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Model Reduction of Semistable Infinite-Dimensional Control Systems

Abstract

In this thesis, we extend parts of the framework available for model reduction of
finite-dimensional stable control systems to an infinite-dimensional and semistable
setting. To achieve our goals, we build upon results obtained [CKS17] where the
authors find H2-Norm Error Estimates for the model reduction of finite-dimensional
systems driven by a graph Laplacian. The di↵erence between this and previous work
is threefold: First, we consider infinite-dimensional systems as to include systems
driven by Partial Di↵erential Operators and we thus place earlier work in an ap-
propriate Functional-Analytic setting. Second, we consider a broader class of expo-
nentially semistable systems, not just those driven by a graph Laplacian. Third, we
restrict to a class of model reductions which have a dynamic invariance with respect
to their kernel and the semigroup associated to the system. For completeness, we
also give a brief introduction to Semigroup Theory and provide background material
from Functional Analysis. Throughout the text, the second derivative operator and
heat equation on [0, 1] are used as examples.
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1 Introduction

The aim of this thesis is to extend parts of the framework available for model reduction of
finite-dimensional control systems to an infinite-dimensional setting, to systems known as
infinite-dimensional control systems and sometimes also as distributed parameter control
systems. In particular, we are interested in finding a trace representation of theH2-norm,
which essentially can be thought of as the root mean square energy of a system, that
applies to semistable infinite-dimensional systems and an associated Lyupunov equation
description for computing this norm seeing as these objects play a crucial part in the
corresponding finite-dimensional analysis for model reduction. To achieve our goal,
we analyze and extend to a Hilbert space setting a finite-dimensional result of Cheng,
Kawano and Scherpen investigated in a sequence of papers: mainly [CS16] and [CKS17].
In these papers, the authors consider approximating a system driven by the negative of
a Laplacian matrix1 and among other things give a formula for the H2-error between
the approximated system and the original system in terms of a Lyapunov equation and
the trace of one of its solutions. Even though their results are quite specific to network
systems - those driven by a graph Laplacian, it can be shown that their results derive
from rather deep geometric notions that we exploit for greater generality, see in particular
our own Theorems 4.17, 4.27 and 4.32.

Briefly, the novelty in their result lies in that they are able to give such a formula
even in the case where the matrix driving the system is not stable and has a 0 eigenvalue.
Typically, this degeneracy of the matrix driving the system leads to a certain integral
used for the Lyapunov analysis not converging. In their work, the authors find a way
around this by augmenting this integral, known originally as the controllability Gramian.
They then show that this augmented integral satisfies a Lyapunov equation and is in
fact the unique solution satisfying a certain constraint. Using this, they give a method
for computing the H2-norm of the error system which arises when performing a certain
model reduction technique on a system driven by a certain matrix.

Our work in this thesis consists of showing that their augmentation method holds not
only in their particular setting but also in the much broader setting where the matrix
driving the system is replaced by the infinitesimal generator of a C0-semigroup and
model reductions which satisfy a certain invariance criterion. We generalize their analysis
concerning the augmented Gramian from the case where the kernel of the driving matrix
is of dimension 1 as is the case for any Laplacian matrix, to the case where the kernel
may even be infinite-dimensional. To do this, we identify their method of augmenting the
Gramian which is done in a coordinate dependent fashion with a geometric procedure
identifying the convergence operator with which they augment their Gramian with a
projection onto the kernel of the driving operator. This allows us to show that the
augmented Gramian again solves a Lyapunov equation and in the case where the driving
operator is self-adjoint it is actually the unique solution invariant under the projection
onto the kernel of the driving operator.

The main motivation behind wanting to extend this analysis is that many systems

1
This is a matrix which describes the connectivity structure of a (weighted) graph, see [Chu97].
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driven by partial di↵erential equations considered both in physics and elsewhere have
equilibria dependent on the initial condition and so cannot be considered exponentially
stable, as this presumes a unique equilibrium, when treated on their entire domain
of definition. One such example is the 1-dimensional heat equation with Neumann
boundary conditions - a problem we treat extensively as an example in what follows.
Moreover, model order reduction of such systems automatically becomes pertinent when
one considers any numerical approach as these are restricted to treat finite-dimensional
systems. In particular, this means that having a formula for the error between the actual
model and the reduced order model is useful if one wishes to obtain accurate numerical
results. It is for this reason that we are interested in generalizing the trace formula
for the H2-norm to a more general class of systems which cover the partial di↵erential
equation case.

As is the case in any mathematical work, one needs to make a judgement call on
assumed background and provided background. Moreover, as this thesis very much lies
in the intersection between Linear Systems Theory and Analysis, distinction has to be
made twice. As to linear systems and control, background knowledge will not, strictly
speaking, be necessary, since we will prove key results even in the infinite-dimensional
setting considered here. Nevertheless, it is useful to have background knowledge of most
standard results in the finite dimensional case to provide context and understand the
significance of the results obtained here, roughly corresponding to [Bro15] and [GL12],
especially in regards to state space methods. Since many systems are described by
ordinary or partial di↵erential equations, knowledge corresponding to first few chapters
of [Car67] (or [Tes12] for a reference in English) and [Eva98] respectively will also be
useful and more or less necessary to understand what follows. With respect to analysis,
our choice has been made as to reflect roughly the crossing from basic to more advanced
topics in analysis. Thus, we will assume knowledge of measure-theoretic integration
theory and the basics of functional analysis, such as basic Hilbert space theory and
the normed linear space versions of the Uniform Boundedness Principle or Banach-
Steinhaus Theorem, the Open Mapping Theorem and the Closed Graph Theorem. The
main references used here for these results are [Fri70], [Fol13] and [Lue97].

This thesis is organized as follows: Section 2 deals with the theory of C0-semigroups
on Hilbert spaces and mainly states and explains theorems found in [CZ12], [Eva98]
and [Kat13]. This is the main tool we use to translate the results found in [CS16] and
[CKS17] to an infinite-dimensional setting. As the theory rests heavily on somewhat
advanced topics in functional analysis, the reader not familiar with these is referred
to the appendix for a treatment of unbounded operators, elements of their spectral
theory and other technical results such as integration of operator-valued functions. This
necessity is much due to the fact that a critical result in the theory of C0-semigroups
is the celebrated Hille-Yosida Theorem which in turn relies heavily on the resolvent
formalism of unbounded operators but there also other reasons, including that most
di↵erential operators are unbounded on their natural domains. In Section 3, we discuss
the extension of systems theory to infinite dimensions. The main reference for this
section is [CZ12]. Having discussed these topics, we devote Section 4 mainly to our own
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work extending the results of Cheng, Kawano and Scherpen and essentially all theorems
found here except for Theorem 4.4 are original. Section 5 provides a conclusion to the
thesis and also discusses some potential extensions.

Before we proceed we shall make a few remarks on notation and other conventions. In
what follows X will invariably be a separable Hilbert space unless otherwise stated and
indeed in our own results all Hilbert spaces are assumed separable. Most often we think
of X as the state space for a control system and will thus be the Hilbert space L2(⌦) for
some subset ⌦ ✓ Rn. We have thus reserved X for the state space, whose elements we
often denote x. We will want to express position in the underlying space, for instance,
when writing out (partial) derivative operators. If X = L2(⌦) or similar, then p 2 ⌦
will denote the spatial variable. Thus, the derivative operator with respect to the spatial
variable is written d

dp

(sometimes also @

@p

) and the derivative of an element x in the state

space is written x
p

. The time derivative is often written ẋ := dx

dt

. Further, (�
n

) typically
denotes a sequence, possibly infinite, consisting of elements �

n

, often eigenvectors of
a linear operator corresponding to another sequence of eigenvalues (�

n

). We should
also mention before proceeding that when we write

R

we mean an appropriate integral,
taken either in the sense of Lebesque, Bochner or Pettis, as we often find ourselves in
the situation where we wish to integrate an operator. In the main text we will use these
without much mention of the technical di�culties involved with more general integration
theory - the key point is that many of the familiar Lebesque-integration theorems still
hold for the more general class of integrals. We do however provide a brief discussion of
this and further references in Appendix A.2.
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2 C0-Semigroup Theory

The fundamental notion to generalize linear systems theory to partial di↵erential equa-
tions is that of C0-semigroups. This also allows for generalization to delay di↵erential
equations, but here we focus entirely on the partial di↵erential equation case.

Definition 2.1. A family S(t) of bounded linear operators is called a C0 semigroup on
a Hilbert space X if

1. S(0) = I.

2. S(t+ s) = S(t)S(s) for all t, s � 0.

3. For all x 2 X, kS(t)x� xk ! 0 as t ! 0.

The first two properties above are the semigroup axioms, whereas the third is referred
to as strong continuity of the semigroup. If instead of the third axiom, a semigroup S(t)
satisfies

lim
t!0+

kS(t)� Ik = 0

then it is said to be uniformly continuous, that is, the converge criterion 3. takes place
in the B(X) topology instead of the strong topology.

An evolution of a dynamical system is often given in incremental form rather than
explicitly stating the entire trajectory (or the semigroup S(t)). To this idea corresponds
the infinitesimal generator of a semigroup.

Definition 2.2. We say that A is the infinitesimal generator of a C0-semigroup S(t) on
the space X, if for each x 2 D(A)

Ax = lim
t!0+

S(t)x� x

t
. (1)

We now return to the second derivative operator for an example.

Example 2.3. Consider again a simple physical model of a heated bar on [0, 1]

@x

@t
=
@2x

@p2

with insulated boundary points @x

@p

(0, t) = @x

@p

(1, t) = 0 and initial distribution of heat

x(p, 0) = x0(p). This can be recast as a Hilbert space ODE, ẋ = Ax on L2[0, 1] if we

define A = d

2

dp

2 , and set

D(A) = {x 2 L2[0, 1] | x, x
p

2 AC([0, 1]), x
pp

2 L2[0, 1],
dx

dp
(0) =

dx

dp
(1) = 0}.

We will later prove that the semigroup associated to A is

S(t)x =

Z 1

0
x(q)dq +

1
X

n=1

2e�n

2
⇡

2
t cos(n⇡p)

Z 1

0
cos(n⇡q)x(q)dq.

4
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Remark 2.4. Consider ẋ = Ax and compare with the heat equation. The abstract
di↵erential equation comes in the form dx

dt

= Ax whereas the original partial di↵erential

equation often is of the form @x

@t

= Ax. This is not a problem, since the operator d

dt

is

the di↵erentiation operator in the Hilbert space L2([0,1);⌦) whereas @

@t

is the partial

di↵erentiation operator on [0,1)⇥ ⌦. Thus ẋ = dx

dt

is the k · k
X

-limit of

x(t+ s)� x(t)

s
=

x(t+ s, ·)� x(t, ·)
s

as s tends to 0. We recognize this also as the di↵erence quotient for @x

@t

and so both
di↵erentiations are the limit of the same object and since the k · k

X

-topology is stronger
than the pointwise topology, we have that if the Hilbert space derivative exists the
abstract di↵erential equation agrees with the original PDE.

C0-semigroups and their infinitesimal generator are intimately connected with dy-
namical systems. Indeed, if one poses an equation of the form ẋ = Ax with initial
condition x0 where A is the infinitesimal generator of a C0-semigroup S(t), then S(t)x0
solves the equation. This is made precise in the following lemma.

Lemma 2.5. Let S(t) be a strongly continuous semigroup on a Hilbert space X with
infinitesimal generator A. Then for all x 2 D(A)

dS(t)x

dt
= AS(t)x = S(t)Ax.

Proof. Write

lim
s!0+

S(t+ s)x� S(t)x

s
= S(t) lim

s!0+

S(s)x� Ix

s
= S(t)Ax

by definition of the infinitesimal generator. Since S(t) commutes with S(s) and I, one
also obtains S(t)Ax = AS(t)x.

It is often useful to have an integral formulation of the above result. To this end,
take x0 2 X and x 2 D(A) as above. We then have

hx0, S(t)x� xi =
Z

t

0

d

dt
hx0, S(s)xds =

Z

t

0
hx0, S(s)Axids.

By the arbitrariness of x0, it follows that on D(A) we have the identity

S(t)x = x+

Z

t

0
S(s)Axds.

Applying this to the kernel of A, we obtain the following corollary.

Corollary 2.6. Suppose that S(t) is a C0-semigroup on X generated by A. Then for
every x 2 kerA and every t � 0, S(t)x = x.
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If one instead considers what this means for every possible initial condition x 2 X,
in the finite-dimensional setting, the lemma is analogous to saying that S(t) is the
fundamental solution of the di↵erential equation ẋ = Ax. In fact, if A is a bounded
operator, we obtain the following result familiar from linear time invariant systems.

Proposition 2.7. Suppose that X is a Hilbert space and A : X ! X is bounded. Then
A generates the C0-semigroup

S(t) = eAt :=
1
X

k=0

(At)k

k!

Proof. The series converges, since its partial sums form a Cauchy sequence in B(X),
which is complete since X is a Hilbert space. For n > m we have

n

X

k=0

(At)k

n!
�

m

X

k=0

(At)k

k!
=

n

X

k=m+1

(At)k

k!

which tends to 0 in norm as min(n,m) ! 1, by boundedness of A.
The identity property,, S(0) = I, holds simply by evaluating the partial sums at

t = 0 and appealing to the norm convergence above. Next, we verify the semigroup
property 2.

S(t)S(s) =
1
X

k=0

Ak(t)k

k!

1
X

l=0

Al(s)l

l!
= {j = k + l} =

1
X

k=0

1
X

j=k

Ak(t)k

k!

Aj�k(s)j�k

(j � k)!

=
1
X

j=0

j

X

k=0

Ak(t)k

k!

Aj�k(s)j�k

(j � k)!
=

1
X

j=0

Aj

j!

j

X

k=0

✓

j

k

◆

tksj�k

=
1
X

j=0

Aj(t+ s)j

j!
= S(t+ s).

Finally, we verify the strong continuity at 0, we have for x 2 X that
�

�

�

�

�

1
X

k=0

(At)k

k!
x� x

�

�

�

�

�

=

�

�

�

�

�

1
X

k=1

(At)k

k!
x

�

�

�

�

�


1
X

k=1

kAkktk
k!

kxk = (ekAkt � 1)|kxk

which converges to 0 as t ! 0, yielding the result.

This discussion has often alluded to that C0-semigroups are very similar to the expo-
nential semigroups eAt. In general, these concepts are not exactly the same. However,
every C0-semigroup has an exponential bound.

Proposition 2.8. If A is the infinitesimal generator of a C0-semigroup S(t), the limit

!0(A) = lim
t!1

✓

1

t
ln kS(t)k

◆

= inf
t>0

✓

1

t
ln kS(t)k

◆

exists and for all ! > w0 there exists a constant M such that kS(t)k  Me!t for all
t � 0.

9
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Proof. Before giving the explicit bound on S(t) only depending on t, we begin by proving
that there is an M such that kS(t)k  M for every T > 0 and t 2 [0, T ]. Suppose to
arrive at a contradiction that there does not exist any such T > 0. Then there exists a
sequence t

n

! 0 such that kS(t
n

)k � n. This contradicts the conclusion of the Banach
Steinhaus Theorem, i.e., S(t

n

) cannot be uniformly bounded, so the hypotheses of that
theorem cannot hold. Therefore, there must be an x 2 X such that (kS(t

n

)xk) is an
unbounded sequence, however, this is in contradiction to the strong continuity at 0 of
S(t). Thus there exists at least one such T > 0. For any other t > T we have with
t = mT + r, r 2 [0, T ],

kS(t)k  kS(T )kmkS(r)k  M1+m  M1+t/T .

We now characterize this bound in more detail. To this end, let t0 > 0 and set
M = sup

t2[0,t0] kS(t)k which is finite by the above argument. Consider now t � nt0 so
that t = nt0 + (t� nt0). Then

1

t
ln kS(t)k =

1

t
ln kS(t0)nS(t� nt0)k  n log kS(t0)k+ lnM

t

=
n log kS(t0)k+ lnM

nt0 + (t� nt0)

In particular we have

lim sup
t!1

1

t
ln kS(t)k  1

t0
ln kS(t0)k

for arbitrary t0 > 0. Hence

lim sup
t!1

1

t
ln kS(t)k  inf

t>0

1

t
ln kS(t)k  lim inf

t!1
1

t
ln kS(t)k

so that we must have equality throughout. We denote this quantity by !0.
To complete the characterization of the bound, suppose that ! > !0 above. By

above we can find t0 such that if t � t0 then

1

t
ln kS(t)k < !

wherefore kS(t)k  e!t. This means that, for these t � t0,

kS(t)k  e!t.

However, we know that for t  t0 we have

kS(t)k  M

for some M > 0. Thus on [0,1) we have

kS(t)k  Me!t.

10
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If there exists an exponential bound which is decaying, i.e. ! < 0, the semigroup is
said to be exponentially stable.

Definition 2.9. A C0-semigroup S(t) is said to be exponentially stable if there exist
M,µ > 0 such that for all t � 0

kS(t)k  Me�µt.

Remark 2.10. One may wonder if, as in the matrix case, exponential stability is equiv-
alent to <� < 0 for all eigenvalues � of A. In the Hilbert space case we generally only
have the inequality

sup(<� | � 2 �(A))  w0(A)

but not equality. For a counter-example see [CZ12], Example 5.1.4.

We give another example, which will be useful in Section 3, below.

