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Abstract
In this B.Sc. thesis we will show that for a group G and a G-module A there is a
bijection between the second cohomology group H

2(G;A) and the equivalence
classes of extensions ⇡0(E xt(G,A). This will be done by showing that there
is an equivalence of categories from the category of 2-cocycles Z2(G;A) to the
category of extensions E xt(G,A). We will also, by examples, illustrate and show
some computational use of some of the theory developed in the proof.
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1 Introduction

We will in this thesis explore ways of ”putting simple groups together” to get
other groups. ”Putting two groups together” being interpreted as, given two
groups A and B, finding groups G such that A is isomorphic to some normal
subgroup N of G and that B is isomorphic to the quotient group G/N . This
is part of the categorisation of groups that the Hölder Program is concerned
with. The Hölder Program consists of two parts, the first is to classify all finite
simple group and the second part is to find all ways of ”putting simple groups
together. Since extensions are such groups G, understanding of how they can
be created as presented in this B.Sc. thesis helps with an understanding of the
ways of combining groups. The proof in this B.Sc. thesis showing that for a
group G and a G-module A there is a bijection between the second
cohomology group H

2(G;A) and the equivalence classes of extensions
⇡0(E xt(G,A) is adapted from the proof in
H

2(G;A) and extensions, [2]. This B.Sc. thesis aims to present this proof with
explanation of even the more fundamental concepts and work out computations
and present proofs left out as well as show examples of results and techniques
used in the proof.
To appreciate this thesis fully, the reader could benefit from having taken a
course in abstract algebra to be familiar with basic concepts from group theory.
The book Abstract Algebra [1] explains the concepts needed to appreciate this
thesis as well as most of the content of the first five sections.
For a deeper understanding of cohomology the book Cohomology of groups[3] is
a good resource.
Sections 2 and 3 will present introductions to extensions and category theory
respectively to the extent needed for the proof. Section 4 will introduce the
semidirect product to help with the understanding of the constructions later
in the B.Sc. thesis. Section 5 will present the necessary group cohomology
tools needed to understand the proof and preform some computations. The
proof proper starts in Section 6 where the connection between the category of
2-cocycles Z2(G;A) and the category of extensions E xt(G,A) is introduced in
form of a functor. Section 7 concludes the proof by showing that the functor
from Section 6 is an equivalence of categories.

2 Extensions

In this section we will define the concept group extension from groups and exact
sequences of groups, state and prove some useful theorems connected to the
concept. Since however our main focus in this B.Sc. thesis will be on extensions
by G-modules we will also define what these are and exemplify some extensions
by them.

Definition 2.1 For groups Gi and homomorphisms ⇡i : Gi ! Gi+1, the
sequence of groups with homomorphisms
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G1!
⇡1

G2!
⇡2

G3 · · · !
⇡n�1

Gn

is said to be exact if for all i, im(⇡i) = ker(⇡i+1).
An exact sequence on the form

1!
⇡1

G2!
⇡2

G3!
⇡3

G4!
⇡4

1

is called a short exact sequence and G2 is a group extension of G3 by G1.

Remark By 1 in the context of groups, as in Definition 2.1, is taken to mean
the group with one element. On occasion we may also use 0 to mean the group
with one element. These two notations will be used to di↵erentiate between the
cases when the mappings to and from the trivial group are to groups usually
written with additive notation where 0 will be used and groups usually written
with multiplicative notation where 1 will be used. When dealing with general
groups if they are known to be abelian 0 will be used as they are usually written
with additive notation. When a general group is not explicitly known to be
abelian we will use 1 to fit with the multiplicative notation.

Lemma 2.3 For a short exact sequence

1!
⇡1

G2!
⇡2

G3!
⇡3

G4!
⇡4

1,

⇡2 is injective and ⇡3 is surjective.

Proof If ⇡2(g1) = ⇡2(g2), we have
⇡2(g1g

�1
2 ) = ⇡2(g1)⇡2(g

�1
2 ) = ⇡2(g1)⇡2(g2)�1 = ⇡2(g1)⇡2(g1)�1 = 1. Since the

sequence is exact ker(⇡2) = {1} so g1g
�1
2 = 1 if and only if g1 = g2, so ⇡2 is

injective.
Since all of G4 is mapped to the identity element, all of G4 is in the image of
⇡3 so ⇡3 is surjective.⇤

At this point the reader should recall that a group action of a group G on a set
X is a function � : G ⇥X ! X, commonly using the notation g · x as �(g, x),
where the identity element of G maps any element of X to itself and where
gh · x = g · h · x, for g, h 2 G and x 2 X.

Definition 2.4 For a group G an abelian group A, on which G acts in such a
way that g · (a+ a

0) = g · a+ g · a0, is a G-module.

