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Abstract

This thesis aims to give an introduction to the foundations of geo-
metric group theory and to present the notion of a hyperbolic group,
�rst introduced by Mikhail Gromov in 1987. First I describe how
�nitely generated groups endowed with the word metric can be re-
garded as geometric objects and what the morphisms between these
objects are. I then reproduce some basic results of geometric group
theory, most notably the Milnor-�varc lemma. Lastly, I discuss hyper-
bolic groups and show that the hyperbolicity property is preserved by
the morphisms.
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1 Foreword

1.1 Aim of thesis

The aim of this thesis is to give a brief introduction to some fundamental
results of geometric group theory and to state some interesting results about
�nitely generated groups, in particular hyperbolic groups. The main idea of
geometric group theory is to study �nitely generated groups as automorphism
groups (i.e. symmetry groups) of metric spaces. There are already a number
of mathematical structures where groups have appeared as automorphism
groups, such as polynomial �eld extensions (Galois groups) and vector spaces
(matrix groups). Another example is partial di�erential equations and Lie
groups.

The central question in geometric group theory is how algebraic structure
of a group G re�ect in geometric properties of a metric space (X, d) that G
acts on, and conversely how geometric properties of (X, d) re�ect on the
algebraic structure of G.

The �rst chapter on groups as metric spaces is dedicated to determine
this correspondence between �nitely generated groups and metric spaces.
It introduces the word metric and the Cayley graph as well as the natural
action of a group on its Cayley graph and shows how a Cayley graph can
be made into a geodesic metric space. Cayley graphs regarded as geodesic
metric spaces are the basic objects of interest in geometric group theory.

Since we are required to choose a �nite generating set for a group in order
to construct a Cayley graph representation for it, one might wonder to what
extent this choice determines the graph. This question is answered in the
next chapter on quasi-isometries. An isometry is a map between two metric
spaces that preserves distances. A quasi-isometry is also a map between met-
ric spaces, but here distances are allowed to be distorted, although not �too
much�. Quasi-isometries are in a sense a weaker form of equivalence between
metric spaces than isometries. It turns out that while di�erent choices of gen-
erating sets yield di�erent Cayley graph representations for a given group,
there is still some properties that are not a�ected by this choice. Given a
�nitely generated group G, all its possible Cayley graphs (corresponding to
di�erent choices of a generating set for G) are quasi-isometric to each other.
Quasi-isometries are the morphisms (structure preserving maps) between the
objects of geometric group theory, and it is through this quasi-isometric lens
we are able to talk about �the� Cayley graph of a group.

Once the groundwork has been laid out in the �rst two chapters we are
able to put together these concepts in order to state what is sometimes
called the fundamental observation of geometric group theory: the Milnor-
�varc lemma (after John Milnor and Albert S. �varc). The lemma not only
provides a tool for determining whether a group is �nitely generated or not,
but it also tells us that whenever a group is acting �nicely� on a geodesic
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metric space, then the Cayley graph of the group has the same so called
�coarse geometry� (large-scale structure) as the space being acted on. In this
chapter we also introduce the notion of growth of a group, another geometric
concept that John Milnor was interested in and served as motivation to prove
the lemma.

In the last part of the thesis the notion of hyperbolic groups are introduced
and we show that the property of hyperbolicity of a group is invariant under
quasi-isometries. To show this invariance after presenting the theory required
is one of the main goals of this thesis.

1.2 Background and overview

A common way groups are �rst introduced to students in mathematics is as
the algebraic concept of a set with some algebraic operations that satisfy a
few axioms. When studying a mathematical concept, however, it is often
useful if one can view the concept from a few di�erent perspectives at the
same time. For example, a group can be thought of as all the ways in which
one can transform a space into itself while preserving some object or structure
in the space. A group can also be thought of as the set of homotopy classes
of continuous loops in a connected topological space, called the fundamental
group. In some cases, additional structure for the group is provided, allowing
it to be studied not only as an abstract algebraic object. A Lie group is an
example in which a group is given the structure of a manifold.

In geometric group theory, algebraic properties of groups are studied not
only through how the groups act on various spaces, but also by thinking of
groups themselves as geometric objects. The fundamental way this is done
is by specifying a �nite set of generators for a group. For a pair (G,S) of
a group with a �nite set of generators for G, one can de�ne a metric on G
called the word metric. The group together with the word metric can then
be considered as a metric space.

Yet another way of thinking about a group G is to specify a presentation
of it�that is, by specifying a set S of generators and a set R of relations
among the generators, commonly denoted G = 〈S | R〉. The fact that a
group has a unique presentation, in the sense that if another group admits the
same presentation then they are isomorphic, was the fundamental building
block for the area of combinatorial group theory that was �rst studied in
the mid to late 1800s. The subject of geometric group theory as a distinct
mathematical theory emerged from the combinatorial group theory during
the late 1980s, largely credited to the works of Mikhail Gromov (e.g. [6], [8]).
Gromovs work sparked an interest among other mathematicians to continue
where he left o�, and we know today that a lot of algebraic properties of
groups can be learned by studying the geometry of groups regarded as metric
spaces.

The proof of the classi�cation theorem for �nite simple groups was com-
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pleted during the early 1980s (with the only exception of quasi-thin groups

whose classi�cation was not proven until 2004), spanning approximately
10,000 pages by about 100 authors and had taken over 30 years to com-
plete. Simple groups are the building blocks of all �nite groups, a bit similar
to how prime numbers are the building blocks (factors) for the natural num-
bers. Geometric group theory is in a natural way a continuation of this
project, since it is concerned with studying in�nite, but �nitely generated,
groups.

The Cayley graph of a group G with respect to a generating set S for G
is a graph that captures the algebraic structure of G in the following sense.
Each vertex of the Cayley graph corresponds to an element of the group and
there is a directed edge from g ∈ G to h ∈ G if and only if there exists a
generator s ∈ S such that gs = h.

In order to construct a Cayley graph for a given group, it is necessary
to specify a set of generators for the group. It is, however, desirable for
any theory developed to as far as possible be independent on this choice of
generating set. The goal is to be able to talk about geometric properties
inherent to a group G instead of considering pairs (G,S) of a group and a
set S of generators for G. The key observation that makes this independence
possible is that while di�erent choices of generating set gives rise to di�erent
word metrics and Cayley graphs, there are certain �large-scale� properties
that do not depend on this choice. To give this some intuition, consider the
following example. The Cayley graph of the group of integers Z with stan-
dard generating set {±1} is an in�nite path. If we change the generating set
to, say, {±2,±3}, the Cayley graph looks a bit like a braid.

Figure 1: Cayley graph of Z with generating set {±1}.

Figure 2: Cayley graph of Z with generating set {±2± 3}.

But if we imagine these two graphs seen from far away they start to
look similar to each other, both looking like in�nite lines or paths. In other
words, the coarse geometry of the graphs are, in some sense, equivalent.
This equivalence is known as a quasi-isometry and is a central concept to
geometric group theory.

As a counterexample, we may consider the Cayley graph of the �nite
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cyclic group Z/nZ for some n ≥ 3 with the standard generating set {±1},
whose Cayley graph looks like an n-cycle or an n-gon. As we zoom out,
the graph looks more and more like a single point, and is not equivalent
(quasi-isometric) to either graphs in Figure 1 and 2.

The notion of a group being hyperbolic is a concept that only makes sense
under the quasi-isometric equivalence relation. The property of a group being
hyperbolic is an inherently geometric property and it is de�ned through
Cayley graph representations of groups. It is therefore necessary that all
possible Cayley graphs corresponding to some group G are either hyperbolic
or not hyperbolic at the same time. To be precise, we require that the
property of hyperbolicity for a group is invariant under quasi-isometries.

2 Objects: groups as metric spaces

We begin by demonstrating how a notion of distance for a groupG is obtained
by �xing a generating set S for G and de�ning the word metric dS on G with
respect to S. Since every element of G can be expressed as a product of a
number of elements of the generating set S, we can de�ne a norm or word
length of an element g ∈ G with respect to S as the least number of elements
of S required to express g as a product. From this we can construct the
word metric dS of G with respect to S that takes two elements g, h ∈ G and
outputs the word length of their di�erence g−1h.

The group G together with the word metric dS may then be considered
as a metric space (G, dS), and we can visualize this metric space as a Cayley
graph representation of G with respect to S, as long as S is �nite. Since
the word metric only takes values in N, the metric space considered will be
di�erent in an essential way from more standard Euclidean, hyperbolic or
elliptic metric spaces and manifolds where the corresponding metrics usually
takes values in R≥0. However, one may endow the edges of a Cayley graph
with a metric (sub)structure by identifying them with copies of the unit
interval [0, 1] ⊂ R, thus making it possible to consider distances not only
between vertices of the graph but between points lying on edges as well.
Hence one extends the word metric dS to a graph metric dΓ taking values in
R≥0.

