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Abstract

This paper will state and prove the Brouwer fixed-point theorem using the no-
differentiable retraction theorem. In the last section the Brouwer fixed point
theorem will be applied to prove the existence of a Walrasian price equilibrium.
This paper is divided into three sections. The First section states and proves the
no-differentiable retraction theorem. The second section states and proves the
Brouwer fixed-point theorem. The last section states and proves the existence
of a Walrasian price equilibrium.
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1 Introduction

Proving the existence of solutions is an important task in many fields of math-
ematics. The endeavour to prove the existence of solutions in mathematics is
often accomplished by utilizing fixed-point theorems. One of the most impor-
tant fixed-point theorems is the Brouwer fixed-point theorem. The theorem
states that for any continuous function mapping a compact convex set to itself
has a fixed-point. This result has seemingly unlikely application in disciplines
such as economics and game theory. Within economics in particular it has been
applied in order to prove the existence of a general equilibrium in an economy,
that is the existence of a price vector which equilibrates supply and demand of
all markets in an economy.
The Brouwer fixed-point theorem can be proved using a multiple of approaches
involving tools from homology and combinatorics. However, this paper will
prove the theorem using the no-differentiable retraction theorem which states
the impossibility of a differentiable retraction from the unit ball to its boundary.
The main focus of this paper will be to prove the Brouwer fixed-point theorem,
then apply it in the context of a simple general equilibrium model in order
to prove the existence of an equilibrium price which clears all markets in an
economy.
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2 The No-differentiable retraction theorem

In this section I will state and prove the No-differentiable retraction theorem[5].
The No-differentiable retraction theorem will be crucial in the proof of the
Brouwer fixed-point theorem, and by extension proving the existence theorem
of Walrasian equilibrium.
In the first subsection I will present the definition of a retraction. I will also state
the divergence theorem since it is applied in the proof of The No-differentiable
retraction theorem. I will however not prove the divergence theorem since the
focus of this section is to prove the no-differentiable retraction theorem.
In the second subsection I will state and prove the no-differentiable retraction
theorem using the divergence theorem in the first subsection. I will also give an
example of the theorem in the one-dimensional case.

Remark 2.1. I will throughout the paper denote vectors in bold and scalars
in standard text whenever it is necessary. For example, x will denote a vector,
and xi will denote the ith component of a vector. If nothing else is stated x will
just denote a scalar. This is to avoid confusion relating to dot-products and
multiplication of scalars with scalars and scalars with vectors. Dot products
will be denoted in the following way, for example x · y =

∑n
i=1 xiyi and the

norm is denoted as ‖x‖ =
√
x · x.

Remark 2.2. I will throughout this paper differentiate between open ball B̊n
k

and closed balls with radius k with the notation Bn
k . Furthermore, I will denote

the closed unit ball simply as Bn. In other words:

Bn
k = {x ∈ Rn : ‖x‖ ≤ k}

Bn = {x ∈ Rn : ‖x‖ ≤ 1}
B̊n = {x ∈ Rn : ‖x‖ < 1}
B̊n

k = {x ∈ Rn : ‖x‖ < k}.
The boundary will be denoted as

∂Bn
k = {x ∈ Rn : ‖x‖ = k}.

Balls centered on a point p, will be denoted Bn
k (p).

2.1 Preliminary definitions, theorems and context

Definition 2.1 (Retraction). Let S ⊆ Rn and B ⊆ S. A map r : S → B is
said to be a retraction if it is continuous and r(b) = b for all b ∈ B. The set B
is called a retract of S.

Theorem 2.1 (The Divergence theorem). Let V be a compact subset of Rn

which has a piecewise smooth boundary ∂V = S. Let F = (f1, . . . , fn) be a
continuously differentiable vector field, N is the outward pointing unit normal
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field of the boundary of S and ∇ ·F =
∑n

i=1
∂fi
∂xi

is the divergence of F over V ,
then the following holds

∫∫
· · ·
∫

V

∇ · F dV =

∫
· · ·
∫

∂V

F ·N dS.

For proof in the three-dimensional case see [10, p.468].
In the case of n = 1 the above formula reduces to the fundamental theorem of
calculus.

2.2 The No-differentiable retraction theorem: Statement
and proof

Let us begin this subsection with an easy example of the theorem in the one-
dimensional case.

Example 2.1 (One-dimensional case of no-differentiable retraction). We claim
claim that there exists no differentiable f : [−1, 1]→ {−1, 1}, such that f(1) = 1
and f(−1) = −1.

Proof. Clearly f ′(x) = 0 for all x ∈ [−1, 1], since otherwise the range of f would
contain an interval. But:

0 =

∫ 1

−1
f ′(x) dx = f(1)− f(−1) = 1− (−1) = 2 6= 0

Which is a contradiction.

The proof of the no-differentiable retraction theorem can be seen as a general-
ization of the proof above to dimension n. The idea behind the n-dimensional
case is to replace f ′ by the Jacobian determinant and replacing the fundamen-
tal theorem of calculus by the n-dimensional divergence theorem. Since the
divergence theorem can be seen as the analogue of the fundamental theorem of
calculus.