Theorem 2.5 Let 0 ! A !
⇡2

E !
⇡3

G ! 1, be a short exact sequence and
identify A with the ker(⇡3) ✓ E. There is a group action of G on A defined by

g · a = ḡaḡ
�1

, g 2 G, a 2 A

where ḡ is any element such that ⇡3(ḡ) = g.
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Proof By Lemma 2.3 ⇡2 is an injective homomorphism and since the sequence
is exact A is mapped to ker(⇡3) so the identification is allowed. It is apparent
that g · a 2 A since

⇡3(ḡaḡ
�1) = ⇡3(ḡ)⇡3(a)⇡3(ḡ

�1) = g1g�1 = 1

The action defined follows the group action axioms:
identity, where the identity action is performed by the identity of the group
G. For if e is the identity element in G then ē 2 ker(⇡3) = A and since A is
abelian we have e · a = ēaē

�1 = ēē
�1

a = a.

compatibility, which follows from associativity in E since

gg
0 · a = (gg0)a(gg0)�1 = (gg0)a(g0�1

g
�1) = g(g0ag0�1)g�1 = g · g0 · a.

Lastly the choice of ḡ is irrelevant. For two choices for ḡ labelled ḡ1 and ḡ2 we
want to show that ḡ1aḡ

�1
1 = ḡ2aḡ

�1
2 if and only if ḡ�1

2 ḡ1a = aḡ
�1
2 ḡ1, which holds

since ⇡3(ḡ
�1
2 ḡ1) = g

�1
g = 1 so ḡ

�1
2 ḡ1 2 A and the expression commutes.

Definition 2.6 A commutative diagram is, for a collection of sets Ai,
a collection of maps � : An ! Am such that any composition of maps beginning
at a set Aj and ending in a set Ak result in the same composite map.

Theorem 2.7 (The short five lemma) Letting ↵,�, � be homomorphisms of two
short exact sequences such that the following is a commutative diagram

0 A B C 1

0 A
0

B
0

C
0 1

 

↵

�

� �

 0 �0

we have

1. If ↵ and � are injective then � is injective.

2. If ↵ and � are surjective then � is surjective.

Proof 1. It is enough to show that Ker� = 0. Assume b 2 Ker�. Since the
diagram is commutative and �0(�(b)) = 0 we know that �(�(b)) = 0. Since � is
injective �(b) = 0. Then since the ABC sequence is exact there exists an a 2 A

such that  (a) = b. By commutativity in the diagram
 
0(↵(a)) = �( (a)) = �(b) = 0. Since ↵ and  

0 are injective a = 0. Finally
b =  (a) =  (0) = 0

2. Let b0 2 B
0. Since � is surjective there exists a c 2 C such that

�(c) = �
0(b0). Since � is surjective there exists a b 2 B such that �(b) = c. Since

the diagram is commutative �0(�(b)) = �(�(b)) = �
0(b0) so �0(b0 ⇤ �(b)�1) = 0.

Since A’B’C’ sequence exact there exists an a
0 2 A

0 such that  0(a0) = b
0⇤�(b)�1

and since ↵ is surjective there exists an a 2 A such that ↵(a) = a
0. Finally, by

commutativity of the diagram, �( (a)⇤ b) = b
0 ⇤�(b)�1 ⇤ b = b

0 and  (a)⇤ b 2 B

so � is surjective.

Now we will look at some examples of short exact sequences with the
G-module structure described above.
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2.1 Examples

• The following is a short exact sequence with �(x) = 3x, (x) = x(mod 3).

0 ! Z/2Z !
�

Z/6Z !
 

Z/3Z ! 0.

By Theorem 2.5 we can find the group action of Z/3Z on Z/2Z defined
by b · a = b̄ab̄

�1 for a 2 Z/2Z and b 2 Z/3Z. The group action ends up
being described by b · a = a since Z/6Z, where the actions computation
takes place, is a commutative group.

• Similarly we have the short exact sequence

0 ! Z/3Z !
�

Z/6Z !
 

Z/2Z ! 0

with �(x) = 2x and  (x) = x(mod 2). For a 2 Z/2Z, b 2 Z/3Z the group
action defined as dictated by the theorem will be a · b = b, again because
Z/6Z is abelian.

• In fact we can generalise the previous examples to the short exact
sequences

0 ! Z/nZ !
�

Z/nmZ !
 

Z/mZ ! 0

with �(x) = mx, (x) = x(mod m) with the same trivial group action, for
integers n,m.

• For an example when the group action works di↵erently we look at the
short exact sequence

1 ! A3 !
�

S3 !
 

Z/2Z ! 0

where � is sending a permutation in A3 to the same permutation in S3

and  sending odd permutations to 1 2 Z/2Z and even permutations to
0 2 Z/2Z. For a 2 A3 we have that our conjugation group action works by
0 · a = a and 1 · a = a

�1. That the identity element 0 acts trivially should
not be surprising as it is mapped to only by elements in the abelian group
A3 therefore commutes and the conjugation cancels out. As discussed in
the proof of Theorem 2.5 any choice of ḡ will give the same result, so using
cycle notation for permutations and choosing (12) as our 1̄ we get
1 · (123) = (12)(123)(12)�1 = (132) = (123)�1

,

1 · (132) = (12)(132)(12)�1 = (123) = (132)�1

and of course 1 · (1) = (12)(1)(12)�1 = (1)�1, which can be expressed
simpler as 1 · a = a

�1. Also notice that A3 is isomorphic to Z/3Z so
we have found two short exact sequences with only the middle group and
group action di↵ering.
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• For another example where where where the non-trivial group action is
inversion we inspect the short exact sequence

1 ! hii !
�

Q8 !
 

h�1i ! 1

where � sends an element in hii to the same element in Q8 and  forced
to send 1, i,�i,�1 to 1 2 h�1i and the rest to �1 2 h�1i. Calculating
similarly to the last example with j 2 Q8 as our �1 we get
�1 · i = ji(�j) = �i,
�1 ·�i = j(�i)(�j) = i,
�1 ·�1 = j(�1)(�j) = �1 and
�1 · 1 = j(�j) = 1.
So for a 2 hii we have 1 · a = a and �1 · a = a

�1. Note here that hii is
isomorphic to Z/4Z and that h�1i is isomorphic to Z/2Z.

