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Abstract

There are two major approaches for using topoi for the interpretation of quantum mechanics, the
contravariant and the covariant approach pioneered by Isham—Butterfield [1-4] and Landsman—
Spitters—Heunen [5] respectively. To each topoi, there is an internal language in which construc-
tive logic can be interpreted. This internal language is heavily used in the covariant approach,
whereas any use in the contravariant approach is much more hidden.

There is also a related approach, used to study more general forms of measurement scenarios as
sheaves, pioneered by Abramsky—Brandenburger [6]. This approach is general enough to make
the contravariant models a special case.

In this thesis, we develop a method for considering (a variation of) these general measurement
scenarios in a covariant setting using some of the tools developed by Landsman—Spitters—Heunen.
The measurement scenarios are first presented as contravariant functors on a poset. We then
topologize the poset using the Alexandrov topology and look at the presheaf as a bundle. This
gives us a locale in the category of covariant presheaves.

We show that the locales constructed in this way are always internally spatial. We also use the
constructive Gelfand duality described by Banaschewski-Mulvey [7] to get an internal commu-
tative C*-algebra corresponding to this locale. Lastly, we look at how to construct a state as
defined by Landsmann—Spitters—Heunen.

We also consider two examples thoroughly, Spekken’s Toy Model [8] and the Popescu—Rohrlich-
box [9]. In doing this, we construct a new proof that the Popescu—Rohrlich-box cannot be
modelled by quantum theory, without using the Tsirelson’s bound.
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Chapter 1

Introduction

From its very beginnings, the interpretation of Quantum Mechanics has been somewhat of a
mystery, even among many of its great pioneers. This is perhaps best captured in the quote by
Feynman:

“I think I can safely say that nobody understands Quantum Mechanics”.

One difficulty has been the non-locality of Quantum Mechanics, i.e. the fact that measurements
seem to correlate over a distance without the possibility to communicate. One possible solution
to this would be to assume that Quantum Mechanics was incomplete, i.e. that there are some
so-called hidden variables which are yet to be discovered. This argument was perhaps most
famously presented by Einstein, Podolsky and Rosen [10]. However, it was later proved by Bell
[11] that any such variables needed to have a global character.

Since then, these phenomena have been explored further. It turns out that non-locality can be
seen as a special case of a more general concept called contextuality. For a system to be contextual
means briefly that there is no way to assign values to all possible outcomes of a measurement
in a consistent way, something we will give a more detailed description of in section 2.2. That
quantum systems are contextual was shown by Kochen and Specker [12].

During the last 20 years, a new approach to the interpretation of Quantum Mechanics has been
explored, inspired by a series of articles by Isham and Butterfield [1-4]. In this approach, a
quantum system is modelled by a presheaf, and contextuality can be formulated by properties
of this presheaf. A related approach of the same flavour, heavily inspired by the first, has
been explored by Landsmann, Spitters and Heunen [5]. These are the so-called topos theoretic
approaches to quantum mechanics.

One approach which is often taken when discussing quantum phenomena like contextuality is
to talk about toy models. These are models which share some features with quantum theory
but differs in some other. Some well known such models are Spekkens toy model [8] and the
Popescu-Rohrlich box [9] which will be discussed in some detail later.

In 2011, Abramsky & Brandenburger presented a sheaf-theoretic model for the description of
general, possibly contextual, systems. Thus, in particular, it provides a ground for talking about
the toy models of quantum mechanics, which usually has rather different origins, in a common
language.



The models created by Isham—Butterfield, Landsmann—Spitters—Heunen and Abramsky—Branden-
burger all give rise to presheaves and sheaves. Presheaves and sheaves can be placed in “worlds”

different from the world of sets in which most of classical mathematics takes place. These worlds
do not in general obey the laws of classical logic; this has been mentioned as one of the main
reasons to study Topos Quantum Mechanics [13].

However, in the contravariant approach, the use of the topos-theoretic internal language is some-
what hidden. In [14] a comparison of the two approaches is made, and the author states that it is
not clear to what extent the internal language is important in the contravariant approach.

In the Landsman—Spitters—Heunen approach, the place of the internal language is much more
clear. In fact, many important concepts are defined in this language.

The aim of this thesis is to combine the toy model approach with the Landsmann—Spitters-
Heunen approach. That is, to set up a framework for studying general measurement scenarios
with the tools developed by Landsmann—Spitters—Heunen and others, and study these scenarios
using this framework.

This thesis will assume familiarity with category theory, in particular limits, adjoints, and the
Yoneda lemma. For the reader unfamiliar with these concepts, we refer to the textbook of
Awodey [15]. A short introduction aimed towards topos theory can also be found in the Chapter
Categorical Preliminaries of MacLane & Moerdijk [16].



Chapter 2

Quantum Mechanics

2.1 States and observables

In order to describe some physical system using quantum mechanics, there are three main things
we would like to consider. The current state of a system, values of different so-called observables
of the system, and the time evolution of the system. An observable is some physical property
of the system that can be measured. For instance, for a classical particle moving in space, its
velocity would be an observable.

Mathematically, quantum theory is the theory of Hilbert spaces. Indeed, we associate to each
real-world quantum system a Hilbert space ([17] §3.6.1). We will however not care too much
about the connection between the real world and the mathematical theory. Instead, we will just
work purely on the mathematical side. However, the names of many concepts will have names
inspired by what they are meant to represent. A first such example is that of a state.

Definition 2.1 ([17] §3.6.1). Given a Hilbert space H, A (pure) state of H is a unit vector in
H,

In order to use the theory to model the real world, one would first need to decide what Hilbert
Space that is suitable for modelling the system of interest. In the later discussion, we will often
consider the least complicated cases of H = C™ for some n. It should be noted that these Hilbert
Spaces also has real-world applications, for instance in the modelling of polarization of light or
the spin of elementary particles ([18] §1.3).

We will adopt the Dirac notation of writing a state as |z) where z is a chosen name for the state.
If a state |z) is a linear combination of some states, say |0), |1), this is written as

|z) = aol0) + a1|1). (2.1)
By Riesz representation theorem ([19] 6.2.4), it is known that each element f in the dual space
of H can be represented by a vector |y) in H by setting f(—) = — - |y). Here - denotes the inner

product. Suggestively we write f = (y|, and f(|z)) = (y|z). Since (y| is linear, this also allows
us to write things like

(ylz) = (yl(aol0) + ax[1)) = ao(yl0) + a1 (y|1). (2.2)



Definition 2.2. An observable is a self-adjoint (also called Hermitian) Operator on H.

For a self-adjoint operator H, it is possible to write H|z) which would give a new vector, or (z|H

which would give a new functional. Since the operator is self-adjoint, it is unambiguous to write
(z|Hly).

We interpret an observable as something on our quantum system that can be measured. If
i) is an eigenvector of H, the eigenvalue \; is supposed to correspond to the value of H when
measuring |¢). By ([20] 8.10 10.18) we know that any state can be written as a linear combination
of eigenvectors of H. When doing a measurement of H on |x), the result of the measurement
will be A; for some i even if |z) is not an eigenvector of H. The probability of obtaining A; when
doing the measurement is given by |(i|z)|2. The expectation value of H for the state |z) thus
becomes

E[H] = Nlali)(ile) = Y Nfali)lz) - |i) = D (zli)|x) - Ailé) =
= (ald)lz) - Hli) = Y (ali) (il H|z) = (e[ H|x) (23)

where it was used that Y _|¢)(i| is just the identity matrix.

After a measurement, the state will have collapsed to a new state, one which is an eigenstate cor-
responding to the measured eigenvalue. This means that in general the result of a measurement
can depend on the order of the measurements.

Example 2.3. Let H = C? and let |0), |1) represent the standard basis. Let

S, = <(1) (1)) S, = (_OZ 6) 8. = ((1) _01> . (2.4)

and let [1),]}) be the eigenvectors of Sy, i.e. |[1) = % (10)y + 1)), |4) = % (10) = |1)). Doing
a measurement of S, on |0) would yield 1 with certainty, and a subsequent measurement of S,
would yield 1 or —1 with equal probability. Instead first measuring S, would still give the same
probabilities for the values of S,. However, after that measurement the state of the system will
now be [1) or |[|) and a subsequent measurement of S, would also have equal probabilities for
the values 1 and —1.

We will show that for commuting observables, the above order dependence of measurements does
not occur.

Lemma 2.4 ([21] 5.1). Let S be a set of commuting observables on some finite dimensional
Hilbert space H. Then there exists a basis B such that for each b; € B and A; € S, b; is an
etgenvector of A;.

Theorem 2.5. Let A and B be commuting observables on some Hilbert space H. Then the
probability to get a certain measurement result is independent of the order of measurement between
A and B. Furthermore, the final state is also independent of the order.

Proof. Let |¢) be a state in H. By Lemma 2.4 there exists a basis {|i)} of H such that each [)
is an eigenvector of both A and B. Thus it is possible to write

o) =)~ Adli). (2.5)



After a measurement of A, the state will collapse to the set of eigenstates of A which share the
eigenvalue obtained in the measurement. Thus the new state will be

@) = eAili). (2.6)

where ¢ is a normalisation factor. The probability to obtain this result is

p=> Il (2.7)

and thus ¢ = p~/2. Now, measuring B, the probability to end up in the new state

@) = cerilk) (2.8)
k

is p' =3 A Ak|* = 34 |Ak[|?/p. Thus, the probability of getting this measurement of A and B
is pp’ = >, |Ax|? which depends only on the coefficients A\x. Doing the same calculation taking
B first gives the same result, and thus the theorem follows. O

The states defined in Definition 2.1 are called pure since we have full knowledge about the state.
If this is not the case, we have what is called a mixed state. The physical intuition for these
is that they are to be seen as classical probability distributions of pure states, i.e. situations
in which some classical lack of information prevent us from knowing which pure state we are
in.

Definition 2.6 (][22] §2.1.2). Suppose that an ensemble of states in A are given, where the
frequency of the state |p;) is p;. Then the matrix

p= Z|<Pi>Pi<<Pi| (2.9)

is used to represent the quantum state of the system. It is called the density operator. Note that
p; = 1 for some j if and only if p> = p. Thus a state satisfying this is called a pure state. A state
for which p? # p is called mized.

Remark 2.7. For any pure state, there is always an observable for which there is no uncertainty
of the outcome, namely the projection onto the space spanned by |p).

Since Quantum Theory takes place in vector spaces, there is a concept of tensor products of
quantum states. Thus, given two Hilbert spaces Hi, Ho with states |a) € Hq,|b) € Ha, we write
things like |a) ® |b). We note that if A and B are observables on 71 and H, respectively, and
has a and b as eigenvalues, then A ® B has ab as an eigenvalue.

2.2 Contextuality

A concept that has recently received much attention, is that of quantum contextuality. In
particular, it has been suggested to provide some of the power of quantum computation [23]. It
is also a generalisation of non-locality, a quantum feature which has fascinated many quantum
scientists.

We will use Spekkens formalization of contextuality, for which we first need to introduce the
concepts of operational theories and ontological models. Intuitively, operational theories are



just a list of probabilities for getting a certain outcome when doing some preparation and some
measurement. It should be noted that “preparation” can be interpreted rather vaguely. For
an astronomer, it could, for instance, mean to wait for a certain astronomical phenomenon to
happen.

Definition 2.8 ([24] §II). Let P, M and K be sets. We think of P as a set of possible prepa-
rations, M as possible measurements and K as possible outcomes. An operational theory is a
probability mass function (or probability density function, if one allows continuous underlying
spaces) p(k, g, m) for each k € K,q € Pym € M. Two preparations ¢, are called equivalent if
p(k,q,m) = p(k,q',m) for all kK and m. We then write ¢ = ¢’. Similarly, two measurements are
equivalent, m = m/, if p(k, g, m) = p(k, g, m’) for all k and gq.

It should be noted that in Spekkens paper, transformations are also introduced alongside prepa-
rations and measurement. We will not need that here, and thus it has been omitted. We also
mention a remark of Spekkens that sometimes a transformation can be seen as a part of the
preparation, which gives further motivation for our choice to omit it.

Note that the above only gives information about relations between preparations and measure-
ments, but says nothing about what is being prepared. Although everything that we have control
over is the preparation and the measurement, a theory of physics usually seek to explain what
happens in between the preparation and measurement. For instance, if we prepare our system
by placing a ball in an automatic release system, and then measure the sound of the ball hitting
the ground, most physicists would have a rather clear idea of what state the ball was in between
these two events. This motivates the following definition.

Definition 2.9 ([24] §II). Let an operational theory (K, P, M, p) be given. An ontological model
for this theory is a space 2 and probability mass (or density) functions pq : @ = R, & : Q@ = R
such that

p(k, q.m) = /Q 1o\ V). (2.10)

Definition 2.10 ([24] §IT). An ontological model is called preparation nonconteztual if for ¢ = ¢/,
Hq = ftg- Similarly, it is called measurement noncontextual if for m = m/, & = & mr. It is
(universally) noncontextual if it is both preparation noncontextual and measurement noncon-
textual. An operational theory for which there is no noncontextual ontological model is called
contextual.

We will now prove that if quantum theory is given by an ontological model, then quantum theory
is contextual in the sense of Spekkens. This will be done using the Mermin—Peres magic square,
presented in e.g. [25],[26].

Definition 2.11. The Mermin—Peres magic square is a square




together with the following game. We start with some preparation process which produces a
physical state.! Next, we are to set up two sets of measurements, call them A and B. Each set
consists of one measurement for each box in the square. These measurements must be set up
with the following rules:?

(i) Each measurement give either —1 or 1.

(ii) The probability of getting 1 or —1 given the preparation process is known.?

(iii) When provided with a row and a column, we choose all measurements in the corresponding
row from A, and all measurements from the corresponding column from B. We should then
be able to get the following result:

a) The outcome agree on the square shared by the row and the column.
b) The row outcomes multiply to —1.
¢) Has the column outcomes multiply to 1.
If such a physical state is prepared, we say that the physical model wins the magic square game.

