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Abstract

The main purpose of this paper is to study the local dynamics and bifurcations of a discrete-
time SIR epidemiological model. The existence and stability of disease-free and endemic fixed
points are investigated along with a fairly complete classification of the systems bifurcations.
In the preliminaries we present two proofs of the classical Routh test in order to give conditions
for stability in terms of the coefficients of the characteristic polynomial of the Jacobian matrix.
We also show the existence of a 3-cycle, which implies the existence of cycles of arbitrary length
by the celebrated Sharkovskii’s theorem, which we prove using directed graphs.

Genericity of some bifurcations is examined both analytically and through numerical com-
putations. Bifurcation diagrams along with numerical simulations are presented. The system
turns out to have both rich and interesting dynamics.

A possibly more biologically realistic, generalized system is suggested in the conclusions
together with some bifurcation diagrams of this new system.

Sammanfattning

Det huvudsakliga syftet med denna uppsats är att studera lokal dynamik och bifurkationer
hos en diskret SIR epidemiologisk modell. Existensen och stabiliteten av den sjukdomsfria
och den endemiska fixpunkten undersöks tillsammans med en rätt s̊a komplett klassifikation
av systemets bifurkationer. För att kunna formulera villkor för stabilitet i termer av koeffi-
cienter till det karakteristiska polynomet till Jacobimatrisen, presenteras tv̊a olika bevis för
det klassiska Routh-testet. Vi p̊avisar ocks̊a existensen av en 3-cykel. Det implicerar att det
finns cykler av godtycklig längd enligt den hyllade Sharkovskii’s sats, som vi bevisar medelst
riktade grafer.

”Genericity” (ung. allmängiltighet) hos vissa bifurkationer undersöks s̊aväl analytiskt som
genom numeriska beräkningar. Bifurkationsdiagram, tillsammans med numeriska simuleringar
presenteras. Systemet visar sig ha b̊ade rik och intressant dynamik.

Ett möjligen mer bilogiskt realistiskt system föresl̊as i slutsatsdelen tillsammans med n̊agra
bifurkationsdiagram för detta nya system.
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1 Introduction

This paper aims to give a complete analysis of a discrete SIR-model with logistic growth of the
susceptible population. In recent times, many interesting papers have appeared in the literature
that discuss the stability, bifurcation and chaos phenomena in discrete-time systems, for instance [1,
2]. Discrete-time systems described by difference equations are particularly well suited for efficient
numerical simulations, and in general display richer dynamics than their continuous counterparts.

In this paper we study stability and bifurcation of a particular discrete-time SIR-model from the
paper [3], in which the authors partially analyse the system and give some numerical examples.
However, their analysis is far from complete. Here we give a fairly complete analysis of the system
dynamics.

Stability of fixed points is investigated using the standard technique of linearization together with
the well-known Routh test for localizing polynomial zeros for which we give two separate proofs;
one using Cauchy indices and Sturm chains and one more simple relying on complex analysis.

We derive the conditions for fold, flip, Neimark-sacker and some co-dimension 2 bifurcations using
bifurcation theory, mainly from [4].

The existence of a period 3 cycle is shown which by the celebrated Sharkovskii’s theorem implies
the existence of cycles of any length. We find some cycles by computation and give a full proof of
Sharkovskii’s theorem using directed graphs.

The paper consists of two distinct parts and is organized as follows: In Section 2 we give some
preliminaries including the definition of a dynamical system and bifurcations. We also briefly
introduce the SIR model. Section 3 is devoted to the statement and proof of the Routh test in
order to formulate sufficient conditions for stability of fixed points. Analysis of bifurcations along
with classifications in co-dimension 1 and 2 are discussed in Section 4. In Section 5 we state and
prove Sharkovskii’s theorem.

The second part of the paper uses this theory to give a fairly complete analysis of a discrete
time SIR model in Section 6. We analyse local stability of the three distinct fixed points and
propose a candidate for the basic reproduction number R0. Some analysis of the second iterate
is also given. We classify all the bifurcations and investigate non-degeneracy of some of them.
Bifurcation diagrams are presented along with some numerical simulations. We find a 3-cycle
and some other n-cycles using similarity with the logistic map. Lastly Section 7 contains a short
conclusion and a possible generalization of the system.

2 Preliminaries

2.1 Definition of a dynamical system

A dynamical system is the mathematical formalization of a deterministic process. The future
behaviour of many systems in nature can sometimes be accurately predicted given knowledge of
their present state and some law that govern their evolution in time. Such systems can be physical
or chemical, but also biological or even social or economic. Provided that the governing law does
not change over time, the future states of such a system is essentially completely determined by
its initial state.

Thus, the notion of a dynamical system consists of a state space, the set of all possible states of
the system, and a law that determines the evolution of the state in time. The following discussion
and subsequent definition is closely modelled on Kuznetsovs book [4].
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2.1.1 State space

Every possible state of a dynamical system can be thought of as a point x in some set X. This
set is called the state space of the system. Typically, the state space has some natural structure
which allows us to compare different states. In particular most state spaces of interest allow for
the definition of a distance d, making X a metric space. Depending on the dimension of the state
space, the dynamical system is called either finite- or infinite-dimensional.

2.1.2 Time

By the evolution of a dynamical system we mean a change in the state of the system with time t ∈ T,
where T is the time set. Essentially there are two distinct types of dynamical systems; continuous-
time dynamical systems have T = R, and discrete-time dynamical systems where T = Z. Discrete-
time systems appear naturally in ecology and economics when the state of a system at time t
completely determines its state after, say a year at time t+ 1.

2.1.3 Evolution operator

The main component of a dynamical system is the law that determines the state xt of the system
at time t given an initial state x0 at time t = 0. This law can be specified in many different ways;
for example, in the continuous-time case by means of differential equations. However, the most
general way to specify the evolution is to assume that for a given time t ∈ T a map ϕt is defined
in the state space X,

ϕt : X → X,

which maps an initial state x0 in X to some state xt X at time t, so that

xt = ϕtx0.

The map ϕt is called the evolution operator. It might be known explicitly, but in most cases, it is
defined indirectly, for instance by differential equations, and can only be approximated. Dynamical
systems with evolution operator defined for both t ≥ 0 and t < 0 are called invertible. In this case
the initial state determine not only the future behaviour of the system, but also the past.

The evolution operator must have two properties that naturally reflects the deterministic character
of dynamical systems, namely

ϕ0 = id, (DS.0)

where id is the identity map on X. Secondly

ϕt+s = ϕt ◦ ϕs, (DS.1)

for all x in X and t, s in T such that both sides are defined.

The first property implies that the system does not change its state spontaneously, while the second
property states that starting at some state x and letting the system evolve in t + s time units,
yields the same result as starting at the same state x, letting the system first evolve over only s
units of time, and then let it evolve over the next t units of time from the resulting state ϕsx.
Essentially this means that the governing law does not change in time.

Note that a discrete-time dynamical system is fully specified by defining just one map, f = ϕ1,
since knowing this map we obtain

ϕ2 = ϕ1 ◦ ϕ1 = f ◦ f = f2

2



where f2 is the second iterate if the map f . Similarly, one finds that ϕk = fk for all k > 0.

Many dynamical systems defined on Rn are such that ϕt is smooth as a function of (x, t). Such
systems are called smooth dynamical systems.

We are now able to give a formal definition of a dynamical system:

Definition 1. A dynamical system is a triple {T, X, ϕt}, where T is a time set, X is a state
space, and ϕt : X → X is a family of evolution operators parametrized by t ∈ T and satisfying the
properties (DS.0) and (DS.1).

In the present work we shall only be concerned with discrete-time dynamical systems.

2.2 Orbits and invariant sets

Associated with a dynamical system {T, X, ϕt} are its orbits and the phase portrait composed of
these orbits.

Definition 2. An orbit starting at x0 is an ordered subset of the state space X,

Or(x0) = {x ∈ X : x = ϕtx0, for all t ∈ T such that ϕtx0 is defined}.

Orbits are also called trajectories. If y0 = ϕt0x0 for some t0, then the sets Or(x0) and Or(y0) are
equal. The simplest orbits are equilibria or fixed points.

Definition 3. A point x∗ ∈ X is called an equilibrium or fixed point if ϕtx∗ = x∗ for all t ∈ T.

Evidently a system placed at an equilibrium remains there forever. Thus, equilibria represent the
simplest behaviour of the system. In discrete-time systems, an equilibrium is usually called a fixed
point. Another relatively simple type of orbit is a cycle.

Definition 4. A cycle is a periodic orbit. More precisely a nonequilibrium orbit L0, such that each
point x0 in L0 satisfies ϕt+T0x0 = ϕtx0 with some T0 > 0, for all t ∈ T.

The smallest T0 with this property is called the period of the cycle L0. If the system starts its
evolution at some point x0 on the cycle, it will return exactly to the same point after T0 units of
time.

Definition 5. The phase portrait is a partitioning of the state space into its orbits.

To geometrically represent the phase portrait in a figure is of course not possible. In practice only
some particularly interesting orbits that are somehow representative of the system dynamics are
shown.

Definition 6. An invariant set of a dynamical system {T, X, ϕt} is a subset S ⊂ X such that
x0 ∈ S implies ϕtx0 ∈ S for all t ∈ T.

It should be clear that an invariant set S consists of orbits of the dynamical system, and that any
individual orbit in itself is an invariant set.

2.2.1 Stability of invariant sets

An invariant set S0 is called stable if it attracts nearby orbits. More formally, suppose we have a
dynamical system {T, X, ϕt} with a complete metric space X. Let S0 be a closed invariant set.

3



Definition 7. An invariant set S0 is called stable if

(i) for any sufficiently small neighbourhood U ⊃ S0, there exists a neighbourhood V ⊃ S0such
that ϕtx ∈ U for all x ∈ V and all t > 0;

(ii) there exists a neighbourhood U0 ⊃ S0 such that ϕtx→ S0 for all x ∈ U0, as t→∞.

If S0 is an equilibrium, this definition turns into the standard definition of stable equilibria. The
first property is called Lyapunov stability and implies that orbits close to S0 do not leave its
neighbourhood. The second property is called asymptotic stability. It is possible for a system to be
Lyapunov stable without being asymptotically stable. On the other hand, there are invariant sets
that are asymptotically stable, but not stable in the Lyapunov sense, since some orbits starting near
S0 eventually approach S0, but only after excursion outside some small but fixed neighbourhood
of S0.

If x∗ is a fixed point of a finite-dimensional, smooth, discrete-time dynamical system, then sufficient
conditions for its stability can be given in terms of the Jacobian matrix evaluated at x∗.

Definition 8. Given a discrete-time dynamical system

x 7→ f(x), x ∈ Rn,

where f = (f1, f2, . . . , fn) is a C1-map, its Jacobian matrix, denoted by J(x) is the matrix of all
partial derivatives of the map f , arranged as follows:

J(x) =




∂f1
∂x1

. . .
∂f1
∂xn

...
. . .

...
∂fn
∂x1

. . .
∂fn
∂xn



. (2.1)

The Jacobian matrix can be defined more generally, but for our purposes this is enough. Recall
that f ∈ C1 if all partial derivatives exist and are continuous.

Theorem 1. Consider a discrete-time dynamical system

x 7→ f(x), x ∈ Rn,

where f is smooth. Suppose it has a fixed point x∗, so that f(x∗) = x∗, and denote by A the
Jacobian matrix of f(x) evaluated at x∗. Then the fixed point is locally asymptotically stable if all
eigenvalues µ1, µ2, . . . , µn of A satisfy |µ| < 1.

The proof of this theorem is beyond the scope of this paper, but in [5] a proof in two dimensions
is given.

There is another case where one can assure the stability of a fixed point, namely if the map f is a
contraction:

Theorem 2. Let X be a complete metric space with distance d. Assume that there is a map
f : X → X that is continuous and satisfies for all x, y in X,

d(f(x), f(y)) ≤ λd(x, y)

for some 0 < λ < 1. Then the discrete-time dynamical system {Z+, X, f
k} has a stable fixed point

x∗ in X. Moreover, fk(x)→ x∗ as k →∞, starting from any point x ∈ X.

4



The proof of this fundamental theorem can be found in most textbooks on mathematical analysis,
for example [6].

Recall that the eigenvalues of a n× n-matrix A are the roots of the characteristic equation

det(A− µIn) = 0,

where In is the n× n identity matrix. It is a well-known fact, and central to the analysis to come
that this is a polynomial equation.

From Theorem 1 it is clear that a large part in determining the stability of a fixed point, is
to determine whether the eigenvalues of the Jacobian matrix lie inside the unit circle. Since
the eigenvalues are roots of the characteristic polynomial equation, this turns into the problem
of locating zeros of a polynomial. We would like to find conditions on the coefficients of the
characteristic polynomial that guarantee that all zeros lie inside the unit circle. Fortunately, this
problem can be solved by using the rather convenient Routh test together with a certain Möbius
transformation.

2.3 Topological equivalence and bifurcations

To make comparison between two different dynamical systems, we need some notion of when two
dynamical systems are ”qualitatively similar”. Intuitively such a definition must meet some natural
criteria. For instance, two equivalent systems should have the same number of equilibria, and cycles
of the same stability type.

Definition 9. A dynamical system {T,Rn, ϕt} is called topologically equivalent to a dynamical
system {T,Rn, ψt} if there is a homeomorphism h : Rn → Rn mapping orbits of the first system
into orbits of the second system, preserving the direction of time.

A homeomorphism is an invertible map such that both the map and its inverse are continuous.
The definition of topological equivalence can be extended to more general state spaces, but for
our purposes it is enough to consider Rn. It should be clear that the relation ”is topologically
equivalent to” is an equivalence relation. Clearly a system is topologically equivalent to itself, just
take h = id, were id is the identity map on Rn. Also, if system a is topologically equivalent to
system b by the existence of some homeomorphism h, then system b is also topologically equivalent
to system a, by the homeomorphism h−1. Lastly if system a is topologically equivalent to system
b and system b is topologically equivalent to system c, then there are homeomorphisms ha and hb
that relate them. Then the map hb ◦ha is a homeomorphism, since it and its inverse, h−1a ◦h−1b are
compositions of continuous maps, and it maps orbits of system a into orbits of system c. Hence
system a is topologically equivalent to system c.

In the case of discrete dynamical systems, an explicit relation between the corresponding maps of
the equivalent systems can be obtained. Let

x 7→ f(x), x ∈ Rn, (2.2a)

and
y 7→ g(y), y ∈ Rn, (2.2b)

be two topologically equivalent, discrete-time invertible dynamical systems, that is f = ϕ1 and
g = ψ1 are smooth invertible maps. Consider an orbit of system (2.2a) starting at some point x:

. . . , f−1(x), x, f(x), f2(x), . . .

and an orbit of system (2.2b) staring at some point y:

. . . , g−1(y), y, g(y), f2(y), . . .

5



Topological equivalence implies that if x and y are related by the homeomorphism h so that
y = h(x), then the first orbit is mapped onto the second one by h. Symbolically we present this as

x f(x)

y g(y).

f

h h

g

Therefore g(y) = h(f(x) or g(h(x)) = h(f(x)) for all points x in Rn, which can be written as
f(x) = h−1(g(h(x))), or more compactly

f = h−1 ◦ g ◦ h. (2.4)

Definition 10. Two maps f and g satisfying (2.4) for some homeomorphism h are called conju-
gate.

We are often interested in the system dynamics, not in the whole state space Rn, but locally in
some region U ⊂ Rn. Usually such a region is a neighbourhood of a fixed point or a cycle. The
above definition can easily be localized by the introduction of appropriate regions. For example,
in the topological classification of the phase portraits near a fixed point, the following definition is
useful.

Definition 11. A dynamical system {T,Rn, ϕt} is called topologically equivalent near an equilib-
rium x∗ to a dynamical system {T,Rn, ψt} near an equilibrium y∗ if there is a homeomorphism
h : Rn → Rn that is

(i) defined in a small neighbourhood U ⊂ Rn of x∗;

(ii) satisfies y∗ = h(x∗);

(iii) maps orbits of the first system in U onto orbits of the second system in V = h(U) ⊂ Rn,
preserving the direction of time.

Here V = h(U) is the image of U under h, that is

V = {y ∈ Rn : y = h(x), x ∈ U}.

If U is an open neighbourhood of x∗ then V is an open neighbourhood of y∗. This is true since
both h and h−1 are continuous functions on Rn. One should also note that x∗ and y∗ as well as U
and V may coincide.

2.3.1 Hyperbolic fixed points in discrete-time systems

Let the map f and its inverse be smooth and consider the discrete-time dynamical system

x 7→ f(x), x ∈ Rn (2.5)

with a fixed point x∗ = 0. Let A denote the Jacobian matrix evaluated at x∗. The eigenvalues
µ1, . . . , µn of A are sometimes called multipliers of the fixed point. Let n−, n0, and n+ be the
numbers of multipliers lying inside, on and outside the unit circle respectively.

Definition 12. A fixed point is called hyperbolic if n0 = 0, so there are no multipliers on the unit
circle. A hyperbolic fixed point is called a hyperbolic saddle if n−n+ 6= 0.

6



Theorem 3. The phase portraits of (2.5) near two hyperbolic fixed points x∗ and y∗ are locally
topologically equivalent if and only if these fixed points have the same number n− and n+ of mul-
tipliers with |µ| < 1 and |µ| > 1 respectively, and the sign of the products of all multipliers with
|µ| < 1 and with |µ| > 1 are the same for both x∗ and y∗.

Often the fixed points x∗ and y∗ are also called topologically equivalent. The proof of the theorem
is not given here but is based on the fact that near a hyperbolic fixed point, the system (2.5) is
locally topologically equivalent to its linearization x 7→ Ax. This is the discrete version of the
Grobman-Hartman theorem. A proof of the continuous version can be found in [7]. This then has
to be applied both near x∗ and y∗. Next, one has to prove that two linear systems with the same
types of multipliers are locally topologically equivalent.

