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It should be known that geometry enlightens the intellect and sets one’s
mind right. All of its proofs are very clear and orderly. It is hardly possible
for errors to enter into geometrical reasoning, because it is well arranged and
orderly. Thus, the mind that constantly applies itself to geometry is not likely to
fall into error. In this convenient way, the person who knows geometry acquires
intelligence

Ibn Khaldun (1332-1406) 1

1
Carl C. Gaither, Alma E. Cavazos-Gaither. Gaither’s Dictionary of Scientific Quotations.

Springer Science Business Media, Dey 15, 1390 AP - Science - 2867 pages
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Abstract

Just in recent centuries this indisputable belief, that Euclidean geom-
etry is the absolute and invariable truth which completely justifies the
physical space, came to inadequacy. Geometricians of nineteenth century
demonstrated that there could be another possible form of geometry. In
the following lines we concentrate on non-Euclidean geometry and ba-
sically hyperbolic geometry introducing hyperbolic distance, geodesics,
hyperbolic triangles and their interesting di↵erences with Euclidean tri-
angles and hyperbolic area.
Key words: non-Euclidean geometry, hyperbolic geometry, geodesic.

I want to thank my mentor Rikard Bøgvad.
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1 Introduction

For about 2000 years Euclidean geometry had been thought to be absolute truth.
Euclidean geometry is based on five obvious truths which are called Euclidean
Postulates:

The Euclidean Postulates:

1. Postulate I: To draw a straight line from any point to any point. (That
through any two distinct points there exists a unique line).

2. Postulate II: To produce a finite line continuously in a straight line. (That
any segment may be extended without limit).

3. Postulate III: To describe a circle with any center and distance. (Meaning
of course, radius).”Given any straight line segment, a circle can be drawn
having the segment as radius and one endpoint as center.”2

4. Postulate IV: All right angles are equal to one another. (Where two angles
that are congruent and supplementary are said to be right angles).

5. Postulate V: If a straight line falling upon two straight lines makes the
interior angles on the same side less than two right angles (in sum) then
the two straight lines, if produced indefinitely, meet on that side on which
are the two angles less than the two right angles.3

Fifth postulate can be rephrased. In the fifth century, the philosopher Proclus
re-stated Euclid’s fifth postulate in the following form, which has become known
as the parallel postulate: Exactly one line parallel to a given line can be drawn
through any point not on the given line.

First four postulates are easy to believe but the fifth one was somehow con-
troversial and perhaps Euclid himself knew it because he avoided using it until
he had proven the first twenty eight theorems of the Elements (the famous book
of Euclid in geometry). During 2000 years many subtle thinkers doubted the
fifth postulate and the result of their delicacy was the promotion of geometry
to a higher level. Consider postulate V as this question: from any given point
P out of a given line L how many lines parallel to L can be drawn?

2
mathworld.wolfram.com/EuclidsPostulates.html

3
Saul Stahl. The Poincaré Half-plane: A Gateway to Modern Geometry. Jones and Bartlett

Learning, 1993 - Mathematics
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The way one answers this question, determines the kind of geometry that one
is dealing with.

1. There is one and only one line parallel to L passing P . This is the parallel
postulate and is Euclid’s 5th Axiom4 rephrased. This approach gives the
standard Euclidean geometry.

2. There is no parallel line to L passing P . Line in the spherical geometry is
a huge circle that calls geodesic. In this kind of geometry, there is not only
one line passing through two points,such that north and south poles, but
also there are infinitely lines passing through them, which it does not hold
the Euclidean first postulate. In this kind of geometry just axiom 2 and
4 satisfied. Triangles in the spherical geometry makes by circles and sum
of there’s angles are more than ⇡. This approach is seen in the spherical

geometry.

3. There is not parallel line to L passing P . In this kind of geometry any 2
lines intersect 2 points. This phenomenon occurs in elliptic geometry.

In the elliptic geometry the IV Euclidean postulate does not hold.

4. More than one line parallel to L pass from P . This branch leads to hy-

perbolic geometry.

