
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Deciding isomorphisms in Cartesian closed categories

av

Hjalmar Wijk

2019 - No K28

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Deciding isomorphisms in Cartesian closed categories

Hjalmar Wijk

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Erik Palmgren

2019

Acknowledgements

I would like to thank my advisor Erik Palmgren for showing me the world of category
theory and guiding me to many wonderful insights.

1

Abstract

Category theory can be used to generalize the notion of isomorphism which exists

in many areas of mathematics and study the 'isomorphism problem', of determining

whether two objects are isomorphic, in a very general setting. In this thesis, we will

look at a particular class of categories called the Cartesian closed categories, where

we will �nd a remarkably simple but complete decision procedure for determining

which isomorphisms must exist. We will also study the subclass of such categories

which contain objects similar to the set of natural numbers, where we can demon-

strate isomorphisms analogous to the pairing functions N×N↔ N in much greater

generality.

Contents

1 Introduction 3

2 Background on CCC:s and λ-calculi 5

2.1 Categories and isomorphisms . 6

2.2 Products and terminal objects . 8

2.3 Hom-sets and exponentials . 11

2.4 Cartesian closed categories . 12

2.5 λ-calculus . 14

3 Deciding isomorphisms in CCC:s 18

3.1 A sound theory of isomorphisms . 18

3.2 A decision-procedure for Th1×T . 24

3.3 Showing the completeness of Th1×T . 26

4 Extending to in�nity 30

4.1 Natural number objects and types . 30

4.2 Primitive recursive functions in λ-calculus 32

4.3 Toward a decision procedure for N-objects 37

5 Final notes 40

References 41

Appendix I 42

2

1 Introduction

A common problem in many areas of mathematics is to determine whether two objects A
and B (which might be sets, groups, manifolds, varieties etc.) are isomorphic - meaning
that there are morphisms (suitably de�ned) f : A → B and g : B → A such that g ◦ f is
the identity morphism on A, and f ◦ g is the identity morphism on B. This will be written
A ∼= B. Some examples of common decision problems of this type are:

• Determining whether two sets are isomorphic.

• The group isomorphism problem, of determining whether two �nitely presented groups
are isomorphic.

• The homeomorphism problem, of determining whether two manifolds are homeomor-
phic.

• The isomorphism problem for varieties, of determining whether two varieties over the
algebraic numbers are isomorphic.

Category theory, which studies categories made up precisely of objects and 'morphism-
like' arrows between them, can provide general treatments for problems of this kind. This
theory will be presented properly later, but for now an informal understanding of concrete
categories will help.

De�nition 1.0.1. A concrete category consists of objects, which are sets with some kind
of structure (such as a group structure), and arrows, which are functions between objects
that preserve that structure. Among the arrows there is an identity arrow for each object
A, referred to as 1A. We can also compose arrows just like we can compose functions.

All the examples above can be viewed as concrete categories in this way, for example we
have the categories Set of sets with no structure and the functions between them, and its
restriction to only �nite sets called Finset. These are particularly nice categories since
determining whether two objects are isomorphic only comes down to determining whether
they have the same cardinality or size.

We might hope to use category theory to answer general questions about isomorphisms, such
as whether all categories where we can de�ne something like a Cartesian product (do not
worry about the details for now) will exhibit the isomorphism (A×B)×C ∼= A×(B×C) for
arbitrary objects A,B,C. More ambitiously we could consider looking for sound and complete
theories or e�ective decision methods specifying exactly which isomorphisms must hold for
all categories which have certain properties. In general this will not be possible; for a lot
of categories determining what isomorphisms must hold is an undecidable problem, as will
be seen in example 2.1.6.

3

It turns out, however, that if we work close to the well-behaved Set and Finset we can do
better. As an illustrative example let us return to the case of categories with some kind of
products similar to the Cartesian ones in Set and see if designing a decision procedure for
isomorphisms might be possible. This would tell us whether, for instance

(A×B)× (C ×A) ∼= (A×A)× (B × C), (1)

holds in all categories with products. It turns out that we can fairly easily prove associativity
and commutativity for all categories with products, and armed with those it takes only a
few steps to prove that the above isomorphism is valid. This provides a sound axiomatic
theory of isomorphisms for categories with products Th×:

(i) A×B ∼= B ×A

(ii) (A×B)× C ∼= A× (B × C)

We can even propose an e�ective decision method by taking any two objects and putting
them in a 'normal form' where the basic objects are put in alphabetic order and the product
is done starting from the left, then determining that they are equal if they have the same
normal form. For the example objects in (1) the normal form for both would be

((A×A)×B)× C,

and then we would immediately see that they are isomorphic. While this looks promising,
the theory might not be complete, there might still be other isomorphisms which will
always hold, but cannot be derived from just associativity and commutativity. In terms of
our decision procedure this would mean that there are normal forms which seem di�erent
but are actually isomorphic. How could we prove that that is not the case?

One way, which will be used several times in this thesis, is to simply �nd a category with
products where no other isomorphisms hold, thus proving that no other isomorphisms can
hold for all such categories. This method certainly is not guaranteed to work, since there
might be no such category, but in this case there is - Finset. This will be left without
proof, but it turns out that two di�erent normal forms interpreted in Finset will never be
isomorphic since there is always some assignment of sets to the arbitrary variables A,B,C, ...
which gives the two normal forms di�erent cardinalities.

Much of this thesis will be devoted to replicating this basic methodology in much more detail
for increasingly speci�c classes of categories, where more and more interesting isomorphisms
can be shown to always exist.

If we have arbitrary sets A,B in Set there is another common way of forming new sets
which generalizes very well to categorical structures, namely forming the set of functions

4

A → B, often written BA. In category theory these objects are often called exponential
objects. Without going into details, any category which, for all objects A,B, has both
products A×B and exponential objects BA which are su�ciently well-behaved is called a
Cartesian closed category (CCC). Obvious examples are once again Set and Finset. CCC:s
are also of special interest because they form models for typed λ-calculi, a commonly used
formal system for describing computation. This means that �nding decision methods for
isomorphisms in CCC:s immediately gives decision methods for isomorphisms between types
in typed λ-calculi, which has important applications in computer science.

Using a very similar method to the one illustrated for categories with just products this
thesis will in parts 2 and 3 present a proof that there is a sound and complete axiomatization
of isomorphisms which hold in all CCC:s, and that this can be used to build e�ective
decision methods. In fact we will, similar to the product case, show that all CCC:s contain
at least those isomorphisms found in Finset, which is to say that Finset only contains
the minimum number of isomorphisms needed to be a CCC. This proof is based largely on
Solov'ev's from 1983.