• We will show one last thing with the dihedral group of order 8 D8 and the
short exact sequence

1 ! hri !
�

D8 !
 

hr2i ! 1

where � sending an element in hri to the same element in D8 and again  
is forced. We are using a characterisation with r as the rotation element
and s as the reflection element. Checking our prescribed group action
again we get that for a 2 hri we have 1 · a = a and choosing s as our r2

we get
r
2 · r = srs

�1 = r
3,

r
2 · r2 = sr

2
s = r

2,
r
2 · r3 = sr

3
s = r and

r
2 · 1 = ss = 1.
This again can simply be written as r2 · a = a

�1. This time note that hri
is isomorphic to Z/4Z and that hr2i is isomorphic to Z/2Z, so with this
and the previous example we have found two short exact sequences with
the middle group as the only di↵erence, even using the same group action.

3 Category Theory

This section will briefly lay out the category theory that will be needed for the
proof of the main result, defining categories as well as functors.

Definition 3.1 A category C consists a class of objects, ob(C), and a class
of morphisms, hom(C), between the objects. For two objects A and B in the
category we denote the class of all morphisms from A to B homC(A,B). For
any three objects A,B and D the binary composition mapping
homC(A,B)⇥homC(B,D) ! homC(A,D) takes (f, g) 7! gf . A Category must
also satisfy the following axioms for any four objects A,B,D and E.
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(i) A 6= B or D 6= E =) homC(A,B) \ homC(D,E) = ?

(ii) associativity: h(gf) = (hg)f holds for every f 2 homC(A,B),
g 2 homC(B,D) and h 2 homC(D,E)

(iii) identity: there exists a morphism 1A 2 homC(A,A) such that for any
morphims f 2 homC(A,B), g 2 homC(B,A), f1A = f and 1Ag = g.

Definition 3.2 A category which has only invertible morphisms is a groupoid.

Example:
As an example of a category we can take the class of all sets as our object
class, the class of all functions from a set to a set as our class of morphisms and
composition of morphisms being composition of functions. It is easy to see that
this makes a category as composition of functions is associative and identity
functions from a set to itself exist.

Definition 3.3 A functor from one category to another F : C ! D maps all
objects in C to objects in D by A 7! F (A). A functor also maps all morphisms
in C to morphisms in D , mapping a morphism f 2 homC(A,A0) to a morphism
F (f) 2 homD(F (A), F (A0)) while preserving identity morphisms and morphism
compositions.

• If F : C ! D maps , for anyX,Y 2 C, homc(X,Y ) to homd(F (X), F (Y ))
bijectively then F is called fully faithful.

• If for any object Y 2 D there is an object X 2 C such that there is an
isomorphism from F (X) to Y in D then F is said to be
essentially surjective.

• If F is fully faithful and essentially surjective, F is said to be an equivalence
of categories.

Definition 3.4 A path component of a category C contains only all objects
in C that are connected to another object in the component by a morphism.
So two objects are in the same path component i↵ there is some sequence of
morphisms connecting them, the direction of the morphisms are not taken into
account. The components of C are taken to be ⇡0(C).

Theorem 3.5 An equivalence of categories F : C ! D induces a bijection on
path components.

Proof We know that F maps path components in C to path components in
D since if Am and An belong to the same path component in C then there is
a sequence of morphisms fi connecting them and since F is in particular fully
faithful it will map the morphisms bijectively connecting F (Am) to F (An) by
the sequence of morphisms F (fi).
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We also know that F maps path components surjectively since if there were
a path component in D not mapped to by F then none of the objects in the
path component could be mapped to by F , however all, but in particular one,
objects in the component is isomorphic to an object mapped to by F , because
F is essentually surjective, this introduces an object mapped to by F to the
path component so the component is mapped to from a component in C by F .
We know that F maps path components injectively since F could not map two
path components in C to the same path component in D because by F being
fully faithful any morphism connecting the image of the path components of C
in D would be mapped from a morphism connecting the components in C, this
includes any composition of morphisms in D using objects in D not mapped to
by F that one might worry about.
Since F maps the components surjectively and injectively it does so bijectively.⇤

3.1 Category of extensions E xt(G,A)

Equipped with the category theory we have seen so far we can create a category
of extensions which will be used in the main result.

Fixing a group G and a G-module A we define the category E xt(G,A). The
category has as objects all group extensions E, such that

0 ! A !
⇡2

E !
⇡3

G ! 0

is an exact sequence with the induced G action agreeing with the group ac-
tion defined in Theorem 2.5. The category E xt(G,A) has as morphisms the
commutative diagrams between the objects.

0 A E G 0

0 A E
0

G 0

 �

�

 0 �0

By the short five lemma � is an isomorphism.