Then there are two kinds of geometry: Euclidean and non-Euclidean.
Non-Euclidean geometry itself is divided in three subdivisions:

• spherical geometry

• elliptic geometry

• hyperbolic geometry

Spherical geometry

Spherical geometry is the geometry of the two-dimensional surface of a sphere.
It is an example of a geometry that is not Euclidean. Two practical applications
of the principles of spherical geometry are navigation and astronomy.

4
A postulate is not quite the same as an axiom. Axioms are general statements that can

apply to di↵erent contexts, whereas postulates are applicable only in one context, geometry

in this case.
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Hyperbolic geometry

Hyperbolic geometry(also called Bolyai–Lobachevsky geometry or Lobachevskian
geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean ge-
ometry is replaced with: For any given line R and point P not on R, in the
plane containing both line R and point P there are at least two distinct lines
through P that do not intersect R. A modern use of hyperbolic geometry is in
the theory of special relativity.5

We will present one model of hyperbolic geometry: the Poincare’s half plane.
Through an interpretation of ”lines” as shortest distance between points with
respect to a distance function that is di↵erent from the usual Euclidean dis-
tance, we will see the first Euclidean axiom holds and the parallel axiom is not.
Our main focus in this paper is on hyperbolic geometry.

5
https://en.wikipedia.org/wiki/Hyperbolic-geometry.
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2 Hyperbolic geometry

2.1 Hyperbolic distance

To introduce hyperbolic distance, and to explain its di↵erence with Euclidean
distance,we want to use the method that Sal Stahl used in his book ‘’Poincaré
half plane” which is applying the concepts of velocity and temperature.We as-
sume that the X axis is infinitely cold and by getting close to it, everything
then contracts, for example moving from A to B takes less time than C to D
and from C to D less time than E to F , because the more one gets close to X
axis the smaller everything would be including our ruler and the moving object.
This less velocity looks as distances are longer. More precisely, we assume that
every distance in hyperbolic geometry is reversely proportional to its distance
to the X axis so it can be assumed that distances in hyperbolic plane are equal
to their amount in an Euclidean plane, divided by their (distance to X axis):

Hyperbolic distance =
Euclidean distance

y
.

It means moving from A to B takes half time of moving from C to D and
one tenth of moving from E to F .

Figure 1: Hyperbolic plane

But this is not a very accurate definition. It only treats distances between
points with the same y-coordinates.To be a little more accurate consider the
triangle ABC with A(x, y), B(x+ dx, y) and C(x+ dx, y+ dy). The Euclidean
length of AC would be:

7



dx2 + dy2.

Figure 2: Euclidean length of AD in rectangle ABCD is
p

dx2 + dy2

The approximation of hyperbolic length of AC would be:

p
dx2 + dy2

y
.

Definition 2.1. The hyperbolic length of any given curve

The hyperbolic length of any given curve K is given by summing small rect-
angles and letting their size go to 0 and is then:

Z

K

p
dx2 + dy2

y
.

This should be compared to the usual definition:

Definition 2.2. Length of an arc in the Euclidean plane of any given

curve is :

Z

K

p
dx2 + dy2.

We recall the motivation for this. To accurately measure the length of an
arc consider the arc K and an arbitrary point ”r(t)” on it:

r(t) = (x(t), y(t)).

8



Length of the arc between points r(t) and r(t+dt) is more and more close to
the size of vector subtraction of r(t) and r(t+dt) vectors,that is |r(t+dt)�r(t)|.
In the figure above :

r(t+ dt) = (x+ dx, y + dy)

r(t) = (x, y)

and
���r(t+ dt)� r(t)

��� =
p

(dx)2 + (dy)2 ⇡
���r0(t)dt

���.

Since
dx = x0(t)dt, dy = y0(t)dt,

the size of r0(t) is :
���r0(t)

���dt =
p

x02(t) + y02(t)dt.

Figure 3: Length of a curve

After integration the length of curve K will be:

L =
Z b

a

���r0(t)
���dt =

Z b

a

q
x02(t) + y02(t)dt.
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This may also be expressed as:

L =
Z

K
ds.

Where
ds =

q
dx2 + dy2.