Example 2.11. Suppose that S1, S2 are C0-semigroups on Hilbert spaces X1, X2 re-
spectively, on which they have generators A1, A2. We can construct a new semigroup
S on X = X1 � X2, � being the direct sum and with inner product on X defined by
hx, yi = hx1, y1i1 + hx2, y2i2 where h·, ·i

i

, i = 1, 2 is the inner product of X
i

and where
x, y 2 X which can be written

x =



x1
x2

�

, y =



y1
y2

�

,

with x1, y1 2 X1 and x2, y2 2 X2. Now, for x 2 X

S(t)x =



S1(t) 0
0 S2(t)

� 

x1
x2

�

=



S1(t)x1
S2(t)x2

�

.

Since the matrix containing the semigroups is diagonal, there are no interaction terms,
and the semigroup properties follow immediately from those of S1, S2 and similarly one
sees that

lim
t!0

1

t
(S(t)x� x) = lim

t!0

"

S1(t)x1�x1

t

S2(t)x2�x2

t

#

=



A1x1
A2x2

�

=



A1 0
0 A2

� 

x1
x2

�

.

It is also interesting to note that if both S1 and S2 are exponentially stable then so is
the semigroup S defined on the direct sum X. Indeed, if kS

i

(t)k  M
i

e�µit, i = 1, 2 then

kS(t)k = kS1(t)k+ kS2(t)k  M1e
�µ1t +M2e

�µ2t  2max(M1,M2)e
�min(µ1,µ2)t.

The applied use from this example stems from the fact that we can view the new Hilbert
space X = X1 �X2 with semigroup S(t) due to its orthogonal nature as containing all
the information about the original semigroups S1, S2. Indeed, X,S can be viewed as
the internal structure of what one in control theory would call a paralell connection of
systems. This idea will be developed more later. 4
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Before proceeding to study generators via their Laplace transforms, we prove a small
technical lemma.

Lemma 2.12. Suppose that A is the the infinitesimal generator of a C0-semigroup, S(t),
on a Hilbert space X then A is closed and D(A) is dense in X. Moreover,

R

t

0 S(s)xds 2
D(A) for all x 2 X.

Proof. Consider

S(t)� I

s

Z

t

0
S(u)xdu =

1

s

Z

t

0
S(u+ s)xdu� 1

s

Z

t

0
S(u)xdu

=
1

s

Z

s

0
[S(t+ u)� S(u)]xdu

=
1

s

Z

s

0
S(u)[S(t)� I]xdu.

Sending s ! 0, we obtain

A

Z

t

0
S(u)xdu = lim

s!0

S(t)� I

s

Z

t

0
S(u)xdu = [S(t)� I]x

and in particular, for any x 2 X and t > 0

Z

t

0
S(u)xdu 2 D(A).

This means that any point x 2 X can be written

x = lim
t!0

1

t

Z

t

0
S(u)xdu.

That is, as the limit of a sequence of points entirely in the domain of A, thus verifying
the density of D(A) in X.

To prove that A is a closed operator, we take a sequence (x
n

) ⇢ D(A) converging to
x and show that Ax

n

converges to Ax. Observe

S(t)x� x

t
= lim

n!1
S(t)x

n

� x
n

t
= lim

n!1
1

t

Z

t

0
S(s)Ax

n

ds =
1

t

Z

t

0
S(s)Axds

by dominated convergence. Taking t ! 0 now yields closure of A.

This implies that the spectral theory for closed densely defined operators is applicable
to C0-semigroups. We proceed along these lines in the next section.
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2.1 The Resolvent and the Theorem of Hille and Yosida

The resolvent operator of the infinitesimal generator of semigroup is a very important
object. Indeed, it is the Laplace Transform of the semigroup, as we shall prove below.

Lemma 2.13. Suppose that S(t) is a C0-semigroup generated by A and growth bound
!0. If �,! are such that <(�) > ! > !0 then � 2 ⇢(A) and for x 2 X:

1. R(�;A)x =
R1
0 e��tS(t)xdt and kR(�;A)k  M

<(�)�!

.

2. For ↵ 2 R, one has lim
↵!1 ↵R(↵, A)x = x.

Proof. 1. Define for <� > ! the family of operators

R
�

x =

Z 1

0
e��tS(t)xdt.

By the growth bound, we get

kR
�

k  M

Z 1

0
e�(<��!)tdt =

M

<�� !
.

We will now prove that R
�

is both the left and right inverse of (�I �A). First, for
any x 2 D(A), we have that

S(s)� I

s
R

�

x =
1

s

Z 1

0
e��t[S(t+ s)� S(t)]xdt

=
1

s



e�s
Z 1

0
e��uS(u)xdu� e�s

Z

s

0
e�uS(u)xdu�

Z 1

0
e��uS(u)xdu

�

=
e�s � 1

s

Z 1

0
e��tS(t)xdt� e�s

s

Z

s

0
e��tS(t)xdt.

Taking the limit s ! 0+ by using the Lebesque Di↵erentiation Theorem we obtain

R
�

Ax = AR
�

x = �R
�

x� x.

In particular

R
�

(�I �A)x = x = (�I �A)R
�

x.

2. Fix x 2 X. The domain of A is dense in X and so we can select x0 2 D(A) with
kx � x0k < " and moreover by the first point we can choose, for any " > 0 an ↵0

such that for all ↵ > ↵0 we have kR
↵

k  " with ↵

↵�!

 2.

Whence

k↵R
↵

x� xk = k↵R
↵

x� ↵R
↵

x0 + ↵R
↵

x0 � x0 + x0 � xk
 k↵R

↵

x� ↵R
↵

x0k+ k(↵+A�A)R
↵

x0 � x0k+ kx0 � xk
 ↵M

↵� !
kx� x0k+ k↵R

↵

Ax0k+ kx� x0k
 (2M + 2)".

13
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Since this holds for any " > 0, we have the desired equality.

We are now prepared to prove the seminal Hille-Yosida Theorem.

Theorem 2.14. A closed densely-defined operator, A, on a Hilbert space X, is the
infinitesimal generator of a C0-semigroup on X if and only there exist M,! 2 R such
that all real ↵ > ! are in the resolvent set of A and satisfy

kR(↵;A)rk  M

(↵� !)r

for all r � 1.

Proof of the forward direction. Suppose that A is the infinitesimal generator of the C0-
semigroup S(t) on X. Observe that we may write, by Lemma A.13,

R(↵;A)r =
R(r�1)(↵;A)

(�1)r�1(r � 1)!

where R(r�1) is the derivative with respect to the parameter ↵ of order r � 1. Since
the resolvent is available as the Laplace transform of the semigroup via Lemma 2.13, we
know that ↵ is in the resolvent set whenever ↵ > ! > !0 and we may write for x 2 X

R(↵;A)x =

Z 1

0
e�↵tS(t)xdt

Thus,

R(r�1)(↵;A)x =

Z 1

0
(�t)r�1e�↵tS(t)xdt.

Since ! > !0(A), the growth bound, we have that

kR(r�1)(↵;A)k  M

Z 1

0
(�t)r�1e�(↵�!)tdt = M(r � 1)!(↵� !)�r.

Comparing this with derivative expression for the resolvent, we obtain

kR(↵;A)rk  M

(↵� !)r
, ↵ > ! > !0.

Proof of reverse direction. Suppose that A is a linear operator satisfying

kR(↵;A)rk  M

(↵� !)r
, ↵ > ! > !0,

for all r � 1 and some !0 and all ↵ > ! > !0. The idea is now to approximate A by a
sequence of bounded operators. To this end, let

A
↵

= ↵2R(↵, A)� ↵I.

14
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By the bounded nature of the resolvent, this too is a bounded operator. Thus by
Proposition 2.7, we have that each A

↵

generates a semigroup S
↵

(t) via

S
↵

(t) =
1
X

k=0

Ak

↵

tk

k!
=

1
X

k=0

(↵2t)k

k!
R(↵;A)k.

We now partition the proof into three parts. First, we show that the strong limit of A
↵

as ↵! 1 exists and equals A. Second, we prove also that the strong limit of S
↵

exists.
Third, we show that limit indeed constitutes a semigroup which in particular has A as
its generator:

1. Note that

A
↵

x = (↵2R(↵, A)� ↵I)x = ↵(↵R(↵, A)� I)x = ↵R(↵;A)Ax

so the convergence result is just a restatement of the second point of Lemma 2.13.

2. Observe now that by assumption on the resolvent of A and contruction of S
↵

that

kS
↵

(t)k e�↵t

1
X

k=0

(↵2t)k

k!

M

(↵� !)k
= Me

↵!
↵�! t.

In particular, for ↵ > 2|!| su�ciently large, S
↵

is uniformly bounded on all inter-
vals [0, t], t > 0 by Me2|!|t.

Next, since the resolvent commutes for di↵erent ↵, µ 2 ⇢(A), we also see that
A

↵

A
µ

= A
µ

A
↵

and A
↵

T
µ

= T
µ

A↵. Using this, we find that for any x 2 D(A), we
have that

kS
↵

(t)x� S
µ

(t)xk =
�

�

�

Z

t

0

d

ds
(S

µ

(t� s)S
↵

(s))xds
�

�

�

=
�

�

�

Z

t

0
(S

µ

(t� s)(A
↵

�A
µ

)S
↵

(s))xds
�

�

�

=
�

�

�

Z

t

0
(S

µ

(t� s)S
↵

(s))(A
↵

�A
µ

)xds
�

�

�


�

�

�

Z

t

0
M2e2|!|t(A

↵

�A
µ

)xds
�

�

�

= M2te2|!|tk(A
↵

�A
µ

)xk.
By the first point, this forms, separately for each t, a Cauchy sequence on D(A).
By the density of D(A) in X and the uniformity of S

↵

on each compact interval
we conclude that this convergence holds on all of X.

3. Now, the semigroup properties of the limit S(t) of S
↵

(t) follows now immediately
by point 2. As for the generator. Observe that

kS
↵

(t)A
↵

x� S(t)Axk  kS
↵

(t)kkA
↵

x�Axk+ kS
↵

Ax� S(t)Axk

15
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yielding strong convergence of S
↵

Ax ! SAx for all x 2 D(A), and this occurs uni-
formly on compact time intervals. Applying Lebesque’s Dominated Convergence
Theorem gives us

lim
↵!1S

↵

x� x = lim
↵!1

Z

t

0
S
↵

(s)A
↵

xds =

Z

t

0
S(s)Axds = S(t)x� x.

Dividing by t and taking limits as t ! 1, this is enough to conclude that the
generator, A0 of S(t) is an extension of A.

However, if ↵ > ! we have

(↵I �A)D(A) = X and (↵I �A0)D(A0)

and by above we already have AD(A) = AD(A0) which gives

(↵I �A0)D(A) = (↵I �A0)D(A0).

Hence D(A) = D(A0) by injectivity of the resolvent and A indeed is the generator
of S(t).

1., 2. and 3. together finish the proof.

As a first application of the Hille-Yosida Theorem, we prove that C0-semigroups are
in a sense closed under taking adjoints. This will be very useful when dealing with
inner product computations, allowing us to go back and forth between primal and dual
computations.

Proposition 2.15. If S(t) is a C0-semigroup with infinitesimal generator A on a Hilbert
space X, then S⇤(t) = [S(t)]⇤ is also a C0-semigroup on X but with infinitesimal gener-
ator A⇤.

Proof. By Lemma A.10 it is clear that R(↵, A⇤) = R(↵, A)⇤ for real ↵ and since these
have the same norm as R(↵, A), we may conclude by Hille-Yosida that A⇤ generates a C0-
semigroup, say T (t). To see that T (t) = [S(t)]⇤, write using the Laplace characterization
of the resolvent

hx0,
Z 1

0
e��tT (t)xdti = hx0, R(�, A⇤)xi

= hR(�, A)x0, xi
= h
Z 1

0
e��tS(t)x0dt, xi

= hx0,
Z 1

0
e��t[S(t)]⇤xdti.

This holds for all x, x0 2 X and for all � with <� > !. Thus by uniqueness of the
Laplace transform we conclude that T (t) = S⇤(t).
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2.2 Riesz Spectral Operators

In the theory of finite dimensional control, the singular value decomposition is a tool of
great importance and is so in particular in model reduction where it, for instance, is used
to obtain reduction by balanced truncation, see [GL12] Chapter 9. Here we will consider
a class of operators which admit a decomposition which roughly speaking mirrors the
SVD in finite dimensions. That is, we want to consider operators A which satisfy for
x 2 D(A)

Ax =
1
X

i=1

�
n

hx, 
n

i�
n

where �
n

are the eigenvalues of A, �
n

its eigenvectors and  
n

the eigenvectors of A⇤.
This will provide a rich trove of examples for our own work in Section 4, and includes
the second derivative operator as an example.

To make the theory precise, we first need the notion of a Riesz Basis.

Definition 2.16. A sequence of vectors (�
n

) in a Hilbert space X forms a Riesz Basis
for X if span(�

n

) = X and there exist constants m,M such that for any N 2 N scalars
↵
n

, n = 1, .., N the followings holds

m
N

X

n=1

|↵
n

|2 
�

�

�

�

�

N

X

n=1

↵
n

�
n

�

�

�

�

�

2

 M
N

X

n=1

|↵
n

|2. (2)

As one might expect from the discussion above, the key property is that the eigen-
vectors of an operator form a Riesz Basis. Of course, any orthogonal basis (�

n

) is a
Riesz basis since we then have equality in (2) for m = M = 1 using the orthogonality of
the �

n

.

Lemma 2.17. Suppose that A is a closed linear operator on a Hilbert space X and that
A has simple eigenvalues (�

n

) with eigenvectors (�
n

) forming a Riesz Basis. Then

1. The eigenvectors ( 
n

) corresponding to eigenvalues (�̄
n

) of A⇤ can be chosen such
that h�

n

, 
m

i = �
n,m

. That is, (�
n

, 
n

) are biorthogonal.

2. Every x 2 X can be represented uniquely as

x =
1
X

n=1

hx, 
n

i�
n

and there exist m,M > 0 such that

m
1
X

n=1

|hx, 
n

i|2  kzk2  M
1
X

n=1

|hx, 
n

i|2.

17
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Proof. 1. Write

�
n

h�
n

, 
m

i = hA�
n

, 
m

i = h�
n

, A⇤ 
m

i = h�
n

, �̄ 
m

i = �
m

h�
n

, 
m

i

and since the eigenvalues are nonrepeated, this implies h�
n

, 
m

i = ↵
m

�
n,m

for
some ↵

m

2 C and we obtain the result by scaling  
m

accordingly, i.e., dividing by
↵̄
m

.

2. Since span�
n

= X, we may write an x 2 X we may choose a sequence xp ! x of
the form

xp =
p

X

k=1

↵p

k

�
k

.

Moreover, biorthogonality gives that

↵p

j

= hxp, 
j

i ! hx, 
j

i

as p ! 1.

Next, by the fact that �
n

constitutes as Riesz basis, we may write

m
p

X

j=1

|hxp, 
j

i|2 = m
p

X

j=1

|↵p

j

|2  kxpk2  M
p

X

j=1

|hxp, 
j

i|2.

To obtain the result, we shall need that (hz, 
j

i) 2 l2. Write

v

u

u

t

q

X

j=1

|hx, 
j

i|2 
v

u

u

t

q

X

j=1

|hx, 
j

i � hxp, 
j

i|2 +
v

u

u

t

q

X

j=1

|hxp, 
j

i|2


v

u

u

t

q

X

j=1

|hx, 
j

i � hxp, 
j

i|2 + 1p
m
kxpk.

By convergence of xp ! x the first term can be made arbitrarily small for each
q, and for the same reason, the second term is uniformly bounded, which gives
(hz, 

j

i) 2 l2. Therefore,

x = lim
p!1xp = lim

p!1

1
X

k=1

hxp, 
k

i�
k

=
1
X

k=1

hx, 
k

i�
k

and the norm estimate for x follows by taking limits of the corresponding estimate
for xp.
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If we were just concerned with finite-dimensional operators, this lemma would be
enough for the SVD-like form in the beginning of the section since the representation
in the lemma for x 2 X could then just be applied to Ax. In the functional-analytic
setting one needs to worry about convergence. Nevertheless, this motivates the following
definition.

Definition 2.18. Suppose that A is a closed linear operator on a Hilbert space, X and
let �

n

,�
n

denote its eigenvalues and eigenvectors. If the �
n

are simple with (�
n

) ⇢ C
totally disconnected and (�

n

) forms a Riesz Basis, one calls A a Riesz Spectral Operator.

Observe that these are essentially the hypotheses of Lemma 2.17, with the addition
that (�

n

) is totally disconnected. This is a technical condition used in the control
literature and is used, for instance, to derive an approximate controllability test for
distributed parameter control, see [CZ12]. We include it here only because we do not
wish to stray from convention, however, for our considerations it is of no importance.

The theorem below shows that the SVD-like form does hold for Riesz Spectral Op-
erators, and moreover, a similar form holds for the associated semigroup.

Theorem 2.19. Suppose that A is a Riesz Spectral Operator on a Hilbert space X. If
the (�

n

), (�
n

) are the eigenvalues and eigenvectors of A and if ( 
n

) are the biorthogonal
eigenvectors of A⇤. Then

1. ⇢(A) = {� 2 C | inf
n

|� � �
n

| > 0},�(A) = {�
n

} and for � 2 ⇢(A), R(�, A) has
the form

R(�;A) =
1
X

n=1

1

�� �
n

h·, 
n

i�
n

;

2. The operator A can be written

Ax =
1
X

n=1

hx, 
n

i�
n

;

for x 2 D(A) where D(A) is given explicitly by D(A) = {x 2 X|P1
n=1 |�n|2|hx, n

i|2 <
1}.