We shall also see that for a �nitely generated group G, there is a natural
extension of the canonical action of G on itself by left or right translation
(or multiplication) to an action of G on its Cayley graph. This natural
action can be shown to satisfy some properties such as being a proper and
cobounded action. Using the �large-scale� comparison (which is made precise
in the next chapter) of the Cayley graph to other metric spaces one is able
to deduce properties of G by looking at the behaviour of the group action
on various metric spaces.
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2.1 Word length and word metric

For the de�nitions of word length and word metric below, we assume S is a
generating set for a group G and that S is closed under taking inverses, or
symmetric. The de�nitions can also be made when S is not symmetric, by
simply extending S to the set S ∪S−1, where S−1 = {s−1 | s ∈ S}, and then
writing S ∪ S−1 in place of S.

De�nition 1. Let G be a group and let S be a symmetric generating set for
G. A word in S is a �nite sequence s1s2 . . . sn where s1, . . . , sn ∈ S. The
number n is called the length of the word. By evaluating the word in G
using the group operation to multiply the si in order, the result is an element
g ∈ G, called the evaluation of the word s1s2 . . . sn. By convention, the
evaluation of the empty word is the identity element of G.

De�nition 2. Let G be a group and let S be a symmetric generating set
for G. The word length (or word norm) of an element g ∈ G with respect
to S, denoted `S(g), is the shortest length of a word in S whose evaluation
is equal to g.

We have the following elementary properties of the word length.

1. ∀g ∈ G : `S(g) = `S(g−1),

2. ∀g, h ∈ G : `S(gh) ≤ `S(g) + `S(h).

The �rst property follows from the fact that any word s1 . . . sn repre-
senting an element g ∈ G corresponds to a word s−1

n . . . s−1
1 of equal length

representing g−1 and vice versa. For the second property (subadditivity),
observe that any word representing gh can be split into two words represent-
ing g and h respectively. Hence the shortest word representing gh cannot be
larger than the sum of the word lengths of g and h.

De�nition 3. Let G be a group and S a symmetric generating set.
The function

dS : G×G −→ N
(g, h) 7−→ `S(g−1h)

is called the word metric on G with respect to S. Equivalently, dS(g, h)
is the shortest length of a word s1s2 . . . sn in S such that g · s1 · . . . · sn = h.

It is important to note that the word length and the word metric can
vary greatly depending on the choice of generating set S. If we take S = G
then dS becomes the discrete metric, i.e. dS(g, h) = 1 whenever g 6= h.

We shall now verify that the word metric satis�es the axioms for a metric
(A.1 De�nition 23).
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Lemma 1. The word metric dS of a group G with generating set S is a

metric on the set G, making (G, dS) into a metric space.

Proof. By de�nition dS(g, h) ∈ N for all g, h ∈ G, and in particular dS(g, h) ≥
0. Furthermore dS(g, h) = 0 if and only if g−1h is represented by the
empty word, but the empty word represents the identity element e of G,
so dS(g, h) = 0 if and only if g = h.
The fact that dS(g, h) = dS(h, g) for all g, h ∈ G follows from the fact that
`S(g) = `S(g−1) for all g ∈ G.
Lastly, the triangle inequality follows from the subadditivity of the word
length. Given a word of minimum length representing g−1h and one rep-
resenting h−1k, we can concatenate the words to get a word (not necessar-
ily of minimum length) representing g−1hh−1k = g−1k. Hence dS(g, k) ≤
dS(g, h) + dS(h, k).

2.2 A remark on the induced topology

Let (X, d) be a metric space (A.1 De�nition 24) and let p ∈ X be any point.
We de�ne the open ball of radius r centered at p to be the set

Br(p) = {x ∈ X | d(p, x) < r}.

Consider any subset U ⊂ X. We de�ne U to be an open set, with respect to
d, if for every point p ∈ U there exists ε > 0 such that the ball centered at
x with radius ε is contained in U . More precisely,

U is open ⇐⇒ ∀p ∈ U ∃ε > 0 : Bε(p) = {x ∈ X | d(x, p) < ε} ⊂ U .

This collection of open sets is called the induced topology or the topology
generated by d. An important remark to make here is that a metric space is
not a topological space itself, but it does naturally give rise to one via the
metric. It is possible that two di�erent metrics induce the same topology.
For example, take the real numbers R and let d1(x, y) = |x−y| and d2(x, y) =
2|x− y|.

2.3 Cayley graphs

Representing groups with Cayley graphs is a widely used tool in group theory
because it provides a way of visualizing the abstract information of a group
by encoding it in a graph structure. In geometric group theory, in addition
to giving a group a graph structure the Cayley graph can be regarded as a
metric space. Intuitively, one constructs a metric space from a given Cayley
graph by associating each edge with the unit interval [0, 1]1 and each vertex

1While it is certainly possible to choose other numerical values (weights) for each edge,
we will restrict ourselves to the case where all edges are identi�ed with [0, 1] for simplicity.
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with a point. The colletion of intervals and points then becomes a topological
space. Assuming that the original Cayley graph is connected, one can de�ne
the distance between two points as the in�mum of lengths of paths joining
the two points.

An undirected graph where edges are associated with intervals and ver-
tices with points is called a topological graph. Formally, topological graphs
are 1-dimensional CW complexes. A CW-complex is a type of topological
space. See [13] Section 1.A for a formal de�nition of a topological graph.

Ametric graph is, roughly speaking, a metric space obtained by taking
a connected topological graph and de�ning the distance between two points
as the in�mum of the lengths of paths joining them. See [5] Chapter I.1, 1.9
for a formal construction of a metric graph.

De�nition 4. Let G be a group and S be a subset of G. The Cayley
graph of G, denoted Γ(G,S), is a graph whose vertices are in one-to-one
correspondence with the elements of G, and two vertices g, h ∈ G are joined
by a directed edge from g to h if and only if there exists s ∈ S such that
gs = h. Each edge is labelled (or coloured) to denote the element s ∈ S it
corresponds to.

If the subset S generates G, then the labelled Cayley graph Γ(G,S)
uniquely determines G, meaning we can recover all information about the
group by only looking at the graph. However, the labelling is necessary for
this to be true, given that there is more than one generator. Consider as an
example the group Z/4Z with generating set {1,−1} (using additive nota-
tion) and the group Z/2Z× Z/2Z with generating set {(1, 0), (0, 1)}. These
two groups are not isomorphic, but their Cayley graphs become isomorphic
if the labelling is removed.

0 1

23

(0,0) (0,1)

(1,1)(1,0)

Figure 3: Cayley graphs Γ(Z/4Z, {1,−1}) (left) and Γ(Z/2 ×
Z/2Z, {(1, 0), (0, 1)}) (right).

In geometric group theory one usually makes the following assumptions
on the subset S ⊂ G.
• The set S generates G, making Γ(G,S) a connected graph. This as-
sumption is commonly made and sometimes included in the de�nition
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of a Cayley graph.

• In most cases, S is taken to be symmetric (meaning S = S−1). This
allows one to consider Γ(G,S) as an undirected graph.

• The identity element of G is not in S. Hence Γ(G,S) does not contain
any loops (since any loop satis�es g = gs, meaning s = 1).

Note that the word metric on G (De�nition 3) with respect to S corresponds
to the number of edges in a shortest path between two vertices of the Cayley
graph Γ(G,S).

The edges of the Cayley graph are identi�ed isometrically (distance-
preserving, cf. De�nition 13) with copies of the unit interval [0, 1] so that
each edge has a length of 1. This might seem super�uous at �rst, but once
we get to geodesic segments and geodesic metric spaces, this identi�cation
will simplify some of the results. For this reason, when we talk about Cayley
graphs from this point on, this extra structure is included. The metric dΓ on
Γ(G,S), which will be precisely de�ned in Section 2.5, will then be distinct
from the word metric dS , but coincides when the points are vertices.

We have seen that a Cayley graph can be viewed in a few di�erent ways.
The combinatorial view is that of De�nition 4, where a graph is a pair
G = (V,E) of a set V whose elements are called vertices and a set E of pairs
of (distinct) vertices whose elements are called edges.

The topological view is to think of the graph as a one-dimensional CW-
complex. This can be useful if one wants to consider certain topological
properties, such as connectedness. A topological graph is connected if and
only if the associated combinatorial graph it was constructed from is con-
nected.

The third way of viewing Cayley graphs is to view it as a metric graph,
thus regarding it as a type of metric space. This is going to be the main
focus from this point on.

2.4 Group acting on its Cayley graph

An action of a group G on a set X is, formally, a homomorphism from G to
Sym(X), the group of symmetries on X i.e. the set of all bijections from X
to itself. This means that for each g ∈ G, the group action map x 7→ g · x
is a bijection from X to itself. If we want to consider group actions on
objects with additional structure e.g. a metric space (X, d), it makes sense
to consider group actions that preserve the structure of the space i.e. where
the mapping x 7→ g · x is an isometry (see De�nition 13) from the metric
space to itself. In this case we say that G is acting by isometries on the
metric space.

For any group G, there is a canonical action of G on itself by left multi-
plication. One can extend this action in a natural way to an action of G on
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its Cayley graph Γ(G,S): Suppose S is a �nite generating set for G. Since G
already acts on the set of vertices by left multiplication, we can extend this
action by saying that for any k ∈ G, then if there is an edge (g, gs) between
g ∈ G and gs ∈ G, we map that edge to an edge (kg, kgs) connecting kg and
kgs, preserving the set of edges. For points x lying on an edge (g, gs) we
de�ne k ·x as the point satisfying dΓ(kg, k ·x) = dΓ(g, x), meaning each edge
gets mapped isometrically. Thus G acts by isometries on its Cayley graph
Γ(G,S). Here dΓ is the metric on Γ(G,S) which will be formally de�ned in
the next section.