Lemma 2.12. No noncontextual ontological model can win the magic square game.

Proof. Let py; j,peq,; denote the probability of getting 1 in the square in row ¢ and column j
doing a row and column measurement respectively. Since these measurements need to coincide,
these probabilities need to be the same (and correlated). Thus we can drop the row or column
specification and talk about the probabilities p; ;.

We note first that there is no loss of generality to consider a model where the preparation process
prepares a single state A with probability 1. Indeed, if this preparation cannot win the game,
then for any other preparation, we can choose a A\ which is prepared with a nonzero probability,
and we are back in the first case, giving a nonzero probability to lose the game.*

Now the noncontextuality assumption states that these probabilities can only depend on the
prepared state A\. This means that it is possible to talk about the probabilities p; ; also for the
rows and columns that are not measured (since the state is already prepared when the choice
of rows and columns are made). For each 4,7, let p; ; = p; ; if p; ; # 0. Otherwise, let p; ; =1
(which is then the probability of getting —1 at the position 4, j). Clearly, [], ;p;; # 0. Thus,
there is a nonzero probability that the game would be won using a labeling on the positions
where the position is labeled 1 wherever p; ; = pi,j and —1 otherwise. We will now show that no
such labeling is possible.

Let the labels be given by:

1.e a point in Q if we assume that we are working with an ontological model.

2This can be phrased as a correlation game, where two players does measurements on a predetermined state.
One player gets to know the row, and the other gets to know the column, and their task is to fullfill the conditions
of the game. See [27].

31In ontological model language, this is saying that p(1,q,m;),p(—1,q,m;) is known for m; € AU B.

4We have to be slightly more careful in the case of a continuous space €2, and a probability distribution
@ — R. However, in principle, the same argument works. Indeed, if we know that the probability of winning
the game (call it w : @ — R) is less than 1 for each A € 2, then we have that the probability of winning the game

is [ u(MNwN)dX < [ u(N)dA = 1.

10



In order to satisfy the game conditions, we would need to assign the value 1 or —1 to the variables

in such a way that

abc = —1 def =-1 ghi = —1
adg =1 beh =1 cfi=1.

Multiplying these equations together, we get
abcdefghi = 1 abcdefghi = —1,

a clear contradiction.

Lemma 2.13. Quantum theory wins the Mermin—Peres magic square game.

Proof. Prepare the following state
o) = % ((10) @10) + 1) @ [1)) ® (|0) ® [0) +[1) @ [1))) .

Given this state, do the following measurements in the magic square

Se®I | =5, ®85,| I®S,

Sm@Sm _Sy®Sy Sz®Sz

I®Sy |-S.:©85;| S.®1

I

(2.11)
(2.12)

(2.13)

O

(2.14)

where S, ® Sp is an abbreviation of S, ® I ® S, ® I when doing row measurements, and an

abbreviation for I ® S, ® I ® S, when doing column measurements column.

The lemma now follows by checking that the measurements in each row commutes and the
measurements in each column commutes, and by checking the possible measurement outcomes.

Theorem 2.14. Quantum theory is contextual.

11
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Proof. This is an obvious corrollary of Lemma 2.12 and 2.13. O

One way to interpret this result is that quantum theory in some sense needs to be aware of what
other measurements are going to be made, in this example what row and what column is chosen,
before its values are specified. This choice of measurements that are simultaneously being made
is what we will call a context.

Further discussion of contextuality will be given Chapter 5, where it will be discussed in the
topos-approach sense. Further reading on non-topos approaches to contextuality can be found
for instance in [12] and [28].

12



Chapter 3

Logic for Topoi

3.1 Many Sorted Logic

The logic we will use will generally be many sorted. A sort is some collection of elements, usually
thought of as being of the same kind (or, of the same sort). When doing logic in the category
Sets, we interpret each sort as a set. Given objects of some sort, it is possible to construct new
objects, e.g. tuples. These objects will be said to have a type, described in terms of the original
sort. Thus, sorts are a special kind of type, seen as a base type.

Presented with these concepts, we can begin a formal introduction of many-sorted logic.
Definition 3.1 ([29] D.1.1.1). A first order signature consists of:
(i) A set of sorts.

(ii) A set of function symbols, and for each function symbol, a tuple of sorts representing its
type. For f of type Ay,---, Ay, B, we write f : Ay --- A, — B where the A; can be thought
of as source types, and B as a target type. The number n is the arity of f. A function
symbol of arity 0 is also called a constant.

(i) A set of relation symbols, and for each relation symbol, information about its type. For R
of type Ay, -+, Ay, write R — A;--- A,. Again, n is the arity of R.

Definition 3.2 ([29] D.1.1.2). For a signature X, the collection of terms over ¥ is defined
recursively by the following rules:

(i) For each sort A, a variable x : A is a term of type A.

(ii) For each function symbol f: Ay --- A, — B, if t1 : A1, ,tn : Ap, then f(t1,--- ,t,) is a
term of type B.

We note that variables are defined as being of some certain sort. Thus, there is no such thing as
a variable without a sort.

Definition 3.3 ([29] D.1.1.3). For a signature X, the collection of first-order formulae over
Y is defined recursively by the rules below. The set of free variables of a formula is defined
simultaneously.

13



(i) For any relation symbol R, and terms t1,- - ,¢,, R(t1, -+ ,t,) is a formula with free vari-
ables the union of the free variables in the t;. For each type A, a special relation symbol
=4 of type A, A is always required.

(ii) Truth T is a formula with no free variables.
(iii) Falsity L is a formula with no free variables.

(iv) For any two formulas ¢, 1, the binary conjunction ¢ A 4, the binary disjunction ¢ V ¢ and
implication ¢ = 1) are formulae. Their free variables are the union of the free variables in
@ and 1. A particular case of implication, ¢ = 1 is called negation and denoted —¢.

(v) For any formula ¢ with free variable z, existential quantification 3z and universal quan-
tification Vzy are formulae. It has as free variables the free variables of ¢, except x.

Definition 3.4 ([29] D.1.1.3). For a signature ¥, the class of geometric formulae is defined as
for first-order formulae, with the difference that universal quantification and implication are not
allowed, while infinitary disjunction, written \/,.; ¢ is. Here, T is some arbitrary set of terms,
with the restriction that the number of free variables is finite.

Definition 3.5 ([29] D.1.1.4). A contest is a finite list z1,--- ,x, of variables. If x; : A;, the
list Ay,---, A, is the type of the context. Given a formula ¢, a context is called suitable for ¢
if all free variables of ¢ is in the list.

Definition 3.6. If ¥ is a context of type Ay,..., A,, and §= s1...s, is a list of terms where s;
has type A;, then ¢[3/Z] denotes the formula ¢ where each free occurence of x; has been replaced

Definition 3.7 ([29] D.1.1.5). Given a signature X, two formulas ¢, and a context & suitable
for both of them, a sequent (over ) is an expression ¢ Fz 1.

Definition 3.8 ([29] D.1.1.6). A theory over ¥ is a set T of sequents called the azioms of T'.
The theory is called a first-order theory if the axioms are first order, and a geometric theory if
the formulae are geometric.

3.2 Heyting algebras

The internal logic of a topos, as will be introduced in Section 3.4, is generally constructive.
Constructive mathematics is tightly connected to Heyting algebras. Thus, we will introduce
these here.

Definition 3.9 ([16] §1.7). Let z and y be elements of a poset X. A binary meet is an object
x Ay with the property that z Ay < z,x Ay < yand if z < x,z < z, then z < x Ay. A
binary join, denoted x V y is defined similarly but with the inequalities reversed. A lattice is a
poset where all elements have binary meets and joins. Note that if the poset is considered as a
category, this is exactly saying that the category has binary products and coproducts.

Definition 3.10 ([16] §1.8). A Heyting algebra is a lattice X with a smallest and largest element,
denoted 0 and 1 (initial and terminal element if considered as a category), together with a binary
operation x = y characterized by the property that z < (z = y) if and only if 2 Az < y. If the
lattice is considered as a category, this is exactly saying that z = y is an exponential. Thus this
operation is usually called the exponential of the Heyting algebra.

14



Proposition 3.11 ([16] §1.8). A Heyting algebra is distributive, i.e.
(@Vz)Ahy=(xAy)V(zAy). (3.1)

Also, the equality
z=yYhz)=@=y)A(z=y) (3.2)

holds.

Proof. This is a direct consequence of looking at Heyting algebras from a categorical perspective.
There is an adjunction
Hom(z A z,y) = Hom(z,z = y) (3.3)

showing that the functor — Ax preserves coproducts (i.e. joins), and the functor © = — preserves
products (i.e. meets). O

When interpreting logic in the sense of a Heyting algebra, we think of the elements of the algebra
as propositions, and the meet and join as operations corresponding to “and” and “or”. The 0
and 1 then corresponds to falsity and truth, and the exponential is the implication. Talking
about logic, one might also want some kind of negation. A negation in the classical sense is not
possible. However, we can phrase negation in terms of implications of falsity.

Definition 3.12 ([16] §1.8). Given an element = of a Heyting algebra, the negation or pseudo-
complement of x is defined as —x =z = 0.

As we will see, the law of excluded middle, i.e. that either a proposition or its negation needs to
be true, does not always hold in a Heyting algebra. We will find some comfort in the fact that
both a proposition and its negation cannot be true simultaneously.

Proposition 3.13 ([16] §1.8). Given = in a Heyting algebra, x A -z = 0.

Proof. Clearly =z < x = 0 (since they are equal). By the defining property of the exponential
it then follows that —z Az < 0. ([l

We note that any Boolean algebra is a Heyting algebra. Indeed, in this case x = y = 2 V —y.
However, not all Heyting algebras are Boolean, as the following example shows.

Example 3.14 ([16] §1.7). Consider the set of open subsets of [0,1] ordered by inclusion. It
is clear that intersections and unions define meets and joins, and that the empty set and full
interval provides the 0 and the 1 respectively. Let U,V C [0,1]. We can define U = V to be the
largest open W such that W AU < V. We note that with this definition of the exponential, the
negation of a set U is the interior of its complement. Now, let U = [0,1/2). Then -U = (1/2,0].
Thus UA-U = [0, 1]\ 1/2, showing that the law of excluded middle does not hold in this Heyting
algebra. Since the law of excluded middle holds in all Boolean algebras, this shows that not all
Heyting algebras are Boolean.

3.3 Introducing Topoi

Let us consider the definition of a topos.

Definition 3.15 ([15] 8.17). A category T is called a topos if it satisfies the following properties:
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e It has all finite limits,
e [t has all exponentials,
e [t has a subobject classifier,

where a subobject classifier is an object {2 € C together with an arrow T : 1 — 2 such that for
any subobject A — X, there is a unique arrow such that the following diagram is a pullback:

A——1

[ b

X — Q.

We note that the subobject classifier in Sets is the set 2 = {0,1}. A mapping into 2 can be
described by giving a subset which is mapped to 1, and assume that everything else is mapped
to 0. Thus, a map into a subobject classifier can be thought of as a question if a certain object
is in a certain subset, and the subobject classifier is the object containing all possible answers to
this question.

The definition of a topos is rich in consequences. Most importantly, it provides topoi as a setting
for the interpretation of logic, as introduced in Section 3.4. In this section, we will consider some
consequences needed for this interpretation.

Lemma 3.16 ([16] IV.5.4). A topos has all finite colimits.

Definition 3.17 ([16] IV.6). Given an arrow f, the image of f is a monic arrow m such that
f factors through m, and such that if f factors through another monic m’, then m also factors
through f.

Proposition 3.18 ([16] IV.6.1). In a topos, every f has an image m, and the unique arrow e
such that f = me is epic. O

Theorem 3.19 (cf. [16] IV.6.3 IV.8.1 [30] 6.2.1). Given a topos T, and an object A € T. The
set of subobjects of A is a Heyting algebra, where, for subobjects T — A, S — A, the operations
are defined as follows.

(i) The meet is given by the pullback

(3.4)

nNn<——>D

B N

(i) The join is given by the image of the unique arrow S +T — A.

(iii) The implication S = T is given by the subset specified by the equalizer of the characteristic
map of SNT and S.

(iv) The largest element 1 is A 4.
(v) The smallest element 0 is the unique arrow 0 — A. g

Theorem 3.20 ([16] IV.6.31V.9.3). For each arrowk : A — B, the map k' : Sub(B) — Sub(A)
defined by the following pullback square



kYD) —— D

I I (3.5)

A——

is a functor, and has both a left and a right adjoint. The left adjoint is denoted Iy and sends
E L Ato the image of ko f. The right adjoint is denoted Vy.

Proposition 3.21 ([16] IV.1.2). Let f be an arrow in a topos . If f is both epic and monic,
then f is an isomorphism.

3.4 Interpreting Logic in Topoi

Given a many-sorted theory, we might want to find models for it. One way to do this is to
associate to each sort a set S. Then, any formula taking variables in this set would define a
subset U C S. However, classically, the set of subsets of a set is a Boolean algebra. Since we
want to be more general, we want to find a setting where the subobjects are not in general
boolean, but rather a Heyting algebra. By Theorem 3.19, topoi is the place to look.

Definition 3.22 ([29] D.1.2.1). Given a topos C and a signature X, a X-structure M in C is
given by the following assignments:

(i) For each sort A of 3, an object M A € C.
(ii) For a list of sorts Ay,---, A, the object M (A1, -+ ,An) = MAy x -+ x MA,.

i)

(iii) For each function symbol f: Ay --- A, — B an arrow M f: M(Ay,--- ,A,) = M(B).

(iv) For each relation R — Aj---A,, a subobject MR — M(Ay,---,A;). Note that in a
topos, this could also be identified with an arrow M (Ay, -, A,) — Q.

Definition 3.23 ([29] D.1.2.3). Suppose we have a 3-structure, and let ¢ be a term over ¥ in a
suitable context &. Assume further that & has type A; --- A,. We write Z.t to denote ¢ as a term
in the context Z. The interpretation of Z.t, denoted [%.t] is defined recursively by the following
rules:

(i) If ¢ is a variable, then it is a; for some z; in &. Then [Z.f] is the ith product projection.
Note that in the particular case when ¢ is z.z, the interpretation will just be the identity.

