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Abstract

The main purpose of the work presented in this master thesis has been

to study how algebraic methods can be used for studying polynomial

dynamical systems. Algebraic methods for determining the number of

steady states, finding said states and determining the stability properties

of them are presented, as well as methods for reducing the dimension

of and for reducing the number of parameters in such systems. It is also

illustrated how these methods can be used to study some classes of systems

which appear in applications.
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Sammanfattning

Det huvudsakliga syftet med det arbete som presenteras i denna mas-

teruppsats har varit att studera hur algebraiska metoder kan användas för

att studera polynomiella dynamiska system. Algebraiska metoder för att

bestämma antalet ekvilibriumpunkter, för att hitta dessa punkter samt

avgöra deras stabilitetsegenskaper presenteras, liksom metoder för att re-

ducera dimensionen av och reducera antalet parametrar hos s̊adana sys-

tem. Det illustreras ocks̊a hur dessa metoder kan användas för att studera

n̊agra klasser av system som förekommer i tillämpningar.
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1 Introduction

When one thinks of methods for analyzing dynamical systems given by systems
of ordinary di↵erential equations, what springs to mind is perhaps tools from
mathematical analysis. In contrast, the main purpose of the work being pre-
sented in this thesis has been to study how algebraic methods can be used for
this purpose. More precisely, we investigate the subclass of these systems for
which the defining equations are of the form

ẋ
i

= p
i

(x
1

, x
2

, . . . , x
n

), i = 1, 2, 3, . . . , n

where p
i

2 R[x
1

, x
2

, . . . , x
n

]. We call these polynomial dynamical systems.
As is well-known, we usually can not solve systems of ordinary di↵erential

equations explicitly. Rather, we make a qualitative study of such systems. There
are several properties which are of interest. Are there any points x 2 Rn such
that p

i

(x) = 0 for all i = 1, 2, . . . , n, i.e. are there any steady states? How can we
find the steady states? How does the system behave close to the steady states; in
other words, what are the stability properties of the steady states? Also, before
starting to analyze a system, it is worthwhile to investigate whether it can be
expressed in a simpler form; can the mathematical relations described by the
system be expressed using fewer variables and/or parameters? In other words,
we want to know if the system can be reduced. We will present a framework
for studying these and other properties in the case of polynomial dynamical
systems.

It has been a goal of the author to make the presentation accessible to those
which encounter polynomial dynamical systems in applications; therefore, the
rule of the thumb has been to define explicitly as many of the concepts used as
possible. Still, some concepts are assumed to be known, e.g. the concept of a
ring.

2 Reduction of the dimension of a polynomial

dynamical system

2.1 Introduction

Convention ẋ and dx

dt

will be used interchangeably to denote the derivative
of x(t).

Convention If x is a vector, then ẋ (and dx

dt

) will denote the component-wise
derivative.

Let us start with an example. This system is a common example in the
literature; see e.g. [5, chapter 7.1-7.2], [16, chapter 3.2.2], [17, chapter 2.8].

Example 2.1.1 (based on [17, chapter 2.8]). Let E be an enzyme which reacts
with a substrate S to form a complex C; temporarily, call this reaction 1. From
the complex, a product P is formed and the enzyme E is released — call this
reaction 2 — but C also deteriorates back into E and S; call this reaction
3. When biochemists study these systems, they often assume that the law of
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mass action holds, which means that the rate at which a reaction takes place
is proportional to the product of the concentrations of the molecules taking
part in the reaction. Let � be the proportionality constant of reaction 1, 
the proportionality constant of reaction 2 and µ the proportionality constant of
reaction 3. Schematically, this can be written

S + E
�

! C

C


! P + E

C
µ

! S + E

.

Let E(t) be the concentration of the enzyme, S(t) the concentration of the
substrate, C(t) the concentration of the complex and P (t) the concentration of
the product at time t. Assume that the law of mass action holds. The dynamics
of the concentrations of the di↵erent substances are then described by

8

>

>

<

>

>

:

Ṡ = ��SE + µC

Ė = ��SE + (µ+ )C
Ċ = �SE � (µ+ )C
Ṗ = C

. (2.1)

The analysis of this system then proceeds by observing that we can add, for
example, the second and the third equation to each other, to get Ė + Ċ = 0,
which we integrate to get E(t) + C(t) ⌘ a (the symbol ”⌘” denotes identity),
for some a 2 R. This is an algebraic relation among the variables of the system,
which then is used to express one of the variables in terms of the other. This
gives

8

<

:

Ṡ = ��aS + �SC + µC

Ċ = �aS � �SC � (µ+ )C
Ṗ = C

.

Moreover, Ṡ+ Ė+ Ṗ = 0, so we also have S(t)+E(t)+P (t) ⌘ b for some b 2 R.
This gives

⇢

Ṡ = ��aS + �SC + µC

Ċ = �aS � �SC � (µ+ )C
.

Thus, it is su�cient to study this two-dimensional system in (S,C), and then
use the relations

E = a� C

P = b� S � E

to get E and P . ⇧

2.2 Preliminaries

Convention In lists of function variables, ”x” is short for ”x
1

, x
2

, . . . , x
n

”.

Definition 2.2.1. Let ẋ = F (x), where F : Rn

! Rn, be a continuous dynam-
ical system.

We say that ẋ = F (x) is an n-dimensional system.
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Assume that we seek functions defined on an interval I ⇢ R which obey the
dynamics of the system. Then we say that I is the time set of the system.

Let x : I ! Rn be a function obeying the dynamics of the system, i.e.
ẋ(t) = F (x(t)) for all t 2 I. Then we say that x is a trajectory of the system,
and that

x(I) = {y 2 Rn

| 9t 2 I : y = x(t)}

is an orbit of the system. The (unique) orbit of which x
0

is an element is denoted
x(I, x

0

).
We say that Rn is the state space of the system. The elements of the state

space are called states.

Convention In this thesis, all dynamical systems are continuous. Therefore,
from now on, if nothing else is said, ”dynamical system” will mean ”continuous
dynamical system”.

Let us also make the following convention.

Convention When we say that x : I ! Rn obeys the dynamics of the system
ẋ = F (x) on I, we mean that ẋ(t) = F (x(t)) for all t 2 I.

Definition 2.2.2. Let ẋ = P (x), where P (x) = (p
1

(x), p
2

(x), . . . , p
n

(x)), with
p
i

2 R[x
1

, x
2

, . . . , x
n

]. Then we say that ẋ = P (x) is a polynomial dynamical
system.

2.3 Conservation laws

The algebraic relation E(t)+C(t) ⌘ ↵ in Example 2.1.1 is an example of a con-
servation law. In general, a conservation law of a dynamical system states that
some function of the variables is constant under the dynamics of the system. In
this thesis, however, we will limit ourselves to study a certain type of conserva-
tion law. Therefore, for convenience, we define the notion of a conseration law
in this more limited sense.

Convention The elements of vector spaces will be written as column vectors.

Convention When we write
�

x
1

x
2

. . . x
n

�

,

we mean the row vector with components x
1

, x
2

, . . . , x
n

. When we write

(x
1

, x
2

, . . . , x
n

),

we mean the n-tuple with x
1

, x
2

, . . . , x
n

as components. Each n-tuple corre-
sponds to a column vector, by the convention above.

Definition 2.3.1. Let ẋ = F (x) be an n-dimensional dynamical system with
time set I. Let x : I ! Rn be a function which obeys the dynamics of the
system on I. Assume that

P

n

j=1

�
ij

x
j

(t) is constant on I. This fact is called
a conservation law of the system, and we say that �

i

= (�
i1

, �
i2

, . . . , �
in

) 2 Rn

defines a conservation law.
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Assume that �
i

= (�
i1

, �
i2

, . . . , �
in

) defines a conservation law of a polyno-
mial dynamical system ẋ = F (x) and that the function x : I ! Rn obeys the
dynamics of the system on I. Then

P

n

j=1

�
ij

x
j

(t) is constant. The constant to
which this expression is equal can be determined by evaluating the expression
in any point t; a natural choice is t = 0. Thus,

n

X

j=1

�
ij

x
j

(t) ⌘
n

X

j=1

�
ij

x
j

(0).

Definition 2.3.2. Assume that �
1

, �
2

, . . . , �
k

2 Rn define conservation laws of
a polynomial dynamical system. Let �T

i

=
�

�
i1

�
i2

. . . �
in

�

and let

� = (�
ij

) 1ik
1jn

.

Then we say that � is the matrix corresponding to the conservation laws defined
by �

i

= (�
i1

, �
i2

, . . . , �
in

) , i = 1, 2, . . . , k.

Let x
0

= x(0) (where x(t) is still a function which obeys the dynamics of
the system), let ↵

i

(x
0

) =
P

n

j=1

�
ij

x
j

(0) and let

↵(x
0

) =
�

↵
1

(x
0

) ↵
2

(x
0

) . . . ↵
k

(x
0

)
�

T

.

Then �x(t) = ↵(x
0

) for all t. This implies that x(I, x
0

) is a subset of the
solution space of �x = ↵(x

0

).

Definition 2.3.3. Let sol (A, b) = {x | Ax = b}. Then sol (A, b) is called the
solution space of Ax = b.

For b = 0, we write kerA instead of sol (A, 0).

Recall from linear algebra that the general solution of a non-homogeneous
linear system of equations (i.e. Ax = b where b 6= 0) is x = x

h

+ x
p

, where x
h

is a solution of the corresponding homogeneous equation (i.e. Ax = 0) and x
p

is a solution of the non-homogeneous equation. In our case, the right-hand side
is ↵(x

0

), i.e. it depends on x
0

. Thus,

sol (�,↵(x
0

)) = {x
p

+ x
h

| x
p

2 sol (�,↵(x
0

)) and x
h

2 ker�}

= x
p

(x
0

) + ker�,

where x
p

(x
0

) is a solution of �x = ↵(x
0

). This is an a�ne subspace of Rn; let
us recall the definition of an a�ne subspace and the definition of the dimension
of such a space.

Definition 2.3.4. Let V be a vector space and let A ⇢ V be a set such that
A = v + L = {v + w | w 2 L} for some v 2 V and L a linear subspace of V .
Then we say that A is an a�ne subspace of V .

Let A = v + L be a a�ne subspace of V . Then the dimension of the A is
defined as dimL.

Thus, the set of conservation laws defined by �
1

, �
2

, . . . , �
k

corresponds to
the family of a�ne subspaces {x

p

(x
0

) + ker�}
x02Rn ⇢ Rn. By picking an initial

state, we pick one of these a�ne subspaces.
This is as good a time as any to recall from elementary linear algebra the

well-known rank-nullity-theorem, which will be used several times throughout
the thesis.
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Proposition 2.3.5 ([8, Theorem 4.4]). Let V and W be vector spaces over a
field k and let T : V ! W be a linear transformation. Then dimV = rank (T )+
dimkerT .

We can also make a geometrical interpretation of conservation laws. Assume
that (�

i1

, �
i2

, . . . , �
in

) 2 Rn defines a conservation laws of a system. Then

�

�
i1

�
i2

. . . �
in

�

0

B

B

B

@

x
1

x
2

...
x
n

1

C

C

C

A

= ↵
i

for some ↵
i

2 R. Let �T

i

=
�

�
i1

�
i2

. . . �
in

�

. Since �T

i

can be interpreted
as the matrix of a linear transformation from Rn to R, we can use Proposition
2.3.5, which gives that

n = dimker �T

i

+ rank
�

�T

i

�

.

Now, rank
�

�T

i

�

= 1 (since we can assume that not all �
i

equals zero), so
dimker �T

i

= n � 1. Recall the definition of a hyperplane: a subset H of a
vector space V is a hyperplane if and only if it is an a�ne subspace of dimen-
sion n� 1. Thus,

H
�i,x0 =

8

<

:

x 2 Rn

|

n

X

j=1

�
ij

x
j

=
n

X

j=1

�
ij

x
j

(0)

9

=

;

is a hyperplane, and the conservation law defined by �
i

corresponds to the family
of hyperplanes {H

�i,x0}
x02Rn . A change in x

0

corresponds to a translation
of the hyperplane. Now consider a set of conservation laws, each defined by
�
i

= (�
i1

, �
i2

, . . . , �
in

), for i = 1, 2, . . . , k. For fixed x
0

2 Rn, we have

x(I, x
0

) ⇢ H(�
i

, x
0

) for i = 1, 2, . . . , k,

so

x(I, x
0

) ⇢
k

\

i=1

H
�i,x0 .

An intersection of a set of hyperplanes is a polyhedral set. Thus, the orbit which
x
0

belongs to is confined to a polyhedral set. Each hyperplane in the intersection
which define the polyhedral set corresponds to a conservation law and x

0

. A
change in x

0

will translate each hyperplane, so a change in x
0

corresponds to a
translation of the polyhedral set.

Let us return to the algebraic viewpoint. If �
1

, �
2

, . . . , �
k

2 Rn define con-
servation laws of the system, we might ask ourselves if a proper subset of
{�

1

, �
2

, . . . , �
k

} is enough to convey the same information about the system,
i.e. whether some of the conservation laws are redundant. More precisely, there
is redundancy if the solution space of �x = ↵ is the same as the solution space of
�̂x = ↵̂, where �̂ is � with some rows removed, and ↵̂ is ↵ with the same rows re-
moved, since then the conservation laws corresponding to the removed rows does
not contribute any information which is not already conveyed by the conserva-
tion laws corresponding to the rows of �̂. Now, by Definition 2.3.4, the dimension

8



of the solution space of �x = ↵(x
0

) equals dimker�. This means that there is
redundancy in a set of conservation laws if and only if dimker� = dimker �̂.

Since n = dimker�+ rank (�) and n = dimker �̂+ rank
⇣

�̂
⌘

, we have

dimker�� dimker �̂ = rank
⇣

�̂
⌘

� rank (�) .

Thus, a conservation law is redundant if and only if rank
⇣

�̂
⌘

= rank (�), i.e. if

and only if � does not have full rank; in other words, if and only if the �
i

are
linearly independent in Rn. Let us introduce the following terminology.

Definition 2.3.6. Let �
i

= (�
i1

, �
i2

, . . . , �
in

), i = 1, 2, . . . , k, define conser-
vation laws of a polynomial dynamical system. If {�

i

| i = 1, 2, . . . , k} ⇢ Rn is
linearly independent, we say that the conservation laws are linearly independent.
Otherwise, we say that the conservation laws are linearly dependent.

To summarize, a set of conservation laws gives us, for each initial state x
0

,
a superset of the orbit which x

0

belongs to. More precisely, the superset is
sol (�,↵(x

0

)). Since
dim sol (�,↵(x

0

)) = dimker�,

this means that sol (�,↵(x
0

)) is a proper subset of Rn if and only if dimker� 6=
n, i.e. if and only if rank (�) 6= 0. But if there is any conservation law at
all, then rank (�) � 1. Thus, the existence of a conservation law implies that
sol (�,↵(x

0

)) is a proper subset of Rn. Of course, this is as expected: the
existence of a conservation law means precisely that the orbit cannot escape the
corresponding hyperplane.

2.4 Example of algebraic technique for finding conserva-

tion laws

Later in this chapter, we will present an algebraic method for finding conserva-
tion laws of polynomial dynamical systems. The method will be based on the
following example.

Example 2.4.1. This is a summary of [17, chapter 2.7.2].
In that chapter, networks of chemical reactions are studied. As in Example

2.1.1, it is assumed that law of mass action holds, which results in each variable
x
i

being governed by an equation of the form

ẋ
i

= p
i

(x
1

, x
2

, . . . , x
n

),

where p
i

2 R[x
1

, x
2

, . . . , x
n

], so the network is governed by a polynomial dynam-
ical system. It is then noted that by gathering each monomial which appears
in any of the p

i

and putting them, in some order, in a column vector m, we can
write the system on the form

0

B

B

B

@

ẋ
1

ẋ
2

...
ẋ
n

1

C

C

C

A

=

0

B

B

B

@

c
11

c
12

. . . c
1k

c
21

c
22

. . . c
2k

...
...

...
...

c
n1

c
n2

. . . c
nk

1

C

C

C

A

m

9



for some c
ij

2 R. The matrix

C = (c
ij

) 1in
1jk

(called � in [17]) is called a stoichiometry matrix. Let

ẋ =
�

ẋ
1

ẋ
2

. . . ẋ
n

�

T

.

Then ẋ = Cm. Let
v =

�

v
1

v
2

. . . v
n

�

.

Then, it is noted, if v� = 0 (i.e. if v is in the left kernel of �), then
P

k

i=1

v
i

ẋ
i

= 0.

By integration of both sides of the equation, we get
P

k

i=1

v
i

x
i

(t) ⌘ ↵, for some
↵ 2 R, which is a conservation law. Finally, it is remarked that the number of
linearly independent conservation laws of the system is given by the dimension
of the left kernel of �. ⇧

Example 2.4.1 shows how to find conservation laws of stoichiometry systems.
But note that the only thing which was used was that the dynamical system
had a polynomial right-hand side. Thus, this method can be generalized to all
polynomial dynamical systems.

In the rest of this section, we will make this method for finding conservation
laws of polynomial dynamical systems precise.

2.5 Matrix representation of a polynomial dynamical sys-

tem

Convention In lists of variables of a polynomial ring, ”x” is short for ”x
1

,
x
2

, . . . , x
n

”.

Convention k denotes a field.

Convention In this thesis, N = {0, 1, 2, . . . }.

Definition 2.5.1. Let m =
Q

n

i=1

x↵i
i

⇢ k[x] for some ↵
i

2 N. Then we say
that m is a monomial.

Convention The monomial
Q

n

i=1

x0

i

2 k[x] is denoted 1. This element is not
to be confused with the multiplicative identity element of k.

Consider a polynomial p 2 k[x]. A polynomial is a linear combination of
monomials. It is clear that, if we do not allow zeros as coe�cients, the repre-
sentation of a polynomial in terms of monomials is unique (up to reordering of
the monomials). Thus, the following definition makes sense.

Definition 2.5.2 ([7, chapter 3.2.2]). Let f =
P

r

i=1

c
i

m
i

2 k[x], where c
i

6= 0
for all i. Then we say that supp (f) = {m

1

,m
2

, . . . ,m
r

} is the support of f .

For convenience, let us generalize this a bit.

10



Definition 2.5.3 ([7, chapter 3.2.2]). Let P ⇢ k[x] be a set. We say that
supp (P ) = [

p2P

supp (p) is the support of P .

Let P = {p
1

, p
2

, . . . , p
k

} be a set of polynomials. If we allow zeros as coe�-
cients, we can write each p

i

2 P as p
i

=
P

m2supp(P )

c
i,m

m, for some c
im

2 R;
in other words,

p
i

=
�

c
i,m1 c

i,m2 . . . c
i,mp

�

0

B

B

@

m
1

m
2

. . .
m

p

1

C

C

A

,

where supp (P ) = {m
1

,m
2

, . . . ,m
p

}. Let

p =
�

p
1

p
2

. . . p
k

�

T

,

m =
�

m
1

m
2

. . .m
p

�

T

, and

C = (c
i,mj ) 1ik

1jp
.

Then p = Cm.

Example 2.5.4. Let p
i

2 k[x, y], i = 1, 2, 3, 4, where

p
1

= x2y + xy2,

p
2

= x2 + xy2 � y,

p
3

= xy2 + y + 3, and

p
4

= y2.

Let P = {p
i

| i 2 {1, 2, 3, 4}}. Then supp (P ) =
�

x2y, x2, xy2, y2, y, 1
 

. Then
we can write

0

B

B

@

p
1

p
2

p
3

p
4

1

C

C

A

=

0

B

B

@

1 0 1 0 0 0
0 1 1 0 �1 0
0 0 1 0 1 3
0 0 0 1 0 0

1

C

C

A

0

B

B

B

B

B

B

@

x2y
x2

xy2

y2

y
1

1

C

C

C

C

C

C

A

.

But we can also write for example

0

B

B

@

p
1

p
2

p
3

p
4

1

C

C

A

=

0

B

B

@

1 0 1 0 0 0
1 0 0 �1 1 0
1 0 0 1 0 3
0 1 0 0 0 0

1

C

C

A

0

B

B

B

B

B

B

@

xy2

y2

x2y
y
x2

1

1

C

C

C

C

C

C

A

,

or

0

B

B

@

p
3

p
1

p
4

p
2

1

C

C

A

=

0

B

B

@

1 0 0 1 0 3
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 �1 1 0

1

C

C

A

0

B

B

B

B

B

B

@

xy2

y2

x2y
y
x2

1

1

C

C

C

C

C

C

A

.

11



The three expressions above all have the form p = Cm, where

p = (p
�(1)

, p
�(2)

, p
�(3)

, p
�(4)

)

for some permutation � of {1, 2, 3, 4} andm is a column vector with the elements
of supp (P ), in some order, as components, but the matrix C depends on the
order of the components of p and order of the components of m. ⇧

Convention Often — as in the example above — when speaking of a polyno-
mial p 2 k[x

1

, x
2

, . . . , x
n

] we will write p
i

instead of p
i

(x
1

, x
2

, . . . , x
n

) or p
i

(x),
since the variables of p will always be clear from context. However, when a
polynomial is the right-hand side of a di↵erential equation, we write ẋ = p(x),
not ẋ = p.

Example 2.5.4 shows that the matrix C, defined before the example, is not
unique for a set of polynomials. We want to be able to speak of the matrix
representation of a set of polynomials. Let us turn to this problem.

Let us introduce some temporary terminology. Given a set of polynomials
P , let us call

• an expression of the form p = Cm (where p, C and m are defined as above)
a matrix representation of P ,

• the vector p a vector of the polynomials in P ,

• the matrix C a coe�cient matrix, corresponding to the order of the com-
ponents of p and m, of P , and

• the vector m a vector of the monomials in supp (P ).

Convention If S is a set, then |S| denotes the number of elements of S. If
S is infinite, then |S| = 1.

Let k = |P | and s = |supp (P )|. Since there are k vectors consisting of the
polynomials in P and s vectors consisting of the monomials in supp (P ), there
are k · s coe�cient matrices of P . Given an order of the elements of P and
supp (P ), however, there is a unique coe�cient matrix.

Let us define a concept which is convenient to use for talking about the order
in which the elements of P are listed in the vector p.

Definition 2.5.5. Let P ⇢ k[x] be a finite set with |P | = k. Let

µ : {1, 2, . . . , k} ! P

be a bijection. Then µ is called an enumeration of P .
Let µ be an enumeration of P , with |P | = k. The notation

p
µ

=
�

µ(1) µ(2) . . . µ(k)
�

T

will be used.

12



A choice of enumeration of P fixes the order of the rows of the coe�cient
matrix of P .

Next, we want to introduce terminology for talking about the order in which
the elements of supp (P ) are listed in the vector m. For the purpose of matrix
representations, we could just make an arbitrary choice of an order in which to
list the elements. However, the notion of monomial orderings is an established
concept in the literature, and it will be important later. Therefore, we will
require that the order in which the monomials are listed in the vector of mono-
mials in supp (P ) satisfy some monomial ordering. This makes some orders in
which to list the monomials in supp (P ) inadmissible, but for our purposes, this
is no loss. Also, it enables us to use one concept for multiple purposes.

A priori, neither the monomials in one variable, nor the monomials in n >
1 variables, are ordered. However, for monomials in one variable, we often
implicitly order them by their degree, which is of course very natural. It is even
the only possible criterion by which to order monomials, since the degree is the
only thing distinguishing one monomial from another. For monomials in n > 1
variables, on the other hand, many di↵erent ways to order the monomials are
conceivable. This leads us the the notion of monomial orderings. First, recall
the definition of an order on a set.

Definition 2.5.6 ([15, Definition 1.5]). An order < on a set S is a relation
such that

• for every pair of elements x, y 2 S, precisely one of the following state-
ments holds:

x < y, x = y, y < x,

and

• if x < y, then x+ z < y + z for any z 2 S.

Remark To distingush this from a partial order on a set, this concept is
sometimes called a ”total order on a set”.

Now we can define the notion of a monomial ordering.

Convention mon (k[x]) = {m 2 k[x] | m monomial }.

Definition 2.5.7. A monomial ordering on k[x] is an order < on mon (k[x])
such that

• 1 < m for all m 2 mon (k[x]), and

• if m
1

< m
2

, then mm
1

< mm
2

for every m 2 mon (k[x])

[7, chapter 3.1].
Let < be a monomial ordering on k[x]. Let supp (P ) = {m

1

,m
2

, . . . ,m
s

},
where m

i

> m
i+1

for all i. We define

m
<

=
�

m
1

m
2

. . . m
s

�

T

.

Convention x > y if and only if y < x.

13



A choice of a monomial ordering fixes the order of the columns of the coef-
ficient matrix of C.

Now we are ready to make the notions of a matrix representation and a
coe�cient matrix of a set of polynomials permanent.

Definition 2.5.8. Let P ⇢ k[x] be a finite set. Let µ be an enumeration of P
and let < be a monomial ordering on k[x]. Let C

µ,<

be the unique matrix which
satisfies p

µ

= C
<,µ

m
<

. Then

p
µ

= C
<,µ

m
<

is called the matrix representation, and C
<,µ

is called the coe�cient matrix, of
P corresponding to the enumeration µ and the monomial ordering <.