Theorem 2.2. There exists no twice differentiable map f : Bn → ∂Bn, such
that f(x) = x for all x ∈ ∂Bn ⊆ Rn, where Bn is the unit ball.

Proof. Suppose by contradiction that f is such a retraction f(x) = (f1(x), . . . , fn(x)).
Let J(x) be the Jacobian determinant of f at x. Then expand the Jacobian
determinant by the first column:

J(x) =

∣∣∣∣∣∣∣

∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∇f1
...
∇fn

∣∣∣∣∣∣∣

J(x) =

n∑

i=1

(−1)i+1 ∂f1
∂xi

Ei(x).
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Ei(x) is the determinant from the matrix M(x) below by omitting the ith row.

M(x) =




∂f2
∂x1

· · · ∂fn
∂x1

...
. . .

...
∂f2
∂xn

· · · ∂fn
∂xn


 .

The Jacobian determinant vanishes on Bn since the following relation f21 (x) +
· · · + f2n(x) = 1 hold on Bn. If one take the gradient of the relation we get
2f1∇f1 + · · ·+ 2fn∇fn = 0 for all x ∈ Bn, which means the vectors are linearly
dependent since all f1, . . . , fn can not all be zero (because of the sum of the
squares equal one). Hence the Jacobian determinant is zero. Integrating J(x)
over Bn (the integral over Bn is equal to zero since the Jacobian determinant
vanishes on Bn). We find by using the product rule of differentiation that:

0 =

∫

Bn

· · ·
∫
J(x) dx1· · · dxn =

∫

Bn

· · ·
∫ n∑

i=1

(−1)i+1 ∂

∂xi
(f1Ei) dx1· · · dxn+

∫

Bn

· · ·
∫ n∑

i=1

(−1)if1
∂Ei

∂xi
dx1· · · dxn.

We claim that:

n∑

i=1

(−1)i
∂Ei

∂xi
≡ 0

Note if n = 2 the expression reduces to the equality of mixed derivatives.
In order to prove the claim above, let ci,j(x) denote the determinant of the
matrix obtained from M(x) by omitting the ith row and replacing the jth row:

(
∂f2
∂xj

,· · · , ∂fn
∂xj

)

by:

(
∂2f2
∂xi∂xj

,· · · , ∂2fn
∂xi∂xj

)
.

If we use the rule of differentiating determinants we can see that.

∂Ei

∂xi
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂2f2
∂x1∂xi

· · · ∂2fn
∂x1∂xi

... · · ·
...

∂f2
∂xj

· · · ∂fn
∂xj

... · · ·
...

∂f2
∂xn

· · · ∂fn
∂x

∣∣∣∣∣∣∣∣∣∣∣∣∣

+· · ·+

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f2
∂x1

· · · ∂fn
∂x1

... · · ·
...

∂2f2
∂xj∂xi

· · · ∂2fn
∂xj∂xi

... · · ·
...

∂f2
∂xn

· · · ∂fn
∂x

∣∣∣∣∣∣∣∣∣∣∣∣∣

+· · ·+

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f2
∂x1

· · · ∂fn
∂x1

... · · ·
...

∂f2
∂xj

· · · ∂fn
∂xj

... · · ·
...

∂2f2
∂xn∂xi

· · · ∂2fn
∂xn∂xi

∣∣∣∣∣∣∣∣∣∣∣∣∣
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We can see that ∂Ei/∂xi =
∑

j 6=i ci,j .

The equality of mixed derivatives implies that cj,i = (−1)j−i−1ci,j , as the row
of the second derivative gets shifted j − i− 1 rows when one passes from ci,j to
cj,i if i < j and i− j − 1 rows otherwise. Hence:

n∑

i=1

(−1)i
∂Ei

∂xi
=

n∑

i=1

(−1)i


∑

j<i

ci,j +
∑

j>i

ci,j


 =

∑

j<i

(−1)ici,j +
∑

j>i

(−1)i(−1)j−i−1cj,i = 0.

By substituting
∑n

i=1(−1)i ∂Ei

∂xi
into

∫
Bn · · ·

∫
J(x) dx1· · · dxn, then we get the

contradiction once we prove that:

I =

∫

Bn

· · ·
∫ n∑

i=1

(−1)i+1 ∂

∂xi
(f1Ei) dx1· · · dxn 6= 0

We now use the divergence theorem for the above integral I, applied to the
vector field whose ith component is (−1)i+1f1(x)Ei(x). We denote by dσ the
surface element on the unit sphere ∂Bn. We also utilize the fact that the unit
normal of ∂Bn coincides with x = (x1,· · · , xn). Hence:

I =

∫

∂Bn

· · ·
∫
f1(x)

n∑

i=1

(−1)i+1xiEi(x) dσ

In order to calculate I, observe that fi(x) ≡ xi on ∂Bn. This means fi(x)− xi
is constant on ∂Bn. Hence ∇fi−∇xi is orthogonal to ∂Bn on ∂Bn there. Thus
there exists scalars λi(depending on x) such that ∇fi(x) = ∇xi + λix and the
matrix M can be written as:




λ2x1 · · · λnx1

1 + λ2x2 · · ·
...

...
. . .