2.5 Geodesic metric spaces

Throughout this subsection, let (X, d) be a metric space.

De�nition 5. A path in X is a continuous map γ : [a, b]→ X where [a, b]
is an interval (connected subset) of R.

Note that a path is a continuous map and not the image of such a map.
Di�erent paths could have the same image in X.

If we have two paths such that the set of points in their images are the
same, and the points are visited in the same order, we want to consider the
paths to be equivalent.

De�nition 6. Let γ1 : [a, b]→ X and γ2 : [c, d]→ X be two paths. We say
that γ1 and γ2 are equivalent if there exists a non-decreasing, continuous
bijection φ : [a, b]→ [c, d] such that γ1 = γ2 ◦ φ.

Paths that are equivalent to each other are called parametrizations or
re-parametrizations of one another. Note that this implies that any path
γ : [a, b] → X can be re-parametrized to any other closed real interval [c, d]

with the mapping φ : [a, b] → [c, d] given by φ(x) = c + (d−c)
(b−a)(x − a). In

particular we may choose [c, d] to be the unit interval [0, 1] and φ(x) = x−a
b−a .

Since every path can be reparametrized to the unit interval in this manner we
could have equivalently de�ned paths to be continuous maps γ : [0, 1] → X
under this equivalence. We shall see that equivalent paths have the same
images and the same length.

If two paths γ1 : [a, b] → X and γ2 : [c, d] → X are equivalent, i.e.
γ1 = γ2 ◦ φ for some φ as in the de�nition above, then the images of γ1 and
γ2 are the same. Indeed, we know that the inverse ϕ−1 : [c, d]→ [a, b] exists
and is a bijection, so that γ1 = γ2 ◦ φ ⇐⇒ γ1 ◦ ϕ−1 = γ2 and hence

Im γ1 = {γ1(t) | t ∈ [a, b]} = {γ1(φ−1(t)) | t ∈ [c, d]}
= {γ2(t) | t ∈ [c, d]}
= Im γ2.
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De�nition 7. Let γ1 : [a, b] → X and γ2 : [c, d] → X be paths such that
γ1(b) = γ2(c). Their concatenation is a path γ1 ∗ γ2 : [a, b + d − c] → X
given by

(γ1 ∗ γ2)(t) =

{
γ1(t) t ∈ [a, b],

γ2(t+ c− b) t ∈ [b, b+ d− c].

That γ1 ∗ γ2 is continuous, and hence a path, can be shown using the
gluing or pasting lemma.

Lemma 2 (Gluing lemma). Let A and B be topological spaces and suppose

A = X ∪ Y where X and Y are either both open or both closed. Suppose

further that f : A→ B is continuous when restricted to both X and Y . Then
f is continuous.

Proof. Recall that f is continuous if the preimage of every open set in B
is open in A or equivalently if the preimage of every closed set is closed.
Suppose C ⊂ B is a closed subset, and suppose X and Y are closed. Then
f−1(C) ∩X and f−1(C) ∩ Y are both closed, since they are the preimages
of f when restricted to X and Y , respectively, and by assumption f is
continuous on the restrictions. Their union (f−1(C)∩X)∪ (f−1(C)∩ Y ) =
f−1(C)∩ (X∪Y ) = f−1(C) is also closed, since it is a union of �nitely many
closed sets. Hence f is continuous. A similar argument is used when X and
Y are both open.

For the concatenation γ1 ∗γ2 of two paths, we know that it is continuous
for t ∈ [0, 1/2] and t ∈ [1/2, 1] by the continuity of γ1 and γ2, so it is
continuous on the union [0, 1] by the gluing lemma.

De�nition 8. Let γ be a path in X. The length of γ, denoted L(γ), is
de�ned by

L(γ) = sup
0=t0≤···≤tn=1

∑
d(γ(ti), γ(ti+1)),

where the supremum is taken over all partitions of [0, 1] and all n ∈ N.

If L(γ) is �nite, the path γ is said to be recti�able.
Note that two equivalent paths γ1 : [a, b] → X and γ2 : [c, d] → X

satis�es L(γ1) = L(γ2). This is so because partitions of [a, b] correspond
bijectively to partitions of [c, d] = [ϕ(a), ϕ(b)] by continuity and the non-
decreasing property of φ from De�nition 6.

From the above de�nition, we have the following two properties. For any
path γ, we have L(γ) ≥ d(γ(a), γ(b)), and for any two paths γ, η, the length
of the concatenation of these two paths is equal to the sum of their individual
lengths. The former of these two properties follows from the fact that since
a < b is a partition of [a, b], we have L(γ) ≥ d(γ(a), γ(b)) since we take the
supremum over all partitions.
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Let γ ∗ η be the concatenation of the paths γ and η, where the endpoint
of γ is the starting point of η. We want to show that L(γ ∗η) = L(γ)+L(η).
Given a chain of points for γ and one for η, we can concatenate them (as
chains) and get a chain of points for γ ∗ η. Hence the supremum L(γ ∗ η)
cannot be less than L(γ) + L(η). Conversely, given a chain of points for
γ ∗ η, we can simply add one point if needed (the common point of γ and
η) to make it into a chain for γ and η. So L(γ ∗ η) ≤ L(γ) + L(η). Thus
L(γ ∗ η) = L(γ) + L(η).

Given a recti�able path γ : [a, b] → X, we may consider the map L :
[a, b] → [0, L(γ)] given by L(t) = L(γ

∣∣
[a,t]

) for t ∈ [a, b] (note that if γ is
recti�able, so is the restriction to any subinterval). The map L is continuous
and weakly monotonic (for a proof, see [5], chapter I.1 proposition 1.20).

De�nition 9. A path γ : [0, `] → X is said to be of unit speed, or called
natural, if

L(γ
∣∣
[t1,t2]

) = t1 − t2
for every subinterval [t1, t2] ⊂ [0, `]. Such paths γ are also said to be
parametrized by arc length. Here ` is the length of γ.

A fairly simple but nonetheless important fact is that every recti�able
path can be re-parametrized to the natural parametrization ([5] prop. 1.20).

De�nition 10. Let (X, d) be a metric space. A geodesic segment from
x ∈ X to y ∈ X is the image of an isometric embedding σ : [0, `]→ X such
that σ(0) = x and σ(`) = y. Explicitly, we have d(σ(t1), σ(t2)) = t2 − t1 for
any t1, t2 ∈ [0, `] (with t1 ≤ t2). In particular ` = d(x, y).

We will use the notation [x, y] for a geodesic segment between x and y.
For a general metric space (X, d) the existence of geodesics between

points is not guaranteed. A simple example of this is any discrete met-
ric space, i.e. where the metric is given by d(x, y) = 1 for all distinct points
x, y ∈ X, and d(x, y) = 0 if x = y. If there exists a geodesic between any two
points of a metric space, then we say that the metric space is geodesic. Note
that if a geodesic exists, it does not need to be unique. An example of where
this is the case is a space with the `1-metric, also known as the taxicab met-
ric. In R2 the `1-metric is given by d((x1, y1), (x2, y2)) = |x1−x2|+ |y1−y2|.

We shall see that Γ(G,S) is a geodesic metric space, but we must �rst
formally de�ne the metric dΓ. If each edge of Γ(G,S) is identi�ed with [0, 1],
meaning each edge has a length 1 associated with it, then there is a natural
way of de�ning the length of a path consisting of �nitely many subpaths of
edges. We can then take the distance between two points of Γ to be the
in�mum of the lengths of paths as above connecting the points. Formally,
we proceed as follows.

For each edge e, let φe be a homeomorphism (i.e. a continuous bijection
such that the inverse function φ−1

e is continuous) from e to [0, 1]. We regard e

13



as an isometric copy of [0, L(e)] where L(e) is the length of e, usually taken to
be 1. De�ne the function ρ : X×X → R≥0∪{∞} in the following way. If two
points x1, x2 belong to the same edge e we set ρ(x1, x2) = L(e)|φe(x)−φe(y)|
where L(e) is the length of e and ρ(x, y) =∞ otherwise. Then we de�ne dΓ

as
dΓ(x, y) = inf

x=x0,...,xn=y

∑
ρ(xi, xi+1),

where the in�mum is taken over all chains from x to y. In some cases one
might want to consider edges of other lengths (or weights), but we will for
convenience restrict ourselves to edges of length 1.2

In this de�nition one can equivalently take chains x = x0, . . . , xn = y
with the restriction that all the xi are vertices for i = 1, . . . , n − 1. To see
this we reason as follows. If

∑
ρ(xi, xi+1) is �nite then for any xi that is not

a vertex, both xi+1 and xi−1 must be contained in the same edge as xi. If
we remove xi from the chain, then the sum will not increase because of the
triangle inequality: ρ(xi−1, xi+1) ≤ ρ(xi−1, xi) + ρ(xi, xi+1). Hence, given
any chain, we can iteratively remove any non-vertices of the "interior" of the
chain to get a new chain satisfying the extra requirement that xi are vertices
for i = 1, . . . , n − 1, and with

∑
ρ(yi, yi+1) ≤ ∑ ρ(xi, xi+1). Therefore the

in�mum taken over the smaller set of chains coincides with the in�mum
taken over all chains from x to y.