So far, we have talked about sets of polynomials. Let us now turn to
what this means for polynomial dynamical systems. Let ẋ = F (x) be an n-
dimensional polynomial dynamical system, i.e. F (x) = (p

1

(x), p
2

(x), . . . , p
n

(x))
for some p

i

2 k[x]. Let P = {p
1

, p
2

, . . . , p
n

}. Let µ be any enumeration of P
(so it is possible that µ is an enumeration such that µ(i) 6= p

i

) and let < be a
monomial ordering of k[x]. Then p

µ

= C
<,µ

m
<

. Let

x
µ

=
�

x
µ

�1
(p1)

x
µ

�1
(p2)

. . . x
µ

�1
(pn)

�

T

.

Then ẋ
µ

= C
<,µ

m
<

. However, we usually already have an implicit ordering of
the variables x

1

, x
2

, . . . , x
n

, and ẋ
i

= p
i

(x), so the natural enumeration of P is
to let µ be the identity on {1, 2, . . . , n}. Let us make this the convention for
this thesis. This leads us to the following definition.

Definition 2.5.9. Let ẋ = F (x) = (p
1

(x), p
2

(x), . . . , p
n

(x)) be an n-dimensional
polynomial dynamical system. Let

• P = {p
1

, p
2

, . . . , p
n

},

• µ = id{1,2,...,n}, where id{1,2,...,n} denotes the identity function of {1, 2, . . . , n},

• < be a monomial ordering on R[x],

• p
µ

= C
<,µ

m
<

be the matrix representation of P corresponding to µ and
<, and

• C
<

= C
<,µ

.

Then ẋ = C
<

m
<

is called the matrix representation, and C
<

is called the coef-
ficient matrix, of ẋ = F (x) corresponding to <.

We will work with two classes of monomial orderings: Lex-orderings (”Lex”
stands for ”lexicographic”) and Deglex-orderings (”Deglex” stands for ”degree
lexicographic”).

Definition 2.5.10 ([7, chapter 3.1]). Let � 2 S
n

be a permutation of {1, 2, . . . , n}.
Let �(j) = i

j

for j = 1, 2, . . . , n. The Lex-ordering corresponding to � is the
ordering < satisfying that

n

Y

j=1

x
↵j

j

<
n

Y

j=1

x
�j

j

if and only if there is some k 2 {1, 2, . . . , n} such that

14



• ↵
ij = �

ij for 1  j < k and

• ↵
ik < �

ik .

Then we write
n

Y

j=1

x
↵j

j

<
Lex(�)

n

Y

j=1

x
�j

j

.

After we have defined Deglex-orderings, we will give examples illustrating
both Lex- and Deglex-orderings. Before defining Deglex, however, we must
define the notion of degree of monomials and polynomials in n variables. A
monomial in the polynomial ring in one variable is simple: it is just the variable
to some power, and the power is called the degree of the monomial. The degree
of a polynomial in one variable is the degree of the monomial with maximum
degree. For monomials in n � 1 variables, we need two distinct but related
concepts.

Definition 2.5.11 ([4, Definition 7 in chapter 2]). Let m =
Q

n

i=1

x↵i
i

2 k[x].

• The multidegree of m is defined as the n-tuple (↵
1

,↵
2

, . . . ,↵
n

), and

• the degree of m is defined as
P

n

i=1

↵
i

.

A monomial in one variable is characterized by its degree: there is only one
monomial for every degree. This is not true for monomials in n > 1 variables.
E.g. x2 and xy in k[x, y] both have degree two, but they are not the same.
Instead, a monomial is characterized by its multidegree: there is a one-to-one
correspondence between n-tuples of natural numbers and monomials in the poly-
nomial ring in n variables. Now we can define the degree of a polynomial in
several variables.

Definition 2.5.12 ([4, Definition 1 and 3 in chapter 1]). Let f 2 k[x]. Then
the degree of f is defined as max {deg (m) | m 2 supp (f)}.

Example 2.5.13. Let
f = x2

1

x
2

+ x
2

x
3

+ x
1

x2

2

x
3

.

Let

m
1

= x2

1

x
2

,

m
2

= m
2

= x
2

x
3

, and

m
3

= x
1

x2

2

x
3

.

Then supp (f) = {m
1

,m
2

,m
3

}. Since

deg (m
1

) = 2 + 1 = 3,

deg (m
2

) = 1 + 1 = 2, and

deg (m
3

) = 1 + 2 + 1 = 4

we get deg (f) = max {2, 3, 4} = 4. ⇧

Now we can introduce Deglex.
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Definition 2.5.14 ([7, chapter 3.1]). Let � be as in Definition 2.5.10. The
Deglex-ordering corresponding to � is the ordering < satisfying that

n

Y

j=1

x
↵j

j

<

n

Y

j=1

x
�j

j

if and only if either

(i)
P

n

j=1

↵
j

<
P

n

j=1

�
j

, or

(ii)
P

n

j=1

↵
j

=
P

n

j=1

�
j

and
Q

n

j=1

x
↵j

j

<
Lex(�)

Q

n

j=1

x
�j

j

.

Then we write
n

Y

j=1

x
↵j

j

<
Deglex(�)

n

Y

j=1

x
�j

j

.

Example 2.5.15. To illustrate Lex- and Deglex-orderings, let us consider some
monomials in k[x

1

, x
2

].
First, let � be the identity permutation of {1, 2}, i.e. �(j) = j for j 2 {1, 2}.

This corresponds to the Lex-ordering with x
1

> x
2

. To see this, note that
x
1

= x1

1

x0

2

and x
2

= x0

1

x1

2

. In other words,

↵
1

= 1, ↵
2

= 0,
�
1

= 0, �
2

= 1.

in the notation of the definition. The permutation is trivial, i.e. i
1

= �(1) = 1
and i

2

= �(2) = 2. Thus, we shall first compare ↵
1

with �
1

. We see that
↵
1

> �
1

, so we can take k = 1, where k is as in the definition. Thus, x
1

> x
2

.
Consider x

1

and xm

2

, where m > 1. Since, again, x
1

has more x
1

-factors
than xm

2

has, we have x
2

<
Lex(�)

x
1

, but since xm

2

has higher degree than x
1

has, we have x
1

<
Deglex(�)

x
2

.
Now let � be the permutation of {1, 2} with �(1) = 2 and �(2) = 1. Then

x
1

<
Lex(�)

xm

2

for every m, but x
2

<
Deglex(�)

xm

1

for every m > 1. ⇧

We will usually not define � formally: instead we will speak of, for example,
”the Lex-ordering with x

2

> x
3

> x
1

”, which corresponds to the permutation
� of {1, 2, 3} with �(1) = 2, �(2) = 3 and �(3) = 1.

Let us illustrate the concept of matrix representations of polynomial dynam-
ical systems by an example.

Example 2.5.16. Consider the system ẋ
i

= p
i

(x), i = 1, 2, 3, 4, where

p
1

= x2

1

x
2

x
4

+ x
1

x2

2

x
4

+ 2x
3

x
4

� x
4

p
2

= 2x2

1

x2

2

x
3

� 3x
1

x2

2

x
4

+ x
3

x
4

p
3

= 2x2

1

x
2

x
4

� 8x2

1

x2

2

x
3

+ 14x
1

x2

2

x
4

� 2x
4

p
4

= 3x2

1

x
2

x
4

+ 2x2

1

x2

2

x
3

+ 7x
3

x
4

� 3x
4

Let < be the Lex-ordering with x
1

> x
2

> x
3

> x
4

. Then

mT

<

=
�

x2

1

x2

2

x
3

x2

1

x
2

x
4

x
1

x2

2

x
4

x
3

x
4

x
4

�

and

C
<

=

0

B

B

@

0 1 1 2 �1
2 0 �3 1 0
�8 2 14 0 �2
2 3 0 7 �3

1

C

C

A

⇧
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2.6 Matrix representation and conservation laws

Definition 2.6.1 ([9, Chapter 1.§3.2]). Let A be square matrix. If detA 6= 0,
we say that A is non-singular.

Let <
1

and <
2

be two di↵erent monomial orderings. Then C
<1 and C

<2 only
di↵er in the order of the columns. Assume that C

<1 and C
<2 be n⇥m-matrices.

Let
E

ij

= (e
ijrs

) 1rn
1sn

with

e
ijrs

=

(

1, (r 6= i and s 6= j) or (r = j and s = i) or (r = i and s = j)

0, otherwise
.

It is clear that detE
ij

= �1. It is also clear that AE
ij

is the matrix A with
columns i and j switched. Since C

<1 and C
<2 di↵er only in the order of

the columns, there are tuples {(i
1

, j
1

), (i
2

, j
2

), . . . , (i
k

, j
k

)} such that C
<1 =

C
<2

Q

k

r=1

E
irjr . Let E =

Q

k

r=1

E
irjr . Since detET = detE = (�1)r 6= 0,

Proposition A.0.1 implies that

ker (C
<1)

T = ker
�

ETCT

<2

�

= ker (C
<2)

T

,

since ET is non-singular.

Proposition 2.6.2. Let ẋ
i

= p
i

(x), i = 1, 2, . . . , n, be a polynomial dynamical
system. Let ẋ = C

<

m
<

be the matrix representation of this system correspond-
ing to monomial ordering <. Then

�T =
�

�
1

�
2

. . . �
n

�

2 Rn

defines a conservation law if and only if � 2 kerCT

<

.

Proof. Assume that �T = (�
1

, �
2

, . . . , �
n

) defines a conservation law, i.e.

n

X

i=1

�
i

x
i

⌘ ↵

for some ↵ 2 R, for all functions x which obey the dynamics of the system.
Taking the derivative of both sides gives

P

n

i=1

�
i

ẋ
i

= 0, i.e.

0 = �T ẋ = �TC
<

m
<

,

so �T is in the left kernel of C
<

, which is equivalent to c 2 ker (C
<

)T .

On the other hand, assume that � 2 ker (C
<

)T . Then �T (C
<

) = 0, so

0 = �T (C
<

)m = �T ẋ.

By integrating both sides we get ↵ = �Tx, i.e. a conservation law.

This leads us to formulate the following proposition.

Proposition 2.6.3. Let ẋ
i

= p
i

(x), i = 1, 2, . . . , n, be a polynomial dynamical
system. Let P = {p

1

, p
2

, . . . , p
n

}. Let < be a monomial ordering on mon (R[x]).
Let C

<

be the coe�cient matrix of P corresponding to <. Then ẋ = p
i

(x),
i = 1, 2, . . . , n, can be reduced to a rank (C

<

)-dimensional system (i.e. the
dynamics of the system can be expressed using r = rank (C

<

) variables).
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Proof. Let k = dimker (C
<

)T . Let {�
1

, �
2

, . . . , �
k

} be a basis of kerCT

<

. In
particular,

�
i

2 kerCT

<

⇢ Rn

for i = 1, 2, . . . , k. Thus, each �
i

=
�

�
i1

�
i2

. . . �
in

�

T

defines a conservation
law, namely

n

X

j=1

�
ij

x
j

(t) ⌘ ↵
j

,

for some ↵
j

2 R. Since {�
1

, �
2

, . . . , �
k

} is a basis, this means, in particular,
that the conservation laws generated by the �

i

, i = 1, 2, . . . , k, are linearly
independent in Rn. Let

� = (�
ij

) 1ik
1jn

.

The rows of � are linearly independent, since the �
i

are linearly independent.
This means

rank (�) � k.

On the other hand, we know that

rank (�)  min {k, n}  k,

so rank (�) = k. In other words, � has full rank. This implies that there is a
non-singular matrix E and an aribtrary matrix A such that

E� =
�

A I
k

�

(E is in fact the product of the so called elementary matrices corresponding to
the appropriate elementary row operations). Let � = E↵. Thus, the system
�x = ↵ has the solution

0

B

B

B

@

x
n�k+1

x
n�k+2

...
x
n

1

C

C

C

A

=

0

B

B

B

B

@

�
1

�

P

n�k

j=1

a
1j

x
j

�
2

�

P

n�k

j=1

a
2j

x
j

...

�
k

�

P

n�k

j=1

a
kj

x
j

1

C

C

C

C

A

= � �Ax̃

where
A = (a

ij

) 1ik
1jn�k

and x̃ =
�

x
1

x
2

. . . x
n�k

�

T

. This is a solution with k parameters. Thus, an
n-dimensional system can be reduced to a (n� k)-dimensional system. Finally,
note that

n� k = n� dimker
�

CT

<

�

= rank
�

CT

<

�

= rank (C
<

)

by Proposition 2.3.5.
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As was mentioned above, we can find k = dimkerC
<

T linearly independent
conservation laws. If two conservation laws are lineraly independent, they each
contribute new information about the system. By what has been said above, we
know that we can find at least k conservation laws, each properly contributing
information about the system. But we also know that there is no point in
trying to find more than k conservation laws, since when we already have k
linearly independent conservation laws, any new conservation law will already
be implicit in those that we have already found.

Example 2.6.4. We continue Example 2.5.16. The rank of C
<

is 2. Hence,
dimkerCT

<

= 4� 2 = 2. The set

n

�

�3 �1 0 1
�

T

,
�

�2 4 1 0
�

T

o

is a basis for kerCT

<

. This gives two conservation laws:

�3x
1

(t) � x
2

(t) + x
4

(t) ⌘ ↵
1

�2x
1

(t) + 4x
2

(t) + x
3

(t) ⌘ ↵
2

for some ↵
1

,↵
2

2 R. Solving for x
3

and x
4

and substituting into m
<

gives
m

<

= Tm̃
<

, where

T =

0

B

B

B

B

@

0 3 0 1 ↵
1

0 0 0 0 0 0 0 0
2 0 �4 ↵

2

0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 1 ↵

1

0 0 0 0 0
0 0 0 0 0 6 0 0 �10 �

1

�4 �
2

0
0 0 0 0 0 0 0 0 0 3 0 1 ↵

1

1

C

C

C

C

A

where �
1

= 2↵
1

+ 3↵
2

and �
2

= ↵
2

� 4↵
1

, and

mT

<

=
�

x3

1

x2

2

x3

1

x
2

x2

1

x3

2

x2

1

x2

2

x2

1

x
2

x2

1

x
1

x3

2

x
1

x2

2

x
1

x
2

x
1

x2

2

x
2

1
�

.

Thus,
ẋ = C

<

m
<

(x) = C
<

Tm̃
<

(x).

Since x
3

and x
4

has been eliminated, we only need the first and second row, de-
noted (C

<

)
1

and (C
<

)
2

, of C
<

. Thus, the matrix representation of the reduced
system is

˙̃x = C̃
<

m̃
<

(x)

where x̃T =
�

x
1

x
2

. . . x
k

�

and

C̃
<

=

✓

(C
<

)
1

(C
<

)
2

◆

T

=

✓

0 3 0 4 ↵
1

12 1 ↵
1

�20
4 0 �8 �9 + 2↵

2

0 6 �3 �3↵
1

�10

�3 + 2�
1

�8 �1 + 2�
2

�↵
1

�
1

�4 �
2

0

◆

.
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In other words, the reduced system is ẋ
i

= q
i

(x), i = 1, 2, where

q
1

= 3x3

1

x
2

+ 4x2

1

x2

2

+ ↵
1

x2

1

x
2

+ 12x2

1

+ x
1

x3

2

+ ↵
1

x
1

x2

2

� 20x
1

x
2

+ (�3 + 2�
1

)x
1

� 8x2

2

+ (�1 + 2�
2

)x
2

� ↵
1

q
2

= 4x3

1

x2

2

� 8x2

1

x3

2

+ (�9 + 2↵
2

)x2

1

x2

2

+ 6x2

1

� 3x
1

x3

2

� 3↵
1

x
1

x2

2

� 10x
1

x
2

+ �
1

x
1

� 4x2

2

+ �
2

x
2

.

⇧

3 Finding the steady states

3.1 Introduction

Definition 3.1.1. We say that x̂ 2 Rn is a steady state of the n-dimensional
system ẋ = F (x) if F (x̂) = 0.

Let ẋ
i

= p
i

(x), i = 1, 2, . . . , n, be a polynomial dynamical system. Then the
steady states are the real solutions (i.e. those in Rn) of the system of polynomial
equations

p
i

(x) = 0, i = 1, 2, . . . , n.

Unless deg (p
i

)  1 for all i, this system of equations is non-linear. Solving a
non-linear system of equations is typically di�cult. However, there are methods
available for tackling such problems. We will present one such method, which is
based on so called Gröbner bases. It will allow us to find the common roots of
a set of multivarite polynomials by finding the roots of a sequence of univariate
polynomials.

3.2 A remark on matrix respresentations and steady states

Let < be a monomial ordering of R[x] and let ẋ = C
<

m
<

be the correspond-
ing matrix representation of a polynomial dynamical system ẋ

i

= p
i

(x), i =
1, 2, . . . , n. In the previous chapter, we saw that we can use kerCT

<

to find the
conservation laws of a system, and imC

<

to find a linear subspace S ⇢ Rn such
that each orbit of the system is a subset of a coset of S. Before we begin our
presentation of the method for finding steady states, let us make a small remark
about how kerC

<

can be interpreted.
If x̂ 2 Rn is such that

y = m
<

(x̂) 2 kerC
<

,

then
C

<

m
<

(x̂) = 0,

so x̂ is a steady state. On the other hand, if x̂ is a steady state, then

C
<

m
<

(x̂) = 0,

so x̂ is such that
m

<

(x̂) 2 kerC
<

.

In other words, the set of steady states of the system is precisely the preimage
of imm \ kerC

<

under

m : Rn

! R
x 7! m

<

(x)
.
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3.3 Ideals and varieties

Let p
i

2 k[x], i = 1, 2, . . . , n. Assume that x̂ is a simultaneous root of all the p
i

,
i.e. p

i

(x̂) = 0 for i = 1, 2, . . . , n. Then

n

X

i=1

p
i

(x̂)q
i

(x̂) = 0

for all q
i

2 k[x]. On the other hand, consider the set

I =

(

n

X

i=1

p
i

q
i

| q
i

2 k[x]

)

⇢ k[x].

Let x̂ be a simultaneous root of all polyonomials in I. Then, in particular,
p
i

(x̂) = 0 for all i. Thus, x̂ is a simultaneous root of p
i

, i = 1, 2, . . . , n if and
only if it is a root of every element in I.

The set I is called an ideal of k[x], and the set of common roots of I is called
a variety. More generally, ideals and varieties are defined as follows.

Definition 3.3.1 ([1, chapter 1]). Let R be a commutative ring with identity.
Let I ⇢ R be a set such that

• j
1

+ j
2

2 I for all j
1

, j
2

2 I, and

• rj 2 I for all r 2 R and j 2 J .

Then we say that I is an ideal.
Let S ⇢ R be a set. Then

I = hSi =

8

<

:

k

X

j=1

r
i

s
i

| r
i

2 R, s
i

2 S, k 2 {1, 2, . . . , n}

9

=

;

is called the ideal generated by S.
If S = {s

1

, s
2

, . . . , s
n

}, we sometimes write hs
1

, s
2

, . . . , s
n

i for the ideal gen-
erated by S.

Convention From now on, whenever we say ”ring”, we mean ”commutative
ring with identity”.

Before giving the definition of a variety, we need to recall the definition of
the algebraic closure of a field.

Convention k[t] will denote the polynomial ring in precisely one variable.

Definition 3.3.2 (see e.g. [7, end of chapter 1.3.3]). Let k be a field. Let k � k
be the smallest field with the following property: for each p 2 k[t], each root of
p belongs to k. Then k is called the algebraic closure of k.

For example, R = C, as is very well-known.

Definition 3.3.3 (e.g. [4]). Let I ⇢ k[x]. The set

V (I) =
n

↵ 2 k
n

| 8p 2 I : p(↵) = 0
o

,

where k denotes the algebraic closure of k, is called the variety of I.
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Remark Another name for the notion called a variety is ”zero set”. However,
we will use the term ”variety”, since it is the convention in commutative algebra.

Definition 3.3.4 (cf. [12]). Let I ⇢ k[x]. For fields K such that k ⇢ K ⇢ k,
we will use the notation

V
K

(I) = V (I) \Kn.

Let us illustrate the notion of a variety with a simple example.

Example 3.3.5. Let
I = hx2

� y, x� yi ⇢ k[x, y].

By the remarks above, V (I) is given by the solutions of the system

(

p
1

= x2

� y = 0

p
2

= x� y = 0
.

Hence,
V (I) = {(0, 0), (1, 1)} .

Since V (I) ⇢ R2, we have VR(I) = V (I). ⇧

Recall Definition 3.1.1; in the language of ideals and varieties, the set of
steady states of a polynomial dynamical system given by

ẋ
i

= p
i

(x), i = 1, 2, . . . , n

is precisely
VR(hp1, p2, . . . , pni).

3.4 The division algorithm

In our coming discussion of Gröbner bases, we will need a generalized division
algorithm. Let us first recall the situation for univariate polynomials.

Let k[t] be the polynomial ring in one variable over a field k. It is well-known
that k[t] is a principal ideal domain, i.e. that each ideal I ⇢ k[t] is generated by
a singleton set (see e.g. [4, Corollary 5 in chapter 1]); in other words, that

I = hpi

for some p 2 k[t]. Let f 2 k[t]. Then, by the division algorithm for univariate
polynomials, there are unique q, r 2 k[t] such that

f = qp+ r

with either r = 0 or deg (r) < deg (p). The polynomial q is called the quotient
and r the remainder when dividing f by p. Moreover, the division algorithm
for univariate polynomials lets us find such q and r.

We want to generalize the division algorithm in two directions at once: on
the one hand, to polynomials in several variables; on the other hand, to more
than one divisors. More precisely, we want an algorithm which, given

f 2 k[x] and P = {p
1

, p
2

, . . . , p
m

} ⇢ k[x],
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finds unique
q
1

, q
2

, . . . , q
m

, r 2 k[x]

— where r satisfies some appropriate conditions, to be formulated later — such
that

f =
m

X

i=1

q
i

p
i

+ r.

It turns out that the division algorithm can be generalized in this way — but
the q

i

and r are unique only if P is a so called Gröbner basis of hP i. When
this is the case, the algorithm will produce unique q

1

, q
2

, . . . , q
m

and r, while
for general P , on the other hand, it will still produce such q

1

, q
2

, . . . , q
m

and r,
but they will not be unique.

We will need the following property of ideals generated by a set of monomials.

Lemma 3.4.1 ([4, Lemma 2 in chapter 2]). Let M ⇢ mon (k[x]) and let I =
hMi. Then for each m 2 I, there exists m̃ 2 M and n 2 mon (k[x]) such that
m = m̃n.

Proof. Take m 2 M . Then

m =
s

X

i=1

p
i

m
i

for some m
i

2 M and p
i

2 k[x]. Let

{n
1

, n
2

, . . . , n
r

} = supp ({p
1

, p
2

, . . . , p
s

}) .

Then

p
i

=
r

X

j=1

c
ij

n
j

for some c
ij

, so

m =
s

X

i=1

r

X

j=1

c
ij

n
j

m
i

.

Note that n
j

m
i

is a monomial. Let

{µ
1

, µ
2

, . . . , µ
k

} = {n
j

m
i

| 1  j  r and 1  i  r} ,

i.e. the µ
i

are the distinct monomials among the monomials n
j

m
i

. Then

m =
k

X

i=1

d
i

µ
i

for some d
i

2 k. Since µ
i

6= µ
j

for i 6= j, there can be no cancellation in
P

k

i=1

d
i

µ
i

. Since m is a monomial, the equality m =
P

k

i=1

d
i

µ
i

can hold if and
only if d

i

6= 0 for precisely one i, and d
i

= 1. Thus

m = µ
i

= m
k

n
j

for some k and j. Let

m̃ = m
k

, and

n = n
j

Then m = m̃n.
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We will need a certain property of sequences of monomial ideals, but before
we introduce it, let us introduce terminology which will be convenient to use to
express that property.

A sequence can have the property that it becomes constant after some in-
dex. We will be interested in whether a given sequence of monomials has this
property.

Definition 3.4.2. Let < be a monomial ordering. Let µ = (m
i

)1
i=1

be a se-
quence of monomials. Let

S(µ) = {j | 8i 2 N : m
j+i

= m
j

}

and

D(µ) =

(

{1, 2, . . . ,minS(µ)� 1} , if S(µ) 6= ;

N, otherwise
.

If D(µ) 6= N, we say that the sequence is finite. Otherwise, we say that it is
infinite.

The value of the sequence changes at least once on D(µ), but it is constantly
m

D(µ)+1

on N\D(µ).
A sequence can have the property that it is strictly decreasing, in some sense,

as the index increases.

Definition 3.4.3. Let < be a monomial ordering. Let µ = (m
i

)1
i=1

be a se-
quence of monomials such that m

i

> m
i+1

for all i 2 D(µ). Then we say that
µ is a strictly decreasing sequence (with respect to the ordering <).

Before the next lemma, we need the following concept, and a related result.

Definition 3.4.4 ([1, chapter 6]). A chain of ideals (I
j

)1
j=1

such that I
j

⇢ I
j+1

for all j is called an ascending chain of ideals. If there is a k 2 N such that
I
k+i

= I
k

for all i 2 N, we say that the chain satisfies the ascending chain
condition.

Definition 3.4.5 ([1, chapter 6]). Let R be a ring such that every ascending
chain satisfies the ascending chain condition. Then we say that R is Noetherian.

We will need the following two well-known results, which we present without
proof; the proofs can be found in the referenced book.

Proposition 3.4.6 ([1, Proposition 6.1 and 6.2]). Let R be a ring. The follow-
ing are equivalent:

(i) R is Noetherian.

(ii) Every ideal of R is finitely generated.