2.4 The SIR model

The SIR model, or rather models, developed by Ronald Ross1, William Hamer and others in the
early twentieth century, are compartmental models used primarily in the mathematical modeling
of infectious disease. In its original formulation the model consists of a system of three coupled
nonlinear differential equations which does not possess an explicit formula solution. In [8, 9] a brief
history and some applications to public health along with some testing against data are given.

In short, the model in its original formulation is this: A population is partitioned into three
groups or compartments; susceptible individuals, infected individuals, and removed individuals.
The susceptible and infected groups are self-explanatory, but it should be noted that the removed
group includes in principle anyone that is not susceptible or infected whether immune, dead or
launched into space. The sizes of these compartments at time t are denoted by S(t), I(t), and R(t)
respectively.

The original model makes several severe assumptions, including a large and closed population in
which no natural deaths or births occur. The infection is also assumed to have no incubation
period, and upon recovery from the infection, an individual is assumed to gain lifetime immunity.
Age, sex, social status or ethnicity is not assumed to have any effect on the probability of being
infected. Also, it is assumed that there is mass action mixing of individuals, which ensures that
the rate of encounter between susceptible and infected individuals is proportional to the product
S(t)I(t). This last assumption requires that the members of both the infected and susceptible parts
of the population are homogeneously distributed in space rather than mainly mixing in smaller
subgroups.

There are hundreds of papers where this basic model is extended in many directions to suit par-
ticular applications. For instance, one may add natural death rates, death due to illness, natural
population growth, effects of vaccination just to name a few. Some infections such as the common
cold and influenza (unfortunately) do not confer any long-term immunity, nor do they readily kill
their host. When recovered, an infected individual is therefore susceptible again. This observation
motivates the SIS model in which the population is partitioned into just two groups of susceptible
and infected.

In the present work we shall attend to a particular discrete-time version of the SIR model in
which the growth of the susceptible population, some inhibitory effects and death rates have been
accounted for.

A central number in epidemiology is the so-called basic reproduction number, denoted R0. This
is defined as the number of cases one case generates on average over the course of its infectious
period in a totally susceptible population. The use of this quantity is not without complications,

1Sir Ronald Ross received the second Noble Prize in Medicine and Physiology for his discovery of the transmission
of malaria by the mosquito.
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but as a rule of thumb, one says that if R0 < 1 the infection dies out in the long run, and if R0 > 1
the infection will spread in the population and will require intervention to eradicate.

3 Routh-Hurwitz stability criterion and sufficient conditions
for stability of nonlinear systems

The Routh test is a convenient way to determine the number k of distinct zeros of a real polynomial
p(x) in the open right half-plane {z ∈ C : Re(z) > 0}. This is not immediately useful since our
problem is to determine the number of zeros in the open unit disc. However, we shall see that the
same theory can be applied to our problem by transforming the unit disc to the left half plane
via a certain Möbius transformation. This section aims to prove the Routh test, which has many
proofs. First, we follow Gantmacher [10] to give the standard proof using Sturm chains to compute
Cauchy indices. Next a somewhat simpler proof follows.

3.1 Cauchy indices

Definition 13. Given a real rational function R(x), the Cauchy index between the limits a and
b, a < b denoted IbaR(x) is the difference between the number of jumps of R(x) from −∞ to +∞,
and the number of jumps from +∞ to −∞ as x goes from a to b. Here a and b are real numbers
or ±∞.

Using the definition, if R(x) is a real rational function,

R(x) =

p∑

i=1

Ai
x− αi

+R1(x),

where Ai, αi are real numbers, and R1(x) is a rational function without real poles (zeros of the
denominator), we have

IbaR(x) =
∑

a<αi<b

sign(Ai), (3.1)

where a < b. This holds true if a = −∞ and b = +∞.

In particular, if p(x) = α0(x− α1)n1 . . . (x− αm)nm is a real polynomial where αi 6= αk for i 6= k,
i, k = 1, 2 . . . ,m, and if only the first p of its zeros are real then

p′(x)

p(x)
=

m∑

i=1

ni
x− αi

=

p∑

i=1

ni
x− αi

+R1(x),

where R1(x) is a real rational function with no real poles.

To realize this, note that

p′(x) =α0(n1(x− α1)n1−1(x− α2)n2 . . . (x− αm)nm+

n2(x− α1)n1(x− α2)n2−1 . . . (x− αm)nm + · · ·+
nm(x− α1)n1(x− α2)n2 . . . (x− αm)nm−1).

Hence by (3.1) we note that

Iba
p′(x)

p(x)
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is equal to the number of distinct real zeros of p(x) in the interval (a, b).

Using partial fraction decomposition, any real rational function R(x) can be written in the form

R(x) =

p∑

i=1

(
A

(i)
1

x− αi
+ · · ·+ A

(i)
ni

(x− αi)ni
)

+R1(x),

where again R1(x) has no real poles, and all the α and A are real numbers with A(i) 6= 0 for
i = 1, 2, . . . , p.

Then in general,

IbaR(x) =
∑

a<αi<b, niodd

sign(A(i)
ni )

for a < b, and in particular

I+∞−∞R(x) =
∑

niodd

sign(A(i)
ni ),

since for even ni the leading term
A(i)
ni

(x−αi)ni is always positive, when it is well defined, so there is
no jump.

3.2 Sturm’s theorem

In order to compute the Cauchy index IbaR(x), we shall make use of a certain sequence of polyno-
mials, called a Sturm chain.

Definition 14. A sequence of real polynomials

p1(x), p2(x), . . . , pm(x) (3.2)

is a Sturm chain in the interval (a, b) if it satisfies the following properties on (a, b), where a < b
and we may let a = −∞ and b = +∞:

(i) For any x such that a < x < b, if any pk(x) vanishes, the two polynomials next to it, pk−1(x)
and pk+1(x) are nonzero, and of opposite signs. That is, if pk(x) = 0 then

pk−1(x)pk+1(x) < 0.

(ii) The last polynomial, pm(x) has no zeros in the interval (a, b).

For a fixed value x we denote by V (x) the number of sign changes in (3.2). The value of V (x) as
x passes from a to b can only change when one of the polynomials in (3.2) passes through a zero.
By the first condition on a Sturm chain, when pk(x), k = 2, . . . ,m− 1 passes through a zero, V (x)
does not change. More explicitly, if pk(x) passes through a zero at x = ξ, and we assume without
loss of generality that before the zero we had

(sign(pk−1(ξ − ε)), sign(pk(ξ − ε)), sign(pk+1(ξ − ε))) = (+,+,−),

then after the zero the situation is

(sign(pk−1(ξ + ε)), sign(pk(ξ + ε)), sign(pk+1(ξ + ε))) = (+,−,−)

for some sufficiently small ε > 0. Hence the number of sign changes does not change, that is V (x)
does not change.

However, when p1(x) passes through a zero, the value of V (x) either increases or decreases by 1
depending on whether the ratio p2(x)/p1(x) goes from +∞ to −∞ or vice versa. This result is
known as:

9



Theorem 4 (Sturm). If p1(x), p2(x), . . . , pm(x) is a Sturm chain in the interval (a, b), and V (x)
is the number of sign variations in the chain, then

Iba
p2(x)

p1(x)
= V (a)− V (b). (3.3)

3.2.1 Generalized Sturm chains

If we multiply all the polynomials in the Sturm chain (3.2) by an arbitrary polynomial d(x), the
result is called a generalized Sturm chain. Such a multiplication clearly does not change the left
hand side of (3.3), since the quotient does not change, and neither does it change the right hand
side, since when x passes through a zero of d(x), all signs are flipped which does not alter the
number of sign changes. However, one should note that consecutive polynomials in (3.2) may now
vanish simultaneously for some values of x, but then every polynomial vanishes for such x. For
this reason, Sturm’s theorem is still valid for generalized Sturm chains.

Given two real polynomials p(x), q(x) such that p has degree greater than or equal to the degree
of q, we can always construct a generalized Sturm chain by letting p1(x) := p(x), p2(x) := q(x).
Next, we use the Euclidean algorithm to find a greatest common divisor of p and q. Denote by
−p3(x) the remainder on dividing p1(x) by p2(x), and by −p4(x) the remainder on dividing p2(x)
by p3(x) et cetera. This gives us a chain of identities

p1(x) = q1(x)p2(x)− p3(x),

p2(x) = q2(x)p3(x)− p4(x),

. . .

pk−1(x) = qk−1(x)pk(x)− pk+1(x)

. . .

pm−1(x) = qm−1pm(x),

(3.4)

where the last nonzero remainder pm(x) is a greatest common divisor of p(x) and q(x), and also
of all the polynomials in the sequence (3.2) thus obtained.

If pm(x) has no zeros in the interval (a, b), the sequence satisfies both conditions in Definition 14
and is therefore a Sturm chain. Otherwise if pm(x) has zeros in (a, b), then (3.2) is a generalized
Sturm chain for if divided by pm(x) it becomes a Sturm chain.

3.2.2 Computing Cauchy indices by Sturm’s theorem

From the discussion above it follows that the Cauchy index of any real rational function R(x)

can be computed by Sturm’s theorem. It suffices to write R(x) = Q(x) + q(x)
p(x) where Q, p, g are

polynomials with the degree of p greater than or equal to that of q. If we construct the generalized
Sturm chain for p(x), q(x), we find that

IbaR(x) = Iba
q(x)

p(x)
= V (a)− V (b).

As noted, before, the number of distinct real zeros of a real polynomial p(x) in the interval (a, b)

is Iba
p′(x)
p(x) . Hence Sturm’s theorem also gives us a way to determine the total number of distinct

zeros of p(x), namely

I+∞−∞
p′(x)

p(x)
= V (−∞)− V (+∞).
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3.3 Routh’s algorithm

Routh’s algorithm lets us determine k, the number of distinct zeros of a real polynomial p(x) in the
open right half plane. First, we consider the case where p(x) has no zeros on the imaginary axis.
To do this, we consider a semicircle of radius R in the right half-plane, and denote by D the domain
bounded by the semicircle and the imaginary axis, so that D = {z ∈ C : |z| < R,Re(z) > 0}. If R
is taken large enough, all zeros of p(x) in the right half plane lie inside D.

Since polynomials are analytic functions in the whole complex plane, the argument principle holds,
which in the case of an analytic function f can be summarized as

1

2π
∆Carg f(z) = N0(f)

where C is a simple closed positively oriented contour, ∆Carg f(z) is the net increase in argument
as we go around C, and N0(f) is the number of zeros of f inside C counted with multiplicity. This
well-known theorem is proved in most standard texts on complex analysis, for instance [11].

Then by the argument principle we have that arg p(z) increases by 2πk on traversing the contour
of D in the positive direction. For if

p(z) = a0

n∏

i=1

(z − zi),

then

∆arg f(z) =

n∑

i=1

∆arg (z − zi),

and if zi lies inside the domain, then ∆arg (z− zi) = 2π, otherwise if zi lies outside the domain we
have that ∆arg (z−zi) = 0. Here ∆ denotes the change in the argument. On the other hand, as R
tends to infinity, the increase of the argument of p(z) along the semicircle of radius R is determined
by the increase of the dominating term, anz

n, so it is nπ. Piecing this together we find that the
increase of arg p(z) along the imaginary axis is

∆+∞
−∞arg p(iω) = (n− 2k)π (3.5)

because going around the boundary of D as R→∞, the increase is

nπ + ∆−∞∞ arg p(iω) = 2πk.

Changing direction on the imaginary axis, we just flip the sign of the infinities, and the result
follows.

To study p(z) on the imaginary axis, we separate it into its real and imaginary part, that is

p(iω) = U(ω) + iV (ω), (3.6)

where if we introduce the rather odd-looking notation

p(z) = a0z
n + b0z

n−1 + a1z
n−2 + b0z

n−3 + . . .

we have for even n

U(ω) = (−1)
n
2 (a0ω

n − a1ωn−2 + a2ω
n−4 − . . . ),

V (ω) = (−1)
n
2−1(b0ω

n−1 − b1ωn−3 + b2ω
n−5 − . . . )

(3.7a)
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and for odd n
U(ω) = (−1)

n−1
2 (b0ω

n−1 − b1ωn−3 + b2ω
n−5 − . . . ),

V (ω) = (−1)
n−1
2 (a0ω

n − a1ωn−2 + a2ω
n−4 − . . . ).

(3.7b)

We note that

arg p(iω) = arctan
V (ω)

U(ω)
= arccot

U(ω)

V (ω)
. (3.8)

For even n we have limω→±∞
V (ω)
U(ω) = 0 by (3.7a). Since arctan V (ω)

U(ω) jumps from π/2 to −π/2 when
V (ω)
U(ω) jumps from +∞ to −∞, and vice versa, and this happens twice for every time p(iω) winds

around the origin, we conclude that

1

π
∆+∞
−∞arg p(iω) = −I+∞−∞

V (ω)

U(ω)

for even n.

On the other hand, (3.7b) tells us that limω→±∞
U(ω)
V (ω) = 0 for odd n. This means that arccot U(ω)

V (ω)

passes through zero from the negative direction when U(ω)
V (ω) jumps from −∞ to ∞ and vice versa.

Since this also happens twice for every time p(iω) winds around the origin, we get

1

π
∆+∞
−∞arg p(iω) = I+∞−∞

U(ω)

V (ω)

for odd n. For clarity we summarize this as

1

π
∆+∞
−∞arg p(iω) =

{
I+∞−∞

U(ω)
V (ω) for odd n

−I+∞−∞ V (ω)
U(ω) for even n.

(3.9)

From, (3.5), (3.7a), (3.7b) and (3.9) we get the nice result that for every n, even or odd

I+∞−∞
b0ω

n−1 − b1ωn−3 + b2ω
n−5 − . . .

a0ωn − a1ωn−2 + a2ωn−4 − . . .
= n− 2k. (3.10)

However, we should recall that this formula was derived under the assumption that p(z) had no
zeros on the imaginary axis.

3.3.1 The Routh table

In order to compute the index (3.10) we use Sturm’s theorem. To this end we set

p1(ω) = a0ω
n − a1ωn−2 + a2ω

n−4 − . . .
p2(ω) = b0ω

n−1 − b1ωn−3 + b2ω
n−5 − . . .

(3.11)

and construct a generalized Sturm chain

p1(ω), p2(ω), . . . , pm(ω) (3.12)

by the Euclidean algorithm as described in (3.4).

We consider first the case when m = n+ 1, the regular case. Then the degree of each polynomial
in the chain is one less than the previous one, and pm(ω) has degree zero. Note that in the regular
case, (3.12) is the ordinary, not the generalized Sturm chain. Then by (3.4) we have

p3(ω) =
a0
b0
ωp2(ω)− p1(ω) = c0ω

n−2 − c1ωn−4 + c2ω
n−6 − . . . ,
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where

c0 = a1 −
a0
b0
b1 =

b0a1 − a0b1
b0

, c1 = a2 −
a0
b0
b2 =

b0a2 − a0b2
b0

, . . . (3.13)

Similarly

p4(ω) =
a0
b0
ωp2(ω)− p1(ω) = d0ω

n−3 − d1ωn−5 + d2ω
n−7 − . . . ,

where

d0 = b1 −
b0
c0
c1 =

c0b1 − b0c1
b0

, d1 = b2 −
b0
c0
c2 =

c0b2 − b0c2
c0

, . . . (3.13′)

The remaining polynomials p5(ω), . . . , pn+1(ω) are determined similarly.

Note that each polynomial
p1(ω), p2(ω), . . . , pn+1

is either an even or an odd function since all powers of ω are either even or odd, so clearly
pk(ω) = pk(−ω) if k is even, and pk(−ω) = −pk(ω) if k is odd. Furthermore, two adjacent
polynomials have the opposite parity, that is if pk is an even function, then pk−1 and pk+1 are odd
functions and vice versa.

From the coefficients of the polynomials in (3.12) we form the Routh table

a0, a1, a2, . . . ,
b0, b1, b2, . . . ,
c0, c1, c2, . . . ,
d0, d1, d2, . . . ,
...

...
...

. . .

(3.14)

By (3.13) and (3.13′) we conclude that every row can be determined from the preceding two by
the following procedure: Multiply the lower row by the quotient of the first entry in the upper row
and the first entry in the lower row. Then subtract this from the upper row. This eliminates the
first entry. Now the next row is obtained by shifting the result one step to the left.

Given that the first entry in row k is the leading coefficient of pk(ω), it is clear that in the regular
case, this procedure never yields a zero in the sequence a0, b0, c0, d0, . . .

In the regular case, the polynomials p1(ω) and p2(ω) have greatest common divisor pn+1 = C 6= 0
where C is a real constant. Then, by the factor theorem, these polynomials, and hence (by (3.7a)
and (3.7b)) U(ω) and V (ω) cannot both vanish at the same time. This in turn means that

p(iω) = U(ω) + iV (ω) 6= 0

for real ω, so p has no zeros on the imaginary axis and hence the formula (3.10) holds in the regular
case.

Applying Sturm’s theorem in the interval (−∞,+∞) to (3.10) we get

V (−∞)− V (+∞) = n− 2k. (3.15)

Now, the sign of pk(ω) at ω = +∞ is defined to be the sign of the leading coefficient. Likewise,
the sign at ω = −∞ is equal to the sign of the leading coefficient if pk has even degree and the
opposite if pk has odd degree. Hence

V (+∞) = V (a0, b0, c0, d0, . . . )

where the right-hand side should be interpreted as the number of sign changes in the sequence
a0, b0, c0, d0, . . . , and

V (−∞) = V (a0,−b0, c0,−d0, . . . ).
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Hence
V (−∞) + V (+∞) = n (3.16)

because whenever there is a sign change in the sequence a0, b0, c0, d0, . . . , the corresponding posi-
tion in the sequence a0,−b0, c0,−d0, . . . does not have a sign change and vice versa. Since both
sequences has length n+ 1, the total number of sign changes is n.