...
λ2xn · · · 1 + λnxn




The sum
∑n

i=1(−1)i+1xiEi(x) is equal to the determinant:

∣∣∣∣∣∣∣∣∣

x1 λ2x1 · · · λnx1
x2 1 + λ2x2 · · · λnx2
...

...
. . .

...
xn λ2xn · · · 1 + λnxn

∣∣∣∣∣∣∣∣∣
=
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∣∣∣∣∣∣∣∣∣

x1 0 · · · 0
x2 1 · · · 0
...

...
. . .

...
xn 0 · · · 1

∣∣∣∣∣∣∣∣∣
= x1.

Moreover f1(x) = x1 on ∂B. If we insert this result in:

I =

∫

∂Bn

· · ·
∫
f1(x)

n∑

i=1

(−1)i+1xiEi(x) dσ.

We get the result that I =
∫
∂Bn · · ·

∫
x21 dσ > 0, which contradicts:

∫

Bn

· · ·
∫
J(x) dx1 . . . dxn = 0.

This concludes the proof.

For further discussions relating to theorem 2.2 , see [5, p. 265-268].
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3 The Brouwer fixed-point theorem

In this section I will state and prove the Brouwer fixed-point theorem using the
no-differentiable retraction theorem which I proved in the previous section.
In the first subsection I will introduce necessary definitions, lemmas and theo-
rems which will be necessary in order to prove the Brouwer fixed-point theorem.
I will also provide a short history of the Brouwer fixed point theorem.
In the second subsection I will state two versions of the Brouwer fixed-point
theorem: one which relates to the closed unit ball in Rn, and another slightly
more general version which relates to any compact convex subset in Rn. I will
prove both versions, since the second depends on the first. I will also provide
an example of theorem in the one-dimensional case.

3.1 Preliminary definitions, theorems and context

The Brouwer fixed-point theorem is one of the most well-known and important
existence principles in mathematics. It has proved to be a useful tool in order to
prove the existence of solutions in several areas of pure and applied mathematics
as well as in fields such as economics and game theory.
The theorem is named after the Dutch mathematician and philosopher, Luitzen
Egbertus Jan Brouwer(1881-1966), who made important contributions to fields
such as topology, set-theory and complex analysis. He is also the founder of the
mathematical philosophy of intuitionism. However, several proofs of specific
cases of the theorem were already proved before Brouwer proved it for any
finite dimensional case in 1910[13].
The theorem is said to have originated from Brouwer’s observation of a cup of
coffee. If one stirs the liquid in a cup of coffee it would appear as if at least
one point in the liquid does not move, where one can conceive the coffee cup
as a compact convex set and the stirring or the moving of the liquid as the
transformation[13].
In order to proceed we need to state necessary definitions, theorems and lemmas
in order to prove the theorems in the second subsection [1, p.28-33].

Definition 3.1 (Bounded set). A set S ⊂ Rn is said to be bounded if it can be
contained within a ball of finite radius.

Definition 3.2 (Closed set). A set S ⊂ Rn is said to be closed if and only if
it contains all of its limit-points. Alternatively a set S ⊂ Rn is closed if for any
sequence of points {Xn}n∈N in S such that the limit lim

x→∞
Xn exists it holds

that lim
x→∞

Xn ∈ S.

Definition 3.3 (Compact set). A set S ⊂ Rn is said to be compact if and only
if it is both closed and bounded.

Definition 3.4 (Fixed-point). For a continuous map f : X → X, a point x is
said to be a fixed-point if f(x) = x.

7



Definition 3.5 (Fixed-point property). A space X has the fixed-point property
if every map from X to itself has a fixed point.

Definition 3.6 (Convex set). A set S ⊆ Rn is said to be convex if for every
x, y ∈ S, (1− t)x+ ty ∈ S for t ∈ [0, 1] ⊂ R.

Definition 3.7 (Bijection). A function f : X → Y is said to be bijective if it
is both injective and surjective, that is f is a bijection if for all y ∈ Y there
exists an x ∈ X such that f(x) = y, and f(x1) = f(x2) implies that x1 = x2.
A bijective function will have a well-defined inverse.

Definition 3.8 (Topological space). A topological space is a set X together
with a collection of open subsets T of X that satisfies four conditions:

1. The empty set is in T .

2. X is in T .

3. The intersection of a finite number of subsets in T also belong to T .

4. The union of an arbitrary number of sets in T is also in T .

T is called the topology of X.

Definition 3.9 (Continuous function). If X and Y are topological spaces, a
map f : X → Y is said to be continuous if for every open subset U ⊂ Y its
preimage f−1(U) is open in X.

Definition 3.10 (Homeomorphism). Two topological spaces X,Y are homeo-
morphic if there exists a bijective function f : X → Y such that both f and
f−1 are continuous.

Definition 3.11 (Neighborhood). If X is a topological space and p is a point in
X, a neighborhood of p is a subset V of X that includes an open set U containing
p. That is, p ∈ U ⊆ V .

Definition 3.12 (Hausdorff space). A topological space X is said to be a
Hausdorff space if given any pair of points p1, p2 ∈ X, there exists neighborhoods
U1 of p1 and U2 of p2 with U1 ∩ U2 = ∅.
Theorem 3.1. If X has the fixed-point property and X is homeomorphic to Y .
Then Y have the fixed point property.