(i) If ¢t is f(t1, -+ ,tm) where t; : B;, then arrows [Z.t;] : M(A1,---,A,) = MB; are given,
and thus the arrow ([Z.t1,], -, [#.tn]) : M(A1, -+, An) = M(B1,---,B,) exists. The
interpretation [Z.t] is then defined to be the composition M f o ([Z.t1,], -, [Z.tn])-

Similarly, as above, we want interpretations of the formulae over X..

Definition 3.24 ([29] D.1.2.6). Given a X-structure, a formulae in a suitable context & of type
Ai,---, A, will be interpreted as subobjects of M (A4, .-, A,) by the following rules:
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1. If o is R(t1, - ,tm) for a relation symbol R of type By, -+ , Bp, then [Z.¢] is defined by
the pullback

[7.¢] MR

1 I (3.6)
M(Ay, -, Ay) {z-ta],--- [7-tm]) M(By, -, Bm)

2. For T, [Z.T] is the maximal subobject of M(A;,---,A,).
3. For L, [Z.1] is the minimal subobject of M (A4, -, Ay).

4. For ¢ * 1) where * is A,V or =, the interpretations are [Z¢] * [Z.¢)] with the subobject
operations defined in 3.19. Similarly, [Z.(—)] is —[Z.¢].

5. For Jyg and Vyy, let y be of type B, and let m : M(Ay, -+, Ap)xM(B) = M(Aq, -, Ap).
Then [2. (yp)] = 3x[Z,y.¢] and [Z. (Vye)] = V= [Z, y.¢].
In some cases, the topos behaves nice enough that every algebra of subobjects has arbitrary

joins. A topos where this is the case is called geometric. In this case we can also add the (rather
obvious) interpretation:

6. For \/ v, [V @il = V[l

These interpretations make it possible to interpret any (geometric or first order) formula in a

topos. However, we find it of interest to be explicit about the interpretation of ¢[3/Z]

Lemma 3.25 ([29] D.1.2.7). Let i be a context interpreted by Y, and let § be a list of terms of
the same type as the variables in . Let & be a context suitable for the terms in §. Then for a
formula @, the interpretation is given by the following pullback square

—

[Z¢[8/§]] ———— [g:#]

I I (3.7)
X Y

O

([Z-s1],+,[#.sm])

Given these interpretations, it might be of interest to define some kind of truth. This is done in
the following way.

Definition 3.26 ([29] D.1.2.12). Let ¢ be a sequent over ¥ on the form ¢ Fz v, and let M
be a Y-structure in a topos 7. Suppose that & has types interpreted by Xi,--- , X,,, and write
X = X1 x -+ x X,,. We then say that M satisfies s, written M F g, if [Z.o]m < [Z¥]m
as subobjects of X. If ¢ is a formula, we say that M satisfies ¢, M E ¢, if T Fz ¢, ie. if
Hf.(p]]j\/[ = X.

Definition 3.27. For a theory T over X, a X-structure M is called a model for T', written M = T
if M FEc¢foreachgeT.

A special case of Y-structure is that corresponding to the whole topos.

Definition 3.28. Let 7 be a topos, and let X be the signature consisting of a sort for each object
in 7, a function symbol for each arrow in T, and a relation symbol for each monomorphism. This
is called the Mitchell-Bénabou language of T. It has a rather obvious interpretation M = T.
Thus we write can also write 7 F ¢ for a sequent (or formula) .
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3.5 Constructive reasoning

In classical logic, we are used to a number of rules for reasoning about logical formulae. For
instance, we know that if we know ¢ and 1, then we know ¢ A 1. This is usually formalized by
the rule

%/\7;}' (3.8)

We will now introduce the rules which we may use when reasoning constructively. We will use
the abbreviation that

e @ "
— is equivalent to — and . 3.9
" q » > (3.9)

The rules of inference for constructive logic are the following [29].
1. The identity axiom ¢ Fgz @,

2. The substitution rule,
oz

—— — (3.10)
l5/) Fa p[5/7]
where & is such that it contains all variables in 3.
3. The cut rule - -
Przs Srz
. 3.11
oz (3.11)
4. The equality azioms (T bz (x = z) and ((Z = §) A ) Fz [§/Z].
5. The finite conjuction rules bz T, (@ AY) Fz ¢, (o A1) Fz ¢, and
<Fzy <Fzy (3.12)
sz (pAY)
6. The finite disjunction rules L btz o, o bz (@ V), ¥ Fz (¢ V), and
LA R L A (3.13)
(pV) Fzs
7. The implication rule
(pAY)Fzg (3.14)
Yz (p=9)
8. The exsistensial quantification rule
F&
_phsv (3.15)
(Fy)ptz v

For first order logic we also have

19



9. The universal quantification rule

- 3.16
otz (YY) (319

and for geometric logic we have
10. The Frobenius axiom o A (Iy)y Fz (Fy) (@ A )

11. The infinitary conjunction and disjunction rules which are the infinte versions of (5) and
(6).
12. The infinitary distribution axiom ¢ AV ¥; Fz V(@ A 9;).

Given rules of inference and some rules for their interpretation, we want to know that this
correspondence is sound. That is, we want to know that any model which satisfy the axioms
also satisfy the conclusions.

Theorem 3.29 ([29] D.1.3.2). Let T be a (first order or geometric) theory over a signature X.
If M is a model of T in a topos, and if < is provable using the appropriate rules of inference,
then M E ¢. Note that the topos needs to be geometric for this to make sense for a geometric
theory. O
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Chapter 4

Presheaves, Sheaves & Locales

4.1 Presheaf Topoi

One important topos is that of presheaves, i.e. functors from a small category into Sets. Here,
small means that the collection of objects and arrows in the category is a set. These topoi have
some nice properties that we will explore in this section.

Definition 4.1 ([16] p. 37). Given a category C and an object C' € C, a set s of arrows with
codomain C' is called a sieve if f € s implies that f o g € s for all g with codomain the domain
of f. Given an arrow h: D — C, it is clear that the set T h = {h o h’|h’ has codomain D} is a
sieve.

As an example of the above definition, let us consider the case when the category is a poset.
Then the definition says that a sieve is a downwards closed set, that is, a set S such that s € S
and t < s implies t € S. In this case we also use the notation 1 s = {t | ¢t < s} since the maps
are implicit.

Theorem 4.2 ([15] 8.18). Any functor category Sets®” where C is small is a topos. The subobject
classifier is given by the functor defined by sending C € C to the set of sieves on C, and sending
f:D — C to the map Q(f)(S) ={t| fote S}. The arrow 1 L Qs given by mapping the
single element in 1(C) to T id¢. O
The following result is useful when wanting to do explicit calculations.

Theorem 4.3 ([15] 9.17). For f : C — D a functor between small categories, the functor
f: Sets?” — Sets®” defined by

f1(F)(C) = F(fC) (4.1)

has both a left and right adjoint. O

Consider specifically the case when C is the one object category with only the trivial arrow.
Then Sets®” = Sets. For each D € D, let fp be the functor mapping the single element to the
element D. Then f}, is just evaluation at D. By the above, this functor has (and thus is itself)
both a left and a right adjoint. This means that the evaluation functor preserves both limits and
colimits. This gives the following result.
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Corollary 4.4. Let D : J — Sets®” be a diagram of type J. A cone 0; : F' — Dj is the limit
(or colimit) of D if and only if (0;)c : F(C) — D;(C) is the limit (or colimit) of evgc oD for
each C € C. Here eve is the functor mapping G € Sets®” to G(C).

Proof. The “only if” direction follows directly from 4.3, and the fact that right adjoints and left
adjoints preserves limits and colimits respectively.

For the other direction, we simply note that for any other cone 0;» : G = Dj, (9})(; factors
through (6;)c, so 0 must factor through ;. a

For the interpretation of logic, we are interested in how to construct subobjects of a given
presheaf. Since presheaves consist of a collection of sets which behaves well with respect to a
collection of maps, it is not hard to believe that subobjects in such a category are given by
presheaves which pointwise form subsets.

Proposition 4.5. Given a presheaf F' : C — Sets, an arrow a : G — F is mono if and only if

ac : G(C) — F(C) is injective for all C € C. Furthermore, fora: G — F,d' : G' — F, G and
G’ are equivalent if and only if im(ac) = im(ay;) for all C € C.

Proof. By Corollary 4.4 and the fact that monos can be characterized by limits, the first state-
ment follows directly.

For the second statement, we note that using Proposition 3.21, we can characterize equivalences
of subobjects entirely in terms of monos, epis and commutative diagrams. Thus, by 4.4, two
monos are equivalent if and only if they are equivalent pointwise for each C. But then the result
is obvious. O

Remark 4.6. The last part of the proposition allows us to, given a subobject a : G — F,
construct the functor Fy, : C — Sets defined by F(C) = im(ac) and with inclusions as maps.
This will be used as a canonical representative for the equivalence class. We will use the habit
of identifying the equivalence class with this representative.

Proposition 4.7. For a subobject S — A, the characteristic map of S is given by the following
mapping. For each C € C and each a € A(C), x¢ is defined by sending a to the set of arrows f
with codomain C such that, for f : D — C, A(f)(a) € S(D).

Proof. First, we need to show that this set is actually a sieve. But it follows from the naturality
of the inclusions that if g : D" — D and A(f)(a) € S(D), then A(co f)(a) € S(D').

Furthermore, we need to show that it is a natural transformation, i.e. we need to show that

A(C) 25 Q(0)
lA(f) lﬂ(f) (42)
A(D) X2 Q(D).

commutes for all f: D — C. Assume that g € xp(A(f)(a)), then it must hold that fog € xc(a).
But then g € Q(f)(xc(a)) showing the desired property.
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Next, we need to show that this indeed gives the desired pullback square. By Corollary 4.4, it is
enough to show that it is the desired pullback square for each C'. Thus we consider the diagram

T

f\) 0

S(C) — 1(0)
[ [re
A(C) X< Q(0).
Assume there is ¢ € T such that f(t) ¢ S(C). Then £c(f(t)) does not contain id, although
Tc('t)) does, showing that the diagram can not commute. Thus, whenever the diagram do
commute, f factors through S(C). Uniqueness follows from the fact that ¢ is monic. O
We will now make explicit the Heyting algebra of Theorem 3.19 for the case of presheaf topoi.

Proposition 4.8 ([16] 1.8.5). Given a small category C, and an object A € SetsC”, the operations
described in Theorem 3.19 can be described explicitly for (canonical representatives of ) subobjects
T — A, S — A in the following way:

(i) The meet is given by SAT(C) = S(C)NT(C)
(i) The join is given by SV T(C) = S(C)uT(C).
(iii) Implication is given by

S=T(C)={zx e A(C) |¥D € C,Vf : D — C, A(f)(z) € S(D) = A(f)(z) € T(D)}
(4.4)

(iv) Negation is given by
-S(C)={z € A(C)|VD eC,Vf:D — C,A(f)(x) ¢ S(D)} (4.5)

Note that the negation is only a rewriting of the definition of negation by S = @.

Proof. Since for each C,

T(C) N S(C) —— S(C)

l l (4.6)

T(C) — A(C)
is a pullback diagram in Sets, (i) follows from Proposition 4.4. A similar argument holds for the
join.

For implication, suppose that the characteristic map of S is denoted s and the characteristic
map of SNT is denoted s Nt, then we want to consider the diagram

E(C) —— A(C) == Q(C). (4.7)

(snr)c
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Being an equalizer in Sets means that sc(a) = (sNt)c(a) for all @ € E(C). From Proposition
4.7, the action of s¢ and (sNt)¢ is known. Thus, we are looking for elements a with the property
that f : D — C is such that A(f)(a) € S(D) if and only if A(f)(a) € S(D)NT(D). But this
gives exactly the set defined above. Since the negation is just a special case of the implication,
the proof is done. O

Proposition 4.9. Any presheaf topos Sets” is geometric with the arbitrary join given for a
family {S;} of (canonical representatives of) subobjects of A by (\/, S:) (C) =, S:(C).

Proof. We define S : C°? — Sets by S(C) = |, Si(C) on objects and by the restriction of A(f)
on arrows. This is clearly a well defined functor and a subobject of A. It is also clear that each
inclusion S; — A factors through S. Finally, we note that if each inclusion S; — A also factors
through S’ then | J; S;(C) C §'(C), so the inclusion S — A factors through S’ O

One way to reason about logic in presheaf categories is through the use of forcing which we will
now introduce. Later we will talk about sheaf categories, and we note that the same concept of
forcing makes sense in these categories.

Definition 4.10 ([16] §VL.7). Let C be a small category, and consider the topos Sets®” . For
an object C € C we say that C forces ¢[5/Z], written C I ¢[s/Z], if given that the type of F is
interpreted by X, the map [3] : yC — X factors through [Z.¢]. If we, by Yoneda, interpret 5]
as an element of X (), this is the same as saying that [s] € [Z.¢](C).

Let us now consider the relationship between forcing and satisfaction of formulae as defined in
3.26. We note that for a formula in a context interpreted as X to be valid, it needs to be all of
X. Thus the following proposition follows immediately.

Proposition 4.11. Let x.¢ be a formula in the Mitchell-Bénabou language, and let the type of
the context be X € T. Then T E Z.¢ if and only if for any C and any [s] € X(C), C Ik ¢[5/Z].

The following two theorems will be a great help when determining the validity of formulas in a
presheaf topos. There is also a sheaf version of this theorem which will be presented in Section
4.2.

We first note that if C;, D € C for some small category C, then each arrow f : D — C induces
a natural transformation yf : yD — yC by post-composition. Thus, for each term § in the
Mitchell-Bénabou language, there is also a term Soyf : yD — X. To shorten the notation, we
will call this term f*(3).