3. A generates a C0-semigroup if and only if sup
n

�
n

< 1 and then the associated
semigroup is given by

S(t) =
1
X

n=1

e�nth·, 
n

i�
n

.

Proof. 1. Take � such that inf
�n2�p(A) |�� �

n

| � ↵ > 0. Observe that

�

�

�

1
X

n=1

1

�� �
n

hx, 
n

i�
n

�

�

�

2  M
1
X

n=1

1

|�� �
n

|2 |hx, n

i|2  M

m↵2
kxk2
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using the bounds on the Riesz form for x, showing that the form for the resolvent
is bounded. Denote now

f
N

(�)x =
N

X

n=1

1

�� �
n

hx, 
n

i�
n

and note in particular that as N ! 1 this is the form we want to show that
R(�;A) has. Furthermore, it is easy to see, since f

N

acts orthogonally on x that

(�I �A)f
N

(�)x =
N

X

n=1

hx, 
n

i�
n

! x as N ! 1.

Now, since A is closed so that f
N

(�)x and (�I � A)f
N

(�)x converge in the X-
topology. Denoting the desired form of the resolvent by f1(�), we obtain for any
x 2 X

(�I �A)f1(�)x = x

so it is a right inverse. Let now instead x 2 D(A). We may write

(�I �A)x = (�I �A)f1(�)(�I �A)x.

Wherefore

0 = (�I �A)x� (�I �A)x = (�I �A)[x� f1(�)(�I �A)x].

This means that f1(�) is both a right and a left inverse (on D(A)) proving that
indeed f1(�) = R(�;A) and � 2 ⇢(A). Now, the resolvent set of A is open, so the
spectrum is closed, and therefore we also have that any member of the resolvent
set satisfies inf

�n2�p(A) |� � �
n

| > 0 (the reverse inclusion of the characterization
of ⇢(A)).

2. Let S = {x 2 X|P1
n=1 |�n|2|hx, n

i|2 < 1}. We will first show that S ✓ D(A)
and that the expansion for Ax holds on S, the usefulness of this characterization
of D(A) being square-summability. Take x 2 S and define x

N

=
P

N

n=1hx, n

i�
n

.
Then, as N ! 1, we have

x
N

! x and Ax
N

!
1
X

n=1

hx, 
n

i�
n

in the X-topology. By closedness of A, it follows that x 2 D(A) and that indeed

Ax =
1
X

n=1

hx, 
n

i�
n

.
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As for the reverse inclusion, take x 2 D(A) and write y = (�I�A)x with � 2 ⇢(A).
Thus, by the first bulletin,

x = (�I �A)�1y =
1
X

n=1

1

�� �
n

hy, 
n

i�
n

=
1
X

n=1

hx, 
n

i�
n

.

Therefore 1
���n

hy, 
n

i = hx, 
n

i and we may compute, using µ = inf |�� �
n

| that
1
X

n=1

|�
n

|2|hx, 
n

i|2 =
1
X

n=1

�

�

�

�
n

�� �
n

�

�

�

2|hy, 
n

i|2 =
1
X

n=1

�

�

�

�

�� �
n

� 1
�

�

�

2|hy, 
n

i|2


1
X

n=1

�

�

�

|�|
µ

+ 1
�

�

�

2|hy, 
n

i|2 
1
X

n=1

�

�

�

|�|
µ

+ 1
�

�

�

2kyk2.

That is, x 2 S and so D(A) = S.

The necessity of sup
n�1<�n < 1 is a consequence of the Hille-Yosida Theorem. Taking

such a � > ! = sup
n�1<�n < 1, we may write

(�I �A)�1x =
1
X

n=1

1

�� �
n

hx, 
n

i�
n

, and so (�I �A)�rx =
1
X

n=1

1

(�� �
n

)r
hx, 

n

i�
n

.

This means that we may estimate the resolvent as

kR(�;A)rxk2  M
1
X

n=1

1

|�� �
n

|2r |hx, n

i|2  M

m

kxk2
(<�� !)2r

and so the Theorem of Hille and Yosida gives us that A generates a C0-semigroup S(t)
with kS(t)k pM/me!t.

As for the characterization of S(t), let (us ever so slightly abuse notation and) write

eAtx =
1
X

n=1

e�nthx, 
n

i�
n

which is bounded for all t > 0. Whenever <� > ! we can take the Laplace transform

Z 1

0
e��teAtxdt =

1
X

n=1

Z 1

0
e�(���n)thx, 

n

i�
n

dt =
1
X

n=1

1

�� �
n

hx, 
n

i�
n

= R(�;A)x.

We conclude by noting that the Laplace transform is injective and since the Resolvent
is the Laplace tranform of the associated semigroup, we actually have S(t) = eAt.

To illustrate the strength of this theorem, we show how it easily characterizes the
semigroup structure of the heat equation on [0, 1].
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Example 2.20. Let us revisit X = L2[0, 1] with A = d

2

dp

2 with

D(A) =
n

x 2 L2[0, 1]
�

�

�

x,
dx

dp
2 AC[0, 1],

d2x

dp2
2 L2[0, 1],

dx

dp
(0) =

dx

dp
(1) = 0

o

.

It was previously shown that the eigenvectors are v
n

(p) = cosn⇡p, n � 0 and from
elementary Fourier analysis, it is well known that this actually constitutes an orthogonal
basis for L2[0, 1]. It is known from elementary Fourier Analysis (see [Rud06], Chapter
4) that (1,

p
2 cos(n⇡p), n � 1) forms an orthogonal basis and thus in particular it is a

Riesz basis and so by Theorem 2.19 it follows that A and its associated semigroup S(t)
have representation

Ax(·) = hx(·), 1i+ 2
1
X

n=1

�n2⇡2hx(·), cos(n⇡·)i cos(n⇡·)

S(t)x = hx(·), 1i+ 2
1
X

n=1

e�n

2
⇡

2
thx(·), cos(n⇡·)i cos(n⇡·)

which confirms the claim in Example 2.3. 4
This last example shows how the analysis of a C0-semigroup is substantially simplified

if we may decompose it along its eigenvectors. This decomposition actually has at least
two very useful properties, the obvious one being orthogonality. A second property of
this decomposition, more subtle and perhaps even more useful, is that the eigenvectors
are invariants under both the generator and the semigroup.

Definition 2.21. Let V be a subspace of a Hilbert space X with C0-semigroup S(t)
defined thereon. We say that V is S(t)-invariant if for all t � 0

S(t)V ✓ V.

If A is the generator of a C0-semigroup, we say that a subspace V ✓ X is A-invariant if

A(V \D(A)) ✓ V.

If A is allowed to be unbounded, as is typically the case, one can show that A-
invariance does not necessarily imply S(t)-invariance as we would expect for matrices
(or even bounded operators). Since the concepts of A and S(t)-invariance are central
to our model reduction technique in Section 4 we need to intuitively understand why
this is not the case. The idea in terms of the heat equation is roughly speaking that
temperature does not change locally from 0 in small time, but globally, we expect the
distribution of heat to eventually flatten out and so if there is a mass of heat anywhere,
there will eventually be a mass of heat everywhere. We make this explicit by an example
below.
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Example 2.22. Let us continue with our heat equation example. So, set X = L2[0, 1]

and A = d

2

dp

2 with

D(A) =
n

x 2 L2[0, 1]
�

�

�

x,
dx

dp
2 AC[0, 1],

d2x

dp2
2 L2[0, 1],

dx

dp
(0) =

dx

dp
(1) = 0

o

.

Take now the subspace

V = {x 2 C1([0, 1]) | x = 0 on [0, 1/4) [ (3/4, 1]}.

Simply di↵erentiating any such x 2 V twice shows that A(V \D(A)) ✓ V . It is known
from elementary calculus that there exists a function which is C1 on [1/4, 3/4], taking
the value 0 on both endpoints and having Lebesque mass 1. Thus, let x be any such
function glued together with the 0 function on [0, 1/4) and (3/4, 1]. Observe that this
function still has Lebesque mass 1 and lies in V \D(A). However, for any p 2 [0, 1] and
any " > 0,

kS(t)x(p)� 1k =

�

�

�

�

�

hx(·), 1i+ 2
1
X

n=1

e�n

2
⇡

2
thx(·), cos(n⇡·)i cos(n⇡p)� 1

�

�

�

�

�

 2

�

�

�

�

�

1
X

n=1

e�n

2
⇡

2
thx(·), cos(n⇡·)i cos(n⇡p)

�

�

�

�

�

 "

if t is made su�ciently large. In particular, S(t)x /2 V and so we have constructed a
counterexample for the claim that A-invariance should imply S(t)-invariance. 4

If we combine Theorem 2.19 with Definition 2.21, we obtain the aformentioned men-
tioned invariance.

Proposition 2.23. Let A be a Riesz spectral operator on X with eigenvectors (�
n

) and
which generates a C0-semigroup S(t). Then any subset V of X given by

V = span
n2I(�n), for I ✓ N

is S(t)-invariant and A-invariant.

One can actually prove that these are the only closed S(t)-invariant subspaces of
X, but this is considerably more di�cult. Seeing, as we only need this direction in the
sequel, we stop ourselves here.

2.3 Infinite-Dimensional Di↵erential Equations

Lemma 2.5 can be interpreted as saying that a semigroup S(t) is the fundamental solution
to the homogenous di↵erential equation

ẋ = Ax
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where A is the corresponding infinitesimal generator. The analogy can be extended
to inhomogeneous equations of the following form, often referred to as equations of
evolution:

(

ẋ(t) = Ax(t) + f(t),

x(0) = x0.
(3)

As is typical in the study of more complicated di↵erential equations, one needs to take
care when deciding on what solution concept to use.

Definition 2.24. A continuously di↵erentiable function t 7! x(t) is said to be a classical
solution of (3) if for every t, x(t) 2 D(A) and x(t) satisfies (3).

For classical solutions, the variation of parameters formula holds.

Proposition 2.25. Assume that f 2 C([0, T ];X) and that x is a classical solution of
(3). Then also Ax 2 C([0, T ];X) and the solution is given by

x(t) = S(t)x0 +

Z

t

0
S(T � s)f(s)ds. (4)

Proof. By assumption ẋ and f are elements of C([0, T ];X), and therefore so is also
Ax = ẋ+ f .

To prove the variation of parameters formula, let t 2 [0, T ] and consider the quantity
S(t� s)x(s) on [0, t). Then consider the di↵erence quotient

S(t� s� h)x(s+ h)� S(t� s)x(s)

h
=

S(t� s� h)x(s+ h)� S(t� s� h)x(s)

h

+
S(t� s� h)x(s)� S(t� s)x(s)

h
.

For the first term, observe that since S(t) is uniformly bounded on any compact interval
and using the strong continuity of the semigroup gives us that it converges to S(t� s)ẋ.
The last term converges to �AS(t� s)x(s) since x 2 D(A). Therefore

d

ds

⇣

S(t� s)x(s)
⌘

= S(t� s)ẋ(s)�A(S(t� s)x(s)

= S(t� s)[Ax(s) + f(s)]� S(t� s)Ax(s)

= S(t� s)f(s).

The variation of parameters formula then follows by integrating, since t was fixed.

We can show that these solutions, albeit under quite restrictive regularity assump-
tions on f , are unique. Thus, when f is su�ciently nice, the variation of parameters
formula constructively gives the solution.
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Theorem 2.26. Let X be a Hilbert space and assume that A is the infinitesimal gen-
erator of a C0-semigroup, S(t), thereon. If f 2 C1([0, T ];X) and x0 2 D(A) then the
solution x(t) given by (4) is continuously di↵erentiable on [0, T ] and furthermore it is
unique in the class of classical solutions.

Proof. As for uniqueness, if there are two di↵erent solutions x1(t), x2(t), we consider
their di↵erence �(t) = x1(t) � x2(t). Clearly, this satisfies �̇(t) = A�,�(0) = 0. Now
we use the semigroup S(t) and remark that y(s) = S(t� s)�(s) is constant since

ẏ(t) =
d

dt
S(t� s)�(s) = 0.

Therefore �(t) = y(t) = 0.
With regards to existence, we need to show that (4) is an element of C1([0, T ];X) \

D(A) and that this actually satisfies the di↵erential equation. Now x(t) = S(t)x0 + y(t)
where

y(t) =

Z

t

0
S(t� s)f(s)ds =

Z

t

0
S(t� s)

✓

f(0) +

Z

s

0
ḟ(⌧)d⌧

◆

ds

=

Z

t

0
S(t� s)f(0)ds+

Z

t

0

Z

t

⌧

S(t� s)ḟ(⌧)dsd⌧

by Fubini. Since y(t) is representable as integral over the semigroup, it follows by Lemma
2.12 that y(t) is an element of D(A).

To prove that y(t) solves the zero-initial condition problem, write

Ay(t) = [S(t)� I]f(0) +

Z

t

0
[S(t� ⌧)� I]ḟ(⌧)d⌧

= S(t)f(0) +

Z

t

0
S(t� ⌧)ḟ(⌧)d⌧ � f(t)

which is allowed since A is closed and since
Z

t

0
kA
Z

t

⌧

S(t� s)ḟ(⌧)dskd⌧ =

Z

t

0
kS(t� ⌧)ḟ(⌧)� f(⌧)kd⌧ < 1.

Therefore

dy

dt
(t) = S(t)f(0) +

Z

t

0
S(s)ḟ(t� s)d

= S(t)f(0) +

Z

t

0
S(t� s)ḟ(s)ds

= Ay(t) + f(t)

as required, where we have used that for any g, S ⇤ g = g ⇤ S; that is, convolution is
commutative.
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Note that we generally consider A to be an unbounded operator, so requiring f to
be smooth is a comparatively strong regularity assumption, and will often not hold in
applications. One still wishes to have a solution concept under these circumstances. If
the solution is only available in integral form, as motivated by the variation of parameters
formula, it instead is called mild.

Definition 2.27. If f 2 L2([0, T ];X) and x satisfies

x(t) = S(t)x0 +

Z

t

0
S(T � s)f(s)ds

for all t then x is a mild solution of (3).

Remark 2.28. In fact, one can show that these solutions are equivalent to the weak
solutions known from PDE theory, see Chapter 3.1 of [CZ12].

We should also note that if f(t) is of the form Gx(t), where G is a bounded linear
operator, one can shown that A + G actually generates a new semigroup which solves
the system. This fact is used extensively in infinite-dimensional feedback control, but
we shall not need it in the sequel and so shall not take the detour. A detailed treatment
of this can be found in chapters 3 and 5 of [CZ12].
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3 Distributed Parameter Systems Theory

Just as an ordinary di↵erential equation describes the motion of a single point in space,
a partial di↵erential equation describes the motion of an entire manifold in space. For
instance, an ODE may describe the evolution of temperature at perhaps a single or
several points and the corresponding situation for a PDE is to describe the temperature
evolution of the entire space in which these points lie. Another way to look at this
situation is to say that the solution of an ordinary di↵erential equation produces a point
for each time t 7! f(t) and a partial di↵erential equation produces an entire function
t 7! f(t, ·) for each point in time; the state space corresponding to an ordinary di↵erential
equation is some manifold ⌦, whereas the state space of a partial di↵erential equation
corresponds to some set of functions from a manifold. The first situation is typically
finite-dimensional, whereas the second is inherently infinite-dimensional.

3.1 Infinite-Dimensional Dynamical Systems

We shall here consider abstractly what is meant by a dynamical system given by a
C0-semigroup.

Definition 3.1. By a dynamical system determined by a C0-semigroup, S(t), defined
on a Hilbert space X we shall mean the set

S = {x 2 X : x = S(t)x0, x0 2 X}.

The map x 7! S(t)x is called the flow of the dynamical system.

In the sequel, we shall often be concerned with the asymptotic behavior of dynamical
systems. If the system settles at a point as time progresses and does not move, we say
that such a point is an equilibrium point. One of the weaker notions of an equilibrium
is given below.

Definition 3.2. A point x
e

2 X is said to be a Lyapunov equilibrium of a dynamical
system S if for every open U of X containing x

e

there exist an open subset O of X
containing S(t)x

e

we have S(t)O ✓ U .

That is, a point x
e

is a Lyapunov equilibrium if we cannot distinguish it over time
via the topology of X. Intuitively then, as the convergence requirement for exponential
stability of a semigroup S(t) occurs in the uniform topology, which is one of the strongest
one usually works in, we expect such equilibria to also be equilibria in the sense of
Lyapunov.

Proposition 3.3. If a dynamical system S is given by an exponentially stable semigroup
S(t), then the point 0 2 X is a Lyapunov equilibrium.

Proof. Observe that S(t)X ✓ X trivially. Let U be any open set of X containing the
point 0 2 X. We need to show that there exists a subset O of X, also containing the
origin, with S(t)O ✓ U for all t � 0.
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To see this, note that since 0 2 U , and the "-balls form a basis for the norm topology,
U contains at least one of the sets B(0, "), " > 0 and we can simpy select O = B(0, "/M)
where M is chosen such that kS(t)k  Me�µt for some µ > 0.

The theory of dynamical systems is extremely rich, and we have here just provided
preliminary notions necessary to understand the main point of this thesis, which is of
course semistability and in particular its relation to control theory, which is the topic of
the next section. Further reading on this topic may be found in [Rob01] and also [Tes12]
for the finite-dimensional case.