4 Semidirect product

As a steppingstone to the groups we will later define to bridge the gap between
2-cocycles and extensions we now define the semidirect product of a module and
its group. The semidirect product is related to the direct product but uses the
same group action as before in its multiplication to alter the first component
of a pair, this makes it more versatile and able to create a more varied set of
groups.

Definition 4.1 Having groups A and G with elements of G acting on A by
automorphisms the set of all pairs (a, g), wherea 2 A and g 2 G, is a group
with the operation •, defined by (a, g)•(a0, g0) = (a(g · a0), gg0). Denote this
group by AoG, the semidirect product of A and G.
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We will now show that the semidirect product, as stated, satisfies the group
axioms and is in fact a group
Group axioms

Closure: For all a, a0 2 A, g, g
0 2 G, (a(g · a0), gg0) is clearly in A o G since

g · a0 2 A.
Associativity:

((a, g)•(a0, g0))•(a00, g00) = (a+ g · a0+, gg
0)•(a00, g00)

= (a+ g · a0 + gg
0 · a00, gg0g00) = (a+ g · (a0 + g

0 · a00), gg0g00)
= (a, g)•(a0 + g

0 · a00, g0g00) = (a, g)•((a0, g0)•(a00, g00)).

Identity:(0,1);

(a, g)•(0, 1) = (a+ g · 0, g1) = (a, g) = (0 + 1 · a, 1g) = (0, 1)(a, g).

Inverse:(g�1 · a�1
, g

�1);

(a, g)•(g�1 · a�1
, g

�1) = (a+ g · (g�1 · a�1), gg�1)

= (0, 1) = (g�1 · a�1 + g
�1 · a, gg�1) = (g�1 · a�1

, g
�1)(a, g).

Following are some properties of the semidirect product which are useful to
work with.
Properties
Isomorphisms:

There is an isomorphism from A to the group of all pairs in A o G on the
form (a, 1), a ! (a, 1), since (a, 1)•(a0, 1) = (a+ 1 · a0, 11) = (a+ a

0
, 1).

There is an isomorphism from G to the group of all pairs in A o G on the
form (0, g), g ! (0, g), since (0, g)•(0, g0) = (0 + g · 0, gg0) = (0, gg0).

Identifying A and G with these sets of pairs we can see that A\G = {(0, 1)}
and that gag�1 = g · a since
(0, g)•(a, 1)•(0, g�1) = (g · a, g)•(0, g�1) = (g · a+ g · 0, gg�1) = (g · a, 1).

4.1 Examples

Let us now by examples demonstrate some capabilities and limitations of the
semidirect product, specifically we want to see if we can, from a short exact
sequence

0 ! A !
⇡2

E !
⇡3

G ! 0,

of the sort found in the category of extensions, create a group isomorphic to
the middle group E as the semidirect product of the two group on either side
AoG.
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• If we look over our list of examples of short exact sequences we might want
to try both Z/6Z and S3 as candidates for semidirect products on the form
Z/3Z o Z/2Z. We already know that Z/6Z ⇠= Z/3Z ⇥ Z/2Z and looking
over the definition of semidirect product we realise that the direct prod-
uct corresponds to the semidirect product with completely trivial group
action. We recall that this was the group action we worked out in the
example for the exact sequence corresponding to this semidirect product.
To examine what group action might give us an isomorphism
Z/3Z o Z/2Z ⇠= S3 we attempt the group action defined as 0 · a = a

and 1 · a = a
�1 as our short exact sequence from before hints at. With

some calculations we can convince ourselves that with that group action
the following correspondence between pairs and permutations will be an
isomorphism from S3 to Z/3Z⇥ Z/2Z;
(0, 0) $ (1), (0, 1) $ (12), (1, 1) $ (23), (2, 1) $ (13), (2, 0) $ (123),
(1, 0) $ (132).

• Given our luck with S3 and Z/6Z we might want to examine our exact
sequence with Q8 however Q8 is not isomorphic to any semidirect product
hiio h�1i.
Clearly it is not the semidirect product with trivial the automorphism
since that would be the direct product of two abelian groups, make it
abelian. The remaining option is letting �1 act on hii by the inverse:
meaning (a,�1)2 = (aa�1

, 1),the identity element, for all a. This already
gives us four elements of order 2, more than there are in Q8, making an
isomorphism impossible. Further exploration would show that this group
is in fact D8, this might not surprise us if we remember that the short
exact sequence we set up for Q8 and D8 were very similar, even obtaining
the same group action.

5 Group cohomology

Definition 5.1 For abelian groups Ai and homomorphisms ⇡i : Ai ! A
i+1, the

sequence A : · · ·A1!⇡
1

A
2!⇡

2

A
3 · · · !⇡

n�1

A
n · · · is said to be a cochain complex if

for all i im(⇡i) ⇢ ker(⇡i+1). The quotient group ker(⇡n+1)/im(⇡n) is the nth
cohomology group of the cochain complex, denoted H

n(A).

Remark An exact sequence is a cochain complex with ker(⇡i+1) = im(⇡i)
for all i so all Hn(A) are trivial. We interpret this as the cohomology groups
measuring the non-exactness of the complex.

Definition 5.3 For two cochain complexes A : · · ·A1!⇡
1

A
2!⇡

2

A
3 · · · !⇡

n�1

A
n · · ·

and B : · · ·B1!
 