Then by (3.15) and (3.16) we have

k = V (+∞) = V (a0, b0, c0, d0, . . . ), (3.17)

and we have proved

Theorem 5 (Routh). The number of distinct zeros of the real polynomial p(z) in the open right
half plane, Re(z) > 0 is equal to the number of sign variations in the first column of the Routh
table.

3.3.2 Case of stability

Usually we are interested in the special case when all zeros of p(z) lie in the open left half plane,
i.e. have negative real parts. In this case, if we form the generalized Strurm chain (3.12) for the
polynomials (3.11), since k = 0, the formula (3.15) reduces to

V (−∞)− V (+∞) = n.

But since 0 ≤ V (−∞), V (+∞) ≤ m− 1 ≤ n, this is possible only when m = n+ 1, i.e. the regular
case, and V (+∞) = 0, V (−∞) = n. Then (3.17) implies

Routh’s criterion. All the zeros of the real polynomial p(z) have negative real parts if and only
if all the elements in the first column of the Routh table are nonzero and of like sign.

We have proved Roth’s theorem in the regular case, and for our purposes this is enough since we
shall only require Routh’s criterion. However, for completeness the rest of the proof is given in
Appendix A.

Before moving on, we shall give a second, simpler proof due to Matsumoto that does not rely on
Cauchy indices and Sturm chains. This proof is in some sense simpler but the price one pays is
insight into why the test works.

3.4 Simple proof of the Routh stability criterion

In [12], Matsumoto aims to give a simple proof of the Routh stability criterion using order reduction
of polynomials together with the argument principle.

Let pn(z) be a real polynomial of complex variable z and of order n:

pn(z) = a0s
n + a1s

n−1 + · · ·+ an−1s+ an.

Without loss of generality we shall assume that a0 > 0.

Definition 15. The polynomial pn(z) is an n:th order Hurwitz polynomial if all zeros of pn(z) lie
in the open left half plane.

We define the order reduction formula which will be used to generate the rows of the Routh table.
Let pk(z) be a real polynomial of degree k of complex variable z:

pk(z) = α0s
k + α1s

k−1 + · · ·+ αk−1s+ αk. (3.18)

14



Then the order reduction formula is

pk−1(z) = pk(z)− µkz
(
pk(z)− (−1)kpk(−z)

)
(3.19a)

µk =
α0

2α1
. (3.19b)

If pk(z) in (3.18) is a Hurwitz polynomial, then every coefficient of pk(z) is positive since by the
factor theorem we can write

pk(z) = (z + ζ1) . . . (z + ζs)(z + ξ1 + σ1i)(z + ξ1 − σ1i) . . . (z + ξt + σti)(z + ξt − σti)
where ζj are the s real zeros of pk(z), and ξj ± σji are the 2t nonreal ones. Since

(z + ξj + σji)(z + ξj − σji) = z2 + ξjσjz + ξ2j + σ2
j ,

it is clear that all coefficients are positive. We will assume that µk in (3.19b) is finite and µk 6= 0.
Substituting (3.18) into (3.19) we obtain the reduced order polynomial as

pk−1(z) = β0z
k−1 + β1z

k−2 + · · ·+ βk−2z + βk (3.20a)

where
β2i = α2i+1, i = 0, 1, 2, . . . (3.20b)

β2i+1 = − 1

α1

∣∣∣∣
α0 α2i+2

α1 α2i+3

∣∣∣∣ , i = 0, 1, 2 . . . (3.20c)

We should note that (3.20b) and (3.20c) are just the Routh algorithm previously discussed. The
order reduction formula (3.19) is a polynomial representation of the Routh algorithm. From (3.20b)
and (3.20c) we get that pk(z) and pk−1(z) have the same even polynomial part when k is odd and
the same odd polynomial part when k is even. Furthermore, the last coefficient of pk(z) and
pk−1(z) is always the same, namely αk = βk−1.

Repeated use of the order reduction (3.19) on the polynomial pn(z) yields a sequence of reduced
order polynomials

pn(z), pn−1(z), . . . , p2(z), p1(z),

and a sequence of constants
µn, µn−1, . . . , µ2, µ1.

Each row of the Routh table consists of the coefficients of either the even polynomial part or the
odd polynomial part of pk(z). The last polynomial p1(z) is of the form p1(z) = (2µ1z + 1)an. We
can represent the order reduction formula by a matrix operation

(
pk−1(z)
pk−1(−z)

)
=

(
1− µkz (−1)kµkz
−(−1)kµkz 1 + µkz

)(
pk(z)
pk(−z)

)
. (3.21)

The reverse of (3.21) is
(
pk(z)
pk(−z)

)
=

(
1 + µkz −(−1)kµkz

(−1)kµkz 1− µkz

)(
pk−1(z)
pk−1(−z)

)

which gives us the order augmentation formula which reconstructs pk(z) from pk−1(z) and pk−1(−z),
namely

pk(z) = (1 + µkz)pk−1

(
1− (−1)k

µkz

1 + µkz

pk−1(−z)
pk−1(z)

)
= (1 + µkz)pk−1(z)gk−1(z) (3.22)

where
µk =

α0

2α1
=

α0

2β0
(3.23a)

and

gk−1(z) = 1− (−1)k
µkz

1 + µkz

pk−1(−z)
pk−1(z)

. (3.23b)
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3.4.1 The argument principle

From (3.23) two properties of gk−1(z) are apparent: If µk 6= 0, we have

Property 1.

Re

(
gk−1(iω)

)
> 0 (3.24a)

for all real values of ω, and

lim
ω→±∞

gk−1(iω) = 1− (−1)k(−1)k−1 = 2. (3.24b)

To show the first part, we return to the convenient split of a polynomial on the imaginary axis
into its real and imaginary part and write pk−1(iω) = U(ω) + iV (ω). From (3.20a) it is clear that
pk−1(−iω) = U(ω)− iV (ω), so we find that

Re

(
gk−1(iω)

)
= Re

(
1− (−1)k

µkiω

1 + µkiω

U(ω)− iV (ω)

U(ω) + iV (ω)

)
.

Since Re(z) ≤ |z| for complex numbers z, it suffices to note that

∣∣∣∣
µkiω

1 + µkiω

U(ω)− iV (ω)

U(ω) + iV (ω)

∣∣∣∣ =

∣∣∣∣
µkiω

1 + µkiω

∣∣∣∣
∣∣∣∣
U(ω)− iV (ω)

U(ω) + iV (ω)

∣∣∣∣ < 1.

Next, following Matsumoto we denote by ∆arg pk(z) the net increment of the argument of pk(z)
on the imaginary axis. We define ∆arg(1 + µkz) and ∆arg gk−1(z) in the same way. We use the
argument principle in essentially the same manner as we did in the last proof to obtain

Property 2.

∆arg(1 + µkz) =

{
π if µk > 0

−π if µk < 0
(3.25a)

∆arg gk−1(z) = 0 (3.25b)

If µk 6= 0, then
∆arg pk(z) = sign(µk)π + ∆ pk−1(z) (3.25c)

and, a polynomial of degree k satisfies

∆arg pk(z) = (k − 2Rk)π (3.25d)

if pk(z) has Rk zeros on the open right half-plane and (k − Rk) zeros in the open left half-plane.
Further, pk(z) is a Hurwitz polynomial of degree k if and only if

∆arg pk(z) = kπ. (3.25e)

Note that (3.25c) follows from (3.25a), (3.25b) and (3.23b).

Using (3.22) and Property 2 we can formulate

Theorem 6. A real polynomial pn(z) is a Hurwitz polynomial if and only if

µk > 0, k = n, n− 1, . . . , 2,

where µk is the constant generated by the order reduction formula (3.19).
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Proof. By (3.25e), pn(z) is a Hurwitz polynomial if and only if ∆arg pn(z) = nπ, and by (3.25c)
we have

∆arg pn(z) = sign(µn)π + ∆ pn−1(z) =

(sign(µn) + sign(µn−1) + · · ·+ sign(µ2))π + ∆ p1(z).

We have seen before that p1(z) = (2µ1z+1)an, so it is clear that ∆ p1(z) = sign(µ1), which means
that

∆arg pn(z) =
n∑

i=1

sign(µi).

This sum can be equal to n only if every term is positive, or equivalently if µk > 0 for all k.

If the polynomials in question have no zeros on the imaginary axes, the following corollaries hold:

Corollary 6.1. If µk > 0, the number of zeros of pk(z) in the left half-plane, is one more than
that of pk−1(z), and the number of zeros of pk(z) in the right half-plane is equal to that of pk−1(z).

Corollary 6.2. If µk < 0, the number of zeros of pk(z) in the left right-plane, is one more than
that of pk−1(z), and the number of zeros of pk(z) in the right left-plane is equal to that of pk−1(z).

Corollary 6.3. If every µk is nonzero, the number of negative µk:s among {µn, µn−1, . . . , µ2, µ1}
coincides with the number of zeros of pn(z) in the right half-plane.

The third corollary follows from the two preceding ones. We prove only the first one since the
second is completely analogous. Suppose that µk > 0. By (3.25) and (3.25c) we have

∆arg pk(z) = sign(µk)π + ∆arg pk−1(z) = π + ∆arg pk−1(z) = (k − 2Rk)π,

where Rk is the number of zeros of pk(z) in the right half-plane. It follows that

∆arg pk−1(z) = ∆arg pk(z)− π = (k − 2Rk)π − π = ((k − 1)− 2Rk)π,

so, the number of zeros in the right half-plane is the same. It follows from (3.25) that the number
of zeros of pk(z) in the left half-plane is (k − Rk) and therefore that the number of such zeros of
pk−1(z) is (k − 1−Rk).

3.4.2 Sign changes in the Routh table

Using the coefficients of pk(z) and pk−1(z), the (n − k + 1):th row and the (n − k + 2):th row of
the Routh table are

(n− k + 1):th row: α0, α2, α4, α6, α8, . . .
(n− k + 2):th row: β0, β2, β4, β6, β8, . . .

Since the order reduction formula (3.19) propagates the coefficients from pk(z) to pk−1(z) as
β2i = α2i+1 as defined by (3.20a), the (n− k + 2):th row can also be expressed as

(n− k + 2):th row: α1, α3, α5, α7, α9, . . .

We introduce the notation Ri,j to denote the element in the i:th row and j:th column of the Routh
table. Then µk can be expressed as

2µk =
α0 in pk(z)

β0 in pk−1(z)
=
α0 in pk(z)

α1 in pk(z)
=
R(n−k+1),1

R(n−k+2),1
, (3.26)
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where α0 in pk(z) simply means the coefficient α0 in the polynomial pk(z). Therefore, the number
of sign changes in the first column of the Routh table coincides with the number of negative
numbers among {µn, µn−1, . . . , µ2, µ1}. Hence Corollaries 6.1-6.3 leads to

Theorem 7. If every µk is nonzero, the number of sign changes in the first column of the Routh
table for a polynomial pn(z) of degree n coincides with the number of zeros of pn(z) in the open
right half-plane, provided that pn(z) has no zeros on the imaginary axis.

Matsomuto does not discuss the singular case covered in [10], but we cover it in appendix A to
which the interested reader is referred. In fact, we will only need the Routh criterion to give
sufficient conditions on the characteristic polynomial for stability of a fixed point.

3.5 Sufficient conditions for stability

Given a fixed point x∗ of a discrete-time dynamical system

x 7→ f(x), x ∈ Rn

with smooth f , theorem 1 tells us that x∗ is stable the Jacobian matrix evaluated at x∗, denoted
by A satisfy that all the eigenvalues of A lie inside the unit circle. This can be formulated it terms
of the zeros of the characteristic polynomial

p(µ) = det(A− µIn).

Using Routh’s criterion, it is easy to give sufficient conditions for the zeros to lie in the open
left-plane, but this is not immediately useful to us. Note however that the Möbius transformation

z 7→ z + 1

z − 1
(3.27)

maps the unit disc onto the left half plane. Hence the zeros of p(z) lie inside the unit circle if
p( z+1
z−1 ) has all zeros in the open left half plane, i.e.

q(z) := p(
z + 1

z − 1
)(z − 1)2

is a Hurwitz polynomial.

One can give explicit conditions on the coefficients of p(z) for stability. We show this in the
two-dimensional case. For a second-degree polynomial p(z) = a0z

2 + b0z + a1, the Routh table is

a0, a1
b0
a1

The Routh criterion then states that both zeros of p(z) have negative real part if an only if a0, b0, a1
are of like sign, and none of them are zero.

Now, the zeros of a polynomial do not change upon division by the leading coefficient, so without
loss of generality we may assume that the characteristic polynomial is monic. Hence a generic
characteristic polynomial in the two-dimensional case is

p(z) = z2 + α1z + α0.

Now we use the Möbius transformation (3.27) to define

q(z) := p(
z + 1

z − 1
)(z − 1)2 = (1 + α0 + α1)z2 + (2− 2α0)z + (1 + α0 − α1).
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By Routh’s criterion, q(z) has both its zeros in the open left half-plane if and only if the numbers

(1 + α0 + α1), (2− 2α0), (1 + α0 − α1)

are nonzero and of like sign.

Assume first that all these numbers are positive, that is




1 + α0 + α1 > 0

2− 2α0 > 0

1 + α0 − α1 > 0

⇐⇒





1 + α0 > −α1

1 + α0 > α1

α0 < 1

⇐⇒
{
|α1| < 1 + α0

|α0| < 1.

Assuming that they are all negative yields no solutions, so this is the only solution.

Now, note that the characteristic polynomial of a 2× 2-matrix A is

p(µ) = det(

(
a11 − µ a12
a21 a22 − µ

)
) = (a11 − µ)(a22 − µ)− a21a12 =

µ2 − (a11 + a22)µ+ (a11a22 − a21a12) = µ2 − trace(A)µ+ det(A),

so, we have found that for a fixed point x∗ of a two-dimensional discrete-time smooth dynamical
system, with Jacobian matrix A evaluated at x∗, sufficient conditions for stability of x∗ are

{
|trace(A)| < 1 + det(A)

|det(A)| < 1.
(3.28)

4 Bifurcation analysis

Now consider a system that depends on parameters, which we write as

x 7→ f(x, α) (4.1)

were x ∈ Rn and α ∈ Rm. As the parameters vary, the phase portrait also varies, and there are two
possibilities. Either the system remains topologically equivalent to the original one, or its topology
changes.

Definition 16. The appearance of a topologically non-equivalent phase portrait under variation of
parameters is called a bifurcation.

Thus, a bifurcation is a change of the topological type of the system as its parameters pass through
a bifurcation (critical) value.

Definition 17. The codimension of a bifurcation is the difference between the dimension of the
parameter space and the dimension of the corresponding bifurcation boundary. Or equivalently, the
codimension is the number of independent conditions determining the bifurcation.

4.1 One-parameter bifurcation of fixed points

Now let
x 7→ f(x, α), x ∈ Rn, α ∈ R1, (4.2)

where f is smooth with respect to both x and α. Let x∗ be a hyperbolic fixed point of the system
for α = α0. Generically there are just three ways in which hyperbolicity may be violated. Either a
simple multiplier approaches the unit circle, and we have µ1 = 1 or µ1 = −1, or a pair of complex
conjugate multipliers approaches the unit circle, and we have µ1,2 = e±iθ0 , 0 < θ0 < π.
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Definition 18. The bifurcation associated with the appearance of µ1 = 1 is called a fold bifurcation.

Definition 19. The bifurcation associated with the appearance of µ1 = −1 is called a flip- or
period-doubling bifurcation.

Definition 20. The bifurcation associated with the appearance of µ1,2 = e±iθ0 , 0 < θ0 < π is called
a Neimark-Sacker bifurcation.

Note that flip and fold bifurcation may appear in one-dimensional systems, while Neimark-Sacker
requires at least dimension two. However, for an n-dimensional system, these bifurcations occur
in essentially the same way. As we shall see, there are certain one- or two-dimensional invariant
manifolds on which the system exhibits the corresponding bifurcations, while the behaviour off the
manifold is in some sense ”trivial”.

Theorem 8 (Generic flip). Suppose that a one-dimensional system

x 7→ f(x, α), x ∈ R, α ∈ R,

with smooth map f , has at α = 0 the fixed point x∗ = 0, and let µ = fx(0, 0) = −1, where fx
denotes derivative. Assume that the following nondegeneracy conditions are satisfied:

1

2
(fxx(0, 0))2 +

1

3
fxxx(0, 0) 6= 0 (B.1)

fxα(0, 0) 6= 0. (B.2)

Then there are smooth invertible coordinate and parameter changes transforming the system into

η 7→ −(1 + β)η ± η3 +O(η4).

The proof which is given in in Chapter 4 in [4] is not difficult but we do not give it here. The
system

η 7→ −(1 + β)η ± η3 (4.3)

is called the topological normal form for the flip bifurcation. The sign of the cubic term depends
on the sign of

c(0) =
1

4
(fxx(0, 0))2 +

1

6
fxxx(0, 0).

Any generic, scalar, one-parameter system that satisfy the conditions in the theorem is locally
topologically equivalent near the origin to (4.3). Depending on the sign of the cubic term, the flip
is called stable or unstable. If the cubic term is positive, the flip is stable, which means that the
2-cycle thus appearing is stable.