This thesis will then try to extend some of these results by noticing that in Set there are
many isomorphisms such as A×A ∼= A which hold for in�nite sets but which the theory of
CCC:s is too general to capture since it includes e.g. Finset where no such objects exist.
We could thus wonder if these isomorphisms in Set might hold in all CCC:s which have
objects somehow corresponding to in�nite sets.

There turns out to be a standard extension of CCC which does something like this, namely
CCC:s with natural number objects, objects which act like N does in Set. In the part 4 we
will show that adding this requirement does indeed lead to new valid isomorphisms that
look much like those in Set. This also has interesting applications since typed λ-calculi are
very often extended with a corresponding natural number type.

2 Background on CCC:s and λ-calculi

In this section we will go through the bare-minimum background in category theory and
λ-calculus necessary for understanding the results, establish the basic notations and de�ni-
tions used in the thesis and �nally look at the link between λ-calculi and Cartesian closed
categories. For a more detailed exposition on category theory see [1], and for a thorough
look at the link to λ-calculus see [5]. This presentation is essentially a much shortened mix
of the two.

5

2.1 Categories and isomorphisms

In the introduction we saw concrete categories such as Set, but the notion of category does
not actually need the objects to be sets or the arrows to be actual functions.

De�nition 2.1.1. A category consists of two classes: the class of arrows and the class of
objects. It also has two functions from the class of arrows to the class of objects, called
source and target. If f is an arrow we write f : A → B to mean 'source(f) = A' and
'target(f) = B'.

In addition every object A must have a speci�ed identity arrow 1A : A→ A, and each pair
of arrows f : A→ B, g : B → C must have a composite arrow gf : A→ C. Finally, for any
f : A→ B, g : B → C, h : C → D we must have:

f1A = f = 1Bf, (hg)f = h(gf)

All concrete categories are categories, but this de�nition allows for many other kinds.

Example 2.1.2. While we have already seen the concrete category of sets, an individual set
can also be seen as a category itself, which has the elements of the set as objects and no
arrows except the required identity arrows.

Example 2.1.3. Any preordered set can be seen as a category, where the objects are the
elements of the set and there is exactly one arrow A→ B if and only if A ≤ B. Composition
of arrows corresponds to transitivity of the order, and the identity arrows corresponds to
re�exivity.

From this de�nition we can formally de�ne a very general notion of isomorphism.

De�nition 2.1.4. An arrow f : A→ B is called an isomorphism if there exists an inverse

arrow g : B → A such that
gf = 1A, fg = 1B.

Two objects A,B are called isomorphic, written A ∼= B, if there exists an isomorphism
between them

If g : B → A and g′ : B → A are both inverses to f : A→ B then

gf = 1A ⇒ gfg′ = g′ ⇒ g1B = g′ ⇒ g = g′,

so inverses are unique and we are justi�ed in writing g = f−1.

Before moving on we will prove a general property of isomorphisms.

Proposition 2.1.5. The isomorphism relation ∼= is an equivalence relation, meaning if

A,B,C are objects in any category then

6

(i) A ∼= A

(ii) If A ∼= B, also B ∼= A.

(iii) If A ∼= B and B ∼= C, then A ∼= C.

Proof. (i) For any object A the identity arrow 1A provides the isomorphism.

(ii) If A ∼= B then there is some isomorphism f : A → B. The inverse f−1 : B → A is
then also an isomorphism (with f as inverse) and shows B ∼= A.

(iii) If A ∼= B and B ∼= C there are isomorphisms f : A → B, g : B → C. Then
gf : A→ C is an isomorphism with inverse f−1g−1, showing A ∼= C.

We can now look at an example of where the 'isomorphism problem', of determining whether
two objects in a category are isomorphic, is undecidable. This will build on the standard
notion of a Turing machine and the halting problem - if those are unfamiliar this example
can be safely skipped.

Example 2.1.6. Let T be a category where

• the objects are 1-tape Turing machines along with their current state, head position
and a complete description of the tape.

• the relation � holds between two objects t1 � t2 exactly if simulating t1 for one
step gives you t2. The relation =H holds between any two objects which are in the
halting state. Note that objects which are not in a halting state can never be related
to any object by =H and objects that are in a halting state can never be related
to any object by �. Finally we write

∗
= for the re�exive, symmetric and transitive

closure of the union of these relations.

• there is a unique arrow t1 → t2 in T if and only if t1
∗
= t2. Since

∗
= is re�exive and

transitive this ful�lls the de�nition of a category.

Since
∗
= is symmetric there will be arrows f : t1 → t2, g : t2 → t1 precisely when t1

∗
= t2,

and furthermore gf = 1t1 , fg = 1t2 by the uniqueness of arrows, meaning f and g form the
two directions of an isomorphism. Thus a decision method for the isomorphism problem in
T will also be a decision method for determining if t1

∗
= t2 for any objects t1, t2. But such

a decision method could then be used to solve the halting problem:

(i) Given any turing machine in its initial con�guration t, pick any turing machine in a
halting state h and consider both as objects of T.

7

(ii) Decide whether t
∗
= h.

(iii) If it is true, then it is easy to see that there has to be a sequence of transitions
t� t1 � ...� tn =H ... =H h, and that in particular t eventually reaches a halting
state tn.

(iv) If it is false, then no sequence of transitions � t1 � t2 � ... can ever reach a halting

state, since then that state would be related to h by
∗
= so also t would. Thus t never

halts.

Since the halting problem is undecidable, this shows that there cannot be a decision method
for determining isomorphisms in T.

Luckily we will be studying more well-behaved categories.

2.2 Products and terminal objects

The sets with just one element are important in Set since functions from a one-element set
can be identi�ed with the elements of the target set. This is useful since it provides a way
to talk about 'elements' in categorical language. A way to characterize a one-element set
is that there is a unique function from any other set into it. This notion can be generalized
and turns out to be quite useful.

De�nition 2.2.1. In any category C an object 1 is terminal if for any object A there is a
unique arrow A→ 1.

There might be many terminal objects in a category (as there are in Set), but we will often
privilege one, arbitrarily, and call it 1. The unique arrows A→ 1 for any object A will then
be written #A. This is unproblematic since it turns out they are unique up to isomorphism.

Proposition 2.2.2. Any two terminal objects T and T' in a category C are isomorphic

Proof. In fact, there is a unique isomorphism T → T ′. First notice that there are unique
arrows u : T → T ′ and v : T ′ → T since they are terminal. Since both are terminal there
must also be just one unique arrow T → T and T ′ → T ′, which means

1T = vu, 1T ′ = uv

so u and v are isomorphisms, and T ∼= T ′

This is our �rst example of using general categorical constructions to prove that certain
isomorphisms must always hold. Many more will follow throughout this thesis.