1

B
2!
 
2

B
3 · · · !

 
n�1

B
n · · · a collection of homomorphisms

�i : Ai ! B
i such that the resulting diagram
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· · · A
1

A
2

A
3 · · ·

· · · B
1

B
2

B
3 · · ·

⇡0 ⇡1

�1

⇡2

�2

⇡3

�3

 0  1  2  3

is commutative is called a homomorphism of complexes.

Theorem 5.4 A homomorphism of complexes � : A ! B induces a group
homomorphism from H

n(A) to H
n(B).

Proof By commutativity of the diagram we have that for all
a 2 Ker(⇡n),�n(a) 2 Ker( n), thus � maps the kernel to the kernel.
By commutativity of the diagram we have that for all
b 2 Im(⇡n�1),�n(b) 2 Im( n�1), since for all b there is necessarily a b

0 2 A
n�1

such that ⇡n�1(b0) = b and  
n�1(�n�1(b0)) 2 Im( n�1) , thus � maps the

image to the image.

Definition 5.5 The sequence of complexes 0 ! A !↵ B !
�

C ! 0 is a short

exact sequence i↵ 0 ! A
n !
↵n

B
n !
�n

C
n ! 0 is a short exact sequence for all n.

Definition 5.6 For a groupG and aG-module A we letGn = G⇥G⇥· · ·⇥G⇥G

be the direct product of G n times. We will define C
n(G;A) as A for n = 0

and as all maps from G
n to A for n  1. The elements of Cn(G;A) are called

n-cochains of G with values in A.

We want to construct a cochain complex out of Cn(G;A). To do this we must
know that all Cn(G;A) are abelian, which is given for C

0(G;A) = A and can
be seen to hold for n > 0 if we consider that the pointwise addition of maps
f1 + f2(g1, g2, g3 · · · gn) = f1(g1, g2, g3 · · · gn) + f2(g1, g2, g3 · · · gn) commutes.
Next we will need homomorphisms.

Definition 5.7 We define the coboundary homomorphisms
�n : Cn(G;A) ! C

n+1(G;A) by

�n(f)(g1, g2, g3 · · · gn+1) =g1 · f(g2, g3 · · · gn+1)

+
nX

i=1

(�1)if(g1, g2, g3 · · · , gigi+1, · · · gn+1)

+ (�1)n+1
f(g1, g2, g3 · · · gn)

By how addition of maps worked we can see that � is a homomorphism. It can
also be calculated that �n+1 � �n = 0. Given this we have set up a cochain
complex and we can calculate the cohomology groups.

Definition 5.8 The elements of ker(�n) are called n-cocycles.
The elements of im(�n�1) are called n-coboundaries
We define H

n(G,A) as the quotient ker(�n)/im(�n�1) with the exception of
H

0(G,A) which will be defined as ker(�n)/1 for lack of a � we could take the
image of.

12



5.1 Category of 2-cocycles Z2(G;A)

Definition 5.9 The category of 2-cocycles has as objects all normalised
2-cocycles, the functions ⌧ : G2 ! A satisfying for all x, y, z 2 G

x⌧(y, z)� ⌧(xy, z) + ⌧(x, yz)� ⌧(x, y) = 0,

the cocycle condition given by the definition of �, and ⌧(1, y) = 0 = ⌧(x, 1),
being normalised. As morphisms the category has normalised 1-cochains
� : ⌧ ! ⌧

0 satisfying �1� = ⌧�⌧ 0, functions � : G ! A such that for all x, y 2 G

x�(y)� �(xy) + �(x) = ⌧(x, y)� ⌧
0(x, y)

and �(1) = 0.

Remark Composition for � is addition, and 0 acts as the identity morphism of
every object ⌧ . The category axioms are obviously satisfied. Every morphism
� is invertible, with inverse �� so Z2(G;A) is a groupoid.

Definition 5.11 For a ring R with multiplicative identity 1 an abelian group
A and an operation ⇤ : R⇥A ! A such that
r ⇤ (a+ a

0) = r ⇤ a+ r ⇤ a0
(r + r

0) ⇤ a = r ⇤ a+ r
0 ⇤ a

rr
0 ⇤ a = r ⇤ r0 ⇤ a and

1 ⇤ a = a,
A with ⇤ is a R-module. If R-module A has a basis, that is to say there is a
subset S ✓ A such that for all a 2 A we can write a =

Pn
i=0 ri ⇤ si and the

elements of S linearly independent, then A is called free.

Definition 5.12 For a R-module A, a possibly infinite exact sequence

· · ·E3 ! E2 ! E1 ! E0 ! A ! 0

with Ei being R-modules is called a resolution.

Definition 5.13 For a commutative ringR and a finite groupG = {g1, g2 · · · gn},
the group ring, RG, of G with coe�cients in R is defined to be the set of
sums

Pn
i=1 rigi where ri are elements in R, addition of two sums is defined asPn

i=1 rigi +
Pn

i=1 sigi =
Pn

i=1(ri + si)gi and with (rigi)(sjgj) = (risj)(gigj)
multiplication of two sums is defined as (

Pn
i=1 rigi)(

Pn
j=1 sjgj) =

P
i,j(rigi)(sjgj).