Regarding the Neimark-Sacker bifurcation we refer to [4] for the relevant theorem and normal form.
We just state the nondegeneracy conditions:

ρ′(0) 6= 0, (C.1)

eikθ0 6= 1 for k = 1, 2, 3, 4, (C.2)

d(0) 6= 0, (C.3)

where the system has smooth map f(x, α), x ∈ R2 with eigenvalues µ1,2(α) = ρ(α)eiϕ(α), where
ϕ(0) = θ0. We will return to the third condition later.
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4.2 Center manifolds

Consider a discrete-time dynamical system

x 7→ f(x), x ∈ Rn (4.4)

where f is sufficiently smooth and f(0) = 0. Denote by n−, n0, n+ the number of eigenvalues of
the Jacobian matrix A evaluated at the fixed point x∗ = 0 inside, on and outside the unit circle
respectively. Assuming that the fixed point is non-hyperbolic, we have that n0 6= 0. Denote by T c

the linear invariant generalized eigenspace of A corresponding to the union of n0 eigenvalues on
the unit circle.

For clarity we define explicitly

Definition 21. For a complex n × n-matrix A with eigenvalues {µ1, . . . , µk}, the generalized
eigenspace corresponding to µi is

Vµi = {x ∈ Cn : (A− µiIn)nx = 0}.

The following theorems from [4], which we give without proofs or detailed discussion, will be used
to check genericity of bifurcations later on.

Theorem 9 (Center manifold theorem). There is a locally defined smooth n0-dimensional invariant
manifold W c

loc(0) of (4.4) that is tangent to T c at x = 0. Moreover, there is a neighbourhood U of
x∗ = 0 such that if the k:th iterate of f , fk(x) ∈ U for all k ≥ 0, then fk(x)→W c

loc(0) as k →∞.
The manifold W c

loc is called the center manifold.

It is convenient to drop the subscript and just write W c for the center manifold.

We may write the system (4.4) in an eigenbasis to get

(
u
v

)
7→
(
Bu+ g(u, v)
Cv + h(u, v)

)
, (4.5)

where u ∈ Rn0 , v ∈ Rn++n− , B is an n0 × n0-matrix with all its n0 eigenvalues on the unit circle
while C is an (n+ + n−)× (n+ + n−)-matrix with no eigenvalues on the unit circle. The functions
g(u, v), h(u, v) have Taylor expansions starting with at least quadratic terms. A center manifold
W c of (4.5) can be locally represented as the graph of a smooth function

W c = {(u, v) : v = V (u)}

where V : Rn0 → Rn++n− , and since W c is tangent to T c at x∗ = 0 we have V (u) = O(||u||2).

Theorem 10 (Reduction principle). The system (4.5) is locally topologically equivalent near the
origin to the system (

u
v

)
7→
(
Bu+ g(u, V (u))

Cv

)
. (4.6)

If there is more than one center manifold, then all the resulting maps (4.6) are locally smoothly
conjugate.

4.3 Computation of center manifolds

The following method for computing center manifolds is called the projection method. Only eigen-
vectors corresponding to the critical eigenvalues of A and its transpose AT are used to ”project”
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the system into the critical eigenspace and its complement. The method is based on the Fredholm
alternative theorem and can be used both for continuous and discrete-time systems. What follows
is a somewhat technical but straightforward computation, taken more or less directly from chapter
5 of [4].

We write the system (4.4) as
x̃ = Ax+ F (x), x ∈ Rn (4.7)

where F (x) = O(||x||2) is a smooth function with Taylor expansion near x∗ = 0 as

F (x) =
1

2
B(x, x) +

1

6
C(x, x, x) +O(||x||4), (4.8)

where B(x, y) and C(x, y, z) are multilinear functions. In coordinates we have

Bi(x, y) =
n∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣∣
ξ=0

xjyk, (4.9)

and

Ci(x, y) =
n∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣∣
ξ=0

xjykzl, (4.10)

where i = 1, 2, . . . , n.

4.3.1 Flip bifurcations

In the case of a flip bifurcation, A has a simple critical eigenvalue µ1 = −1, and the corresponding
critical eigenspace T c is one-dimensional and spanned by an eigenvector q ∈ Rn such that Aq = µ1q.
Let p be the adjoint eigenvector, that is AT p = µ1p. Normalize p with respect to q so that 〈p, q〉 = 1,
where 〈., .〉 is the standard scalar product in Rn. The following lemma follows from the Fredholm
alternative theorem.

Lemma 11. Let T su denote an (n−1)-dimensional linear eigenspace of (A−µ1In) corresponding
to all eigenvalues other than µ1 = −1. Then y ∈ T su if and only if 〈p, y〉 = 0.

Using the lemma, taking into account that the matrix (A − µ1In) has common invariant spaces
with the matrix A, we can decompose any vector x ∈ Rn as

x = uq + y,

where uq ∈ T c and y ∈ T su and {
u = 〈p, x〉
y = x− 〈p, x〉q. (4.11)

We can define two operators:

Pcx = 〈p, x〉q, Psux = x− 〈p, x〉q.

These operators are projections onto T c and T su respectively, and

P 2
c = pc, P

2
su = Psu, PcPsu = PsuPc = 0.
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To realize this, we need only note that 〈p, 〈p, x〉q〉q = 〈p, x〉q since we normalized p with respect to
q. We show one of the identities explicitly. The rest are shown completely analogously:

P 2
sux = Psu(Psux) = Psu(x− 〈p, x〉q) = x− 〈p, x〉q − 〈x, (p− 〈p, x〉q)〉q

= x− 〈p, x〉q −
(
〈p, x〉q − 〈p, 〈p, x〉q〉q

)
= x− 〈p, x〉q = Psux.

The scalar u and the vector y can be considered as new ”coordinates” on Rn. Although y ∈ Rn,
it always satisfies the orthogonality condition 〈p, y〉 = 0 since

〈p, y〉 = 〈p, x− 〈p, x〉q〉 = 〈p, x〉 − 〈p, 〈p, x〉q〉 = 〈p, x〉 − 〈p, x〉〈p, q〉 = 0.

In the coordinates (u, y) the map (4.4) can be written as
{
ũ = µ1u+ 〈p, F (uq + y)〉,
ỹ = Ay + F (uq + y)− 〈p, F (uq + y)〉q. (4.12)

Using Taylor expansion (4.8) we can write (4.12) in the form
{
ũ = µ1u+ bu2 + u〈p,B(q, u)〉+ ru3 + . . . ,

ỹ = Ay + 1
2au

2 + . . . ,
(4.13)

where u, b, r ∈ Rn and y, a ∈ Rn, and

b =
1

2
〈p,B(q, q)〉, (4.14)

r =
1

6
〈p, C(q, q, q)〉, a = B(q, q)− 〈p,B(q, q)〉q. (4.15)

We seek the second order term in the Taylor expansion for y = V (u) representing the center
manifold:

V (u) =
1

2
w2u

2 +O(u3), (4.16)

where w2 ∈ Rn is an unknown vector. Since V (u) ∈ T su for small u, we have that ω2 ∈ T su

implying that 〈p, w2〉 = 0. This vector w2 satisfies the equation

(A− In)w2 = −a. (4.17)

This equation results from comparing the coefficients of the u2-terms in the invariance condition
for W c,

ỹ = V (ũ),

where ũ and ỹ are given by (4.13).

The matrix (A − In) is invertible in Rn since λ = 1 is not an eigenvalue of A in the flip case.
Therefore, we can solve equation (4.17), giving w2 = −(A − In)−1a, and the restriction of (4.13)
to the center manifold takes the form

ũ = −u+ bu2 +

(
r − 1

2
〈p,B(q, (A− In)−1a)〉

)
u3 +O(u4). (4.18)

This restricted map can be simplified. Using (4.14) and the identity

(A− In)−1q = −1

2
q,
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we can write the restricted map as

ũ = −u+ a0u
2 + b0u

3 +O(u)4, (4.19)

where

a0 =
1

2
〈p,B(q, q)〉

and

b0 =
1

6
〈p, C(q, q, q)〉 − 1

4
(〈p,B(q, q)〉)2 − 1

2
〈p,B(q, (A− In)−1B(q, q))〉.

It is shown in Chapter 4 in [4] that the map 4.19 can be transformed to the normal form

ξ̃ = −ξ + cξ3 +O(ξ4),

where
c = a20 + b0.

The normal form is such that any generic, scalar, one-parameter system with eigenvalue −1 at a
fixed point is topologically equivalent to it. For a precise definition see section 4.5 in [4].

Thus, the critical normal form coefficient c, that determines the nondegeneracy of the flip bifurca-
tion and allows us to predict the direction of bifurcation of the period-two cycle, is given by the
invariant formula

c =
1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− In)−1B(q, q))〉. (4.20)

The Neimark-Sacker bifurcation is handled similarly. We do not give the details here but refer to
section 5.4 in [4]. However, we state that the third nondegeneracy condition C.3 can be computed
as

d =
1

2
Re

(
e−iθ0

[
〈p, C(q, q, q̄)〉+ 2〈p,B(q, (A− In)−1B(q, q̄)〉

+ 〈p,B(q̄, (e2iθ0In −A)−1B(q, q))〉
])
, (4.21)

where q now is a complex eigenvector corresponding to µ1 = eiθ0 :

Aq = eiθ0q, Aq̄ = e−iθ0 q̄,

where q̄ is the vector of complex conjugates of the elements in q.

4.4 List of codimension 2 bifurcations in R2

In our coming analysis we will consider a two-dimensional dynamical system, so we need only
consider this case.

Consider a two-dimensional, two-parameter discrete-time dynamical system

x 7→ f(x, α) (4.22)

with x ∈ R2 and α = (α1, α2)T and f sufficiently smooth in (x, α) e.g. f ∈ C1. Suppose that at
α = α0, the system (4.22) has a fixed point x∗ for which the condition for fold, flip or Neimark-
Sacker bifurcation is satisfied. Then there are eight degenerate cases that may occur.
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(1) µ1 = 1, b = 0 (cusp)

(2) µ1 = −1, c = 0 (generalized flip)

(3) µ1,2 = e±iθ0 , d = 0 (Cheniciner bifurcation)

(4) µ1 = µ2 = 1 (1:1 resonance)

(5) µ1 = µ2 = −1 (1:2 resonance)

(6) µ1,2 = e±iθ0 , θ0 = 2π
3 (1:3 resonance)

(7) µ1,2 = e±iθ0 , θ0 = π
2 (1:4 resonance)

(8) µ1 = 1, µ2 = −1 (fold-flip bifurcation)

5 Cycles of period 3 and Sharkovskii’s theorem

The next simplest type of orbit is a cycle. In discrete-time systems, a cycle of length k corresponds
to a fixed point of the k:th iterate fk. An interesting question to pose is whether one can draw any
conclusions about the existence of cycles of other lengths from the presence of a cycle of length k.

In the paper ”Period three implies chaos” [13], Li and Yorke were the first to introduce the word
chaos in mathematics. In the paper, they show that if a continuous map has a cycle of period 3,
then it must have cycles of any period k. This quite non-intuitive result is in fact a special case of
a remarkable theorem of Sharkovskii. To state the theorem, we must first present a new ordering
. of the positive integers as follows:

3 . 5 . 7 . · · · . 2 · 3 . 2 · 5 . 2 · 7 . · · · . 22 · 3 . 22 · 5 . 22 · 7 · · · . . . .
. 2n · 3 . 2n · 5 . 2n · 7 · · · . · · · . 2n . 2n−1 . · · · . 22 . 2 . 1.

First the odd integers are listed, except 1, then 2 times the odd integers, followed by 22 times
the odd integers, and in general 2n times the odd integers for all positive integers n. Finally, one
lists the powers of 2 in descending order. Clearly all positive integers are generated this way. The
notation m . n means that the positive integer m comes before n in the Sharkovskii ordering. In
particular, this means that 3 . k for any positive integer k. We are now ready to state

Theorem 12. Let f : I → I be a continuous map on the interval I, where I may be finite, infinite,
or the whole real line. If f has a cycle of period k, then it has a cycle of period r for all r with
k . r.

5.1 Proof of Sharkovskii’s theorem

In this section we give a proof of Sharkovskii’s theorem. The proof is in essence the same as that
given in [14]. Throughout the section, it will be convenient to refer to periodic points of the map
f . We give a formal definition.

Definition 22. A point c is said to be a periodic point of f with period m if fm(c) = c and fk(c) 6= c
for 1 ≤ k < m. The orbit of c then consists of the m distinct points c, f(c), f2(c), . . . , fm−1(c). By
abuse of language, the orbit of c can also be said to be periodic. In particular, a fixed point is a
periodic point with period 1.
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Note that f has a periodic point with period m if and only if f has a cycle of length m, and that
any point c in this cycle is a periodic point with period m.

The proof of Sharkovskii’s theorem will be quite involved and along the way, other results of
independent interest will be derived. Throughout we will assume unless otherwise stated that
f : I → R is a continuous map of a compact (closed and bounded) interval into the real line. We
will denote by < a, b > the closed interval with endpoints a and b when we do not know or care
whether a < b or b < a. Since this notation is not standard, we shall take care to explicitly state
the meaning whenever it is used.

Lemma 13. If J is a compact subinterval such that J ⊆ f(J), where f(J) is the image of J under
f , then f has a fixed point in J .

Proof. If I = [a, b], then for some c, d ∈ J we have f(c) = a and f(d) = b by the intermediate
value theorem. Thus f(c) ≤ c and f(b) ≥ b. Form the continuous map g(x) = f(x) − x and note
that g(c) ≤ 0 and g(d) ≥ 0. One more application of the intermediate value theorem yields some
point ξ ∈ [a, b] such that g(ξ) = 0, but then f(ξ) = ξ and we are done.

Lemma 14. If J and K are compact subintervals such that K ⊆ f(J), then there is a compact
subinterval L ⊆ J such that f(L) = K.

Proof. Let K = [a, b] and let c be the greatest point in J for which f(c) = a. If f(x) = b for some
x ∈ J with x > c, let d be the least. Then we can take L = [c, d].

Otherwise f(x) = b for some x ∈ J with x < c. Let c′ be the greatest and let d′ ≤ c be the least
x ∈ J with x > c′ for which f(x) = a. Then we can take L = [c′, d′].

Lemma 15. If J0, J1, . . . , Jm are compact subintervals such that Jk ⊆ f(Jk−1) for 1 ≤ k ≤ m,
then there is a compact subinterval L ⊆ J0 such that fm(L) = Jm and fk(L) ⊆ Jk for 1 ≤ k < m.

If in addition J0 ⊆ Jm, then there exists a point y such that fm(y) = y and fk(y) ∈ Jk for
0 ≤ k < m.

Proof. We prove the first assertion by induction. The first assertion holds for m = 1 by Lemma
14. We assume that m > 1 and that it holds for all smaller values of m. Then we can choose
L′ ⊆ J1 so that fm−1(L′) = Jm and fk(L′) ⊆ Jk+1 for 1 ≤ k < m− 1. We now choose L ⊆ J0 so
that f(L) = L′.

The second assertion follows from the first by Lemma 13.

As a first independently interesting result, we prove

Proposition 16. Between any two points of a periodic orbit with period n > 1 there is a point of
a periodic orbit of period less than n.

Proof. Let a < b be two adjacent points of the orbit of period n. Since there is one more point of
the orbit to the left of b than to the left of a we must have fm(a) > a and fm(b) < b for some
m such that 1 ≤ m < n. It follows immediately that fm(c) = c for some c with a < c < b, if we
assume that fm is defined throughout [a, b].

However, we do not need this assumption. For if we assume that fm is not defined throughout [a, b],
let Jk =< fk(a), fk(b) > be the closed interval with endpoints fk(a) and fk(b) for 1 ≤ k ≤ m,
then

Jk ⊆ f(Jk−1) for 1 ≤ k ≤ m.
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This is clear since if Jk−1 =< fk−1(a), fk−1(b) >, then Jk has as endpoints the image under f of
the endpoints of Jk−1. Hence the image of Jk−1 contains at least Jk, for it contains its endpoints.
But also J0 ⊆ Jm since fm(a) ≥ b and fm(b) ≤ a. The result now follows from Lemma 15.

The method of argument can be refined. Suppose that f has a periodic orbit of period n > 1. Let
x1 < x2 < · · · < xn be the distinct points of this orbit. Note that f is a cyclical permutation of
the orbit. Set Ij = [xj , xj+1] for 1 ≤ j < n.

With the periodic orbit we associate a directed graph or digraph in the following way.

Definition 23. Let Ii = [xi, xi+1]. The digraph of a periodic orbit is a directed graph with the
subintervals I1, . . . , In−1 as vertices. There is a directed edge, which we will refer to as an arc
Ij → Ik if Ik is contained in the closed interval < f(xj), f(xj+1) > with endpoints f(xj) and
f(xj+1). That is Ij → Ik if Ik ⊆ f(Ij)

For example, suppose c is a periodic point of period 3 with f(c) < c < f2(c). The corresponding
digraph has two vertices, namely the intervals I1 = [f(c), c] and I2 = [c, f2(c)], connected in the
following way:

I1 I2

Some properties of our digraphs follow from the definition:

(i) For any vertex Ij there is always at least one vertex Ik for which Ij → Ik. Moreover, it is
always possible to choose k 6= j unless n = 2. The proof i trivial; the endpoints of Ij cannot
be mapped to the same point, so f(Ij) contains at least one subinterval, and unless n = 2,
both endpoints cannot be mapped to each other. Of course, when n = 2, the endpoints must
be mapped to each other.

(ii) For any vertex Ik there is at least one vertex Ij for which Ij → Ik. Moreover, it is always
possible to choose j 6= k unless n is even and k = n

2 .

We prove this by contradiction. Suppose there is no j 6= k for which Ij → Ik. Then if i 6= k,
f(xi) ≤ xk implies f(xi+1) ≤ xk and likewise f(xi) ≥ xk+1 implies f(xi+1) ≥ xk+1.

If f(xk+1) ≥ xk+1 it follows that f(xi) ≥ xk+1 for k < i ≤ n. But this is impossible since no
proper subset of the orbit can be mapped into itself by f . Hence f(xk+1) ≤ xk and similarly
f(xk) ≥ xk+1, and therefore Ik → Ik.

