psi(L)

qL = modpsi(q,L)

gcd_xt_psi = gcd(X_tilde(q,L),PSI)

if gcd_xt_psi == 1:

#continue with them different

j = Find_j(L,PSI)

if gcd(Yj_tilde(j,L,PSI),PSI) != 1:

return j

else:

return modpsi(L-j,L)

else:

#evaluate the w-function

return w_function(L,gcd_xt_psi)

def Chi_Rem_Thm(a_list,primelist):

small_a = CRT_list(a_list,primelist)

PI = 1

for i in primelist:

PI *= i

if small_a > int(PI/2):

small_a = small_a - PI

N = q + 1 - small_a

return N

def makeglobal():

global q

global A

global B

#-------The main program----------------------------------------------------------------------------------

def mainprogram():

makeglobal()

discriminant = (4*A^3 + 27*B^2)

if gcd(discriminant,q) == 1:

primelist = PrimeList(q)

a_list = for_loop(primelist,Ec,x,q)

Number_of_points = Chi_Rem_Thm(a_list,primelist)

print("Elliptic curve: y^2 = x^3 + ({})x + ({}) over F_{}".format(A,B,q))

print("#E(Fq) =",Number_of_points)

print("a",(q+1-Number_of_points))

for i in range(len(primelist)):

print("a =",a_list[i],"(mod {})".format(primelist[i]))

else:

print("x^3 + {}x + {}: define a singular curve".format(A,B))

43



######## End of functions ###################################################

#== Choose values for q (the field size) and A,B (the coefficients for the elliptic curve)==

q = 49 #<---------- Choose q

Fq = GF(q,’z’)

R = PolynomialRing(Fq,’x’)

x = R.gen()

A = Fq(’2*z+1’) #<---------- Choose A

B = Fq(’4*z’) #<---------- Choose B

Ec = x^3 + A*x + B

mainprogram()

#======= End of program ============================================================

Schoofs_Algorithm()

------------------------------------------------------

Examples of outputs from the program with given q,A,B:

For q = 49, A = 2*z + 1 and B = 4*z:

Elliptic curve: y^2 = x^3 + (2*z + 1)x + (4*z) over F_49

(’#E(Fq) =’, 52)

(’a’, -2)

(’a =’, 0, ’(mod 2)’)

(’a =’, 1, ’(mod 3)’)

(’a =’, 3, ’(mod 5)’)

For q = 101, A = 19 and B = 42:

Elliptic curve: y^2 = x^3 + (19)x + (42) over F_101

(’#E(Fq) =’, 99)

(’a’, 3)

(’a =’, 1, ’(mod 2)’)

(’a =’, 0, ’(mod 3)’)

(’a =’, 3, ’(mod 5)’)

(’a =’, 3, ’(mod 7)’)

For q = 121, A = 2 and B = 6:

Elliptic curve: y^2 = x^3 + (2)x + (6) over F_121

(’#E(Fq) =’, 140)

(’a’, -18)

(’a =’, 0, ’(mod 2)’)

(’a =’, 0, ’(mod 3)’)

44



(’a =’, 2, ’(mod 5)’)

(’a =’, 3, ’(mod 7)’)

For q = 169, A = 2*z and B = 6*z + 4:

Elliptic curve: y^2 = x^3 + (2*z)x + (6*z + 4) over F_169

(’#E(Fq) =’, 187)

(’a’, -17)

(’a =’, 1, ’(mod 2)’)

(’a =’, 1, ’(mod 3)’)

(’a =’, 3, ’(mod 5)’)

(’a =’, 4, ’(mod 7)’)

45