3.2 Distributed Parameter Control Theory

In this section we describe the Systems Theory necessary for our purposes. The expo-
sition is mainly based on [CZ12] but [BDPDM07] is used as an auxilliary reference. A
control system is essentially a dynamical system, as discussed in the last section, with
the possibility for steering, or control, of the main variable of interest, the state x, via
an input, u. The systems treated here and in the remainder of this thesis are linear and
of the form below.

(

ẋ = Ax+Bu, x(0) = x0

y = Cx
(⌃)

Here, the state variable, x, is a member of a separable Hilbert space X and we assume
that A is the infinitesimal generator of a C0-semigroup, S(t), onX. The control, or input,
u, is a member of another function space, U , and similarly for the output, y, which a
member of a third function space, Y . Further these spaces are connected via the following
operators: The input operator, B 2 B(U,X), and the output operator, C 2 B(X,Y )
act on the control (input) u 2 L2([0, T ];U) and observation (output) y 2 L2([0, T ];Y )
to steer the state and produce an output respectively. Typically, X,Y, U are themselves
Lebesque-type spaces such as L2 or the Sobolev space H2. Systems satisfying the above
hypotheses will be denoted ⌃(A,B,C), ⌃(A,B,�) or ⌃(A,�, B) if either the output or
input operator is irrelevant or just ⌃ for short.

Remark 3.4. The convention that Pritchard and Salamon usually apply is to consider
a set of Hilbert spaces

W ✓ X ✓ V

with continuous dense injections. Moreover, the more general system allows for outputs
of the form y = Cx+Du. The reason to introduce these auxiliary spaces is to allow for
potentially unbounded operators, B 2 L(U, V ), D 2 L(U, Y ), C 2 L(W,Y ). This adds
an additional layer of technical di�culty to the problem which we do not wish to treat
here, so we make the simpler assumptions above. The more general situation is treated
extensively in [Sal87]. We should note that allowing for unbounded input and output
operators is not merely a technical curiosity but has applied interest for instance when
modeling point actuators and sensors as Dirac measures. The reason for not including
Du is that this results in an infinite H2-norm.
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Example 3.5. A simple example of a control system can be given in terms of the heat
equation. Consider a simple physical model of a heated bar on [0, 1]

@x

@t
=
@2x

@p2
+ u(t).

with insulated boundary points @x

@p

(0, t) = @x

@p

(1, t) = 0, initial distribution of heat

x(p, 0) = x0(p) and a source term u. This can be recast in terms of a system A = d

2

dp

2 ,

B = I so that ⌃ = (A, I,�) on L2[0, 1]. Here with X = U = L2[0, 1] and

D(A) ={x 2 L2[0, 1] | x, x
p

are absolutely continuous,

x
pp

2 L2[0, 1],
dx

dp
(0) =

dx

dp
(1) = 0}.

4

3.3 Controllability

The notion of controllability essentially asks whether we in some time period (potentially
infinite) can attain any desired state (potentially asymptotically). In contrast to finite-
dimensional systems theory, where there are several equivalent and intuitive characteri-
zations, for distributed parameter systems, the notion of controllability is more subtle.
Indeed, there are at least three definitions which all reduce to the standard notion in
the finite dimensional setting. Here we will consider only approximate controllability,
mainly as this concept is both intuitively reasonable and allows for generalization of
Reachability and the Gramian-Lyupunov equation theory and so should be recognizable
to those familiar with the finite-dimensional theory.

Definition 3.6. 1. the system ⌃(A,B,�) is approximately controllable in time t if for
any x̄ in the state space and any " > 0 there exists an input such that d(x(t), x̄) < "
with u as input. Equivalently, ranBt = X where Bt is the controllability map

Btu =

Z

t

0
S(t� s)Bu(s)ds.

B1 = B is called the extended controllability map.

2. The reachability space of ⌃(A,B,�) is given by set of all states that can be attained
by some control from the origin.

R : = {x 2 X | 9t > 0, u 2 L2([0, t];U) such that x = Btu}
=
[

t>0

ranBt.

3. If R = X, then ⌃(A,B,�) is approximately controllable (without reference to any
particular time). Equivalently, for any x̄ 2 X there exists t > 0, " > 0 and input
u such that d(x(t), x̄) < " with u as input.
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4. The Controllability Gramian is defined as P = BB⇤.

Remark 3.7. The attentive reader will notice that the controllability map corresponds
to the mild solution of a system with zero initial condition as defined via the variation of
parameters formula. Thus, approximate controllability really asks whether any state can
be asymptotically and approximately (in the topology of X) attained as a mild solution
for the control system (⌃).

It is possible to describe controllability in an algebraic manner as the following the-
orem illustrates.

Theorem 3.8. If B and P are bounded the following are equivalent:

1. ⌃(A,B,�) is approximately controllable,

2. kerB⇤ is trivial,

3. P > 0.

Proof. To show equivalence of 1. and 2., since B is bounded, we may use range-nullspace
to note that

R = ranB = ranB⇤⇤ = (kerB⇤)?

Hence the left-hand side equals X if and only if kerB⇤ is void. To see that 2. and 3. are
equivalent. Note that for any u 2 U

hPx, xi
X

= hBB⇤, xi
X

= hB⇤x,B⇤xi
X

= kB⇤xk2
X

and that kerB⇤ is void i↵ B⇤u 6= 0 for all u i↵ kB⇤uk
X

> 0 for all u.

This extends classic results but with a small caveat: The description is not entirely
algebraic. Even though P is the solution of a particular Lyupunov equation, this equation
is functional analytic in nature due to the non-finiteness of the dimension. The above
result motivates to some extent the very introduction of the controllability Gramian.
We give necessary conditions for its hypotheses below.

Lemma 3.9. Suppose A generates an exponentially stable semigroup. Then

P 2 B(X), and B 2 B
��

L2[0,1);U
�

, X
�

.

Proof. B is well-defined and bounded since for each t
�

�

�

�

Z

t

0
S(s)Bu(s)ds

�

�

�

�


Z

t

0
kS(s)Bu(s)kds  MkBkB(U,X)

Z

t

0
e�↵tku(s)kds

 Mp
2↵

kBkB(U,X)kuk
L

2([0,t),U)

by Cauchy-Schwartz and where ↵ is the growth index of the semigroup S. Obviously P
is then also bounded since it is a composition of bounded operators.
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We now give the Lyapunov result for the controllability Gramian.

Theorem 3.10. Consider ⌃(A,B,�) and suppose A generates an exponentially stable
C0-semigroup. Then P is the unique self-adjoint solution to the Lyupunov equation

hPx,A⇤x0i+ hA⇤x, Px0i = �hB⇤x,B⇤x0i
with x, x0 2 D(A⇤) and the inner product taken in X.

Proof. We prove uniqueness, since a generalized form of the Lyapunov equation actually
holds even for semistable systems, and follows from Theorem 4.25 proved later.

Suppose now P 0 is another self-adjoint operator satisfying the Lyupunov equation
and consider � = P � P 0:

h�x,A⇤x0i+ hA⇤x, �x0i = 0.

Thus, if we let x = S⇤(t)x0 and x0 = S⇤(t)x00 for x0, x00 2 D(A⇤). Whence we obtain

d

dt
hS⇤(t)x0, �S(t)x00i = 0

which after integration becomes

hS⇤(T )x0, �S⇤(T )x00i = hx00, �x00i
and since S⇤(T )x0 ! 0 as T ! 1 by exponential stability so that

hx0, �x00i = 0

for x0, x00 2 D(A⇤). Since D(A⇤) is dense in X⇤ it follows that � = 0 or P = P 0.

Remark 3.11. There is also the dual notion of approximate observability. Briefly, a
system ⌃(A,�, C) is approximately observable if and only if ⌃(A⇤, C⇤,�) is approxi-
mately controllable. This is a deep duality which is found throughout Systems Theory
and in various forms.

3.4 Input-Output Behavior

There is a special operator which characterizes the input-output behavior of a system in
the time-domain.

Definition 3.12. The impulse response of ⌃ is given by h(t) = CS(t)B for all t � 0.

Intuitively and informally, the impulse response at t is just what happens (in the
long run) to a system with zero initial condition if one uses a Dirac delta mass as input
u = � localized in time at t. A purely motivational and nonrigorous computation based
on variation of parameters then gives

C

Z 1

0
S(s)B�(s� t)ds = CS(t)B.

A natural question to ask is how to assign a size to the system ⌃. Ideally, such
a size should reflect the input-output behavior of the system. We make the following
definition.
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Definition 3.13. The H2-norm of a system ⌃ = (A,B,C) with impulse response h(t)
is given by

k⌃kH2 =

s

Z 1

0
tr
�

h(t)h⇤(t)
�

dt.

Another way of writing this, using the definition of the trace, is

k⌃kH2 =

v

u

u

t

Z 1

0

1
X

i=1

kh(t)e
i

k2dt

for some orthonormal basis e
i

of U so that the H2-norm is the sum of the energies of h
in each basis direction.

We now prove that k · kH2 is actually a norm on a suitable vector space.

Proposition 3.14. The space of all impulse responses deriving from systems of the form
⌃(A,B,C) with input-output spaces U and Y forms a vector space, V. On the subspace
W of V, consisting of all ⌃ with finite k⌃kH2, k · kH2 is a norm.

Proof. First, note that V is a vector space over C since first ↵ 2 C we have that ↵h is
the impulse reponse of ⌃(A,B,↵C), so scalar multiplication (↵, h) 7! ↵h is well-defined.
Second, for h1 = C1S1B1, h2 = C2S2B2 2 V, we have pointwise addition

h1(t) + h2(t) =
⇥

C1 C2
⇤



S1(t) 0
0 S2(t)

� 

B1

B2

�

(5)

where the semigroup, defined on X = X1 �X2 above is generated by



A1 0
0 A2

�

with A1, A2 defined on the domain D(A1) � D(A2), making addition well-defined and
V-closed. See also Example 2.11 for details on the direct sum semigroup. The associative
and distributive laws are inherited from matrix multiplication and addition can be seen
to be commutative by changing places of the indices in (5).

To see that k · kH2 is a norm on this space, take again ↵ 2 C and h1, h2 2 V. Then
if ↵⌃1 is the system corresponding to ↵h1 we have

k↵⌃1kH2 =

v

u

u

t

Z 1

0

1
X

i=1

k↵h(t)e
i

k2dt =
v

u

u

t

Z 1

0

1
X

i=1

|↵|2kh(t)e
i

k2dt

= |↵|
v

u

u

t

Z 1

0

1
X

i=1

kh(t)e
i

k2dt = |↵|k⌃1kH2 .
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Moreover, we have

k⌃1 + ⌃2kH2 =

v

u

u

t

Z 1

0

1
X

i=1

k(h1(t) + h2)eik2dt 
v

u

u

t

Z 1

0

1
X

i=1

kh1(t)eik2 + kh2eik2dt

=

v

u

u

t

Z 1

0

1
X

i=1

kh1(t)eik2dt+
Z 1

0

1
X

i=1

kh2eik2dt


v

u

u

t

Z 1

0

1
X

i=1

kh1(t)eik2dt+
v

u

u

t

Z 1

0

1
X

i=1

kh2eik2dt = k⌃1kH2 + k⌃2kH2

As for the nonnegativity, we have k · kH2 � 0 by construction. Finally, if k⌃1kH2 = 0 it
is immediate that all the functions kh1(t)eik2 = hh1(t)ei, h1(t)eii are almost everywhere
0, but since e

i

is an orthonormal basis this is su�cient to conclude that h1(t) is almost
everywhere 0.

The last proposition might seem only a technical detail, allowing us to actually call
k · kH2 a norm. There are, however, system-theoretic reasons for wanting this as well, as
this confirms that parallell connection (addition of impulse responses) is a well-defined
operation, and produces a new system from two component systems.

Remark 3.15. We have purposefully avoided the frequency domain description here
and will not say much about it. However, if for nothing but etymological interest, it
should be stated that the nameH2-norm actually derives from a corresponding frequency
domain description of h. One can show that h is the Laplace transform of the so-called
transfer function of ⌃, which outputs according to ŷ(s) = G(s)û(s), where ŷ and û are
the Laplace transforms of the input and output signals. Via the Paley-Wiener Theorem
one can then identify the time domain definition with a corresponding definition based
on the actual Hardy space norm, and not the Lebesque-norm construction we have used.
Details in the finite-dimensional case can be found in [GL12], Chapter 3. Information
about the Hardy spaces in the operator-valued case can be found in [RR97]. More
about the frequency domain description of distributed parameter systems can be found
in Chapters 4.3, 7 and 8 of [CZ12].

We have thus concluded the background necessary for our own work. In the next
section we study the main topics of this thesis; model reduction and semistability.
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4 Model Reduction of Semistable Systems in Infinite Di-
mensions

In this section we consider the main problem of this thesis, namely, given a system
(

ẋ = Ax+Bu

y = Cx, x(0) = x0
(⌃)

to find a reduced system
(

v̇ = Âv + B̂u

ŷ = Ĉv, v(0) = v0
(⌃̂)

which approximates the initial system well in both a qualitative system-theoretic manner
and quantitatively in the sense of the H2-norm. As usual in this thesis, (A,B,C) and
(Â, B̂, Ĉ) are such that A, Â generate C0-semigroups on separable Hilbert spaces X,
V ⇢ X and B, B̂, C, Ĉ are bounded linear operators.

In the finite-dimensional case, (⌃) is typically a system of ordinary di↵erential equa-
tions inX = Rn for some integer n and the goal would then be to be find a reduced system
of ordinary di↵erential equations (⌃̂) on some lower-dimensional space V = Rk, k < n
which approximates the original system well in some metric. The fundamental idea be-
hind model reduction here is essentially the same: we want to find dynamics (⌃̂) defined
on a subspace V of X which approximate (⌃) in the particular metric induced by the
H2-norm. An example of original and reduced spaces in the infinite-dimensional case
could be X = L2(M) for somem-dimensional manifold and then V could be for instance
V = L2(N) where N is an n-dimensional manifold n < m. However, there are many
more interesting subspaces V of this X, including subspaces which don’t necessarily re-
duce the dimension of the manifold on which the PDE exists. Such examples include
the eigenspaces of the operator A. This last choice of V is illustrated in Example 4.5
later.

A large issue with model reduction in infinite dimensions is that the map A 7! �A⇡
which is typically used to induce model reductions in the finite-dimensional case does
not necessarily imply a nice relation between semigroups S, Ŝ, making coordinate-free
computations di�cult. One way to deal with this is to assume a commutativity property
between A and Â in relation to the reducing map �. Such a procedure is actually well
known in mathematical biology and chemistry when there is no input nor output operator
and is then known as a lumping. Since we are in need of a concept to fit the entire system
⌃ and not just the driving operator A, we will give it a di↵erent name to avoid overload
of terminology2.

Definition 4.1. An invariant model reduction of ⌃ onto V is a triple (⇡,�, Â) where
⇡ : X ! V is a bounded surjective operator, � : V ! X is a bounded operator and

2
In the definition below one could say that an invariant model reduction consists of a lumping for A

and a description of the reduced input and output operators consistent with this lumping.
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Â satisfies Â⇡x = ⇡Ax for all x 2 D(A). The reduced input and output operators are
given by B̂ = ⇡B and Ĉ = C�.

Put di↵erently, ⇡ and � together produce new dynamics on the reduced space V via
surjection and embedding. The following diagram is perhaps useful to understand the
input and output behaviors of the original and reduced systems with respect to ⇡ and
V :

D(A) ⇢ X X

⇡D(A) ⇢ V V

A

⇡

⇡

Â

Remark 4.2. ⇡ = 0 gives trivially an invariant model reduction for any system and so
does ⇡ = I, Â = A.

As a trivial consequence of the Open Mapping Theorem, we remark that V can
essentially be viewed as a subspace of X since ⇡ is a bounded surjection and so its
restriction is a bounded bijection. We obtain:

Lemma 4.3. The map ⇡ restricts to a bounded linear operator with bounded inverse
⇡| := ⇡|(ker⇡)? : (ker⇡)? ! V .

The commutativity means that the model reduction is faithful in the sense that one
can work either in the original model directly and then reduce or work in the reduced
state space V and then apply the reduced model. To illustrate the use of the commu-
tativity assumption, we prove the theorem below, found originally in [AR+13] for the
infinite-dimensional case.

Theorem 4.4. Suppose that ⇡ : X ! V is a bounded linear map and that A is the
infinitesimal generator of a C0-semigroup S(t). Then the following are equivalent:

1. ker⇡ is S(t)-invariant for each t � 0.

2. There exists Â : ⇡(D(A)) ! V generating a C0-semigroup Ŝ(t) on V with ⇡A = Â⇡
on D(A) and in this case ⇡S(t) = Ŝ(t)⇡ for each t � 0 on X.

Proof. Assume first that ker⇡ is invariant under S(t) for t � 0 and define

Ŝ(t)v = ⇡S(t)x,

where x is chosen such that v = ⇡x and this is well-defined precisely since the kernel
of ⇡ is invariant under S(t). The fact that Ŝ(t) now constitutes a strongly continuous
semigroup follows almost immediately from that S(t) is such a semigroup. One has

Ŝ(0)v = Ŝ(0)⇡x = ⇡S(0)x = ⇡x = v
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and for s, t � 0 the semigroup property

Ŝ(t+ s)v = ⇡S(t+ s)x = ⇡S(t)S(s)x = Ŝ(t)S(s)x = Ŝ(t)Ŝ(s)⇡x = Ŝ(t)Ŝ(s)v.