Proposition 3.4.7 ([1, Corollary 7.6]). Let k be a field. Then k[x
1

, x
2

, . . . , x
n

]
is Noetherian for every n � 1.

The following lemma says that a strictly decreasing sequence can not be
infinite.
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Lemma 3.4.8 ([7, Lemma 5 in chapter 3]). Let < be a monomial ordering.
Every strictly decreasing sequence of monomials (with respect to <) in k[x] is
finite.

Proof. Let (m
i

)1
i=1

be a strictly decreasing sequence of monomials. Let

M = {m
i

| i 2 N} ,

and let I = hMi. Since k[x] is Noetherian, the ideal I is finitely generated; let

hn
1

, n
2

, . . . , n
k

i = I.

Since I = hMi, Lemma 3.4.1 implies that, for each i, there is an

m
i

2 M, and

µ
i

2 supp (k[x])

such that n
i

= m
i

µ
i

. Let

M̃ = {m
i

| 9i9µ
i

: n
i

= m
i

µ
i

} ⇢ M.

Now take m 2 M . Since

M ⇢ I, and

M ⇢ supp (k[x]) ,

there exists m̃ 2 supp (k[x]) and an i such that

m = m̃n
i

= m̃m
i

µ
i

,

by Lemma 3.4.1. This implies that, for all i 2 {1, 2, . . . , k}, we have

m
i

< m for all m 2 M.

Hence,
min M̃ < m for all m 2 M

and
min M̃ 2 M.

Since
M = {m

i

| i 2 N} ,
there is a K such that

m
K

= min M̃.

Since
m

K

 m for all m 2 M,

we must havem
K+i

� m
K

for all i 2 N. Since the sequence is strictly decreasing,
we must have m

K+i

= m
K

for all i 2 N. Hence, the sequence is finite.

For polynomials in one variable, the m 2 supp (f) with maximal degree is
usually regarded as the ”largest” monomial (in fact, this is the only admissible
monomial ordering on the polynomial ring in one variable, since 1 < x by one
of the conditions on a monomial ordering, which implies that x < x2 by the
other condition on a monomial ordering, so, in general, xi < xi+1 for all i). The
notion of monomial orderings (see Definition 2.5.7) lets us define the ”largest”
monomial of a polynomial in several variables.
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Definition 3.4.9 ([7, chapter 3.2.2]). Let < be a monomial ordering on k[x].
Let f 2 k[x] and supp (f) = {m

1

,m
2

, . . . ,m
r

} , where the indices are chosen
such that m

1

> m
2

> · · · > m
r

.
We say that m

1

is the leading monomial of f . The leading monomial of f
will be denoted lm (f).

If f =
P

r

i=1

c
i

m
i

, then c
1

is called the leading coe�cient of f . The leading
coe�cient of f will be denoted lc (f).

Finally, lt (f) = lc (f) lm (f) is called the leading term of f .

Example 3.4.10. Let p = x2

1

x
2

x2

3

+ x3

1

x
2

+ x3

3

.

(a) Let < be any Deglex-ordering. Then lm (p) = x2

1

x
2

x2

3

, since this monomial
has degree 5, while the other monomials in supp (p) both have lower degrees.

(b) Let < be the Lex-ordering with x
1

> x
2

> x
3

. Then lm (p) = x3

1

x
2

, since
the other monomials in supp (p) both have only lower powers of x

1

.

(c) Let < be one of the Lex-orderings with x
3

> x
i

for i = 1, 2. Then lm (p) =
x3

3

, since the other monomials in supp (p) both have only lower powers of
x
3

.

⇧

Now we are almost ready to present the division algorithm. Before doing so,
we recall the division algorithm for univariate polynomials (with one divisor).

Let f, g 2 k[t].
Assume that deg (f) < deg (g). Then set q = 0 and r = f ; then f = qg + r.
Assume instead that deg (f) � deg (g). Then we can find c

1

2 k and m
1

2

mon (k[t]) such that
deg (f � c

1

m
1

g) < deg (f) .

Let f
0

= f . Then define f
i+1

by the recursive formula

f
i+1

=

(

f
i

� c
i

m
i

g, deg (f
i

) � deg (g)

f
i

, otherwise

where c
i

2 k and m
i

2 mon (k[t]) are chosen such that deg (f
i+1

) < deg (f
i

),
for all i such that deg (f

i

) � deg (g). Since (deg (f
i

))1
i=1

is a strictly decreas-
ing sequence of non-negative numbers and deg (g) � 0, there is a k such that
deg (f

k

) < deg (g). Set

q =
k

X

i=1

c
i

m
i

r = f
k

.

Then f = qg + r. In summary, the idea of the division algorithm for univariate
polynomials is to, by an appropriate subtraction, successively lower the degree,
until the degree of what is left is lower than the degree of the divisor.

The degree of a univariate polynomial is the degree of its leading monomial,
so

deg (f) < deg (g) if and only if deg (lm (f)) < deg (lm (g)) .
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But recall that there is only one ordering of the monomials in mon (k[t]), namely

t↵ < t� if and only if ↵ < �.

Thus
deg (lm (f)) < deg (lm (g)) if and only if lm (f) < lm (g) .

This means we could have formulated the previous paragraph in terms of the
leading monomials, instead of the degrees, of the polynomials involved. In this
language, the idea of the division algorithm for univariate polynomials is to, by
an appropriate subtraction, successively lower the leading monomial, until the
leading monomial of what is left is smaller than the leading monomial of the
divisor.

The previous paragraph suggests what to do for multivariate polynomials
and multiple divisiors. Let f 2 k[x] and let G = {g

1

, g
2

, . . . , g
m

} ⇢ k[x]. The
division algorithm can be described as consisting of major steps, where each
major step consists of minor steps. We start with

f
10

= f.

If there is a j such that lm (g
j

) | lm (f
10

), we can find c 2 k and m 2 mon (k[x])
such that

lm (f
10

� cmg
j

) < lm (f
10

) .

Let
f
11

= f
10

� cmg
j

;

more generally, given f
1j

, let

f
1,j+1

= f
1j

� c
1j

m
1j

g
i1j ,

where c
1j

2 k and m
1j

2 mon (k[x]) are chosen such that lm (f
1,j+1

) < lm (f
1j

),
as longs as there exists i such that lm (g

i

) | lm (f
1j

). Defining f
1,j+1

in terms of
f
1j

constitutes a minor step.
Assume that k is the smallest number for which lm (g

i

) - lm (f
1k

) for all i.
Then we can write

f =
k�1

X

j=1

c
1j

m
1j

g
i1j + f

1k

.

This ends the first major step. In other words, the first major step ends when
the leading monomial of f

1k

can not be cancelled by subtracting a multiple of
one of the g

j

. We can not cancel the leading monomial of f
1k

, but perhaps we
can cancel the leading monomial of f

1k

� lm (f
1k

). Let

f
20

= f
1k

� lm (f
1k

) .

Now a new major step begins. It will be shown that number of major steps is
finite.

More precisely, the following proposition and its proof gives the division
algorithm.

Proposition 3.4.11 ([7, chapter 3.3], [1, Theorem 3 in chapter 2]). Let f 2

k[x] and g
1

, g
2

, . . . , g
m

2 k[x]. Fix a monomial ordering <. Then there are
polynomials q

1

, q
2

, . . . , q
m

, r 2 k[x] (in general not unique) such that
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• f =
P

m

i=1

q
i

g
i

+ r, and

• either r = 0 or 8i 2 {1, 2, . . . ,m} 8m 2 supp (r): lm (g
i

) - m
Proof. Let f

10

= f .

1. Let I
1j

= {i | lm (g
i

) divides lm (f
1j

)}. For all j such that I
1j

6= ;, let

f
1,j+1

= f
1j

� lc (f
1j

) lc
�

g
i1j

��1

m
1j

g
i1j ,

where i
1j

= min I
1j

and lm (f
1j

) = lm
�

g
i1j

�

m
1j

. Note that lm (f
1,j+1

) <

lm (f
1j

), since the leading monomial of lc (f
1j

) lc
�

g
i1j

��1

m
1j

g
i1j is equal

to the leading monomial f
1j

, by construction.

Assume that there are infinitely many j such that lm (g
i

) | lm (f
1j

) for
some i. Then (lm (f

1j

)1
j=1

is infinite and strictly decreasing, which is a
contradiction to Lemma 3.4.8. Hence, there can only be finitely many
such j. So

k
1

= min {j | 8i : lm (g
i

) - lm (f
1j

)} < 1.

This means

f
10

=
k1�1

X

j=0

lc (f
1j

) lc
�

g
i1j

��1

m
1j

g
i1j + f

1k1 ,

where lm (g
i

) - lm (f
1k1) for all i. Let

r
1

= lc (f
1k1) lm (f

1k1)

and

f
20

= f
1k1 � r

1

.

Note that lm (f
20

) < lm (f
1k1) < lm (f

10

).

2. Let I
2j

= {i | lm (g
i

) divides lm (f
2j

)}. For all j such that I
2j

6= ;, let

f
2,j+1

= f
2j

� lc (f
2j

) lc
�

g
i2j

��1

m
2j

g
i2j ,

where lm (f
2j

) = lm
�

g
i2j

�

m
2j

. Note that lm (f
2,j+1

) < lm (f
2j

), since

the leading monomial of lc (f
2j

) lc
�

g
i2j

��1

m
2j

g
i2j is equal to the leading

monomial f
2j

, by construction. By the same argument as above,

k
2

= min {j | 8i : lm (g
i

) - lm (f
2j

)} < 1.

Then

f
20

=
k2�1

X

j=0

lc (f
2j

) lc
�

g
i2j

��1

m
2j

g
i2j + f

2k2 .

Let

r
2

= lc (f
2k2) lm (f

2k2)

and

f
30

= f
2k2 � r

2

.

Note that lm (f
30

) < lm (f
2k2) < lm (f

20

).
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...

Note that lm (f
i0

) < lm (f
i+1,0

). Hence, (lm (f
i0

))1
i=1

is a strictly decreasing
sequence, so by Lemma 3.4.8 it is finite. Let

s = min {j | 8i 2 N : f
j+i,0

= f
j0

}.

Then

f
20

= f
1k1 � r

1

= f
10

�

k1�1

X

j=0

lc (f
1j

) lc
�

g
i1j

��1

m
1j

g
i1j � r

1

so, since f = f
10

,

f = f
20

+
k1�1

X

j=0

lc (f
1j

) lc
�

g
i1j

��1

m
1j

g
i1j + r

1

= f
30

+
k1�1

X

j=0

lc (f
1j

) lc
�

g
i1j

��1

m
1j

g
i1j +

k2�1

X

j=0

lc (f
2j

) lc
�

g
i2j

��1

m
2j

g
i2j

+ r
1

+ r
2

= . . .

= f
s0

+
s�1

X

m=0

km�1

X

j=0

lc (f
mj

) lc
�

g
imj

��1

m
mj

g
imj +

s�1

X

m=0

r
m

.

Assume that f
s0

6= 0. Then

f
s0

=
ks�1

X

j=0

lc (f
sj

) lc
�

g
isj

��1

m
sj

g
isj + f

sks .

Let r
s

= lc (f
sks) lm (f

sks). Now, fs+1,0

is defined by f
s+1,0

= f
sks � r

s

, so

lm (f
s+1,0

) < lm (f
sks) < lm (f

s0

) ,

which contradicts that f
s+1,0

= f
s0

. Hence, f
s0

= 0. This means

f =
s�1

X

m=0

km�1

X

j=0

lc (f
mj

) lc
�

g
imj

��1

m
mj

g
imj +

s�1

X

m=0

r
m

.

Recall that g
ijk 2 {g

1

, g
2

, . . . , g
m

} for all j, k. Collect the factors multiplying

g
i

in a polynomial q
i

, and let r =
P

k�1

j=1

r
j

. Note that 8i8j : lm (g
i

) - r
j

, by

construction. Thus, f =
P

m

i=1

q
i

g
i

+ r where r satisfies the conditions of the
proposition.

Definition 3.4.12. Let f 2 k[x] and G = {g
1

, g
2

, . . . , g
m

} ⇢ k[x]. Let q
i

, i =
1, 2, . . . ,m, and r be as in Proposition 3.4.11. Then the m-tuple (q

1

, q
2

, . . . , q
m

)
is called a quotient, and r is called a remainder — denoted rem(f,G) — of f
divided by G.
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As mentioned in the proposition, the q
1

, q
2

, . . . , q
m

and r are in general
not unique (except in the univariate case). This is the reason we speak of ”a
quotient” and ”a remainder” rather than ”the quotient” and ”the remainder”.
The source of the non-uniqueness is that in each minor step (see the paragraphs
preceding the proposition), there can be more than one j such that lm (g

j

) |

lm (f
ij

). Therefore, in each minor step we make a choice, and it turns out that,
in general, which quotient and remainder we get depends on the choices we
make in the minor steps. In the proof, we chose

min {i : lm (g
i

) | lm (f
ij

)},

but this choice is arbitrary, and, moreover, it depends on the indexation, which
itself is arbitrary. However, as was mentioned before, we get unique quotient
and remainder if we divide a polynomial f by a set of polynomials G such that
G is a Gröbner-basis of hGi. We will return to this question after the notion of
a Gröbner-basis has been introduced.

Let us illustrate the non-uniqueness of the quotient and the remainder with
an example.

Example 3.4.13. Let

f = x2

1

+ x3

2

,

p
1

= x
1

+ x2

2

, and

p
2

= x2

1

+ x
2

.

Then the method of the proof gives f =
�

x
1

� x2

2

� �

x
1

+ x2

2

�

+ x3

2

+ x4

2

.
Now reindex the p

i

: let

p
1

= x2

1

+ x
2

, and

p
2

= x
1

+ x2

2

.

Then the method of the proof gives f =
�

x2

1

+ x
2

�

+
�

x3

2

� x
2

�

.
Thus, we have di↵erent quotient and remainder in the two cases. ⇧

For a general set P ⇢ k[x], there is another problem, in addition to the
non-uniquness described above: even if f 2 hP i, it can still have a non-zero
remainder when divided by P , as the following example shows.

Example 3.4.14. Let
f = y4 � y2 2 k[x, y]

and let P = {p
1

, p
2

} with

p
1

= x2 + y, and

p
2

= x4

� y4.

Since
y4 � y2 = (x2 + y)(x2

� y)� (x4

� y4),

we have f 2 hP i.
Let < be the Deglex-ordering with x > y. Then

lm (p
1

) = x2, and

lm (p
2

) = x4,
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neither of which divides lm (f) = y4. This implies that y4 will be a monomial
of the remainder. Thus, a remainder of f divided by P is non-zero. ⇧

For a general set P ⇢ k[x], we have only the following implication:

rem(f, P ) = 0 =) f 2 hP i; (3.1)

this holds since if rem(f, P ) = 0, we have f =
P

k

i=1

p
i

q
i

for some q
i

2 k[x],
where {p

1

, p
2

, . . . , p
k

} = P , so f 2 hP i. However, it turns out that if P is
a Gröbner-basis of hP i, then the reverse implication holds as well. When the
notion of a Gröbner basis has been introduced, we will return to this question
as well.

The proof of the division algorithm gives us a method for finding a remainder
of f divided by the set {p

1

, p
2

, . . . , p
m

}. Let us illustrate this with an example.

Example 3.4.15. Let

f = 3x3

1

x
2

x2

3

+ x
1

x2

2

x3

3

+ 2x
1

+ x3

2

x
3

� x
3

� 4,

p
1

= x3

1

+ x
3

+ 1,

p
2

= x3

2

� x
3

� 2, and

p
3

= x
3

+ 2.

Let < be the Lex-ordering with x
1

> x
2

> x
3

. Let us divide f by P =
{p

1

, p
2

, p
3

} with respect to this ordering. Let f
10

= f . Since lm (f
10

) = 3x3

1

x
2

x2

3

is divisble by lm (p
1

) = x3

1

, we let

f
11

= f
10

� 3x
2

x2

3

p
1

= x
1

x2

2

x3

3

+ 2x
1

+ x3

2

x
3

� 3x
2

x3

3

� 3x
2

x2

3

� x
3

� 4.

Now, lm (f
11

) = x
1

x2

2

x3

3

, which is not divisible by any element in the set
{lm (p

1

) , lm (p
2

) , lm (p
3

)}. Thus, we set r
1

= x
1

x2

2

x3

3

, and let

f
20

= f
11

� r
1

= 2x
1

+ x3

2

x
3

� 3x
2

x3

3

� 3x
2

x2

3

� x
3

� 4.

Again, none of the lm (p
i

) divides lm (f
20

) = 2x
1

. Therefore, we set r
2

= 2x
1

and

f
30

= f
20

� r
2

= x3

2

x
3

� 3x
2

x3

3

� 3x
2

x2

3

� x
3

� 4.

Now, lm (p
1

) - lm (f
30

), but lm (p
2

) | lm (f
30

). Therefore, we set

f
31

= f
30

� x
3

p
2

= �3x
2

x3

3

� 3x
2

x2

3

� x
3

� 4.

Since neither lm (p
1

) nor lm (p
2

) divides lm (f
31

), but lm (p
3

) | lm (f
31

), we set

f
32

= f
31

+ 3x
2

x2

3

p
3

= 3x
2

x2

3

+ x2

3

� 4.
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Again, only lm (p
3

) divides lm (f
32

), so

f
33

= f
32

� 3x
2

x
3

p
3

= �6x
2

x
3

+ x2

3

� 4.

Only lm (p
3

) | lm (f
33

), so

f
34

= f
33

+ 6x
2

p
3

= 12x
2

+ x2

3

� 4.

Now none of the lm (p
i

) divides lm (f
34

), so we set r
3

= 12x
2

and

f
40

= f
34

� r
3

= x2

3

� 4.

Only lm (p
3

) | lm (f
40

), so

f
41

= f
40

� x
3

p
3

= �2x
3

� 4.

Only lm (p
3

) | lm (f
41

), so

f
42

= f
41

+ 2p
3

= 0.

This gives

f = f
10

= f
11

+ 3x
2

x2

3

p
1

= (f
20

+ r
1

) + 3x
2

x2

3

p
1

= ((f
30

+ r
2

) + r
1

) + 3x
2

x2

3

p
1

= (((f
31

+ x
3

p
2

) + r
2

) + r
1

) + 3x
2

x2

3

p
1

= . . .

= 3x
2

x2

3

p
1

+ x
3

p
2

+
�

3x
2

x
3

� 3x
2

x2

3

� 6x
2

+ x
3

� 2
�

p
3

+
�

x
1

x2

2

x3

3

+ 2x
1

+ 12x
2

�

.

Thus, f = q
1

p
1

+ q
2

p
2

+ q
3

p
3

+ r, with

q
1

= 3x
2

x2

3

q
2

= x
3

q
3

= 3x
2

x
3

� 3x
2

x2

3

� 6x
2

+ x
3

� 2

r = x
1

x2

2

x3

3

+ 2x
1

+ 12x
2

.

(Again, the q
i

and r are not neccessarily unique, unless P is a Gröbner basis of
hP i — but it turns out that, in this case, P is a Gröbner basis of hP i. Hence,
the quotient and remainder are unique.) ⇧
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3.5 Gröbner bases

Let I be an ideal, with a generating set S, i.e. I = hSi. However, an ideal can
have more than one generating set, and depending on what we want to do, it
might be more beneficial to work with one generating set rather than another.
A Gröbner basis is a generating set with many useful properties.

We will soon define what a Gröbner basis is, but before we can do so, we
need to introduce the notion of the ideal of leading monomials of an ideal.

Definition 3.5.1 ([7, chapter 3.2.2]).

` (I) = h{lm (f) | f 2 I}i

is called the ideal of leading monomials of I.

Let P be a set of polynomials and let I = hP i. Then

h{lm (p) | p 2 P}i ⇢ ` (I) , (3.2)

but the inclusion can be proper [7, chapter 3.2.2], as the following example
shows.

Example 3.5.2. Let

p
1

= x
1

+ 2x
2

, and

p
2

= x2

1

+ x
2

,

and let P = {p
1

, p
2

} and I = hP i. Let < be the Lex-ordering with x
1

> x
2

.
The division algorithm with respect to this ordering gives:

x2

1

+ x
2

= (x
1

+ 2x
2

) (x
1

� 2x
2

) + 4x2

2

+ x
2

, 4x2

2

+ x
2

= x2

1

+ x
2

+ (2x
2

� x
1

) (x
1

+ 2x
2

) 2 I.

Thus,
4x2

2

+ x
2

2 I.

But
4x2

2

+ x
2

62 hx
1

+ 2x
2

i,

so
h4x2

2

+ x
2

i ( I,

which means that both p
1

and p
2

are needed to generate I.
Note that

x
2

= (x
1

+ 2x
2

)�
�

x2

1

+ x
2

�

2 I,

so x
2

2 lm (I). But

x
2

62 hx
1

i = hx
1

, x2

1

i = hlm (p
1

) , lm (p
2

)i.

Thus, hlm (p
1

) , lm (p
2

)i ( ` (I). ⇧

Now we can define the notion of a Gröbner basis.
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Definition 3.5.3 ([7, Definition 10 in chapter 3]). Let I ⇢ k[x] be an ideal. Let
G = {g

1

, g
2

, . . . , g
r

} ⇢ I be a set such that

` (I) = hlm (g
1

) , lm (g
2

) , . . . , lm (g
r

)i.

Then G is called a Gröbner basis of I.

Remark One can also define the notion of a reduced Gröbner basis; see e.g.
[7, chapter 3.7]. This notion is not neccessary for our purposes.

Although the definition only requires that the leading monomials of the
Gröbner basis generates the initial ideal of I, this turns out to be su�cient for
the Gröbner basis to generate I.

Proposition 3.5.4 ([7, Lemma 11 in chapter 3]). Let G be a Gröbner basis of
I. Then I = hGi.

Proof. Let G = {g
1

, g
2

, . . . , g
k

}. Let f 2 I. Then

f =
k

X

i=1

q
i

g
i

+ r,

where q
i

and r are as in Proposition 3.4.11. Assume that r 6= 0. Since

r = f �

k

X

i=1

q
i

g
i

2 I,

we have lm (r) 2 ` (I). By Lemma 3.4.1, there is an m 2 supp (k[x]) such
that lm (r) = m lm (g

i

) for some i 2 {1, 2, . . . , k}. But lm (g
i

) - lm (r) for all
i 2 {1, 2, . . . , k}, by the division algorithm, so we have a contradiction. Hence
r = 0, which implies that f 2 hg

1

, g
2

, . . . , g
k

i. We conclude that I ⇢ G.
On the other hand, G ⇢ I, since every g

i

2 I, by the definition of a Gröbner-
basis.

As was mentioned earlier, dividing by a set P such that P is a Gröbner-basis
of hP i gives unique quotient and remainder.

Proposition 3.5.5 (cf. [7, Proposition 14 in chapter 3]). Let f 2 k[x] and let
G = {g

1

, g
2

, . . . , g
s

} ⇢ k[x] be such that G is a Gröbner-basis of hGi. Then the
q
1

, q
2

, . . . , q
s

, r of Proposition 3.4.11 are unique.

Proof. Assume that

f =
s

X

i=1

q
i

g
i

+ r
1

, and

f =
s

X

i=1

k
i

g
i

+ r
2

.

Let I = hP i. Assume that r
1

6= r
2

. Then

r
1

� r
2

=
s

X

i=1

(k
i

� q
i

)g
i

2 I,
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so lm (r
1

� r
2

) 2 ` (I). Since P is a Gröbner basis of I, we have

` (I) = hlm (g
1

) , lm (g
2

) , . . . , lm (g
s

)i.

By Lemma 3.4.1, this implies that lm (g
j

) | lm (r
1

� r
2

) for some j.
Assume lm (r

1

) > lm (r
2

). Then lm (r
1

� r
2

) = lm (r
1

), which implies that
lm (g

j

) | lm (r
i

). But lm (g
j

) - m for every j and every m 2 supp (r) by Propo-
sition 3.4.11, so this is contradiction.

Assume lm (r
2

) > lm (r
1

); by the same argument as above, this leads to a
contradiction.

Hence lm (r
1

) = lm (r
2

). Let

r̃
i

= r
i

� lt (r
i

) .

Repeating the same argument for lm (r̃
1

) and lm (r̃
2

) shows lm (r̃
1

) = lm (r̃
2

).
Repeating the same argument as many times as needed — it will need to be
repeated only a finite number of times, since the number of monomials of r

1

and
r
2

are finite — shows that r
1

= r
2

. Thus, we have shown that the remainder is
unique.

This implies that
P

s

i=1

(k
i

� q
i

) g
i

= 0. Let p =
P

s

i=1

(k
i

� q
i

) g
i

. Let
lm (g

i

) = m
i

and lm (k
i

� q
i

) = n
i

. Then

g
i

= c
i

m
i

+ p̃
i

and

k
i

� q
i

= d
i

n
i

+ k̃
i

� q̃
i

for some c
i

, d
i

2 k and p̃
i

, k̃
i

� q̃
i

2 k[x], where

lm (p̃
i

) < lm (p
i

)

and

lm
⇣

k̃
i

� q̃
i

⌘

< lm (k
i

� q
i

) .

Then p =
P

i=1

c
i

d
i

m
i

n
i

+ h, where

h =
s

X

i=1

⇣

c
i

n
i

p̃
i

+ d
i

⇣

k̃
i

� q̃
i

⌘

m
i

+
⇣

k̃
i

� q̃
i

⌘

p̃
i

⌘

.