Theorem 5.14 For group G and G-module A, Given a resolution

· · ·ZG!
f2
ZG!

f1
ZG!

f0
ZG ! Z ! 0,

where is the group ring of G with coe�cients in Z, we have that
H

n(G;A) = ker(fn)/im(fn�1) for the chain complex

0 ! A!
f0
A!
f1
A!
f2
A!
f3
A ! · · ·

13



where fi in the second chain complex are maps induced, by maps from ZG to
A, from the respective maps fi in the resolution.

The theorem is constructed from a collection of results not proved in this text.
The theorem will be used to easily calculate cohomology groups in our final set
of examples. The reader is directed to chapter 17 of abstract algebra [1] if the
reader wishes to read about the theory behind the theorem.

6 2-cocycles to extensions

There is a morphism between two objects in the groupoid of 2-cocycles Z2(G;A)
iif they represent the same cohomology class, so

H
2(G;A) = ⇡0(Z2(G;A)).

If we manage to prove that there is an equivalence of categories

F : Z2(G;A) ! E xt(G,A)

from the category of 2-cocycles to the category of extensions then it will trivially
follow that there is a bijection

H
2(G;A) = ⇡0(Z2(G;A)) ⇠= ⇡0(E xt(G,A))

between the second cohomology group, equivalent to the group of components
of the category of 2-cocycles, and the group of components of extensions.

6.1 Construction: between objects

Given ⌧ : G2 ! A a normalised 2-cocycle we construct the extension

0 ! A!
⇡2

A⇥⌧ G !
⇡3

G ! 1,

where A ⇥⌧ G is the group of the set A ⇥ G with multiplication defined by
(a, g)•(b, g0) = (a + gb + ⌧(g, g0), gg0), ⇡2 is the inclusion morphism defined by
⇡2(a) = (a, 1) and ⇡3 is the projection morphism defined by ⇡3(a, g) = g. Given
the definitions of the morphisms it is clear that the sequence is exact. Now we
show that the group axioms are satisfied.
Group axioms

Closure: For all a, a0 2 A, g, g
0 2 G, (a+gb+⌧(g, g0), gg0) is clearly in A⇥⌧G

since g · a0, ⌧(g, g0) 2 A.

14



Associativity:

((a, g)•(a0, g0))•(a00, g00)
= (a+ g · a0 + ⌧(g, g0), gg0)•(a00, g00)
= (a+ g · a0 + ⌧(g, g0) + gg

0 · a00 + ⌧(gg0, g00), gg0g00)

= (a+ g · a0 + g · ⌧(g0, g00) + gg
0 · a00 + ⌧(g, g0g00), gg0g00)

= ⇤ = (a+ g · a0 + gg
0 · a00 + g · ⌧(g0, g00) + ⌧(g, g0g00), gg0g00)

= (a, g)•(a0 + g
0 · a00 + ⌧(g0, g00), g0g00)

= (a, g)•((a0, g0)•(a00, g00)),

where we use that A is abelian and the cocycle condition at ⇤.

Identity:(0,1); Using normalisation, ⌧(g, 1) = ⌧(1, g0) = 0 we get:

(a, g)•(0, 1) = (a+ g · 0 + ⌧(g, 1), g1) =

= (a, g) = (0 + 1 · a+ ⌧(1, g), 1g) = (0, 1)•(a, g).

Inverse:(�g
�1 · a� g

�1 · ⌧(g, g�1), g�1);

(a, g)•(�g
�1 · a� g

�1 · ⌧(g, g�1), g�1) =

= (a+ g · (�g
�1 · a� g

�1 · ⌧(g, g�1)) + ⌧(g, g�1), gg�1) =

= (a� a� ⌧(g, g�1) + ⌧(g, g�1), 1) = (0, 1).

For left multiplication we will use the cocycle condition with
x = g

�1
, y = g, z = g

�1 and normalisation.

(�g
�1 · a� g

�1 · ⌧(g, g�1), g�1)•(a, g) =
= (�g

�1 · a� g
�1 · ⌧(g, g�1) + g

�1 · a+ ⌧(g�1
, g), g�1

g) =

= (�g
�1 · ⌧(g, g�1) + ⌧(g�1

, g), 1) =

= (�⌧(g�1
g, g

�1) + ⌧(g�1
, gg

�1), 1) = (0, 1).

6.2 Morphisms of extensions and 1-cochains

Let � : ⌧ ! ⌧
0 be a morphism in the category of cocycles Z2(G;A). Recall that

� is a normalised 1-cochain from G to A such that �1� = ⌧ � ⌧
0 or equivalently

g · �(g0) � �(gg0) + �(g) = ⌧(g, g0) � ⌧
0(g, g0) for all g, g0 2 G. To obtain a

corresponding morphism �� between extensions

0 A A⇥⌧ G G 0

0 A A⇥⌧ 0 G G 0

��

15



We define �� : A⇥⌧ G ! A⇥⌧ 0 G by ��(a, g) = (a+ �(g), g).
Since �1� = ⌧ � ⌧

0 we have

��((a, g)•(a0, g0)) =
= (a+ g · a0 + ⌧(g, g0) + �(gg0), gg0) =

= (a+ g · a0 + g · �(g0) + �(g) + ⌧
0(g, g0), gg0) =

= (a+ g · (a0 + �(g0)) + �(g) + ⌧
0(g, g0), gg0) =

= ��((a, g))•��((a0, g0))

and therefore that �� is a group homomorphism. To see that the diagram is
commutative we need only check that ��((a, 1)) = (a, 1), since �� only changes
the fist position of the double, which can be seen by remembering that � is
normalised i.e. �(1) = 0. Since composition of morphisms in Z2(G;A) works
by addition it is clear that if � and �0 are composable then ����0 = �� � ��0 .
Lastly the identity morphisms exist and we can conclude that we have defined
a functor F : Z2(G;A) ! E xt(G,A).