Proof. Let h : X 7→ Y be a homeomorphism and suppose that g : Y → Y is
continuous. We must show that g has a fixed-point in Y . Notice that

h−1 ◦ g ◦ h : X 7→ X

is continuous. Since X has the fixed-point property there exists x∗ ∈ X with

h−1 ◦ g ◦ h(x∗) = x∗.

Hence g(y∗) = y∗ where h(x∗) = y∗. This ends the proof.
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Lemma 3.1 (Closed map lemma). Suppose F is a continuous map from a com-
pact space to a Hausdorff space. Then if F is bijective it is a homeomorphism.

The proof of the closed map lemma is omitted since it is beyond the scope of
this paper. The proof can be found in [6, p.102-103].

Lemma 3.2 (Any metric space is Hausdorff). Let M = (X, d) be a metric
space then M is a Hausdorff space.

Proof. Let x, y ∈ X and x 6= y, then d(x, y) > 0. Let ε = d(x,y)
2 . Consider the

open balls B̊n
ε (x) and B̊n

ε (y). We claim that they are disjoint.
Suppose B̊n

ε (x) and B̊n
ε (y) are not disjoint. Then there exists z ∈ M such

that z ∈ B̊n
ε (x) and z ∈ B̊n

ε (y). Then d(x, z) < ε and d(z, y) < ε. Hence
d(x, z) + d(z, y) < 2ε = d(x, y). This contradicts the definition of a metric.
Hence the open balls must be disjoint.
The balls B̊n

ε (x) and B̊n
ε (y) are disjoint open sets. Then by the definition of

Hausdorff space the lemma follows.

Theorem 3.2. Any compact and convex subset D of Rn with a non-empty
interior is homeomorphic to the closed unit ball Bn ⊂ Rn.

Proof. Let p be an interior point of D. Without loss of generality let this
interior be 0 = p ∈ int(D). Then there exists a ε such that the open ball B̊n

ε (0)
is contained in D using the dilation x 7→ x/ε we can assume that the open ball
B̊1(0) ⊆ D. We claim that each closed ray starting at the origin intersects ∂D
in exactly one point. Let R be such a closed ray. Because D is compact, its
intersection with R is compact. Therefore there is a point x0 in this intersection
at which the distance to the origin assumes its maximum. It follows that x0

lies on the boundary ∂D. To demonstrate that there can be only one such
point, we need to show that the line segment from 0 to x0 consists entirely of
interior points of D except for x0 itself. Any point on this segment other than
x0 can be written in form tx0 for 0 ≤ t < 1. Suppose z ∈ B̊n

1−t(tx0), and let
y = (z−x0)/(1−t). Since (1−t)‖y‖ = ‖z−x0‖ ≤ 1−t, it follows that ‖y‖ < 1,
so y ∈ B̊1(0) ⊆ D. Since y and x0 are both in D and z = tx0+(1−t)y, it follows
from convexity that z ∈ D. Thus, the open ball B̊n

1−t(tx0) is contained in D,
which implies that tx0 is an interior point. Now we define a map f : ∂D → ∂Bn:

f(x) =
x

‖x‖

In other words, f(x) is the point where the line segment from the origin to
x intersects the unit sphere. Since f is the restriction of a continuous map,
it is continuous, and the discussion above shows that it is bijective. Since ∂D
is compact, f is a homeomorphism by the closed map lemma. Let us define
F : Bn → D:

F (x) =

{
‖x‖f−1

(
x
‖x‖

)
x 6= 0

0 x = 0

9



Then F is continuous away from the origin because f−1 is, and at the origin
because boundedness of f−1 implies F (x) → 0 as x → 0. Geometrically, F
maps each radial line segment connecting 0 with a point ω ∈ ∂Bn linearly onto
the radial segment from 0 to the point f−1(ω). By convexity F takes its values
in D. The map F is injective since points on distinct rays are mapped to distinct
rays, and each radial segment is mapped linearly to its image. It is surjective
because each point y ∈ D is on some ray from 0. By the closed map lemma F
is a homeomorphism. This concludes the proof.

For further discussion relating to theorem 3.4, see [6, p.128-129].

3.2 Brouwer fixed-point theorem: Statement and proof

We are now ready to prove the Brouwer fixed-point theorem. I will prove two
equivalent versions of the theorem, where the second is a slightly more general
version of the first, since it generalizes the result from the first to any compact
and convex subset of Rn.
In the proof of the first version of the Brouwer fixed-point theorem, that is
in the case of the closed unit ball, I will apply the no-differentiable retraction
theorem from section one. However, this will not be sufficient for any continuous
function, just in the case of a twice differentiable function, therefore I will need
to complement the proof with an approximation argument.
Let us consider a one-dimensional example of the Brouwer fixed-point theorem.

Example 3.1 (One-dimensional case of Brouwer fixed-point theorem). Con-
sider a continuous function f : [a, b] → [a, b] then there exists c such that
f(c) = c. This is a direct application of Brouwers theorem since f is a contin-
uous function from a compact convex set to itself. However, this statement is
also an immediate consequence of the well-known intermediate-value theorem.
The following figure gives and illustration of this. Any curve going from the left
side to the right side must intersect the line segment between 0 and 1.