The strong continuity now follows from the estimate

kŜ(t)v � vk = k⇡S(t)x� ⇡xk  k⇡kkS(t)x� xk
and the strong continuity of S(t).

We now check that the generator Â of this new semigroup verifies the desired prop-
erties. Now for v 2 V

Âv = lim
t!0

Ŝ(t)v � v

t
= lim

t!0

⇡S(t)x� ⇡x

t
= ⇡ lim

t!0

S(t)x� x

t
= ⇡Ax

so that Â is indeed defined on all of ⇡D(A) and Â⇡x = ⇡Ax on D(A). Furthermore this
implies ⇡D(A) ✓ D(Â).

For the reverse inclusion, choose a � 2 C which lies in ⇢(A)\⇢(Â) which is possible by
Lemma 2.13. Choose now any element v 2 D(Â) so that we may write v = (�I� Â)�1w
for some w = ⇡x 2 V with x 2 X. Thus by the Laplace characterization of the resolvent,
we obtain

v =

Z 1

0
e��tŜ(t)wdt =

Z 1

0
e��tŜ(t)⇡xdt

=

Z 1

0
e��t⇡Ŝ(t)xdt = ⇡

Z 1

0
e��tŜ(t)xdt

= ⇡(�I �A)�1x 2 ⇡(D(A)),

using that x 2 X and therefore R(A;�)x 2 D(A). Thus we have equality between D(Â)
and ⇡D(A).

To see that 2. implies 1. assume that 2. holds, suppose that Â generates Ŝ(t), and
consider the maps

t 7! Ŝ(t)v0,

t 7! ⇡S(t)x0,

with v0 = ⇡x0, x0 2 D(A). By the assumption that ⇡A = ⇡̂ one notes that either of
these maps is a solution to the problem

(

v̇(t) = Âv(t),

v(0) = v0.

However, by Theorem 2.26 this problem has a unique solution from which we conclude
that the maps are equal. In particuar this means that for any x 2 X

Ŝ(t)⇡x = ⇡S(t)x.

Thus if x 2 ker⇡ so that ⇡x = 0 then ⇡S(t)x = Ŝ(t)(⇡x) = 0 so that also S(t)x 2 ker⇡
for all t � 0. That is, S(t) ker⇡ ✓ ker⇡, as required.
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This theorem is roughly speaking the reason for considering model reductions of
this form. The formula ⇡S(t) = Ŝ(t)⇡ is immensely useful in computations since for

operators in infinite dimensions a representation S(t) = eAt, Ŝ(t) = eÂt is not available
in general. An alternative would be to use a variation of parameters type formula for
Ŝ(t) by considering something looking formally like ⇡A = (⇡� I + I)A = A+ (⇡� I)A.
However, this would involve significantly more computational work if possible at all.

Fortunately, the theory is su�ciently rich to include many partial di↵erential opera-
tors and commonly used model reductions of these. We revisit the heat equation example
below and prove that truncation of the series representation of its solution qualifies as
an invariant model reduction.

Example 4.5. Consider a simple physical model of a heated bar on [0, 1]

@x

@t
=
@2x

@p2
+ u(t)

with insulated boundary points @x

@p

(0, t) = @x

@p

(1, t) = 0, initial distribution of heat
x(p, 0) = x0(p) and a source term u. This can be recast in terms of a system A = �, ⌃ =
(A, I,�) on L2[0, 1] with D(A) = {x 2 L2[0, 1] | x, x

p

are absolutely continuous, x
pp

2
L2[0, 1], dx

dp

(0) = dx

dp

(1) = 0}.
Moreover, the semigroup associated with A is

S(t)x =

Z 1

0
x(q)dq +

1
X

n=1

2e�n

2
⇡

2
t cos(n⇡p)

Z 1

0
cos(n⇡q)x(q)dq

Now, in previous examples it was verified that A is self-adjoint and that (cos(⇡np)) are
eigenvectors of A. Indeed, according to Proposition 2.23 the invariant subspaces are
closures of the spans of subcollections of eigenvectors of A and therefore we may choose
⇡ as the projection onto the closure of any such eigenspaces. This means that one can
define a new semigroup

Ŝ(t)v = �[02I]
Z 1

0
v(q)dq +

X

k

2e�n

2
k⇡

2
t cos(n

k

⇡p)

Z 1

0
cos(n

k

⇡q)v(q)dq

on the reduced state space V = span{cos(n
k

⇡p)}
k2I . That is, truncating the eigenvalues

of the heat equation is an invariant model reduction. Note also that � is just the
embedding of the eigenspace V into X. 4

The theory is, however, not without restriction. The clustering projection considered
in [CKS17] is not an invariant model reduction as given in Definition 4.1. We give a
counterexample based on this below.

Example 4.6. We use an example from [CKS17]. Let

A =

2

6

6

4

4 �1 �2 �1
�1 3 �1 �1
�2 �1 5 �2
�1 �1 �2 4

3

7

7

5

,⇡ =

2

4

1 0 0 0
0 1 0 0
0 0 1 1

3

5
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with Â = ⇡A⇡0 it is then not hard to verify that

Â⇡ =

2

4

4 �1 �3 �3
�1 3 �2 �2
�3 �2 5 5

3

5 6=
2

4

4 �1 �2 �1
�1 3 �1 �1
�3 �2 3 2

3

5 = ⇡A.

This shows that the so-called clustering projections of [CKS17] are not in general invari-
ant model reductions. 4

4.1 Semistability

The presence of the non-decaying term in Example 4.5 means that the semigroup S(t) is
not exponentially stable. However, the eigenvalues do at least satisfy <�  0 similar as is
the case for the system considered by [CKS17]. To deal with this, we introduce a weaker
notion of stability applicable to infinite-dimensional systems, found also in [HB13].

Definition 4.7. Suppose A generates a C0-semigroup S(t) on X. A, S(t) are said to be
exponentially semistable if for every x 2 X there exists x

e

2 kerA and scalars M,µ > 0
such that kS(t)x � x

e

k  Me�µtkx � x
e

k. The point x
e

is called the equilibrium point
corresponding to x.

This means that the kernel of the infinitesimal generator, A, corresponds to the set
of equilibrium points of the dynamical system induced by S(t). This is perhaps not so
surprising, since nonrigorously, one may imagine that an x 2 X under the semigroup
S(t) is shifted approximately to x+(�t)Ax in an infinitesimal time-step �t and if x lies
in the kernel then x + (�t)Ax = x. For a more formal motivation, see the discussion
following Lemma 2.5.

Remark 4.8. Observe that exponential semistability is stronger than requiring that
the eigenvalues of a matrix, A, satisfy <�

i

 0. To see this, consider A = iI which
satisfies <�

i

(A)  0 but is not exponentially semistable since the kernel of A is empty
and S(t) = Ieit for which S(t)x does not converge for any x 6= 0 in the strong topology.
We will give a precise characterization for matrices in terms of their eigenvalues later.

Two issues with Definition 4.7 need to be pointed out before proceeding: x0, µ and
M may all depend on x, so there is a distinct lack of uniformity in the problem. We
will mostly be able to deal with this by applying Banach-Steinhaus’ principle of uniform
boundedness to S or some variation thereof. Moreover, if A is semistable it is stable i↵
kerA = {0} since S(t) = I on kerA. The second point is foundational in the geomet-
ric understanding of the problem and a large part of the theory is a result of careful
consideration of the interaction of the subspaces V and kerA.

Now, before going any further with this definition and to better our understanding
of the concept, let us consider the finite-dimensional case and an example.

Proposition 4.9. Suppose that A 2 B(Cn). Then A is exponentially semistable if and
only if <�  0 for all eigenvalues � of A and there are no purely imaginary eigenvalues.
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Proof. Suppose that A is exponentially semistable. It is immediate by definition that
for every x 2 Cn

lim
t!1S(t)x = lim

t!1 eAtx = x
e

for some x
e

2 kerA ✓ Cn. Clearly this requires <�  0, so suppose to arrive at a
contradiction that one eigenvalue satisfies � = ↵i,↵ 2 R. Choose x as an associated
eigenvector. Then we have

lim
t!1 eAtx = lim

t!1

1
X

k=0

Aktk

k!
x = lim

t!1

1
X

k=0

(↵i)ktk

k!
x = lim

t!1 e↵itx

which does not even converge, so the requirements on the eigenvalues of A are necessary.
Suppose now that <�  0 for all eigenvalues � of A and that there are no purely

imaginary eigenvalues. Let J be the Jordan form for A and we first show that J is
exponentially semistable. Now if K is the number of distinct nonzero eigenvalues of A,
we may write

eJt =

2

6

6

6

6

6

6

4

eJ1t 0 0 . . . 0
0 eJ2t 0 . . . 0
...

...
. . . . . . 0

...
... eJK t 0

0 0 0 0 IdimkerA

3

7

7

7

7

7

7

5

with J =

2

6

6

6

6

6

6

4

J1 0 0 . . . 0
0 J2 0 . . . 0
...

...
. . . . . . 0

...
... J

K

0
0 0 0 0 0

3

7

7

7

7

7

7

5

and Jordan blocks J
i

, i = 1, . . . k. From this we conclude that for any x
�

�

�

�

eJtx�


0 0
0 IdimkerA

�

x

�

�

�

�

 max
i=1,...K

M
i

e�mini=1,...K µit

where we use that each Jordan block satisfies an exponential stability condition so that

they each have rates �µ
i

and constant bounds M
i

. Since



0 0
0 IdimkerA

�

maps to the

kernel of J this proves exponential semistability of J .
To finish the proof, we show that exponential semistability does not depend on the

choice of basis. Let A = PJP�1. Then

eJt =
1
X

k=1

Jktk

k!
=

1
X

k=1

P�1AkPtk

k!
= P�1eAtP

Therefore, if J is exponentially semistable with bounds M,µ, we have that, if x
e

is the
equilbrium point of x under J

keAtPx� Px
e

k = kPeJtP�1Px� Px
e

k  kPkMe�µtkx� x
e

k
so that the point Px converges to the equilibrium Px

e

under A, and since P is invertible
we conclude the proof by nothing that this means that every point has an equilibrium
point under A as well.
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Example 4.10. Suppose that A is the negative of a Laplacian matrix, L, so that A =
�L. It is well known that the Laplacian matrix is symmetric positive semidefinite. In
particular, this implies that A is symmetric, with <�

i

 0 and no modes on the imaginary
axis. Proposition 4.9 now shows that the semigroup generated by A is exponentially
semistable. 4

Note that the example above implies that our definition of semistability encompasses
the network model in [CS16] where a first-order system driven by a Laplacian matrix is
considered. A further motivation for studying semistability is the fact that the second
derivative operator in general is not stable, however, as we shall later see, it is semistable.

Example 4.11. We show that A = d

2

dp

2 is not exponentially stable. By Example 2.20

presented earlier, 0 is an eigenvalue of A, so that S(t) = I on the nontrivial subset
kerA. In particular this implies kS(t)k � kIk = 1 for all t, thus barring any possibility
of exponential stability. 4

Before delving deeper into semistability itself, we explore its relation to other con-
cepts. It is quite clear from the definition that exponential semistability is a weaker
requirement than stability. However, one may still wonder if it is stronger than Lya-
punov stability. The answer is in the a�rmative and the proof is essentially the same
as in the case for exponential stability.

Proposition 4.12. Suppose that A is the infinitesimal generator of an exponentially
semistable semigroup on a Hilbert space X. Then every point x

e

2 kerA is a Lyapunov
equilibrium.

Proof. Let U be any open set of X containing the point x
e

2 kerA. We need to show
that there exists a subset O of X , with S(t)O ✓ U for all t � 0.

To see this, note that since x
e

2 U , and the "-balls form a basis for the norm
topology, U contains at least one of the sets B(x

e

, "), " > 0 and set O = B(x
e

, "/(L+"))
where M is chosen such that kS(t)x � x

e

k  Me�µtkx
e

� xk for some µ > 0. Now, if
x 2 B(x

e

, "/M) we have that

kS(t)x� x
e

k  Me�µtkx
e

� xk <
M

"
e�µt.

Thus for every x 2 O,S(t)x 2 U , which concludes the proof.

The next lemma emphasizes the importance of the generator kernel, the proof of
which shows us that S(t)� S1 has nice stability properties.

Lemma 4.13. If S(t) is an exponentially semistable semigroup the limiting operator
S1 : X ! kerA ⇢ X of S(t), t ! 1 exists, is bounded and idempotent.
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Proof. Consider

kS(t)� S(s)k = sup
kxk=1,x2X

kS(t)x� S(s)xk = sup
kxk=1,x2X

kS(t)x� x
e

� (S(s)x� x
e

)k

 sup
kxk=1,x2X

2Me�µmin(s,t)kx� x
e

k

 sup
kxk=1,x2X

2Me�µmin(s,t)(1 + kx
e

k)

Note that this still depends on the distance from of the origin of the equilibrium point
kx

e

k. To alleviate this, l will establish a uniform bound on the family S(t). Observe
that by assumption of semistability, for each x 2 X

kS(t)xk  kx0k+ kS(t)x� x0k  kx0k+Mkx� x0k
so that sup

t

kS(t)xk < 1 for each x 2 X. By the Banach-Steinhaus theorem this means
that kS(t)k is uniformly bounded, by say M 0. Suppose now that there exists x with
kx

e

k > M 0. Write to arrive at a contradiction

M 0 > kx
e

k = lim
t!1 kS(t)xk  lim

t!1 kS(t)kkxk = lim
t!1 kS(t)k  M 0.

Hence

kS(t)� S(s)k  2Me�µmin(s,t)(1 +M 0)

and so since S(t) 2 B(X) is Cauchy in t, there exists a limiting operator S1 which is
bounded by completeness of B(X). Moreover, S1x = x

e

2 kerA and indeed

0 = kx
e

� x
e

k = kS(t)x
e

� x
e

k = lim
t!1 kS(t)x

e

� x
e

k = kS1x
e

� x
e

k

so that S1x
e

= x
e

. That is, for all x 2 X, S21x = S1x.

Note that the results are anticipated by the proof of the lemma characterizing the
finite-dimensional case, where we had all Jordan blocks converging to 0 except that
corresponding to the kernel. The operator S1 has a particularly nice form when A is
self-adjoint.

Corollary 4.14. Suppose that A is self-adjoint. Then S1 is the orthogonal projection
onto the kernel of A.

Proof. A is self-adjoint if and only if each operator S(t) is self-adjoint. Since S1 is the
limit of a sequence of self-adjoint operators it is also self-adjoint. To sum up, S1 is a
self-adjoint operator satisfying S21 = S1 which precisely means that S1 is an orthogonal
projection and by Lemma 4.13 its image is kerA.

The methods used to prove the above results, such as the Banach-Steinhaus Theorem,
are only necessary due to the infinite-dimensional nature of the state space. We can
perhaps better understand the results by again reverting to the finite-dimensional case.
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Example 4.15. Suppose that A 2 B(Cn) is exponentially semistable and self-adjoint.
Since A is self-adjoint we may write the spectral decomposition of A as

A = UDU⇤

where U is unitary and with D = diag(�1, . . . ,�K , 0, . . . , 0). Further, we know by Propo-
sition 4.9 that the eigenvalues �1, . . . ,�K all have negative real part. Therefore

lim
t!1 eAt = lim

t!1

1
X

k=0

(UDU⇤)ktk

k!
= lim

t!1UeDtU⇤ = U⇡kerDU
⇤ = ⇡kerA

where ⇡kerA is the projection onto the kernel of A, and ⇡kerD the matrix with an identity
block in the bottom right of size dimkerA and zeroes everywhere else.

4
Remark 4.16. As tempted as one may be to define a new, stable, semigroup T (t) =
S(t)� S1, this does not work directly since for 0 6= x 2 kerA

T (0)x = S(0)x� S1x = x� S1x = 0 6= Ix.

The lemma implies that the equilibrium points cannot be too far away from the
initial condition in norm. Indeed, we showed above that kx

e

k  kS1xk, thus allowing
for a uniform bound of kx � x

e

k in terms of kxk. Indeed, not only do we show that
the equilibrium point depends continuously on x, it depends linearly on x, precisely via
the mapping S1. This removes one component of the lack of uniformity problem in
semistability and inspires the following results which gives alternate characterizations of
exponential semistability, useful both in practice and to better understand the concept.
We state this more delicately in the theorem below.

Theorem 4.17. If S(t) is a C0-semigroup with generator A the following are equivalent:

1. S(t) is exponentially semistable.

2. There exists a bounded operator S1 : X ! kerA which is idempotent on kerA and
constants µ,L > 0 such that such that for every x 2 X k(S(t)�S1)xk  Le�µtkxk.

Proof. 1. implies 2. by Lemma 4.13 and since

k(S(t)� S1)xk = kS(t)x� x
e

k  Me�µtkx� x
e

k
= Me�µtkx� S1xk  kI � S1kMe�µtkxk.

so S1 is the desired operator. Conversely, it is easy to see that 2. implies 1. since one
may write

k(S(t)x� S1x)k = k(S(t)� S1)(x� S1x)k  Le�µtkx� S1xk

so S1x is the equilibrium point corresponding to x.