The important question here is: what is the shortest way between
two given points? Is the straight line the shortest way that links two
point together as in Euclidean plane? Let’s find out, in an example
which we have taken from [3].

Figure 4: Comparing hyperbolic lengths of EB and EA+AB [3]

We compare EB and EA + AB in the picture above using the arc
length:

Z
q
(dx2 + dy2)

y
.

10



The equation of line EB can be acquired from:

Y � y0 =
(y1 � y0)

(x1 � x0)
(X � x0).

E = (0, 0.1)

B = (1, 1)

Then:

Y � 0.1 =
(1� 0.1)

(1� 0)
(X � 0) ) Y = 0.9X + 0.1.

The di↵erential is:

dy = 0.9dx.

Then the hyperbolic length of EB is:

EB =
Z

1

0

q
(dx)2 + (0.9dx)2

0.9x+ 0.1
=

hp
1.81 ln(0.9x+0.1)

i
1

0
= �

p
1.81 ln 0.1 ⇡ 3.442.

For EA : dx = 0, then hyperbolic length of

EA =
Z

1

0.1

q
(dy)2

y
=

Z
1

0.1

dy

y
=

h
ln y

i
1

(0.1)
= � ln 0.1 ⇡ 2.303.

And for AB:

AB =

q
(1)2 + (0dy)2

1
= 1.

hyperbolic length of AB = 1.

EA+ AB = 2.303 + 1 = 3.303 but EB = 3.442.

EA+ AB < EB.
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We knew in Euclidean geometry that the straight line between
two points is the shortest possible way but as we saw above there
was a typical route consisting of two perpendicular straight lines
(EA and AB) which was shorter than the straight way (EB). In
hyperbolic plane the straight line between two points, is not the
shortest way. This shortest way is called a geodesic segment and
one of our aims is to determine it.

12



3 The minimal hyperbolic distance between two

points

It has been shown that the geodesic segment in a hyperbolic plane
is in one of these two forms below:

• A vertical line perpendicular to the X axis.

• An arc of a circle with a center on the X axis.

Theorem 1. The hyperbolic length of a line segment parallel to the Y axis from
point A to B is:

ln
y2
y1

.

Proof. First we calculate the hyperbolic length of these geodesics then we can
prove that these are the true shortest ways. Vertical line: for any given line
perpendicular to the X axis at point ”a” the equation is x = a.

Figure 5: vertical line

Therefore dx = 0 and the length of segment AB with A(a, y1) and B(a, y2)
on this line would be:

Z

c

p
(dx2 + dy2)

y
=

Z y2

y1

dy

y
= lny2 � ln y1 = ln

y2
y1

.

13



In this case x1 = x2, assume that equation of ”G” is:

x = f(y).

dx

dy
= f 0.

Again this is piece wise true since y1 6= y2.

G =

Z y2

y1

p
(f 02dy2 + dy2)

y
=

Z y2

y1

p
(f 02 + 1)

y
� dy

Z y2

y1

dy

y
= ln

y2
y1

.

Theorem 2. The hyperbolic length of a circle segment an arc of a circle between
P and Q with a center on the X axis is:

ln
| csc� � cot�|
| csc↵� cot↵| .

Proof. For any point P on the arc AB of any circle with center C and orthog-
onal to the X axis, x = c+ r cos(✓) and y = r sin(✓).

Then dx = �r sin ✓ and dy = r cos ✓. And the hyperbolic length of arcAB would
be:

Z �

↵

p
(dx2 + dy2)

y
=

Z �

↵

p
(�r sin ✓)2 + (r cos ✓)2

r sin ✓
d✓ =

Z �

↵

rd✓

r sin ✓
=

Z �

↵

d✓

sin ✓
=

Z �

↵

sin ✓

sin2 ✓
d✓ =

Z �

↵

sin ✓

1� cos2 ✓
d✓ =

⇥
u = cos ✓, du = � sin ✓dx

⇤

= �
Z �

↵

du

1� u2
= �1

2

Z �

↵
(

1

1� u
+

1

1 + u
)du

14



Figure 6: Circle with center C on Xaxis

= �1

2
(ln

��k + 1
��� ln

��k � 1
��) + C =

1

2
ln
���
k � 1

k + 1

���+ C

=
1

2
ln

���
cos ✓ � 1

cos ✓ + 1

���+ C =
1

2
ln

���
(cos ✓ � 1)

(cos ✓ + 1)

(cos ✓ � 1)

(cos ✓ � 1)

���+ C

=
1

2
ln

���
(cos ✓ � 1)2

sin2 ✓

���+ C

= ln
���
cos ✓ � 1

sin ✓

���+ C

= ln
��csc✓ � cot✓

��+ C

ln
���
csc� � cot�

csc↵� cot↵

���.