Moreover f(xi) ≤ xk for k < i ≤ n implies n−k ≤ k which in turn implies n < 2k. Similarly,
f(xi) ≥ xk+1 for 1 ≤ i ≤ k implies that k ≤ n− k, that is n ≥ 2k. Hence n = 2k and we are
done.

(iii) The digraph always contains a loop. Since we must have f(x1) > x1 and f(xn) < xn, we
have f(xj) > xj and f(xj+1) < xj+1 for some j with 1 ≤ j < n. Then f(xj) ≥ xj+1 and
f(xj+1) ≤ xj , and hence Ij → Ij . To be explicit, choose

j = min{1 ≤ j < n : f(xj) ≥ xj+1, f(xj+1) ≤ xj},

then Ij → Ij and we have a loop.

Definition 24. A cycle J0 → J1 → · · · → Jn−1 → J0 of length n in the digraph is called a
fundamental cycle if J0 contains an endpoint c such that fk(c) is an endpoint of Jk for 1 ≤ k < n.

A fundamental cycle always exists and is unique, since without loss of generality take c = x1, so
that J0 = I1. Suppose J0, . . . , Ji−1 has been defined. If Ji−1 = [a, b], so that f i−1 is either a or b,
we must take Ji to be the uniquely determined interval Ik ⊆< f(a), f(b) > which has f i(c) as one
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endpoint. It is clear that Jn = J0 since n is the period of the orbit, and hence we obtain a cycle
of length n.

In the fundamental cycle, some vertex must occur at least twice by the pigeonhole principle. There
are n− 1 vertices but the cycle has length n. On the other hand, any vertex occurs at most twice,
since each interval Ik has only two endpoints.

Definition 25. A cycle in a digraph is said to be primitive if it does not consist entirely of a cycle
of smaller length described several times.

If the fundamental cycle contains Ik twice, then it can be decomposed into two cycles of smaller
length, each of which contains Ik only once, and therefore is primitive.

Straffin [15], who first showed the relevance of directed graphs in connection to Sharkovskii’s
theorem, observed that the existence of a primitive cycle of length m implies the existence of a
periodic point of period m.

Lemma 17 (Straffin). Suppose f has a periodic point of period n > 1. If the associated digraph
contains a primitive cycle

J0 → J1 → · · · → Jm−1 → J0

of length m, then f has a periodic point y of period m such that fk(y) ∈ Jk for 0 ≤ k < m.

Proof. The situation is that

J1 ⊆ f(J0), J2 ⊆ f(J1), . . . , Jm−1 ⊆ f(Jm−1), J0 ⊆ f(Jm−1).

Then by Lemma 15 with Jm = J0, there exists some point y such that fm(y) = y and fk(y) ∈ Jk
for 0 ≤ k < m. Now, either m is the period of y, or the period of y is a divisor of m.

Since the cycle is primitive, and distinct intervals have at most one point in common, it follows
that y has period m unless y = xi for some i and n is a divisor of m. However, this is possible only
if the cycle is a multiple of the fundamental cycle since, given Jk−1, the requirements fk(y) ∈ Jk
and Jk−1 → Jk uniquely determine Jk. Hence, we must have m = n.

Already we can prove, using Lemma 17 that the presence of a periodic point of period 3 implies
the existence of any period. Consider the associated digraph

I1 I2 .

Corresponding to the loop I1 → I1 there is a fixed point of f and corresponding to the primitive
cycle I1 → I2 → I1 there is a point of period 2. Moreover, for any positive integer m > 1, there is
a point of period m corresponding to the primitive cycle I1 → I2 → I1 → I1 → · · · → I1 of length
m.

Proposition 18. If f has a periodic point of period > 1, then it has a fixed point and a periodic
point of period 2.

Proof. The first assertion follows since the digraph of any periodic orbit has a loop. More simply
put, if f has no fixed point, then either f(x) > x for all x or f(x) < x for all x, and therefore f
has no periodic point.

To prove the second assertion, let n be the least positive integer greater than 1 such that f has a
periodic point of period n. If n > 2, decompose the fundamental cycle into two primitive cycles.
This can always be done, since some vertex Ik appears twice in the fundamental cycle. Then at
least one of the primitive cycles has length greater than 1, and obviously both of them has length
less than n. By Lemma 17 we deduce that there is a periodic point with period strictly between 1
and n.
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J1 J2 J3 . . . Jn−3 Jn−2 Jn−1

Figure 1: The associated digraph

Proposition 18 was first proved in Coppel [16]. Next, we use Lemma 17 to prove a result due to
Stefan [17].

Proposition 19. Suppose that f has a periodic orbit of odd period n > 1, but no periodic orbit
of odd period strictly between 1 and n. If c is the midpoint of the orbit of odd period n, then the
points of this orbit have the order

fn−1(c) < fn−3(c) < · · · < f2(c) < c < f(c) < · · · < fn−2(c)

or the inverse order

fn−2(c) < . . . f(c) < c < f2(c) < · · · < fn−3(c) < fn−1(c).

In either case, the associated digraph is given by Figure 1, where
J1 =< c, f(c) > and Jk =< fk−2(c), fk(c) > for 1 < k < n.

Proof. The fundamental cycle decomposes into two smaller primitive cycles, one of which must
have odd length, for the sum of the lengths is the odd number n. This length must be 1, since f
has no orbit of odd period strictly between 1 and n, and by Lemma 17, f must have an orbit of
period equal to this length. Thus, the fundamental cycle is given by

J1 → J1 → J2 → J3 → · · · → Jn−1 → J1,

where Ji 6= J1 for 1 < i < n. If we had Ji = Jk, where 1 < i < k < n, then by omitting the
intermediate vertices we would obtain a smaller primitive cycle. Moreover, by excluding the loop
at J1 if necessary, we can arrange that its length is odd. This contradicts the hypothesis, since
Lemma 17 again lets us deduce an orbit of odd period strictly between 1 and n. So, we conclude
that J1, . . . , Jn−1 are all distinct, and thus a permutation of I1, . . . , In−1. Similarly, we cannot
have Ji → Jk if k > i+ 1 or if k = 1 and i 6= 1, n− 1.

Suppose J1 = Ih = [a, b]. Since J1 is directed only to J1 and J2, the interval J2 is adjacent to J1
on the real line, and f maps one endpoint of J1 to an endpoint of J1, and the other endpoint of
J1 to an endpoint of J2. Since the endpoints are not fixed points, there are only two possibilities:
either

xh = a, xh+1 = f(a), xh−1 = f2(a),

or
xh+1 = b, xh = f(b), xh+2 = f2(b).

We consider only the first case, the argument being similar in the second case.

For n = 3 the result follows immediately, so assume n > 3. If f3(a) < f2(a) then J2 → J1
which is forbidden. Hence f3(a) > f2(a). Since J2 is not directed to Jk for k > 3 it follows that
J3 = [f(a), f3(a)] is adjacent to J1 on the right. If f4(a) > f3(a) then J3 → J1, which is forbidden.
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Hence f4(a) < f2(a) and, since J3 is not directed to Jk for k > 4, J4 = [f4(a), f2(a)] is adjacent
to J2 on the left. Proceeding in this way we see that the order of the intervals Ji on the real line
is given by

fn−1(a) fn−3(a) f4(a) f2(a) a f(a) f3(a) fn−4(a) fn−2(a)

Jn−1 J4 J2 J1 J3 Jn−2

Since the endpoints of Jn−1 are mapped into a and fn−2(a) we have that Jn−1 → Jk if and only
if k is odd. We found all the arcs in the digraph.

An orbit of odd period n > 1 with either one of the two configurations described in Proposition 19
is called a Stefan orbit, and the associated digraph will be called a Stefan digraph. The next result
follows immediately using Lemma 17.

Proposition 20. If f has a periodic orbit of odd period n > 1, then it has periodic points of
arbitrary even period, and periodic points of arbitrary odd period > n.

Proof. We may assume n is minimal, so the associated digraph is a Stefan digraph as in Proposition
19. If m < n is even, then

Jn−1 → Jn−m → Jn−m+1 → · · · → Jn−1

is a primitive cycle of length m. If m > n is even or odd, then

J1 → J2 → · · · → Jn−1 → J1 → J1 → · · · → J1

is a primitive cycle of length m. In either case, Lemma 17 lets us deduce the existence of a periodic
orbit of period m.

Lemma 21. If c is a periodic point of f with period n, then for any positive integer h, c is a
periodic point of fh with period n

(h,n) where (h, n) denotes the greatest common divisor of h and n.

Conversely, if c is a periodic point of fh with period m, then c is a periodic point of f with period
mh
d where d divides h and is relatively prime to m.

Proof. Let h be an arbitrary positive integer. Suppose c has period n for f and let m = n
(h,n) . We

have that
fmh(c) = f

nh
(h,n) (c) = c,

since nh
(h,n) is a multiple of n.

On the other hand, if fkh(c) = c, then n must be a factor of kh, say kh = dn for some integer d.
This implies that m is a factor of k. Indeed

k =
dn

h
=

n

(h, n)

d(h, n)

h
= m

(dh, dn)

h
= m

(dh, kh)

h
= m(d, k).

Hence c is a periodic point of fh with period m, and the first assertion is proved.

Suppose now that c has period m for fh. Then c has period n for f where n is a factor of mh, say
mh = nd for some integer d. From the first assertion of the lemma it follows that

m =
n

(h, n)
=
nd

h
=⇒ h = d(h, n) = de,
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where e is the greatest common divisor of h and n. Then

(de,me) = (h,m(h, n) = (h, n) = e =⇒ (d,m) = 1.

We are now able to prove Sharkovskii’s theorem.

Proof of Sharkovskii’s theorem. We give the proof initially for f : I → I. Write n = 2dq, where q
is odd. First assume that q = 1 and m = 2e where 0 ≤ e < d. By Proposition 17 we may assume
e > 0. Consider the map g = f

m
2 and apply the first assertion of Lemma 21 with h = m

2 = 2e−1

and n = 2d. It follows that g has a periodic point c of period

n

(h, n)
=

2d

(2e−1, 2d)
= 2d−e+1,

and hence also a periodic point of period 2 by Proposition 18. Now we apply the second part of
Lemma 21 to deduce that a periodic point of g = f2

e−1

with period 2, is a periodic point of f with
period

2 · 2e−1
d

=
2e

d
,

where d divides 2e−1 and is relatively prime to 2. Hence d = 1, and f has a periodic point with
period m = 2e.

Now let q > 1. The remaining cases are m = 2dr where either (i) r is even, or (ii) r is odd and

r > q. Consider now the map g = f2
d

. By the first part of Lemma 21 with h = 2d and n = 2d, it
has a periodic point of period

n

(h, n)
=

2dq

(2d, 2d)
=

2dq

2d
= q.

Hence by Proposition 20, g = f2
d

has a periodic point of period r. Then by applying the second
part if Lemma 21 once again with h = 2d and m = r, we find that this point is a periodic point of
f with period

mh

d̄
=

2dr

d̄

where d̄ divides 2d and is relatively prime to r. In case (i), d̄ = 1 and f therefore has a periodic
point with period 2dr as required. In case (ii), d̄ is some power of 2, so f has a periodic point
with period 2er for some e ≤ d. If e = d we are done. If e < d we can replace n by 2er. Since
m = 2e(2d−er) it then follows from case (i) that f also has a periodic point of period m.

Finally, we give the proof for f : I → R. Let x1 and xn denote the least and greatest points of a
periodic orbit of f with period n. Then K = [x1, xn] ∪ f([x1, xn]) is a compact interval. The map
g : K → K defined by setting

g(x) =





f(x1) if x < x1

f(x) if x ∈ [x1, xn]

f(xn) if x > xn,

is then continuous. Since g has a periodic orbit of period n, g also has ha periodic point of period
m by what we have already proved. Since this orbit of period m is contained in the interval K, it
is also a periodic orbit of f . This concludes the proof.
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6 Dynamical analysis of a discrete time SIR model with
logistic growth

The following discrete time SIR epidemic model is the one of interest;

Sn+1 = rSn(1− Sn)− βSnIn
1 + aSn

In+1 = (1− µ− γ)In +
βSnIn

1 + aSn
Rn+1 = γIn + (1− λ)Rn

(6.1)

where r is the natural growth rate of the population; individuals are born susceptible and there
is no inherited immunity. The force of infection is βSnIn

1+aSn
, and a measures the inhibitory effect,

perhaps for example due to vaccination. We assume a 6= 0. Further parameters are γ, the recovery
rate of the infected individuals, µ and λ that are death rate of infected and removed respectively.
Hence clearly µ, γ, λ < 1. The growth of the susceptible population is thus assumed to be logistic
which essentially means that the population grows rapidly when it is small, and more slowly as it
approaches some maximum value which in this case is 1.

We also have the obvious biological restriction that S0 + I0 + R0 = 1, that is the sum of all the
groups is equal to the total population when we start. Due to the logistic growth term, however,
this is not invariant.

Since Rn does not appear in the other two equations, it can be ignored on analysis of the system
since it will not affect the system dynamics. Hence our main concern is the reduced model

Sn+1 = rSn(1− Sn)− βSnIn
1 + aSn

In+1 = (1−K)In +
βSnIn

1 + aSn

(6.2)

where we have put K = µ+γ. In [3] the authors present some analysis and numerical simulations,
indicating local stability of fixed points and bifurcation to periodic doubling but the analysis is
short of rigorous, and far from complete. The rest of this paper is aimed at using the theory so far
presented to give a more complete analysis of the dynamics of the system (6.2).

We shall assume throughout that the initial state (S0, I0) does not lie on the curve rS(1 − S) −
βSI
1+aS = 0, since in this case Sn = 0 for n = 1, 2, . . . and I converges to 0 by the contraction
principle (Theorem 2). Just note that if S = 0, then In+1 = (1−K)In, where |1−K| < 1.

6.1 Fixed points

Our first order of business is finding fixed points to the system. Fixed points are solutions to the
system of equations

S = f(S, I) = rS(1− S)− βSI

1 + aS

I = g(S, I) = (1−K)I +
βSI

1 + aS
.

We write such fixed points as (S∗, I∗).

Trivial equilibrium
The origin is obviously a trivial fixed point, and we denote it by O = (0, 0).
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Disease free equilibrium
Another, more interesting fixed point is the so-called disease-free equilibrium that is found by fixing
I∗ = 0, since then g(S, 0) = 0. Next, we solve

S∗ = f(S∗, 0) = rS∗(1− S∗) ⇐⇒ 1 = r − rS∗ ⇐⇒ S∗ =
r − 1

r
,

so E0 = ( r−1r , 0) is the disease-free equilibrium.

Endemic equilibrium
Next assume I∗ 6= 0. Then the second equation becomes

I = (1−K)I +
βSI

1 + aS
⇐⇒ 1 = 1−K +

βS

1 + aS
,

which simplifies to

K =
βS

1 + aS
⇐⇒ S =

K

β − aK =
K

A
,

where we put A := β − aK. So, we have S∗ = K
A . Substituting this into the first equation we get

K

A
= r

K

β − aK

(
1− K

β − aK

)
−

β K
β−aK I

1 + a K
β−aK

= r
K

β − aK

(
β − aK −K
β − aK

)
− βKI

β − aK + aK

=
rK(A−K)

A2
−KI.

Solving for I we get

I =
rA− rK

A2
− 1

A
=
rA− rK −A

A2
=
r − 1

A
− rK

A2
,

and resubstituting we find another fixed point, E1 = ( K
β−aK ,

r−1
β−aK − rK

(β−aK)2 ), the so-called

endemic equilibrium.

6.2 Local stability

To study the local stability of the fixed points we shall use Theorem 1 to analyse the eigenvalues
of the Jacobian matrix evaluated at the fixed points.

For our dynamical system (6.2), the Jacobian matrix is

J(S, I) =



∂f

∂S

∂f

∂I
∂g

∂S

∂g

∂I


 =


r − 2rS −

(
βI

1+aS −
aβSI

(1+aS)2

)
− βS

1+aS

βI
1+aS −

aβSI
(1+aS)2 1−K + βS

1+aS




which simplifies to

J(S, I) =

(
r − 2rS − βI

(1+aS)2 − βS
1+aS

βI
(1+aS)2 1−K + βS

1+aS

)
.

Stability of the trivial fixed point
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We evaluate

J(E0) = J(0, 0) =

(
r 0
0 1−K

)
.

Since this is a triangular matrix we can just read the eigenvalues straight of the diagonal. Hence

λ1 = r

λ2 = 1−K,

so the origin is stable if r < 1 and 0 < K < 2, and due to biological restrictions, the second
inequality is automatically fulfilled.

6.2.1 Stability of E0

At the disease-free equilibrium, the Jacobian matrix is

J(E0) = J(
r − 1

r
, 0) =

(
2− r − β(r−1)

r+a(r−1)
0 1−K + β(r−1)

r+a(r−1)

)
.

Again we are lucky to get a triangular matrix, so the eigenvalues are

λ1 = 2− r

λ2 = 1−K +
β(r − 1)

r + a(r − 1)
.

To find out when E0 is stable, we must solve the system of inequalities

{
|2− r| < 1

|1−K + β(r−1)
r+a(r−1) | < 1

⇐⇒
{

1 < r < 3

−2 < β(r−1)
r+a(r−1) −K < 0.

Then we have
{

1 < r < 3

K − 2 < β(r−1)
r+a(r−1) < K

⇐⇒
{

1 < r < 3
(K−2)(r+a(r−1))

r−1 < β < K(r+a(r−1))
r−1 .

Now, since β is the coefficient for the force of infection, it must be positive. It is clear, since
K = µ + γ < 2 that the lower bound for β is negative. So, to summarize, if 1 < r < 3 and
0 < β < β0, where

β0 =
K(r + a(r − 1))

r − 1
,

then E0 is locally asymptotically stable.