8

Continuing the theme of generalizing notions from Set, let us look closer at the Cartesian
product. Given two sets A,B in the category Set the Cartesian product A×B consists of
all pairs (a, b) with a ∈ A, b ∈ B. There are also natural projection functions

A A×B B
p1 p2

with
p1(a, b) = a, p2(a, b) = b

The important property of the Cartesian product is that given elements a ∈ A, b ∈ B there
is a unique element c ∈ A×B such that

p1(c) = a, p2(c) = b.

In other words, if we have a one-element set 1 and functions a, b like this:

1

A A×B B

a bc

p1 p2

then there is a unique function c : 1 → A × B such that the diagram commutes, meaning
any path yields the same function e.g. p1c = a.

This de�nition is almost ready to generalize directly to any category, however in categories
that are not concrete, so that the objects are not sets, it might not be 'enough' to only
consider the arrows from a terminal object 1, as it is in Set. Instead we require that arrows
from any object should have this property.

De�nition 2.2.3. In a category C a product diagram for the objects A,B consists of an
object P and arrows

A P B
p1 p2

such that for any X and arrows

A X B
x1 x2

there is a unique arrow h making the following diagram commute

X

A P B

x1 x2
h

p1 p2

9

Once again an object could have many products, for instance in Set we could use di�erent
representations of the ordered pair and still have a valid product. Luckily this is not a
problem, as is proved elegantly in [1].

Proposition 2.2.4. Products are unique up to isomorphism.

Proof. Suppose A and B are objects with two product diagrams:

P

A B

P ′

p1 p2

h

p′1 p′2

h′

Then we have unique arrows h : P → P ′, h′ : P ′ → P making the diagram above commute.
We then have p1(h

′h) = p1 and p2(h
′h) = p2, something which is also accomplished by 1P ,

and since such an arrow must be unique by the de�nition of a product, h′h = 1P . Similarly
we can show 1P ′ = hh′. So P ∼= P ′.

Thus if A,B have a product diagram we can feel safe writing

A A×B B
p1 p2

for one arbitrarily selected diagram. And given X,x1, x2 as in the de�nition we write
〈x1, x2〉 for the unique h : X → A×B.
De�nition 2.2.5. A category which has a product diagram for any two objects A,B is
said to have binary product. If we have arrows f : A→ B, f ′ : A′ → B′ in a category with
binary product, we write

f × f ′ := 〈fp1, f ′p2〉 : A×A′ → B ×B′.

In Set, f × f ′ would be the function which takes an element (a, a′) to (f(a), f ′(a′)).

De�nition 2.2.6. We can also de�ne n-ary products

A1 ×A2 ×A3 × ...×An

by a similar construction to the binary one. Given any object X and arrows x1 : X →
A1, ..., xn : X → An there should be a unique u : X → A1 × A2 × ... × An such that for
all i ≤ n, piu = xi. Observe that in particular, a null-ary product, for n = 0, is exactly
a terminal object, and the unary product of just A with itself is A. A category is said to
have all �nite products if it has n-ary products for all n.

10

As before, all n-ary products are clearly unique up to isomorphism. Now we will, as in [1],
show that working with n-ary products is in some sense unnecessary.

Proposition 2.2.7. If a category C has a terminal object and all binary products then it

has all �nite products.

While specifying the exact projections is slightly bothersome, it should be fairly clear that
setting

A1 ×A2 ×A3 = (A1 ×A2)×A3

will ful�ll the construction for 3-ary (ternary) products. Repeating this construction lets
you write any n-ary product for n ≥ 3 in terms of just the binary product.

Corollary 2.2.8. The binary product operation is associative, meaning

(A1 ×A2)×A3
∼= A1 × (A2 ×A3).

Proof. Since A1×(A2×A3) with suitable projections is also a ternary product of A1, A2, A3

the result follows from ternary products being unique up to isomorphism.

2.3 Hom-sets and exponentials

There is one more aspect of Set which we wish to generalize, namely the idea of 'sets of
functions A→ B', often written BA. First we can notice that forming such a set 'outside'
any category is easy.

De�nition 2.3.1. For objects A,B in a category C, let

HomC(A,B) = {f ∈ C | f : A→ B}.

Such a set of arrows is called a Hom-set.

However, we would like an object within the category to represent this notion, not just a
set outside it. To de�ne that we need to understand what makes function sets interesting
in Set.

In Set we can do evaluation, meaning there is a function eval:CB × B → C, de�ned by
eval(f, b) = f(b). An important property of eval is that given any function f(y) : B → C
there is a unique function f∗ ∈ CB such that

eval(f∗, y) = f∗(y) = f(y),

where f∗ is called the transpose of f . If we wish to talk about this in the language of
category theory however, we need to consider f∗ as an arrow into CB instead of an element
of it. While it would be enough to consider it as an arrow 1→ CB in Set we will in general

11

need to consider arrows A→ CB from any other object A. This means we instead consider
a function f(x, y) : (A×B)→ C to have a unique transpose f∗(x) : A→ CB so that

eval(f∗(x), y) = f∗(x)(y) = f(x, y),

which we get by f∗(a) = f(a, y) - it essentially '�xes' x = a and then returns the remaining
function in just y. Since f∗ is unique this de�nes an isomorphism

HomSet(A×B,C) ∼= HomSet(A,C
B)

Where given a function f : A × B → C you can construct f∗ : A → CB, and given a
function h : A→ CB you can construct eval(h(a), b) : A×B → C.

De�nition 2.3.2. Let C be a category with �nite products. An exponential of objects B
and C consists of an object

CB

and an arrow ε : CB ×B → C, such that for any object A and arrow

f : A×B → C

there is a unique arrow
f∗ : A→ CB

such that
ε(f∗ × 1B) = f.

This de�nition ensures that we have an isomorphism of sets

HomC(A×B,C) ∼= HomC(A,C
B),

by taking f : A × B → C to (the unique) f∗ : A → CB, and taking g : A → CB to
ε(g × 1B) : A×B → C.

De�nition 2.3.3. We say that a category with �nite products has exponentials if there
is an exponential object BA and evaluation arrow εA,B : BA × A for every pair of objects
A,B in the category.

2.4 Cartesian closed categories

De�nition 2.4.1. We call a category C Cartesian closed if it has all �nite products and
exponentials. Cartesian closed categories will sometimes be abbreviated CCC.

Examples are of course Set and Finset, but an additional example of a CCC which will
be useful in the �nal section is ω−cpo. It is another concrete category, but one with much
more structure than Set.