And it remains be proved that these two amounts are the minimums or the
geodesics.But first let us state what we proved.

In this case despite the former case x1 6= x2 the perpendicular bisector of
the segment connecting P and Q is not parallel to X axis and intersects it in

15



C(c, 0). Consider a polar coordination centered on C and horizontal axis coin-
cident on X axis. The curve ”G” is assume to be parametrised by:

r = f(✓).

And the coordinates of P and Q would be:

P (rP ,↵), Q(rQ,�).

Clearly G has to be at least piece wise of this form since x1 6= x2.
And the hyperbolic length of ”G” is:

Z

G

p
(dx2 + dy2)

y
.

Relating equations of Cartesian and polar coordination systems are:

x = c+ r cos ✓, y = r sin ✓.

Then:

dx

d✓
=

dr

d✓
cos ✓ + r

d cos ✓

d✓
= r0 cos ✓ � r sin ✓

dy

d✓
=

dr

d✓
sin ✓ + r

d sin ✓

d✓
= r0 sin ✓ + r cos ✓

) dx2 + dy2 = (r0 cos ✓ � rsin✓)2d✓2 + (r0 sin ✓ + r cos ✓)2d✓2 =

⇥
r02(cos2 ✓+ sin2 ✓) + 2rr0(cos ✓+ sin✓) + r2(cos2 ✓+ sin2✓)

⇤
d✓2 = (r02 + r2)d✓2

)
Z �

↵

p
(dx2 + dy2)

y
=

Z �

↵

p
(r02 + r2)

r sin ✓
d✓ �

Z �

↵

p
(r2)

r sin ✓
d✓ =

Z �

↵

d✓

sin ✓
=

Z �

↵
csc ✓ = ln (csc ✓ � cot ✓)

���
�

↵
= ln

csc� � cot�

csc↵� cot↵
.
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The last is the hyperbolic distance of an arc connecting P and Q which is
part of a circle centered on X axis or our known geodesic. Lastly we can see
that out of an integral we have a formula by which we can calculate the length
of arc AB using central angles that points A and B make with the X- axis.
With this inequality we see that any form of connecting lines between any two
given points is more extended than the arc.

This is the hyperbolic distance of a vertical line connecting P and Q or our
known geodesic.With this inequality we see that any form of curve between any
two given points is more extended than the vertical line.6

Figure 7: We assume that the geodesic connecting P and Q has an arbitrary
form

6
Stahl. The Poincaré Half-plane: A Gateway to Modern Geometry. Jones Bartlett Learn-

ing, 1993 - Mathematics
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3.1 An example

As a numerical example consider the figure 8. We calculate the length of di↵erent
geodesics on the line x = 1 between points (1, 1), (1, 2) and (1, 3) and arcs
PQ,QR and PR on the circle C.

Figure 8: Numerical example for geodesics

Between (1, 1) and (1, 2) the hyperbolic length is :

g1 = ln
y2
y1

= ln
2

1
= ln 2 = 0.6931.

Between (1, 2) and (1, 3) the hyperbolic length is :

g2 = ln
3

2
= ln 1.5 = 0.4056.

Between (1, 1) and (1, 3)the hyperbolic length is :

g3 = ln
3

1
= ln 3 = 1.0987.

g1 + g2 = 0.6931 + 0.4056 = 1.0987 = g3.

PQ : g4 = ln
csc� � cot�

csc↵� cot↵
=

18



ln
csc 60� cot 60

csc 45� cot 45
= ln

1.154� 0.57735

1.4142� 1
=

ln
0.5773

0.414
= ln 1.3939 = 0.3321.