Lemma 3. The Cayley graph Γ(G,S) with the metric dΓ is a geodesic metric

space.

Proof. Let x, y ∈ Γ(G,S). If x and y are elements of G, it is clear that since
dΓ(x, y) is the length of a shortest word in S representing x−1y, we can for
such a word s1 . . . sn construct a geodesic segment of length n = dΓ(x, y) by
concatenating the geodesic segments from x to s1, from s1 to s2, and so on,
keeping in mind that each edge is an isometric embedding of [0, 1] and thus
a geodesic segment. When x and y lie on a common edge, then since each
edge is an isometric embedding of [0, 1] we can simply take the restriction of
this embedding to [x, y] which is clearly also an isometric embedding. For
other cases, the following formula holds for all points x, y that do not belong
to a common edge.

dΓ(x, y) = inf{dΓ(x, g) + dΓ(g, h) + dΓ(h, y) | dΓ(x, g) < 1, dΓ(h, y) < 1}.

In other words, in order to go from x to y one �rst has to go to a vertex g being
an endpoint of the edge containing x, then go to some other vertex h, and
�nally go to y staying on an edge that has h as an endpoint. Note that there

2Remark: The way dΓ is de�ned makes it possible to have dΓ(x, y) = 0 for distinct x
and y if lengths of edges are allowed to be 0. Thus dΓ would fail to be a metric in this
case. However, if there is a lower bound on the length of the edges then dΓ is indeed a
metric.
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are at most two possible vertices g and two h that satisfy this requirement
(since an edge has two endpoints). Thus the in�mum is a minimum, and for
such g and h, the concatenation of geodesic segments from x to g, g to h
and h to y gives a geodesic segment from x to y.

Another property of Γ(G,S) regarded as a metric space is that its closed
balls are compact, i.e. Γ(G,S) is a proper metric space. Since S is �nite,
any closed ball of radius r > 0 contains at most a �nite number of edges (the
vertices are contained in the endpoints of edges). Since each edge is a copy
of the compact interval [0, 1], any �nite union of edges is compact. Any edge
that is only partially contained in a closed ball of radius r will give rise to a
closed subset of such an edge, and closed subsets of compact sets are again
compact.

2.6 Proper and cobounded group actions

So far we have shown that every �nitely generated group G acts by isometries
on a proper geodesic metric space, an example being Γ(G,S). However, it is
not enough to require that the space being acted on has nice properties such
as being geodesic, but one also wants the action itself to be nice. For example,
the trivial action of an arbitrary group (possibly in�nitely generated) on a
metric space X consisting of only one point is an example of such an action
that is not very interesting. In this section we state some further results of
the action Gy Γ(G,S).

De�nition 11. An action of a group G on a metric space X is called proper
if for any x ∈ X and any ball B ⊂ X there are only �nitely many elements
of G that map x into B.

It is not too di�cult to see that the action Gy Γ(G,S) is proper. This
is because the orbit of any vertex of the Cayley graph is identi�ed with G
itself, and since any ball contains only a �nite number of vertices (elements
of G) since G is �nitely generated. This property asserts that the points of
an orbit space are in some sense well-spaced.

If a group G acts properly on X, then stabilizers Gx of points x are �nite,
since they in particular consist of elements that map points x ∈ B ⊂ X to
itself.

De�nition 12. An action of a group G on a metric space X is said to
be cobounded if there is a ball B ⊂ X such that G · B = X, where
G ·B = {g ·B | g ∈ G}.

Another way of formulating the preceding de�nition is this: There exists
a point x ∈ X and a positive number r such that any point in the space X
is within distance r of some point of the orbit Gx of x. Thus a cobounded
action says that points of orbits are "pretty much" everywhere.
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Consider balls B ⊂ Γ(G,S) of radius 1. Then we see that since the orbit
space of any vertex of the Cayley graph in G y Γ(G,S) is all of G, this
action is cobounded.

We sum up our facts so far with the following theorem.

Theorem 1. Every �nitely generated group G acts properly and coboundedly

by isometries on a proper geodesic metric space.

An example of such an action is the action ofG on a Cayley graph Γ(G,S)
of G.

3 Morphisms: quasi-isometries

Because the Cayley graph is dependent on �xing a generating set for a group,
one can ask to what extent the generating set determines the graph of a given
group. To answer this question the notion of a quasi-isometry is needed.

3.1 De�nitions and examples

De�nition 13 (Isometry). Let (X, dX) and (Y, dY ) be metric spaces. A
map f : X → Y such that

dY (f(x1), f(x2)) = dX(x1, x2)

for all x1, x2 ∈ X is called an isometric embedding of the space X into
Y . Note that f is injective and continuous by this condition. If f is also
surjective, then f is called an isometry. In this case we say that the metric
spaces are isometric.

The notion of isometries between metric spaces is analogous to the notion
of isomorphisms for groups, rings, modules, and so on, in the sense that they
preserve the structure of the objects.

A quasi-isometry is, roughly speaking, a map that distorts distances only
by some �xed a�ne function (i.e. a linear function plus some constant),
and which is surjective up to a bounded constant. The idea is to preserve
the coarse structure of a metric space while ignoring smaller details. For
example, if we consider the integer line Z seen from far away, its points
seem so close that it becomes hard to distinguish it from the real line R.
Furthermore any real number lies at distance at most 1/2 from some integer,
so that the embedding Z ↪→ R is "coarsely" surjective. A quasi-isometry can
be thought of as a weaker equivalence than an isometry in the sense that an
isometry does not distort distances at all.

De�nition 14 (Quasi-isometry). Let (X, dX) and (Y, dY ) be metric spaces,
and let k ≥ 1 and C ≥ 0 be real numbers. A map f : X → Y such that
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(i)
1

k
dX(x1, x2)− C ≤ dY (f(x1), f(x2)) ≤ k · dX(x1, x2) + C, and

(ii) the C-neighborhood of f(X) is all of Y (i.e. for any y ∈ Y there exists
an x ∈ X such that dY (f(x), y) ≤ C)

is called a (k,C)-quasi-isometry. If such a map exists, the metric spaces
are said to be quasi-isometric. A map that satis�es condition (i) for some
k,C is called a quasi-isometric embedding.

Observe that given a (k,C)-quasi-isometric embedding f , there is no
information at all on scales below the constant C. In particular, f does not
need to be continuous. In such a context it is impossible to measure whether
the image of some point f(x) really coincides with a point y in the target
space, or if f(x) is just some point within distance C to y. A (k, 0)-quasi-
isometric embedding f is also called bi-Lipschitz (the 'bi'-part comes from
the fact that the same k is used in both inequalities, cf. A.1 De�nition 28).

Example 1. The metric spaces (Z, d) and (R, d) with the usual metric
d(x, y) = |x − y| are quasi-isometric with the natural embedding Z ↪→ R
and k = 1, C = 1/2.

Example 2. The map x 7→ x2 from R to R is not a quasi-isometric embed-
ding, since we cannot choose k,C such that |x2 − y2| ≤ k|x − y| + C holds
for all x, y ∈ R.

Example 3. In general, the inclusion of a subspace Y into a metric space
X is a quasi-isometry if and only if Y is quasi-dense in X, i.e. there exists a
constant C > 0 such that every point of X lies in the C-neighborhood of Y .

Example 4. Every bounded metric space is quasi-isometric to a point, since
we can choose the constant C in De�nition 14 to be the diameter of the
space. Equivalently, any two bounded metric spaces are quasi-isometric.
In particular, all �nite groups with a word metric corresponding to some
generating set are quasi-isometric, since they are bounded by the maximum
length of a word.

Example 5. Let G be a group and S a �nite generating set for G. Then
(G, dS) and (Γ(G,S), dΓ) are quasi-isometric. Since the metric dΓ coincides
with dS when considering vertices, and since any point of Γ(G,S) is of dis-
tance at most 1/2 from some vertex, the embedding G ↪→ Γ(G,S) is a
(1, 1)-quasi-isometry.

The following important result asserts that the spaces that result from
two di�erent choices of generating sets for a group still have the same coarse
structure, i.e. that the spaces are quasi-isometric. This means that the
Cayley graph of a group G is well-de�ned up to quasi-isometry, and allows
us to talk about �the� Cayley graph of a group. This also makes it possible to
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speak of quasi-isometric groups, meaning they have quasi-isometric Cayley
graphs. In the next section we shall prove that the relation of being quasi-
isometric is an equivalence relation (Proposition 1) but accepting this for the
moment, we have the following results.

Lemma 4. Let S and T be �nite generating sets for a group G. Then

the metric spaces (G,dS) and (G, dT ) are quasi-isometric with the identity

map. Furthermore, this identity map extends to a quasi-isometry between

the Cayley graphs Γ(G,S) and Γ(G,T ).