12

Example 2.4.2. ω-cpo is a Cartesian closed category with

• objects being ω-complete partially ordered sets with a least element ⊥. These are
sets with some order ≤ such that given any increasing sequence (possibly in�nite)

a0 ≤ a1 ≤ a2 ≤ ...

there is a supremum a∗ such that ai ≤ a∗ and a∗ ≤ a′ for all other upper bounds. As
mentioned they must also have a least element ⊥ with ⊥ ≤ a for all elements a of the
underlying set.

• arrows being ω-continuous functions. These are functions between ω-complete par-
tially ordered sets which preserve increasing sequences and their suprema. In partic-
ular they are monotone.

• terminal object {⊥}, which is a trivial ω− cpo and since it is a singleton there will
be a unique arrow into it from any other object.

• binary products A×B de�ned by taking the Cartesian products of the underlying
sets and ordering it by (a, b) ≤ (a′, b′)⇔ a ≤A a

′∧b ≤B b′. Projection is the standard,
(a, b)

p17→ a, (a, b)
p27→ b. Of course (⊥A,⊥B) is the new least element.

To see that A×B is ω-complete, take any increasing sequence

(a1, b1) ≤ (a2, b2) ≤ ...

We can then �nd the supremums a∗ and b∗ of the increasing sequences a1 ≤ a2 ≤ ...
and b1 ≤ b2 ≤ ... and (a∗, b∗) will clearly be the supremum we are looking for. This
also shows that projections are ω-continuous, since a supremum (a∗, b∗) will indeed
get projected onto the corresponding supremum in A or B. Finally it is also clear
that (⊥A,⊥B) is a least element.

• exponentials BA de�ned by taking the set of ω-continuous functions A → B and
ordering them pointwise, so that

f : A→ B ≤ g : A→ B ⇔ ∀a ∈ A : f(a) ≤B g(a).

Evaluation εA,B : BA ×A→ B is also standard, with f, a 7→ f(a). The least element
is given by f⊥ : A→ B, a 7→ ⊥B which is trivially ω-continuous.

The exponentials are also ω-complete - given an increasing sequence of functions

f1 ≤ f2 ≤ f3 ≤ ...

we can construct a function f∗ by letting f∗(a) be the supremum of the increasing
sequence f1(a) ≤ f2(a) ≤ ... in B. f∗ will then be a supremum in BA. We also need
to show that evaluation preserves suprema. If we have an increasing sequence

(f1, a1) ≤ (f2, a2) ≤ ...

13

with suprema (f∗, a∗), then using the monotonicity of ω-continuous functions fi(ai) ≤
fi(a

∗) ≤ f∗(a∗). In addition any other upper bound (f̂ , â) will have f∗(a∗) ≤ f∗(â) ≤
f̂(â) since a∗, f∗ are least upper bounds. Finally we have that for any function
f : A→ B and element a ∈ A, f⊥(a) = ⊥B ≤ f(a) so f⊥ is indeed a least element.

2.5 λ-calculus

Now we will look at another way of thinking about collections of objects and functions
with the notions of pairing, projection, application and transposition - namely the language
of λ-calculus. We will then sketch a proof that λ-calculi directly correspond to Cartesian
closed categories. See [5, p. 72�80] for a much more precise and detailed coverage of the
topic, though much of this presentation is taken from the less formal coverage in [1, p. 143].

Informally λ-calculus is a formalism for specifying functions, which uses the λ character
to show binding of variables. For instance the function which takes x to x2 would be
represented as λx.x2.

De�nition 2.5.1. A typed λ-calculus consists of

(i) Types: The class of types contains some basic types, including the type 1, and is
closed under two type forming operations: if A and B are types then so are A × B,
A⇒ B.

(ii) Terms: The class of terms contains variables x, y, z, ... : A of each type (where x : A
means x is of type A), the constant ∗ : 1 and possibly some other typed constants
a, b, c, ... : A. These are then used to form new terms according to the following rules:

(a) If a : A and b : B are terms then 〈a, b〉 : A×B is a term.

(b) If c : A×B is a term, then π1(c) : A and π2(c) : B are terms.

(c) If c : A⇒ B and a : A are terms, then ca : B is a term.

(d) If x : A is a variable and b : B is a term, then λx.b : A⇒ B is a term.

There may be other terms not indicated by these rules.

(iii) Equations: Before listing the equations which must hold, it is worth mentioning that
intuitively 〈−,−〉 means pairing, cx means c applied to x and λx.b(x) is a function
taking x to b(x). The λ character binds variables in a similar fashion to a quanti�er,
and variables which are not bound, such as y in the term λx.yx, are called free.
A term with no free variables is called closed. Another important notion is that
of substitution: if a, b are terms then a[b/x] is the result of replacing every free
occurrence of x in a by b. This can cause problems if b contains free variables which
become bound (also referred to as caught) in the new term, which we will take care
to avoid.

14

(a) a = ∗ for all a : 1.

(b) π1(〈a, b〉) = a.

(c) π2(〈a, b〉) = b.

(d) 〈π1(c), π2(c)〉 = c.

(e) (λx.b)a = b[a/x].

(f) λx.cx = c, as long as there are no occurrences of x in c.

(g) λx.b = λy.b[y/x] (as long as there was not already an occurrence of y in b)

There might also be further equations in any particular λ-calculus. We also have, in
line with the standard notion of `equality':

• Substitution rules, where a = b means also fa = fb for any term f of suitable
type and λx.a = λx.b for a variable x.

• Re�exivity, symmetry and transitivity.

It turns out that we can consider λ-calculi to be in some sense languages describing Carte-
sian closed categories (or phrased di�erently, that Cartesian closed categories form models
for λ-calculi). Seeing this connection might help interpreting the language.

De�nition 2.5.2. Given a λ-calculus D , the category of types C(D) is de�ned as:

(i) The objects are the types of the λ-calculus.

(ii) The arrows A→ B are equivalence classes of closed terms of type A⇒ B. We write
[c] for the equivalence class of the term c.

(iii) In particular, the identity arrow 1A for an object A is [λx.x] where x : A.

(iv) The composition gf for arrows f : A → B = [c], g : B → C = [d] is given by
[λx.d(cx)].

Proposition 2.5.3. For any typed λ-calculus D , C(D) is a category.

Proof. First o� we will argue that the arrows are well-de�ned in that they don't depend on
the choice of representative. If x : A and y : A then λx.x = λy.y by (g), so [λx.x] = [λy.y]
and the identity arrow is well-de�ned. If c : A → B = c′ : A → B, d : B → C = d′ :
B → C and x : A, y : A, then also λx.d(cx) = λy.d′(c′y) by the substitution rule and (g).