6.2.2 Stability of E1

Now it gets a little more complicated. First, let us make sure that E1 exists in a biologically
sensible way, that is both S and I must be positive. For this to be true we must have, recalling
that K > 0 {

K
β−aK > 0
r−1
β−aK − rK

(β−aK)2 > 0
⇐⇒

{
β − aK > 0

β − aK > rK
r−1 .
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Hence {
r > 1

β > β0,
(6.3)

guarantees that E1 is positive.

The Jacobian matrix evaluated at E1 is

J(E1) =

(
2Kr
aK−β + K(a(r−1)+r)

β + 1 −K
r + K(a−(a+1)r)

β − 1 1

)
,

whose characteristic polynomial is

p(z) = z2 − p1z + p0

where p1 = −trace(J(E1)) and p0 = det(J(E1)). We found sufficient conditions on the coefficients
for stability in Section 3.5, and we have

p1 = −trace(J(E1)) = − 2Kr

aK − β −
K(a(r − 1) + r)

β
− 2

p0 = det(E1)) = 1 +K

(
2r

aK − β −
(K − 1)(a(r − 1) + r)

β
+ r − 1

)
.

Then remembering the positivity constraint (6.3) we require





|p1| < 1 + p0

|p0| < 1

r > 1

β > K(r+a(r−1))
r−1 .

Using Mathematica, we get from this that

{
1 < r ≤ 3

β0 < β < β2
or

{
3 < r < rmax

β1 < β < β2

where

β0 =K(r+a(r−1))
r−1

β1 =
1

2

(
K(2a(3+K(r−1)−r)+(K+1)r)

4+K(r−1) +

√
K2((K+2)2r2+4a2(r+1)2+4ar(14−5K−2r+3Kr))

(4+K(r−1))2

)

β2 =
1

2

(
a(2K − 1) + r(K+1)

r−1 +

√
a2 + 2ar(3K−1)

r−1 + r2(K+1)
(r−1)2

)

rmax =
1

2

√
16a2+88aK−32a+25K2+40K+16

K2 + 4a+5K+4
2K .

6.2.3 Conclusions local stability

We have found that if r < 1 the origin is locally asymptotically stable and if

{
1 < r < 3

0 < β < β0
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then the disease-free equilibrium E0 is locally asymptotically stable. Finally, if
{

1 < r ≤ 3

β0 < β < β2
or

{
3 < r < rmax

β1 < β < β2

then the endemic equilibrium E1 is locally asymptotically stable.

6.3 Basic reproduction number R0

We have found that the infection dies out and we reach a disease-free equilibrium if 1 < r < 3 and
0 < β < β0.

Now

β < β0 =
K(r + a(r − 1))

r − 1
⇐⇒ β(r − 1)

K(r + a(r − 1))
< 1,

so we might expect that R0 = β(r−1)
K(r+a(r−1)) is the basic reproduction number, that is In goes to

zero if β < β0.

To investigate this, note that by (6.2)

In+1 =

(
1−K +

βSn
1 + aSn

)
In,

so we should examine the map

h(x) = 1−K +
βx

1 + ax
(6.4)

for β < β0.

Proposition 22. If β < β0, 1 < r and 0 < x ≤ r−1
r , then |h(x)| < 1.

Proof. Since 0 < K < 2, and the term βx
1+ax is increasing, it is clear that −1 < h(x) for all x > 0.

To see that h(x) < 1, note that for fixed x, h(x) increases as β increases. Hence

h(x) < 1−K +
β0x

1 + ax
= 1−K +

K(r + a(r − 1))

r − 1
· x

1 + ax
= hβ0

(x).

Now, hβ0(x) is monotonically increasing for x > 0 so it is clear that

h(x) < hβ0(x) ≤ hβ0(
r − 1

r
) = 1−K +

K(r + a(r − 1))

r − 1
· r − 1

r + a(r − 1)
= 1,

which proves the proposition.

Notice that the map

y 7→ h(x)y, 0 < x ≤ r − 1

r
(6.5)

is continuous and by Proposition 22 it satisfies the condition

|h(x)y1 − h(x)y2| = |h(x)(y1 − y2)| = |h(x)||y1 − y2| < |y1 − y2|
where |h(x)| < 1. With the Euclidean distance on the complete metric space R, the map (6.5) is a
contraction map. Further, the only fixed point of the map y 7→ h(x)y is y = 0. Hence by Theorem
2, y → 0 as k →∞.

Now, if we could show that if β < β0, there exists some k for which n > k implies that 0 < Sn ≤ r−1
r ,

we would have shown that I goes to zero as suspected. Unfortunately, this does not seem to be true
in general. Despite much effort, it could not be shown that I → 0 if β < β0 even tough extensive

numerical simulations suggests that this is the case. Hence, we cannot prove that R0 = β(r−1)
K(r+a(r−1)) .
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6.4 Second iterate

Although we cannot prove that I → 0 if β < β0, we can show that there is a stable 2-cycle with
I = 0 for r > 3. This is further evidence, but of course not a proof for our hypothesis.

We study the second iterate
Sn+1 = f2(Sn, In)

In+1 = g2(Sn, In),

where

f2(S, I) = S(r − rS − βI
1+aS )(r + r2(S − 1)S + rβSI

1+aS + βI(1−K(1+aS)+S(β+a))
(1+aS)(S(S−1)ar−1)+βaSI )

g2(S, I), = I(1−K + βS
1+aS )(1−K + Sβ(r(S−1)(1+aS)+Iβ)

(1+aS)(S(S−1)ar−1)+βaSI ).
(6.6)

Assuming I = 0 we want to find the fixed point of this map. However, when I = 0, f(S, 0) is just
the well-known logistic map

x 7→ rx(1− x) = f(x). (6.7)

It is well known (see for example [5]) that the nontrivial fixed points of the second iterate of the
logistic map are

x1,2 =
1 + r ±

√
(r − 3)(r + 1)

2r
.

Of course, any fixed point of the first iterate is also a fixed point of the second, but we already
know about them.

Hence the nontrivial disease free fixed points of the second iterate (6.4) are

(S, I) = (
1 + r ±

√
(r − 3)(r + 1)

2r
, 0).

To analyse the stability of these points, that make up the 2-cycle in our original system, we need to
compute the eigenvalues of the Jacobian matrix evaluated at the fixed points. Tedious but trivial
calculations show that both fixed points yield upper triangular matrices, whose entries differ only
at the off-diagonal element. Hence the eigenvalues of both points are equal, and we have

µ1 = 4− r(r − 2)

µ2 =
(K−1)2(a2(r+1)+ar(r+1)+r2)−β(K−1)(r+1)(2a+r)+β2(r+1)

a2(r+1)+ar(r+1)+r2 .
(6.8)

As before, the fixed points are locally asymptotically stable if the eigenvalues lie inside the unit
circle. Using Mathematica, we find that this is the case if 3 < r < 1 +

√
6 and 0 < β < βmax where

βmax =
1

2

(√
4a2 + 4ar + r2((K−2)K(r−3)+r+1)

r+1 + 2a(K − 1) + (K − 1)r

)
.

We would like to know whether this upper bound is less than β0. First, it is easy to check that
when r = 3, they intersect. Further

dβ0
dr

=
K(a+ 1)

r − 1
− K(r + a(r − 1))

(r − 1)2
= − K

(r − 1)2
< 0

for all r 6= 1. So that β0 is monotonically decreasing as a function of r. Now, we find using
Mathematica that

dβmax
dr

=
1

2

(
2a(r+1)2+r(K2(r2−3)−2K(r2−3)+(r+1)2)

(r+1)2
√

4a2+4ar+
r2((K−2)K(r−3)+r+1)

r+1

+K − 1

)
> 0
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for all positive r. Hence βmax is increasing as r increases. To summarize we have found that
when r = 3, β0 = βmax, after which β0 decreases while βmax increases. Hence, we may draw the
conclusion that β0 < βmax for all r > 3.

6.5 Bifurcation

We have found conditions on the parameters r and β for stability. Now we ask how the dynamics
of the system (6.2) changes under variation of these parameters.

6.5.1 List of eigenvalues on bifurcation boundary

Here is the full list of eigenvalue types for each fixed point.

Trivial fixed point: O = (0, 0)

We found that the origin is stable if r < 1. When r = 1 we get eigenvalues λ1 = 1 and |λ2| < 1.

Disease free: E0 = ( r−1r , 0)

The stability conditions were 1 < r < 3 and 0 < β < β0. Recall however that the lower bound
for β was derived under the biological constraint that β has to be non-negative. Hence 0 is not
mathematically the lower bound for stability and can therefore be ignored here. The conditions,
with this in mind, can be violated as follows:

1. r = 1, 0 < β < β0 =⇒ λ1 = 1, |λ2| < 1

2. r = 1, β = β0 =⇒ λ1 = 1, λ2 = −1

3. r = 3, 0 < β < β0 =⇒ λ1 = 1, |λ2| < 1

4. r = 3, β = β0 =⇒ λ1 = 1, λ2 = −1

5. 1 < r < 3, β = β0 =⇒ λ1 = 1, |λ2| < 1

Endemic: E1 = ( K
β−aK ,

r−1
β−aK − rK

(β−aK)2 )

The stability conditions were 1 < r ≤ 3 and β0 < β < β2 or 3 < r < rmax and β1 < β < β2. Note
that when r = 3, we get β0 = β1, and when r = rmax we have β0 = β2. In fact, we can also have
β0 = β2 but only when r = 0 or r = a

a+1 < 1 so it has no effect here. The stability conditions can
be violated as follows:

1. 1 < r < 3, β = β0 =⇒ λ1 = 1, |λ2| < 1

2. 1 < r < 3, β = β2 =⇒ λ1,2 = e±iθ0 , 0 < θ0 < π

3. r = 3, β = β0 =⇒ λ1 = 1, λ2 = −1

4. r = 3, β = β2 =⇒ λ1,2 = e±iθ0 , 0 < θ0 < π

5. r = rmax, β = β2 =⇒ λ1 = −1, λ2 = −1

6. 3 < r < rmax, β = β1 =⇒ λ1 = −1, |λ2| < 1

7. 3 < r < rmax, β = β2 =⇒ λ1,2 = e±iθ0 , 0 < θ0 < π
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6.5.2 Bifurcation types in codimension 1

We begin by considering the bifurcations that depend on just one parameter.

Bifurcations from O: Since 0 < K < 2, we have that for r > 1, O is a saddle point. At r = 1 there
is a fold bifurcation, and O loses stability to other fixed points.

Bifurcations from E0: At β = β0 for all 1 < r < 3, or r = 1 for β < β0 there is a fold bifurcation,
and E0 loses stability. There is a flip bifurcation at r = 3 for all β < β0. We will show that it is
generic and stable.

Bifurcations from E1: For 1 < r < 3 and β = β0, there is a fold Bifurcation, and E1 loses stability
to E0. When β = β1 and 3 < r < rmax, there is a flip. For 1 < r < rmax and β = β2 there is a
Neimark-Sacker bifurcation, except for some degenerate cases which we deal with later.

Now we turn to investigate the genericity conditions on some of these bifurcation points. This is
somewhat technical, and include some rather long computations, some of which can be found in
the appendices.

6.5.3 Stable flip bifurcation from E0

At E0, for r = 3 the Jacobian matrix is

A = J(E0) =

(
2− r − β(r−1)

r+a(r−1)
0 1−K + β(r−1)

r+a(r−1)

)
=

(
−1 − 2β

3+2a

0 1−K + 2β
3+2a .

)

The eigenvalues of A are µ1 = −1 and µ2 = 1 − K + 2β
3+2a . Now, |µ2| < 1 if and only if

0 < β < 1
2 (3K + 2aK) = β0

∣∣
r=3

.

Following the procedure in Section 4.3 we compute an eigenvector q of A associated with µ1 = −1.
We have

Aq = −q ⇐⇒ (A+ I2)q = 0 ⇐⇒
(

0 − 2β
3+2a

0 2−K + 2β
3+2a

)(
q1
q2

)
= 0.

We may choose q1 = 1, q2 = 0 to get the eigenvector q = (1 0)T . Next, we compute an adjoint
eigenvector p, normalized with respect to q, so that 〈p, q〉 = 1. Fortunately, we see that p must
take the form p = (1 p2)T . Then we can find p2 by

AT p = −p ⇐⇒ (AT + I2)p = 0 ⇐⇒
(

0 0

− 2β
3+2a 2−K + 2β

3+2a

)(
1
p2

)
= 0.

This implies that

p2 =

2β
3+2a

2−K + 2β
3+2a

=
2β

2β + (2a+ 3)(2−K)
.

Our goal is to compute

c =
1

6
〈p, C(q, q, q)〉 − 1

4
〈p,B(q, (A− I2)−1B(q, q))〉,

which first requires the computation of B(x, y) and C(x, y, z). As this computation is quite tedious
and of no immediate interest, we just move on to state that c = 9 > 0 which implies that the flip
is stable. The interested reader is referred to appendix B for the details of the computation.
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6.5.4 Generic investigation of flip from E1

In a similar manner one can find eigenvectors and compute c for 3 < r < rmax and β = β1. We
denote by A the Jacobian matrix evaluated at E1 when β = β1. Then

A =

(
a11 −K
a21 1

)

where

a11 = 1+4(K(r−1)+4)(4a+Kr)

/(
4Kr−5K2r+K2r2−(K(r−3)+8)(4a+Kr)−2(K(r−1)+4)

√
K2(4a2(r+1)2+4ar(3Kr−5K−2r+14)+(K+2)2r2)

(K(r−1)+4)2

)
,

and
a21 = 2K(a−(a+1)r)√

K2(4a2(r+1)2+4ar(3Kr−5K−2r+14)+(K+2)2r2)
(K(r−1)+4)2

+
K(2a(K(r−1)−r+3)+(K+2)r)

K(r−1)+4

+ r − 1.

Our first order of business is to find an eigenvector of A associated with µ1 = −1. Hence, we solve
the equation

(A+ I2)q = 0

where q = (q1 q2)T . This yield
{

(a11 + 1)q1 −Kq2 = 0

a21q1 + 2q2 = 0
⇐⇒

{
q1 = − 2a11

2+a21K

q2 = a11a21
2+a21K

.

For convenience we divide both q1 and q2 by q1 to get the eigenvector

q =

(
1
−a212

)
.

Next, we determine the adjoint eigenvector p = (p1 p2)T :

(AT + 1)

(
p1
p2

)
=

(
(a11 + 1)p1 + a21p2
−Kp1 + 2p2

)
=

(
0
0

)
.

Together with the constraint that 〈p, q〉 = 1 this yields that




(a11 + 1)p1 + a21p2 = 0

Kp1 = 2p2

p1 − a21
2 p2 = 1.

From the second and third equation we get that p1 = 4
4−Ka21 and p2 = 2K

4−Ka21 , and one can check
that this fulfils the first equation as well. This gives us the adjoint eigenvector

p =
4

4−Ka21

(
1
K
2

)
.

Again, we wish to compute

c =
1

6
〈p, C(q, q, q)〉 − 1

4
〈p,B(q, (A− I2)−1B(q, q))〉,

which first requires the computation of B(x, y) and C(x, y, z). We refer the interested reader
to appendix B. Unfortunately, numerical simulations show that c can take on both positive and
negative values depending on r.
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6.5.5 Stable flip of the second iterate

We found that the second iterate has two nontrivial fixed points

(S, I) = (
1+r±

√
(r−3)(r+1)

2r , 0),

that are stable for 3 < r < 1 +
√

6. We also found that both fixed points yield the eigenvalues
(6.8). At r = 1 +

√
6, we find that µ1 = −1, so there is a flip in both cases. We will now show that

the flip is stable. We consider only the case with negative square root since the computations for
the other one are almost exactly the same.

Again, we look for an eigenvector of the Jacobian matrix J2 of the second iterate at r = 1 +
√

6
which is quite easy since then,

A = J2(
1+r±

√
(r−3)(r+1)

2r , 0) =

(
−1 a12
0 a21

)
,

where, if we denote by a±12 the off-diagonal element in the case of positive and negative square
roots respectively we have

a−12 =
β((2(

√
6+2)a+

√
2+2
√
3+3
√
6+8)K+4(

√
2+
√
3)a−2((

√
6+2)β−3

√
2−
√
3+
√
6+1))

2(a((
√
6+2)a+3

√
6+8)+2

√
6+7)

a+12 = −β(−2(
√
6+2)aK+4(

√
2+
√
3)a+2((

√
6+2)β+3

√
2+
√
3+
√
6+1)+(

√
2+2
√
3−3
√
6−8)K)

2(a((
√
6+2)a+3

√
6+8)+2

√
6+7)

a21 =
β((
√
6+2)β−(2(

√
6+2)a+3

√
6+8)(K−1))

a((
√
6+2)a+3

√
6+8)+2

√
6+7

+ (K − 1)2.

We want to determine q so that

(A+ I2)q =

(
0 a12
0 1 + a21

)(
q1
q2

)
= 0.

Hence, we may take q = (1 0)T . Since we require 〈p, q〉 = 1, p must take the form (1 p2)T . Then
we can find p2 by considering

(AT + I2)p =

(
0 0
a12 a21

)(
1
p2

)
= 0,

which tells us that
p2 = − a12

1 + a21
.

From here following the same procedure as before we can compute c. The computations are
completely analogous to what has been shown in appendix B and we find in the case of the
negative square root that

c = −10
(√

2− 2
)(

2
√

6 + 7
)
≈ 69.7

and for the positive square root

c = 10
(√

2 + 2
)(

2
√

6 + 7
)
≈ 406.3.

Hence the flip is stable in both cases.

41



6.5.6 Nondegeneracy on β = β2

In this section we will investigate the nondegeneracy conditions to see whether the Neimark-Sacker
bifurcation is generic. First, for β = β2, the Jacobian matrix is

A =

(
a11 −K
a21 1

)

where

a11 =
K

(
−r
√
a2+

2a(3K−1)r
r−1 +

(K+1)2r2

(r−1)2
+

√
a2+

2a(3K−1)r
r−1 +

(K+1)2r2

(r−1)2
+Kr+r

)
+a(Kr+K−2)

2a(K−1)

a21 = 2K(r+a(r−1))√
a2+

2a(3K−1)r
r−1 +

(K+1)2r2

(r−1)2
+a(2K−1)+ (K+1)r

r−1

+ r − 1.