Theorem 4.12 ([16] §VL.7). Let C I+ ¢[5/Z], and let f : D — C. Then D I~ o[f*(5)/Z]. This
property is called monotonicity. |

Theorem 4.13 ([16] §VL.7). Let € = SetsC” for some small C, and let &.o and &4 be formulas.
Then

(i) C - (o A)[5/Z] if and only if C I+ ¢[§/Z] and C IF ¢[5/Z].

(i1) C - (o V)[§/Z] if and only if C I+ p[S/Z] or C I+ [5/F].
(iii) C Ik (¢ = )[S/Z] if and only if for all f : D — C, D I+ ¢[f*(8)/Z] implies D I+ [ f*(5)/].
(iv) CIF (=) if and only if there is no f: D — C such that D |+ ¢[f*(5)/].
Assume next that Ty.p has at least the free variable y : Y. Then

(v) C - (3yp)[s/Z] if and only if there exists at € Y(C) such that C |k ¢[S/Z,t/y].

24



(vi) C 1= (Vyp)[5/E] if and only if for all f : D — C and all t € Y(D) we have D IF
plf*(3)/7,t/y). O

We know that the law of excluded middle and the axiom of choice does not in general hold in a
presheaf topos. However, we will later need a slight weakening of the axiom of choice, called the
axiom of dependent choice. This axiom does, in fact, hold in any presheaf topos. To show this,
we start with a lemma.

Lemma 4.14. Let T be a topos with a natural numbers object N. Then for A € T, Nx A =
A+ A+ ---, where the latter is a countable coproduct of the objects A.

Proof. Denote by ¢; the inclusion of A into the ith term in the coproduct. By the universal
property of a coproduct, it is possible to construct a map, call it S making the diagram

A—" s A+ A+
S s (48)
A+A+---.

commute. We note that ¢, = So---05 0. By the universal property of the natural numbers
n times

object, there exists a unique h such that

(0,id) (s,id) Nx A

A———3 Nx A
\ » |» (4.9)

At A+ —25 A+ A+,

But this means that each S™ o 1y = ¢,, factors through N x A. Next, we note that we have a
family of maps (s",id) o (0,id) : A — N x A. Thus, we have the commutative diagram

A5 A4 A+ 25 A+ A+

S s (4.10)
(s,id)

NxA ———— N x A.

But from the commutativity of these diagrams, it follows that ¢, =13 0 S ohog=1,0hog.
But then it follows from the coproduct property that h o g = id. O

Theorem 4.15 (cf. [16] VI Exercise 12). The aziom of dependent choice, i.e. the formula
VoIyR(x,y) = Ve3f € XV(f(0) = 2 AVnR(f(n), f(n+1)) (4.11)

holds in all presheaf topoi for all objects X and relations R — X x X.

Proof. We note that the formula is over the empty context, which is always interpreted by 1. By
Proposition 4.11 we want to show that C’ forces the formula for each C’ in the base category.

By Theorem 4.13 we want to show
CIFVa3f € XN(f(0) = z AVnR(f(n), f(n + 1)) (4.12)

assuming C |+ VazdyR(x,y) for all C — C’. Since C’ was arbitrary, this last condition does
however not say anything of interest.
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The assumption C I+ Vz3yR(z,y) can be rewritten as saying for all D — C and all a € X (D),
there exists b € X (D) such that (a,b) € R(D). Fixing D, this is thus exactly the hypothesis for
the regular axiom of dependent choice.

By (external) dependent choice, we thus have that for all « € X (D), there exists a g € X(D)N
such that f(0) = o and for all n € N, (g(n),g(n + 1)) € R(D). Suppose now that we have
a:D"— D. Then a* o g € X(D')N.

Using Lemma 4.14, we can write

X (DN = Hom(yD', X)" = Hom(yD’, X) x Hom(yD', X) x - -- =
= Hom(yD' +yD' 4 ---,X) = Hom(yD' x N, X) = X"(D'). (4.13)
Thus we have enough to conclude that D I- (Vn € N(R(f(n), f(n + 1))))[g/f] where f is a

variable with its type interpreted by X~. But now, the rest of the proof is just a straightforward
application of the “only if”-direction of Theorem 4.13. O

4.2 Sheaf Topoi

Before introducing sheaves, we will give a brief introduction to the concept of a locale. Locales
are related to spaces, or perhaps even more to the concept of the opens of a space. We know
that any continuous map f : X — Y induces a map f*: O(Y) — O(X). For locales, we start in
the other direction, defining maps between generalisations of sets of opens.

Definition 4.16 ([29] C1.1.1). A frame is a complete lattice, that is a lattice with arbitrary
meets and joins, for which the distributive law

a/\\/bi = \/(a/\bz) (414)
iel iel
holds for arbitrary index sets I.
A homomorphism of frames is a map preserving finite meets and arbitrary joins.

Definition 4.17 ([29] C1.2.1). A locale is a frame. A homomorphism of locales is an arrow in
the opposite category of the category of frames.

Remark 4.18. Note that any topology gives rise to a frame by taking the set of its opens
ordered by inclusion. We define the functor O : Top — Loc by sending each topological space
to the frame of its locales, and each continuous map to the induced frame map of opens.

We will now turn to the introduction of sheaves, which will be a very important concept for the
coming sections. First, we need the definition of an open cover.

Definition 4.19. Given a locale L, an open covering of an element U € L is a set C' =
{U; € F |U; <U} such that \/C =U.

Definition 4.20 ([16] §IL.1). A sheaf is a presheaf F' : L — Sets where L is a locale (for instance
the set of opens of a topological space) such that for each open set U € L, and for each covering
{Ui} of U, the following digram

FU — ], FU; %; [1., F(U:nU;) (4.15)
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is an equalizer (in Sets). Here e(t) = {t|v,},p ({t:}) = {t:lw.nv,) } and ¢ ({t;}) = {t;|l v, }-
The category of sheaves on L is called Sh(L). If L is the opens of a space X, we usually write
Sh(X). Note that this is a full subcategory of the category of presheaves on L.

Let us consider the meaning of the above definition. An equalizer in Sets is the set of all elements
x for which p(z) = ¢(z). Thus, this says that any set {¢;} of functions on the sets U; which are
equal on all intersections comes from a unique function on all of U. This is often phrased as the
locality and glueing axioms, which are often used to define sheaves. To describe these, we let L
be a locale, U € L an open, and (U;) an open cover of U. We furthermore assume that F' is a
presheaf on L. A sheaf can then be characterized by the following axioms:

e (Locality) If f,g € F(U) and f

e (Gluing) If there is a collection f; € F(U;) with the property that f;
all U;, Uj, then there is an f € F(U) such that f|y, = f; for each U;.

U, = glu, for each U;, then g = f.

vinu; = filu.nu; for

We note that the gluing property is the existence mentioned above, and that the locality is the
uniqueness.

In the later parts of the thesis, we will mainly be interested in categories where the underlying
locale comes from a topological space. However, we note that in most of the following, there are
corresponding results for locales.

Proposition 4.21 ([16] 11.2.2). The category of sheaves on a space X has all small limits.
Furthermore, the limit is exactly the limit of these sheaves seen as presheaves.

Theorem 4.22 ([16] IL5.4). Let ¢ : Sh(X) — Sets® )" be the inclusion functor. Then . has
a left adjoint a called the associated sheaf functor. O

For any presheaf A which is already a sheaf, the associated sheaf functor works as the identity.
Since this functor is a left adjoint, it preserves colimits. This means that any colimit in Sh(X)
can be calculated by considering the colimit of the diagram of sheaves as a diagram of presheaves,
and then apply a to the resulting colimit. In particular, this means that Sh(X) has all small
colimits.

Proposition 4.23 ([16] I1.8.1). The category Sh(X) has exponentials, where the exponential of
two sheaves is exactly the presheaf exponential of the same. Le.

FY(U) = hom(yU x G, F). (4.16)
0

Proposition 4.24 (I1.8.2). The functor Q on O(X), defined on objects by
QU = {V|V € O(X),V CU} (4.17)

and on inclusions W C U by mapping V — V NW, is a sheaf on X, and a subobject classifier
for the category Sh(X). O
Summing these last propositions up gives the following result.

Theorem 4.25 ([16] §I1.8). The category Sh(X) is a topos.

We also have the following result.

Proposition 4.26 ([29] §1.4). The category Sh(X) of sheaves over a space X is geometric.

There is a sheaf version of Theorem 4.13.
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Theorem 4.27 ([16] §VL.7). A modified version of Theorem 4.13 holds for sheaf topoi. The
modification goes as follows. Let .o and Z.1p be formulas. Then

(i) Uk (o A)[8/Z] if and only if U IF ¢[$/Z] and U I+ ¢[5/Z].

(1) U I+ (o VvV )[S/Z] if and only if there is a cover {U;} of U such that U; |- ¢[s|y,/Z] or
U; = ¥[8y, /2] for all U;.

(ii1) U Ik (o = )[5/Z] if and only if for all V — U, V Ik o[3]y /Z] implies V I 9[5]y /2.
(iv) U - (=) if and only if only V = & forces ¢[5]v /).
Assume next that Ty.p has at least the free variable y : Y. Then

(v) U Ik (3yp)[S/Z] if and only if there exists a covering {U;} and t; € Y (U;) such that U; IF
(#)[8lv: /7, ti/y]-

(vi) U I+ (Vyp)[s/Z] if and only if for all V < U and allt € Y(V) we have V I+ ()[S]v /Z,t/y].
[

Remark 4.28. The monotonicity (Theorem 4.12) holds also for presheaves. Furthemore, there
is an important special case of (ii) above. Namely, let 1) = L. Then the rule reads U I~ ¢[5/Z] if
and only if there is a cover {U;} of U such that U; IF ¢[S]y, /@] for all U;. This property is called
local character.

The full set of opens of a topological space is usually a rather complicated construction, and it
is in many cases helpful to just look at a basis of the space. Fortunately, sheaves behave well
with respect to this.

Proposition 4.29 ([16] 11.1.3). Given a topology T on X and a basis B for this topology, the
restriction functor gives an equivalence of categories Sh(X) = Sh(B). In other words, it is
possible to define a sheaf by giving a definition only on the basis of the topology.

4.3 Geometric Morphisms

As is customary when having introduced new mathematical objects, we now want to introduce
arrows between them. Here, we will introduce geometric morphisms, one type of morphism
between topoi. We have delayed our introduction of this morphism until after introducing cat-
egories of sheaves since there is a very tight connection between geometric morphisms of such
topoi and the morphisms of their base categories.

Definition 4.30 ([16] VIL.1). Let &, F be topoi. A pair of functors g* : & — F,g. : F = &, is
called a geometric morphism g if g* is left adjoint to g, and g* preserves small limits. This is
often written as g : F — £. The map g, is called the direct image of the geometric morphism,
and the functor g* is called the inverse image.

An interesting property of geometric morphisms is that their inverse images preserve geometric
formulae. In order to describe this, we will first note that given a geometric morphism (or in fact
any functor preserving small limits) there is a canonical way to compare interpretations.

Definition 4.31 (cf. [16] §X.2). Let M be a ¥-structure in F. Given a functor f : F — &
preserving limits, we let the induced X-structire in £ be the structure given by the following
assignments (cf. Definition 3.22):
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1. For each sort A, the object f(MA).

2. For a list of sorts Ay, -+, A,, the object f(MAy; x--- X MA,) = f(MA))x---x f(MA,).
3. For each function symbol g : A --- A, — B, the arrow f(Mg).

4. For each relation R — A; --- A, the subobject f(MR) — f(MA; X --- X Ay).

Theorem 4.32 ([16] X.3.1). Let f : F — & be a geometric morphism and let ¢ be a geometric
formula in some context. Then [p] ¢~ ary = f*([e]ar)- O

What this theorem says is that interpretations are preserved under geometric morphisms. In
particular, it means that if a sequent or formula is satisfied in M, then it will also be satisfied in

fr(M).
Given sheaf categories, morphisms of the underlying “geometric” categories induce geometric

morphisms. We want to consider these morphisms in some more detail, for which we need the
introduction of bundles and étalé spaces.

Definition 4.33 ([16] §I1.4). A bundle over X is a continuous map E — X of spaces. A
morphism of bundles is a commutative diagram

E ——F

\ l (4.18)
X.

In other words, the category of bundles over X is exactly the slice category Top/X where Top
is the category of topological spaces.

Definition 4.34 ([16] I1.6). A continuous map f : E — X between spaces is a local homeomor-
phism if for each e € E there is an open set U containing e such that f(U) is open in X and
that the restriction of f to U is a homeomorphism between U and f(U). A bundle for which
the map is a local homoemorphism is called an étalé space. The collection of étalé spaces over
X together with bundle morphisms gives the category étalé(X).

A sheaf is a space where each open is sent to some set. An étalé space is a space mapping
continuously to an underlying set. Thus, both structures associate something to each open of a
set, in light of which the following might not be too surprising.

Proposition 4.35 ([16] 11.6.3). For a space X, the categories Sh(X) and étalé(X) are equiv-
alent. The functor T : étalé(X) — Sh(X) is given on f: F — X by associating each U to the
set of commutative diagrams

U——F

\ lf (4.19)
X.

O

Thus we can consider our objects as sheaves or étalé spaces, depending on which approach
works best for the situation. This gives us a way to describe the geometric morphism promised
above.

Theorem 4.36 ([16] I1.9.1 I1.9.2). A continuous map f : Y — X induces both a functor f, :
Sh(Y) — Sh(X) and f* : Sh(X) — Sh(Y). The first one is given by precomposition, i.e.
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f«F(U) = F(f~'U). The second one is given by seeing a sheaf F as an étalé space g : E — X
and taking the pullback
EF —— F

l | lg (4.20)

y L x

Furthermore, these maps constitutes the direct image and inverse image of a geometric morphism.

O

Remark 4.37. Note that it is not a priori clear that the presheaves and the bundles defined by
f+« and f* are sheaves and étalé spaces respectively. This is part of the content of the theorem.

4.4 Atomic Geometric Morphisms

In this section, we would like to introduce the concept of an atomic geometric morphism. Such a
morphism is one where the logical structure of the topos is preserved. We will also discuss some
other results that will help us find atomic geometric morphisms.