With that out of the way we need to check that it ful�lls the two equations in de�nition
2.1.1. If f : A→ B = [c] : A⇒ B is an arbitrary arrow, then indeed

f1A =[λx.c((λy.y)x)] = [λx.cx] = [c] = f

1Af =[λx.(λy.y)(cx)] = [λx.cx] = [c] = f

15

so the unit laws hold. For associativity, let f : A→ B = [a], g : B → C = [b], h : C → D =
[c]. Then

h(gf) =[λx.c((λy.b(ay))x)]

=[λx.c(b(ax))]

=[λx.(λy.c(by))(ax)]

=(hg)f.

Since the careful work of keeping track of the equivalence classes is quite bothersome, from
now on we will often omit it and simply identify arrows with representatives of the class.
This will not cause any problems.

Theorem 2.5.4. For any λ-calculus D the category of types C(D) is a Cartesian closed

category.

Proof. We need to show thatC(D) has a terminal object, binary products and exponentials.

The terminal object is the object corresponding to the type 1. For any object A the unique
arrow #A : A→ 1 is given by λx.∗ for x : A. Equation (iii)(a) ensures that any other term
of this type will be in the same equivalence class.

Given two objects A,B the projections from A×B are given by

p1 = λz.(π1(z)), p2 = λz.(π2(z)),

where z : A×B. Given any arrows a, b as in

X

A P B

a b(a,b)

p1 p2

let (a, b) = λx.〈ax, bx〉. Then we have

p1(a, b) =λy.(λz.(π1(z)))(λx.〈ax, bx〉y)
=λy.(λz.(π1(z)))(〈ay, by〉)
=λy.(π1(〈ay, by〉))
=λy.ay

=a

and similar for p2. This shows that the required arrow (a, b) exists, it remains to show that
it is unique. For any c : A×B → X, if it makes the above diagram commute then

a = p1c = λx.p1(cx) = λx.(λz.(π1(z)))(cx) = λx.(π1(cx))

16

and similarly b = λx.(π2(cx)). This means

(a, b) =λx.〈ax, bx〉
=λx.〈(λy.π1(cy))x, (λz.π2(cz))x〉
=λx.〈(π1(cx)), (π2(cx))〉
=λx.cx

=c

so (a,b) is unique.

It only remains to show that there are exponentials. Given any objects A,B let BA be the
object corresponding to the type A⇒ B. Then we de�ne evaluation by

ε = λz.π1(z)π2(z),

where z : (A⇒ B)×A. Given any function f : A×B → C we take as the transpose

f∗ = λx.λy.f〈x, y〉,

with x : A, y : B.

Then we wish to show
ε(f∗ × 1B) = f

Translating the de�nition into a λ-term we get g × h = λx.〈gπ1(x), hπ2(x)〉. We then get

ε(f∗ × 1B) =λw.(λz.π1(z)π2(z))(λx.〈f∗π1(x), 1Bπ2(x)〉w)
=λw.(λz.π1(z)π2(z))(λx.〈(λv.λy.f〈v, y〉)π1(x), π2(x)〉w)
=λw.(λz.π1(z)π2(z))(λx.〈λy.f〈π1(x), y〉, π2(x)〉w)
=λw.(λz.π1(z)π2(z))(〈λy.f〈π1(w), y〉, π2(w)〉)
=λw.(π1(〈λy.f〈π1(w), y〉, π2(w)〉)π2(〈λy.f〈π1(w), y〉, π2(w)〉))
=λw.((λy.f〈π1(w), y〉)(π2(w)))
=λw.f〈π1(w), π2(w)〉
=λw.fw

=f

We have shown that ε is such that for any function a transpose exists but not that the
transpose is unique.

By doing the same kind of routine λ-calculation as above we can (but to avoid tedium we
will not) show

(ε(g × 1B))
∗ = g

Armed with this we assume that there is some other transposition operation which takes
f : A×B → C to f ′ : A→ CB, such that ε(f ′ × 1B) = f . Then we have

f∗ = (ε(f ′ × 1B))
∗ = f ′

17

and so f∗ is unique.

With this we have shown that C(D) has �nite products and exponentials, and is Cartesian
closed.

While this is all that will be shown in this thesis, [5, p. 72�80] in fact show that the �meta-
categories� CartN of Cartesian closed categories and λ-Calc of λ-calculi are isomorphic
in a very 'nice' respect which makes them equivalent as categories. We will not go into
detail on this, but you can conceptualize it as λ-calculi providing a language for encoding
or describing the arrows in a corresponding Cartesian closed category.

3 Deciding isomorphisms in CCC:s

This section will present a sound and complete theory Th1×T for deciding isomorphisms that
hold in all Cartesian closed categories. The name for the theory has been standardized in
the literature, and ×, T indicate the presence of products and terminal objects respectively.
We will also see a working decision procedure for concretely determining this, though there
are much faster methods such as the one presented in [4]. First we will prove a sound theory
for valid isomorphisms, as is done in [2] except we will develop a lot more detail. We will
then show, loosely following [6], that no other isomorphisms hold in the category Finset

so that no other isomorphisms can hold in all CCC:s.

3.1 A sound theory of isomorphisms

We have already seen that for any category with binary products and any objects A,B,C,

(A×B)× C ∼= A× (B × C).

This section will demonstrate a number of other isomorphisms of this type, which hold
regardless of which basic objects are involved. But �rst we wish to formalize what this
means.

De�nition 3.1.1. The object variables Ov of C are letters a, b, c, possibly with subscripts,
representing arbitrary objects in C. The object-schemes O are either object variables, the
object-scheme 1 or products/exponentials built from other object-schemes. An assignment

I assigns to each object variable an object of the category. An assignment can then be
uniquely extended to a full assignment which assigns objects to all object-schemes, respect-
ing products and exponentials and always assigning the object 1 to the object-scheme 1.
We say that two object-schemes are isomorphic if and only if they are assigned isomorphic
objects by all full assignments.

18

It is precisely isomorphisms between object-schemes which stand a chance of generalizing
to all CCC:s. We can immediately see that isomorphisms between object-schemes act much
like those on objects.

Proposition 3.1.2. ∼= forms an equivalence relation on object-schemes.

Proof. First we note that by 2.1.5 ∼= is an equivalence relation on objects.

• For any object-scheme A and assignment I, I(A) ∼= I(A) so also A ∼= A.

• If A,B are object-schemes such that A ∼= B then for any assignment I we have
I(A) ∼= I(B), which means also I(B) ∼= I(A). From this we can conclude B ∼= A.