Since

lm (h)  max
⇣

{n
i

lm (p̃
i

)} [
n

lm
⇣

k̃
i

� q̃
i

⌘

m
i

o

[

n

lm
⇣

k̃
i

� q̃
i

⌘

lm (p̃
i

)
o⌘

,

where i 2 {1, 2, . . . , s}, and

n
i

lm (p̃
i

) < n
i

m
i

,

lm
⇣

k̃
i

� q̃
i

⌘

m
i

< n
i

m
i

, and

lm
⇣

k̃
i

� q̃
i

⌘

lm (p̃
i

) < n
i

m
i

,
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we have lm (h) < n
i

m
i

. Thus,

lm (p) 2 {n
i

m
i

| i 2 {1, 2, . . . , s}} ,

which implies that
lm (p) = lm (k

i

� q
i

) lm (p
i

)

for some i. Since p = 0, we have lm (p) = 0. Thus,

lm (k
i

� q
i

) lm (p
i

) = 0.

Since lm (p
i

) 6= 0, this means

lm (k
i

� q
i

) = 0.

But the leading monomial of a polynomial is zero if and only if the polynomial
is in fact the zero polynomial. Hence, k

i

= q
i

. We can assume, without loss of
generality, that i = 1. Then

s

X

i=2

(k
i

� q
i

)p
i

= 0.

Let p̃ =
P

s

i=2

(k
i

� q
i

)p
i

. By repeating the same argument as above s� 1 times,
it follows that k

i

= q
i

for all i. Thus, we have shown that the quotient is
unique.

When the set we are dividing with is a Gröbner basis of the ideal which the
set generates, the converse of (3.1) holds as well.

Corollary 3.5.6 ([7, Proposition 15 in chapter 3]). Let P be a Gröbner basis
of hP i. Then f 2 hP i if and only if rem(f, P ) = 0.

Proof. (3.1) shows that if rem(f, P ) = 0, then f 2 hP i. For the conserve, let
P = {p

1

, p
2

, . . . , p
2

} and let f 2 hP i. Then f =
P

s

j=1

q
i

p
i

for some q
i

2 k[x].
By the uniqueness of the remainder, rem(f, P ) = 0.

3.6 Buchberger’s algorithm

For any ideal, a Gröbner basis can be found by using Buchberger’s algorithm.
The algorithm depends on the following concept and result.

Definition 3.6.1 ([7, chapter 3.11]). Let f, g 2 k[x]. We say that

S(f, g) =
lt (g) f � lt (f) g

gcd (lm (f) , lm (g))

is the S-polynomial of f and g.

Convention If P is a set of polynomials, we will say that the elements in
{S(p, q) | p, q 2 P} are the S-polynomials of P .

Proposition 3.6.2 ([7, Theorem 23 in chapter 3]). The set G = {g
1

, g
2

, . . . , g
s

},
where lc (g

i

) = 1 for each i, is a Gröbner basis of hGi if and only if

rem(S(g
i

, g
j

), G) = 0

for all i, j.
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Proof. For this proof, the author has followed [4, Theorem 6 in chapter 2], and
have also used the proof of [4, Lemma 5 in chapters].

One direction is easy. Let G be a Gröbner basis of hGi. Since

S(g
i

, g
j

) = lcm (lm (g
i

), lm (g
j

))

✓

1

lm (g
i

)
g
i

�

1

lm (g
j

)
g
i

◆

2 hGi,

Corollary 3.5.6 implies that rem(S(g
i

, g
j

), G) = 0.
For the converse, assume that rem(S(g

i

, g
j

), G) = 0 for all (i, j). We must
show that ` (hGi) = h{lm (g) | g 2 G}i. Since

h{lm (g) | g 2 G}i ⇢ ` (hGi)

in general (see (3.2)), it is enough to show that ` (hGi) ✓ h{lm (g) | g 2 G}i.
Take m 2 ` (hGi). Then m = lm (f) for some f =

P

s

i=1

p
i

g
i

2 hGi. Let
µ = max {lm (p

i

g
i

)} and let J = {i | lm (p
i

g
i

) = m}. Note that lm (f)  µ. If
lm (f) = µ, we have

lm (f) = lm (g
j

) lm (p
j

) 2 h{lm (g) | g 2 G}

for some j. If lm (f) 6= µ, then lm (f) < µ. Let J = {j | lm (p
j

g
j

) = µ}. Write

f =
X

j2J

p
j

g
j

+
X

j 62J

p
j

g
j

=
X

j2J

lt (p
j

) g
j

+
X

j2J

(p
j

� lt (p
j

)) g
j

+
X

j 62J

p
j

g
j

.

Note that lm ((p
j

� lt (p
j

)) g
j

) < µ for j 2 J and lm (p
j

g
j

) < µ for j 62 J . Since
lm (f) < µ, we must have that the leading terms in

P

j2J

lt (p
j

) g
j

cancel, i.e.
P

j2J

lt (lt (p
j

) g
j

) = 0. Note that

lt (lt (p
j

) g
j

) = lt (p
j

) lt (g
j

)

= lc (p
j

) lm (p
j

g
j

)

= lc (p
j

)µ,

so
⇣

P

j2J

lc (p
j

)
⌘

µ = 0, which implies that
P

j2J

lc (p
j

) = 0. By reindexing, we

can make J = {1, 2, . . . , l} — therefore, assume, without loss of generality, that

J = {1, 2, . . . , l}. Then
P

l�1

j=1

lc (p
j

) = � lc (p
l

). Next, note that lm (lt (p
i

) g
i

) =
lm (p

i

) lm (g
i

) = µ, so

lcm (lm (lt (p
i

) g
i

), lm (lt (p
j

) g
j

))

= lcm (µ, µ)

=µ.

This gives

S(lt (p
i

) g
i

, lt (p
j

) g
j

) =µ

✓

1

lt (lt (p
i

) g
i

)
lt (p

i

) g
i

�

1

lt (lt (p
j

) g
j

)
lt (p

j

) g
j

◆

=µ

✓

1

lt (p
i

) lt (g
i

)
lt (p

i

) g
i

�

1

lt (p
j

) lt (g
j

)
lt (g

j

) p
j

◆

=µ

✓

1

lm (g
i

)
g
i

�

1

lm (g
j

)
g
j

◆

.
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Since S(g
i

, g
j

) = L
ij

⇣

1

lm(gi)
g
i

�

1

lm(gj)
g
j

⌘

, where L
ij

= lcm (lm (g
i

), lm (g
j

)),

this implies that

S(lt (p
i

) g
i

, lt (p
j

) g
j

) =
µ

L
ij

S(g
i

, g
j

).

However, we also have

S(lt (p
i

) g
i

, lt (p
j

) g
j

) = µ

✓

1

lc (p
i

)µ
lt (p

i

) g
i

�

1

lc (p
j

)µ
lt (p

j

) g
j

◆

=
1

lc (p
i

)
lt (p

i

) g
i

�

1

lc (p
j

)
lt (p

j

) g
j

so

l�1

X

i=1

lc (p
i

)S(lt (p
i

) g
i

, lt (p
l

) g
l

) =
l�1

X

i=1

lt (p
i

) g
i

�

 

l�1

X

i=1

lc (p
i

)

!

1

lc (p
l

)
lt (p

l

) g
l

=
l

X

i=1

lt (p
i

) g
i

since
P

l�1

i=1

lc (p
i

) = � lc (p
l

). Hence

l

X

i=1

lt (p
i

) g
i

=
l�1

X

i=1

lc (p
i

)
µ

L
il

S(g
i

, g
l

).

By assumption, rem(S(g
i

, g
l

), G) = 0 for all i. This means

S(g
i

, g
l

) =
s

X

m=1

q(i,l)
m

g
m

,

for some q
(i,l)

m

2 k[x]. This gives

l

X

i=1

lt (p
i

) g
i

=
s

X

m=1

p̃
m

g
m

where

p̃
m

=
l�1

X

i=1

lc (p
i

)
µ

lcm (lm (g
i

), lm (g
j

))
q(i,l)
m

.

Thus,

lm (p̃
m

g
m

)

max

⇢

lm (lc (p
i

))
µ

lcm (lm (g
i

), lm (g
j

))
q(i,l)
m

g
m

| i 2 {1, 2, . . . , l}

�

.

Note that

lm

✓

lc (p
i

)
µ

L
il

q(i,l)
m

g
m

◆

= lm

✓

µ

L
il

◆

lm
⇣

q(i,l)
m

g
m

⌘

.

By the division algorithm, we have lm
⇣

q
(i,l)

m

g
m

⌘

 lm (S(g
i

, g
j

)). Also,

lm

✓

µ

L
il

◆

=
µ

L
il

,
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since µ

Lil
is a monomial. This implies that

lm

✓

lc (p
i

)
µ

L
il

q(i,l)
m

g
m

◆



µ

L
il

S(g
i

, g
j

).

Now, write g
i

= lt (g
i

) + g̃
i

and g
i

= lt (g
j

) + g̃
j

. Then

S(g
i

, g
j

) =
L
il

lm (g
i

)
g̃
i

�

L
il

lm (g
j

)
g̃
j

,

which implies that

lm (S(g
i

, g
l

))  max

⇢

lm

✓

L
il

lm (g
i

)
g̃
i

◆

, lm

✓

L
il

lm (g
l

)
g̃
l

◆�

.

Note that

lm

✓

L
il

lm (g
i

)
lm (g̃

i

)

◆

<
L
il

lm (g
i

)
lm (g

i

) = L
il

,

where we have used that lm (g̃
i

) < lm (g
i

). In the same way,

lm

✓

L
il

lm (g
l

)
g̃
l

◆

< L
il

.

Thus, lm (S(g
i

, g
l

)) < L
il

, so

lm

✓

lc (p
i

)
µ

L
il

q(i,l)
m

g
m

◆

< µ,

which implies that lm (p̃
m

g
m

) < µ. Thus,

s

X

i=1

p
i

g
i

=
X

j2J

p̃
j

g
j

+
X

j2J

(p
j

� lt (p
j

)) g
j

+
X

j 62J

p
j

g
j

,

where each summand has leading monomial strictly smaller than µ.
Let

s

X

i=1

p
i

g
i

=
X

j2J

p̃
j

g
j

+
X

j2J

(p
j

� lt (p
j

)) g
j

+
X

j 62J

p
j

g
j

=
s

X

i=1

P
i

g
i

,

and let µ̃ = max {lm (P
i

g
i

) | i 2 {1, 2, . . . , s}}. If lm (f) = µ̃, we have lm (f) =
lm (P

i

) lm (g
i

) 2 h{lm (g) | g 2 G}i. Otherwise, lm (f) < µ̃; if so, repeat the
procedure above.

Let µ
0

= µ, µ
1

= µ̃, and let µ
j

be the maximum leading monomial after
the procedure has been repeated j times. Then (µ

j

)1
j=1

is a strictly decreasing
sequence of monomials, so by Lemma 3.4.8, it is is finite, i.e. there is a k such
that µ

k+i

= µ
k

for all i � 0. Assume that µ
k

> lm (f): then we could repeat the
procedure above to get µ

k+1

< µ
k

, which is a contradiction. Hence µ
k

 lm (f).
Since lm (f)  µ

j

for all j, this implies that lm (f) = µ
k

. Thus,

lm (f) = lm (p̂
i

) lm (g
i

) 2 h{lm (g) | g 2 G}i

for some lm (p̂
i

).
Thus, we have shown that

m = lm (f) 2 h{lm (g) | g 2 G}i,

so ` (hGi) ⇢ h{lm (g) | g 2 G}i. Hence, G is a Gröbner basis of hGi.
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Consider hP i ⇢ k[x]. The idea of Buchberger’s algorithm is as follows. The
set P is our candidate for a Gröbner basis. By Proposition 3.6.2, it is a Gröbner
basis if and only if rem(S(p

i

, p
j

), P ) = 0 for all p
i

, p
j

2 P . Extend the set P
with all non-zero remainders — let us call the extended set P 0 — and then start
over with P 0 as the new candidate for a Gröbner basis. Note that hP 0

i = hP i,
since each remainder is given by

r = S(p
i

, p
j

)�
s

X

i=1

q
i

p
i

2 hP i.

Repeat until all remainders of all S-polynomials of the candidate set are zero;
then the candidate set is a Gröbner basis of hP i.

More formally, we have the following proposition.

Proposition 3.6.3 (Buchberger’s algorithm; based on [7, chapter 3.13] and [4,
chapter 3.7]). Let P = {p

1

, p
2

, . . . , p
k

} and let I = hP i. Let G
0

= P . Let

S
j

= {rem(S(p, q), G
j�1

) | p, q 2 G
j�1

and rem(S(p, q), G
j�1

) 6= 0} , and

G
j

= G
j�1

[ S
j

Let k = min {j | S
j

= ;}. Then k < 1, and G
k�1

is a Gröbner-basis of I.

Proof. Assume that S
j

6= ; for all j 2 N. Then

G
0

( G
1

( G
2

( . . . .

Take r 2 G
i+1

\G
i

for some i. Since

G
i+1

= G
i

[ S
i+1

,

this means r = rem(S(p, q), G
i

) for some p, q 2 G
i

. By the division algorithm,
this means lm (g) - lm (r) for all g 2 G

i

.
Assume that lm (r) 2 ` (G

i

). Then Lemma 3.4.1 implies lm (r) = m lm (g)
for some g 2 G

i

, so lm (g) | lm (r). This is a contradiction to lm (g) - lm (r) for
all g 2 G

i

.
Hence, lm (r) 62 ` (G

i

). But lm (r) 2 ` (G
i+1

) since r 2 G
i+1

. Hence

` (G
i

) ( ` (G
i+1

) .

This implies that (` (G
i

))1
i=1

is an ascending chain of ideals, so by Proposition
3.4.7 it satisfies the ascending chain condition. Hence, there is a k such that
G

k

= G
k�1

, which implies that S
k

= ;.
If S

k

= ;, then rem(S(p, q), G
k�1

) = 0 for all p, q 2 G
k�1

. By Proposition
3.6.2, this is equivalent to G

k�1

being a Gröbner basis of I.

Example 3.6.4. Let

p
1

= x2 + 1, and

p
2

= y2 + 1.

Let P = {p
1

, p
2

} ⇢ k[x, y]. Let < be the Lex-ordering with x > y. Since

S(p
1

, p
2

) = �x2 + y2

= �p
1

+ p
2

we have rem(S(p
1

, p
2

), P ) = 0. Thus, P is a Gröbner-basis of hP i. ⇧
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Example 3.6.5. Let

p
1

= x2 + 1, and

p
2

= x+ y2

Let P = {p
1

, p
2

} ⇢ k[x, y]. Let < be the Lex-ordering with x > y. The
S-polynomial of p

1

and p
2

is

S(p
1

, p
2

) = �xy2 + 1.

The division algorithm gives

S(p
1

, p
2

) = �y2p
2

+ (y4 + 1),

where neither y4 nor 1 is divisible by any element in

{lm (p
1

) , lm (p
2

)} =
�

x2, x
 

.

Thus, rem(S(p
1

, p
2

), P ) = y4 + 1. Hence, P is not a Gröbner-basis of P .
Let p

3

= y4 + 1 and let P 0 = P [ {p
3

}. Then S(p
1

, p
2

) = �y2p
2

+ p
3

. The
other S-polynomials are

S(p
1

, p
3

) = �x2 + y4, and

S(p
2

, p
3

) = �x+ y6

The division algorithm gives S(p
1

, p
3

) = p
3

�p
1

and S(p
2

, p
3

) = y2p
3

�p
2

. Thus,
rem(S(p

i

, p
3

), P 0) = 0 for i = 1, 2. Hence, P 0 is a Gröbner-basis for hP 0
i = hP i.

⇧

3.7 Strongly triangular form

Let I be an ideal such that its variety consists of finitely many elements. Then
any Gröbner basis of I will have a useful structure: the Gröbner basis has a so
called strongly triangular form, which allows us to find V (I) — from which the
set of steady states, i.e. VR(I), is immediately found by taking the intersection
of V (I) with R — by finding the roots of a sequence of univariate polynomials.

First, let us introduce the notion of a triangular form on a set of polynomials;
first informally, then followed by a precise definition. Let P ⇢ k[x

1

, x
2

, . . . , x
n

]
be a set. An arbitrary p 2 P might not depend on all variables; in other words,
it might be that not all variables x

1

, x
2

, . . . , x
n

appear in p.

Example 3.7.1. Let

P =
�

x
1

x
3

, x
2

x2

3

, x3

1

x
2

x2

3

 

⇢ k[x
1

, x
2

, x
3

].

In x
1

x
3

the variables x
1

and x
3

, but not x
2

, appear. In x
2

x2

3

the variables x
2

and x
3

, but not x
1

, appear. In x3

1

x
2

x2

3

all variables in k[x
1

, x
2

, x
3

] appear. ⇧

With this in mind, let us order the polynomials of P in the following order:

1. The polynomials in which x
1

appear.

2. The polynomials in which x
2

, but not x
1

, appear.
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3. The polynomials in which x
3

, but neither x
1

nor x
2

, appear.

...

i. The polynomials in which x
i

, but none of x
1

, x
2

, . . . , x
i�1

, appear.

...

n. The polynomials in which x
n

, but none of x
1

, x
2

, . . . , x
n�1

, appear.

n+1. The constant polynomials.

Within each group, the order does not matter.
An ordering of polynomials as above (not to be confused with a monomial

ordering) is called a triangular form on P . Let us make a precise definition.

Definition 3.7.2 ([11, Definition 4.2.1]). Let P ⇢ k[x]. Let �(j) = i
j

, j =
1, 2, . . . , n. Let

P
m

=
8

>

<

>

:

P \

�

k[x
im+1 , xim+2 , . . . , xin ]\k[xim+2 , . . . , xin ]

�

, m = 0, 1, . . . , n� 2

P \ (k[x
in ]\k) , m = n� 1

P \ k, m = n

.

Let < be an order on P such that for all m the following holds: if p
m

2 P
m

and
p
m+1

2 P
m+1

, then p
m

< p
m+1

. Then < is called a triangular form on P .

Remark We use < for both monomial orderings and for triangular forms.
We will be precise about in which sense < is used.

A triangular form is just a special partition of the set. Thus, there is a
triangular form on every set of polynomials. However, not every triangular
form is in strongly triangular form, which we now define.

Definition 3.7.3 (cf. [11, Definition 4.2.2]). Let P ⇢ k[x] be a set and let <
be a triangular form on P . Assume that P \ k = ; and such that, for some �,
it holds that for every i, there is a p

i

2 P
i

, where P
i

is defined as in Definition
3.7.2, with x↵i

i

2 supp (p
i

) for some ↵
i

2 R. Then we say that < is in strongly
triangular form.

Whether a triangular form on a set P is in strongly triangular form or not
depends only on P itself. We make the following convention.

Convention If there is a triangular form < on P , such that < is in strongly
triangular form, we will say that P is strongly triangular.

Not every set of polynomials admits a strongly triangular form. A trivial
counterexample is any set which includes a constant polynomial. An example of
a set which does not include any constant polynomials, but still does not admit
a strongly triangular form, is {x

1

x
2

, x
3

} ⇢ k[x
1

, x
2

, x
3

]; the set {x
1

x
2

, x
3

} \

(k[x
2

, x
3

]\k[x
3

]) is empty.
Note that, if a set P is strongly triangular, then, in particular, p

i

2 P
i

for
every i, where P

i

is as in Definition 3.7.2.
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3.8 An algorithm for finding the steady states

It turns out that among the sets P such that P is a Gröbner basis of hP i, the
sets which are strongly triangular are precisely the sets with |V (hP i)| < 1. For
the proof of this, we need some results from [7].

Proposition 3.8.1 ([7, chapter 3.6]). Let < be any monomial ordering. Then
B = mon (k[x]) \ ` (I) is a basis for the k-vector space k[x]/I.

Proof. Let I = {p
1

, p
2

, . . . , p
k

}. Let f 2 k[x]. Then f =
P

k

i=1

q
i

p
i

+ r, with
r =

P

↵2A

c
↵

m
↵

, where A = {↵ | m
↵

2 B}. This shows immediately that
span (B) = k[x]/I.

Assume that there exists B ⇢ A and
�

cB
↵

| ↵ 2 B
 

6= {0} such that
P

↵2B

cB
↵

m
↵

2 I. Then

m
�

= lm

 

X

↵2B

cB
↵

m
↵

!

2 ` (I)

for some � 2 B, which contradicts that m
↵

62 ` (I) for every ↵ 2 B. Thus, B is
linearly independent in k[x]/I.

Lemma 3.8.2 ([7, Corollary 5 in chapter 6.2]). If |V (I)| < 1, then C[x]/I is
finite-dimensional as a vector space over C.

Remark The converse holds as well. [7, Theorem 7]

Lemma 3.8.3 (one part of [7, Proposition 6 in chapter 6.2]). Let I ⇢ mon (k[x]).
If C[x]/I is finite-dimensional as a C-vector space then, for every i 2 {1, 2, . . . , n},
there is an m

i

2 N such that xmi
i

2 I.

Remark The converse holds as well; this is the second part of the cited propo-
sition.

Proposition 3.8.4. Let I ⇢ C[x] be an ideal. Let < be any Lex-ordering. Then
|V (I)| < 1 if and only if every Gröbner basis of I, with respect to <, is strongly
triangular.

Proof. Assume that every Gröbner basis of I, with respect to <, is strongly
triangular and let G be a Gröbner basis of I with respect to this ordering. The
proof of this implication is based on the algorithm described in [7, chapter 6.3]
(although, there, the argument is not phrased in terms of strongly triangular
forms). We can, without loss of generality, assume that x

1

> x
2

> . . . x
n

. Since
G is strongly triangular, there are polynomials {g

1

, g
2

, . . . , g
n

} ⇢ G such that

g
n

2 C[x
n

],

g
n�1

2 C[x
n�1

, x
n

]\C[x
n

],

g
n�2

2 C[x
n�2

, x
n�1

, x
n

]\C[x
n�1

, x
n

],

...

g
2

2 C[x
2

, x
3

, . . . , x
n�1

, x
n

]\C[x
3

, x
4

, . . . , x
n�1

, x
n

], and

g
1

2 C[x
1

, x
2

, x
3

, . . . , x
n�1

, x
n

]\C[x
2

, x
3

, x
4

, . . . , x
n�1

, x
n

].
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Since g
n

is a univariate polynomial, it has finitely many solutions. Let

C
n

= {↵
n

2 C | g
n

(↵
n

) = 0} ;

then |C
n

| < 1. Define recursively

C
i

=
n

(↵
i

,↵
i+1

, . . . ,↵
n

) 2 Cn�(i�1)

| (↵
i+1

,↵
i+2

, . . . ,↵
n

) 2 C
i+1

and

g
i

(↵
i

,↵
i+1

, . . . ,↵
n

) = 0}

for i = n� 1, n� 2, . . . , 2, 1. At the j:th step, we find the roots of

g
n�(j�1)

(x
n�(j�1)

,↵
n�(j�2)

,↵
n�(j�3)

, . . . ,↵
n

).

This is a univariate polynomial, so it has finitely many solutions. Since C
n

is
finite, this implies that C

n�1

is finite, which in turn implies that C
n�2

is finite,
and so on; hence, each C

i

is finite. In particular, C
1

is finite. It is clear, from
the way it was constructed, that C

1

= V (I). Thus, |V (I)| < 1.
Assume that |V (I)| < 1 and let G be a Gröbner basis of I with respect

to <. For the proof of this implication, the author has followed the reasoning
in [7, p. 83–84]. Lemma 3.8.2 implies that C[x]/I is finite-dimensional as a
C-vector space. Proposition 3.8.1 implies that the C-vector spaces C[x]/I and
C[x]/ ` (I) have the same dimension. Since ` (I) is a monomial ideal, Lemma
3.8.3 implies that for every i there is an m

i

2 N such that xmi
i

2 ` (I). Again,
we can, without loss of generality since we can always re-index the variables,
assume that

x
1

> x
2

> · · · > x
n

.

There is an m
n

2 N such that xmn
n

2 ` (I). Since G is a Gröbner basis of I, we
have ` (I) = h{lm (g) | g 2 G}i. It follows from Lemma 3.4.1 that

xmn
n

= lm (g
n

)M
n

for some monomial M
n

and some g
n

2 G. This implies that lm (g
n

) = xm̃n
n

and
M

n

= xkn
n

for some m̃
n

, k
n

2 N (such that m
n

= m̃
n

+ k
n

). Since x
n

is the
smallest variable, we must have that g

n

2 C[x
n

].
There is also an m

n�1

2 N such that xmn�1

n�1

2 ` (I). By the same reasoning,

there is a g
n�1

2 G such that lm (g
n�1

) = x
m̃n�1

n�1

for some m̃
n�1

2 N. Since
x
n�1

is the next to smallest variable, this can hold only if g
n�1

2 C[x
n�1

, x
n

].

Also note that g
n�1

62 C[x
n

], since xm̃n�1

n�1

is a term of g
n�1

. Repeating the same
argument (n� 2) more times, we find

g
i

2 G \ (C[x
i

, x
i+1

, . . . , x
n

]\C[x
i+1

, x
i+2

, . . . , x
n

])

for i = 3, 4, . . . , n as well. Thus, we have shown that G is strongly triangular.