Definition 4.38 ([16] §IV.2). Let F : F — & be a functor between topoi. Then F is a logical
morphism if it preserves the structure used in defining a topos, that is finite limits, exponentials
and subobject classifiers.

Definition 4.39 ([29] §C3.5). Let g : F — &£ be a geometric morphism, and assume that g* is
a logical morphism. Then g is called atomic.

We will now introduce two concepts that can be used to find atomic geometric morphisms. For
the first concept we mention the result that given a topos &, the slice category £/F for F € £ is
also a topos ([16] IV.7.1).

Definition 4.40 (][29] §C3.3). Let £ be a topos, and let F € £. Let 7 : £/F — & be the
geometric morphism defined by 7* being the pullback along the unique map F' — 1, and m,
being its right adjoint. If a geometric morphism F — & factors as F = E/F 5 &, then it is
called a local homeomorphism of topoi.

Definition 4.41 ([29] A4.6.1). Given a geometric morphism f : & — F, the morphism is localic
if every E € £ is a subobject of some coequalizer A — f*(F') for some F' € F.

Proposition 4.42 ([29] C3.5.4). A localic morphism is atomic if and only if it is a local home-
omorphism.

Since we are working primarily with sheaves, we will now try to relate these concepts to sheaves.

Lemma 4.43 ([29] §A4.6). If f : X — Y is a continous map, then the induced geometric
morphism is localic. O

Lemma 4.44. Any local homeomorphism of spaces f :'Y — X induces an atomic geometric
morphism.

Proof. By Proposition 4.42 and Lemma 4.43 it is enough to show that the induced geometric
morphism is a local homeomorphism.
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Since Y — X is a local homeomorphism, it represents some sheaf in Sh(X), say F'. We will now

show that f : Sh(Y) — Sh(X) factors as Sh(Y) = Sh(X)/F = Sh(X). We start by noting
that any object in Sh(X)/F can be represented by a commutative diagram

A—L2-5Y

X lf (4.21)
X

where a and o’ are local homeomorphisms. Clearly, there is a bijective correspondence between
such diagrams and local homeomorphisms into Y. We thus have Sh(Y) = Sh(X)/F. We see
that id : X — X is the étalé(X) representation of the terminal object in Sh(X'), But pullback
along the diagram

f

Y — X
\fl H (4.22)
X
is just pullback along f : Y — X, showing that f indeed factors as required. O

4.5 Local truth

Definition 4.45. Given a space X, a context #, a formula ¢ and an open subset U C X, we
will say that Z.p is valid at U if 1*([¢]) = *([Z.T]). If, for each & € X there is an open V such
that ¢ is valid at V', we say that ¢ is locally valid.

This description of local validity doesn’t really provide anything new. We will show shortly that
it is exactly forcing in a new guise. For this, we will need the following lemma.

Lemma 4.46. Any representable presheaf is a sheaf. Furthermore, the étalé space associated

with yU for an open U C X, is exactly the inclusion ¢ : U — X.

Proof. The locality and glueing axioms are obvious. It is also clear that ¢ : U — X has the
property that there exists a unique commutative diagram

V— U
\ lL (4.23)
X
exactly when V < U. O

Theorem 4.47. Let Sh(X) be a sheaf topos on a space X, U C X, and . a first order or
geometric formula where T has types interpreted by A, then U b ¢[$/Z] in Sh(X) if and only if
11k [e(8)/Z] in Sh(U). In particular any closed formula ¢ is valid at U if and only if U forces

©.
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Proof. Let f: A — X and g : B — X be the étalé spaces corresponding to the sheaves A and
[] respectively. By Lemma 4.46, we then want consider the diagram

[5]
v B34
lb lg lf (4.24)
X —— X —— X.

and the question of existens of an arrow U — B making it commute. Applying +*, and remem-
bering that pullback is functorial, we get the diagram

c(I5T)
U B — A
U B A
U

(4.25)

U U

N N\

X X X.

It is immediately clear that if there exists a factorization making the front part commute, then so
does the back (by functorality). Since formulas are preserved by ¢*, this means that if U I+ ¢[5/7],
then 1 IF ¢[¢*(5)/Z] in Sh(U). On the other hand, suppose that there is an arrow §: U — B’
making the back rectangle commute. Then o h, where h is as defined in the diagram above,
is an arrow between U and B, making the front rectangle commute. Thus there exists a map

making [§] factor through through B. O
Corollary 4.48. A locally valid formula is valid.

Proof. This follows directly from the local character property, introduced in Remark 4.28 O

We will now introduce a lemma that will help us to prove some more results.

Lemma 4.49. Let X be a space, and let V < U. If

A 25 A

l l (4.26)

U—— X
is a pullback diagram, then there is a bijective correspondence between diagrams on the form

Vs A

. (4.27)
N
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and diagrams
A

\ l (4.28)
X.

Furthermore, any such o factors through o.

Proof. Clearly, any diagram on the first form gives rise to a diagram of the second, by just
composing with the pullback square in 4.26.

Now, given a diagram of the second form, we note that the inclusion of V' into X clearly factors
through U. Thus, we have the following diagram

1%
\x A (4.29)
I
U—— X.

By the pullback property of the diagram 4.26 it follows that there exists a unique o : V. — A’
making the diagram commute. Thus we have obtained a diagram on the first form, and shown
that o/ factors through a. O

Proposition 4.50. Given a geometric or first order formula ¢, if V. < U, then the sets
[Z.¢]snx)(V) and [Z.¢]snw) (V) are isomorphic as sets.

Proof. Let f : A — X be the representative of [7.¢]sn(x) as an étalé space. We know that
for o : U — X, the induced geometric morphism preserves interpretations, so [Z.¢]snw) is
interpreted by some f’: A’ — U making the square

lf, lf (4.30)

a pullback. Since [7.¢]sh(x) (V) = Homgalg(x)(V; A) and [Z.¢]sn@) (V) = Homeggarg)(V, 4'),
the result follows directly from Lemma 4.49. O

Remark 4.51. In the case when ¢ = Z.T where the type of Z is interpreted by X, the Proposition
says that «(X)(V) = X (V).

4.6 Internal locales

Many of the construction which we will use later will be locales internal to some topos, so we will
dedicate this section to such structures. We start by showing that it is possible to give external
descriptions of such locales.
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Definition 4.52 ([29] §C1.6). Let f : Y — X be an arrow between locales, and denote by f~! the
corresponding frame map. Define the internalization of f to be the presheaf Z(f) = f.(Qsn(v)),
i.e. be defined by

Z(f)(U) = Qsn) (fHU)). (4.31)

Lemma 4.53 ([29] §C1.6). Let f:Y — X, g: Z — X, h: Y — Z be arrows between locales such
that
vy sz

Tl (4.32)
N

commutes. Then Z(h) : Z(g) — Z(f) defined on V € Qgniyy(f~1(U)) by
Z(h)y(V)=h"1(V) (4.33)

is a frame map. Thus it gives rise to an internal arrow of locales making T is a functor Loc/X —
Loc(Sh(X)), where Loc is the category of locales, and Loc(Sh(X)) denotes the internal category
of locales in Sh(X). O

Theorem 4.54 ([29] C1.6.3). Then there is an equivalence of categorties
Loc/X = Loc(Sh(X)), (4.34)

where the functor Loc/X — Loc(Sh(X)) is given by Z. O

Remark 4.55. Note that the locale corresponding to id : X — X corresponds to {lgn(x). In
the equivalence Sh(X) 2 étalé(X), id : X — X corresponded to 1. Thus, we need to remember
that these equivalences behave differently and that it is important to remember which one we
are talking about.

Definition 4.56 ([34] §11.1.3). A point of a locale X is a frame homeomorphism p : X — Q
where (2 is the truth value object. For each U € X, we get a set of points Vi; with the property
p(U) = T. The collection of such Vi gives a topology on the set of points of X. Thus, there is
a functor pt : Loc — Top mapping X to the topological space of its points.

We will want to describe the internal object of morphisms between two locales. This requires
the following lemma.

Lemma 4.57. Let A be an object. The statement “A is a frame” is a first order statement
using the types Q4 and A. Given two frames A, B, and f € B*, the statement “f is a frame
homomorphism” is first order using the types Q% and B2,

Proof. The theory of a lattice is clearly first order. The arbitrary meet can be defined as an
operation A : Q4 — A with the following axioms:

1. VS € 04z € A((z € S) = (A(S) < 2),

2. VS € Q4x € A((z > \(S)) = (z € S).

and the arbitrary join similarly. The infinite distributive law can be written as VSVa((aAA(S)) =
(A(SU{a})) where S U {a} is the set characterised by the formula (b € S)V (b= a).

For the frame homomorphisms, we first note that given f € B4, S € Q4, f(S) can be charac-
terized as Ja((a € S) A (b= f(a))). Thus, being a locale homomorphism is characterized by the
formulas f(a Ab) = f(a) A f(b) and A(f(S)) = f (A(S))- u
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Remark 4.58. The above Lemma shows that any theory preserving first-order logic and power
objects, thus, any logical morphism and any atomic geometric morphism, preserves the theory
of frames.

Theorem 4.59. Let Z(f) and Z(g) be a locales internal to Sh(X). Let Loc(Z(f),Z(g)) be the
object of internal locale maps. Let U C B with ¢ : U — B the inclusion. Define fy : Aly —
U, gu : Blu = U to be elements of Loc/U corresponding to *(Z(A)),*(Z(B)) respectively. Then
the object Loc(Z(A),Z(B)) is given by mapping U to the set of commuting locale diagrams

Aly —— Blu

o g (4.35)
\ g

and where inclusion V. C U 1is mapped to the restrictio of the diagram.

Proof. Let o be a variable of type Z(A)Z(®), and let a.f be the formula for being a locale
homomorphism. By 4.57 we know that this formula is preserved by the geometric morphism ¢.
What we want to show is that there is a bijective correspondence between a € [f.0]sn(x)(U)
and commutative diagrams of the above form.

From Corollary 4.50 we know that we can just aswell consider the set [f.0]sn(vy, where f is now
a variable of type (X)) = «(X)*™). But [f.0]sn)(U) = Hom(1, [f.0]sn(w), so we are looking
for the global elements of Loc(:*(X),:*(Y")) which by the equivalence of categories are exactly
given by commutative diagrams of the above form.

By Lemma 4.53, we know that the global elements of Loc(t*(X),*(Y)) corresponds to frame
maps acting like A=, Now, the restriction maps of presheaf XY are just function restrictions.
Thus, if we have ¢ : V C U, XY (1)(h~!) = h~!|y, which corresponds exactly to the restrictions
of diagrams. O

Corollary 4.60. The point object of a locale X is given by its local sections, i.e. for each U it
is mapped to the set of commutative locale diagrams

U—— Lx‘U

\ gyU (4.36)

Furthermore, the locale has a global point if and only if the point object has a global element.

Proof. Noting that Z(:) = |y, and that Q|y is represented by id : U — U, the result follows
directly from Theorem 4.59. O

Theorem 4.61 ([34] §11.1.4). There is an adjunction

hom(O(X),Y) = hom(X, pt(Y)). (4.37)

Definition 4.62 ([34] §I1.1.5). A frame L is called spatial if for all a,b € L, if a £ b, then there
is a point p such that p(a) =1 and p(b) = 0.
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An important collection of locales are those who are compact completely regular. These will be
used in the studies of quantum mechanics later, and we now give a quick introduction to what
it means to be compact and completely regular.

Definition 4.63 ([7] 3.1). Let U,V be elements of a frame. We say that U is rather below V,
written U < V, if there exists W such that UAW =0and VVW = 1.

Definition 4.64. We say that a frame F is regular if for each V € F, V =\/{U € F|U < V}.

Definition 4.65 ([35] §0). Let V,U be elements of a frame F, and let V' <« U mean that there
is a sequence (V;, k)n=1,0,....;k=0,1,...,2n such that

V= Vn,O Vn,k < Vn,k+1 Vn,2" =U Vn,k = Vn+1,2k (438)

for all n, k. A the frame is called is called completely regular if for any U € F, U = \/{V € L |
V <« U}.

The following definition is standard for topological spaces, but we note that it also applies for
locales.

Definition 4.66. A locale X is called compact if every open cover, i.e. every collection U; such
that \/, U; = X, has a finite subcover Uy, ..., U, such that \/;.L:1 U; =X.

Although frames and locales usually behave rather well constructively, their construction requires
the power object which does not, in general, behave well with geometric morphisms. However,
in some cases, it is possible to avoid this problem by defining frames using so-called presenta-
tions.

A presentation is given by an object GG of generators, and an object R of relations. The informal
idea is then to define a collection of formal expressions; the closure over GG with respect to formal
finite conjunction and formal arbitrary disjunction. Then we factor this collection by provable
equality using the relations.

However, a collection containing formal arbitrary disjunctions is generally too large to fit in the
topos of G and R.! However, there is a way to avoid this, and make some frames behave well
with respect to geometric morphisms.

Definition 4.67. The finite power object of A, denoted F(A) is the object of (Kuratowski) finite

subobject of A. That is, it is the subobject of 02" characterised by the fact that for each B in
F(A), there is a surjective mapping from 1+ --- + 1 to B for some n.

n times

Lemma 4.68 ([37] §2). The finite power object is characterized by a geometric theory. O

The idea now is to write each relation on the form

Na<\/ b (4.39)

(cf. [38] §4). For each relation r € R, the disjuncts D, in r is an object. Thus D =[], D, is
an object with a natural projection 7 : D — R. Given maps A : R — FG,p: D — FG, it is
then possible to write each relation as

A <\ A »la). (4.40)
7(d)

This motivates the following definition.

1For instance, in Sets, we would need an object /\iEI a; for each set I. This collection is of course not a set
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Definition 4.69 ([37] 5.1). Let G, R and D be sets, and let A : R — FG,p : D — FG and
m : D — R be functions. A frame presentation is a structure with the types D, R, G and the
arrows T, A, p.