42



Model Reduction of Semistable Infinite-Dimensional Control Systems

There actually exists at least one more characterization of exponential semistability
via a semistable version of the Datko Theorem proved in [HB13]. However, its proof is
rather long and for our purposes the characterization above su�ces. Using the lemma,
we can also finish the previous example and show that the second derivative operator is
actually semistable.

Example 4.18. Recall that the associated semigroup may be represented as a Fourier
sum. I.e. the formula

S(t)x =

Z 1

0
x(q)dq +

1
X

n=1

2e�n

2
⇡

2
t cos(n⇡p)

Z 1

0
cos(n⇡q)x(q)dq

holds. Thus, observing that

S1x = lim
t!1S(t)x =

Z 1

0
x(q)dq

is a constant function, so certainly lies in kerA = {x 2 D(A) | d

2

dx

2 = 0}. We take this as
our equilibrium point x

e

. Then

kS(t)x� x
e

k =

�

�

�

�

�

1
X

n=1

2e�n

2
⇡

2
t cos(n⇡p)

Z 1

0
cos(n⇡q)x(q)dq

�

�

�

�

�


1
X

n=1

2e�n

2
⇡

2
t

�

�

�

�

cos(n⇡p)

Z 1

0
cos(n⇡q)x(q)dq

�

�

�

�

 2e�⇡

2
t

1
X

n=1

�

�

�

�

cos(n⇡p)

Z 1

0
cos(n⇡q)x(q)dq

�

�

�

�

 2e�⇡

2
tkxk

where the last step follows from Bessel’s inequality is applied, realizing that we have
the Fourier cosine expansion of x (save the constant term, which was eliminated by
the equilibrium point). The proof of semistability is completed by observing that x

e

=
S1x so that the above constitutes the required bound of the second characterization of
semistability in Theorem 4.17. 4

Using the preceding arguments we can now show that the invariant model reductions
preserve semistability.

Proposition 4.19. If A is semistable on the Hilbert space X and (⇡, Â) is an invariant
linear model reduction onto V then Â is semistable on V .

Proof. Let v 2 V . First, observe that any v 2 V can, by Lemma 4.3, be written
v = ⇡x = ⇡|x for x = ⇡�1

| v 2 X. Denote the equilibrium point of x by x
e

, which
exists by semistability of S. Then using the second characterization of semistability in
Theorem 4.17

kŜ(t)v � ⇡x
e

k = kŜ(t)⇡x� ⇡x
e

k = k⇡S(t)x� ⇡x
e

k  k⇡kkS(t)x� ⇡x
e

k
 |⇡kLe�µtkxk = |⇡kLe�µtk⇡�1

| vk  k⇡k
k⇡�1

| kLe
�µtkvk.

Hence ⇡x
e

is the desired equilibrium point and the result follows.
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Remark 4.20. The proof above may seem quite trivial but the result actually rests
heavily on Theorem 4.17. To be precise, there is nothing that a priori guarantees that
x
e

is in the image of ⇡�1
| . The theorem allows us to do away with the norm bound on

the V -equilibrium point ⇡x
e

and solely work with x which by assumption lies in the
image of ⇡�1

| .

Observe further that k⇡k
k⇡�1

| k  k⇡|k
k⇡�1

| k  1 so the growth bound is actually the same

for both models.

The reduced model actually preserves more than just semistability. If the original
model is approximately controllable, then so is the reduced model on the reduced state
space V .

Proposition 4.21. Let ⌃(A,B,�) be an approximately controllable control system on
the Hilbert space X and (⇡, Â) be an invariant linear model reduction onto V . Then the
reduced model ⌃(Â, B̂,�) is approximately controllable on the reduced space V .

Proof. Suppose that the reachability subspace of ⌃(A,B,�) is dense in X. Then any
x 2 X can be written as the limit of a sequence of elements in the reachability space

x = lim
n!1

Z

⌧n

0
S(⌧ � s)Bu

n

ds

for ⌧
n

> 0, u
n

2 U . But for any v 2 V , of the model reduction satisfies for some x 2 X

v = ⇡x = ⇡ lim
n!1

Z

⌧n

0
S(⌧ � s)Bu

n

ds = lim
n!1

Z

⌧n

0
⇡S(⌧ � s)Bu

n

ds

= lim
n!1

Z

⌧n

0
Ŝ(⌧ � s)⇡Bu

n

ds = lim
n!1

Z

⌧n

0
Ŝ(⌧ � s)B̂u

n

ds.

We conclude: for every v 2 V there is a sequence of elements in the reachability subspace
of ⌃(Â, B̂,�) that converge to v, i.e., the reachability subspace for the reduced model is
also dense. The interchanges of the limit and integral with ⇡ are justified by that first,
⇡ is bounded, and second by that the integrands are bounded operators.

Having established that this model reduction preserves several desirable structures
of the control system, ⌃, we proceed now first to generalize the notion of a Gramian for
semistable systems. These will later be used to give a formula for the H2-norm di↵erence
between the original and reduced systems.

4.2 The Gramian Revisited

Remark 4.20 above also means that we should not hope to carry out the analysis for
a stable perturbation of A but actually have to deal with the instability directly. One
such way to do this is found in [CKS17] where the authors introduce a network Gramian,
augmented to suit the semistability due to the presence of a driving Laplacian matrix.
However, their method is actually much further reaching, and we define a variation of it
below.
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Definition 4.22. The semistability Gramian of an exponentially semistable system
⌃(A,B,�) is given by

P1 =

Z 1

0
(S(t)� S1)BB⇤(S(t)� S1)⇤ds

where the integral is taken in the sense of Pettis.

Remark 4.23. If A is stable then kerA = {0} then S1 = 0 since 0 is the only equi-
librium point and thus P1 reduces to the ordinary controllability Gramian as defined
earlier.

Lemma 4.24. The semistability Gramian of an exponentially semistable system ⌃(A,B,�)
exists and is bounded; P1 2 B(X).

Proof. Define a family

P
t

=

Z

t

0
(S(s)� S1)BB⇤(S(s)� S1)⇤ds

Using Theorem 4.17 to bound (S(t)�S1) by an exponential growth condition, we obtain
pointwise

kP
t

xk =

�

�

�

�

Z

t

0
(S(s)� S1)BB⇤(S(s)� S1)⇤xds

�

�

�

�


Z

t

0
k(S(s)� S1)BB⇤(S(s)� S1)⇤xkds

 kBk2L2
Z

t

0
e�2µsdskxk = kBk2L2 1� e�2µt

2µ
kxk

 kBk2L2

2µ
kxk.

Observe that the constants L, µ a priori depend on x. More precisely there exists a
pointwise norm bound for P

t

x, x 2 X which however is independent of t. Hence by
Banach-Steinhaus there exists a uniform bound K 2 R for which kP

t

k  K, 8t yielding
kP1k = k lim

t!1P
t

k = lim
t!1 kP

t

k  lim
t!1K = K.

Theorem 4.25. For every x 2 D(A⇤), P1 satisfies the semistability Lyapunov equation

AP1x+ P1A⇤x = �(I � S1)BB⇤(I � S1)⇤x.

Proof. Let x, x0 2 D(A⇤) and observe that, if integrable, we have formally
Z 1

0

d

dt
hB⇤[S(t)� S1]⇤x,B⇤[S(t)� S1]⇤x0idt = �hB⇤(I � S1)⇤x,B⇤(I � S1)⇤x0i
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Moreover, using the fact that dS(t)
dt

= AS(t) = S(t)A,

d

dt
hB⇤[S(t)� S1]⇤x,B⇤[S(t)� S1]⇤x0i = hB⇤A⇤[S(t)]⇤x,B⇤[S(t)� S1]⇤x0i

+ hB⇤[S(t)� S1]⇤x,B⇤A⇤[S(t)]⇤x0i.

Now
Z 1

0
hB⇤A⇤[S(t)]⇤x,B⇤[S(t)� S1]⇤x0idt =

Z 1

0
h[S(t)A]⇤x,BB⇤[S(t)� S1]⇤x0idt

=

Z 1

0
h[S(t)� S1]A]⇤x,BB⇤[S(t)� S1]⇤x0idt

=

Z 1

0
hA⇤x, [S(t)� S1]BB⇤[S(t)� S1]⇤x0idt

=

⌧

A⇤x,
Z 1

0
[S(t)� S1]BB⇤[S(t)� S1]⇤x0dt

�

= hA⇤x, P1x0i

where we used that Lemma 4.13 implies that S1A = 0. Similar computations show

hB⇤[S(t)� S1]⇤x,B⇤A⇤[S(t)]⇤x0i = hP1x,A⇤x0i.

Therefore

hP1x,A⇤x0i+ hA⇤x, P1x0i = �hB⇤(I � S1)⇤x,B⇤(I � S1)⇤x0i.

Since D(A⇤) is dense in X this implies

AP1x+ P1A⇤x = �(I � S1)BB⇤(I � S1)⇤x

for every x 2 D(A⇤). To finish the proof, note that the required integrability to justify
our formal computations follows from

�

�

�

�

d

dt
hB⇤[S(t)� S1]⇤x, [S(t)� S1]⇤x0i

�

�

�

�

 ��hB⇤A⇤[S(t)]⇤x,B⇤[S(t)� S1]⇤x0i��

+
�

�hB⇤[S(t)� S1]⇤x,B⇤A⇤[S(t)]⇤x0i��
 kA⇤xkkx0kkB⇤k2L2e�2µt

+ kA⇤x0kkxkkB⇤k2L2e�2µt

where we used the second characterization of semistability to obtain a pointwise bound
on S(t)� S1.
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4.3 H2-Error Estimates

The aim is to obtain error estimates between the reduced and original model under the
H2-norm. Recall that the H2-norm of a system ⌃ = (A,B,C) with impulse response
h(t) = CS(t)B is given by

k⌃kH2 =

s

Z 1

0
tr(hh⇤)dt. (6)

Observe that there are two obvious ways in which the integral (6) can fail to be finite.
Either h(t) does not decay at infinity or the trace does not exist, i.e., h(t) is not Hilbert-
Schmidt (the reader is referred to the appendix for a brief introduction of this class).
The problem that h(t) might not decay at infinity mainly is due to the semistability of
S(t). To understand this, note that the fact that the kernel of A is nontrivial means that
S(t) has fixed points for all t and in particular its limit is non-zero. It should also be said
that this is not an infinite-dimensional problem but similar issues may arise in a finite-
dimensional setting. On the other hand, when A is Riesz Spectral, the non-existence of
the trace corresponds to the sequence of singular values of A not decaying fast enough
and this issue is purely infinite-dimensional.

Since we are mainly concerned with estimating errors between two system we will
not have to demand stability of the system, but simply that the original and reduced
systems synchronize at infinity. One might say that the model reduction respects the
equilibria of the original system, so that both models agree asymptotically. We give
su�cient conditions for this below.

Proposition 4.26. Let ⌃(A,�,�) be an exponentially semistable system and suppose
that (⇡,�, Â) is an invariant model reduction of this system with �⇡ restricting to the
identity on kerA. Then for all initial conditions kS(t)x� �Ŝ(t)⇡xk ! 0.

Proof. By commutativity Ŝ(t)⇡x = ⇡S(t)x. So we may write for any x 2 X with
equilibrium point x

e

2 kerA

kS(t)x� �⇡S(t)xk = k(S(t)x� x
e

)� (�⇡S(t)x� x
e

)k
= k(S(t)x� x

e

)� (�⇡S(t)x� �⇡x
e

)k
 kI � �⇡kMe�µtkx� x

e

k

proving the result.

The synchronization result above guides our intuition for the hypotheses necessary
for the main result, which we state immediately below.

Theorem 4.27. Suppose that ⌃(A,B,C) is a distributed parameter system on a sepa-
rable Hilbert space X where A generates a semistable C0-semigroup S(t) that B and C
are bounded and that (�,⇡, Â) is an invariant model reduction thereof where �⇡ restricts
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to the identity on kerA. Then if (I��⇡)S(t) is Hilbert-Schmidt the model error is given
by

k⌃� ⌃̂k =

r

tr
⇣

C(I � �⇡)P0(I � �⇡)⇤C⇤
⌘

where P0 is the semistability Gramian of ⌃ which for x 2 D(A⇤) satisfies

APx+ PA⇤x = �(I � S1)BB⇤(I � S1)⇤x.

Proof. Write

h
I

(t)� ĥ
I

(t) = CS(t)B � C�Ŝ(t)B̂ = CS(t)B � C�Ŝ(t)⇡B

= CS(t)B � C�⇡S(t)B = C(I � �⇡)S(t)B.

Thus, since (I � �⇡)S(t), is Hilbert-Schmidt and since B and C are bounded it follows
that also h

I

(t)� ĥ
I

(t) is Hilbert-Schmidt. Now

k⌃� ⌃̂k2H2
=

Z 1

0
tr
⇣

[h
I

(t)� ĥ
I

(t)][h
I

(t)� ĥ
I

(t)]⇤
⌘

dt

=

Z 1

0

1
X

i=1

D

(h
I

(t)� ĥ
I

(t))⇤e
i

, h
I

(t)� ĥ
I

(t))⇤e
i

E

dt

=
1
X

i=1

Z 1

0

D

(h
I

(t)� ĥ
I

(t))⇤e
i

, h
I

(t)� ĥ
I

(t))⇤e
i

E

dt,

by the Monotone Convergence Theorem

=
1
X

i=1

Z 1

0
h(C(I � �⇡)S(t)B)⇤ e

i

, ((I � �⇡)S(t)BC) e
i

i dt

=
1
X

i=1

Z 1

0
he

i

, C(I � �⇡)[S(t)� S1]BB⇤[S(t)� S1]⇤(I � �⇡)⇤C⇤e
i

i dt

since by the lemma above (I � �⇡)S1 = 0. Observe also that the use of the Monotone
Convergence Theorem is justified by applying it to the real valued sequence of functions

n

X

i=1

D

(h
I

(t)� ĥ
I

(t))⇤e
i

, h
I

(t)� ĥ
I

(t))⇤e
i

E

: [0,1) ! R.

The limit of this sequence exists by the Hilbert-Schmidt assumption, and so is a well-
defined function. Next, we want to move the integral inside of the inner product. To
do this, we interpret the expression as an integral in the sense of Pettis and then in the
next step use that this integral commutes with bounded operators, so as to find that this
equals (see appendix A.2 for the definition of the Pettis integral and further references),

1
X

i=1

⌧

e
i

,

Z 1

0
(I � �⇡)C[S(t)� S1]BB⇤[S(t)� S1]⇤dt(I � �⇡)⇤C⇤e

i

�

=
1
X

i=1

⌧

e
i

, (I � �⇡)C

Z 1

0
[S(t)� S1]BB⇤[S(t)� S1]⇤dt(I � �⇡)⇤C⇤e

i

�

.
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Therefore,

k⌃� ⌃̂k2H2
= tr

✓

C(I � �⇡)

Z 1

0
[S(t)� S1]BB⇤[S(t)� S1]⇤dt(I � �⇡)⇤C⇤

◆

= tr

 

C(I � �⇡)P1(I � �⇡)⇤C⇤
!

where P1 is the semistability Gramian defined in Definition 4.22. The operator Lyupunov
equation for P1 was shown to hold in Theorem 4.25.

Su�cient conditions for the impulse responses to be Hilbert-Schmidt can be based
on constraining the input operator B and the output operator C to be of finite rank,
see [CS01]. It is also interesting to note that one recovers a familiar identity if one
considers a trivial model reduction ⇡ = 0 one obtains the H2-norm of ⌃ itself whenever
A is exponentially stable.

Corollary 4.28. Suppose that ⌃(A,B,C) is a distributed parameter system on a sepa-
rable Hilbert space X where A generates an exponentially stable C0-semigroup S(t) and
that B and C are bounded. Then if S(t) is Hilbert-Schmidt the model error is given by

k⌃k2H2
=

p
trCPC⇤

where P is the controllability Gramian of ⌃ which for x 2 D(A⇤) satisfies

APx+ PA⇤x = �BB⇤x.

We conclude this section by showing that the heated bar example with eigenvalue
truncation satisfies the hypotheses of Theorem 4.27 and then use that Theorem to com-
pute the error between a truncated series and the original model.

Example 4.29. Consider again the example with the heated bar on [0, 1] with semigroup

S(t)x =

Z 1

0
x(q)dq +

1
X

n=1

2e�n

2
⇡

2
t cos(n⇡p)

Z 1

0
cos(n⇡q)x(q)dq.

which can equivalently be written

S(t)x = hx, 1i+
1
X

n=1

e�n

2
⇡

2
thx(·), cos(n⇡·)i cos(n⇡·).

The Hilbert-Schmidt norm can be estimated as

tr(S⇤S) =
1
X

n=0

hS cos(n⇡x), S cos(n⇡x)i+
1
X

n=1

hS sin(n⇡x), S sin(n⇡x)i

 1 +
1
X

n=1

e�2n2
⇡

2
t < 1
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for each t � 0, and so S(t) is Hilbert-Schmidt. Moreover, it was previously shown that
mode truncation is an invariant model reduction. Since the eigenvalue � = 0 corresponds
to kerA, if the 0-eigenvalue is included in the projection set I then one can use ⇡ equal
to the projection on span(cos(n

k

⇡p))
k2I ⇢ X and � the inclusion into X.