• If A,B,C are object-schemes such that A ∼= B and B ∼= C then for any assignment
I we have I(A) ∼= I(B) and I(B) ∼= I(C) which means also I(A) ∼= I(C). From this
we can conclude A ∼= C.

An advantage of working with object-schemes is that we can easily talk about speci�c `parts'
of them.

De�nition 3.1.3. If A is an object-scheme with A = A0 × A1 or A = AA1
0 , then we call

A0, A1 object-parts of A. Furthermore the object-part relation is re�exive (A is an object-
part of A) and transitive (if A is an object-part of B which is an object-part of C, then
also A is an object-part of C). We will often want to talk about a speci�c occurrence of
an object-part X in some object-scheme A, which will be given by a position, a sequence
(x0, x2, x3, ..., xn) where each xi is either 0 or 1. Saying that X occurs at position p in A
then means

• X occurs at position p = () in A, where p is the empty sequence, if and only if A = X.

• Let A = A0×A1 or A = AA1
0 , and p = (x0, p

′) where p′ is a sequence. Then X occurs
at position p in A if and only if X occurs at position p′ in Ax0 .

This inductive de�nition just formalizes the idea that the numbers are 'instructions' telling
you whether the left (0) or right (1) part of A contain the occurrence of X we are looking
for, and that after �nishing all the instructions in the sequence you will arrive at X. We
call a position valid for an object-scheme A if there is some object-part that occurs there.
Finally we write A[Y/p] for the result of replacing the object-part at position p with the
object-scheme Y , which can also be de�ned inductively

• If p is the empty sequence, then A[Y/p] = Y .

19

• If A = A0 ×A1 or A = AA1
0 , p = (x0, p

′) where p′ is a sequence, then you get A[Y/p]
by replacing Ax0 by Ax0 [Y/p

′].

While somewhat complicated, this precise de�nition of object-parts and occurrences will
quickly pay o�. First though, let us look in some detail at a useful lemma which is proved
very brie�y in [2].

Lemma 3.1.4. Products and exponentials in a CCC 'preserve' isomorphisms of object-

schemes, meaning if A ∼= B and C ∼= D then also

(i) A× C ∼= B ×D

(ii) CA ∼= DB

Proof. (i) If A,B,C,D are object-schemes with A ∼= B and C ∼= D then there are
isomorphisms f : I(A) → I(B), g : I(C) → I(D) for any full assignment I. Then
f × g : I(A)× I(C)→ I(B)× I(D) is an isomorphism with inverse f−1 × g−1. This
can be shown by a straight-forward λ-calculation

(f × g)(f−1 × g−1) =λz.(λx.〈fπ1(x), gπ2(x)〉)(λy.〈f−1π1(y), g−1π2(y)〉z)
=λz.(λx.〈fπ1(x), gπ2(x)〉)(〈f−1π1(z), g−1π2(z)〉)
=λz.(〈f(f−1π1(z)), g(g−1π2(z))〉)
=λz.(〈π1(z), π2(z))〉)
=λz.z

=1I(A)×I(C).

Very similarly you can show (f−1 × g−1)(f × g) = 1I(B)×I(D). Thus we �nd that
I(A× C) = I(A)× I(C) ∼= I(B)× I(D) = I(B ×D) for any full assignment I.

(ii) With the same situation as in (i), we now want to associate to each arrow s : I(A)→
I(C) an arrow t : I(B) → I(D), using f, g. But this could be done by setting
t = gsf−1. In other words, by picking a t such that this diagram commutes.

I(A) I(C)

I(B) I(D)

f

s

gf−1

t

g−1

This also has an obvious inverse, from a given t pick the s that makes this diagram
commute. With b : I(B) the arrow corresponding to λs.λb.g(s(f−1b)) : (I(A) ⇒
I(C)) ⇒ (I(B) ⇒ I(D)) will carry out this process and turns out to indeed be an
isomorphism, though we will skip carrying out the precise λ-calculation this time.

20

This shows that for any full assignment I, I(CA) = I(C)I(A) ∼= I(D)I(B) = I(DB)
which shows the lemma.

Using the idea of object-parts developed earlier we can now extend this lemma.

Corollary 3.1.5. If X ∼= Y and X is an object-part of A occurring at p, then A ∼= A[Y/p].

Proof. The proof will be by induction on the length of p.

• If p is the empty sequence, then A = X and A[Y/p] = Y so the result follows
immediately.

• If the result holds for position sequences of length n, then assume p = (x0, p
′) where

p′ is a sequence of max length n. We also have either A = A0 ×A1 or A = AA1
0 , and

w.l.o.g. we can assume x0 = 0. Then we note that X is an object-part occurring at
position p′ in A0 so by induction A0[Y/p] ∼= A0. Then we apply Lemma 3.1.4 and get
that also A = A0 × A1

∼= A0[Y/p]× A1 = A[Y/p] or similarly if A is an exponential.
This shows the induction step.

This brings us to our �rst main result, which follows [2, Th. 2.6], though we will develop
the proof in much more detail.

Theorem 3.1.6. In any CCC, if the theory Th1×T of equality over object-schemes, given

by the axioms

(i) A×B = B ×A

(ii) (A×B)× C = A× (B × C)

(iii) CA×B = (CB)A

(iv) (B × C)A = BA × CA

(v) A× 1 = A

(vi) A1 = A

(vii) 1A = 1

proves M = N for any object-schemes M,N , then M ∼= N .

Proof. The proof will be an induction on the length of the proof. The statement holds
trivially for proofs with 0 steps. If we assume that any proof in less than k steps of M = N
means M ∼= N , then if a proof in k steps shows M = N the �nal step must be either

21

(i) A direct application of one of the above axioms.

(ii) An application of the transitive or symmetric property using an earlier proof that
N =M or M = X and X = N .

(iii) An application of the substitution rule, using an earlier proof of X = Y for some
object-part X occurring at position p in M to show M = M [Y/p] which is then
identical to N , or vice versa.

We showed in prop. 3.1.2 that isomorphisms form an equivalence relation on object-schemes,
which shows that in case (ii) the induction hypothesis will let us conclude our isomorphism
M ∼= N , since earlier proofs are shorter than k steps. Using corollary 3.1.5 we immediately
see that in case (iii) X ∼= Y ⇒ M ∼= M [Y/p] = N . It remains to show that for any
assignment I there are valid isomorphisms corresponding to the 7 axioms. In most cases
this will be done by specifying a λ-term representing the isomorphism.