The characteristic polynomial is

PA(z) = z2 − tr(A)z + det(A),

and using standard relations between coefficients and zeros of a degree two polynomial we get that
{
µ1 + µ2 = a11 + 1

µ1µ2 = det(A) = a11 + a21K = 1.
(6.9)

We have used that the zeros sum to negative the coefficient of z, and that the product is equal to
the constant term. It is a simple but tedious matter to check that det(A) = 1. Knowing that one
eigenvalue lies on the unit circle, we immediately get that the other one must do so as well, for
otherwise their product could not be 1. This also excludes the case µ1,2 = ±1 so we must have
complex conjugate eigenvalues

µ1,2 = e±iθ0 = σ ± iω.
From (6.9) it is clear that µ1 + µ2 = 2σ = a11 + 1, and specifically we get

σ =
a11 + 1

2
=

K



√

a2+
2a(3K−1)r

r−1 +
(K+1)2r2

(r−1)2 +Kr+r−r
√

a2+
2a(3K−1)r

r−1 +
(K+1)2r2

(r−1)2




4a(K−1) + Kr+K−2
4(K−1) +

1

2

The degenerate cases eikθ0 = 1 for k = 1, 2, 3 or 4 correspond to σ = 1,−1,− 1
2 , 0, so we may

determine for which values of r these nondegeneracy conditions are violated. We will solve the
equations for r, with the constraint that 1 < r ≤ rmax.

Case 1: σ = 1. This corresponds to θ0 = 0, that is 1:1 resonance. There are however no solutions
except r = 0. This means that there is no 1:1 resonance.

Case 2: σ = −1. Then θ0 = π, so this is 1:2 resonance. We find the solution r = rmax, which
means that when r = rmax, β = β2(= β1), there is a 1:2 resonance.

Case 3: σ = − 1
2 . This is θ0 = 3π

2 , which means 1:3 resonance. We find a solution

r̃ =
3a+ 4K + 3

2K
+

1

2

√
9a2 + 48aK − 18a+ 16K2 + 24K + 9

K2
.

So, for β = β2, r = r̃, there is a 1:3 resonance.

Case 4: σ = 0. Then θ0 = π
2 , corresponding to 1:4 resonance. Here too, there is a solution

r̄ =
2a+ 3K + 2

2K
+

1

2

√
4a2 + 20aK − 8a+ 9K2 + 12K + 4

K2
,
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which means that for β = β2, r = r̄ there is 1:4 resonance.

The expressions for rmax, r̄ and r̃ are quite similar, and in fact one can write

r̄ = R(2)

r̃ = R(3)

rmax = R(4),

where

R(x) =
ax+K(x+ 1) + x

2K
+

1

2

√
a2x2 + 2ax(K(3x− 1)− x) + (K(x+ 1) + x)2

K2
, (6.10)

which we define for 2 ≤ x ≤ 4. In this interval, the derivative of R is

R′(x) =

2K(a+K + 1) +
2(aK(6x−1)+(a−1)2x+K2(x+1)+2Kx+K)√

(ax−(Kx+K+x))2+8aKx2

K2

4K2
> 0

for 2 ≤ x ≤ 4, and in fact for all positive x, which is clear since every term is strictly positive for
x > 0. So R(x) is strictly monotonically increasing for 2 ≤ x ≤ 4, which implies that we always
have

r̄ < r̃ < rmax.

We should also check that d 6= 0, where d is given by (4.21). This is quite involved, and in fact
we are not able to solve it analytically. However, numerical experiments strongly suggest that
d < 0forallparameters. The computation of d can be found in appendix C.

Finally, we check that ρ′(β2) 6= 0 where ρ(β) = |µ1,2(β)|. This is the genericity condition (C.1)
given in section 4 in [4]. We have that (see appendix C)

µ1,2 =
a11 + 1± i

√
4(a11 +Ka21)− (a11 + 1)2

2
,

which means that

ρ(β) =|µ1,2(β)| = 1

2

√
(a11 + 1)2 + 4(a11 +Ka21)− (a11 + 1)2 =

√
a11 +Ka21,

where a11 and a21 depends on β. Explicitly

a11 =
2Kr

aK − β +
K(a(r − 1) + r)

β
+ 1

a21 =
K(a− (a+ 1)r)

β
+ r − 1.

Hence

ρ′(β) =
a′11(β) +Ka′21(β)

2
√
a11(β) +Ka21(β)

=

−K
2(a−(a+1)r)

β2 − K(a(r−1)+r)
β2 + 2Kr

(aK−β)2

2

√
2Kr
aK−β +K

(
K(a−(a+1)r)

β + r − 1
)

+ K(a(r−1)+r)
β + 1

,

which gives us

ρ′(β2) =
(r − 1)2(2a(r − 1) + (K + 1)r)

2K
√

2− rr(a(r − 1) + r)
6= 0

for r > 1.

This investigation leads us in to codimension 2.
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Figure 2: The curves β0, β1 and β2 in the rβ-plane, with a = K = 1 and the relevant regions for
stability.

6.6 Bifurcation types in codimension 2

Bifurcations from E0

In codimension 2 there are two fold-flips; one when r = 1, β = β0 and the other one when
r = 3, β = β0.

Bifurcations from E1

As noted above, we have 1:2, 1:3 and 1:4 resonance when β = β2 and r = rmax, r̃, r̄ respectively.
Apart from that, there is a fold-flip bifurcation at r = 3, β = β0.

6.7 Bifurcation diagrams and numerical simulations

We have found conditions for stability and bifurcation types on the parameters r and β. This
analysis is summed up in Figure 2. In Figure 3 and 4 we see bifurcation diagrams as r varies for
two different values of β; one less than β0 and one greater than β0. In Figure 5, the bifurcation
parameter is β, and we have r = 3.5 In all the bifurcation diagrams we have a = K = 1.

When β0 < β < β1, our numerical experiments seem to show that for any initial values, the system
diverges. As an example, in Figure 6 we set the initial values within a circle of radius 10−30 centred
on the fixed point E1. Initially one might expect it to converge, but after 75 iterations, S becomes
negative, and then goes to −∞.

When β > β0 we can start within a circle of radius 10−2 centred on E1, and after 5000 iterations
the system seems to converge to E1 as shown in Figure 7 with r = 11.44 and β = 3.18.

Perhaps the most interesting is the case when r < 3 and β > β2. If, with r = 2 and β = 6 we start
the system within a circle of radius 10−3 centred on E1, the system first move from E1 to settle
into a limit cycle an shown in Figure 8.

44



Figure 3: Bifurcation diagram with parameter r. We have β = 1 < β0.

6.8 Finding a 3-cycle using the logistic map

As we know, the existence of a 3-cycle implies the existence of cycles of arbitrary length. Hence it
is of interest whether the system has one.

Since the system (6.2) simply becomes the logistic map (6.7) when I = 0, we could hope that the
logistic map has a 3-cycle, for then our system would also inherit this cycle when I = 0. Unfor-
tunately, we have not been able to show that I tends to 0 for β < β0, but numerical simulations
strongly suggest that this is the case. Assuming that it is indeed true, we should expect to find a
3-cycle in our system exactly for the same values of r as the logistic map, since if our conjecture
is true, we would always eventually reach values of I arbitrarily close to 0. At this stage, the
dynamics should be strongly dominated by the logistic term. Hence, we expect the bifurcation
diagram of (6.2) to look exactly the same as that of the logistic map (6.7).

The logistic map has a 3-cycle, and there are several ways to locate the onset of it. One can
for instance approximate it numerically by graphical analysis, but it is also possible to find the
relevant value of r analytically by solving a certain system of algebraic equation as described in
[18]. In short, we have that the conditions for having a 3-cycle can be expressed in terms of the
three points x, y, x in the cycle:

y =rx(1− x) = f(x)

z =ry(1− y) = f(y) = f2(x)

x =rz(1− z) = f(z) = f2(y) = f3(x).

A fourth condition is given, since at the onset of the 3-cycle, the line y = x must be tangent to the
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Figure 4: Bifurcation diagram with parameter r, and β = 4 > β0.

graph of f3(x) as described in Figure 9. At x this yield

d(f3(x))

dx
=

d(f3(x))

d(f2(x))
· d(f2(x))

d(f(x))
· d(f(x))

dx
=

df(z)

dz
· df(y)

dy
· df(x)

dx

= r3(1− 2z)(1− 2y)(1− 2x) = 1.

Hence, we have four equations and four unknowns x, y, z, r, and in [18], the authors give a method
for solving for r analytically. In fact, for any period n, the n+ 1 equations





x2 = rx1(1− x1)

x3 = rx2(1− x2)
...

xn = rxn−1(1− xn−1)

x1 = rxn(1− xn)

rn
∏n
k=1(1− 2xk) = 1

(6.11)

can be solved for r to give the onset of the n-cycle. However, the complexity grows rapidly with n.

When r = 3 the only non-negative solution for r is r = 1 + 2
√

2. Therefore we expect our system
(6.2) to have a 3-cycle for this value of r, and indeed as shown in Figure 10, the orbit of (S, I)
stabilizes after about 30 iterations to a 3-cycle.
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Figure 5: Bifurcation diagram with parameter β. Here r = 3.5.

6.8.1 Some n-cycles

Now that we know there is a 3-cycle, Sharkovskii’s theorem tells us that there are cycles of arbitrary
length. We can solve the system (6.11) for n = 5 numerically which yield three distinct solutions
greater than 3, namely r1 = 3.73817, r2 = 3.90557, r3 = 3.99026. We expect these values of r to
yield 5-cycles in the bifurcation diagram when β < β0, and indeed Figure 11 show all three of
them.

For n = 6 we can solve the system of equations numerically, and find eight values of r that are
greater than 3, namely

r = 3.21486, 3.63386, 3.83185, 3.83265, 3.85556, 3.93769, 3.97781, 3.99759,

and with patience one can numerically find all nine solutions greater than 3 when n = 7. For
completeness these are

r = 3.71955, 3.78707, 3.88935, 3.92373, 3.95204, 3.96955, 3.98497, 3.99461, 3.99941.

For larger n it is no longer practical to solve the system of equations. We can however by simply
looking at the bifurcation diagram find some more cycles. As an example, Figure 12 show a 7-cycle,
a 10-cycle and an 18-cycle.

47



Figure 6: After 75 iterations the system diverges.

7 Conclusion

We have given a fairly complete analysis of the system in terms of stability and bifurcation, but
have not been able to show that I → 0 if β < β0, which in turn means that we have not been able
to prove that R0 is as hypothesized. The existence of an invariant set that preserves non-negativity
has also been sought in vain at this point and remains to be found. The system can diverge to
−∞, but numerical simulations suggests that it does not diverge to +∞. Global stability is also
an open question, as is the genericity of some of the co-dimension 2 bifurcations.

7.1 Generalized system

In our SIR-model, we have essentially assumed that susceptible individuals are immortal as long
as they do not get infected. Assuming that we want to model a short outbreak of some illness, this
is perhaps realistic, but for longer periods of time one would perhaps want to take into account the
natural deaths that occur in any population. Another issue that appears with longer time periods
is that recovered individuals typically are not immune forever, but eventually loose immunity.

To make the model more realistic, one can add some more parameters to account for natural death
in the population, loss of immunity and perhaps a carrying capacity that limits the maximum size
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Figure 7: The system looks like it converges to E1.

of the susceptible population. One possible generalization is the system

Sn+1 = rSn(1− Sn
k

)− βSnIn
1 + aSn

− dSn + µRn

In+1 =
βSnIn

1 + aSn
+ (1− d− γ)In

Rn+1 = γIn + (1− d− µ)Rn,

(7.1)

where r is the intrinsic growth rate of S, that is the birth rate, k is the carrying capacity, β the
force of infection, a is the inhibitory effect due to medication, isolation, vaccination et cetera. We
have also introduced d, the natural death rate of the population as a whole, and now µ is the rate
at which recovered individuals loses immunity, while γ is the recovery rate of infected individuals.
Note that the disease does not affect the death rate of infected individuals.

Using the methods presented in this paper, it should be possible to analyse this system in detail
although the analysis is more difficult since this system cannot be reduced to two dimensions. The
system (7.1) also has three fixed points, one trivial, one disease free, and one endemic. The two
non-trivial ones are

E0 =

(
k(−d+ r − 1)

r
, 0, 0

)

E1 =

(
− γ+d

a(γ+d)−β ,
(γ+d)(d+µ)(ak(γ+d)(d−r+1)−d(βk+r)+βk(r−1)−γr)

dk(γ+d+µ)(β−a(γ+d))2 ,

γ(γ+d)(ak(γ+d)(d−r+1)−d(βk+r)+βk(r−1)−γr)
dk(γ+d+µ)(β−a(γ+d))2

)
.
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Figure 8: A stable limit cycle
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(a) For r = 3.85 there are six nontrivial intersections.
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(b) At r = 3.8, the 3-cycle has disappeared. Only
trivial intersections.

Figure 9: The graph of f3(x) for two different values of r. The six nontrivial intersections in (a)
correspond to two 3-cycles; one stable and one unstable. Somewhere between r = 3.85 and r = 3.8,
the graph of f3(x) must have become tangent to the line y = x. This value corresponds to the
onset of the 3-cycle.
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Figure 10: Time series for r = 1 + 2
√

2, β = 2.09, µ = 0.19, γ = 0.99, a = 1.08, and S0 = 0.8, I0 =
0.2, and part of the bifurcation diagram for these parameters as r varies in a neighbourhood of the
critical value.

Figure 11: All the 5-cycles found in the bifurcation diagram as r varies, and with β < β0.

Figure 12: Cycles of length 7, 10 and 18, when β < β0.
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Figure 13: Bifurcation diagrams for system (7.1) with a = k = 1, µ = γ = d = 0.3. In the left
figure β = 4, and in the right figure r = 3.5.

To possibly arouse interest in further analysis of the system, we present some bifurcation diagrams
in Figure 13 to hint at the dynamics.
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Appendices

A End of the proof of Routh’s theorem; the singular case

For completeness we give the rest of the proof of Routh’s theorem, so that we can deal with cases
other than the singular case.

A.1 Adjustment for zeros on the imaginary axis

In deriving Routh’s theorem, we made heavy use of the formula (3.10), that was deduced under
the assumption that p(z) has no zeros on the imaginary axis. In the following discussion we shall
have to generalize (3.10) to take into account the situation when p(z) has k zeros in the open right
half plane and s zeros on the imaginary axis. In this case, (3.10) is replaced by

I+∞−∞
b0ω

n−1 − b1ωn−3 + b2ω
n−5 − . . .

a0ωn − a1ωn−2 + a2ωn−4 − . . .
= n− 2k − s, (A.1)

for
p(z) = d(z)p∗(z),

where d(z) is a real monic polynomial with s zeros on the imaginary axis and the polynomial p∗(z)
is of degree n∗ = n− s and has no such zeros.

First, we consider the case where s is even. Then

p(iω) = U(ω) + iV (ω) = d(iω)[U∗(ω) + iV ∗(ω)].

Since d(ω) has even degree s, and all its zeros lie on the imaginary axis, it follows from the factor
theorem and the complex conjugate root theorem that

d(ω) = (ω2 + ω1ω1)(ω2 + ω2ω2) · · · (ω2 + ωs/2ωs/2)

where ωk denotes complex conjugate.

But then d(iω) is a real polynomial in ω, and we have

U(ω)

V (ω)
=
U∗(ω)

V ∗(ω)
.

Since n and n∗ have the same parity, that is they are either both even or both odd, we get from
(3.7a), (3.7b) and (3.11) that

p2(ω)

p1(ω)
=
p∗2(ω)

p∗1(ω)
.

Applying (3.10) to p∗(z), we find

I+∞−∞
p2(ω)

p1(ω)
= I+∞−∞

p∗2(ω)

p∗1(ω)
= n∗ − 2k = n− 2k − s,

which is precisely what (A.1) states.

Next, if s is odd, we note that the only way this can occur is if d(z) has a zero at the origin of odd
multiplicity. The rest of the zeros must for the same reason as in the even case be pairs of complex
conjugates. Then d(iω) = id̂(iω) where d̂(iω) is a real polynomial in ω. So

p(iω) = U(ω) + iV (ω) = id̂(iω)[U∗(ω) + iV ∗(ω)] = d̂(iω)[−V ∗(ω) + iU(ω)],
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and therefore
U(ω)

V (ω)
= −V

∗(ω)

U∗(ω)
.

Since s is odd, n and n∗ now have opposite parity, so (3.7a), (3.7b) and (3.11) again tells us that

p2(ω)

p1(ω)
=
p∗2(ω)

p∗1(ω)
,

which again confirms (A.1).

A.2 The singular case

This far we have considered the regular case, where in the Routh table all the numbers b0, c0, d0, . . .
are nonzero. In this section we shall consider the singular cases where in the first column of the
Routh table there occurs a zero, say h0 = 0. at this point Routh’s algorithm stops, because to
obtain the next row we must divide by h0. The singular case can be of two types:

1) In the row in which h0 occurs there are numbers different from zero. This means that at some
point, the degree drops by more than one in the generalized Sturm chain (3.12).

2) All the numbers of the row in which h0 occurs are zero. Then this row is the (m+ 1):st where
m is the number of polynomials in (3.12). In this case the degree drops by one from any
polynomial to the next, but the degree of the last one, pm(ω) has degree larger than one. In
both cases the number of polynomials in (3.12) is m < n+ 1.

In these cases, the ordinary Routh’s algorithm comes to an end. However, Routh gives a special
rule for continuing the scheme in both cases.