Let ẋ
i

= p
i

(x), i = 1, 2, . . . , n, be a polynomial dynamical system. Let
P = {p

1

, p
2

, . . . , p
n

}. If |V (hP i)| < 1, then the proof of Proposition 3.8.4 gives
an algorithm for finding the steady states of the system: since V (hP i) = C

1

and
the set of steady states of the system is equal to VR(hP i) = V (hP i)\Rn, the set
of steady states is equal to C

1

\ Rn (where C
1

is defined as in the proof). For
convenience, let us record the algorithm in a corollary to Proposition 3.8.4. For
convenience of notation, let ”the proposition” be short for ”Proposition 3.8.4”
in the formulation of the corollary.
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Corollary 3.8.5. Let ẋ
i

= p
i

(x), i = 1, 2, . . . , n be a polynomial dynamical
system such that |V (hp

1

, p
2

, . . . , p
n

i)| < 1.

1. Compute a Gröbner basis G of hp
1

, p
2

, . . . , p
n

i. By the proposition, G has
strongly triangular form.

2. Let g
n

2 G\(C[x
n

]); such a g
n

exists, by the proposition. Solve g
n

(x) = 0.
Let C

n

be the set of roots of g
n

.

3. Let g
n�1

2 G\(C[x
n�1

, x
n

]\C[x
n

]); such a g
n�1

exists, by the proposition.
For each ↵

n

2 C
n

, solve g(x
n�1

,↵
n

) = 0. Let C
n�1

be the set of roots
(↵

n�1

,↵
n

) of g
n�1

such that ↵
n

2 C
n

.

4. Let g
n�2

2 G\ (C[x
n�2

, x
n�1

, x
n

]\C[x
n�1

, x
n

]); such a g
n�2

exists, by the
proposition. For each (↵

n�1

,↵
n

) 2 C
n�1

, solve g
n�2

(x
n�2

,↵
n�1

,↵
n

) = 0,
Let C

n�2

be the set of roots (↵
n�2

,↵
n�1

,↵
n

) of g
n�2

such that (↵
n�1

,↵
n

) 2
C

n�1

.

...

n. Let g
1

2 G \ (C[x
1

, x
2

, . . . , x
n

]\C[x
2

, x
3

, . . . , x
n

]); such a g
1

exists, by the
proposition. For each (↵

2

,↵
3

, . . . ,↵
n

) 2 C
2

, solve g
1

(x
1

,↵
2

,↵
3

, . . . ,↵
n

) =
0. Let C

1

be the set of roots (↵
1

,↵
2

, . . . ,↵
n

) of g
1

such that (↵
2

,↵
3

, . . . ,↵
n

)
2 C

2

.

Then the set of steady states is equal to C
1

\ Rn.

Example 3.8.6. Consider the system ẋ
i

= p
i

(x), i = 1, 2, 3, where

p
1

= x2

1

x3

2

x
3

� x
1

(x
2

x2

3

+ x2

2

x
3

) + x
2

x3

3

,

p
2

= x2

2

x4

3

+ 2x
2

x2

3

+ x6

3

� 4, and

p
3

= x
2

x2

3

� 1.

The set G = {g
1

, g
2

, g
3

}, with

g
1

= x2

1

� x
1

x5

3

� x
1

x2

3

+ 1,

g
2

= x
2

� x4

3

, and

g
3

= x6

3

� 1,

is a Gröbner basis, with respect to the Lex-ordering with x
1

> x
2

> x
3

, for the
ideal hp

1

, p
2

, p
3

i. Note that

g
3

2 R[x
3

],

g
2

2 R[x
2

, x
3

]\R[x
3

], and

g
1

2 R[x
1

, x
2

, x
3

]\R[x
2

, x
3

].

Thus, G is strongly triangular.
The real solutions of x6

3

� 1 = 0 are x
3

= ±1. In either case, we get
g
2

= x
2

� 1, which has the solution x
2

= 1. If x
3

= 1, then g
1

= x2

1

� 2x
1

+1 =
(x

1

� 1)2, so x
1

= 1. If x
3

= �1, then g
1

= x2

1

+ 1, which has no real solution.
Thus, the only steady state of the system is (1, 1, 1). ⇧
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4 Reduction of the number of parameters of a

system

Let Ẋ = P (X) = (p
1

(X), . . . , p
n

(X)) be a polynomial dynamical system (we
use X now so that we can use x later). Let P = {p

1

, p
2

, . . . , p
n

}. Then p
i

=
P

m↵2supp(P )

c
i,↵

m
↵

for some c
i,↵

2 R. Sometimes some or all of the c
i,↵

are
considered as, or depends on, parameters; e.g. the k

i

and k�i

in (7.3). We
now present a way to possibly reduce the number of parameters in the system.
Let ⌧ = �t, where � 2 R, and let x

i

(⌧) = ⇠
i

X
i

(⌧/�), where ⇠
i

2 R, for
i = 1, 2, . . . , n. Then

dx
i

d⌧
=

X

m↵2supp(P )

⇠
i

c
i,↵

�⇠mdeg(m↵)

m
↵

, (4.1)

where ⇠mdeg(m↵) = (⇠↵1
1

, ⇠↵2
2

, . . . , ⇠↵n
n

) with mdeg (m
↵

) = (↵
1

,↵
2

, . . . ,↵
n

). Equa-
tion (4.1) suggests a natural way to get rid of a parameter c

i,↵

: choose ⇠ =
(⇠

1

, ⇠
2

, . . . , ⇠
n

) so that
⇠
i

c
i,↵

�⇠mdeg(m↵)

= 1.

If c
i,↵

= 0, this equation has no solution. LetA
i

= {↵ | m
↵

2 supp (P ) , c
i,↵

6= 0}.
We are led to the system of equations

�⇠mdeg(m↵)

� c
i,↵

⇠
i

= 0, ↵ 2 A
i

, i = 1, 2, . . . , n. (4.2)

Note that ⇠mdeg(m↵)

� c
i,↵

⇠
i

2 k[�, ⇠
1

, ⇠
2

, . . . , ⇠
n

]; hence, (4.2) is a system of
polynomial equations. Let

S =
n

�⇠mdeg(m↵)

� c
i,↵

⇠
i

| m
↵

2 supp (P ) , i = 1, 2, . . . , n
o

,

and let I = hSi. Thus, our problem of finding scaling factors � and ⇠
i

so that
parameters are eliminated is equivalent to determining VR(I). If VR(I) 6= ;,
then we can eliminate all parameters by choosing (�, ⇠

1

, ⇠
2

, . . . , ⇠
n

) 2 VR(I) as
scaling factors. If VR(I) = ; we can remove one of the equations of (4.2),

�⇠mdeg(m↵1)
� c

1,↵1⇠1 = 0 say, and then determine

VR
⇣D

S\
n

�⇠mdeg(m↵1)
� c

1,↵1⇠1

oE⌘

.

If this is still empty, remove another equation and try again, et cetera. Assume
that after j + 1 steps, the variety obtained is non-empty. Then at least j of
the coe�cients of the monomials in the support of the remaining polynomials
are 1. Rename the remaining coe�cients ↵

1

,↵
2

, . . . ,↵
j

. Then the parameters
of the system are ↵

1

,↵
2

, . . . ,↵
j

, i.e. the number of parameters is j. If j is
smaller than the number of parameters we started with, we have reduced the
number of parameters. Thus, it is not guaranteed that the algorithm will reduce
the number of parameters. However, it works in some cases, as the following
example demonstrates.

Example 4.0.1. Consider the reduced system in Example 2.1.1, i.e.
⇢

Ṡ = ��aS + �SC + µC

Ċ = �aS � �SC � (µ+ )C
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Let X
1

= S and X
2

= C and let x
i

, ⇠
i

, ⌧ and � be defined as above. This gives
8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

p
1

(⇠
1

, ⇠
2

,�) = � + �a = 0
p
2

(⇠
1

, ⇠
2

,�) = �⇠
1

� + � = 0
p
3

(⇠
1

, ⇠
2

,�) = µ⇠
1

� ⇠
2

� = 0
p
4

(⇠
1

, ⇠
2

,�) = �⇠
1

� + �a⇠
2

= 0
p
5

(⇠
1

, ⇠
2

,�) = �⇠
1

� � � = 0
p
6

(⇠
1

, ⇠
2

,�) = � + µ+  = 0

It turns out that
hp

1

, p
2

, . . . , p
6

i = R[⇠
1

, ⇠
2

,�]

and
h{p

i

| 1  i  6 and i 6= j}i = R[⇠
1

, ⇠
2

,�]

for all j 2 {1, 2, . . . , 6}. But

J = hp
1

, p
2

, p
4

, p
5

i

has the Gröbner basis (with respect to the monomial ordering ⇠
1

> ⇠
2

> �

{� + a�, a⇠
2

+ 1, a⇠
1

+ 1} ,

which does not generate the whole ring R[⇠
1

, ⇠
2

,�]. Thus, V (J) 6= ;. Since
the Gröbner basis has a strongly triangular form, the variety is ifinite. It is
easily found, since each polynomial in the Gröbner basis is already univariate
and linear: we see that V (J) =

��

�a�1,�a�1,�a�
� 

(where the coordinates
are in the order (⇠

1

, ⇠
2

,�). Let s = x
1

and c = x
2

. Let

↵
1

=
µ

�a�
, ↵

2

=
µ+ 

�a�
.

Then
8

>

<

>

:

ds

d⌧
= s� sc+ ↵

1

c

dc

d⌧
= �s� sc� ↵

2

c

.

Thus, we have reduced the number of parameters from four (,�, µ and a) to
two: ↵

1

and ↵
2

. ⇧

5 Computing the number of steady states

5.1 The trace formula

Consider the system ẋ
i

= p
i

(x), i = 1, 2, . . . , n, where p
i

2 R[x]. Let I =
hp

1

, p
2

, . . . , p
n

i. As we have seen before, the set of steady states is given by
VR(I).

Assume that |VR(I)| < 1. It turns out that we can determine the exact
number of steady states without actually finding them. This follows from a
result in [12], which we will present in this section.

While [12] proves that the result holds for polynomials over any subfield of a
so called real closed field, we will — to avoid having to introduce the notion of a
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real closed field — assume that the polynomials are over R (which is a subfield
of itself, and R is a real closed field).

Convention Let V be an inner product space. Then hx, yi will denote the
inner product of x and y, for x, y 2 V .

Remark This notation clashes with our notation for an ideal generated by two
elements (i.e. h·, ·i). However, in each particular case, the intended meaning
should be clear from context.

Now we define bilinear forms on real inner product spaces.

Definition 5.1.1. Let V be a real inner product space over a field k. Let
B : V ⇥ V ! k be a map which satisfies

B(↵
1

v
1

+ ↵
2

v
2

, �
1

w
1

+ �
2

w
2

) =
2

X

i=1

2

X

j=1

↵
i

�
j

B(v
i

, w
j

);

i.e. it is linear in both arguments. Then we say that B is a bilinear form on V .
If B(v, w) = B(w, v), we say that B is a symmetric bilinear form.

It turns out that, in finite-dimensional inner product spaces, all bilinear
forms are of a certain form.

Proposition 5.1.2 ([8, Theorem 8.1]). Let B be a bilinear form on a finite-
dimensional inner product space V . Then there is a unique linear transformation
T : V ! V such that B(v, w) = hTv,wi for all v, w 2 V .

Definition 5.1.3. Let B be a bilinear form in V and let B be a basis of V . The
unique linear transformation T

B

such that B(v, w) = hT
B

v, wi for all v, w 2 V
will be called the linear transformation associated to B.

It follows from Proposition 5.1.2 that, once a basis of V has been chosen, a
bilinear form can be represented by a matrix.

Convention In this section, we use [v]B to denote the coordinate vector of
v 2 V in basis B, and [T ]B to denote the matrix of the linear transformation
T : V ! V in basis B.

Corollary 5.1.4. Let B be a bilinear form on, and B a basis of, V . Then
B(x, y) = [x]TB [T

B

]B
T [y]B for all x, y 2 V . If B is symmetric, then so is [T

B

]B.
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Proof. Let B = {v
1

, v
2

, . . . , v
n

}. Let x =
P

n

i=1

c
i

v
i

and y =
P

n

i=1

d
i

v
i

. Then

B(x, y)

= h

n

X

i=1

c
i

T
B

v
i

,

n

X

i=1

d
i

v
i

i

=
n

X

i=1

n

X

j=1

c
i

d
j

hT
B

v
i

, v
j

i

=
�

c
1

c
2

. . . c
n

�

0

B

B

B

@

hT
B

v
1

, v
1

i hT
B

v
2

, v
1

i . . . hT
B

v
n

, v
1

i

hT
B

v
1

, v
2

i hT
B

v
2

, v
2

i . . . hT
B

v
n

, v
2

i

...
...

. . .
...

hT
B

v
1

, v
n

i hT
B

v
2

, v
n

i . . . hT
B

v
n

, v
n

i

1

C

C

C

A

0

B

B

B

@

d
1

d
2

...
d
n

1

C

C

C

A

.

Let
T̃ = (hT

B

v
i

, v
j

i) 1in
1jn

and let T = [T
B

]B. Note that [v
i

]B is a column vector with 1 in the i:th row
and 0 in all other rows. Thus,

hT
B

v
i

, v
j

i = [v
i

]TB [T
B

]B
T [v

j

]B = t
ji

,

where t
ji

denotes the element in the j:th row and the i:th column of T . Thus,
T̃ = TT , i.e.

(hT
B

v
i

, v
j

i) 1in
1jn

= [T
B

]B
T

.

Since

[x]B =
�

c
1

c
2

. . . c
n

�

T

and

[y]B =
�

d
1

d
2

. . . d
n

�

T

,

this gives B(x, y) = [x]TB [T
B

]B
T [y]B.

Note thatB(v
i

, v
j

) = hTv
i

, v
j

i. IfB is symmetric, then hTv
j

, v
i

i = B(v
j

, v
i

) =
B(v

i

, v
j

) = hTv
i

, v
j

i, so T̃ is symmetric; hence, [T
B

]B is symmetric.

Definition 5.1.5. The matrix ([T
B

]B)
T in Corollary 5.1.4 will be called the

matrix representation of B in basis B.

Note that

B(x, y) =
�

[x]B1

�

T

�

[T
B

]B1

�

T

[y]B1
=
�

[x]B2

�

T

PT

�

[T
B

]B1

�

T

P [y]B2
.

Thus,
�

[B]B2

�

T

= PT [B]B1
P . [8, chapter 8.2.1]

We recall the following notion from elementary linear algebra.

Definition 5.1.6. A matrix A is orthonormal if and only if ATA is the identity
matrix.

Note that a matrix A is orthonormal if and only if A�1 = AT . We also
recall, without proof, the following property of real and symmetric matrices.
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Lemma 5.1.7. Let A be a real and symmetric matrix. Then there exists an
orthonormal matrix U such that U�1AU is a diagonal matrix (in particular,
then, A is diagonalizble).

Part (i) of the following proposition is called Sylvester’s law of inertia.

Proposition 5.1.8 ([8, Theorem 8.10]). Let B be a symmetric bilinear form
on a real inner product space V . Then

(i) there is a unique (up to reordering) basis B of V such that

B(x, y) = [x]TB D [y]B ,

where D is a diagonal matrix in which all diagonal elements belong to the
set {�1, 1, 0}, and

(ii) the number of 1:s on the diagonal of D equals the number of positive eigen-
values (counted with algebraic multiplicity) and the number of �1:s the
number of negative eigenvalues (counted with algebraic multiplicity) of B.

Proof. [T
B

]B is symmetric and real, so by Lemma 5.1.7, it is diagonalizable.
Moreover, such a diagonalization is unique (up to reordering of the diagonal
elements, which corresponds to reordering of the basis vectors). Thus, there is an
orthonormal matrix U (i.e. UTU = I, so U�1 = UT ) such that UT [T

B

]BU = D
1

for some diagonal matrix D
1

, with the diagonal elements �
1

,�
2

, . . . ,�
n

being
eigenvalues of [T

B

]B. Since we can reorder the diagonal elements of D
1

by
reordering the basis vectors, we can without loss of generality assume that

�
i

8

>

<

>

:

> 0, if 1  i  k

< 0, if k + 1  i  m

= 0, if m+ 1  i  n

.

Let B

0 be the basis with [x]B = U [x]B0 . Let W be the diagonal matrix with

diagonal elements |�
1

|

�1/2

, |�
2

|

�1/2

, . . . , |�
n

|

�1/2. Let B

00 be the basis with
[x]B0 = W [x]B00 . Then

B(x, y) = [x]TB [T
B

]B [y]B

= [x]TB0 U
T [T

B

]BU [y]B0

= [x]TB0 D
1

[y]B0

= [x]TB00 WD
1

W [y]B0

where we have used that [T
B

]B and W are symmetric. Note that WD
1

W is a
diagonal matrix D with

d
ii

=

8

>

<

>

:

1, if 1  i  k

�1, if k + 1  i  m

0, if m+ 1  i  n

.
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Recall the following notion from elementary linear algebra: two square ma-
trices B and A, of the same size, are called similar if there is an invertible matrix
P such that B = P�1AP . Note that the matrix D in Proposition 5.1.8 is not
neccesarily similar to [T

B

]B: we only know that D = (WU)T [T
B

]B(WU), and
since WU is not neccessarily orthonormal it does not follow that D and [T

B

]B
are similar.

Definition 5.1.9. Let B be a symmetric bilinear form. Let D
B

be the diagonal
matrix in Proposition 5.1.8. Let n

+

be the number of 1:s, and n� the number
of �1:s, on the diagonal of D

B

. The signature of B is defined

sign (B) = n
+

� n�

Equivalently, by Proposition 5.1.8,

sign (B) =
X

�>0

a.m. (�,�)�
X

�<0

a.m. (�,�)

where � is the characteristic polynomial of [T
B

]B and a.m. (�,�) is the multi-
plicity of � as a root of �.

Remark The multiplicity of � as a root of � is called the algebraic multiplicity
of � as an eigenvalue of [T

B

]B; hence, the notation a.m. (·, ·).

Definition 5.1.10. Let V be a real inner product space over a field k. We say
that Q : V ⇥ V ! k is a quadratic form, if there is a symmetric bilinear form
B on V such that Q(v) = B(v, v) for all v 2 V .

The quadratic form mentioned in the beginning of this section is the trace
of a certain linear transformation. We introduce the quadratic form in three
steps.

Definition 5.1.11. Let I ⇢ k[x] be an ideal. Let

T
p

: k[x]/I ! k[x]/I
f + I 7! pf + I

.

Then T
p

is called the linear transformation induced by multiplication with p.

Definition 5.1.12. Let T
p

be the linear transformation induced by multiplica-
tion with p. Let q 2 k[x]. Let

B
q

: k[x]/I ⇥ k[x]/I ! k
(p

1

, p
2

) 7! tr (T
qp1p2)

.

Then B
q

is called the bilinear form induced by q.

Definition 5.1.13. The quadratic form Q
q

(p) = B
q

(p, p) is called the quadratic
form induced by q.

For proofs that T
p

is a linear transformation and B
q

is a symmetric linear
form, see Appendix A.

Now we can formulate the result from [12].
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Proposition 5.1.14 (cf. [12, Theorem 2.1]). Let q 2 R [x]. Let I be an ideal
such that V (I) is finite. Let Q

q

be the quadratic form on R [x] /I induced by q.

Let V q,R

k

(I) = {x 2 V
k

(I) | q(x) R 0}, where k 2 {R,C} and R 2 {>,<, 6=}.
Then

sign (Q
q

) =
�

�V q,>

R (I)
�

�

�

�

�V q,<

R (I)
�

� , and

rank (Q
q

) =
�

�

�

V q, 6=
C (I)

�

�

�

Corollary 5.1.15.

|VR(I)| = sign (Q
1

)

Proof. This follows from V 1,<

R (I) = ; and V 1,>

R (I) = VR(I).

To use Proposition 5.1.14, we need a basis of R[x]/I. Fortunately, such
a basis can be found using Gröbner bases, by Proposition 3.8.1 (recall that
` (I) = h{lm (g) | g 2 G}i if G is a Gröbner basis of I). From that proposition,
the following follows.

Corollary 5.1.16. Let ẋ
i

= p
i

(x) and let P = {p
1

, p
2

, . . . , p
n

}. Fix an enu-
meration µ of P and a monomial ordering <. Let C

<,µ

be the correspond-
ing matrix form. Assume that C

<,µ

has full rank. Let j
k

= min {i | c
ki

6= 0}
for k = 1, 2, . . . , n. Then mon (k[x]) \ {m

jk | k 2 {1, 2, . . . , n}} is a basis for
k[x]/hP i.

Proof. Note that lm (p
k

) = m
jk , by construction. The conclusion now follows

immediately from Proposition 3.8.1.

Definition 5.1.17. Let c = (c
1

, c
2

, . . . , c
n

) 2 Rn. Then

s. c. (c) = |{j 2 N | c
j

c
j+1

< 0}|

is the number of sign changes in this n-tuple.
Let f =

P

n

i=0

c
i

ti, with c
i

2 R. Then c
f

= (c
0

, c
1

, . . . , c
n

) is called the
sequence of coe�cients of f .

For convenience, we define s. c. (f) = s. c. (c
f

).

Definition 5.1.18. Let f 2 k[t] be a univariate polynomial, such that all its
roots are real. The number of positive roots of f (counted with multiplicity) is
denoted n. r. (f,+). The number of negative roots of f (counted with multiplicity)
is denoted n. r. (f,�).

It turns out that, if all roots of a polynomial are real, we can compute the
number of positive roots by counting the number of sign changes in the sequence
of coe�cients of f . To prove this, we will use the following lemma.

Lemma 5.1.19. Let f 2 k[t] be a univariate polynomial, such that all its roots
are real and have multiplicity one. Then f 0 has precisely one root between each
pair of consecutive roots of f , and f has precisely one root between each consec-
utive pair of roots of f 0.

Proof. Let deg (f) = n. Let a and b be consecutive roots of f , i.e. f(x) 6= 0
on a < x < b. From the mean value theorem, it follows that there is a ⇠ such
that a < ⇠ < b and f 0(⇠) = 0. Thus, between any pair of consecutive roots of
f , there is at least one root of f 0. Since f has n roots, the number of roots of
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f 0 accounted for in this way is n� 1. But f 0 is a polynomial of degree n� 1, so
this accounts for all its roots. Thus, we must have the alternating pattern

t
1

, t̃
1

, t
2

, t̃
2

, t
3

, . . . , t
n�1

, t̃
n

, t
n

,

where the t
i

are the roots of f and t̃
i

the roots of f 0. This proves the statements
in the lemma.

Proposition 5.1.20. Let f 2 k[t] be a univariate polynomial such that all its
roots are real. Then n. r. (f,+) = s. c. (f).

Proof. Let f(t) =
P

n

i=0

c
i

ti. If c
0

= 0, then f(0) = 0, so f(t) = tmg(t) for some
polynomial g. We can choose m so that g(t) is not divisible by any power of
t, which is equivalent to g(0) 6= 0. Since 0 is not positive, the positive roots of
f and g are the same. Thus, we can, without loss of generality, assume that
f(0) 6= 0, i.e. c

0

= 0.
First, assume that all roots of f has multiplicity one. Note that f(0) = c

0

and f 0(0) = c
1

. Either c
0

c
1

> 0 or c
0

c
1

< 0.
If c

0

c
1

> 0, then f(0) and f 0(0) have the same sign. Assume that f(0) and
f 0(0) are positive. Let t

1

be the first positive root of f , i.e. f(t
1

) = 0 and
f(t) 6= 0 on 0  t

1

. Since f is positive and increasing at t = 0, but f is zero
at t

1

, there must be t̃ such that f 0(t̃) < 0, so there must be a t̃
1

such that
f 0(t̃

1

) = 0 for some t̃
1

such that 0 < t̃
1

< t
1

. Assume that n. r. (f,+) is n
+

. By
Lemma 5.1.19, each pair of consecutive roots of f contributes one root of f 0;
thus, this contributes n

+

� 1 roots of f 0. Since there is one positive root of f 0

before the first positive root of f , we have n. r. (f,+) = n. r. (f 0,+). The case
f(0), f 0(0) < 0 follows from symmetry.

If c
0

c
1

< 0, then f(0) and f 0(0) have opposite signs. Assume that f(0) > 0
and f 0(0) < 0. Since f is positive and decreasing at t = 0, Lemma 5.1.19 implies
that there must be a t�1

and t̃�1

such that t�1

is a root of f and t̃�1

a root of
f 0, with

• t�1

< t̃�1

,

• no root of f in the interval t
1

< t < 0, and

• no root of f 0 in the interval t̃
1

< t < 0.

By Lemma 5.1.19, there is a t
1

> 0 such that neither f nor f 0 has any root in
the interval 0 < t < t

1

(informally: the first positive root of f ”comes before”
the first positive root of f 0). It follows Lemma 5.1.19 that

n. r. (f,+) = n. r. (f 0,+) + 1.

The case f(0) < 0 and f 0(0) > 0 follows from symmetry.
Note that f 0(t) =

P

n

k=1

kc
k

tk�1. We have c
f

= (c
0

, c
1

, c
2

, . . . , c
n

) and c
f

0 =
(c

1

, 2c
2

, 3c
3

, . . . , nc
n

). If c
0

c
1

> 0, then

s. c. (f) = s. c. (f 0) .