Theorem 4.70 ([37] 5.4). Let X be a locale, and let | : L — X be the Loc/X representation
of a locale internal to Sh(X) which is presented by the presentation P. If f:Y — X is a map,
then the frame in Sh(Y') presented by f*(P) is given in the Loc/Y representaion as the space
I': L' =Y making the following square a pullback:

L —— L

I [ (4.41)

y 4 x

This theorem shows that if P behaves well with respect to geometric morphisms between sheaf
topoi, then so does the frames presented by them.

An obvious corollary to the above theorem is that if L is the frame as presented in Sets, then
the 7 : L x X — X is the frame in Sh(X) given in the Loc/X representation.

4.7 The Complex Plane and the Upper Reals

Since the real and complex numbers are much used in standard quantum mechanics, it should
come as no surprise that these concepts are important also in Topos Quantum Mechanics. Here,
the corresponding constructions will be locales, the locale of complex numbers and the locale of
upper reals.

Definition 4.71 (cf. [39] p. 441). The complex rationals is the algebraically constructed set of
numbers r = p + gi where p and ¢ are rational. The locale of complex rationals, denoted Cgq, is
the locale of squares in the complex plane

" (4.42)

identified with tuples (r1,72), ordered by inclusion.

Definition 4.72 ([7] 2.4). Given a topos 7. The internal frame of complex numbers Cr is
presented by the generators (r, s) € Cg, together with the following relations:

(i) (r,s) <0 for (r,s) <O0.

(ii) 1< Vo ,s(rs)
(ili) (r,s) < (p,q) V (P, ¢') when (r,s) < (p,q) V (p',q').
(iv) (@) A (P, q") < (r,s) when (p,q) A (', q) < (r;5).
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(V) (7", 8) = V(T/7S/)<(’I‘7s) (T/7 S/)'
Here. we remember the definition of rather below, <, from Definition 4.63.

Proposition 4.73 ([39] p. 442). The set generated by interpretation of this theory in Sets is
the topology of C. O

Next, we consider the locale of upper reals.
Definition 4.74 ([5] §2.3). The locale of upper reals, denoted Ry, is the locale given by generators
(p,q) € Q x Q ordered by (p,q) < (p/,¢’) if and only if p’ < p and g < ¢’ with the relations:
(1) (00) = Vpep ey, d),
(i) (p1, 1) A (P2, g2) = (max(p1, p2), min(q1, ¢2)),
(ili) T =V, ).
To get an explicit description of these numbers, we will first need two definitions.

Definition 4.75 (cf. [29] D4.7.2 D4.7.3). A function X — R is called lower semicontious if it is
continuous when R is given the topology generated by the sets L, = {z|z > a} for all a € R.

Definition 4.76 ([29] D4.7.3). A lower semicontinuous function X — R is called locally bounded
above if for any © € X, there exists an open neighbourhood V of x and a ¢ € Q such that f(y) < g
onV.

We note that it is possible to define the addition of two upper reals as pointwise addition.

Proposition 4.77 ([29] D4.7.3). For X a sober topological space, the object R; internal to Sh(X)
is given by the functor mapping V to the set of lower semicontinuous function V. — R which are
locally bounded above. O

4.8 The Alexandrov Topology

We have seen that sheaf categories allow different descriptions of internal locales, i.e. both as
sheaves and as objects of Loc/X. We will rely heavily on this when exploring covariant toy
models in Chapter 6. However, our inspiration will not come from sheaves, but from covariant
functors on a poset. Fortunately, covariant functors into Sets can be seen as sheaves, which will
be shown in this chapter.

Proposition 4.78. Let P be a poset. The collection of upwards closed sests, i.e. sets such that
x € U,x <y impliesy € U, gives a topology on U. This is called the Alexandrov topology on A.

Proof. A straightforward check of the axioms for a topology. U
Proposition 4.79. The collection of sets B = {1 p}pEP is a basis for T .
Proof. Clearly, each element of B is open. Furthermore, if U € T, then U = {J ¢y T u- O

Theorem 4.80. Let P be a poset, and denote by P the poset seen as a space with the Alezandrov
topology. Then there is an equivalence of categories

Sets” =~ Sh(P). (4.43)
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Proof. We first note that the right hand side is a presheaf category Sets"")™ . We thus define
P = P°_ and will show the equivalence Sets” = Sh(P).

Next, we define the functor s : Sets””" — Sh(P). By Proposition 4.29 and 4.79 it is enough to
define the functor by showing how the image sheaf acts on the elements 1 p. Thus, we define
s(F)(T p) = F(p) and send restrictions to restrictions. To see that this is a sheaf, we note that
any covering of 1 p must contain 1T p. But then, the sheaf requirement reduces to saying that
any set of functions which is equal on all of 1 p must come from a unique set of functions on 1 p,
which is clearly true.

The other direction is a bit less obvious. We will assume that we are looking for an adjunction,

and use to Yoneda lemma to define ¢ : Sh(P) — Sets”” by ¢(G)(p) = hom(yp,c(G)) =
hom(s(yp), G). The latter expression is well defined, and is a functor by the naturality of the
Yoneda lemma.

Now, we want to show that this definition gives an equivalence. It is clear that any sheaf G on
P can be obtained by defining the presheaf F(p) = G(1 p), so the map is essentially surjective.
Thus we need only show that

hOIIl(Fl,Fg) = hOHl(S(Fl)7S(F2)) (444)

But by 4.29, the arrows in Sh(ls) are natural transformations if and only if

s(F1)(tp) — s(F2)(Tp)

l l (4.45)

s(F1)(q) — s(F2)(q)
commutes for each 1 p. This is clearly the same as asking that a diagram

Fi(p) —— Fa(p)

l l (4.46)

Fi(q) — Fa(q)

commutes, so the bijection is clear. O
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Chapter 5

The Topos Approach

5.1 The Contravariant Approach

As mentioned at the outset, the main goal of this thesis will be to look at the topos approaches
of quantum mechanics from a toy model perspective. Now, we have presented much of the
theory of Topoi, and will thus move on to the description of the topos approaches of quantum
mechanics.

We note that there are actually two slightly different topos approaches out there. The first one to
appear is what is now called the contravariant approach, pioneered by Isham & Butterfield [1-4],
and extended by Doering & Isham [41-44]. The second one is called the covariant approach, and
was pioneered by Heunen et al. [5]. A comprehensive comparison of the two approaches can be
found in [14].

Except as some historical background, the main importance for us of the contravariant approach
is its similarity to the concept of measurement scenarios developed by [6]. These scenarios will
be used to model toy models, and the main aim of Chapter 6 will be to incorporate these mea-
surement scenarios into a setting more similar to the covariant approach. Thus this introduction
will be rather brief. The interested reader is directed to the aforementioned articles and other
texts on the subject, including [13, 45, 46].

The basic idea of the topos approach is that quantum theory behaves well when only commuting
observables are taken into account. Remembering that each quantum system has associated to
it a Hilbert space, the following definitions can be made.

Definition 5.1 ([45] 9.6). Given a Hilbert space H, consider the von Neumann algebra B(H)
of bounded operators on H. We let V(#) be the poset of abelian von Neumann subalgebras
of B(H) ordered by inclusion. This will be called the measurement scenario, and each element
V € V(H) will be called a measurement context.

The terminology of measurement scenarios and measurement contexts are not used in [45], or in
the Topos Approach literature in general. Instead, it comes from the Abramsky—Brandenburger
approach which will be introduced in Section 5.2. We use it here to illustrate the similari-
ties.

Now, both topos approaches depend on the Gelfand duality, which gives a dual correspondence

40



between compact spaces and commutative C*-algebras. It also has a constructive version in
which compact spaces are replaced with compact completely regular locales.

Definition 5.2. A C*-algebra A is an algebra over C, together with an operation (—)* and a
norm | — | under which the space is complete. Furthermore, for z,y € A, A € C, the operations
must satisfy:

(i) (z+y) =2"+y",
(i) (zy)* =y*a*,
(iii) (Az)* = Az*,
(iv) (z7)" ==,
(v) llz*=|| = [|l=||*.

Theorem 5.3 ([47]). The category of compact completely reqular locales is equivalent to the
dual category of commutative C*-algebras, and this is true constructively. Furthermore, in the
presence of the Axiom of Choice, compact completely reqular locales are equivalent to compact
Hausdorff spaces, giving a duality of the category of compact Hausdorff spaces and the category
of commutative C*-algebras.

Proposition 5.4 ([45] §9.2). In the classical case, the Gelfand spectrum of a commutative C*-
algebra C' is given by the space of linear functionals on C which are multiplicative, i.e. for which
MAB) = AMA)X(B) for all A, B € C, and has norm one, i.e. \(I) =1 where I is the identity of

Equipped with this theorem, we are now ready to define the state space of the contravariant
approach.

Definition 5.5. Given a Hilbert space with the corresponding poset (or measurement scenario)
V(H), the state space is the functor X : V(H) — Sets mapping each V to its Gelfand spectrum,
and each inclusion to the restriction.

In order to get a good comparison with the toy models which we will look at later, we will look
a bit more closely at finite-dimensional Hilbert spaces.

Proposition 5.6 (cf. [45] §9.1). For dim(H) < oo, any V € V(H) is canonically generated by a
set Py of projection operators. Furthermore, if V.C V', then any projection operator P € Py is
a linear combination of projection operators in the generating set of V'.

Proof. From Lemma 2.4, we know that there is a basis By such that each b; is an eigenvector for
the operators of V. Now, group the basis elements by putting in the same group basis elements
which have the same eigenvalue for all A € V. Each group spans a space, and we take the
collection {P;} of projection operators onto these spaces. It will be shown that these projections
have the desired property.

Since each operator A operates as some constant a,; times the identity on each eigenspace, it is
clear that A =3, a;P;, i.e. that {P;} indeed spans V.

For the other direction, we will show that we can construct P; using the operators of V. We know
that for each k # j, there are two operators Ay, = > a;P;, B, = Y b; P; such that a;, = by, a; # b;.
Consider Cy, = Ay — By. Clearly Ej, C kerCy, but E; € kerCy. Thus scaling the operator
Hk# Cy, will give P;.
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The second statement of the theorem now follows easily. Indeed, if V' C V'] then each maximal
eigenspace E] of V' needs to be a subspace of one of the maximal eigenspaces of V'. Otherwise,
it would be possible to construct a projection operator P ¢ V'  using the construction above.
The sum of the projections onto these spaces will be the desired operator. O

Proposition 5.7 (cf. [45] §9.2). For dim(H) < oo, and V € V(H), (V) is given by the set of
linear functionals on H for which {\; | \i(P;) = 0i;} for all P;Py.

Proof. First note that for any projection operator P, and any A € Xy, it holds that
A(P) = AM(PP) = A(P)A\(P). (5.1)
Thus A\(P) is 1 or 0. Since the sum of all projections is I, it follows from linearity that
1=2D) =AM+ 4+ Pn)=NP1) + -+ APn). (5.2)

Combining these two equations shows that there is one P; for which A(P;) = 1, and that A(P;) =0
for all other P;. O

We will finish this section by mentioning contextuality in the language of Isham and Butterfield.
op

‘We know that each Hilbert space has associated a state space ¥ in SetsY™™ . The corresponding

state-space is said to be contextual if it has no global element in the topos Sets”*) (1]

§2.3.1).

5.2 Toy Models

In this section, we will introduce measurement scenarios. These were pioneered by Abramsky &
Brandenburger [6], and has been further explored in a number of articles including, but certainly
not limited to, [48-52].

We will start with the definition from [6]. These definitions will, however, be preliminary for
our purposes, and the definition we will use is that of Definition 5.11. We thus present the
constructions of Abramsky & Brandenburger mainly as background.

Definition 5.8 ([6] §2.2). Let X and O be sets. Let the functor £ : P(X)°P — Sets be defined
by sending U € P(X) to the set of functions from U to O, i.e. U — OY, and sending U C U’
to the map OV — OV given by restriction. This functor is called the O-valued and X-indexed
sheaf of events.

In a measurement setting, the set X should be interpreted as a set of things that could be
measured, and the set O as a set of measurement outcomes. A function U — O is then a way
of, for each measurable, specifying an outcome. Given a specific situation in which a number of
measurables are measured, it is clear that not every outcome need be equally probable, or even
possible. To deal with this, we will look at R-distributions over the outcomes.

Definition 5.9 ([6] §2.3). Let R be a semiring, i.e. a ring without the requirement that there
is an additive inverse. An R-distribution on a set A is a function d : A — R with finite support,
and with the property that

> d(a) = 1. (5.3)

acA
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The semirings that will be of most interest in the following is the semiring of nonnegative real
numbers, R>q, and the Booleans, B. An R>-distribution is a usual finite probability distribution,
specifying a probability for each element of X. A distribution over B is a possibilistic distribution,
stating whether a certain outcome is at all possible, without reference to its probability.

Definition 5.10. Define the functor Dy : Sets — Sets by mapping a set A to the set of R-
distributions on A, and mapping a map f : A — B to the map Dg(f) : Dr(A) — Dr(B) given
by
Dr(f)(d)(b) = > dla) (5.4)
fla)=b
fora e A,be B

Now consider the composite functor Dr€. For each set U of measurables in X, this will give the
set of probability (or possibility) distributions on the set of functions OY, i.e. all possible prob-
ability distributions for the different outcomes when the measurables in U are measured.

Now, let us introduce the definition of measurement scenario and empirical model that will
be used in this thesis. We will use the following definition, heavily inspired by Abramsky’s
measurement scenarios and empirical models, but perhaps most resemble the topological models
found in [52],

Definition 5.11. A measurement scenario M is a partially ordered set, An empirical model on
M is a presheaf F': M°P — Sets together with a topology on each F(m).

Remark 5.12. Note that since this is a functor into Sets, we do not assume continuity of the
restriction maps.