In case 1), by this special rule, we have to substitute for h0 = 0 a small value ε of definite but
arbitrary sign and continue to fill in the table. The rest of the elements of the first column of
the table is are then rational functions of ε. The signs of these elements are determined by the
’smallness’ and sign of ε. If any one of these elements vanishes, i.e. is constantly zero as a function
of ε, then we replace this element by another small value η and continue the algorithm. This is
perhaps best illustrated by an example.

Consider the polynomial
p(z) = z4 + z3 + 2z2 + 2z + 1.

Following the procedure given so far, we obtain the table

1, 2, 1
1, 2
ε, 1

2− 1
ε

1

Here we find that k = V (1, 1, ε, 2− 1
ε , 1). For sufficiently small ε, in fact |ε| < 1

2 we find that k = 2.
By numerical methods one can find that p(z) has the zeros z = −0.62± 0.44i and z = 0.12± 1.31i
confirming the conclusion.

This method is based on the following observation: Since we assume that there is no singularity of
the second kind, the polynomials p1(ω) and p2(ω) are relatively prime. We have seen before that
it follows that the polynomial p(z) has no zeros on the imaginary axis.
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In the Routh table all the elements are expressed rationally in terms of the elements of the first
two rows, i.e. the coefficients of the given polynomial. However one can with some effort see from
(3.13) and (3.13′) and the analogous formulas for the rest of the rows, that given any two adjacent
rows of the Routh table, and the first element of the preceding rows, we can reconstruct the first
two rows. That is, we can express the coefficients of the original polynomial in terms of these
numbers. Thus, all the numbers a, b can be represented as polynomials in

a0, b0, c0, . . . , g0, g1, g2, . . . , h0, h1, h2, . . .

For clarity we give a small example. Suppose that we know the third and fourth row, and the first
entry the first and second row, and that these are a0, b0, c0, c1, d0, d1. Then we can get the first
two rows as

a0, c0 + a0
b0

(d0 + b0
c0
c1), c1 + a0

b0
d1

b0, d0 + b0
c0
c1, d1

c0, c1
d0, d1

Therefore, on replacing h0 = 0 by ε we in fact modify our original polynomial. In place of the Routh
table for p(z) we have the Routh table for a polynomial P (z, ε), where P (z, ε) is a polynomial in z
and the parameter ε which reduces to p(z) for ε = 0. Since the zeros of P (z, ε) change continuously
with a change in ε, and since there are no zeros on the imaginary axis for ε = 0, the number k of
roots in the right half-plane is the same for P (z, ε) and P (z, 0) = p(z) for values of ε sufficiently
small in modulus.

We proceed to case 2). Suppose that

a0 6= 0, b0 6= 0, . . . , e0 6= 0, g0 = 0, g1 = 0, g2 = 0, . . .

In this case the last polynomial in the generalized Sturm chain (3.12) is of the form

pm(ω) = e0ω
n−m+1 − e1ωn−m−1 + . . .

Routh now proposes that we replace pm+1(ω) which is the zero polynomial, by p′m(ω). So, in place
of g0, g1, . . . we write instead the corresponding coefficients

(n−m+ 1)e0, (n−m− 1)e1, . . .

and continue the algorithm.

By (A.1) we have that

I+∞−∞
p2(ω)

p1(ω)
= n− 2k − s

where the zeros of p(z) on the imaginary axis coincide with the real zeros of pm(ω). Thus if these
real zeroes are simple, then

I+∞−∞
p′m(ω)

pm(ω)
= s

as noted before. Therefore

I+∞−∞
p2(ω)

p1(ω)
+ I+∞−∞

p′m(ω)

pm(ω)
= n− 2k.

This formula shows that the missing part of the Routh table should be filled by the Routh table for
the polynomials pm(ω) and p′m(ω). The coefficients of p′m(ω) should therefore be used to replace
the elements of the zero row.
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If however the zeros of fm(ω) are not simple, then we denote by d(ω) the greatest common divisor
of pm(ω) and p′m(ω), by e(ω) the greatest common divisor of d(ω) and d′(ω) et cetera, and we get

I+∞−∞
p′m(ω)

pm(ω)
+ I+∞−∞

d′(ω)

d(ω)
+ I+∞−∞

e′(ω)

e(ω)
+ · · · = s.

Thus the number k can be found if the missing part of the Routh table is filled in by the Routh
table for pm(ω) and p′m(ω), then the Routh table for d(ω) and d′(ω), then that for e(ω) and e′(ω)
and so on. So if the zeros of pm(ω) are not simple, the rule has to be applied several times to
dispose of a singularity of the second type.

Using these two special rules one can determine k in most cases. However, the application of both
rules does not enable us to determine the number k in all cases.

B Computing c

B.1 Flip from E0

To show that the flip bifurcation from E0, happening when r = 3 and β < β0, is stable we had to
determine the nondegeneracy coefficient

c =
1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− I2)−1B(q, q))〉,

where B(x, y), C(x, y, z) are given by

Bi(x, y) =

n∑

j,k=1

∂2Fi(ξ)

∂ξj∂ξk

∣∣
ξ=0

xjyk, (B.1)

and

Ci(x, y) =

n∑

j,k,l=1

∂3Fi(ξ)

∂ξj∂ξk∂ξl

∣∣
ξ=0

xjykzl, (B.2)

where i = 1, 2, and A is the Jacobian matrix evaluated at E0.

We have

f(S, I) = rS(1− S)− βSI

1 + aS

g(S, I) = (1−K)I +
βSI

1 + aS
.

To shift the fixed point to the origin, define

ξ1 = S − S0

ξ2 = I − I0 = I

and note that ξ1 = ξ2 = 0 if and only if S = S0 and I = 0.

In these new coordinates the system becomes

ξ1(n+ 1) = f(ξ1(n) + S0, ξ2(n))− S0

ξ2(n+ 1) = g(ξ1(n) + S0, ξ2(n).
(B.3)
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We write the system (B.3) as
(
ξ1(n+ 1)
ξ2(n+ 1)

)
= J(E0)

(
ξ1(n)
ξ2(n)

)
+ F (ξ1(n), ξ2(n)) (B.4)

where as usual J(E0) is the Jacobian matrix evaluated at E0. Then by definition

F =

(
F1

F2

)
=

(
f(ξ1 + S0, ξ2)− S0

g(ξ1 + S0, ξ2)

)
− J(E0)

(
ξ1
ξ2

)
, (B.5)

and its Taylor expansion near the origin is given by

F (x) =
1

2
B(x, x) +

1

6
C(x, x, x) +O(||x||4),

with B(x, x), C(x, x, x) given by (B.1) and (B.2). Our system is two-dimensional, so we have

B(x, y) =

(
B1(x, y)
B2(x, y)

)
.

Form (B.5) we find that

F1(ξ1, ξ2) = r(ξ1 +
r − 1

r
)(1− ξ1 +

r − 1

r
)− β(ξ1 + r−1

r )ξ2

1 + a(ξ1 + r−1
r )
− r − 1

r
− (2− r)ξ1 −

β(r − 1)ξ2
r + a(r − 1)

,

and

F2(ξ1, ξ1) = (1−K)ξ2+
β(ξ1 + r−1

r )ξ2

1 + a(ξ1 + r−1
r )
−(1−K)ξ2−

β(r − 1)ξ2
r + a(r − 1)

=
β(ξ1 + r−1

r )ξ2

1 + a(ξ1 + r−1
r )
− β(r − 1)ξ2
r + a(r − 1)

.

Now we can compute partial derivatives. As these computations are completely straight forward
but somewhat tedious, we just state that

∂2F1

∂ξ21

∣∣
ξ=0

= −2r,
∂2F1

∂ξ1∂ξ2

∣∣
ξ=0

= − β

(1 + a(r−1)
r )2

,
∂2F1

∂ξ22

∣∣
ξ=0

= 0,

∂2F2

∂ξ21

∣∣
ξ=0

= 0,
∂2F2

∂ξ1∂ξ2

∣∣
ξ=0

=
β

(1 + a(r−1)
r )2

,
∂2F2

∂ξ22

∣∣
ξ=0

= 0.

Hence by (B.1) we get

B(x, y) =



−2rx1y1 − β

(1+
a(r−1)
r )2

x1y2 − β

(1+
a(r−1)
r )2

x2y1
β

(1+
a(r−1)
r )2

x1y2 + β

(1+
a(r−1)
r )2

x2y1


 .

Since q = (1 0)T we find that

B(q, q) = B(1, 0, 1, 0) =

(
−2r

0

)
,

which tells us that

B(q, q)
∣∣
r=3

= −6

(
1
0

)
.

Finally, the matrix

(A− I2)−1 =

(
−2 − 2β

2a+3

0 2β
2a+3 −K

)−1
=

(
− 1

2
β

(2a+3)K−2β
0 − 2

2K− 4β
2a+3

)
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so that

(A− I2)−1B(q, q) = −6

(
− 1

2

)(
1
0

)
= 3

(
1
0

)
,

which implies that

B(q, (A− I2)−1B(q, q)) = B(1, 0, 3, 0) =

(
−6 · 3

0

)
= −18

(
1
0

)
.

Now we can compute

− 1

2
〈p,B(q, (A− I2)−1B(q, q))〉 = −1

2
〈
(

1
p2

)
,−18

(
1
0

)
= 9. (B.6)

We are now well on the way. All that remains is to find C(x, y, z) given by (B.2). Again, the
computations are tedious but not very difficult. We just give the results:

∂3F1

∂ξ31

∣∣
ξ=0

= 0,
∂3F1

∂ξ32

∣∣
ξ=0

= 0,

∂3F1

∂ξ21∂ξ2

∣∣
ξ=0

=
2aβ

(1 + a(r−1)
r )3

,
∂3F1

∂ξ1∂ξ22

∣∣
ξ=0

= 0,

∂3F2

∂ξ31

∣∣
ξ=0

= 0,
∂3F2

∂ξ32

∣∣
ξ=0

= 0,

∂3F2

∂ξ21∂ξ2

∣∣
ξ=0

= − 2aβ

(1 + a(r−1)
r )3

,
∂3F2

∂ξ1∂ξ22

∣∣
ξ=0

= 0.

Using this and (B.2) we get

C(x, y, z) =




2aβ

(1+
a(r−1)
r )3

x1y1z2 + 2aβ

(1+
a(r−1)
r )3

x1y2z1 + 2aβ

(1+
a(r−1)
r )3

x2y1z1

− 2aβ

(1+
a(r−1)
r )3

x1y1z2 − 2aβ

(1+
a(r−1)
r )3

x1y2z1 − 2aβ

(1+
a(r−1)
r )3

x2y1z1


 ,

and we see that

C(q, q, q) = C(1, 0, 1, 0, 1, 0) =

(
0
0

)

which entails
1

6
〈p, C(q, q, q)〉 = 0. (B.7)

Now, using (B.6) and (B.7) we finally get

c =
1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− I2)−1B(q, q))〉 = 0 + 9 = 9.

B.2 Flip from E1

Again, our aim is to compute

c =
1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− I2)−1B(q, q))〉.

Again, we shift the fixed point to the origin by defining

ξ1 = S − S1 = S − K

β − aK

ξ2 = I − I1 = I − r − 1

β − aK −
rK

(β − aK)2
.
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Then ξ1 = ξ2 = 0 if and only if S = S1 and I = I1. Again, we write
(
ξ1(n+ 1)
ξ2(n+ 1)

)
= J(E1)

(
ξ1(n)
ξ2(n)

)
+ F (ξ1(n), ξ2(n)), (B.8)

so that, again

F =

(
F1

F2

)
=

(
f(ξ1 + S1, ξ2 + I1)− S1

g(ξ1 + S1, ξ2 + I1)− I1

)
− J(E1)

(
ξ1
ξ2

)
, (B.9)

and its Taylor expansion near the origin is given by

F (x) =
1

2
B(x, x) +

1

6
C(x, x, x) +O(||x||4),

with B(x, x), C(x, x, x) given by (B.1) and (B.2). Our system is two-dimensional, so we have

B(x, y) =

(
B1(x, y)
B2(x, y)

)
.

We see that

F1(ξ1, ξ2) = r(ξ1 + S1)(1− ξ1 − S1)− β(ξ2 + I1)(ξ1 + S1)

1 + a(ξ1 + S1)
− S1 − a11ξ1 +Kξ2

and

F2(ξ1, ξ2) = (1−K)(ξ2 + I1) +
β(ξ2 + I1)(ξ1 + S1)

1 + a(ξ1 + S1)
− I1 − a21ξ1 − ξ2.

Again, the computation of partial derivatives is not particularly interesting, so we just state that

∂2F1

∂ξ21

∣∣
ξ=0

=
2a(aK − β)(aK(r − 1) + β +Kr − βr)

β2
− 2r,

∂2F1

∂ξ1∂ξ2

∣∣
ξ=0

= − (β − aK)2

β
,
∂2F1

∂ξ22

∣∣
ξ=0

= 0,

∂2F2

∂ξ21

∣∣
ξ=0

= −2a(aK − β)(aK(r − 1) + β +Kr − βr)
β2

,

∂2F2

∂ξ1∂ξ2

∣∣
ξ=0

=
(β − aK)2

β
,
∂2F2

∂ξ22

∣∣
ξ=0

= 0,

which means that

B(x, y) =


x1y1

(
2a(aK−β)(aK(r−1)+β+Kr−βr)

β2 − 2r
)
− x2y1(β−aK)2

β − x1y2(β−aK)2

β

x1(aK−β)(βy2(aK−β)−2ay1(K(a(r−1)+r)+β−βr))+βx2y1(β−aK)2

β2


 .

Next, we compute

∂3F1

∂ξ31

∣∣
ξ=0

= 6a2(β−aK)2(aK(r−1)+β+Kr−βr)
β3 ,

∂3F1

∂ξ32

∣∣
ξ=0

= − 2a(aK−β)3
β2 ,

∂3F1

∂ξ21∂ξ2

∣∣
ξ=0

= 0,
∂3F1

∂ξ1∂ξ22

∣∣
ξ=0

= 0,

∂3F2

∂ξ31

∣∣
ξ=0

= − 6a2(β−aK)2(aK(r−1)+β+Kr−βr)
β3 ,

∂3F2

∂ξ32

∣∣
ξ=0

= 2a(aK−β)3
β2 ,

∂3F2

∂ξ21∂ξ2

∣∣
ξ=0

= 0,
∂3F2

∂ξ1∂ξ22

∣∣
ξ=0

= 0,

which allows us to determine

C(x, y, z) =

(
C1(x, y, z)
C2(x, y, z)

)
,
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where

C1(x, y, z) = 6a2x1y1z1(β−aK)2(aK(r−1)+β+Kr−βr)
β3 − 2ax2y1z1(aK−β)3

β2

− 2ax1y2z1(aK−β)3
β2 − 2ax1y1z2(aK−β)3

β2

and

C2(x, y, z) =− 6a2x1y1z1(β−aK)2(aK(r−1)+β+Kr−βr)
β3 + 2ax2y1z1(aK−β)3

β2

+ 2ax1y2z1(aK−β)3
β2 + 2ax1y1z2(aK−β)3

β2 .

This then would in principle allow us to compute

c =
1

6
〈p, C(q, q, q)〉 − 1

2
〈p,B(q, (A− I2)−1B(q, q))〉,

where we would have to replace β by β1 everywhere. Unfortunately, even using Mathematica this
is a very complicated expression. Numerical computations show that c can be both positive and
negative, which means by continuity and the intermediate value theorem that it can also be zero.

C Computing d

We give briefly the steps one goes through to compute the nondegeneracy coefficient d. In appendix
B we have computed the multilinear functions B(x, y) and C(x, y, z) for E1. They remain the same
here. First, we note that the characteristic polynomial is

P (z) = z2 − (a11 + 1)z + a11 +Ka21,

which yields the eigenvalues (that we know are complex)

µ1,2 =
a11 + 1± i

√
4(a11 +Ka21)− (a11 + 1)2

2
,

and we discussed before that µ1,2 = e±iθ0 = σ ± ω where 2σ = a11 + 1. It follows from Euler’s
formula that σ = cos θ0, and hence θ0 = arccos(a11+1

2 ).

Now, we wish to determine a generalized eigenvector q of A. Such a vector satisfies

Aq = eiθ0q, Aq̄ = e−iθ0 q̄.

We get q by solving (
a11 − eiθ0 −K

a21 1− eiθ0
)(

q1
q2

)
=

(
0
0

)
.

We may choose q1 = 1 which yields q2 = a11−eiθ0
K . Hence

q =

(
1

a11−eiθ0
K

)
.

Next, we seek a generalized adjoint eigenvector p, which we normalize as before. Then p must
satisfy

AT p = eiθ0p, AT p̄ = e−iθ0 p̄, 〈p, q〉 = 1,
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which gives us three equations to solve:





p1 + a11−eiθ0
K p2 = 1

p1(a11 − eiθ0) + a21p2 = 0

−Kp1 + (1− eiθ0)p2 = 0.

This yields

p =
1

a11 − 2eiθ0 + 1

(
1− eiθ0
K

)
.

Now, using Mathematica, replacing β everywhere by β2, we can compute

d =
1

2
Re

(
e−iθ0

[
〈p, C(q, q, q̄)〉+ 2〈p,B(q, (A− In)−1B(q, q̄)〉

+ 〈p,B(q̄, (e2iθ0In −A)−1B(q, q))〉
])
.

Unfortunately, this is a massively complicated expression, so we have to resort to numerical ex-
perimentation. This strongly suggests that d < 0 for all choices of a and K when 1 < r < rmax.
Further, as r approaches 1 from above, it seems very clear that d → −∞. If one plots d as a
function of r, it reaches a local maximum for r between 1 and 3. Usually this maximum is attained
quite close to r = 1. All this strongly suggests that d < 0 for 1 < r < rmax.
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