If c
0

c
1

< 0, then
s. c. (f) = s. c. (f 0) + 1.
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Now we can prove the statement by induction over the degree of f . If

f(t) = t� ↵,

then c
f

= (�↵, 1).
If ↵ > 0, then n. r. (f,+) = 1, and s. c. (f) = 1. If ↵ < 0, then n. r. (f,+) = 0,

and s. c. (f) = 0. Thus, the statement holds for polynomials of degree 1.
Assume that the statement holds for polynomials of degree k. Let deg (f) =

k + 1. Then deg (f 0) = k, so

n. r. (f 0,+) = s. c. (f 0) ,

by the induction hypothesis. If c
0

c
1

> 0, then

n. r. (f,+) = n. r. (f 0,+)

s. c. (f) = s. c. (f 0) ;

hence,
n. r. (f,+) = s. c. (f) .

If c
0

c
1

< 0, then

n. r. (f,+) = n. r. (f 0,+) + 1

s. c. (f) = s. c. (f 0) + 1;

hence,
n. r. (f,+) = s. c. (f) .

It remains to show the statement for f in which not all roots have multiplicity
one. Let t̂ be a root of f which has multiplicity m > 1. Then t̂ is a root of f 0

of multiplicity m � 1. Hence, a root of f of multiplicity m contributes m � 1
roots n. r. (f 0,+) (since we count with multiplicity). Thus, the statement holds
for this case as well.

Remark The proposition is a stronger version of the result known as ”Descartes’
rule of signs”. For polynomials which has complex roots, we can only say
n. r. (f,+) ⌘

2

s. c. (f).

Corollary 5.1.21. Let f 2 k[t] be a univariate polynomial such that all its
roots are real. Let (f�)(t) = f(�t). Then n. r. (f,�) = s. c. (f�).

Recall that the characteristic polynomial �
A

of a matrix A is defined �
A

(t) =
det (�I �A).

Corollary 5.1.22. Let T : V ! V be a linear transformation, such that all
eigenvalues of T are real. Let �

T

(t) be the characteristic polynomial of T . Then
the number of positive eigenvalues of T is equal to s. c. (�

T

) and the number of
negative eigenvalues of T is equal to s. c. ((�

T

)�).

Example 5.1.23. We continue Example 3.8.6. Since {g
1

, g
2

, g
3

} is a Gröbner
basis of I, we have ` (I) = hx2

1

, x
2

, x6

3

i. Thus,

B =
�

1, x
3

, x2

3

, x3

3

, x4

3

, x5

3

, x
1

, x
1

x
3

, x
1

x2

3

, x
1

x3

3

, x
1

x4

3

, x
1

x5

3
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(where each term actually denotes its equivalence class in R[x
1

, x
2

, x
3

]/I) is

a basis for R[x
1

, x
2

, x
3

]/I. We need to compute tr
⇣

T
x

i
1x

j
3

⌘

for i = 0, 1 and

j = 0, 1, 2, 3, 4, 5. Since T
x

i
1x

j
3
= T i

x1
� T j

x3
, it is su�cient to compute T

x1 and

T
x3 . We get

[T
x3 ]B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and

[T
x1 ]B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 �1 0 0 0 0 0
0 0 0 0 0 0 0 �1 0 0 0 0
0 0 0 0 0 0 0 0 �1 0 0 0
0 0 0 0 0 0 0 0 0 �1 0 0
0 0 0 0 0 0 0 0 0 0 �1 0
0 0 0 0 0 0 0 0 0 0 0 �1
1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0 1
0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 1 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

After some computation, we get

[Q
1

]B =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

12 0 0 0 0 0 0 6 0 0 6 0
0 0 0 0 0 12 6 0 0 6 0 0
0 0 0 0 12 0 0 0 6 0 0 6
0 0 0 12 0 0 0 6 0 0 6 0
0 0 12 0 0 0 6 0 0 6 0 0
0 12 0 0 0 0 0 0 6 0 0 6
0 6 0 0 6 0 �12 0 12 0 0 12
6 0 0 6 0 0 0 12 0 0 12 �12
0 0 6 0 0 6 12 0 0 12 �12 0
0 6 0 0 6 0 0 0 12 �12 0 12
6 0 0 6 0 0 0 12 �12 0 12 0
0 0 6 0 0 6 12 �12 0 12 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.
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The characteristic polynomial of Q
1

is

�
Q1(t) = t12 � 24t11 � 1872t10 + 44928t9 + 746496t8 � 17915904t7

� 119439360t6 + 2866544640t5 + 8169652224t4 � 196071653376t3

� 185752092672t2 + 4458050224128t.

Let (�
Q1)

�(t) = �
Q1(�t). The number of sign changes in the sequence of

coe�cients of �
Q1 is 6, while the number of sign changes in (�

Q1)
� is 5. Thus,

the signature of Q
1

is 1, so the system has one steady state. This is in agreement
with Example 3.8.6. ⇧

5.2 Proof of the trace formula

The proof will follow the structure of the proof given in [12, p. 209–210]. The
idea of the proof is to decompose the ring C[x]/I, which is also a vector space
over C, and show that each component is invariant under the transformation
induced by p, where p 2 R[x] is arbitrary. This is then used to give an explicit
formula for B

p

, from which the statement will follow.
For the decomposition part of the proof, we will show how it follows from

the theory of so called Artinian rings. The authors of [12] in their article remark
that this can be done, but they show the decomposition in a di↵erent way.

5.2.1 Decomposition

Our first goal is to prove the following lemma.

Lemma 5.2.1 ([12, chapter 2]). Let V (I) = {↵
i

| 1  i  k}. Then

C[x]/IC[x] ⇠=
k

Y

i=1

(C[x]/IC[x])
m↵i/IC[x]

.

The notation will be explained as we go along. First, let us introduce the
notion of an Artinian ring.

Definition 5.2.2 ([1, chapter 6]). A chain of ideals (I
j

)1
j=1

such that I
j

( I
j+1

for all j is called a descending chain of ideals. If there is a k 2 N such that
I
k+i

= I
k

for all i 2 N, we say that the chain satisfies the descending chain
condition.

Let R be a ring such that every descending chain of ideals (I
j

)1
j=1

satisfies
the descending chain condition. Then we say that R is Artinian.

Proposition 5.2.3 (cf. [1, exercise 3 in chapter 8]). Let R be a ring which is
also a finite-dimensional vector space over a field k. Then R is Artinian.

Proof. Let (I
j

)n
j=1

be a decreasing chain of ideals. Each ideal is closed under
addition, so each ideal is also a k-subspace of R. Moreover, I

j+1

is a k-subspace
of I

j

. Let dim
k

R = n. Then dim
k

I
1

< n. We also have dim
k

I
j+1

< dim
k

I
j

.
Assume I

j

( I
j+1

. Then (dim
k

I
j

)1
j=1

is a strictly decreasing sequence of posi-
tive numbers. But dim

k

I
j

� 0 for every j, so this is impossible. Hence, there
is an m such that I

m+i

= I
m

for all i � 0. Hence, R is Artinian.
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Let I be an ideal of R[x]. Let {p
1

, p
2

, . . . , p
k

} be a set of generators of I.

This means I =
n

P

k

i=1

q
i

p
i

| q
i

2 R[x]
o

. Since R[x] ⇢ C[x], this ideal induces

an ideal IC =
n

P

k

i=1

q
i

p
i

| q
i

2 C[x]
o

of C[x].

Definition 5.2.4 (cf. [12, chapter 2]). Let k ⇢ K be fields. Let I = hp
1

, p
2

, . . . , p
k

i

be an ideal of k[x]. The ideal IK =
n

P

k

i=1

q
i

p
i

| q
i

2 K[x]
o

will be called the

ideal of K[x] induced by I.

We have the following corollary of Proposition 5.2.3

Corollary 5.2.5. Let I ⇢ R[x] be an ideal such that V (I) is finite. Then
C[x]/IC[x] is Artinian.

Proof. I ⇢ R[x] ⇢ C[x], so IC[x] is an ideal of C[x]. V (I) = V (IC) is fi-
nite, so Lemma 3.8.2 implies that that C[x]/IC[x] is finite-dimensional. By the
proposition, this implies that C[x]/IC[x] is Artinian.

Recall the following notion from elementary abstract algebra.

Definition 5.2.6 ([1, chapter 1]). Let R be a ring with an ideal I. Assume that
there is no ideal J ⇢ R such that I ( J ( R. Then we say that I is a maximal
ideal.

It turns out that Artinian rings have finitely many maximal ideals.

Proposition 5.2.7 ([1, Proposition 8.3]). Let A be an Artinian ring. Then A
has finitely many maximal ideals.

Definition 5.2.8. Let ↵ = (↵
1

,↵
2

, . . . ,↵
n

) 2 Cn. Then

m
↵

= h{x
i

� ↵
i

| 1  i  n}i ⇢ C[x]

is the maximal ideal in C[x] corresponding to ↵.

For algebraically closed fields k, the maximal ideals of k[x] have a certain
form.

Proposition 5.2.9 ([14, Corollary 5.2]). Let k be an algebraically closed field.
Then m is a maximal ideal of k[x] if and only if m = h{x

i

� ↵
i

| 1  i  n}i for
some ↵ 2 kn.

The following proposition gives the maximal ideals of C[x]/IC[x].

Proposition 5.2.10. Let V (IC[x]) = V (I) = {↵
1

,↵
2

, . . . ,↵
k

}. Then

m
↵i/IC[x], i = 1, 2, . . . , k

are the only maximal ideals in C[x]/IC[x].

Proof. Let M � IC[x] be a maximal ideal of C[x]/IC[x]. Recall from ele-
mentary abstract algbra that for rings R with ideals I, there is a one-to-one-
correspondence between ideals of R/I and ideals J of R such that I ⇢ J ; more
precisely, the ideal J corresponds to the ideal J/I = {j + I | j 2 J}. In par-
ticular, maximal ideals of R which contain I corresponds to maximal ideals of
R/I. Thus, we can assume

M = m/IC[x]
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for some maximal ideal m of C[x]. Then

m = h{x
i

� �
i

| 1  i  n}i

for some � = (�
1

,�
2

, . . . ,�
n

), by Proposition 5.2.9. Take f 2 IC[x]. Since
IC[x] ⇢ m, this implies that f(�) = 0. Therefore, � 2 V (I). In other words,
� = ↵

i

for some i 2 {1, 2, . . . , k}, so m = h{x
j

� ↵
ij

| 1  j  n}i, where ↵
i

=
(↵

i1

,↵
i2

, . . . ,↵
in

).
The correspondence between maximal ideals of C[x]/IC[x] and maximal ide-

als of C[x] containing I together with Proposition 5.2.9 implies that m
↵i/I, i =

1, 2, . . . , k, are maximal ideals of C[x]/IC[x].

Artinian rings have a decomposition into a product of so called localizations
at the maximal ideals of the ring. We introduce the notion of localizations of a
ring in two steps.

Definition 5.2.11 ([1, chapter 3]). Let R be a commutative ring. Let S ⇢ R
be a subset such that 1 2 S and xy 2 S for every x, y 2 S. Then we say that S
is a multiplicative subset of R.

Let p ⇢ R be a prime ideal. Let S = R\p. Take x, y 2 S, i.e. x, y 62 p. Then,
by the definition of prime ideals, it follows that xy 62 p, i.e. xy 2 S. Thus, S
is a multiplicative subset of S. The multiplicative subsets of interest to us are
precisely those which arise in this way.

Proposition 5.2.12 ([1, chapter 3]). Let R be a ring with a multiplicative
subset S. The quotient of the set {(r, s) | r 2 R and s 2 S} with the relation

(r
1

, s
1

) ⇠ (r
2

, s
2

) , 9t 2 S : t(r
1

s
2

� r
2

s
1

) = 0

is a ring under the operations

(r
1

, s
1

) + (r
2

, s
2

) = (r
1

s
2

+ r
2

s
1

, s
1

s
2

)

(r
1

, s
1

) · (r
2

, s
2

) = (r
1

r
2

, s
1

s
2

).

Such a ring is called a ring of fractions and is denoted S�1R.

Remark The elements of S�1R are often denoted r

s

.

When S = R\p for a prime ideal p, the ring S�1R has a special name and
a special notation is used.

Definition 5.2.13 ([14, chapter 6.4]). Let R be a ring with a prime ideal p.
Let S = R\p. Then R

p

= S�1R is called the localization of R at p.

Let A be an Artinian ring, and let m
i

, i = 1, 2, . . . , k be the maximal ideals
of A. Recall from elementary abstract algebra that every maximal ideal is prime.
Thus, we can localize at m

i

.

Proposition 5.2.14 ([1, Theorem 8.7]). Let A be an Artinian ring. Let m
i

, i =

1, 2 . . . , k, be its maximal ideals. Then A =
Q

k

i=1

A/mr

i

for some r 2 N.
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Let
�
i

: A ! A
mi

a 7!

a

1

.

Then �
i

(a) = 0 if and only if there is an s 2 A\m
i

such that sa = 0 (where 0
is the additive identity in A). The following lemma, called Nakayama’s lemma,
will enable to show that ker�

i

= mr

i

.

Lemma 5.2.15 (cf. [14, Corollary 2 in chapter 2.8]). Let I ⇢ A be an ideal of
a ring A with unique maximal ideal m. If mI = I, then I = 0.

Since
A

mi � m
i

A
mi � (m

i

A
mi)

2

� . . .

and A
mi is Artinian, there is an s

i

2 N such that (m
i

A
mi)

si+1 = (m
i

A
mi)

si .
Since

(m
i

A
mi)

si+1 = m
i

(m
i

A
mi)

si ,

if follows from Lemma 5.2.15 that (m
i

A
mi)

si = 0 (where 0 is the additive
identity in A

mi). Let r = max {s
i

| i = 1, 2, . . . , k}. Note that msi
i

� mr

i

for
all i. If a 2 mr

i

, then a 2 msi
i

. But since msi
i

A
mi , it follows that �

i

(a) = 0.
Thus, mr

i

⇢ ker�
i

. On the other hand, assume that a 2 ker�
i

. Then there is
an s 2 A\m

i

such that sa = 0 in A. Since mr

i

A
mi ⇢ msi

i

A
mi = 0, this implies

that sa 2 mr

i

A
mi . Now we are almost finished, but we need one more concept

and result.

Definition 5.2.16 ([1, chapter 4]). Let I be an ideal of a ring A. Assume that
the following implication holds:

xy 2 I )

⇥

x 2 I or yk 2 I for some k 2 N
⇤

.

Then we say that I is primary.

Lemma 5.2.17 ([1, Proposition 4.2]). Let m be a maximal ideal of a ring A.
Then mk is primary, for every k 2 N.

Since m
i

A
mi is maximal, Lemma 5.2.17 implies that (m

i

A
mi)

r is primary.

Since s 2 A\m
i

and m
i

A
mi � (m

i

A
mi)

k for every k, it follows that a 2 mr

i

A
mi .

Thus, ker�
i

⇢ mr

i

. We conclude that ker�
i

= mr

i

, so A
mi

⇠= A/mr

i

.
Now Lemma 5.2.1 follows: take A = C[x]/IC[x] and note that m

i

/IC[x], i =
1, 2, . . . , k, are the maximal ideals of C[x]/IC[x], by Proposition 5.2.10.

5.2.2 Invariance

Lemma 5.2.18. Let V (I) = {↵
1

,↵
2

, . . . ,↵
k

}. Let T
p

be the linear transforma-
tion C[x]/IC[x] ! C[x]/IC[x] induced by p. Then

(i) (C[x]/IC[x][x])
m↵i/IC[x]

is invariant under T
p

[12, Lemma 2.5];

(ii) there is a basis B

i

of (C[x]/IC[x][x])
m↵i/I

such that [T
p

]Bi
(where T

p

is

taken as restricted to (C[x]/IC[x][x])
m↵i/I

) is upper triangular and in

which all diagonal elements are equal to p(↵
i

) [12, Lemma 2.6 and the
paragraph following it].
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Proof. (i) The proof of this part follows the proof in the cited article. The
elements of (C[x]/IC[x])

m↵/IC[x] have the form

f + IC[x]
g + IC[x]

where f + IC[x], g+ IC[x] 2 C[x]/IC[x] but g+ IC[x] 62 m
↵

/IC[x]. Then

T
p

✓

f + IC[x]
g + IC[x]

◆

=
pf + IC[x]
g + IC[x] 2 (C[x]/IC[x])

m↵/IC[x] ,

since g + IC[x] 62 m
↵

/IC[x].

(ii) Let p 2 C[x]. Set p
i

(x) = p(x)�p(↵
i

) (the author got the idea to consider
this polynomial from the proof of [12, Lemma 2.6]). Let

q
i

(x) =
1

k

k

X

j 6=i

n

Y

m=1

x
j

� ↵
mj

↵
ij

� ↵
mj

(the inspiration to use this polynomial came from the proof of [2, Propo-
sition 4.91]). We see that

q
i

(↵
j

) =

(

1, j = i

0, j 6= i
.

Also, p
i

(↵
i

) = 0. Hence, q
i

p
i

(↵) = 0 for all ↵ 2 V (I), from which it
follows that q

i

p
i

2

p

IC[x], by Hilbert’s Nullstellensatz [14, Theorem 5.6],

i.e. there is a k 2 N such that (q
i

p
i

)k 2 IC[x]. We have

T k

pi

✓

f + IC[x]
g + IC[x]

◆

=
pk
i

f + IC[x]
g + IC[x] .

But note that qk
i

62 m
↵i and

�

qk
i

+ IC[x]
� �

pk
i

f + IC[x]
�

= qk
i

pk
i

f+IC[x] =
IC[x], so

pk
i

f + IC[x]
g + IC[x] = 0

in (C[x]/IC[x][x])
m↵i/IC[x]

, by the definition of ring of fractions. Hence,

T k

pi
is zero, which implies that T

pi is nilpotent, on (C[x]/IC[x])
m↵i/IC[x]

.

Choose a basis B

i

of (C[x]/IC[x])
m↵i/IC[x]

such that [T
pi ]Bi

is upper tri-

angular with a diagonal consisting only of zeros. Since T
pi = T

p

� T
p(↵i)

,
we have

[T
pi ]Bi

= [T
p

]Bi
�

⇥

T
p(↵i)

⇤

Bi
.

Furthermore, since T
p(↵i)

is the linear transformation induced by multipli-
cation of the constant polynomial p(↵

i

), the matrix
⇥

T
p(↵i)

⇤

Bi
is a diagonal

matrix with all diagonal elements equal to p(↵
i

). Since the diagonal ele-
ments of [T

pi ]Bi
are all equal to zero, this implies that all diagonal elements

of [T
p

]Bi
is also equal to p(↵

i

). Moreover, since [T
pi ]Bi

is upper triangular

and
⇥

T
p(↵i)

⇤

Bi
diagonal, we must have that [T

p

]Bi
is also upper triangular.

Thus, we have shown that there is a basis B
i

of (C[x]/IC[x])
m↵i/IC[x]

such

that [T
p

]Bi
is an upper triangular matrix with all diagonal elements equal

to p(↵
i

).
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5.2.3 Formula for the bilinear form

Let B
i

be a basis of (C[x]/IC[x])
m↵i/IC[x]

, for i = 1, 2, . . . , k, which satisfies part

(ii) of Lemma 5.2.18. Taken together, they form a basis B = {v
1

, v
2

, . . . , v
s

}

of C[x]/IC[x]. Let d
i

be the dimension of (C[x]/IC[x])
m↵i/IC[x]

as a vec-

tor space over C. Then [T
p

]Bi
is a square matrix of order d

i

. Since each
(C[x]/IC[x])

m↵i/IC[x]
is invariant under T

p

, by Lemma 5.2.18, the matrix [T
p

]B
is a block diagonal matrix in which the i:th block is an upper triangular square
matrix of order d

i

with all diagonal elements equal to p(↵
i

).
This gives

B
q

(p
1

, p
2

) = tr (T
qp1p2)

= tr
�

[T
qp1p2 ]B

�

=
k

X

i=1

d
i

q(↵
i

)p
1

(↵
i

)p
2

(↵
i

);

in particular,

B
q

(v
i

, v
j

) = tr (T
qp1p2)

= tr
�

[T
qp1p2 ]B

�

=
k

X

s=1

d
s

q(↵
s

)v
i

(↵
s

)v
j

(↵
s

).

The following lemma implies that this formula for B
q

remains valid if restricted
to R[x]/I.

Lemma 5.2.19 ([2, Lemma 4.86]). R[x]/I ⇢ C[x]/IC[x]

Let V (I) = {↵
1

,↵
2

, . . . ,↵
k

} and let B = {v
1

, v
2

, . . . , v
m

} be a basis of R[x]/I.
Let

V =

0

B

B

B

@

v
1

(↵
1

) v
1

(↵
2

) . . . v
1

(↵
k

)
v
2

(↵
1

) v
2

(↵
2

) . . . v
2

(↵
k

)
...

...
...

...
v
m

(↵
1

) v
m

(↵
2

) . . . v
m

(↵
k

)

1

C

C

C

A

and let
D = (d

ij

) 1in
1jn

be the diagonal matrix of order k with d
ii

= d
i

q(↵
i

) for i = 1, 2, . . . , k. This
gives [B

q

]B = V DV T . It turns out that, under a certain condition on V , the
matrices [B

q

]B and D have the same rank and signature.

Proposition 5.2.20 ([8, Proposition 8.13]). Let S
i

, i = 1, 2, be real and sym-
metric matrices of order n

i

. If there is a full rank n
2

⇥ n
1

-matrix P such that
S
2

= PS
1

P t, then

rank (S
1

) = rank (S
2

) , and

sign (S
1

) = sign (S
2

)
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Thus, if we can show that V has full rank, we can determine the rank and
signature of B

q

by computing the rank and signature of D.
Let us start with finding the rank and signature of D. Since D is a diagonal

matrix with d
i

q(↵
i

) on the diagonal, we get rank (D) = |{j | q(↵
j

) 6= 0}|. Now
we turn to finding the signature of D. Since we can re-index the ↵

i

, we can,
without loss of generality, assume that

↵
i

2

(

Rn, 1  i  r

Cn

\Rn, r + 1  i  k
.

Let A be a diagonal matrix with

a
ii

=

(

(d
i

|q(↵
i

)|)�1/2

, 1  i  r

1, r + 1  i  k

and let B0 be the basis such that A is the change of basis matrix from B to B

0.
This gives

[D]B0 = AT [D]BA

=

✓

D
1

0
0 D

2

◆

where D
1

is a diagonal matrix in which every diagonal element is either 1,�1
or 0 — more precisely, the number of 1:s is |{j | 1  j  r and q(↵

j

) > 0}|, and
the number of �1:s is |{j | 1  j  r and q(↵) < 0}| — and D

2

is a diagonal
matrix with diagonal elements q(↵

r+1

), q(↵
r+2

), . . . , q(↵
k

). Thus,

sign (D
1

) = |{j | 1  j  r and q(↵
j

) > 0}|� |{j | 1  j  r and q(↵) < 0}|

= |{↵ 2 Rn

| q(↵) > 0}|� |{↵ 2 Rn

| q(↵) < 0}| .

Next, let us consider D
2

. Assume that ↵ 2 V (I)\ (Cn

\Rn). Then p(↵) = 0 for
every p 2 I. Let ↵ denote the component-wise complex conjugate of ↵. Since

z
1

+ z
2

= z
1

+ z
2

, and

z
1

z
2

= z
1

z
2

this implies that p(↵) = p(↵) = 0 for all p 2 I. Thus, ↵ 2 V (I). By the same
argument as above, we can, without loss of generality, assume that ↵

r+2

=
↵
r+1

, ↵
r+4

= ↵
r+3

, and so on. Consider two consecutive terms of the sum
P

n

s=r+1

d
s

q(↵
s

)v
i

(↵
s

)v
j

(↵
s

):

d
r+1

q(↵
r+1

)v
i

(↵
r+1

)v
j

(↵
r+1

) + d
r+1

q(↵
r+1

)v
i

(↵
r+1

)v
j

(↵
r+1

)

=2d
r+1

Re (q(↵
r+1

)v
i

(↵
r+1

)v
j

(↵
r+1

))

=2d
r+1

[Re (q(↵
r+1

))Re (v
i

(↵
r+1

))Re (v
j

(↵
r+1

))

� Re (q(↵
r+1

)) Im (v
i

(↵
r+1

)) Im (v
j

(↵
r+1

))

� Im (q(↵
r+1

))Re (v
i

(↵
r+1

)) Im (v
j

(↵
r+1

))

� Im (q(↵
r+1

))Re (v
j

(↵
r+1

)) Im (v
i

(↵
r+1

))]

=wT

ij,r+1

M
r+1

w
ij,r+1
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where

(w
ij,r+1

)T =
�

Re (v
i

(↵
r+1

)) Im (v
i

(↵
r+1

)) Re (v
j

(↵
r+1

)) Im (v
j

(↵
r+1

))
�

and

M
r+1

= d
r+1

0

B

B

@

0 0 a
r+1

�b
r+1

0 0 �b
r+1

�a
r+1

a
r+1

�b
r+1

0 0
�b

r+1

�a
r+1

0 0

1

C

C

A

where

a
r+1

= d
r+1

Re (q(↵
r+1

))

b
r+1

= d
r+1

Im (q(↵
r+1

))

The matrix M
r+1

has eigenvalues ±

q

a2
r+1

+ b2
r+1

, each with multiplicity two.

Let
wT =

�

wT

ij,r+1

wT

ij,r+3

. . . w
ij,k�1

�

and let M be the block diagonal matrix with M
r+(2j+1)

as the j:th block, for
j = 1, 2, . . . , (k � r � 2)/2; note that the last index is indeed an integer, since
k � r, which is equal to the number of elements in V (I) \ (Cn

\Rn), must be
even. Then

k

X

s=r+1

d
s

q(↵
s

)v
i

(↵
s

)v
j

(↵
s

) = wTMw.