We think of each m € M as a measurement context. By a measurement context is meant a set
of measurements being made on different parts of the system. Thus, the difference between a
measurement context and a measurement (where we see the set of measurement as one measure-
ment, giving a combined result) is only a question of semantics. We think of F'(m) as the set
of possible outcomes for that measurement. The poset structure comes from inclusion of these
sets. In other words, a measurement context m is smaller than n if the information obtained
when doing the measurement corresponding to m is also obtained when doing the measurement
corresponding to n.

We will often use the case with the discrete topology on each F(m). In fact, whenever a specific
empirical model is discussed, we will always assume F(m) to be discrete unless something else
is mentioned.

We note that this gives rise to a possibilistic scenario. We are only looking at what measurement
outcomes are possible, and do not care about their probabilities. Probabilities for this type of
measurement scenarios will be recovered later, when talking about states.

Definition 5.13. An empirical model is called non-signaling if for each m < n, the restriction
map F(¢) : F(n) — F(m) is surjective.

To see why the definition of non-signalling makes sense, we assume that we are in a situation
where the observer Alice only has access to measurements in the context m, and that there are
two more refined contexts ni,no > m where the decision of another observer, Bob, decides which
context we are in. Then, if there was x € F'(m) which is only in the image of F'(n;), then doing
a measurement where the result = is obtained, Alice would be able to infer that we are in the
context F(nq), and thus Bob has been able to signal to her which context we are in. In the rest
of the text, we will assume all empirical models to be non-signalling.
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It should be noted that there is a different way to look at non-signalling models. If we assume
that Alice first makes her measurement, and obtained the value x, then Bob is forced to choose
his measurement so that the context is ny. Thus there seems to be a connection between non-
signalling models and free choice of measurements. This has been explored further by Abramsky
et al. [51].

For some measurement scenarios, it is possible to make graphical representations (cf. [48]). We
will not make precise how such graphical representations can be made, but instead illustrate
with an example. Let M = {a,b,c,ab,ac,bc} where a < ab,b < ab and so on. Further, let
F(a) = F(b) = F(c) = {0,1} and let F(ab) = F(a) x F(b) and so on, with the obvious
restriction maps. This can then be described by the following picture, where the line between a
and b represent the context ab, and so on.

(5.5)

T

a b

For many more examples of this kind of illustrations, see [53].

We note that the contravariant topos approach is a special case of a measurement scenario, with
the empirical model given by the state space. More examples will be given in sections 6.2 and
6.3.

Also, the notion of Isham-Butterfield contextuality is transferrable to empirical models. We
say that a model is contextual if the presheaf it defines has no global element. This is strong
contextuality in the language of Abramsky & Brandenburger [6].

This notion of contextuality is actually stronger than the contextuality due to Spekkens (Def-
initions 2.8 and 2.9). Indeed, let us reinterpret the probability functions of Definition 2.8 to
be functions into the Booleans instead, giving 1 for a possible outcome, and 0 for something
impossible. Now, in a model which is non-contextual in the Spekkens sense, the possibility of
a certain measurement outcome only depends on the initial state (and thus not on any other
measurements). Thus it is possible to just one outcome for each measurement context. These
measurements must work well together, because of the assumption that the measurements do
only depend on the prepared state. This means that any model non-contextual in the sense
of Spekkens must correspond to a model which is non-contextual in the Isham—Butterfield (or
Abramsky-Brandenburger) sense. The converse is, in general, not true.

5.3 The Covariant Approach

We now turn to the covariant approach. The setting for the contravariant approach is the
op
category of contravariant functors Sets®  for a category of contexts C. Thus it might be no
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surprise that the setting for the covariant approach is Sets”, i.e. the setting of covariant functors
into Sets.!

There is another difference between the two approaches, and that is what they use as their
base categories. In the covariant approach, we do not require the underlying algebra to be von
Neumann but settle with C*. Then we have the following definition.

Definition 5.14 ([5] 4). Let A be a C*-algebra. Construct the category C(.A) by taking as
objects the commutative subalgebras of A, and as arrows the inclusion. The Bohrification of
A, denoted A, is the tautological covariant functor from C(A) to Sets defined by C' — C, with
arrows mapping to inclusion.

In order to define a state space, we will use the Gelfand duality. We remember that its proof is
constructive so that we can use it in arbitrary topoi, thus in particular in Sets¢. Then we
only need the following theorem.

Theorem 5.15 ([5] 5). The object A is a commutative C*-algebra in SetsC™ over the operations
induced from A. O

Remark 5.16. Although the commutativity of the multiplication follows rather immediately,
the fact that it is still a C*-algebra is a bit less trivial. We note that it requires the construction
of the internal object of complex numbers, which needs a natural numbers object. Furthermore,
the proof of completeness for the norm uses dependent choice, which certainly does not hold for
general topoi.

The above theorem makes it possible to use the internal Gelfand duality to associate to A a
locale. This locale will be the state space for the contravariant approach.

Definition 5.17. Let A be a C*-algebra, and A its Bohrification. Let G be the Gelfand functor
from internal commutative C*-algebras to internal compact completely regular locales. Then the
state space locale of the quantum system associated with A is ¥ = G(A).

It is possible to give an external description of the space ¥ [54]. This description will be important
later, so we will present it here.

Let C € C(A), and let ¥(C) denote the Gelfand spectrum of C. Then we can define the
space

=[] =© (5.6)
CeC(A)

and equip it with the following topology [54]. Let U € O(X) if and only if the following two
conditions hold for each C' € C(A):

(i) UNX(C) e O(Z(C)),
(ii) For C < D and X € F(D), if A\|c € U, then XA € U.
We then define

Sy =[] =(©) (5.7)

ceU

1n its full generality, the covariant approach allows us to replace Sets as the image category by another
category. However, we will not use that here.
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with the topology inherited from X. Then we have the following theorem

Theorem 5.18 ([54] 1). Given a C*-algebra A, the frame corresponding to the locale G(A) is
given on U € A by
OE)U) = O(%v). (5:8)

Besides the construction of a state space, we would also want to be able to talk about states
in the covariant approach. We will here summarize the construction, with details provided in
[5]-

Definition 5.19 ([5] 9). Given a C*-algebra A, a map p : A — C is called a quasi-linear
functional if it is linear on each commutative subalgebra, and if p(a + bi) = p(a) + ip(b) for
self-adjoint a,b. If, for all a, p(aa*) > 0, it is called positive. A positive quasi-linear functional
on a unital C*-algebra A is called a quasi-state.

Definition 5.20 ([5] 11). Let X be a locale, and let [0, 1]; be the lower reals between 0 and 1.
A monotone map g : O(X) — [0,1]; that satisfies p(U) + p(V) = p(UAV) 4+ (U V V) and
w(V,; Us) =V, u(U;) for a directed family U; is called a probability valuation. Note that this
definition is geometric.

Theorem 5.21 ([5] 14). For a unital C*-algebra A, there is an isomorphism between the object
of quasi-states and that of probability valuations on G(A). O
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Chapter 6

Covariant Toy Models

6.1 The construction

Now, we saw in section 5.3 how to construct the quantum state space locale as an object of
Loc/X where X was the measurement scenario, equipped with the Alexandrov topology. Our
idea is to study toy models using a copy of this construction.

Theorem 6.1 (cf. [14] §2.1). Let P be a poset (considered as a measurement scenario), and let
F: P°? — Sets be an empirical model, as defined in Definition 5.11. Let

F=1]F). (6.1)
pEP

Given the collection {T,} of topologies on the different sets F(p), define T to be the collection of
subsets of F' satisfying the following conditions:

(i) UNF(@) €Ty,
(ii) For p < q and x € F(q), if x|, € U, thenx € U.

Then T s a topology on F. Furthermore, if P is equipped with the Alezandrov topology and
m: F — P is the map sending all z € F(p) to p, then w : F — P is a continuous map, and thus
defines a locale internal to Sh(P).

Proof. Clearly the empty set and the whole space is in 7. Given U,V € T, we see that (U N
V)N F(p)=UnNF({p)n(VNF(p) which is clearly in 7. Furthermore, if z|, € U NV, then
2 must be in both U and V, so x € U NV, showing condition (ii). Moreover, for any family
{U;}, it is clear that the family {U; N F'(p)} is open in F(p), and if f(x) is in some U;, then z
must also be in U;. This shows that 7 is a topology. To conclude the argument, we note that
a1 p) = Up<, F(g) which is clearly an open set. O

Remark 6.2. If each 7, is discrete, this is just the Alexandrov topology on F, where we have
the ordering given for a € F(p), 8 € F(q) by a < 8 if and only if p < g and |, = a.

Definition 6.3. Let P and F be a poset (measurement scenario) and an empirical model. Then
P equipped with the Alexangrov topology will again be called a measurement scenario. The
internal locale defined by 7 : ' — P will be called a covariant empirical model.
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Remark 6.4. Since any empirical model gives rise to a unique covariant empirical model, we
will often drop the distinction, and let it be clear from context which one we are working with.
We also want to note that, unless stated otherwise, that a sheaf on P will always mean a sheaf on
P with the Alexandrov topology, whereas a presheaf on P will mean a presheaf on the ordered
set P (i.e. not a presheaf on the topology of P).

The rest of the thesis will be devoted to exploring some implications and uses of this definition.
As a first step, we give the explicit description of a covariant empirical model.

Proposition 6.5. Let F be a covariant empirical model over P. Dﬁﬁne the spaces Fyy =
HpeU F(p) with the subset topology of F. The internalization of 7 : F' — P as described in

Definition 4.51, is the sheaf OF defined on subsets by U O(Fy), and on subset relations by
mapping U C U’ to the map V — V N Fy.

Proof. We only need to note that the subobject classifier in Sh(F) is the functor sending each
open V of F to the set of opens contained in V. Since for an open U € O(P), 7~} (U) =
[, e F(p), the proposition follows directly. O

Remark 6.6. By Remark 4.51, for ¢ : U — X, and V < U, we have .*(OF)(U) = OF(U). Thus
a straightforward comparison shows that («(OF) is the locale corresponding to 7 : [[ . F(p) —
U.

peU

Remark 6.7. We note that any contravariant state space can be seen as an empirical model. In
this case, the locale gives exactly the locale described in Theorem 5.18. Thus, this construction
gives a way to move from the contravariant to the covariant models.

We know that quantum mechanics is generally contextual, and thus that the state space, in
general, has no global point. Similarly, our empirical models might not have global points.
However, they do in fact have enough local points to make them spatial.

Lemma 6.8 ([29] C1.6.5). A locale map f : Y — X corresponds to an internally spatial locale
in Sh(X) if and only if there is a Z and an epic locale map g : Z —'Y such that f o g is a local
homeomorphism. O

Theorem 6.9. Any contravariant empirical model F over X is internally spatial.

Proof. By Theorem 4.48, we only need to check the condition locally for any p € P. Thus, we
consider the open 1 p together with the inclusion ¢ :t p — X. By Remark 6.6 the locale of
interest is that represented by 7 : [ [, F(p) = U.

Define a point of F' to be a set of elements {)‘q}pgq ,Aq € F(q) with the property that for ¢ < ¢/,
Ag'lg = Ag. Let S be the set of points of F' with the discrete topology. The set Sx 1 p is clearly
étalé over p. Let e : Sx 1 p — [[,, F(q) by ({)\q}p<q,q’) — Ag. This map is a surjection,
and thus an epimorphism in Top. But since the functor O is a left adjoint, this means that we

also have an epimorphism in Loc. Since 7o e is étalé, it follows from Lemma 6.8 that the locale
is spatial. O

Remark 6.10. Since a local point is a commutative diagram

Y < j] (6.2)



we see that the points in 1 p are exactly the points as mentioned in the Theorem, explaining the
name. We note that a point is just a selection of outcomes in the different contexts which fits
together.

Now, we know that the quantum state space comes from an internal commutative C*-algebra.
However, this is also true for many empirical models. In particular, all finite ones.

Definition 6.11 ([14] 2.5). An empirical model F' — P is called finite if F(p) is finite with the
discrete topology for all p € P.

We will now need some background from [14].

Definition 6.12 ([14] 2.5). A continuous map f : X — Y between topological spaces is called
perfect if the following holds:

(i) Forany y € Y, f~!(y) is compact,

(ii) For any closed C in X, f(C) is closed (i.e. f is a closed map).
Lemma 6.13 ([14] 2.6). For a perfect map f, the locale Z(f) is compact. O
Lemma 6.14. For any finite empirical model ', the map 7 : F — P is perfect.
Proof. Since m~!(p) = F(p) is finite by assumption, it is also compact. Now let C be closed. We
want to show that 7(C)¢ is open. Let a € 7(C)¢, and let a < b. Given A € 771(b), A, € 7 !(a).

Since C° is open, it follows that A € C°. Since this is true for each A in the preimage of b, it
follows that b is not in the image of C. Thus b € 7(C)¢, proving that 7(C)® is open. O

The above shows that our empirical models give rise to compact locales. We thus only lack
complete regularity for the Gelfand duality to apply.

Lemma 6.15 ([14] 2.9). Given a continuous map f : X — Y, the locale Z(f) is regular if and
only if for any open U C X, and any point y € U, there is an open N CY containing f(y), and
two opens V,W C X with the properties y € V,VNW =@, f"{(N) CUUW. O

Lemma 6.16. The map 7w : F' — P has the property described above.

Proof. Let U and y € U be given. Choose N =1 7(y). For each A € 7~ (7 (y)), let Wy =1 \.
Set

V= U Wi, W= U Wi. (6.3)
xern—1(n(y))NU xen—1(n(y))NUc

Now if @« € VN W, then r(A\) € U N U® which is clearly absurd. On the other hand, it is clear
that U UW covers m~*(N), since for all & € 71 (N) () € UUU. O

Now, by Theorem 4.80, the sheaf categories when using the Alexandrov topology behaves exactly
like presheaf categories. Thus the following lemma is actually applicable.
Lemma 6.17 (cf. [35] §0). Assuming the axiom of countable choice, any compact reqular frame

is completely regular.