QR : g5 = ln
csc 45� cot45

csc 30� cot30
= ln

1.4142� 1

2� 1.73

= ln
0.4142

0.268
= ln 1.5455 = 0.43536.

PR : g6 = ln
csc 6� cot 60

csc 30� cot 30
= ln

1.1547� 0.57735

2� 1.73

= ln
0.5773

0.26
= ln 2.1543 = 0.76746.

PQ+QR = 0.3321 + 0.43536 = 0.76746 = PR.

In this example we demonstrated that hyperbolic distance is di↵erent from
their respective values in Euclidean plane as for distances equal to unique value
in Euclidean plane which have an intercept larger than y = 1, they are smaller
but when the intercept is smaller than y = 1, the distance would be larger.

Proposition 1. From two given points P = (x1, y1) and Q = (x2, y2) with
x1 6= x2,just and only one circle can be drawn makes a right angle with x-axis.

Proof. We should draw linking line between P and Q and then its perpendicular
bisector which intersects X axis at point C. CPQ is an isosceles triangle. Its
equal sides are CP and CQ and its base is PQ which its corresponding altitude
is the same mentioned perpendicular bisector.

Now by sides CP or CQ as radius and point C as center, a circle can be drawn.
This is a unique circle which pass through those two points and has centered
on X axis. Since C is located on X axis, the diameter of circle is coincided on
X axis and since diameter (radius) is perpendicular on circumference of circle
at intersecting point, therefore it can be said that the circle is perpendicular on
X axis at intersecting points.

19



Figure 9: Through two given points there is an unique circle centered on a given
line.

Identifying ”lines” with geodesics, we have shown that there is a unique
”line” between two points in the Poincare’ half-space. This corresponds to
axiom I of Euclidean geometry. In fact axioms I-IV will be true, and so we can
assume any statement from Euclidean geometry ,which is proved without use of
the parallel axiom. In what follows we will assume that axioms I-IV hold in the
hyperbolic plane, and will use propositions that are derived from these axioms.

20



4 Hyperbolic triangle

A hyperbolic triangle is made from three points which are not located on one
single geodesic and its sides are three geodesics that cut each other at those
three points. The main goal here is to demonstrate that in every hyperbolic
triangle the sum of inner angles is less than ⇡. First we review the angles made
in cross points of geodesics and introduce a way to know their amounts: look
at the picture below:

Figure 10: Angles made in an intersection point of geodesics

4.1 Sum of angles in hyperbolic triangle

Theorem 3. The sum of the angles in a hyperbolic triangle is less than ⇡.

We have a straight geodesic s perpendicular to X axis and bowed geodesics
g, h, and k with centers G,H, and K respectively which are all intersect at point
P . We will describe the angles between these geodesics.

(see figure 11)We denote the angles between two geodesics as 6 (geodesic 1,geodesic
2) and the angle with head A and whose sides end at B and C as 6 BAC or
6 CAB. We denote the tangents at the intersection points to the geodesic g
by g0, etc. After drawing radiuses and tangent lines of geodesics g, h, and k
entering to P it can be shown that:

6 (s, g) = 6 PGS.

6 (g, h) = 6 GPH.

21



6 (g, k) = ⇡ � 6 GPK.

.

Figure 11: Angles of tangent lines of circles at intersection point

For the first of these equalities, we use the following argument. we know that
tangent line Pg0 is perpendicular at radius GP at intersection point.

6 (s, g) = 6 sPg0 =

⇡ � 6 g0PG� 6 GPS =

As we know that angle g0PG is a right angle, then we have:

6 (s, g) = ⇡ � ⇡

2
� 6 GPS =

This last equality follows:

⇡

2
� 6 GPS = 6 PGS.

22



Since in the triangle GPS the angle GSP is a right angle, and then we have:

6 GPS + 6 PGS =
⇡

2
.

Now we will give the argument determining 6 (g, h). By the definition we
get the first equality below:

6 (g, h) = 6 g0Ph0 =

6 g0PG� 6 h0PG =

As we know that 6 g0Pg is a right angle.