The eigenvalues of M are
n

±

q

a2
r+(2j+1)

+ b2
r+(2j+1)

| 1  j  (k � r � 2)/2)
o

.

Thus, the number of positive eigenvalues ofM is equal to the number of negative
eigenvalues of M (counted with multiplicity). Since M is real and symmetric,
it is the matrix of a symmetric bilinear form M̃ in some basis B0 of R[x]/I, i.e.
h

M̃
i

B0
= M . By Proposition 5.1.8, there is a a basis B00 such that

h

M̃
i

B00
is a

diagonal matrix whose elements belong to {�1, 1, 0}. Thus,

k

X

s=r+1

d
s

q(↵
s

)v
i

(↵
s

)v
j

(↵
s

) =
k

X

i=1

u2

i

�

m

X

i=k+1

u2

i

for some u
i

, where 2k = m. By the uniqueness part of Proposition 5.1.8, this
implies that sign (D

2

) = 0. Since the set of eigenvalues of D is the union of the
set of eigenvalues of D

1

and the set of eigenvalues of D
2

, we conclude that

sign (D) = |{↵ 2 Rn

| q(↵) > 0}|� |{↵ 2 Rn

| q(↵) < 0}| .

Now we turn to showing that V has full rank. Either I is radical or it is not.
We consider the two cases separately.

First, consider the case where I is radical. Assume that there are �
i

, i =
1, 2, . . . , k, such that {�

1

,�
2

, . . . ,�
k

} 6= {0} and

m

X

i=1

�
i

0

B

B

B

@

v
i

(↵
1

)
v
i

(↵
2

)
...

v
i

(↵
k

)

1

C

C

C

A

= 0.
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Let h(x) =
P

k

i=1

�
i

v
i

(x). Then h(↵
i

) = 0 for all i, so h 2

p

I = I, by Hilbert’s

Nullstellensatz. In other words,
P

k

i=1

�
i

v
i

(x) 2 I, where not all �
i

are zero;
but this contradicts that {v

1

, v
2

, . . . , v
k

} is a basis. Hence, we have shown for
radical I that the rows of V are linearly independent, so D and B

q

have the
same rank and signature, by Proposition 5.2.20.

If I is not radical, then we must choose a certain basis of R[x]/I to get a V
which we can easily verify has full rank. The basis in question is

�

1, v, v2, . . . , vk�1, v
k+1

, v
k+2

, . . . , v
n

 

[2, Chapter 4.5], where v is a polynomial such that

(i) v(↵
i

) 6= v(↵
j

) for all distinct ↵
i

,↵
j

2 V (I),

(ii)
�

1, v, v2, . . . , vk�1

 

is linearly independent, and

(iii) v
i

, i = k+1, k+2, . . . , n, are chosen so that
�

1, v, v2, . . . , vk�1

 

is extended
to a basis of R[x]/I.

Given a v with properties (i) and (ii), we can always extend
�

1, v, v2, . . . , vn�1

 

to a basis of R[x]/I; this is a result of elementrary linear algera. It remains to
show that we can find a v with properties (i) and (ii).

Lemma 5.2.21 (main part of [2, Lemma 4.89]). There is a constant c such
that v

c

(x) = x
1

+ cx
2

+ c2x
3

+ · · ·+ cn�1x
n

satisfies that v
c

(↵
i

) 6= v
c

(↵
j

) for all
distinct ↵

i

,↵
j

2 V (I)

Proof. This proof follows the proof in the cited book. Let ↵
i

,↵
j

be distinct
elements of V (I). We will use the notation ↵

k

= (↵
k1

, . . . ,↵
kn

). This gives
v
c

(↵
k

) = ↵
k1

+ c↵
k2

+ c2↵
k3

+ . . . cn�1↵
kn

, so

v
c

(↵
i

)� v
c

(↵
j

) =
n

X

k=1

ck�1 (↵
ik

� ↵
jk

)

= ṽ
ij

(c)

where

ṽ
ij

(t) =
n

X

k=1

(↵
ik

� ↵
jk

) tk�1.

This is a univariate polynomial of degree (n � 1). This means that there are
at most (n � 1) choices of c such that v

c

(↵
i

) = v
c

(↵
j

). We want to find a
c such that v

c

(↵
i

) 6= v
c

(↵
j

) for every choice of distinct i, j 2 {1, 2, . . . , k}.
Given distinct i, j, let c

ijk

, k = 1, 2, . . . , n � 1, be the constants which satisfies
c
ijk

(↵
i

) = c
ijk

(↵
j

). Then any choice of c 62 [

i,j

{c
ijk

| k 2 {1, 2, . . . , n� 1}}
satifies that v

c

(↵
i

) 6= v
c

(↵
j

) for every choice of distinct i, j.

Lemma 5.2.22 ([2, Lemma 4.90]). Any polynomial which satisfies (i) will also
satisfy (ii).

Proof. This proof follows the proof in the cited book. Let v be a polynomial
which satifies (i). Assume that there exists �

i

, i = 0, 1, . . . , k � 1, such that

{�
1

,�
2

, . . . ,�
k�1

} 6= {0} and
P

k�1

i=0

�
i

vi 2 I. Then

k�1

X

j=0

�
j

v(↵
i

)j = 0
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for all ↵
i

2 V (I), i.e. for i = 1, 2, . . . , k. But
P

k�1

j=0

�
j

tj is a univariate polyno-
mial of degree (k � 1), so it has at most k � 1 distinct roots, which means we

have a contradiction. Hence,
P

k�1

j=0

�
j

vj ⌘ 0, so
�

1, v, v2, . . . , vk�1

 

is a linearly
independent set.

Let B =
�

1, v, v2, . . . , vk�1, v
k+1

, v
k+2

, . . . , v
n

 

be a basis of R[x]/I satisfying
(i)-(iii). Then

V =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 . . . 1
v(↵

1

) v(↵
2

) . . . v(↵
k

)
v(↵

1

)2 v(↵
2

)2 . . . v(↵
k

)2

v(↵
1

)3 v(↵
2

)3 . . . v(↵
k

)3

...
...

. . .
...

v(↵
1

)k�1 v(↵
2

)k�1 . . . v(↵
k

)k�1

v
k+1

(↵
1

) v
k+1

(↵
2

) . . . v
k+1

(↵
k

)
...

...
. . .

...
v
n

(↵
1

) v
n

(↵
2

) . . . v
n

(↵
k

)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

The matrix Ṽ consisting of the first k rows of V is a so called Vandermonde
matrix ; the determinant of such a matrix has a certain form.

Proposition 5.2.23 ([8, Proposition 3.19]). For any choice of elements c
i

2

R, i = 1, 2, . . . , n, we have det
⇣

�

ci�1

j

�

i,j

⌘

=
Q

1k<mn

(c
k

� c
m

).

Since ↵
i

6= ↵
j

for i 6= j, we have det Ṽ 6= 0, by Proposition 5.2.23. Since V
is an n⇥ k-matrix, this implies that it has full rank.

6 Determining the stability properties of steady

states

Let ↵ be a steady state of a dynamical system ẋ
i

= f
i

(x), i = 1, 2, . . . , n. It is
of great interest to determine how the system will behave when it is in a state
close to, but not equal to, ↵. Assume that the system is in a state close to ↵.
Will the future states of the system still be close to ↵? Then we say that ↵ is
stable. Will the future states not only be close to, but even closer and closer to,
↵? Then we say that ↵ is asymptotically stable. If ↵ is not stable, we say that
it is unstable. If ↵ is unstable, there exists states close to it, such that if the
system is in such a state at one point in time, it will still stray far away from ↵
in the future. Let us record what has been said in a precise definition.

Definition 6.0.1 ([13, Definition 1 in chapter 2.9]). Let ẋ
i

= f
i

(x), i =
1, 2, . . . , n, be a dynamical system. Let x(t) be a function satisfying these dy-
namics. Let ↵ 2 Rn be a steady state of the system. Let

N
�

(↵) = {x 2 Rn

| |x� ↵| < �} .

If
8✏ > 0 9� > 0 : x(0) 2 N

�

(↵) ) x(t) 2 N
✏

(↵)

we say that ↵ is a stable steady state. If ↵ is not stable, we say that it is unstable.
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Assume that there is a � > 0 such that the following implication holds:

x(0) 2 N
�

(↵) ) lim
t!+1

x(t) = ↵.

Then we say that ↵ is an asymptotically stable steady state.

Let us make a remark on the importance of stability of a steady state for
mathematical modelling. Consider a dynamical system which is supposed to
model some phenomenon. For this argument, let us call the phenomenon the
”true system” and the dynamical system which is supposed to model it the
”model system”. A steady state of the model system corresponds to a steady
state of the true system with the same stability properties. Assume that the
current state of the system is a steady state. If the model system is a perfect
model of the true system, then we know that the true system will stay in the
steady state forver. But, of course, any model will be only an approximation of
the phenomenon, so the steady state ↵̂ of the true system is not exactly the same
as the steady state ↵ of the model system. If ↵, and therefore ↵̂, is unstable,
this implies that the future states of the true system can lie very far from ↵,
even though, according to the model, the system should stay in ↵. On the other
hand, if ↵ is stable, it might still be that the true system is in a non-steady
state, but it will at least be close to ↵̂. This implies that it will stay close to ↵̂,
since ↵, and therefore ↵̂, is assumed to be stable.

There is a couple of very useful results for determining the stability properties
of a steady state. Before we can formulate them, we must recall the concept of
the Jacobian of a function.

Definition 6.0.2. Let f : Rn

! Rm be di↵erentiable. Then the function J
f

:
Rn

! Rnm defined by

J
f

(x) =

✓

@f
i

@x
j

(x)

◆

1im
1jn

,

is called the Jacobian of f .

Now we can formulate the results.

Proposition 6.0.3 ([10, The Theorem in §2 of chapter 9]). Let ↵ be a steady
state of a dynamical system ẋ

i

= f
i

(x), i = 1, 2, . . . , n, where f : Rn

! Rn is
continuously di↵erentiable. If ↵ is stable, then Re (�

i

)  0 for all eigenvalues
�
i

of J
f

(↵).

Proposition 6.0.4 ([18, follows from Theorem 6.10]). Let ↵ be a steady state
of a dynamical system ẋ

i

= f
i

(x), i = 1, 2, . . . , n, where f : Rn

! Rn is
continuously di↵erentiable. If Re (lambda

i

) < 0 for all eigenvalues �
i

of J
f

(↵),
then ↵ is asymptotically stable.

Corollary 6.0.5. Let ↵ be a steady state of a dynamical system ẋ
i

= f
i

(x), i =
1, 2, . . . , n, where f : Rn

! Rn is continuously di↵erentiable, such that Re (�
i

) 6=
0 for all eigenvalues �

i

of J
f

(↵). Then ↵ is asymptotically stable if and only if
Re (�

i

) < 0 for all i.

Proof. Assume that ↵ is asymptotically stable. Then ↵ is stable. By Proposition
6.0.3, this means that Re (�

i

)  0 for all eigenvalues �
i

of J
f

(↵). Since Re (�
i

) 6=
0 by assumption, this implies that Re (�

i

) < 0 for all eigenvalues �
i

of J
f

(↵).
Conversely, assume that Re (�

i

) < 0 for all eigenvalues �
i

of J
f

(↵). Then
Proposition 6.0.4 implies that ↵ is asymptotically stable.
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Let ẋ
i

= p
i

(x), i = 1, 2, . . . , n, be a polynomial dynamical system. Fix a
monomial order < and let

ẋ
i

= C
<

m
<

be the matrix representation of this system corresponding to <. The right-hand
side depends on x = (x

1

, x
2

, . . . , x
n

); more precisely, m
<

but not C
<

depends
on x. This gives

J
C<m<(x) = C

<

J
m<(x). (6.1)

Let ↵ be a steady state of the system. Proposition 6.0.3 and Corollary 6.0.5
suggests that, to determine the stability properties of ↵, it is useful to know
something about the distribution of eigenvalues of C

<

J
m<(↵) in the complex

plane. The following result can be used for this purpose.

Proposition 6.0.6 ([9, Theorem 2 in chapter XV]). Let f 2 R[t]. Write
f(t) = a

10

tn + a
20

tn�1 + a
11

tn�2 + a
21

tn�3 + . . . . Let

f
1

(t) = a
10

tn � a
11

tn�2 + a
12

tn�4

� . . .

f
2

(t) = a
20

tn�1

� a
21

tn�3 + a
22

tn�5

� . . .

and, for i � 3, define (�f
i

) as the remainder when f
i�2

is divided by f
i�1

. Let
k be the number such that f

k

6= 0 but f
k+1

= 0. Then

(i) f
i

= a
i0

tn�(i�1) + a
i1

tn�(i�1)�2 + . . . for some a
ij

,

(ii) the number of sign changes in the sequence (a
10

, a
20

, a
30

, . . . , a
k0

) is equal
to

|{t 2 C | f(t) = 0 and Re (t) > 0}| ,

and

(iii) all roots x of f satisfy Re (x) < 0 if and only if (a
10

, a
20

, a
30

, . . . , a
k0

) has
no zeros and no sign changes.

Example 6.0.7. We once again return to Example 3.8.6. Let < be the monomial
ordering with x

1

> x
2

> x
3

. Then the system has the matrix representation
ẋ
i

= C
<

m
<

, with

C
<

=

0

@

1 �1 �1 0 1 0 0 0
0 0 0 1 0 2 1 �4
0 0 0 0 0 1 0 �1

1

A

and

mT

<

=
�

x2

1

x3

2

x
3

x
1

x2

2

x
3

x
1

x
2

x2

3

x2

2

x4

3

x
2

x3

3

x
2

x2

3

x6

3

1
�

.

We compute

J
m<(x1

, x
2

, x
3

) =

0

B

B

B

B

B

B

B

B

B

B

@

2x
1

x3

2

x
3

3x2

1

x2

2

x
3

x2

1

x3

2

x2

2

x
3

2x
1

x
2

x
3

x
1

x2

2

x
2

x2

3

x
1

x2

3

2x
1

x
2

x
3

0 2x
2

x4

3

4x2

2

x3

3

0 x3

3

3x
2

x2

3

0 x2

3

2x
2

x
3

0 0 6x5

3

0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

.
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Recall that the steady states of the system are ↵
1

= (1, 1, 1) and ↵
2

= (1,�1, 1).
The characteristic polynomial of C

<

J
m<(↵1

) is

�t3 + 6t2 + 6t.

We see immediately that 0 is an eigenvalue of J
m<(↵1

). Therefore, we will not
be able to use Corollary 6.0.5; we can use Proposition 6.0.3, however. Let

f
1

(t) = �t3 � 6t, and

f
2

(t) = 6t2.

We define f
3

(t) as (�1) times the remainder of f
1

(t) divided by f
2

(t). Since

�t3 � 6t = 6t2 ·

✓

�

1

6
t

◆

� 6t

we have f
3

(t) = 6t. Since
6t2 = 6t · t

we have that f
2

(t) divided by f
3

(t) leaves no remainder. Therefore, we shall
consider the sequence (�1, 6, 6). Since it has one sign change, C

<

J
m<(↵1

) has
two eigenvalues with positive real part. Hence, ↵

1

is an unstable steady state.
In this case, we can easily solve for the eigenvalues explicitly; let us do this

and compare with what was just said. The roots of �t3 + 6t2 + 6t are t = 0
and t = 3±

p

15. Hence, there is exactly one eigenvalue with positive real part,
which is what we expected.

The characteristic polynomial of C
<

J
m<(↵2

) is

�t3 � 4t2 + 2t+ 12.

We define

f
1

(t) = �t3 � 2t, and

f
2

(t) = �4t2 � 12.

This gives f
3

(t) = �t and f
4

(t) = �12. We shall therefore consider the sequence
(�1,�4,�1, 12). This sequence has one sign change: hence, there is one eigen-
value with positive real part. Hence, the point (1,�1, 1) is an unstable steady
state.

Again, let us find the roots the characteristic polynomial. We can easily find
the root t = �2, and can then easily find the rest of the roots. This gives the
roots t = �2 and t = �1 ±

p

7. Hence, there is exactly one eigenvalue with
positive real part, which is what we expected. ⇧

7 The class of chemical reaction networks

So far, we have considered general polynomial dynamical systems. Now we
will consider some particular classes of polynomial dynamical systems. In this
section, we study so called chemical reaction networks.
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7.1 Introduction

A chemical reaction network is a set of chemical substances together with a set
of possible reactions among the substances. Each reaction in a chemical reaction
network involving the substrates x

1

, x
2

, . . . , x
n

can schematically be written

P

n

j=1

c
ji

x
j

�
i

P

n

j=1

d
ji

x
j

,

where the c
ji

, d
ji

2 R are non-negative and the �
i

are positive. The left-hand
side

P

j=1

c
ji

x
j

and right-hand side
P

n

j=1

d
ji

x
j

are called complices (plural
of complex ). Let r be the number of reactions in the network. Under the
assumption of law of mass action (see Example 2.1.1), the dynamics of the
concentrations of x

1

, x
2

, . . . , x
n

are then described by

ẋ
j

=
r

X

i=1

(d
ji

� c
ji

)�
i

n

Y

k=1

xcki
k

, j = 1, 2, . . . , n (7.1)

which is a polynomial dynamical system. Let p
j

=
P

r

i=1

(d
ji

� c
ji

)�
i

Q

n

k=1

xcki
k

and let P = {p
1

, p
2

, . . . , p
n

}. Let < be a monomial ordering and µ an enumer-
ation of P . We can reindex so that �

i

Q

k=1

xcki
k

< �
i+1

Q

k=1

x
ck,i+1

k

for all i.
Then

C
<,µ

= (d
ij

� c
ij

) 1in
1jr

is the matrix representation of this system. In the context of chemical reaction
networks, this matrix is called a stoichiometric matrix.

7.2 Application of the theory of polynomial dynamical

systems

Example 7.2.1. Consider the chemical reaction network

S
0

+ E
k
1

k�1

ES
0

k
2

S
1

+ E
k
3

k�3

ES
1

k
4

S
2

+ E

S
2

+ F
k
5

k�5

FS
2

k
6

S
1

+ F
k
7

k�7

FS
1

k
8

S
0

+ F .

Let C
i

= ES
i

for i = 0, 1, and D
i

= FS
i

for i = 1, 2. Under the assumption
of law of mass action, the dynamics of this network is given by

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Ċ
0

= k
1

S
0

E � (k�1

+ k
2

)C
0

Ċ
1

= k
3

S
1

E � (k�3

+ k
4

)C
1

Ḋ
1

= k
7

S
1

F � (k�7

+ k
8

)D
1

Ḋ
2

= k
5

S
2

F � (k�5

+ k
6

)D
2

Ṡ
0

= �k
1

S
0

E + k�1

C
0

+ k
8

D
1

Ṡ
1

= �k
3

S
1

E � k
7

S
1

F + k
2

C
0

+ k�3

C
1

+ k�7

D
1

+ k
6

D
2

Ṡ
2

= �k
5

S
2

F + k
4

C
1

+ k�5

D
2

Ė = �k
1

S
0

E � k
3

S
1

E + (k�1

+ k
2

)C
0

+ (k�3

+ k
4

)C
1

Ḟ = �k
7

S
1

F � k
5

S
2

F + (k�7

+ k
8

)D
1

+ (k�5

+ k
6

)D
2

. (7.2)
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Note that the right-hand sides are elements in R[E,F, S
0

, S
1

, S
2

, C
0

, C
1

, D
1

, D
2

].
Let I be the ideal generated by the polynomials in the right-hand side. Order
the monomials in this polynomial ring according to Lex with

E > F > S
0

> S
1

> S
2

> C
0

> C
1

> D
1

> D
2

.

Then
mT

<

=
�

ES
0

ES
1

FS
1

FS
2

C
0

C
1

D
1

D
2

�

.

The coe�cient matrix corresponding to the ordering < is C
<

=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

k1 0 0 0 �(k�1 + k2) 0 0 0

0 k3 0 0 0 �(k�3 + k4) 0 0

0 0 k7 0 0 0 �(k�7 + k8) 0

0 0 0 k5 0 0 0 �(k�5 + k6)

�k1 0 0 0 k�1 0 k8 0

0 �k3 �k7 0 k2 k�3 k�7 k6

0 0 0 �k5 0 k4 0 k�5

�k1 �k3 0 0 k�1 + k2 k�3 + k4 0 0

0 0 �k7 �k5 0 0 k�7 + k8 k�5 + k6

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

(7.3)
First, let us investigate whether the dimension of the system can be reduced.

We compute the rank of C
<

; the rank is 6. By Proposition 2.3.5, this implies
that dimker (C

<,µ

)T = 9 � 6 = 3. Thus, there are three linearly independent
conservation laws of this system. Hence, (7.2) can be reduced to a system of
dimension 6. A basis for the kernel is

�

(0, 0, 1, 1, 0, 0, 0, 0, 1)T , (1, 1, 0, 0, 0, 0, 0, 1, 0)T , (1, 1, 1, 1, 1, 1, 1, 0, 0)T
 

.

This gives three conservation laws,
8

>

<

>

:

D
1

+ D
2

+ F = a
1

C
0

+ C
1

+ E = a
2

C
0

+ C
1

+ D
1

+ D
2

+ S
0

+ S
1

+ S
2

= a
3

where a
1

, a
2

, a
3

2 R. By solving for three of the variables, and substituting
those variables in (7.2), we get a reduced system. For example, by solving for
(F,E, S

2

) and substituting into (7.2), we get

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Ċ
0

= �k
1

S
0

C
0

� k
1

S
0

C
1

+ k
1

a
2

S
0

� (k�1

+ k
2

)C
0

Ċ
1

= �k
3

S
1

C
0

� k
3

S
1

C
1

+ k
3

a
2

S
1

� (k�3

+ k
4

)C
1

Ḋ
1

= �k
7

S
1

D
1

� k
7

S
1

D
2

+ k
7

a
1

S
1

� (k�7

+ k
8

)D
1

Ḋ
2

= �k
5

S
0

D
1

� k
5

S
0

D
2

+ k
5

a
1

S
0

� k
5

S
1

D
1

� k
5

S
1

D
2

+ k
5

a
1

S
1

�k
5

C
0

D
1

� k
5

C
0

D
2

+ k
5

a
1

C
0

� k
5

C
1

D
1

� k
5

C
1

D
2

+ k
5

a
1

C
1

�k
5

D2

1

� 2k
5

D
1

D
2

+ k
5

(a
3

+ a
1

)D
1

� k
5

D2

2

+(k
5

a
3

� (k�5

+ k
6

))D
2

� k
5

a
1

a
3

Ṡ
0

= k
1

S
0

C
0

+ k
1

S
0

C
1

� k
1

a
2

S
0

+ k�1

C
0

+ k
8

D
1

Ṡ
1

= k
3

S
1

C
0

+ k
3

S
1

C
1

+ k
7

S
1

D
1

+ k
7

S
1

D
2

� (k
7

a
1

+ k
3

a
2

)S
1

+k
2

C
0

� k�3

C
1

+ k�7

D
1

+ k
6

D
2

.

(7.4)
The right-hand sides are polynomials in R[S

0

, S
1

, C
0

, C
1

, D
1

, D
2

].
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Let us choose the parameters

k
i

=

(

2, i 2 {1, 3, 5, 7}

1, otherwise
, and

k�i

= 1, for i = 1, 3, 5, 7.

Let S
0

(0) = E(0) = F (0) = 1 and S
1

(0) = D
1

(0) = D
2

(0) = 1; this gives
a
1

= a
2

= a
3

= 1. Then
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

Ċ
0

= �2S
0

C
0

� 2S
0

C
1

+ 2S
0

� 2C
0

Ċ
1

= �2S
1

C
0

� 2S
1

C
1

+ 2S
1

� 2C
1

Ḋ
1

= �2S
1

D
1

� 2S
1

D
2

+ 2S
1

� 2D
1

Ḋ
2

= �2S
0

D
1

� 2S
0

D
2

+ 2S
0

� 2S
1

D
1

� 2S
1

D
2

+ 2S
1

�2C
0

D
1

� 2C
0

D
2

+ 2↵
1

C
0

� 2C
1

D
1

� 2C
1

D
2

+ 2C
1

�2D2

1

� 4D
1

D
2

+ 4D
1

� 2D2

2

� 2

Ṡ
0

= 2S
0

C
0

+ 2S
0

C
1

� 2S
0

+ C
0

+D
1

Ṡ
1

= 2S
1

C
0

+ 2S
1

C
1

+ 2S
1

D
1

+ 2S
1

D
2

� 4S
1

+C
0

� C
1

+D
1

+D
2

.