Figure 1: Illustration of f : [0, 1] 7→ [0, 1] and its fixed-point.
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Theorem 3.3. Let Bn ⊂ Rn be the closed unit ball. Let f : Bn → Bn be a
continuous function. Then f has a fixed point. In other words, Bn has the fixed
point property.

Proof. Assume that the function f : Bn → Bndoes not have any fixed points.
Assume also that f is C2.
Since f(x) 6= x, there is a unique line passing through x and f(x). Let h(x)
be intersection point of this line and the unit sphere that is closer to x than to
f(x). See Figure 2. If x ∈ ∂Bn, then h(x) = x, that is h(x) restrict to the
identity on ∂Bn. Since x is on the line segment between f(x) and h(x), one
can write the vector h(x) − f(x) as a multiple t times the vector x − f(x),
where t ≥ 1, this is illustrated in (figure 2). In other words

h(x) = tx + (1− t)f(x).

Figure 2: Illustration of the retraction h(x).

Taking the dot product on both sides of the formula above we get

h(x) · h(x) = (tx + (1− t)f(x)) · (tx + (1− t)f(x)).

Which is equivalent to

t2‖x− f(x)‖2 + 2tf(x) · (x− f(x)) + ‖f(x)‖2 − ‖h(x)‖2 = 0,

where ‖h(x)‖ = 1. Solving this equation for t gives us

t =
−f(x) · (x− f(x))±

√
‖f(x) · (x− f(x))‖2 + ‖x− f(x)‖2(1− ‖f(x)‖2)

‖x− f(x)‖2 .

There are always two distinct real roots. In order to demonstrate this, we need
to show that the expression in the square root is always a positive real number.
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Since ‖f(x)‖ ≤ 1 the expression inside the square root must be non-negative,
so it remains to show that it is non-zero. If it is zero, then since ‖f(x)−x‖ > 0,
it follows that (f(x) · (x − f(x))) = 0 and 1 − ‖f(x)‖ = 0, which means that
‖f(x)‖ = 1 and x · f(x) = ‖f(x)‖ = 1. From the Cauchy-Schwarz Inequality
and ‖x‖ ≤ 1, it follows that ‖x‖ = 1 which implies that x = f(x) which is a
contradiction. This means that the expression inside the square root is positive,
so it has two roots.
There are no roots such that 0 < t < 1, the triangle inequality implies that

‖(1− t)f(x) + tx‖ ≤ (1− t)‖f(x)‖+ t‖x‖ ≤ 1.

So the function

q(t) = t2‖x− f(x)‖2 + 2tf(x) · (x− f(x)) + ‖f(x)‖2 − 1

lies on the interval [−1, 1] if 0 < t < 1. Suppose the value is zero for some
t0. Since there are two distinct roots for the above polynomial it follows that
the latter does not attain its maximum at t0, hence there is some t1 such that
0 < t1 < 1 and the value of the function at t1 is positive. This leads to a
contradiction of our observation of the behavior of the function that a root such
as t0 must be false.
There is one root of q(t) such that t ≤ 0 and a second root such that t ≥ 1.
We know that q(0) ≤ 0 and that lim

t→−∞
q(t) = +∞. By continuity there must

be some t1 such that q(t1) = 0. In a similar way we know that q(1) ≤ 0 and
lim

t→+∞
q(t) = +∞, so again by continuity there must be a t2 > 1 such that

q(t2) = 0.
The unique root satisfying t ≥ 1 is then a C2 function of x and f(x). It
therefore follows that h(x) for this t is a C2 function since f(x) 6= x[11].
We can therefore conclude that h(x) is a twice differentiable retraction from
Bn to ∂Bn, contradicting the No-differentiable retraction theorem [5, p.268].
It now remains to show that this result implies there exists no continuous re-
traction. We can demonstrate this by an approximation argument.
Let us begin by supposing that a continuous f : Bn → Bn is without fixed
point, then ‖f(x)−x‖ > 0 for all x ∈ Bn, this implies that there exists a ε > 0
such that ‖f(x)− x‖ > ε for all x ∈ Bn.
It follows from the fact that smooth functions are dense among continuous
functions[4, p. 47] that there exists a smooth function f̃ : Bn → Bn such that
‖f(x)− f̃(x)‖ < ε

2 for all x ∈ Bn .

We now claim that f̃ does not have a fixed point. Indeed for all x ∈ Bn

ε < ‖f(x)−x‖ = ‖f(x)− f̃(x) + f̃(x)−x‖ ≤ ‖f(x)− f̃(x)‖+ ‖f̃(x)−x‖ <
ε

2
+ ‖f̃(x)− x‖.

12



Then
0 <

ε

2
< ‖f̃(x)− x‖.

Therefore f̃ does not have any fixed point, which demonstrates that the above
result hold in the case of a general continuous function. This concludes the
proof.

I will now state and prove the Brouwer fixed-point theorem in the case of any
compact convex subset of Rn. This will heavily rely on theorems from the
previous subsection.