6 (g, h) =
⇡

2
� 6 h0PG

again we have that 6 h0PH s a right angle, then:

6 h0PH � 6 h0PG = 6 GPH.

This proves the second equality at the beginning of this section. To see the
third,consider the geodesics g and k. Both g0P and k0P are tangent lines of
those geodesics:

6 (g, k) = 6 g0Pk0 =

6 g0Ps+ 6 sPk0 =

We already found that 6 g0Ps = 6 PGS and semilarity 6 SPk0 = PKS. Now we
have:

6 (g, h) = 6 PGS + 6 PKS = ⇡ � 6 GPK.

This proves all equalities on page 21.

Now to prove that the sum of inner angles in a hyperbolic triangle is less than
⇡ it is simpler to start with right triangles. We will use the preceding way to
calculate angles.

Consider the triangle ABC with heads A(0, k), B(s, t), and C(0, 1) as above.
The head C is a right angle, the side BC is part of a geodesic centered at ori-
gin, the side AB is part of a geodesic centered at D(�d, 0), and the side AC is
part of positive region of Y axis. Now we know by what we have shown above,
that(see figure 12):

23



Figure 12: Angles of hyperbolic triangle ABC

↵ = 6 CAB = 6 ADO.

and

� = 6 ABC = 6 DBO.

Since 6 ACB =
⇡

2
then we will show that:

↵+ � <
⇡

2
or

↵ <
⇡

2
� �.

Because ↵ and � both are acute angles, this is equivalent to showing that .

sin↵ < sin(
⇡

2
� �)

, sin↵ < cos�.

According to rule of cosines in triangle DBO :

r2 + 12 � 2(1)(r) cos� = d2

24



, cos� =
(r2 + 12 � d2)

2r
.

Then

sin↵ < cos� , k

r
<

(r2 + 12 � d2)

2r
.

In the right-angle triangle AOD:

r2 = d2 + k2

Then r2 + 1� d2 = k2 + 1, so the sought inequlity becomes:

k

r
< (

k2 + 1

2r
)

, (
k

r
)r < (

k2 + 1

2r
)r

, 2k < k2 + 1

, 0 < k2 + 1� 2k

= (k � 1)2.

Because we reached to a true inequality then our first step (↵+ � <
⇡

2
) has

been true.

We have proved so far that the sum of inner angles in a hyperbolic

right triangle is less than ⇡. To prove generally, first we claim that in any
triangle at least there is one altitude inside the triangle using Euclid’s 17th
proposition that says ”In any triangle, two angles taken together in any

manner are less than two right angles”. Also according to Euclid’s 16th
proposition when an altitude is external, one of the adjacent angles of external
altitude is obtuse. Therefore there must be two other acute angles a triangle
with n external altitude and consequently the altitude of the third angle (the
obtuse one) would be internal.

Now note that Pro.17 in Elementa is proved without using the parallell ax-
iom, and so will be true for hyperbolic triangle ABC with an internal altitude
AH (picture below). We will have two right triangles, AHB and AHC and as
we had for right triangles:(see figure 14)

6 A1 + 6 B <
⇡

2
.

25



Figure 13: There is at least one internal altitude in any triangle

6 A2 + 6 C <
⇡

2
.

In triangle ABC, sum of angles is equal to:

6 A+ 6 B + 6 C.

Since
6 A = 6 A1 + 6 A2,

we have that

6 A+ 6 B + 6 C = 6 A1 + 6 A2 + 6 B + 6 C =

6 A1 + 6 B + 6 A2 + 6 C <
⇡

2
+

⇡

2
= ⇡

6 A+ 6 B + 6 C < ⇡.

26



Figure 14: An internal altitude bisects any triangle to two right triangles

5 Hyperbolic area

In Euclidean plane the area of any given region (shape) R with either straight
or curved borders is calculable in this manner:

Area(R) =

Z Z

R
dx dy.

Then as we defined before:

Hyperbolic distance =
Euclidean distance

y
,

therefore in hyperbolic plane it can be deduced that hyperbolic area would
be:

ha(R) :=

Z Z

R

dx

y

dy

y
=

Z Z

R

dxdy

y2
.