Proof. The identity mapping id : (G, dS)→ (G, dT ) is surjective, so we only
need to show condition (i) for this map to be a quasi-isometry. Let

m = max{dS(x, 1) | x ∈ T}

and similarly
m′ = max{dT (x, 1) | x ∈ S}.

Let M be the maximum of m and m′. Suppose dS(g, h) = k for some
g, h ∈ G. This means we can write g−1h = s1 . . . sk where si ∈ S. Now we
can expand each of these si's by some word of length mi ≤M in T , for each
1 ≤ i ≤ k. Thus

g−1h = s1 . . . sk = (t1,1 . . . t1,m1)(t2,1 . . . t2,m2) . . . (tk,1 . . . tk,mk
)

for some ti,j ∈ T and mi ≤ M . Hence dT (g, h) ≤ kM = MdS(g, h). The
same argument shows dS(g, h) ≤ MdT (g, h). Putting both inequalities to-
gether, we get

1

M
dS(g, h) ≤ dT (g, h) ≤MdS(g, h).

Hence the map is a (M, 0)-quasi-isometry.
Recall that each edge in the Cayley graphs is identi�ed with an isometric

copy of [0, 1], giving each edge a length of 1. Consider now the composition

Γ(G,S)
ϕ−→ (G, dS)

id−→ (G, dT )
ι
↪−→ Γ(G,T )

where the last arrow is the inclusion map, and ϕ is any map such that for
any x ∈ Γ(G,S), ϕ(x) is some vertex g ∈ G with dΓ(g, x) ≤ 1/2, where dΓ

is the metric of Γ(G,S). To see that ϕ is a quasi-isometry, note that for any
x, y ∈ Γ(G,S) we have

dΓ(x, y) ≤ dΓ(x, ϕ(x)) + dΓ(ϕ(x), ϕ(y)) + dΓ(ϕ(y), y)

≤ dΓ(ϕ(x), ϕ(y)) + 1

= dS(ϕ(x), ϕ(y)) + 1.
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In the other direction we have

dS(ϕ(x), ϕ(y)) = dΓ(ϕ(x), ϕ(y))

≤ dΓ(ϕ(x), x) + dΓ(x, y) + dΓ(y, ϕ(y))

≤ dΓ(x, y) + 1.

The above inequalities together with the fact that ϕ is surjective (its re-
striction on the vertex set is necessarily the identity map) show that ϕ is
a (1, 1)-quasi-isometry. For the map ι, it is clear that since the metric on
Γ(G,T ) coincides with dT for all g ∈ G and since any point on Γ(G,T )
is at most distance 1/2 from some vertex, it is also a (1, 1)-quasi-isometry.
Then both ϕ and the inclusion ι are (1, 1)-quasi-isometries. Hence the whole
composition is a quasi-isomety by (i) in Proposition 1 and the proof is com-
plete.

3.2 Quasi-isometric inverses

De�nition 15. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y
be a map. A map g : Y → X is called a quasi-inverse of f if there exists a
constant C such that for each x ∈ X we have

dX((g ◦ f)(x), x) ≤ C

and similarly for each y ∈ Y we have

dY ((f ◦ g)(y), y) ≤ C.

A quasi-inverse can be thought of as an inverse function up to a bounded
error.

Proposition 1. The following hold true:

(i) The composition of two quasi-isometric embeddings is a quasi-isometric

embedding. The composition of two quasi-isometries is again a quasi-

isometry.

(ii) Given a quasi-isometric embedding f , then f is a quasi-isometry if and

only if f has a quasi-inverse g. Furthermore g is also a quasi-isometry.

Proof. Part (i).
Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces and suppose f : X → Y

and g : Y → Z are (k,C)-quasi-isometric embeddings (note that we can pick
k and C to be the larger of the potentially di�erent constants of the two
maps f and g). For all x1, x2 ∈ X we have

dZ(g(f(x1)), g(f(x2))) ≤ k · dY (f(x1), f(x2)) + C

≤ k2 · dX(x1, x2) + kC + C.
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Similarly we have

dZ(g(f(x1)), g(f(x2)) ≥ 1

k
dY (f(x1), f(x2))− C

≥ 1

k2
dX(x1, x2)− C

k
− C.

Since k ≥ 1 we have C/k ≤ kC, so g ◦ f is a (k2, kC + C)-quasi-isometric
embedding.

Suppose now that f and g are (k,C)-quasi-isometries. We want to show
that for any z ∈ Z, there exists an x ∈ X such that dZ(g(f(x)), z) ≤ C ′ for
some constant C ′. Since the maps are quasi-isometries, we know that there
exists a y ∈ Y such that dZ(g(y), z) ≤ C and an x ∈ X with dY (f(x), y) ≤ C.
The latter of these gives dZ(g(f(x)), g(y)) ≤ kC + C. We get

dZ(g(f(x)), z) ≤ dZ(g(f(x)), g(y)) + dZ(g(y), z)

≤ (kC + C) + C.

Hence g ◦ f : X → Z is a quasi-isometry.
Part (ii).
Suppose f is a quasi-isometric embedding from X to Y . If f has a quasi-

inverse, then for each y ∈ Y there exists x ∈ X such that f(x) is within
bounded distance of y, because we can simply pick x to be g(y) where g is
the quasi-inverse of f .

For the other implication, suppose f is a (k,C)-quasi-isometry. De�ne
g(y) to be any element x ∈ X such that dY (f(x), y) ≤ C. By de�nition
dY (f(g(y)), y) ≤ C for all y ∈ Y . Then

dX(g(f(x)), x) ≤ k · dY (f(g(f(x))), f(x)) + kC ≤ 2kC,

where the �rst inequality follows from the fact that we can write the left
inequality in (i) of De�nition 14 as dX(x1, x2) ≤ k · dY (f(x1), f(x2)) + kC.
The second inequality follows since the composition f ◦g is the identity map
up to a bounded error C. Hence g is a quasi-inverse.

Finally, we want to show that a quasi-inverse g of f is also a quasi-
isometry. Since we already know that for any y ∈ Y , there exists a x ∈ X
such that dY (f(x), y) ≤ C, namely, x = g(y), we only need to show that g is
a quasi-isometric embedding. By De�nition 15, there is a constant C ′ such
that dY (f(g(y)), y) ≤ C ′. We have

dX(g(y1), g(y2)) ≤ k·dY (f(g(y1)), f(g(y2)))+kC ≤ k·dY (y1, y2)+2kC ′+kC,

where the last inequality follows from the fact that f(g(y)) is within distance
C ′ of y, thus making dY (f(g(y1)), f(g(y2))) and dY (y1, y2) di�er by at most
2C ′ by the triangle inequality. This fact also gives the second inequality:

dY (y1, y2) ≤ dY (f(g(y1)), f(g(y2))) + 2C ′ ≤ kdX(g(y1), g(y2)) + C + 2kC ′.
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The preceding proposition also proves that the property of being quasi-
isometric is an equivalence relation. Clearly any metric space is quasi-
isometric to itself. The transitive property follows from (i) and symmetry
from (ii).

4 Milnor��varc lemma

We are now ready to put together the concepts we have seen so far. The
following theorem says that when a group is acting �nicely� on a geodesic
metric space, then the Cayley graph of the group looks like the space being

acted on. The lemma is useful in geometric group theory because it in
particular provides a way of determining whether a group is �nitely generated
or not. Some authors call it the fundamental observation of geometric group
theory.

Theorem 2 (Milnor��varc lemma). Suppose a group G acts properly and

coboundedly by isometries on a geodesic metric space (X, dX). Then

(i) The group G is �nitely generated;

(ii) For any choice of x0 ∈ X, the map g 7→ g ·x0 is a quasi-isometry from

G to X.

Proof. The proof mimics that of [12], Theorem 4.0.1. Part 1: Constructing
a �nite generating set for G.

Fix a point x0. Since the action is cobounded, there exists a positive
number R such that every x ∈ X satis�es dX(x, gx0) ≤ R for some g ∈ G.
De�ne

S = {g ∈ G | dX(x0, gx0) ≤ 2R+ 1}.
Since the action is proper, the set S must be �nite. The main idea for the
�rst part of the proof is to show that S generates G and that the word length
satis�es `S(g) ≤ dX(x0, gx0) + 2.

Let γ be a geodesic segment from x0 to gx0. Pick a sequence of points
x0 = p0, . . . , pn = gx0 such that dX(pi, pi+1) ≤ 1 and n ≤ dX(x0, gx0) + 2.
Each pi is within distance R to some gix0 (with gn = g and g0 = 1). Observe
that

dX(x0, g
−1
i gi+1x0) = dX(gix0, gi+1x0) ≤ 2R+ 1,

since the action is by isometries. This means by de�nition that g−1
i gi+1 ∈ S,
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in other words gi+1 = gisi for some si ∈ S. But now,

s0 . . . sn−1 = (1s0) . . . sn−1 = (g1s1) . . . sn−1

= (g1g
−1
1 g2)s2 . . . sn−1

= (g2g
−1
2 g3)s3 . . . sn−1

= gn−1sn−1

= gn

= g.