Theorem 3.4 (Brouwer fixed-point theorem). If S is a compact, convex subset
of Rn with an non-empty interior, and f is a continuous map f : S → S then
there exists a x ∈ S such that f(x) = x.

Proof. Since S is a compact convex subset of Rn with an non-empty interior,
therefore S is homeomorphic to the closed unit ball Bn by theorem 3.2. We
know from theorem 3.3 that Bn has the fixed-point property. Since Bn has the
fixed-point property and Bn homeomorphic to S, it follows from theorem 3.1
that S has the fixed-point property. This proves the theorem.

13



4 Walrasian equilibrium

In this section I will prove the existence of a Walrasian price equilibrium using
the second version of the Brouwer fixed-point theorem presented in the previous
section.
In the first subsection I will present a basic introduction of general equilibrium
theory. This will include some history of general equilibrium theory as well as
definitions and propositions.
In the second subsection I will state and prove the existence of a general price
equilibrium or as it is sometimes called a Walrasian price equilibrium [12, p.31-
37].

4.1 Preliminary definitions, lemmas and context

Economics have always been concerned with the relationship between supply
and demand, and how equilibrium between these occurs. The study of this is
called equilibrium analysis. One of the central questions in equilibrium analysis
is if there exist prices which equilibrate supply and demand.
The study of market equilibrium within the field of economics can be divided into
two different types of models. The first is called partial equilibrium theory which
studies equilibrium in a single market. The second is called general equilibrium
theory, which studies the simultaneous equilibrium of all markets in an economy.
There is a well-known illustration of this in the partial equilibrium case. The
diagram has the independent variable on the y-axis and the dependent variable
on the x-axis since this is the convention in economics.

Figure 3: Supply and demand with equilibrium price p∗ .

One of the first attempts at studying general equilibrium was made by the
French economist Léon Walras[14]. For Léon Walras the price mechanism was
crucial for general equilibrium, that is the process which leads an economy to an
equilibrium price which clears all markets. Léon Walras imagined a scenario of

14



a price adjustment process where the agents meet on a public square where a so
called ’Walrasian auctioneer’ calls out prices. After the auctioneer has done this
the agents calls out their demands at those prices. The auctioneer then adjust
the prices and calls out a new price, this process repeats itself until demand
equals supply, that is the general equilibrium or Walrasian equilibrium.
From the study of general equilibrium two central questions arise:

1. Whether a general equilibrium even exists?

2. And if it exists, what properties does it have?

I will in this paper focus on the first question. The second question relates to
questions about uniqueness of equilibrium and welfare or efficiency properties of
equilibrium. The question relating to existence was proved using fixed point the-
ory by Gérard Debreu and Kenneth Arrow in their 1954 article on the existence
of competitive equilibrium [2]. For further discussion about welfare properties
of equilibrium such as the fundamental theorems of welfare economics, see [7,
p.3-24], [12, p.141-151], [9, p.545-627].

I will now consider a simple Walrasian or general equilibrium model of an ex-
change economy.
The Walrasian model allows us to consider an exchange economy with I agents
i ∈ A = {1, 2, . . . , I} and n commodities or goods l ∈ C = {1, 2, . . . , n}, a
bundle of commodities or goods are described as a non-zero vector x ∈ Rn

+,
and a non-zero price vector p ∈ Rn

+. Each agent i has an non-zero endowment
ei ∈ Rn

+ and a utility function ui : Rn
+ → R. We therefore define the econ-

omy E =
(
(ei, ui)i∈A

)
. Each agent i is faced with an optimization problem of

maximizing his utility function ui(x) subject to his budget constraint Bi. The
budget constraint can be interpreted as stating that the agent cannot consume
for a higher value then the value of his endowments. One can construct the
following optimization problem:

maxui(x)

subject to:
x ∈ Bi = {x · p ≤ ei · p}

Given an initial endowment, the solution to this optimization problem yields
the demand function xi = Di(p) for agent i.

Definition 4.1 (Walrasian equilibrium). A Walrasian equilibrium or general
equilibrium for an economy E is defined as a vector

(
p∗, (xi)i∈A

)
that satisfies

two conditions:

1. For all i ∈ A
xi ∈ arg max

x∈Bi

ui(x)
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2. Markets clear for all l ∈ C
∑

i∈A
Di

l(p) =
∑

i∈A
eil

Remark 4.1. Arguments of the maxima or ”arg max” are the points of the
domain of some function at which the function values are maximized.

In general equilibrium theory, only relative prices matter not their numerical
values. Therefore we can define our price space to the ’price simplex’.

Definition 4.2 (Price simplex). The ’Price simplex’ is defined in the same way
as the unit simplex.

P =

{
p ∈ Rn : p ≥ 0,

n∑

l=1

pi = 1

}
⊂ Rn

Lemma 4.1. The price simplex P is convex and compact.