Proof. Given U < V we consider the set {W|U < W < V}. For a regular frame, this set is
inhabited. Indeed, take the set {X|X <V} \ {Y|Y < U}. If this set is nonempty, then we are
done. Otherwise, by regularity, we have U = V in which case V < V, so V is in the set of
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interest. Given a choice axiom, it is also possible to choose one element from this set whenever
required.

Now, it is straightforward to use dependent choice to choose sequences of the required form,
given that V' < U. Thus, in the presence of dependent choice, we have V < U if and only if
V <« U, proving the statement. O

Theorem 6.18. Any finite empirical model is a completely regular compact locale. Thus, by
Gelfand duality (Theorem 5.8) any finite empirical model has an internal commutative C*-algebra
associated to it.

Proof. By Theorem 4.15, the axiom of dependent choice holds in presheaf categories. By 4.80,
the sheaf category of interest is equivalent to a presheaf category. Thus, this is a straightforward
consequence of Lemmas 6.13 - 6.17. O

With this in mind, we will try to provide an explicit way to construct this internal C* algebra.
We remember that it is given by the internal maps from the locale, to the locale C. From
Proposition 4.73 and Theorem 4.70 we know that this locale is represented by U x C — U,
giving us the following theorem.

Theorem 6.19. Let P be a poset (measurement scenario), and let F' represent a finite empirical
model. Let U C P be open. Then any commutative diagram

FU) ——UxC
\ l (6.4)

is given by mapping each connected component of F(U) so that the composition maos is constant.
Here mo : U x C — C is the projection. This states that Loc (S, (CSh(X)) U) = CNW) where
N(U) is the set of components of F(U).

Proof. Note that the set 1 p for p € F(U) is an open set in the topology of F(U). We first show
that s needs to be constant on 7 p.

Indeed, assume that ¢ €1 p, but that m2(s(q)) # m2(s(p)). Take an open V' C C which contains
ma(s(p)) but not m(s(q)). Clearly Vx 1 m(p) is an open of C x U. But since s~V x 7(p))
contains p but not ¢, it can not be open, since all opens of F(U) are upwards closed. It follows
that s is not continuous.

Next assume that W is an arbitrary connected component of F'(U). Take a point p € F(U),
and consider the open sets A = Uﬂz(s(q)):ﬂz(s(p)) tq,B = Us(q)#(p) 1 ¢. Since we know that
the image of each 1 ¢ is constant, it follows that these two sets are disjoint. But since W is
connected, it can not be decomposed into two nonempty disjoint open sets. Since p € A, it
follows that B = @. O

In Section 5.3 we introduced states for the covariant approach. We will use the isomorphism of
5.21 to define states for covariant empirical models.

Definition 6.20. Let X be a poset (measurement scenario), and let E be an empirical model,
seen as a locale in Sh(X). Then a state in F is a probability valuation on E (as defined in
Definition 5.20).
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The following theorem gives an explicit description of states for finite empirical models.

Theorem 6.21. Let F be a finite contravariant empirical model over a poset (measurement
scenario) X (i.e. a functor X°P — Sets where each set is finite and equipped with the discrete
topology) and let F be its covariant version. Then a global state of F is the object given by
specifying for each p € X and each A € F(p) a value ¢y > 0 obeying the restrictions

(i) ZAeF(p) cx =1 for eachp e U,
(ii) ZA'\,,:AC/\’ =c) forp<gq,N € F(q),\ € F(p).

We then define the value on an arbitrary open U C F(X) by defining the natural transformation
given at X by px(U)(p) = Z)\e(Uﬁ(F(p)) Cx-

Proof. We first note that u(U) is indeed a function OF(X) — [0,1];. Condition (i) gives that
it takes values in the desired interval. We also see that for p < ¢, u(U)(p) < u(U)(q) showing
continuity. Monotinicity is obvious, since if V' C U, then any A in V is also in U. The conditions
p(U)+p(V)=p(UAV)+puUVV)and p(V,U;) =V, p(U;) follows from the fact that they
hold pointwise. Thus we know that a map on the above form is indeed a probability valuation.

We now note that any probability valuation need to take some value on each 1 A, so we associated
this number with ¢). To make the function extend to a natural morphism, we need that for
1 p C X the diagram

OF(X) 2 [0,1],(X)

l l (6.5)
OF(tp) — [0,1],(1 p)

commutes. Clearly p4,(OF (T p)) = 1 in order for p to correspond to a probability valuation.
From Proposition 6.5 we know that OF(1 p) = O[[,<, F(a) = OU,cp(p) T A- Thus we have

dYooa= > ux(tn= > wmn=pp| J 2] =1 (6.6)

AEF(p) AEF (p) AEF (p) AEF (p)

showing the first condition.

Next, we fix p < q. Let Uy, = U/\|p=>\i T Afor \; € F(p), A € F(q). Clearly Uy, CT A; so by
monotonicity, px(Ux,) < px(T A;). But the converse follows from the fact that >, u(Uy,) =
oner(q MTA) =1=73"\cp@) #(T Ai), showing the second condition.

Now, it follows from monotonicity that any px must take the values 1(U)(p) = > -\cunr(p) Ors

since Uyepnrpy T A € U. Defining Vo = Uycpenrp) T A gives u(V)(p) 2 Xzepeurp) Or-
However, since it must hold that p(U)(p)+p(V)(p) = 1, the two inequalities are indeed equalites.
a

As described in 2.1, quantum mechanics distinguish between pure and mixed states. We remem-
ber that for pure states, there is a context where the outcome of a measurement is certain. We
will use this intuition to define pure states in covariant empirical models.

Definition 6.22. Given a poset X, and an empirical model S, a state p : S — R is called pure
at @ for x € X if there is an open 1 A € S(1 x) such that pu(\) = 1. If there exists a maximal z
such that p is pure at x, p is called pure.
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Some measurement scenarios are “quantum” in the respect that it is possible to choose quantum
measurements and outcomes as representatives for the outcomes in your empirical model. Thus,
this gives a way to represent the empirical model using quantum mechanics. Formally, we make
the following definition.

Definition 6.23. Let E be an empirical model over a poset X, and let ¥ be a state space locale
over C(A) as in definition 5.17. Then a quantum realization of E is a local homeomorphism
f X — C(A) together with a locale arrow f*(¥) — S. A measurement scenario where a
quantum realization exists is called quantum realizable. Note that f*(X) is assured to be a locale
because of the local homeomorphism requirement.

The map f thus picks out a quantum context for each context in X. Note that this map is not
assumed to be injective, leaving us with the opportunity to assign the same quantum context
to contexts in X, as long as the map is a local homeomorphism. Since we associate points of
scenario locales with measured outcomes, the arrow f*(X) — S associates a set of outcomes in
the context f(z) to represent it.

Since the set of quantum contexts is huge, even uncountable, and we are allowed to choose any
contexts as our representatives, as long as they fit together properly, it does seem like a lot of
finite measurement scenarios would be quantum realizable. However, not all are, and an example
will be given in Section 6.3. In order to show this, we need a theorem which needs the following
lemma.

Lemma 6.24. If p: X — [0,1]; is a probability valuation and f :Y — X is a frame map, then
wo fis also a probability valuation.

Proof. We use constructive reasoning. Clearly p(f(1)) = u(1) = 1, and if p < ¢, then f(p) < f(q)
which in turn gives u(f(p)) < u(f(q)), showing monotonicity. Next, since p is a state and since f
preserves finite meets and arbitrary joins, we have u(f(p)) + u(f(q)) = n(f(P)V f(@)) + p(f(p) A

f(@) = p(flpVva)+u(flpAq) for all pand ¢, and p(f (V;pi)) = A; 1 (f(pi)). Thus po f
satisfies all requirements for being a probability valuation. O

Remark 6.25. We should note that the corresponding locale map [ : X — Y in many ways can
be thought of as a random variable in the usual probability theoretic sense.

Theorem 6.26. Any quantum realizable measurement scenario admits a state which is pure at
x for each context x.

Proof. We know that the quantum state space will allow a pure state at f(z), just take the
eigenstates of an operator in f(z). Since the theory of valuations is geometric, there is thus a
valuation on f*(X) mapping some 1T A to 1. Combining this with the frame map S — f*(X)
gives the requied state. O

6.2 First example: Spekkens Toy Model

Spekkens toy model [8] is not a contextual theory in the Spekkens (or Isham-Butterfield) sense.
However, we will see that it works very well with a contextual description. Thus it will provide
a simple model to illustrate some of the concepts defined in this chapter. We start with an
introduction to the model.
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In the one “toy-bit” case, Spekkens toy model consists of three possible measurement contexts,
here called the X,Y and Z contexts. There are no relations between these possible contexts. In
each context, it is possible to get one out of two results, here called 0 and 1 for simplicity. If this
was the whole story, our empirical model would have as base space the space X = {X,Y, Z},
and S(X) =S(Y) = S5(Z) ={0,1}. Using the pictorial description presented in Section 5.2, we
would get the rather boring picture

1 . . .
0 .
(6.7)
. 2 .
X Y

However, this is not the whole story. There is an assumption in the toy model that there are
four so-called ontic states. Information that is inaccessible to the observer, but which still exists.
These states also give information about the possible outcomes in the X, Y and Z measurements.
Explicitly, we will represent the four ontic states as four boxes:

[LTT] (69

where we mark what state we are in by marking one of the boxes. The X,Y and Z measurements
are now represented by the following pictures

CEED cEED EIE o

where getting the result 1 is the same as getting a “yes” when asking if the state is in a grey
box.

In order to accommodate this into our measurement scenario, we include another context called
O.! Clearly there are now the relations X < 0,Y < 0,7 < O. We must also consider how the
different ontic states restrict to the three subcontexts. We see that being in the first ontic state
will give the result 1 in each of the different contexts, whereas the other four ontic states give 1
in one subcontext and 0 in the other two. Pictorially, this can be represented as

(6.10)
L] 2 L]
X Y

IThis does not contradict the toy model if we agree that the measurement O, although existing, is impossible
to make for a mortal observer.
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where the grey triangle describes the context O.

It is now straightforward to find the associated C*-algebra using Theorem 6.19 and the possible
states using Theorem 6.21. Indeed, to present a state we need to assign a positive real to each
ontic state in such a way that they sum to 1. Given such an assignment, the values assigned to
each contextual state is determined by condition (ii) in Theorem 6.21. Thus a state is nothing
else than a probability distribution over the ontic states.

Furthermore, the C* algebra is C* in the ontic context, and C? in all of the subcontexts. (More
explicit?)

We conclude this discussion by showing pictorially why Spekkens toy model is not contextual in
the Isham—Butterfield sense. Indeed, let us see the diagram 6.10 as a space in Loc/S. We are
then looking for maps making the following diagram commute:

\‘ l’f * (6.11)

But such maps clearly exists, as it is just a matter of mapping S to one of the coloured trian-
gles.

6.3 Second example: The Popescu-Rohrlich box

The next example is the Popescu-Rohrlich box [9], often shortened as the PR-box. This mea-
surement scenario is originally thought of as two observers, let us call them Alice and Bob, both
having access to two different measurements, for which 0 or 1 can be the measurement result.
Let us call Alices measurements {a1, as} and Bobs measurements {b1, by }. These are thus four of
our contexts, but we also assume that it is possible for Alice and Bob to later meet and compare
their measurements, which means that the contexts a;b; for ¢, j € {1,2} also exists. In each of
the contexts aq, b; it is possible to get 1 or 0 as outcomes, and thus the outcomes in the contexts
a1b; are ordered tuples of Os and 1s.

Now, what makes the PR-box interesting is that we put some restrictions on what outcomes
can be obtained together. Specifically, we only allow the combinations marked with 1 in Table
6.1.

| (0.0) (0.1) (1,0) (1,1)
a1b1 1 0 0 1
a1bo 1 0 0 1
agbl 1 0 0 1
a2b2 0 1 1 0

Table 6.1: Allowed outcomes in the PR-box measurement scenario
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To see this as a presheaf, we make a poset P where a;,b; < a;b;, and a functor P°P where
for instance a1b1 — {(0,0),(1,1)}, and a; — {1,0} with the obvious restriction maps. Seen
pictorally, the PR-box is given as

(6.12)

o

ay bl

We see immediately that the scenario is non-signalling. For each top-point, there is one line in
each direction from that point. It should also be clear that there are no global sections for this
box. Indeed, any attempt to find a section

e
\ l“ (6.13)

e

would require tearing the first rectangle, which would not make the map continuous.

Next, we want to consider the possible states of the PR-box. Although this situation can be
handled in a more direct manner, we will introduce a general method for finding states. We note
that a state is completely determined by its value on the opens 1 x where x is maximal. Thus we
associate to each such open a variable x;. The conditions in Theorem 6.21 then gives relations
between these variables, which gives a linear system of equations.

In this specific example, we have the variables x4, - - - , xg, corresponding to each of the top-lines.
We let the following picture illustrate our assignment of variables:

(6.14)

The conditions from Theorem 6.21 now gives for example the equations z1 +x2 = 1 and 1 = z3.
Presented in matrix form, the full system of equations becomes
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11 0 O 0 0 0 0
0 0 1 1 0 0 0 0
00 0 O 1 1 0 0 1
00 0 O 0 0 1 1 22
1.0 0 O 0 0 -1 0 23
01 0 O 0 0 0 -1 24
10 -1 O 0 0 0 0 Z5
01 0 -1 O 0 0 0 Z6
0 0 1 0 -1 0 0 0 7
0 0 0 1 0 -1 0 0 2
00 0 O 0 1 -1 0
00 0 O 1 0 0 -1

SO DD OO OO = =

(6.15)

We must also note that we are only interested in solutions where x; > 0. The rank of the matrix
can be calculated to be 8, so we expect a unique solution. Solving the system gives the single

solution z; = 1/2.

Saying the thing above using the terminology of states, we conclude that there is only one
state, where each open T A maps to 1/2. In particular, this shows that the PR-box admits no
pure state. By Theorem 6.26, this gives a proof of the well-known fact that the PR-box is not
quantum realizable. The original proof instead uses inequalities, more precisely the Tsirelson’s

bound [9)].
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