Since we know the solution of the heat equation and if we further suppose that
the input operator is B = I, we can explicitly compute the semistability Gramian.
Using that the second derivative operator and its associated semigroup are self-adjoint
operators, we find

P1 =

Z 1

0
[S(t)� S1][S(t)� S1]⇤dt =

Z 1

0
[S(t)� S1][S(t)� S1]dt

=

Z 1

0
S(t)S(t)� 2S1 + S1dt =

Z 1

0
S(t)S(t)� S1dt.

Let us examine closer the choice of the model reduction ⇡ = ⇡
N

which projects onto the
closure of the span of the eigenvectors {0,�1, . . . ,�N} and � the asscoiated inclusion.
Then

(I � �⇡)P1(I � �⇡) = (I � �⇡)

Z 1

0
S(t)S(t)� S1dt(I � �⇡)

=

Z 1

0
[(I � �⇡)S(t)S(t)(I � �⇡)]� S1dt =

Z 1

0
Ŝ(t)Ŝ(t)� S1dt

using first that the Pettis integral commutes with bounded operators, second that �⇡ is
an identity on kerA and finally the definition of an invariant model reduction. Observe
now that

(I � �⇡)S(t)x =
1
X

n=N+1

e�n

2
⇡

2
thx(·), cos(n⇡·)i cos(n⇡·)

Since Ŝ(t) = Ŝ⇤(t) also S̄(t) = S̄⇤(t), and so the trace is computed as

tr((I � �⇡)P1(I � �⇡)) = tr

Z 1

0
S̄⇤(t)S̄(t)dt� S1dt

=

Z 1

0
tr(S̄⇤(t)S̄(t)dt� S1)dt

=

Z 1

0

1
X

n=N+1

kS(t)e
n

k2dt = 2

Z 1

0

1
X

n=N+1

ke�n

2
⇡

2
t cos(n⇡·)k2.

If we compute

ke�n

2
⇡

2
t cos(n⇡·)k2 =

Z 1

0

�

�

�

e�n

2
⇡

2
t cos(n⇡q)

�

�

�

2
dq

= e�2n2
⇡

2
t

Z 1

0
| cosn⇡q|2dq =

e�2n2
⇡

2
t

2
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we can insert this into the earlier expression to obtain, via Theorem 4.27,

k⌃� ⌃̂kH2 =

Z 1

0

1
X

n=N+1

e�2n2
⇡

2
t =

1
X

n=N+1

Z 1

0
e�2n2

⇡

2
t

=
1
X

n=N+1

1

2⇡2n2
.

We have thus obtained an exact expression for H2-error of our main example. 4
In fact, if we analyze the computations in Example 4.29 we notice that the procedure

is rather general, as we have really only used Riesz spectral properties save for the final
explicit expression. Thus, the reasoning applies at least to the class of self-adjoint
Riesz spectral operators which generate exponentially semistable semigroups. It can be
imagined that this therefore is a quite useful procedure also more generally.

Observe also that the finiteness of the error in the Riesz case depends crucially on
the eigenvalues �

n

and the convergence of a series of the form

X

n2J

1

�
n

.

Heuristically then, in order for the H2-error to be finite, we need that the real parts of
the eigenvalues of the generator tend to �1 su�ciently fast.

Remark 4.30. Presented di↵erently, the procedure in Example 4.29 gives a norm bound
of the integrated Hilbert-Schmidt norm of a semigroup and an approximating sequence.
If we phrase this in numerical PDE language, we have above constructed an error bound
for an eigenvalue based discretization scheme and are automatically guaranteed its con-
vergence in Hilbert-Schmidt norm by the semistability of the associated infinitesimal
generator. Given that the Hilbert-Schmidt norm is stronger than, for instance, the ordi-
nary operator norm, this is a rather strong statement about the discussed convergence
(and we have even considered an integrated version thereof).

In the next section we give further results which may hopefully be useful in applied
computations.

4.4 Computational Considerations

Theorem 4.27 gives the model error in terms of the trace of the semistability Gramian
introduced in definition 4.22. However, as the solution to the associated Lyapunov
equation is not necessarily unique, the only computational tool we have provided thus
far requires the explicit computation of the Gramian which in turn necessitates the
computation of the Semigroup S(t). If the objective is to apply model reduction to
a partial di↵erential equation, this amounts to actually solving the partial di↵erential
equation, which may well be the very task one intended to avoid. Here, we further
explore the Lyapunov approach for computation of the Gramian.
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Lemma 4.31. Assume that P1 is a self-adjoint solution of the semistability Lyapunov
equation

hP1x,A
⇤x0i+ hA⇤x, P1x

0i = �hB⇤(I � S1)⇤x,B⇤(I � S1)⇤x0i

where A is the infinitesimal generator for an exponentially semistable C0-semigroup on
a separable Hilbert space, X, and suppose x, x0 2 D(A⇤). If P2 is another self-adjoint
operator, then each of the statements below implies the next. If A in addition is self-
adjoint, all the statements are equivalent.

1. P2 also satisfies the semistability Lyapunov equation.

2. � = P2 � P1 satisfies for each x, x0 2 D(A⇤)

hS1x,�S1x0i = hx,�x0i.

3. There exists an operator ⇧ : X ! X that ⇧ maps onto a subspace W of kerA⇤

such that the solutions satisfy the relation P2 = P1 +⇧.

Proof. We first show that 1 ) 2. Let P2 be another self-adjoint solution of the Lyapunov
equation and consider � = P1 �P2. For x, x0 2 D(A⇤), it follows by direct computation
that

hx,�Ax0i+ hAx,�x0i = 0.

If we let x = S(t)x0, x0 = S(t)x0, this can be rewritten as

0 = hS(t)x0,�AS(t)x00i+ hAS(t)x0,�S(t)x00i
= hS(t)x0,� d

dt
S(t)x00i+ h d

dt
S(t)x0,�S(t)x00i

=
d

dt
hS(t)x0,�S(t)x00i.

Integrating this equation from 0 to 1 we obtain

hS1x0,�S1x00i = hx0,�x00i.

Now 2 ) 3. To see this, we may simply take ⇧ = �, since

hS1x,�S1x0i = hx,�x0i
,hS⇤

1�S1x, x0i = h�x, x0i

and since x, x0 2 D(A⇤) where D(A⇤) is dense in X, we indeed have for any x̄ 2 X

�x̄ = S⇤
1�S1x̄ = S⇤

1(�S1x̄) 2 kerA⇤.
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Finally, 3 ) 1 in the case A is self-adjoint. This follows since by construction of ⇧
we have geometrically that ⇧ maps to the kernel of A⇤, so A⇧ = A⇤⇧ = 0 since A is
self-adjoint. But then also 0 = (A⇧)⇤ = ⇧⇤A⇤. Direct computation now shows that

hP2x,A
⇤x0i+ hA⇤x, P2x

0i = h(P1 +⇧)x,A⇤x0i+ hA⇤x, (P1 +⇧)x0i
= hIx, (P1 +⇧)⇤A⇤x0i+ h(P1 +⇧)⇤A⇤x, Ix0i
= hIx, (P1)

⇤A⇤x0i+ h(P1)
⇤A⇤x, Ix0i

= hP1x,A
⇤x0i+ hA⇤x, P1x

0i
= �hB⇤(I � S1)⇤x,B⇤(I � S1)⇤x0i.

Using this lemma, we can give an explicit method for computation of the semistability
Gramian without explicit reference to the semigroup whenever the generator is self-
adjoint.

Theorem 4.32. Let A be the self-adjoint exponentially semistable generator of a C0-
semigroup S(t) on a separable Hilbert space, X, and let B be bounded. Suppose further
that P is an arbitrary solution to the semistability Lyapunov equation

hPx,A⇤x0i+ hA⇤x, Px0i = �hB⇤(I � S1)⇤x,B⇤(I � S1)⇤x0i
then the semistability Gramian can be computed as

P1 = P � S1P.

In particular, P1 is the unique solution to the semistability Lyapunov equation satisfying
the constraint

P1 = (I � S1)P1.

Proof. Observe that

S1S(t) = lim
s!1S(s)S(t) = lim

s!1S(t+ s) = S1

and by Lemma 4.13 we already have S21 = S1. This implies that

S1[S(t)� S1] = 0.

which in turn implies that

S1P1 = 0.

If P is any other solution to the semistability Lyapunov equation, substituting the third
characterization of Lemma 4.31 yields

S1(P +⇧) = 0
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or

S1⇧ = �S1P

and since S1 acts identically and is idempotent on im⇧ ✓ kerA⇤ = kerA we obtain

⇧ = �S1P.

Remark 4.33. Since A is self-adjoint it follows that so is S1 which means that S1
actually is the projection onto the kernel of A. Therefore I�S1 is in turn the projection
onto the complement of the kernel of A so that the semistability Gramian actually is a
minimal solution in norm; kP1k  kPk for all solutions P of the semistability Lyapunov
equation since kS1k  1.

Theorem 4.32 is actually quite strong as it does not at all depend on the restrictive
assumptions made about the structure of the model reduction in Theorem 4.27. Its
significance here is that it allows us to compute the model error in Theorem 4.27 without
explicit mention of the semigroup S(t). Instead one may apply the following program:

1. Compute the kernel of A.

2. Find an arbitrary solution, P , of the semistability Lyapunov equation.

3. Apply the projection onto the orthogonal complement of the kernel of A according
to P1 = (I � S1)P .

4. Compute the trace as in Theorem 4.27.

Observe that S1 is known without computing S(t), since, if A is self-adjoint, it is just
the projection onto the kernel of A. We also wish to add a disclaimer; by no means
we suggest that the solution of the operator Lyapunov equation to be particularly easy.
What we are saying is that the method proposed above circumvents the computation of
the semigroup which typically involves solving a partial di↵erential equation for arbitrary
initial conditions.

Remark 4.34. The lemma and theorem in this subsection are an adaption of corre-
sponding results in [CS16] which only applies to finite-dimensional systems where A is
the negative of a Laplacian matrix of a graph which is semistable with dimkerA = 1.
By reinterpreting their proofs in geometric language, we allow for arbitrarily large in-
stability, possibly dimkerA = 1 as long as A generates a semistable C0-semigroup.
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5 Discussion and Conclusion

In this thesis we extended the classical trace-H2 formula to infinite-dimensional systems
and have applied this to a particular class of model reductions of exponentially semistable
systems. We have also extended the characterization of the Gramian, P1, appearing
in this formula to an operator-theoretic setting as the solution of a Lyupunov equation
and managed to uniquely identify this solution even in the case where the system under
consideration is only exponentially semistable. Moreover, this class of model reductions
seems suitable for engineering applications as these reductions preserve both our notion
of controllability and stability. Throughout the thesis, we have used the second derivative
operator as an example. This has allowed us to also uncover an intresting connection
between model reduction of infinite-dimensional control systems and numerical schemes
for partial di↵erential equations, see Example 4.29 and the remark following it.

The main drawback of the theory presented above is that the class of invariant model
reductions is not as general as one could hope. For instance, the clustering projection
[CKS17] was seen to not be included in this class. The main reason for this is that both
here and in the article by Cheng, Kawano and Scherpen, the derivation of the trace for-
mula involved specific properties of the structure of the Laplacian matrix and its relation
to their model reduction technique in terms of the nodes of the graph that particular
Laplacian represented. Since we do not have a particular structure for our operators,
other than that they are semistable, this structure has to be obtained elsewhere, and in
this case the choice was made to impose it through the model reduction and its interac-
tion with the kernel of the driving operator. This does, however, beg the question if more
general results could be obtained in terms of the class of model reductions used. Given
the existence of formulas for additive and multiplicative perturbations of semigroups we
deem this likely and thus think that our results should be seen merely as a first step, or
an indication, toward these hypothetical, more general results. For such perturbation
results, see [EN99].

5.1 Ideas for Further Research

Alternately, one may be interested in considering operators which have some structure,
similar to that of a Laplacian matrix, such as the class of elliptic partial di↵erential
operators generated by covariance matrices as A = �r ·C ·r or similar, where C � 0 is
a covariance matrix for some n-dimensional process. If one identifies each basis vector
in the ambient Euclidean space for the covariance matrix with a physical, or financial
property, such as the value of a stock, one could perhaps again apply a clustering-like
model reduction where stocks that are highly correlated with each other are bundled into
an index (or cluster). Processes driven by such generators are not without interest, since
they occur frequently in the stochastic di↵erential equation literature as the generators
of certain Itô di↵usions, see in particular the discussion of the Feynman-Kac Theorem
in [Øks03]. Such processes are abundant in Financial Mathematics, which may serve as
further motivation to endeavour in this direction.

If one instead considers the optimal control of such processes, Itô di↵usions, one
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obtains a partial di↵erential equation known as the Hamilton-Jacobi-Bellman equation
which is somewhat reminiscent in structure of those considered here but is, however,
nonlinear. This in itself precludes many of the arguments used in our work to be trans-
lated directly as they rely much on linear structures, such as the Lyapunov equation.
Nevertheless, when phrased appropriately, it can be shown that the associated opti-
mal control problem has a nonlinear as semigroup infinitesimal generator, known as the
Hamiltonian of that problem, so perhaps there is some hope for generalization after all.
A nonlinear extension of the theory presented here would thus allow for treatment of
the Hamilton-Jacobi-Bellman equation, which notoriously su↵ers from the curse of di-
mensionality (see [Bel57]) and so reduction of this class of partial di↵erential equations
would be of applied interest. The semigroup approach to optimal control of di↵usions is
discussed in detail in [FS06].

We also think that Example 4.29 illustrates interesting connections to the numerical
analysis of partial di↵erential equations, where Hilbert-Schmidt norms of approxima-
tions to PDEs have already been considered in for instance [KLS15] and [Ros91]. This
connection may be interesting to investigate further.

For no other reason than that the author’s interests currently are geared toward par-
tial di↵erential equations, we have focused on these as the main application of distributed
parameter control. Another class of problems which we have largely ignored in this the-
sis are those concerned with delay di↵erential systems of the form ẋ(t) = Ax(t� ⌧)+Bu
for some ⌧ > 0. One may imagine that the lag ⌧ means that one has to expand the
state space to include a value for each t in an interval of length ⌧ , making it infinite-
dimensional. It is shown in [CZ12] that these also fall under the class of C0-semigroup
distributed parameter control systems so that our results apply. Results much remi-
niscent of ours for this subclass, but avoiding the semigroup approach, can be found
[JVM11] and [JDM13] where the authors also give a numerical scheme to solve the asso-
ciated Lyapunov equation. It would certainly be interesting to investigate in more detail
how our methods could apply to their problems or perhaps how their methods could be
extended to the more general situation presented here.
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A Background in Functional Analysis

As this thesis deals extensively with operators on normed linear spaces, we will want
to make precise the terminology used with respect to these. Our brief overview of the
functional analytic topics treated here is mostly inspired by [Rud91] and [RS72]. [Kat13]
is also used as a more advanced reference. For introductory material we mainly refer to
[Fri70] and [Lue97].

A normed linear space (X, k ·k) is a vector space X equipped with a norm k ·k. Recall
that a normed linear space is complete if every Cauchy Sequence is indeed a convergent
sequence. If the normed linear space is complete with respect to the norm topology it is
known as a Banach space, and if it in addition to being complete furthermore is equipped
with an inner product h·, ·i which satisfies h·, ·i = k · k2 it is a Hilbert space. Sometimes
we will have to deal with several di↵erent normed linear spaces simultaneously which
are somehow related and if the norm is not clear from context, we shall equip it with
the ambient space as a subscript, k · k

X

and similarly for Hilbert spaces.

Definition A.1. By an operator between normed linear spaces, X,Y , we shall mean a
linear map, defined on a subspace D(A) ✓ X, A : D(A) ! Y .

Thus in its most general form presented here, an operator will not be defined on the
entire space, nor shall it be bounded, which entails:

Definition A.2. An operator A : X ! Y is bounded if its B(X,Y )�norm is finite.
This norm is defined by

kAkB(X,Y ) = sup
x2X,kxk=1

kAxk
Y

.

It can be shown that B(X,Y ), the space of all bounded operators defined on the
entire space X and codomain Y , constitutes a Banach space in its own right under the
norm above, see Chapter 4.4 in [Fri70]. Note that if at least one of two operators A,B is
unbounded, then operator addition and multiplication have to be done with great care.
The natural domains are

D(A+B) = D(A) \D(B),

D(AB) = {x 2 D(B) : Bx 2 D(A)}.
Under these hypotheses the associative laws of addition and multiplication hold. How-
ever, for operators A,B,C, as for the distributive laws, one only has

(A+B)C = AC +BC,

C(A+B) ⇢ CA+ CB,

where the abuse of notation A ⇢ B means that A = B on D(A) ⇢ D(B). One also
says that B is an extension of A. A more detailed discussion is found in Chapter 13 of
[Rud91]. Unfortunately, boundedness is a condition far too strong for most di↵erential
operators so these considerations cannot be forgone. It turns out however, that a weaker,
yet highly useful condition is more often satisfied.
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Definition A.3. Let X,Y be normed linear spaces and A : D(A) ✓ X ! Y a linear
operator. The graph of A, G(A) is the set {(x,Ax) | x 2 D(A)}. A is then said to be
closed if G(A) is a closed subset of X ⇥ Y in the topology generated by k(x, y)k

X⇥Y

=
kxk

X

+ kyk
Y

.

Similarly, one can define h·, ·i
X⇥Y

= h·, ·i
X

+ h·, ·i
Y

. We also observe that it immedi-
ately follows by the Closed Graph Theorem (Chapter 4.6 in [Fri70]) that an operator A is
bounded if and only if D(A) = X and A is closed. This again illustrates the importance
of the domain when considering operators in general.