The set G = {g
1

, g
2

, g
3

, g
3

, g
4

, g
5

, g
6

}, with

g
1

= 8D5

2

+ 184D4

2

+ 60D3

2

� 342D2

2

+ 189D
2

� 81,

g
2

= 2709D
1

� 16D4

2

� 444D3

2

� 1928D2

2

+ 255D
2

� 747,

g
3

= 3C
1

�D
2

,

g
4

= 2709C
0

� 16D4

2

� 444D3

2

� 1928D2

2

+ 255D
2

� 747,

g
5

= 16254S
1

+ 664D4

2

+ 15416D3

2

+ 8976D2

2

� 11034D
2

+ 5265, and

g
6

= 1161S
0

+ 64D4

2

+ 1604D3

2

+ 3498D2

2

� 2052D
2

+ 1053,

is a Gröbner-basis of I with respect to S
0

> S
1

> C
0

> C
1

> D
1

> D
2

. Note
that

G \ R = ;,

G \ R[D
2

] = {g
1

} ,

G \ R[D
1

, D
2

] \ R[D
2

] = {g
2

} ,

G \ R[C
1

, D
1

, D
2

] \ R[D
1

, D
2

] = {g
3

} ,

G \ R[C
0

, C
1

, D
1

, D
2

] \ R[C
1

, D
1

, D
2

] = {g
4

} ,

G \ R[S
1

, C
0

, C
1

, D
1

, D
2

] \ R[C
0

, C
1

, D
1

, D
2

] = {g
5

} , and

G \ R[S
0

, S
1

, C
0

, C
1

, D
1

, D
2

] \ R[S
1

, C
0

, C
1

, D
1

, D
2

] = {g
6

} ,

so G admits a strongly triangular form. Thus, we can use the algorithm of
Corollary 3.8.5.

First, we shall solve g
1

(D
2

) = 0. We do this numerically, and get the three
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real solutions

D
2

⇡ �22.5820,

D
2

⇡ �1.84959, and

D
2

⇡ 0.957006.

In this particular case, it turns out that g
i

for i = 2, . . . , 6 each depend on D
2

and just one other variable — and the last dependence is even linear. In general,
we would have to solve g

2

(D
1

,↵) = 0 for D
1

, for each solution ↵ of g
1

(D
2

) = 0,
then solve g

3

(C
1

,�,↵) = 0 for C
1

, for each solution ↵ of g
1

(D
2

) = 0 and each
solution � of g

2

(D
1

,↵), and so on. In each step, we might be required to solve a
non-linear polynomial (univariate) equation. In our case, after substituting D

2

in the equations g
i

= 0, i = 2, 3, . . . , 6, we get a linear system of equations.

• D
2

⇡ �22.5820: This gives
8

>

>

>

>

<

>

>

>

>

:

g
2

= �37472.58 + 2709D
1

0
g
3

= 22.58195324 + 3C
1

g
4

= �37472.58 + 2709C
0

g
5

= �23062 + 16254S
1

g
6

= 3027.1 + 1161S
0

.

The system of equations g
i

= 0, for i = 2, . . . , 6 has the solution

(S
0

, S
1

, C
0

, C
1

, D
1

) = (2.6073, 1.4188, 13.83262, �7.52731775, 13.83262)

so
↵
1

⇡ (2.607, 1.419, 13.83, �7.527, 13.83, �22.58)

is an element in VR(I).

• D
2

⇡ �1.84949: This gives
8

>

>

>

>

<

>

>

>

>

:

g
2

= �5192.15751 + 2709D
1

g
3

= 1.849583606 + 3C
1

g
4

= �5192.15751 + 2709C
0

g
5

= �33391.8312 + 16254S
1

g
6

= 7414.78122 + 1161S
0

.

This gives that

↵
2

⇡ (�6.387, 2.054, 1.917, �0.6165, 1.917, �1.849)

is an element in VR(I).

• D
2

= 0.957006: This gives
8

>

>

>

>

<

>

>

>

>

:

g
2

= �2671.321405 + 2709D
1

g
3

= �0.9570058362 + 3C
1

g
4

= �2671.321405 + 2709C
0

g
5

= 16994.99167 + 16254S
1

g
6

= 3752.46567 + 1161S
0

.

This gives that

↵
3

⇡ (�3.232, �1.046, 0.9861, 0.3190, 0.9861, 0.9570)

is an element in VR(I).
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Thus,
VR (hGi) = {↵

1

,↵
2

,↵
3

}

where

↵
1

⇡ (�2.607, 1.419, 13.83, �7.527, 13.83, �22.58)
↵
2

⇡ (�6.387, 2.054, 1.917, �0.6165, 1.917, �1.849)
↵
3

⇡ (�3.232, �1.046, 0.9861, 0.3190, 0.9861, 0.9570)
.

Note, however, that neither of these points makes sense in the chemical reac-
tion network settings, since all concentrations must be non-negative. Thus, the
chemical reaction network given by (7.2) does not have any steady states.

By the Gröbner basis computed above, we have

` (hGi) = h{lm (g) | g 2 G}i

= hD5

2

, D
1

, C
1

, C
0

, S
1

, S
0

i,

so
B =

�

1 + I,D
2

+ I,D2

2

+ I,D3

2

+ I,D4

2

+ I
 

is a basis of R[x]/I, by Proposition 3.8.1.
Let Q

1

be the quadratic form induced by the constant polynomial 1. The
matrix for Q

1

in the basis B is given by
0

B

B

B

B

B

B

B

B

B

@

tr (T
1

) tr (T
D2) tr

⇣

T
D

2
2

⌘

tr
⇣

T
D

3
2

⌘

tr
⇣

T
D

4
2

⌘

tr (T
D2) tr

⇣

T
D

2
2

⌘

tr
⇣

T
D

3
2

⌘

tr
⇣

T
D

4
2

⌘

tr
⇣

T
D

5
2

⌘

tr
⇣

T
D

2
2

⌘

tr
⇣

T
D

3
2

⌘

tr
⇣

T
D

4
2

⌘

tr
⇣

T
D

5
2

⌘

tr
⇣

T
D

6
2

⌘

tr
⇣

T
D

3
2

⌘

tr
⇣

T
D

4
2

⌘

tr
⇣

T
D

5
2

⌘

tr
⇣

T
D

6
2

⌘

tr
⇣

T
D

7
2

⌘

tr
⇣

T
D

4
2

⌘

tr
⇣

T
D

5
2

⌘

tr
⇣

T
D

6
2

⌘

tr
⇣

T
D

7
2

⌘

tr
⇣

T
D

8
2

⌘

1

C

C

C

C

C

C

C

C

C

A

where T
Di is the linear transformation induced by multiplication with D

i

.
First, since (1 + I) · (f + I) = f + I, we have T

1

= I. This implies that
tr (T

1

) = 5, since R[S
0

, S
1

, C
0

, C
1

, D
1

, D
2

]/I has dimension five.
Next, take f + I 2 R[x]/I; then f + I =

P

4

i=0

a
i

Di

2

for some a
i

2 R.
Multiplying with D

2

+ I gives

(D
2

+ I)(f + I) = a
0

D
2

+ a
1

D2

2

+ a
2

D3

2

+ a
3

D4

2

+ a
4

D5

2

.

Since
8D5

2

+ 184D4

2

+ 60D3

2

� 342D2

2

+ 189D
2

� 81 2 I,

we have the identity

D5

2

= �

184

8
D4

2

�

60

8
D3

2

+
342

8
D2

2

�

189

8
D

2

+
81

8

in R[S
0

, S
1

, C
0

, C
1

, D
1

, D
2

]/I. This gives

(D
2

+ I)(f + I) =
81

8
a
4

+

✓

a
0

�

189

8
a
4

◆

D
2

+

✓

a
1

+
342

8
a
4

◆

D2

2

+

✓

a
2

�

60

8

◆

D3

2

+

✓

a
3

�

184

8

◆

D4

2

.
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Thus, in the basis B, the linear transformation T
D2 has the matrix

C =

0

B

B

B

B

@

0 0 0 0 81/8
1 0 0 0 �189/8
0 1 0 0 342/8
0 0 1 0 �60/8
0 0 0 1 �184/8

1

C

C

C

C

A

,

so tr (T
D2) = �

184

8

.
Note that T

D

2
2
(f) = D

2

T
D2(f) for every f . There are b

i

2 R such that

T
D2(f) = b

0

+ b
1

D
2

+ b
2

D2

2

+ b
3

D3

2

+ b
4

D4

2

. Let

a =
�

a
0

a
1

a
2

a
3

a
4

�

T

and

b =
�

b
0

b
1

b
2

b
3

b
4

�

T

.

Then
h

T
D

2
2
(f)
i

B
= Cb.

Since
[T

D2(f)]B = Ca,

we have
h

T
D

2
2
(f)
i

B
= C2a.

This means that T
D

2
2
has the matrix C2 in basis B. More generally, T

D

j
2
has the

matrix C
j

in basis B.
We compute the powers of C and take the trace; we get

tr
⇣

T
D

2
2

⌘

= 514,

tr
⇣

T
D

3
2

⌘

= �46085/4,

tr
⇣

T
D

4
2

⌘

= 260056,

tr
⇣

T
D

5
2

⌘

= �46978489/8,

tr
⇣

T
D

6
2

⌘

= 2121725221/16,

tr
⇣

T
D

7
2

⌘

= �95825372287/32, and

tr
⇣

T
D

8
2

⌘

= 1081962013723/16.

Thus, we have computed Q
1

. The characteristic polynomial of Q
1

is

�
Q1(�) ⇡ ��5 + 6.77555 · 1010�4

� 3.72156 · 1012�3

+ 1.73569 · 1013�2

� 1.0956 · 1013�� 4.24975 · 1012.

It follows from Descartes’ rule of sign that the number of positive eigenvalues
is 4, while the number of negative eigenvalues is 1. Thus, the signature is 3, so
this system has three steady states.
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Let us compute the eigenvalues, to check that what was just said is correct.
The eigenvalues of Q

1

are

�
1

⇡ 6.78 · 1010,

�
2

⇡ 49.9,

�
3

⇡ 4.23,

�
4

⇡ 1.11, and

�
5

⇡ �0.268.

Indeed, the number of positive eigenvalues is 4, while the number of negative
eigenvalues is 1.

The rank of Q
1

is 5, so there are 5 non-zero elements in V (I). ⇧

8 The class of slow-fast systems

Next, another subclass of polynomial dynamical system will be studied: so called
slow-fast polynomial dynamical systems.

8.1 Introduction

A dynamical system of the form
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ẋ
1

= F
1

(x
1

, x
2

, . . . , x
n

, y
1

, y
2

, . . . , y
m

; ✏)

ẋ
2

= F
2

(x
1

, x
2

, . . . , x
n

, y
1

, y
2

, . . . , y
m

; ✏)

...

ẋ
n

= F
n

(x
1

, x
2

, . . . , x
n

, y
1

, y
2

, . . . , y
m

; ✏)

✏ẏ
1

= G
1

(x
1

, x
2

, . . . , x
n

, y
1

, y
2

, . . . , y
m

; ✏)

✏ẏ
2

= G
2

(x
1

, x
2

, . . . , x
n

, y
1

, y
2

, . . . , y
m

; ✏)

...

✏ ˙y
m

= G
m

(x
1

, x
2

, . . . , x
n

, y
1

, y
2

, . . . , y
m

; ✏)

, (8.1)

where ✏ is a parameter such that 0 < ✏ ⌧ 1, and F
i

, G
j

: Rn+m

! R, is called
a slow-fast system.

Remark The term slow-fast system is used in, for example, [3]. Another
term for the same type of systems is singularly perturbed systems; see e.g. [16,
chapter 1.3].

Definition 8.1.1. If (8.1) is also a polynomial dynamical system, we say that
it is a polynomial slow-fast system.

As was remarked above, another term for slow-fast systems is singularly per-
turbed systems. More specifically, slow-fast systems are singular in the following
sense: for ✏ = 0, the system becomes a di↵erential-algebraic system; the latter is
a system which consists of both di↵erential equations and algebraic equations.

The system (8.1) depends on ✏; therefore, so will the solutions. We will use
two di↵erent notations to denote the solution of (8.1) corresponding to a certain
choice of ✏.
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Convention (x(t; ✏), y(t; ✏)) and (x
✏

(t), y
✏

(t)) will both denote the solution of
a slow-fast system.

The second type of notation is natural to use when we surpress t in the
notation, which we often do. Since 0 < ✏ ⌧ 1, there should be no risk of the
reader interpreting x

✏

or y
✏

as a component of the vector x or y, respectively,
even when ✏ = 0.

8.2 Application of the theory of polynomial dynamical

systems

We can use the method presented in Section 3 to find the steady states of a
polynomial slow-fast system.

Example 8.2.1. In [6, Chapter 2.6], the FitzHugh-Nagumo system is defined as

(

ẋ = ��x+ y

✏ẏ = �Cx+ Ay(y � �)(� � y)
(8.2)

where �, �, �, C 2 R. If we assume that 0 < ✏ ⌧ 1, this is a polynomial slow-fast
system.

The ideal

I =

⌧

��x+ y, �

C

✏
x+

A

✏
y(y � �)(� � y)

�

has a Gröbner basis

{ �A�3x3 +A�2(� + �)x2

� (A��� + C)x,

y � �x}

with respect to the Lex-ordering with y > x. Thus, ` (I) = hx3, yi. This implies,
by Proposition 3.8.1, that B =

�

1 + I, x+ I, x2 + I
 

is a basis of C[x, y]/I.
Let

↵
1

=
� + �

�

and

↵
2

=
A��� + C

A�3

.

In C[x, y]/I, we have x3 + I = ↵
1

x2

� ↵
2

x + I. Let T
p

denote the linear
transformation on R[x]/I induced by p 2 R[x]. Then, in B,

[T
1

]B = I

and

[T
x

]B =

0

@

0 0 0
1 0 �↵

2

0 1 �↵
1

1

A .
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Note that

T
x

n(f + I) = xnf + I

= xn�1(xf) + I

= xn�1T
x

(f + I)

= (T
x

n�1
� T

x

)(f + I)

so T
x

n = (T
x

)n. This gives

[T
x

2 ]B = ([T
x

]B)
2

=

0

@

0 0 0
0 �↵

2

↵
1

↵
2

1 �↵
1

↵2

1

� ↵
2

1

A ,

[T
x

3 ]B = ([T
x

]B)
3

=

0

@

0 0 0
�↵

2

↵
1

↵
2

�(↵2

1

� ↵
2

)↵
2

↵
1

↵2

1

� ↵
2

�↵
1

(↵2

1

� ↵
2

) + ↵
1

↵
2

1

A , and

[T
x4 ]B = ([T

x

]B)
4

=

0

@

0 0 0
↵
1

↵
2

�↵2

1

↵
2

+ ↵2

2

↵
1

(↵2

1

� ↵
2

)↵
2

� ↵
1

↵2

2

↵2

1

� ↵
2

�↵
1

(↵2

1

� ↵
2

) + ↵
1

↵
2

(↵2

1

� ↵
2

)2 � ↵2

1

↵
2

1

A .

We compute the trace of each transformation; this gives

tr (T
1

) = 3,

tr (T
x

) = �↵
1

,

tr (T
x

2) = ↵2

1

� 2↵
2

,

tr (T
x

3) = 2↵
1

↵
2

� ↵
1

(↵2

1

� ↵
2

), and

tr (T
x

4) = ↵2

2

� 2↵2

1

↵
2

+ (↵2

1

� ↵
2

)2.

Thus,

Q
1

=

0

@

3 �↵
1

↵2

1

� 2↵
2

�↵
1

↵2

1

� 2↵
2

2↵
1

↵
2

� ↵
1

(↵2

1

� ↵
2

)
↵2

1

� 2↵
2

2↵
1

↵
2

� ↵
1

(↵2

1

� ↵
2

) ↵2

2

� 2↵2

1

↵
2

+ (↵2

1

� ↵
2

)2

1

A .

Q
1

has the characteristic polyomial

�
Q1(t) = ↵2

1

↵2

2

� 4↵3

2

+ (�2↵2

1

� 2↵4

1

+ 6↵
2

+ 8↵2

1

↵
2

� 2↵2

2

� ↵2

1

↵2

2

+ 4↵3

2

)t

+ (3 + ↵2

1

+ ↵4

1

� 2↵
2

� 4↵2

1

↵
2

+ 2↵2

2

)t2

� t3.
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Recall from linear algebra that the determinant of a matrix is given by the
constant term in its characteristic polynomial. Thus,

detQ
1

= ↵2

1

↵2

2

� 4↵3

2

= ↵2

2

�

↵2

1

� 4↵
2

�

.

Since �, �, �, A and C are all positive, so are ↵
1

and ↵
2

. Thus, detQ
1

= 0 if
and only if ↵2

1

= 4↵
2

. In other words, Q
1

has rank 3 if and only if ↵2

1

6= 4↵
2

.
Assume ↵2

1

= 4↵
2

. Then

Q
1

=

0

B

B

B

B

B

B

B

@

3 �↵
1

↵2

1

2

�↵
1

↵2

1

2
�

↵3

1

4

↵2

1

2
�

↵3

1

4

↵4

1

8

1

C

C

C

C

C

C

C

A

which has rank 2. Thus,

|V (I)| =

(

2, if ↵2

1

= 4↵
2

3, otherwise
.

The number of positive eigenvalues of Q
1

are given by the number of sign
changes, denoted k

+

, in the sequence of coe�cients of the characteristic poly-
nomial, i.e the number of sign changes in the sequence

(�1,

3 + ↵2

1

+ ↵4

1

� 2↵
2

� 4↵2

1

↵
2

+ 2↵2

2

,

� 2↵2

1

� 2↵4

1

+ 6↵
2

+ 8↵2

1

↵
2

� 2↵2

2

� ↵2

1

↵2

2

+ 4↵3

2

,

↵2

1

↵2

2

� 4↵3

2

),

while the number of negative eigenvalues are given by the number of sign
changes, denoted k�, in

(1,

3 + ↵2

1

+ ↵4

1

� 2↵
2

� 4↵2

1

↵
2

+ 2↵2

2

,

� (�2↵2

1

� 2↵4

1

+ 6↵
2

+ 8↵2

1

↵
2

� 2↵2

2

� ↵2

1

↵2

2

+ 4↵3

2

),

↵2

1

↵2

2

� 4↵3

2

).

Then the signature of Q
1

can be computed, since sign (Q
1

) = k
+

� k�, by the
definition of signature.

For example, let
� = 1, � = 1, � = 1,

A =
1

6
, C = 1.

Then ↵
1

= ↵
2

= 1. Then k
+

is the number of sign changes in

(�1, 1, 11,�3) ,
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so k
+

= 2, and k� is the number of sign changes in

(1, 1,�11,�3) ,

so k� = 1. This gives sign (Q
1

) = 1; hence, in this case, the FitzHugh-Nagumo
system has one steady state.

We can find the steady state using the algorithm presented earlier in the
thesis. The solutions of the equation

�A�3x3 +A�2(� + �)x2

� (A��� + C)x = 0

,x3

� ↵
1

x2 + ↵
2

x = 0

are

x = 0, and

x =
↵
1

2
±

r

↵2

1

� 4↵
2

4
.

Substituting this into ��x+ y = 0, we can solve for y as well. This gives that
the steady states of the FitzHugh-Nagumo system are

• just (0, 0) if ↵2

1

< 4↵
2

,

• the points (0, 0) and
�

↵1
2

, �↵1

2

�

if ↵2

1

= 4↵
2

, and

• the points (0, 0),
 

↵
1

+
p

↵2

1

� 4↵
2

2
, �

↵
1

+
p

↵2

1

� 4↵
2

2

!

and
 

↵
1

�

p

↵2

1

� 4↵
2

2
, �

↵
1

�

p

↵2

1

� 4↵
2

2

!

if ↵2

1

> 4↵
2

.

Let us check that this is in agreement with what the signature of Q
1

tells
us. If ↵2

1

= 4↵
2

, then

�
Q1(t) = �t3 +

1

64

�

192 + 32↵2

1

+ 8↵4

1

�

t2 �
1

64

�

32↵2

1

+ 8↵4

1

�

.

Since 192+32↵2

1

+8↵4

1

> 0 and 32↵2

1

+8↵4

1

> 0, this gives k
+

= 2. Substituting
t for �t gives that k� = 0. Thus, the number of steady states is two, which is
the number of steady states we found. We can proceed in the same way for the
other cases, but they are messier, so to simplify matters, let us check this for
just one choice of (↵

1

,↵
2

) per case. Above, we considered the case ↵
1

= ↵
2

= 1,
which falls into the case ↵2

1

< 4↵
2

, and we saw the the number of steady states
should be one, which is in agreement with that the only steady state of the
system is (0, 0). A choice which falls into the case ↵

1

> 4↵
2

is ↵
1

= 3 and
↵
2

= 1. In this case, k
+

is the number of sign changes in the sequence

(�1, 57,�109, 5)
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and k� is the number of sign changes in the sequence

(1, 57, 109, 5).

Thus, the number of steady states is k
+

�k� = 3�0 = 3, which is is the number
of steady states which we found above. ⇧

9 The class of homogeneous polynomial dynam-

ical systems

Proposition 9.0.1. Consider the system ẋ
i

= p
i

(x), i = 1, 2, . . . , n, where
each p

i

is a homogeneous polyomial. Let P = {p
1

, p
2

, . . . , p
n

}. Let � =
{deg (p) | p 2 P} and index the elements �

i

2 � so that �
1

> �
2

> · · · > �
m

.
Let k

i

= |{p 2 P | deg (p) = i}|. Let s
j

=
P

j

i=1

k
j

. Then the system can be
written on the form

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ẋ
1

= p
1

(x)

ẋ
2

= p
2

(x)

...

ẋ
s1 = p

s1(x)

��1��2 ẋ
s1+1

= p
s1+1

(x)

...

��1��2 ẋ
s2 = p

s2(x)

...

��1��m ẋ
sm�1+1

= p
sm�1+1

(x)

...

��1��m ẋ
n

= p
n

(x)

where � is an arbitrary parameter and deg (p
i

) = �
j

for s
j�1

< i  s
j

.

Proof. Let

x̃
i

(⌧) =
1

�
x
i

(⌧��(�1�1)).

This gives
dx̃

i

d⌧
=

1

��1

dx
i

dt

�

�

�

�

t=⌧�

�(�1�1)

.

Assume that deg (p
i

) = �
k

. Then

dx̃
i

d⌧
=

1

��1
��kp

i

(x̃) = ��k��1p
i

(x̃),

since p
i

is homogeneous of degree d
i

. Thus,

��1��k
dx̃

i

d⌧
= p

i

(x̃).

After renaming of x̃
i

to x
i

and ⌧ to t, and re-indexing the x
i

and p
i

, the
conclusion follows.
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10 Conclusion and further work

We have presented a framework for studying important properties of polynomial
dynamical systems. In addition to methods for computing the number of and
determining the steady states of such systems, we have presented methods to
reduce the dimension and the number of parameters of a system. We have
also shown how the framework can be applied to some subclasses of polynomial
dynamical systems.

One line of further work is to try to find a general method which, given a
certain subclass of polynomial dynamical systems, can give a characterization
of the subclass of systems in terms of its parameters, e.g. for which parameters
does a certain subclass of systems have m steady states, for which parameters
are these stable/unstable/asymptotically stable, and so on. While the methods
presented in this thesis is very useful for studying polynomial dynamical systems
one at a time, it would be of course even more useful to deal with a whole class
of systems at once. Could we not use the methods presented in this thesis on
systems with unknown parameters (i.e. on a whole class of system) and then
check for which ranges of parameters the system has a certain property? Yes,
we could, using ad hoc methods — but we would like to have a general method,
which we can apply to any given subclass of polynomial dynamical systems.
To summarize in di↵erent terms: we would like to find a general method for
studying the parameter space of subclasses of systems.

A Appendix

Proposition A.0.1. Let A be an m⇥n-matrix. Let E be a non-singular m⇥m-
matrix. Then kerEA = kerA.

Proof. On the one hand,

v 2 kerA

, Av = 0

) EAv = 0

, v 2 kerEA,

so kerA ⇢ kerEA, while on the other hand,

v 2 kerEA

, EAv = 0

) Av = E�1EAv = 0, since E is non-singular

, v 2 kerA,

so kerEA ⇢ kerA. Hence, kerEA = kerA.

Proposition A.0.2. T
p

, defined in Definition 5.1.11, is a linear tranformation.

Proof. Let f + I, g + I 2 k[x]/I and ↵,� 2 k. Then

T
p

(↵(f + I) + �(g + I)) = T
p

((↵f + �g) + I)
= (p↵f + p�g) + I
= ↵p(f + I) + �p(g + I)
= ↵T

p

(f) + �T
p

(g).
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Proposition A.0.3. B
q

, defined in Definition 5.1.12, is a symmetric bilinear
form.

Proof. Let p
1

, p
2

, q
1

, q
2

2 k[x] and let ↵
1

,↵
2

,�
1

,�
2

2 k. Then

B
q

(↵
1

p
1

+ ↵
2

p
2

,�
1

q
1

+ �
2

q
2

)
= tr

�

T
q(↵1p1+↵2p2)(�1q1+�2q2)

�

= tr (↵
1

�
1

T
qp1q1 + ↵

1

�
2

T
qp1q2 + ↵

2

�
1

T
qp2q1 + ↵

2

�
2

T
qp2q2)

= ↵
1

�
1

tr (T
qp1q1) + ↵

1

�
2

tr (T
qp1q2) + ↵

2

�
1

tr (T
qp2q1) + ↵

2

�
2

tr (T
qp2q2)

= ↵
1

�
1

B
q

(p
1

, q
1

) + ↵
1

�
2

B
q

(p
1

, q
2

) + ↵
2

�
1

B
q

(p
2

, q
1

) + ↵
2

�
2

B
q

(p
2

, q
2

)

where

T
↵p+�q

(f + I) = ↵p(f + I) + �q(f + I) = (↵T
p

+ �T
q

) (f + I), and
tr (↵

1

T
1

+ ↵
2

T
2

) = ↵
1

tr (T
1

) + ↵
2

tr (T
2

)

have been used. Also,

B
q

(p
1

, p
2

) = tr (T
qp1p2) = tr (T

qp2p1) = B
q

(p
2

, p
1

),

so it is symmetric.
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