7 The functor F is an equivalence of categories

Now that we have defined our two categories and our functor F between them
it is time to show that F is an equivalence of categories, done by showing that
it is fully faithful and essentially surjective.

7.1 Fully Faithfulness

To show that F is fully faithful we need to show that there is a unique 1-cochain
� for every extension

0 A A⇥⌧ G G 0

0 A A⇥⌧ 0 G G 0

�

such that �� = �. For this to hold, by how we defined �� , we would need
that �(0, g) = (�(g), g) and this can and will be used to uniquely define �.
As in the previous section, for the diagram to be commutative �(a, 1) = (a, 1)
and in particular this implies that �(0, 1) = (0, 1) = (�(1), 1) so �(1) = 0,�
is normalised. To see that for this �,�� = � note that (a, g) = (a, 1)•(0, g) so
knowing that � is a group homomorphism we get

�(a, g) = �(a, 1)•�(0, g) =
= (a, 1)•(�(g), g) =
= (a+ �(g), g) = ��(a, g).
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7.2 Essential surjectivity

To show essential surjectivity we need to show that any extension in our category
of extensions is isomorphic to one our functor F gives us from the category of
2-cocycles. Given such an extension

0 ! A ! E!⇡G ! 0,

to find a corresponding 2-cycle we first find a function f : G ! E such that
⇡ � f = 1 and f(1) = 1 which is always possible by the axiom of choice,
specifically the formulation of the axiom of choice as ”every surjective function
has a right inverse”, since ⇡ is surjective. Usually f will not be a
homomorphism however ⌧(g, g0) = f(g)f(g0)f(gg0)�1 can be used to tell ”how”
f fails at being a homomorphism. Now note that ⇡(⌧(g, g0)) = 1, since ⇡
is a group homomorphism and ⇡ � f = 1, meaning that ⌧ defines a function
⌧ : G2 ! A. Now to see that ⌧ is a normalised 2-cocycle. Since f(1) = 1 we
have,

⌧(1, g0) = f(1)f(g0)f(1g0)�1 = 0 =

= f(g)f(1)f(g1)�1 = ⌧(g, 1),

so we know that ⌧ is normalised. To show that ⌧ is a 2-cocycle, that it
satisfies the cocycle condition, we work in E with A ✓ E using that the
G-module structure on A agrees with the one from our extension. Since ⇡�f = 1
we can let ḡ = f(g) and for all g 2 G, a 2 A, g · a = f(g)af(g)�1 so together
with the definition of ⌧ the cocycle condition becomes the lengthy equation

f(g)f(g0)f(g00)f(g0g00)�1
f(g)�1(f(gg0)f(g00)f(gg0g00)�1)�1

f(g)f(g0g00)f(gg0g00)�1

(f(g)f(g0)f(gg0)�1)�1 = 1

Now we will be simplifying and since ⇡ is a homomorphism inverting f the
terms in square brackets are in the kernel of ⇡ and therefore in the abelian
group A so we can use that it can commute. Given these observations we get

f(g)f(g0)f(g00)[f(g0g00)�1
f(g)�1

f(gg0g00)][f(g00)�1
f(gg0)�1

f(g)f(g0g00)]f(gg0g00)�1

f(gg0)f(g0)�1
f(g)�1 =

f(g)f(g0)f(g00)f(g00)�1
f(gg0)�1

f(g)f(g0g00)f(g0g00)�1
f(g)�1

f(gg0g00)f(gg0g00)�1

f(gg0)f(g0)�1
f(g)�1 =

f(g)f(g0)f(g00)f(g00)�1
f(gg0)�1

f(gg0g00)f(gg0g00)�1
f(gg0)f(g0)�1

f(g)�1 = 1

Equipped with a 2-cocycle ⌧ we create the morphism of extensions

0 A A⇥⌧ G G 0

0 A E G 0

�

⇡
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where �(a, g) = af(g).
Since f(1) = 1 and ⇡(af(g)) = ⇡(a)⇡(f(g)) = g the diagram commutes. Finally
� is a group homomorphism, since

�((a, g)•(a0, g0)) =
= �((a+ g · a0 + ⌧(g, g0), gg0)) =

= (a+ g · a0 + ⌧(g, g0))f(gg0) =

= af(g)a0f(g)�1
f(g)f(g0)f(gg0)�1

f(gg0) =

= af(g)a0f(g0) = �(a, g)�(a0, g0),

so by the short five lemma � is an isomorphism.