Thus we have written an arbitrary element g as the product of n elements
of S. Hence G is �nitely generated, and we denote its associated word
metric with respect to S with dS . Note that dS(1, g) = `S(g). Since n ≤
dX(x0, gx0) + 2, we have `S(g) ≤ dX(x0, gx0) + 2.

Part 2: Showing that the spaces are quasi-isometric.
Let g = s1 . . . sk where k = `S(g) and let gi = s1 . . . si with g0 = 1. We

notice that

dX(gix0, gi+1x0) = dX(x0, g
−1
i gi+1x0) = dX(x0, si+1x0) ≤ 2R+ 1.

Then

dX(x0, gx0) ≤
∑

dX(gix0, gi+1x0) ≤ (2R+ 1)k = (2R+ 1)`S(g).

Note that both dS and dX are invariant under left multiplication by ele-
ments of G (since the actions of G on itself by multiplication and on X are
both by isometries), that is, dS(g, h) = dS(kg, kh) for all g, h, k ∈ G and
dX(x0, gx0) = dX(hx0, hgx0) for all g, h ∈ G. Therefore we only need to
consider dS(1, g) = `S(g) and dX(x0, gx0) for some g ∈ G.

Taken together, we have shown that

dS(1, g)− 2 ≤ dX(x0, gx0) ≤ (2R+ 1)dS(1, g).

To be explicit, we can rewrite these inequalities as

1

2R+ 1
dS(g, h)− 2 ≤ dX(gx0, hx0) ≤ (2R+ 1)dS(g, h) + 2.

Thus the map g 7→ gx0 is a quasi-isometric embedding on the vertex set of
Γ(G,S). Finally, by the coboundedness property of the action, we know that
the image of the group action is quasi-dense in X, i.e. every x ∈ X lies at
distance most R from some element of the orbit of x0. Thus g 7→ gx0 is a
quasi-isometry and the proof is complete.
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4.1 Growth rate

One of the reasons John Milnor wanted to show the Milnor-�varc lemma
(Theorem 2) was that he was interested in studying the growth functions of
fundamental groups of Riemannian manifolds. A growth function is de�ned
for a �nitely generated group G, and it is a function that measures the
cardinality of the ball of radius n (centered at 1). This, of course, depends
on the choice of �nite generating set for the group. However, we shall see
that the asymptotic behaviour of the growth function does not depend on
said choice; and that the growth rate, up to �being the same scale� (precise
de�nitions given below), is an invariant property under quasi-isometry.

De�nition 16. Let G be a �nitely generated group and let S be a �nite
generating set. The growth function γS : N→ N for (G, dS) with respect
to S is de�ned by

γSG(n) = |{g ∈ G | dS(g, 1) ≤ n}|.
Thus γSG(n) is the number of points contained in the closed ball of radius

n, using the word metric dS on G with respect to the set S. Note that
dS(g, 1) = `S(g). The growth of a group refers to the asymptotic behaviour
of the growth function as n→∞. The growth function of a �nitely generated
group is dependent on the choice of a generating set S, but the asymptotic
behaviour of the growth function shows that this dependency is limited in
the sense that two di�erent choices of generating sets give rise to spaces that
are quasi-isometric. Since a quasi-isometry only distorts distance by some
a�ne function, the respective growth functions cannot be too di�erent. To
make this precise we give the following de�nition.

De�nition 17. Let f and g be non-decreasing functions from N to R+. We
say that f dominates g, denoted g . f , if there exist constants A,B,C
such that

g(n) ≤ A · f(B · n+ C)

for all n ∈ N. If both f . g and g . f we say that f and g are equivalent,
and write f ∼ g.

It can be checked that the equivalence of growth in the above de�nition is
an equivalence relation. This equivalence can be thought of as two functions
are at the same scale, or at the same order of magnitude.

Lemma 5. Let S and T be two �nite generating sets for the group G. Then
their respective growth functions γSG and γTG are equivalent.

Proof. From Lemma 4 the spaces (G, dS) and (G, dT ) are quasi-isometric.
Let id : (G, dS) → (G, dT ) be the identity map and suppose it is a (k,C)-
quasi-isometry. Then dS(g, 1) ≤ kdT (g, 1) + kC from the �rst inequality of
condition (i) in De�nition 14. We see that γSG . γTG. The other direction is
obtained similarly from the other inequality.
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The preceding lemma tells us that all growth functions of a group G are
equivalent, so that changing the generating set for G does not signi�cantly
alter its growth. At this point we may omit the superscript and simply write
γG to denote a representative of the equivalence class of growth functions for
G.

De�nition 18. A growth function γ : N→ R+ is said to be polynomial if
γ(n) . nα for some α > 0. Similarly, a growth function is exponential if
en . γ(n).

Proposition 2. The equivalence class of the growth function is a quasi-

isometry invariant of groups.

Proof. Let G and H be groups and let S and T be �nite generating sets for G
and H, respectively. Let f : G→ H be a (k,C)-quasi-isometric embedding.
Then the image of a ball of radius n, centered at 1, is contained in a ball of
radius kn+C in H. Furthermore, the preimage of any element in H contains
at most m elements for some constant m. This is because the word metrics
must satisfy dS(g1, g2) ≤ kdT (f(g1), f(g2)) + kC, from De�nition 14. From
the inequality we see that if dS(g1, g2) ≥ kC+ 1, then g1 and g2 cannot map
to the same element under f . Hence the preimage of any h ∈ H is contained
in a ball of radius kC + 1. Together, we get

|BG(1, n)| ≤ m · |BH(1, kn+ C)|.

Hence γG . γH . Now, by Proposition 1 a quasi-isometric embedding is
a quasi-isometry if and only if it has a quasi-inverse, and furthermore the
quasi-inverse is also a quasi-isometry, so we may assume g : H → G is a
quasi-isometry. A symmetric argument thus shows γH . γG.

Example 6. If G is a �nite group, then it has constant growth (polynomial
growth of degree 0).

Example 7. A free group of �nite rank r ≥ 2 has exponential growth rate.
Intuitively, since a free group has no relations, it grows �as fast as possible�.
For a proof and further discussion, see [2].

It has been known since the 1960s that all �nitely generated groups have
either polynomial, exponential or intermediate growth (faster than polyno-
mial but slower than exponential), but there were not yet any examples of
groups that had intermediate growth. This was an open problem posed by
John Milnor in 1968, and it was not until 1980 that Grigorchuk managed to
construct the �rst group that he a few years later proved to have intermediate
growth [9].

We end this section with an important result of Gromov that provides a
classi�cation of �nitely generated groups of polynomial growth.
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Theorem 3. A �nitely generated group has polynomial growth if and only

if it is virtually nilpotent, i.e. if it has a nilpotent subgroup of �nite index.

The theorem along with its proof was �rst published in Gromov's 1981
article Groups of polynomial growth and expanding maps [7]. In particu-
lar, from Proposition 2 we see that the property of a group being virtually
nilpotent is a quasi-isometry invariant.

5 Hyperbolic groups

In order to de�ne the notion of hyperbolic groups we need to �rst de�ne
hyperbolic metric spaces. For geodesic metric spaces, there is a relatively
simple way to do this using geodesic triangles. A geodesic triangle is just
the union of three geodesic segments [x, y] ∪ [y, z] ∪ [z, x]. There is another
de�nition that does not require the space to be geodesic, and it uses a notion
called Gromov product. The de�nition using triangles and the de�nition
using the Gromov product are equivalent if the space is geodesic. Since we
are mostly concerned with geodesic metric spaces, the latter de�nition is
omitted.

De�nition 19 (δ-thin condition). Let (X, d) be a geodesic metric space and
[x, y] ∪ [y, z] ∪ [z, x] be a geodesic triangle. If for any point a belonging to
one of the segments there exists a point b belonging to the union of the other
two segments such that d(a, b) < δ for some δ ≥ 0, then we say that the
triangle is δ-thin.

A geodesic metric space in which every geodesic triangle is δ-thin is then
called δ-hyperbolic.

A δ-thin triangle is sometimes also called δ-slim.
IfX is δ-hyperbolic for some δ, we may simply sayX is hyperbolic. These

two de�nitions are equivalent for geodesic metric spaces, up to multiplying
δ with some constant.

A somewhat trivial example of hyperbolic metric spaces are bounded
metric spaces. Simply take δ to be the diameter (i.e. the maximum distance
between two points) of the space. Another simple example is the real line
R. A triangle is then just a union of three intervals, and any point in one of
them necessarily lies in the union of the other two. However, R2 is clearly
not hyperbolic since there is no bound on how close points on one side are
to points on the other two sides.

We are now ready to de�ne the notion of a hyperbolic group.

De�nition 20 (Hyperbolic group). A �nitely generated group G is called
hyperbolic if for some �nite generating set S and constant δ ∈ R≥0, the
Cayley graph Γ(G,S) is δ-hyperbolic.
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The hyperbolicity property of a group is de�ned through its Cayley graph,
which is an object that depends on a choice of �nite generating set. Regard-
less of what generating set is chosen, the resulting Cayley graphs are all
quasi-isometric by Lemma 4. This allows us to talk about a group itself
being quasi-isometric to some metric space, meaning one (and therefore all)
Cayley graphs of the group is quasi-isometric to the space. In order to be
able to talk about groups themselves being hyperbolic, we must show that
hyperbolicity is invariant under quasi-isometries.