Definition A.4. Suppose that A : X ! X is an operator and that D(A) is dense in X.
Then one defines the adjoint of A, as the operator A⇤ defined on

D(A⇤) = {y 2 X | 9y⇤ 2 X for which hAx, yi = hx, y⇤i, 8x 2 X}.
The adjoint is then defined by A⇤y = y⇤ where y⇤ satisfies the above. To be precise, A⇤

satisfies hAx, yi = hx,A⇤yi for all y 2 D(A⇤).

If A = A⇤ and D(A) = D(A⇤) then one says that A is self-adjoint. The adjoint and
graph of A are intimitely related.

Lemma A.5. Suppose that A is a densely defined operator on A. Then G(A⇤) =
[JG(A)]? where J : X ⇥X ! X ⇥X is defined by J(x, y) = (�y, x). In particular, if
A is closed then X ⇥X = [JG(A)]�G(A⇤).

Proof. Observe that the following statements are equivalent:

• (y, y⇤) 2 G(A⇤).

• (Ax, y) = (x, y⇤) for every x 2 D(A).

• (�Ax, x) ? (y, y⇤) for every x 2 D(A).

• (y, y⇤) 2 [J(G(A)]?.

The second statement follows from the first since J2 = �I so that J is unitary and since
A is closed G(A) is a closed subset of X ⇥X, X ⇥X can be written as an orthogonal
direct sum.

The above lemma is extremely important, and in one way or another underpins each
of the properties of the adjoint as established in the next lemma.

Lemma A.6. Suppose that A is a densely defined operator on X and suppose that
B 2 B(X). Then:

1. If A is closed then so is A⇤ and furthermore D(A⇤) is dense in X.

2. If A is bounded so is A⇤.

3. (A+B)⇤ = A⇤ +B⇤ with domain D((A+B)⇤) = D(A⇤).
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4. (BA)⇤ = A⇤B⇤ with domain D((BA)⇤) = D(A⇤).

5. If A�1 2 B(X) then (A⇤)�1 2 B(X) and (A⇤)�1 = (A�1)⇤.

Proof. 1. Let z ? D(A⇤). We want to show that this implies z = 0. To see this, for
y 2 D(A) we have hz, yi = 0 and so

h(0, z), (�T ⇤y, y)i = 0.

But then (0, z) 2 [JG(A⇤)]? = G(A) which means that z = A(0) = 0 as required.

2. Recall

D(A⇤) = {y 2 X | 9y⇤ 2 X for which hAx, yi = hx, y⇤i, 8x 2 X}.

Now, since A is bounded, hA·, yi is a bounded linear functional and the existence
of such a y⇤ follows by the Riesz Representation Theorem (see [Fri70]) for every
y 2 X. Thus D(A⇤) = X and again since A is bounded it is certainly closed, and
thus A⇤ is also closed by the first point. We have shown that A⇤ is closed with
domain X so it is bounded (by the Closed Graph Theorem).

3. Suppose 9y, y⇤ 2 X with h(A+ T )x, yi = hx, y⇤i for all x 2 X. In this case

hAx, yi = hx, y⇤ �B⇤yi

and so D((A+B)⇤) ⇢ D(A⇤) and (A+B)⇤ = A⇤ +B⇤ on D(A⇤). The argument
can be reversed for the other inclusion.

4. Without reference to boundedness of B we can obtain A⇤B⇤ ⇢ (BA)⇤. Namely if
x 2 D(BA) and y 2 D(A⇤B⇤) we get

hAx,B⇤yi = hx,A⇤B⇤yi.

As x 2 D(A) and B⇤y 2 D(B⇤) we find

hBAx, yi = hAx,B⇤yi

and so, since Ax 2 D(B) and y 2 D(B⇤), we obtain

hBAx, yi = hx,A⇤B⇤yi

proving the first inclusion.

If B is bounded, one obtains D(B⇤) = X from which

hAx,B⇤yi = hBAx, yi = hx, (BA)⇤yi

proving that also (BA)⇤ ⇢ A⇤B⇤.
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5. If A�1 2 B(X) by the second statement also (A�1)⇤ 2 B(X). Now for x, y 2 X

h((A�1)⇤A⇤x, yi = hA⇤x,A�1yi = hx,AA�1yi = hx, yi.

Since this holds for every x, y 2 X, we have that (A⇤)�1 = (A�1)⇤ 2 B(X).

The lemma makes computation with unbounded operators easier. Using it, we will
now give an example of a closed and self-adjoint operator which is neither bounded nor
has an inverse.

Example A.7. Let X = L2[0, 1] and define A = d

2

dp

2 with

D(A) =
n

x 2 L2[0, 1]
�

�

�

x,
dx

dp
2 AC[0, 1],

d2x

dp2
2 L2[0, 1],

dx

dp
(0) =

dx

dp
(1) = 0

o

where AC[0, 1] is the space of absolutely continuous functions on [0, 1]. A is not bounded,
since for the sequence

x
n

=
cos(nx)

k cos(nx)k
we have kx

n

k = 1 but kAx
n

k = n2 for all n by construction. It is also not too hard to
see that A does not have an inverse, since {0} 6= span(1) = kerA.

Nevertheless, we can construct an inverse of A+ I as follows. Define on X,

Bx(p) =

Z

p

0
g(p, q)h(q)dq +

Z 1

p

g(q, p)h(q)dq where

g(p, q) = cot(1) cos(p) cos(q) + sin(q) cos(p).

It is easy to see that this integral opeartor is in B(X). Now, defining the function
y(p) = Bx(p), we obtain

dy

dp
(p) =

Z

p

0
[cos q cos p� cot(1) cos(q) sin(p)]x(q)dq

�
Z 1

p

[sin(q) sin(p) + cot(1) cos(q) sin(q)]x(q)dq.

After a second round of di↵erentiation, we are left with

d2y

dp2
(p) = x(p)� y(p).

In particular (A + I)B = I and so B is the inverse of A + I. Since B is bounded, it is
also closed. Moreover, the graph of B is topologically equivalent to that of its inverse,
so the graph of A+ I is also closed. Finally, the class of closed operators is stable under
continuous perturbations and so A = A+ I � I is also closed.

60



Model Reduction of Semistable Infinite-Dimensional Control Systems

Moreover, we can compute the adjoint of (I +A)�1. Namely

h(I +A)�1x, yi

=

Z 1

0

Z

p

0
g(p, q)x(q)dqy(p)dp+

Z 1

0

Z 1

x

g(q, p)x(q)dqy(p)dp

=

Z 1

0

Z 1

q

g(p, q)x(q)y(p)dqdp+

Z 1

0

Z

q

0
g(q, p)x(q)y(p)dqdp

=

Z 1

0
y(p)

Z 1

q

g(p, q)x(q)dqdp+

Z 1

0
y(p)

Z

q

0
g(q, p)x(q)dqdp

=

Z 1

0
y(p)

Z 1

q

g(p, q)x(q)dqdp+

Z 1

0
y(p)

Z

q

0
g(q, p)x(q)dqdp

= hx, (I +A)�1yi.

Since (I + A)�1 is bounded, this is su�cient to conclude that (I + A)�1 is self-adjoint.
It follows that also (I +A)⇤ = I +A and thus also A = A⇤. 4
Remark A.8. Throughout this thesis, this example for an operator will be a reoccuring
theme. It should also be noted that there is essentially nothing stopping us from using
its higher dimensional analogue, the Laplace operator, except that this would force us
to consider Sobolev spaces explicitly. Indeed, the natural domain for both d

2

dt

2 and the
Laplace operator is a Sobolev space called H2. However, when the ambient Euclidean
space has dimension 1, the characterization of D(A) is also possible since absolute conti-
nuity is su�cient for almost everywhere di↵erentiability and allows us to bypass Sobolev
space theory which we do not wish to treat in this thesis. More about this can be found
in Chapter 5 of [Eva98] and Chapter 7 of [GT15].

A.1 Elements of Spectral Theory

Definition A.9. If X is a normed linear space, and A an operator on X, one makes
the following definitions.

• The resolvent set of A, denoted ⇢(A) is the set of � 2 C such that �I � A has
a bounded inverse. In this case R(�;A) = (�I � A)�1 is known as the resolvent
operator of A.

• The spectrum of A, denoted �(A) is the complement of the resolvent set. That is,
� 2 �(A) i↵ �I �A does not have a bounded inverse.

The following properties of the resolvent are useful in computations.

Lemma A.10. The resolvent operator has the following properties:

1. For µ,� 2 ⇢(A), one has R(µ;A)�R(�;A) = (��µ)R(�;A)R(µ;A). In particular
R(�;A), R(µ;A) commute.
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2. R(�;A)⇤ = R(�̄;A⇤).

Proof. 1. Write

R(µ;A)�R(�;A) = R(µ;A)[A� �I]R(�;A)�R(�;A)[A� µI]R(µ;A)

= (�� µ)R(�;A)R(µ;A)

since R(�;A) commutes with A� �I for any � in the resolvent set by definition of
the resolvent set.

2. This is an immediate consequence of Lemma A.6, points 3 and 5.

In contrast to the resolvent, the spectrum of an operator is in general anything but
nice. Unlike the finite dimensional situation, there are several ways in which an element
of C can fail to be in the resolvent set and not all such � in the spectrum are eigenvalues.

Definition A.11. If � 2 �(A), one makes the following distinctions.

1. If �I � A has dense range and (�I � A)�1 exists but is unbounded then � is said
to lie in the continuous spectrum of A, �

c

(A).

2. If (�I � A)�1 exists but its domain is not dense in Y , then � is said to lie in the
residual spectrum of A, �

r

(A).

3. If �I �A fails to be injective, � lies in the point spectrum of A,�
p

(A).

The point spectrum of A is often referred to as the set of eigenvalues of A and it
is clear that � 2 �

p

if and only there exists x 6= 0, such that �Ix � Ax = 0. In this
case, x is known as the eigenvector associated to �. When X is a function space and
A a di↵erential operator, the eigenvectors are also sometimes known as eigenfuntions.
Returning to our standard example, we characterize the eigenvalues and eigenvectors of
the second derivative operator on [0, 1] below.

Example A.12. Consider again X = L2[0, 1] and A = d

2

dp

2 with

D(A) =
n

x 2 L2[0, 1]
�

�

�

x,
dx

dp
2 AC[0, 1],

d2x

dp2
2 L2[0, 1],

dx

dp
(0) =

dx

dp
(1) = 0

o

.

Now, v is an eigenvector i↵ d

2
v

dp

2 = �v. This is just an ordinary di↵erential equation for

v and its solutions satisfying v 2 D(A) are �
n

= �n2⇡2, v(p) = cos(n⇡p) which thus
constitute the eigenvalues and eigenvectors of the second derivative operator. 4

In the sequel, we will need further properties of the resolvent, in particular, as we
will later show, that the Laplace transform of a strongly continuous semigroup coincides
with the resolvent of its generator and so statements concerning the resolvent translate
directly to the frequency domain analysis of strongly continuous semigroups. Above all,
the resolvent operator is highly regular, and enjoys an analyticity property similar to
the function 1

1�x

known from complex analysis.
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Lemma A.13. For any closed operator A, the resolvent set ⇢(A) is open and on ⇢(A)
the resolvent R(�;A) has a power series expansion. Furthermore, the resolvent is holo-
morphic thereon in the sense that its weak derivative exists and satisfies

d

d�
R(�;A) = �R(�;A)2.

Proof. Repeated application of the resolvent equation yields for �, µ 2 ⇢(A) and arbi-
trary natural number n that

(�I �A)�1 = (µ� �)n+1(µI �A)�n�1(�I �A)�1 +
n

X

k=0

(µ� �)k(µI �A)�k�1.

Since the resolvent is bounded for any µ, one may choose � su�ciently close to µ such
that k(µ� �)(µI �A)�1k < 1 in which case actually the series converges uniformly and
one has for such �, µ

(�I �A)�1 =
1
X

k=0

(µ� �)k(µI �A)�k�1.

The key observation is that, first, there actually is a power series expansion of the
resolvent, and second, that this holds in a neighborhood of µ, which thus proves the first
two statements. The final statement follows by examing, for x, x0 2 X, that the (weak)
di↵erence satisfies

hx,R(�+ h;A)x0i � hx,R(�;A)x0i = hx,�hR(�;A)R(�+ h;A)x0i.

by the resolvent equation. Thus

hx,R(�+ h;A)x0i � hx,R(�;A)x0i � hx,�hR(�;A)R(�+ h;A)x0i
|h|

which has the same limit when h ! 0 as the quotient

hx,R(�+ h;A)x0i � hx,R(�;A)x0i � hx,�hR(�;A)R(�;A)x0i
|h|

so that we may conclude the weak derivative of the resolvent is �R(�;A)2.

A more detailed discussion of the relationship between spectral theory and complex
analysis is found in Chapter 7 of [Kre78] and in Chapter 3 of [HP96]. In the second
reference it is also shown that weak di↵erentiability of a complex variable implies uni-
form di↵erentiability, thus justifying us writing d

d�

R(�;A) = �R(�;A)2 for the complex
derivative. Essentially, the power series representation for the resolvent also implies holo-
morphicity via an infinite-dimensional analogue of the Cauchy-Hadamard Theorem, but
we do not wish to get into complex analytic details so we proved these facts separately.
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A.2 Integration and Traces of Operators

The primary notion of integrability in this thesis is that of the Bochner Integral. As
is in the the theory for the Lebesque integral, the Bochner integral is well-defined on a
suitable class of measurable functions.

Definition A.14. Let f : ⌦ ! X be a function from a set ⌦ to a separable Hilbert
space, X. If there exists a sequence (f

n

) of simple functions convering to f in the norm-
topology of X2 we say that f is (strongly Bochner) measurable. Moreover, the integral
of f is defined as the strong limit

Z

⌦
fdt = lim

n!1

Z

⌦
f
n

dt (7)

If the limit (7) exists for a function f , it is said to be (Bochner) integrable.

The key point is that both Fubini’s Theorem as well as Lebesque’s Dominated Con-
vergence Theorem and Lebesque’s Di↵erentiation Theorem continue to hold for Bochner
integrals, see [DUJ77] and [HP96]. Unfortunately, this notion is in general too strong
for us to able to integrate operators in full generality. We thus introduce an even weaker
notion of integral, known as the Pettis integral.

Definition A.15. Let X,X 0 be separable Hilbert spaces and let F : ⌦ ! B(X,Y ). If
the complex-valued function hx0, F (t)xi, t 2 ⌦ is integrable for all x 2 X,x0 2 X 0 we say
that F (t) is Pettis integrable. Moreover, this integral is defined by

hx0,
Z

⌦
F (t)dtxi =

Z

⌦
hx0, F (t)xidt

An overview of these integrals is given [CZ12] For details, we refer to the highly
readible text [DUJ77] and also [DS58]. A useful property of these integrals is that they
commute with bounded linear operators.

Another notion that needs to be extended to operators is that of a trace. Nuclear
operators are roughly speaking operators for which this extension occurs naturally. As
the trace of the controllability map and Gramian allows one to characterize the norm of
a certain systems, the extension of this notion is relevant to our study.

Definition A.16. Let X be a separable Hilbert space, (e
i

)1
i=1 an orthonormal basis and

B 2 B(X). Then

trB =
1
X

i=1

hBe
i

, e
i

i

is called the trace of B.
If tr|B| < 1 then B is said to be of trace class or 1-nuclear. Similarly, if trB⇤B < 1

then B is said to Hilbert-Schmidt or 2-nuclear.

The separability assumption is necessary for the concept in the above form to be well-
defined since a Hilbert space X admits a countable orthonormal basis if and only if it is
separable, see [Fri70]. Luckily, the Lp spaces are separable so this poses no immediate
restriction to us.
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additive lévy noise. SIAM/ASA Journal on Uncertainty Quantification,
3(1):1159–1199, 2015.

[Kre78] Erwin Kreyszig. Introductory functional analysis with applications, vol-
ume 1. wiley New York, 1978.

[Lue97] David G Luenberger. Optimization by vector space methods. John Wiley
& Sons, 1997.

[Øks03] Bernt Øksendal. Stochastic di↵erential equations. Springer, 2003.

66



Model Reduction of Semistable Infinite-Dimensional Control Systems

[Rob01] James C Robinson. Infinite-dimensional dynamical systems: an introduc-
tion to dissipative parabolic PDEs and the theory of global attractors, vol-
ume 28. Cambridge University Press, 2001.

[Ros91] I Gary Rosen. Convergence of galerkin approximations for operator riccati
equations–a nonlinear evolution equation approach. Journal of Mathemat-
ical Analysis and Applications, 155, 1991.

[RR97] Marvin Rosenblum and James Rovnyak. Hardy classes and operator theory.
Courier Corporation, 1997.

[RS72] Michael Reed and Barry Simon. Methods of mathematical physics I: Func-
tional analysis. Academic Press New York, 1972.

[Rud91] Walter Rudin. Functional analysis. International series in pure and applied
mathematics. McGraw-Hill, Inc., New York, 1991.

[Rud06] Walter Rudin. Real and complex analysis. McGraw-Hill Education, 2006.

[Sal87] Dietmar Salamon. Infinite-dimensional linear systems with unbounded con-
trol and observation: a functional analytic approach. Transactions of the
American Mathematical Society, 300(2):383–431, 1987.

[Tes12] Gerald Teschl. Ordinary di↵erential equations and dynamical systems, vol-
ume 140. American Mathematical Society Providence, 2012.

67