(i) Let x : I(A)× I(B), y : I(B)× I(A) be variables. Then

f = λx.〈π2(x), π1(x)〉 : I(A)× I(B)⇒ I(B)× I(A)

and
g = λy.〈π2(y), π1(y)〉 : I(B)× I(A)⇒ I(A)× I(B)

provide the two directions of the desired isomorphism, since (with z : I(B)× I(A))

fg =λz.(λx.〈π2(x), π1(x)〉)(λy.〈π2(y), π1(y)〉z)
=λz.(λx.〈π2(x), π1(x)〉)(〈π2(z), π1(z)〉)
=λz.(〈π2(〈π2(z), π1(z)〉), π1(〈π2(z), π1(z)〉)〉)
=λz.(〈π1(z), π2(z)〉)
=λz.z

=1I(B)×I(A)

and by almost exactly the same steps gf = 1I(A)×I(B).

(ii) See Corollary 2.2.8.

(iii) Let x : (I(A) × I(B)) ⇒ I(C), y : I(A) ⇒ (I(B) ⇒ I(C)), a : I(A), b : I(B), d :
I(A)× I(B) be variables. Then

f = λx.λa.λb.x〈a, b〉 : ((I(A)× I(B))⇒ I(C))⇒ (I(A)⇒ (I(B)⇒ I(C)))

and

g = λy.λd.(yπ1(d))π2(d) : (I(A)⇒ (I(B)⇒ I(C)))⇒ ((I(A)× I(B))⇒ I(C))

22

provide the two directions of the desired isomorphism, since (with z : (I(A)×I(B))⇒
I(C))

gf =λz.(λy.λd.(yπ1(d))π2(d))(λx.λa.λb.x〈a, b〉z)
=λz.(λy.λd.(yπ1(d))π2(d))(λa.λb.z〈a, b〉)
=λz.(λd.(λa.λb.z〈a, b〉π1(d))π2(d))
=λz.(λd.(λb.z〈π1(d), b〉)π2(d))
=λz.(λd.(z〈π1(d), π2(d)〉))
=λz.(λd.zd)

=λz.z

=1(I(A)×I(B))⇒I(C)

and similarly fg = 1I(A)⇒(I(B)⇒I(C).

(iv) Let x : I(A) ⇒ (I(B) × I(C)), y : (I(A) ⇒ I(B)) × (I(A) ⇒ I(C)), a : I(A) be
variables. Then

f = λx.〈λa.π1(xa), λa.π2(xa)〉 : (I(A)⇒ (I(B)×I(C)))⇒ ((I(A)⇒ I(B))×(I(A)⇒ I(C)))

and

g = λy.λa.〈π1(y)a, π2(y)a〉 : (I(A)⇒ I(B))×(I(A)⇒ I(C))⇒ (I(A)⇒ (I(B)×I(C)))

provide the two directions of the desired isomorphism. This can be proved by another
two long but straight-forward λ-calculations showing gf = 1I(A)⇒(I(B)×I(C)), fg =
1(I(A)⇒I(B))×(I(A)⇒I(C)) which we will skip.

(v) Let x : I(A)× 1, y : I(A) be variables. Then

f = λx.π1(x) : I(A)× 1⇒ I(A)

and
g = λy.〈y, ∗〉 : I(A)⇒ I(A)× 1

provide the two directions of the desired isomorphism. With z : I(A)× 1 we have

gf =λz.(λy.〈y, ∗〉)(λx.π1(x)z)
=λz.(λy.〈y, ∗〉)π1(z)
=λz.(〈π1(z), ∗〉)
=λz.(〈π1(z), π2(z)〉)
=λz.z

=1I(A)×1

This proof uses that since π2(z) is a term of type 1, equation (iii)(a) forces π2(z) = ∗.
The proof of fg = 1I(A) is on the other hand entirely trivial and will thus be skipped.

23

(vi) Let x : 1 ⇒ I(A), y : I(A), a : 1 be variables. Then as usual we construct the two
directions of the isomorphism

f = λx.(x∗) : (1⇒ I(A))⇒ I(A)

and
g = λy.λa.y : I(A)⇒ (1⇒ I(A)).

We will only prove the direction that uses the special properties of 1 (with z : 1 ⇒
I(A)):

gf =λz.(λy.λa.y)(λx.(x∗)z)
=λz.(λy.λa.y)(z∗)
=λz.λa.(z∗)
=λz.λa.(za)

=λz.z

=11⇒I(A)

(vii) Let x : 1, y : I(A)⇒ 1, a : I(A) be variables. Then

f = λx.λa.x : 1⇒ (I(A)⇒ 1)

and
g = λy.∗ : (I(A)⇒ 1)⇒ 1

form the isomorphism. I(A)s before we will prove the direction using the unique
property of 1 (with z : I(A)⇒ 1):

gf =λz.(λx.λa.x)((λy.∗)z)
=λz.(λx.λa.x)∗
=λz.λa.∗
=λz.λa.(za)

=λz.z

=1I(A)⇒1

which uses that za : 1 = ∗ : 1.

This shows that also proofs with k steps allow us to conclude M ∼= N , which then shows it
for all proofs by induction.

3.2 A decision-procedure for Th1×T

In this section we will describe a procedure to determine whether Th1×T proves A = B for
any object-schemes A and B. This will be done by 'reducing' them to the normal form
presented in [6].

To do this we will give directions to the equalities of Th1×T .

24

De�nition 3.2.1. Let the one-step-reduction relation � be de�ned by

(i) (CA)B � CA×B

(ii) (B × C)A � BA × CA

(iii) A× 1 � A

(iv) 1×A� A

(v) A1 � A

(vi) 1A � 1

(vii) A× (B × C) � (A×B)× C

Commutativity is notably missing from this theory and will be dealt with later, for now
notice the extra reduction relation for 1×A.

We then de�ne
∗� as the substitutional closure of �, meaning that if X

∗� Y then if X

occurs as an object-part in A at position p, A
∗� A[Y/p]. Finally let �̃ be the re�exive

and transitive closure of
∗�.

Note that clearly, if A�̃B then Th1×T also proves A = B, since every form of reduction
preserves equality. The following two lemmas are based on [2, prop. 2.8], though they use
a slightly di�erent normal form and only prove the �rst lemma.

Lemma 3.2.2. This reduction process is strongly normalizing, meaning that repeatedly

applying reduction rules (in any order) to an object-scheme will eventually give you a normal

form where no more reductions are possible.