Example 8. Any �nite group is hyperbolic since there is a �nite largest
distance between two points on its Cayley graph. Take δ to be this distance.

The Cayley graph of the in�nite cyclic group Z is hyperbolic since, if we
take {−1, 1} as the generating set, a triangle in Γ(Z, {−1, 1}) is just a line
segment. Any point on one �side� is necessarily contained in the union of the
two other sides, so the Cayley graph is 0-hyperbolic.

Example 9. Any free group G of at least two (but �nitely many) generators
is hyperbolic. Consider the Cayley graph of G with respect to the standard
generating set {a, b, . . . , a−1, b−1, . . . } as an undirected graph, meaning pairs
of directed edges of the form a, a−1 are considered as one undirected edge.
Since a free group has no relations, there cannot be a cycle of length at
least 3 in the Cayley graph Γ = Γ(G, {a, b, . . . , a−1, b−1, . . . }) of G. This
is so because a cycle corresponds to a to a word (of length at least 3) in
{a, b, . . . , a−1, b−1, . . . } that is equal to the identity element. But this cor-
responds to a relation of G, since a relation is just some (reduced) word in
the generating set that is equal to the identity. It therefore follows that Γ
contains no cycles. Furthermore we know that Γ is connected; hence it must
be a tree. A geodesic triangle in the Cayley graph therefore looks like a
tripod, and any point of one side is contained in the union of the other two
sides. Thus the Cayley graph is 0-hyperbolic.

5.1 Hyperbolicity is invariant under quasi-isometries

We want to show that hyperbolicity as a property of a space is invariant
under quasi-isometries. However, since the notion of hyperbolicity is stated
in terms of geodesics and since a quasi-isometry may distort distances (but
not �too much�), we are not guaranteed that the image of a geodesic under
a quasi-isometry is again a geodesic. To describe the image of a geodesic
under a quasi-isometry, we require the following notion.

De�nition 21. A (k,C)-quasi-geodesic in the metric space (X, d) is a
(k,C)-quasi-isometric embedding of some interval I ⊂ R into X.

With this de�nition, the image of a geodesic parametrized by arc length

under a (k,C)-quasi-isometric embedding is a (k,C)-quasi-geodesic.
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The idea now is to show that quasi-geodesics are �close� to geodesics in
hyperbolic spaces, since quasi-isometries don't distort distances too much.
In order to do this we use the Hausdor� distance, which is a metric that
measures the distance between two subsets of a metric space.

Suppose (X, d) is a metric space. We can naturally extend the metric d
to be de�ned for subsets B ⊂ X by letting d(x,B) = inf{d(x, b) | b ∈ B}.
In other words, the distance from a point x ∈ X to a subset B ⊂ X is the
in�mum of all the distances between x and points b ∈ B. Using this, one can
de�ne the distance between two subsets A and B by d(A,B) = sup{d(a,B) |
a ∈ A}.

De�nition 22. Let (X, d) be a metric space and let A and B be nonempty
subsets of X. The Hausdor�-distance dH(A,B) is de�ned by

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

The preceding de�nition may also be formulated as follows. For a subset
A ⊂ X, de�ne the generalized ball of radius r around A as

Br(A) =
⋃

a∈A
{x ∈ X | d(a, x) ≤ r}.

Then the Hausdor� distance between two subsets A and B of X is given by

dH(A,B) = inf{r ∈ R≥0 | A ⊂ Br(B) and B ⊂ Br(A)}.

The Hausdor� distance can be thought of as the �largest distance� from a
point in one of the sets to a closest point in the other set. Note however that
this is only precisely true when the in�mum is attained.

We now state and prove the following proposition from which the invari-
ance of hyperbolicity under quasi-isometries follows (Corollary 1).

Proposition 3. Let (X, d) be a hyperbolic metric space. Then for every

k ≥ 1 and C ≥ 0 there exists a R ≥ 0 such that for any (k,C)-quasi-geodesic
γ′ and any geodesic γ = [x, y] with the same endpoints as γ′, the Hausdor�

distance between the images of γ and γ′ is at most R. Furthermore this R
only depends on k,C, δ.

Proof. The proof is divided into three parts and follows the structure of [12],
sec. 5.4.1. and the proof of Theorem 1.9 in [5], Chapter III.H. First one
proves the following preliminary lemma.

Lemma 6. For any k and C there exist constants k′ and C ′ such that: For

any (k,C)-quasi-geodesic γ : [a, b] → X in a geodesic metric space (X, d)
there exists a continuous (k′, C ′)-quasi-geodesic γ′ such that

1. γ′ has the same endpoints as γ;
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2. dH(γ, γ′) ≤ k + C;

3. L(γ′
∣∣
[t1,t2]

) ≤ k′ · d(γ′(t1), γ′(t2)) + C ′ for all t1, t2 ∈ [a, b].

The lemma says that we may replace γ with another quasi-geodesic that
stays within bounded distance of γ. A stronger version of this lemma along
with its proof can be found in [5], Section III, Lemma 1.11. To prove Propo-
sition 3 we may, using this lemma, assume that the quasi-geodesic γ′ in the
proposition satis�es the conditions of the lemma by replacing the constants
k and C from the proposition with k′ and C ′ in the lemma. Since the lemma
gives us a new quasi-geodesic within bounded distance of a given one, it
is enough to prove the proposition for quasi-geodesics of the type that the
lemma gives us. Furthermore, we also assume d(x, y) ≥ 1.

Part (i). First, we show that the shortest distance from any given point
on the geodesic to the quasi-geodesic is bounded logarithmically in terms of
the length of the quasi-geodesic.

Lemma 7. Let (X, d) be a δ-hyperbolic metric space. Assume that p ∈ X
lies on a geodesic with endpoints [x, y] and that α is a path from x to y of

length at least 1. Then

d(p, α) ≤ δ · log2(L(α)) + 2,

where d(p, α) is the shortest distance from the point p to some point on the

path α.

This result tells us that in hyperbolic metric spaces, if one travels along
a path that is far away from a geodesic, then that path will be exponentially
longer. Compare as a counterexample Euclidean 2-space R2 and a geodesic,
which is just a line segment, from a to b. Travelling from a to b along e.g.
a semicircle of some radius r > 0 then gives us a path of length πr · d(a, b),
i.e., a constant times the length of the geodesic.

Proof. We may assume L(α) is �nite. If L(α) ≤ 2, then d(x, y) ≤ 2 and
d(p, α) ≤ d(p, x), since x is a common point of the path α and a geodesic
[x, y], and we are done. We now proceed by induction by splitting α into
two parts of equal length and with the base case being L(α) ≤ 2.

Suppose L(α) ≥ 2. Let q be the point on α so that q splits α into
two parts α1, α2 of equal length. We know that p is within distance δ from
some point p′ either on a geodesic [x, q] or a geodesic [q, y], by de�nition of
hyperbolicity. Suppose WLOG that the �rst case holds and that α1 is the
part of α with endpoints x and q. We have

d(p, α) ≤ d(p, p′) + d(p′, α1)

≤ δ + δ log2(L(α)/2) + 2

= δ log2(L(α)) + 2.
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Going back to the proposition, the (k,C)-quasi-geodesic γ′ from x to y
satis�es L(γ′) ≤ k · d(x, y) + C by Lemma 6 and hence for any point p on
the geodesic [x, y] we have

d(p, γ′) ≤ δ log2(k · d(x, y) + C) + 2.

Part (ii). The next step is to prove that for each point p ∈ [x, y], the
shortest distance to the quasi-geodesic d(p, γ′) is bounded by some constant
D that depends only on k, C and δ. To show this we pick the �worst� point
of the geodesic [x, y], meaning we pick a p ∈ [x, y] where the supremum
D := sup{d(q, γ′) | q ∈ [x, y]} is attained. We will use Lemma 7 to construct
a bound for this D.

Let x′ be the point on the part [x, p] ⊂ [x, y] before the point p, such that
d(x, x′) = min{2D, d(p, x)}. In other words, either x′ is the point before p
along [x, y] at distance 2D from p and if such a point does not exist we simply
take x′ = x. De�ne the point y′ in the same way as a point after p on [x, y].
Now let x′′ be a point on the quasi-geodesic γ′ satisfying d(x′, x′′) ≤ D. This
is possible by the de�nition of D. If the point x′ was chosen to be x, we
simply take x′′ = x′, and similarly with y′′.

Choose two geodesics [x′, x′′] and [y′, y′′]. Because we chose the points x′

and y′ of distance 2D from the point p, then any point of the geodesics [x′, x′′]
or [y′, y′′] is of distance at least 2M −M = M (by the triangle inequality)
from the point p. Let β be path from x′ to y′ given by the concatenation of
the geodesic [x′, x′′], a subpath of γ′ from x′′ to y′′ and the geodesic [y′, y′′]
(traversed in the opposite direction), then no point on β lies within distance
D of p, i.e. d(p, β) ≥ D. This is so because by the de�nition of D, the open
ball of radius D centered at p does not intersect with the quasi-geodesic γ′.
Furthermore d(x′′, y′′) ≤ D + 2D + 2D +D = 6D, and therefore the part of
β that is the subpath of γ′ from x′′ to y′′ has length at most 6kD +C since
γ′ is a (k,C)-quasi-geodesic. Hence we get the estimate

L(β) ≤ 6kD + C + 2D.