Proof. This follow from the fact that P is just the unit simplex which has the
property of being compact and convex. To show that P is convex let x,y ∈ P ,
for t ∈ [0, 1]. We can see that since

∑n
k=1 xk =

∑n
k=1 yk = 1:

n∑

k=1

(txk + (1− t)yk) = t
n∑

k=1

xk + (1− t)
n∑

k=1

yk = 1

Hence tx + (1− t)y ∈ P , in other words P is convex.
We know that P is bounded since for any p ∈ P ,

‖p‖ =

n∑

k=1

p2k ≤
(

n∑

k=1

pk

)2

= 1.

This proves it is bounded.
Since P is the intersection of two closed sets

{p ∈ Rn : p ≥ 0}

and {
p ∈ Rn :

n∑

k=1

pk = 1

}

The intersection of two closed sets is closed. Therefore, P is closed. This
proves the lemma.
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Definition 4.3 (The excess demand function). The excess demand function
Z : P → Rn, is defined as:

Z(p) =
∑

i∈A
Di(p)−

∑

i∈A
ei.

Where Di : P → Rn is the demand function for agent i.
The excess demand function Z is assumed to have two properties:

1. Walras’ Law: For p ∈ P

p ·Z(p) =
n∑

l=1

plZl(p) = 0

2. Continuity: Z(p) is a continuous function.

In the case of the excess demand function we say there is an excess demand if
Zl > 0 for some good l and there is an excess supply of Zl < 0, for some good l.
Walras’ law can be thought of as a scarcity assumption, that is, it says that
if there exists an excess demand it must be matched with an excess supply in
another market.

Definition 4.4 (Equilibrium price). p∗ ∈ P is said to be an equilibrium price
vector if Z(p∗) ≤ 0(the inequality holds coordinatewise) with p∗l = 0 such that
Zl(p

∗) < 0. That is, p∗ is an equilibrium price vector if demand Di(p∗) equals
the endowments with possible excess supply of free commodities.

Definition 4.5 (The price adjustment function). The price adjustment function
T : P → P is defined for market l as:

Tl(p) =
max[0, pl + Zl(p)]

n∑

k=1

max[0, pk + Zk(p)]

.

This price adjustment function can be thought of as the ”Walrasian auctioneer”
adjusting prices such that demand equal supply. If there is an excess demand
auctioneer increases the price, if there is an excess supply the auctioneer lowers
the price until equilibrium is attained.

Lemma 4.2. If Walras law is fulfilled and Z(p) is continuous then the price
adjustment function T (p) is also continuous.

Proof. This follows from the fact that the operations max, sum and division
with by an nonzero continuous function maintain continuity. The denominator∑n

k=1 max[0, pk + Zk(p)] in Tl(p) can never be zero because this would mean
that all goods have excess supply simultaneously, which violates the scarcity
assumption of Walras law.
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4.2 The existence of Walrasian price equilibrium: State-
ment and proof

I will now proceed to state the theorem of existence of a general equilibrium or
an Walrasian equilibrium in an exchange economy[12].
I will use the results and definitions from the previous subsection in order to
prove the theorem. In particular lemma 4.1 and lemma 4.2 will be crucial in
order to apply the Brouwer fixed-point theorem. This is because P is a compact
convex set by lemma 4.1 and T : P → P is a continuous function by lemma 4.2.

Theorem 4.1. Let Walras law and the continuity assumptions be fulfilled, then
there exists a p∗ ∈ P such that p∗ is the equilibrium price.

Proof. This proof relies on the lemma that the price simplex is compact and
convex and the lemma which states that the price adjustment function is con-
tinuous. Since P is compact and convex and T : P → P is a continuous function
it follows from the Brouwer fixed-point theorem that there exists a fixed point
p∗ ∈ P such that T (p∗) = p∗, that is the price in which the auctioneer stops
adjusting. We need to show that this break in doing adjustments is the right
thing to do for the auctioneer, that is, we need to show that this p∗ constitute
a general equilibrium price. That is, all markets clear with the exception of
potential oversupply of free good. We have to divide this in two cases.
If we consider the case when T (p∗) = p∗ for each good k, then Tk(p∗) = p∗k.
Looking at the numerator we can distinguish two cases.
Case 1:

p∗k = 0

Case 2:

p∗k =
max[0, p∗k + Zk(p∗)]
n∑

k=1

max[0, p∗k + Zk(p∗)]

> 0.

In Case 1 we have by Brouwer the fixed-point p∗k. We can then show from the
price adjustment function that the following equality must hold

p∗k = 0 = max[0, p∗k + Zk(p∗)].

Hence 0 ≥ p∗k +Zk(p∗) = Zk(p∗) and Zk(p∗) ≤ 0. This is the case of free goods.
In Case 2: Let

λ =
1

n∑

k=1

max[0, p∗k + Zk(p∗)]

.

So that Tk(p∗) = λ(p∗k + Zk(p∗)). Since p∗ is the fixed point of T we have
p∗k = λ(p∗k + Zk(p∗)) > 0. This expression holds true for all k with p∗k > 0 and
λ is the same for all k. Let us consider

(1− λ)p∗k = λZk(p∗),

18



Then multiply both sides by Zk(p∗) to get

(1− λ)p∗kZk(p∗) = λZk(p∗)2

Now sum over all k in Case 2

(1− λ)
∑

k∈Case2

p∗kZk(p∗) = λ
∑

k∈Case2

Zk(p∗)2

Walras law then says

0 =
n∑

k=1

p∗kZk(p∗) =
∑

k∈Case1

p∗kZk(p∗) +
∑

k∈Case2

p∗kZk(p∗).