7.3 Examples

• Remembering we could not find a way to create a semidirect product
hiio h�1i isomorphic to Q8 we make a new attempt with the techniques

from the proof of essential surjectivity. Since 0 ! hii!
⇡1

Q8!
⇡2h�1i ! 0,

with ⇡1 being the inclusion morphism and ⇡2 forced, is a short exact
sequence we know that there is a fitting 2-cocycle making hii ⇥⌧ h�1i
isomorphic to Q8. We are in luck because h�1i only has two elements
and we only have to decide on four values for ⌧ , one if we notice that by
normalisation we are given
⌧(1, 1) = ⌧(�1, 1) = ⌧(1,�1) = 1.
Using our formula for ⌧ and knowledge that squares in Q8 are either 1 or
�1 we get
⌧(�1,�1) = f(�1)f(�1)f((�1)(�1)) = f(�1)2 = 1,�1.
Since 1 would have no e↵ect in the calculations of the semidirect product
�1 must be chosen. However hii ⇥⌧ h�1i still depends on which group
action is chosen, however the trivial group action can be ruled out because
it would result in (1, 1), (�1, 1), (i,�1), (�i,�1) all being of order two,
too many for the group to be Q8. By process of elimination we have
found the characterisation of the sought after group. To tie this to the
cohomology group H

2(G;A) we calculate the group using Theorem 5.13
and the resolution

· · ·Zh�1i!
f3
Zh�1i!

f2
Zh�1i!

f1
Zh�1i!

f0
Zh�1i ! Z ! 0

where fi(x) = x ⇤ (�1 + (�1)i+1), notice that

fi+1 � fi(x) = x ⇤ (�1� 1)(�1 + 1) = x ⇤ (�1
2 � 1) = x ⇤ (1� 1) = 0.

So H
2(G;A) = ker(f2)/im(f1) for the chain complex

0 ! hii!
f0
hii!

f1
hii!

f2
hii!

f3
hii ! · · · .
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Remembering that �1 acts by inversion we can see that the kernel of f2
are the elements g of hii for which g

�1
g
�1 = 1̄, so ker(f2) = {1,�1}

and im(f1) = {1̄} since the action of (�1 + 1) amounts to sending every
element to the identity. Now noticing the size of the cohomology group is
|H2(G;A)| = |ker(f2)|/|im(f1)| = 2/1 = 2, so only two extensions exist.

• Next we explore the possibilities for Z/2Z ⇥⌧ Z/2Z with trivial group
action, we already know that the direct product results in
the Klein four-group K4 but is there another alternative. Again Z/2Z only
has two elements so we only really need decide what value ⌧(1, 1) should
have, and for it to make a di↵erence it better take the value 1, the element
of order 2. If we assume this and compute we notice that the element (0, 1)
has order 4, since (0, 1)(0, 1)3 = (1, 0)(0, 1)2 = (1, 1)(0, 1) = (0, 0). There
is only one group of order 4 with elements of order 4 and it is the cyclic
group of order 4. With some further work we can work out that we indeed
have found a characterisation of the cyclic group of order 4.

• We might now look at products Z/8Z⇥⌧ Z/2Z, where the action of Z/2Z
on Z/8Z is trivial , so if we calculate the cohomology group we can use
the same resolution as in the example with Q8. The calculation becomes
H

2(G;A) = ker(f2)/im(f1) for the chain complex

0 ! Z/8Z!
f0
Z/8Z!

f1
Z/8Z!

f2
Z/8Z!

f3
Z/8Z ! · · · .

This time, because the action of �1 is trivial, f2 sends everything to the
identity and f1 sends elements to their squares so

|H2(G;A)| = |ker(f2)|/|im(f1)| = 8/4 = 2

and we can only have two distinct extensions. To do things di↵erently lets
first find two short exact sequences and then check what 2-cocycle that
belong to them. With a small search we might find the sequences

0 ! Z/8Z !
�1

Z/8Z⇥ Z/2Z !
 1

Z/2Z ! 0

and

0 ! Z/8Z !
�2

Z/16Z !
 2

Z/2Z ! 0

where �1(a) = (a, 0), 1(a, g) = g,�2(a) = 2a and  2(g) = g(mod2), both
with trivial group action. We only need to search for ⌧(1, 1) and using the
method from Section 7.2. We choose for the first sequence f(1) = (0, 1),
this gives us
⌧(1, 1) = (0, 1)(0, 1)f(1+ 1) = (0, 1)(0, 1)(0, 0) = (0, 0) = 0, to no surprise
the direct product is not a↵ected by the cocycle. For the second sequence
we choose f(1) = 1 giving us ⌧(1, 1) = f(1)+ f(1)+ f(0) = 1+ 1+0 = 2,
where 2 is mapped to from 1 2 Z/8Z.
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8 Summary

In Section 6 we noted that finding an equivalence of categories from the category
of 2-cocycles to the category of extensions to establish an isomorphism between
the second cohomology group, which we identified with the components of the
category of 2-cocycles, and the components of the category of extension. We
continued by constructing a functor between the categories which we would
continue to prove was an equivalence of categories. In Section 7 we first showed
that the functor was fully faithful by proving how to find a unique 1-cochain for
any morphism of extensions. We then proved essential surjectivity by, for any
valid extension E, presenting a way to find the 2-cocycle that would be mapped
to an extension isomorphic to E with the help of a right inverse function. We
had thereby proved that the functor we defined is an equivalence of categories
since it was both essentially surjective and fully faithful.
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