Consider figure below:
As it is obvious, the area of regions A and B in Euclidean plane is 1 and C

is infinite but it is very di↵erent in hyperbolic plane. Let us explain that with
some examples:

Example 1:
Hyperbolic area of A

A = ha(A) =

Z 1

0

Z 1

0

dxdy

y2
=

Z 1

0

dy

y2
= 1.
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Figure 15: Comparing areas in Euclidean and hyperbolic planes

Example 2:
Hyperbolic area of B

B = ha(B) =

Z 2

1

Z 1

0

dxdy

y2
=

Z 2

1

dy

y2
=

h�1

y

i2
1
=

�1

2
� �1

1
= 1� 1

2
=

1

2
.

Example 3:
Hyperbolic area of C

C = ha(C) =

Z 1

2

Z 1

0

dxdy

y2
=

Z 1

2

dy

y2
=

h�1

y

i1
2

= 0� �1

2
=

1

2
.

Proposition 2. The hyperbolic area of a hyperbolic triangle is ⇡� (↵+ �+ �),
if the angles of the triangle are ↵,�, �.

28



To calculate the area of a hyperbolic triangle we first need to know the area
R restricted between two straight geodesics e and d perpendicular to the X-axis,
and a curved geodesic ”DE” between these two. (see figure 16).

Figure 16: Area of the hyperbolic triangle

”O” is the center of DE and

6 XOD = �.

and
6 XOE = ⇡ � ✏.

Euclidean equation of the circle DE is:

x2 + y2 = r2.

or
y =

p
r2 � x2, if y � 0.

Then the hyperbolic area of R is:

ha(R) =

Z r cos �

r cos(⇡�✏)

⇣Z 1

p
r2�x2

dy

y2

⌘
dx =
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Z r cos �

r cos(⇡�✏)

Z 1

p
r2�x2

dy

y2
dx =

Z cos �

r cos(⇡�✏)
y�1dx

and then,since

y�1 =
1p

r2 � x2
.

Figure 17: Area of R7

ha(R) =

Z cos �)

r cos(⇡�✏)
y�1dx

=

Z (r cos �)

r cos(⇡�✏)

dxp
r2 � x2

= arcsin
x

r

���
cos �

r cos(⇡�✏)
.
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We know that:
cos(⇡ � ✏) = � cos ✏.

Then:
ha(R) = arcsin(cos �)– arcsin(� cos ✏) =

arcsin(cos �) + arc sin(cos(✏)) =

⇡

2
� � +

⇡

2
� ✏ = ⇡ � � � ✏.

Now we use this result to calculate the area of a hyperbolic triangle limited
by the Y axis, geodesic AB and geodesic BC as in the figure below in which:

✓ = � + '.

Figure 18: Area of triangle ABC

Consider figure 18. To find the area of triangle ABC we can subtract of the
area R from the area S.Hence, by the previous result:

ha(ABC) = ha(R)–ha(S).

ha(ABC) = ⇡ � � � ✓–(⇡ � '� (⇡ � ↵))
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= ⇡ � ✓ � � + '� ↵

= ⇡ � ↵� (✓ � ')� �

) ha(ABC) = ⇡ � ↵� � � � = ⇡–(↵+ � + �).

Proposition 3. The area of an hyperbolic triangle is ⇡ � (↵+ � + �).

This means that we can calculate the area of our hyperbolic triangle if we
know its angles. It follows that the same result hold for an arbitrary hyperbolic
triangle.(by subdividing the triangle, by a vertical line)

5.1 Some more di↵erences between hyperbolic and Eu-

clidean triangle

Then the area of a hyperbolic triangle is equal to two right angles minus the
sum of its angles.The interesting subject here is the dependence of area of hy-
perbolic triangle on its angles despite of in Euclidean plane that there is no
relation between area of a triangle and its angles as there is infinite number
of triangles with the same angles with infinitely small areas to infinitely large
areas. In the hyperbolic plane triangles with the same angles have the same
area. Even triangles with equal sum of angles but di↵erent angles, also have
equal areas.

Figure 19: Triangles with same angles but di↵erent areas in Euclidean plane
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