For k ∈ Case1, p∗kZk(p∗) = 0 so

0 =
∑

k∈Case1

p∗kZk(p∗)

Therefore, ∑

k∈Case2

p∗kZk(p∗) = 0.

Hence,

0 = (1− λ)
∑

k∈Case2

p∗kZk(p∗) = λ
∑

k∈Case2

Zk(p∗)2.

Using Walras’ Law we established that the left-hand side equals 0, but the right-
hand side only equals 0 if Zk(p∗) = 0 for all k such that p∗k > 0 ( in Case 2).
Thus p∗ is an equilibrium price. This concludes the proof.
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5 Concluding remarks

It is rather remarkable that one can construct a mathematical narrative starting
with the divergence theorem and end with a proof of the existence of price
equilibrium in an economy. Since the divergence theorem is usually applied in
the field of physics and engineering, one can then consider it rather strange that
is has something to do with an economic model. Furthermore, the Brouwer
fixed-point theorem can initially seem somewhat divorced from any practical
application, least of all an economic application.
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6 Appendix

Here I will present an alternative way to prove the Brouwer fixed-point theorem.

Theorem 6.1. Every non-empty closed, convex subset D of Rn is a retract of
Rn.

Proof. Let us define RD : Rn → D. For any x ∈ Rn, there exists a unique
y ∈ D with an minimum distance from x, that is [3, p.50]:

‖x− y‖ = inf{‖x− c‖ : c ∈ D}.

We define RD(x) = y to be a function sending a point x ∈ Rn to its nearest
point in D. We need to show that it is continuous. It is enough to show that
RD is non-expansive. In other words we want to show that for all x,y ∈ Rn

‖RD(x)−RD(y)‖ ≤ ‖x− y‖.

Let us denote RD(x) and RD(y) by x′ and y′ respectively. Because of convexity
we know that for all x′,y′ ∈ D and for t ∈ (0, 1)

(1− t)x′ + ty′ ∈ D.

By definition ‖x′−x‖ is the minimum distance between x and any point in D.
Therefore,

‖[(1− 0)x′ + 0y′]− x‖2 = ‖x′ − x‖2 ≤ ‖[(1− t)x′ + ty′]− x‖2.

Therefore ‖[(1− t)x′ + ty′]− x‖2 is increasing at t = 0. That is,

d

dt
‖[(1− t)x′ + ty′]− x‖2 = 2((1− t)x′ + ty′ − x) · (y′ − x′) ≥ 0.

Then at t = 0, we know (x′ −x) · (y′ −x′) ≥ 0. In the same way we know that
at t = 0:

d

dt
‖[(1− t)y′ + tx′ − y]− x‖2 = (y′ − y) · (x′ − y′) ≥ 0

Now consider a function d : R→ Rn which we define as

d(t) = ‖x′ − y′ + t[x− x′ − (y − y′)]‖2,

where we can see that
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d

dt
d(0) = 2(y′ − x′) · (x′ − x) + 2(x′ − y′) · (y′ − y) ≥ 0.

Hence d(t) is an upwards sloping parabola therefore d(t) is non-decreasing on
the interval [0,∞). Then

d(0) = ‖x′ − y′‖2 ≤ ‖x− y‖2 = d(1).

Hence RD is non expansive and therefore continuous. Also, we know that for
all x ∈ D

RD(x) = x.

Therefore RD is a continuous function and a retraction, this concludes the
proof.

Theorem 6.2. If X has the fixed point property and A ⊆ X is retract of X
then A has the fixed-point property.

Proof. Let f : A → A be a continuous function and r : X → A is a retraction.
We must show that f has a fixed point in A. Notice that

f ◦ r : X → A ⊆ X

Since X has the fixed-point property there exists x∗ ∈ X with

f ◦ r(x∗) = x∗

However f(r(x∗)) ∈ A and therefore x∗ ∈ A. Since x∗ ∈ A and r : X → A is a
retraction, we have r(x∗) = x∗. As a result we have f(x∗) = x∗, x∗ ∈ A. This
ends the proof.

Theorem 6.3 (Brouwer fixed-point theorem). If S is a compact, convex subset
of Rn, and f is a continuous map f : S → S then there exists a x ∈ S such
that f(x) = x.

Proof. Since S is compact it is bounded. Therefore there exists a K > 0 such
that for all x ∈ S ‖x‖ < K. This implies that there exists a closed ball Bn

K ⊂ Rn

with finite radius K such that S ⊂ Bn
K . Since Bn has the fixed-point property

and Bn
K is homeomorphic to Bn then Bn

K also have the fixed-point property.
Since S is a non-empty, closed and convex subset of Rn then S is a retract of
Rn. Since Bn

K has the fixed-point property and S ⊂ Bn
K and S is a retract of

Bn
K , then one can conclude that S has the fixed point property. This proves the

theorem.

A similar proof of theorem 6.3 using other methods to prove the fixed point
property of the closed unit ball can be found in [8, p.13].
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