Putting this together with the logarithmic estimate from Lemma 7 we get

M ≤ d(p, β)

≤ δ log2(L(β)) + 2

≤ δ log2(6kD + 2D + C) + 2.

Since the latter of these inequalities is logarithmic in D (and the former is
just M), there must be an upper bound on D that only depends on the
constants δ, k and C. Let Db be such a bound.

So far, we have shown that each point on the geodesic [x, y] is within
bounded distance of the quasi-geodesic γ′, and that the bound only depends
on δ, k and C.
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Part (iii). The �nal step is to �nd a global constant R such that Im γ′ is
contained in an R-neighborhood of the geodesic [x, y], and that this R only
depends on δ, k, C.

Take any q ∈ γ′. If d(q, [x, y]) ≤ Db there is nothing to prove. Otherwise
we consider the two subpaths γ′1 and γ′2 of γ′ given by the point q. From
what we have shown so far, the property of Db says that any point in [x, y]
is within distance Db of either γ′1 or γ′2. The endpoint x is trivially close
to the �rst part γ′1, and likewise for the endpoint y and γ′2. If one travels
along the geodesic from x towards y, we see that at some point p we switch
from being close to γ′1 to being close to γ′2. This implies d(p, q1) ≤ Db and
d(p, q2) ≤ Db for some points q1 ∈ γ′1 and q2 ∈ γ′2.

Note that the subpath of γ′ going from q1 to q2 necessarily contains q.
Considering a geodesic from q1 to q2, the length of such a geodesic is bounded
by 2M by the triangle inequality: d(q1, q2) ≤ d(q1, p)+d(p, q2) ≤ 2Db. Since
γ′ is a (k,C)-quasi-geodesic, the length of the subpath of γ′ from q1 to q2 is
bounded by 2kDb + C. In particular for the point q we get

d(q, [x, y]) ≤ d(q, q1) + d(q1, p) ≤ (2kDb + C) +Db.

It then follows that the subpath of γ′ from q1 to q2 is contained in the
(k + 1)Db + C/2-neighborhood of the geodesic [x, y], and since q was an
arbitrary point, the same is true for all of Im γ′. By Lemma 6 we have
shown that the proposition is satis�ed with R := (k+ 1)Db +C/2 + (k+C)
and the proof is complete.

We are now ready to prove the main result of this section as a corollary
of Proposition 3.

Corollary 1. Let X and Y be geodesic metric spaces. If Y is hyperbolic

and there exists a quasi-isometric embedding from X to Y , then X is also

hyperbolic. In particular if X and Y are quasi-isometric, then X is hyperbolic

if and only if Y is hyperbolic.

Proof. Let δ be the hyperbolicity constant of the space Y and let f : X → Y
be a (k,C)-quasi-isometric embedding. Let R be the constant in Proposition
3.

Let [x, y] ∪ [y, z] ∪ [z, x] be a geodesic triangle in X and take a point
p ∈ [x, y]. The point f(p) is then within distance R to some point p1 that
lies on a geodesic from f(x) to f(y) in Y by Proposition 3. Moreover, by
hyperbolicity the point p1 is within distance δ to some point p2 on a geodesic
from f(x) to f(z) (up to switching x and y). Finally p2 is within distanceR to
f(q) for some point q ∈ [z, x]. Now, we want to show that dX(p, q) is bounded
by some global constant in X. We have dY (f(p), f(q)) ≤ 2R+δ, and since f
is a quasi-isometric embedding we have (1/k) ·dX(p, q)−C ≤ dY (f(p), f(y))
so that dX(p, q) ≤ k(2R+ δ) + kC.
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5.2 Some properties of hyperbolic groups

We list a few of the remarkably many properties of hyperbolic groups that
are known, but whose proofs are outside the scope of this thesis.

• Every hyperbolic group is �nitely presented, meaning there exist pre-
sentations with �nitely many generators and relators (see [6] �2.2).
Being �nitely presented is a property that is invariant under quasi-
isometries.

• The word problem, i.e. determining whether a given word of the gener-
ators represents the identity element or not, is not solvable in general
for a group G. However, if G is hyperbolic, there is an algorithm that
solves this in linear time. A basic and perhaps the most obvious ap-
proach to attempt to solve the word problem is to, given a word w, �nd
subwords of w that corresponds to some relator and simply substitute
them with the identity. If the number of relators found in w that need
to be replaced can be bounded in some way, this will provide a work-
ing method for determining whether w represents the identity or not.
That such a bound exists for hyperbolic groups is shown for example
in [6] Theorem 2.3.A and Corollary 2.3.B. A detailed treatment of the
word problem can be found in [4].

• A hyperbolic group has �nitely many conjugacy classes of �nite sub-
groups. Let G be δ-hyperbolic with respect to some �nite generating
set S. In [11] it is shown that every �nite subgroup of G is conjugate to
a subgroup in which each element has length at most 2δ+1. Since each
element is bounded and the group is �nitely generated, there can only
be �nitely many such subgroups. An alternative proof of the statement
can be found in [5] Chapter III.Γ Theorem 3.2.

• The centralizer of any in�nite order element of a hyperbolic group is
virtually Z (contains Z as a �nite index subgroup). Suppose G is hy-
perbolic and g ∈ G has in�nite order. Then the centralizer C(g) of g
contains the subgroup 〈g〉 generated by g as a �nite index subgroup.
Naturally the centralizer contains 〈g〉. The statement can be under-
stood as saying that the centralizer of an in�nite order element is al-
most as small as possible. For a proof see [5] Chapter III.Γ Proposition
3.9 and Corollary 3.10.

• Another interesting fact comes from the notion of a random group

introduced by Gromov. A random group can be speci�ed by �xing
a number of generators and then randomly generating some number
of relations (i.e. ri = 1 for some word ri in the set of generators)
according to some probabilistic model. The result is a presentation
〈S | R〉 corresponding to a group via the quotient F/N where F is
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the free group on the set of generators and N is the normal subgroup
generated by the set of relators R. It turns out that random groups
have a very high probability of being hyperbolic. One could therefore,
in a sense, say that �most� groups are hyperbolic. For more information
on the subject, see [14].
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A Appendix

A.1 Metric spaces

De�nition 23 (Metric). Let X be a set. A metric on X is a map

d : X ×X → R≥0

such that the following conditions hold for all x, y, z ∈ X:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z).

De�nition 24 (Metric space). A metric space is an ordered pair (X, d)
where X is a set and d is a metric on X.

De�nition 25 (Continuous map). Let (X, dX) and (Y, dY ) be metric spaces.
A map f : X → Y is said to be continuous at a point p ∈ X if

∀ε ∈ R>0 ∃δ ∈ R>0 : ∀x ∈ X : dX(p, x) < δ =⇒ dY (f(p), f(x)) < ε.

A map that is continuous at every point in its domain is called continuous.

De�nition 26 (Uniformly continuous map). Let (X, dX) and (Y, dY ) be
metric spaces. A map f : X → Y is said to be uniformly continuous if

∀ε ∈ R>0 ∃δ ∈ R>0 : ∀x, p ∈ X : dX(p, x) < δ =⇒ dY (f(p), f(x)) < ε.

De�nition 27 (Lipschitz continuous map). Let (X, dX) and (Y, dY ) be met-
ric spaces and let A ⊂ X be a subset. A map f : A→ Y is called Lipschitz
continuous if there exists a k ∈ R≥0 such that

dY (f(x1), f(x2)) ≤ k · dX(x1, x2)

for all x1, x2 ∈ A.

Theorem 4. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y
be a Lipschitz continuous map. Then f is uniformly continuous on X.

Proof. Suppose that f is Lipschitz continuous on some set A ⊂ X with
Lipschitz constant k. Fix ε > 0 and let δ = ε/k > 0. Let x, y ∈ A and
suppose dX(x, y) < δ. Then

dY (f(x)− f(y)) ≤ kdX(x, y) < kδ = ε.

Hence f is uniformly continuous on A.
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De�nition 28 (Lipschitz equivalence). Let (X, dX) and (Y, dY ) be metric
spaces. A map f : X → Y is said to be a Lipschitz equivalence if there
exists k1, k2 ∈ R>0 such that

∀x1, x2 ∈ X : k1 · dY (f(x1), f(x2)) ≤ dX(x1, x2) ≤ k2 · dY (f(x), f(y)).

In this case we may also say the metric spaces are Lipschitz equivalent.

De�nition 29 (Intrinsic metric). Let (X, d) be a metric space, let x, y ∈ X
and let P be the set of paths from x to y. The intrinsic metric dI is a
metric given by

dI(x, y) = inf
γ∈P

L(γ)

where L(γ) is the length of γ (see De�nition 8). If there is no path of �nite
length from x to y we set dI(x, y) =∞.

De�nition 30 (Length space). Let (X, d) be a metric space. If

dI(x, y) = d(x, y)

for all x, y ∈ X, we say that (X, d) is a length space and that the metric d
is intrinsic.
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