Proof. Rules (i) and (ii) both reduce the number of products and exponentiations present
in the 'base' of an exponent object-part. No rules increase this number, so they can only
be applied a �nite number of times. Rules (iii)-(vi) all reduce the size of the formula, so
between uses of (i) and (ii) these can only be applied a �nite number of times. Between
uses of all other rules there are only a �nite number of uses of (vii) possible, which won't
increase the size of the formula either. Thus you will eventually run out of ways to apply
all rules.

Lemma 3.2.3. This reduction process is locally con�uent, meaning if A
∗� B and A

∗� C
then there is some object-scheme D such that B�̃D and C�̃D.

This is important because it hints that the order of applying the reduction steps does not
matter, you will end up with the same object anyway.

Proof. The proof is somewhat involved but unimportant for the larger narrative, so it can
be found in Appendix I.

25

Since we already showed that this reduction was strongly normalizing Newman's lemma
gives that the reduction is globally con�uent, so that if A�̃B and A�̃C, then there is
some object D such that B�̃D and C�̃D. That also means that every object A has a
unique normal form, since otherwise there would need to be ways of further reducing the
two di�erent normal forms to the same object which is obviously impossible. We will refer
to the normal form of A as nf(A).

Remark 3.2.4. If A is in normal form all exponent object-parts XY will have X be an
object-variable, and either A = 1 or there are no occurrences of 1 as an object-part in A.
Any product will also be nested from the left as in (...((A1 × A2)× A3)× ...), and we will
occasionally write just A1 × A2 × A3 × ... for short. If any of this was not the case there
would be further reductions possible.

Finally let us state a very simple lemma about commutativity.

Lemma 3.2.5. If commutativity shows nf(A) = nf(B) then Th1×T shows A = B.

Proof. This is obvious since Th1×T proves A = nf(A) and B = nf(A), and commutativity
is an axiom of this theory so it also proves nf(A) = nf(B).

We've thus shown the soundness of a simple decision procedure for determining whether
A and B are isomorphic: reduce both to normal form and exhaustively search for ways
of commuting the object-parts to make them equal. It remains to show the completeness,
that if we cannot �nd a way to commute the normal forms which make them equal then
there is some assignment in some CCC which makes them non-isomorphic.

3.3 Showing the completeness of Th1×T

In this section we will show the converse of Theorem 3.1.6, namely that if Th1×T cannot
prove M = N , then there is a Cartesian closed categories with an assignment I such that
I(M) � I(N). We will also demonstrate that this leads to a complete decision procedure.
As in [6] this will be done by looking at Finset.

De�nition 3.3.1. Finset is the category with �nite sets as objects and regular functions
between them as arrows. It is a Cartesian closed category by interpreting the product A×B
as the Cartesian product, 1 as some one-element set {∗} and the exponential BA as the set
of functions f : A→ B. We also de�ne a mapping card : �nite sets→ N taking objects of
Finset to their cardinality, or number of elements.

Proposition 3.3.2. • For any sets A and B, A ∼= B if and only if card(A) = card(B).

• If A and B are sets with card(A) = n, card(B)=m then card(A × B) = n · m and

card(BA) = mn.

26

These results are well-known and will be left without proof.

Make note that by composing a full assignment with card we can get a cardinality assign-

ment J : O → N which assigns to each object-scheme a cardinality. It is simple to show
that two object-schemes are isomorphic if and only if they are assigned the same cardinality
by every cardinality assignment.

We now wish to show that if A and B are object-schemes such that you cannot show
nf(A) = nf(B) using commutativity, then A � B. This will require a rather technical
lemma.

Before getting into it let us look at a motivational idea. Say the object variables used in
the object-schemes are included among a0, a1, ..., an, and that the maximum arity of any
product in A or B is K. Then, if we could pick a cardinality assignment J such that
J(a0) > 1 and J(ai+1) > J(ai)

K for all i, the cardinality of two product order-schemes
would be equal if and only if they contain exactly the same multiplicities of all object-
variables. Indeed, if there was some maximum index s such that the multiplicity of as is
greater in A than it is in B, then no increase in the multiplicity of object-variables with
lower index in B could compensate for the cardinality J would assign the extra as, without
breaking the assumption that no products have more than K factors. What we have done is
essentially assign each object-variables such a di�erent cardinality that we could never trade
several of one for another, which forces the products to contain the exact same multiplicities
of everything in order to be equal.

Formalizing this process and expanding it to deal with exponentials will be done through
a technical lemma, which will then easily show the completeness of Th1×T . The core idea
of this lemma, if not the exact execution, comes from [6, Lemma 7]

Lemma 3.3.3. Let A and B be object-schemes in normal form such that they cannot be

proven equal by commutativity. Let V = {a0, a1, ..., an} include all the object variables

occurring in A and B. Furthermore let K be the largest arity of any product in either

object-scheme, let L = K + 1 and let

Jc : V → N, ai 7→ cL
i
,

be a cardinality assignment for each c. Then for any δ > 0 there is a p > 0 such that Jc
will, when extended to a full assignment, ful�ll either Jc(A) > δ · Jc(B) for all c > p or

Jc(B) > δ · Jc(A) for all c > p.

The proof will be by induction on the exponential depth of object-schemes, meaning the
maximum number of nested exponentiations. For an object-scheme A let D(A) refer to this
exponential depth.

Proof. Base case: If max(D(A),D(B)) = 0 then both A and B are products of object
variables. Let s be the greatest index such that as has a higher multiplicity in one of the

27

products, and w.l.o.g. we assume that it has multiplicity ms in B and ms+m
′ in A, where

m′ ≥ 1. This is guaranteed to be possible since otherwise commutativity would prove
A = B.

If s = 0 then A = am0+m′
0 = cm0+m′ while B = cm0 , so picking p = max(1, δ) is enough to

conclude Jc(A) > δ · Jc(B) for c > δ. We now assume s > 0 and write

Xc = Jc(as)
ms · Jc(as+1)

ms+1 · ... · Jc(an)mn ,

where ms+1, ...,mn are the multiplicities of these factors in A and B (which are the same
since s was the highest index where they di�er). Finally we set p = max(1, δ) and get for
c > p

Jc(A) ≥ Xc · Jc(as)m
′

≥Xc · cL
s

=Xc · (cL
s−1

)K+1

>δ ·Xc · (cL
s−1

)K

≥δJc(B),

which shows the lemma.

Inductive step: If the lemma holds for any object-schemes A′, B′ with
max(D(A′),D(B′)) < d, then we will show that it also holds for any object-schemes A,B
with d = max(D(A),D(B)).

In general A,B will be products (possibly unary) of exponential objects of the form aA
′

i with
A′ being an object-scheme with D(A′) < d. This is because the 'base' of any exponential
object-part of a normal form will be an object variable, see remark 3.2.4.

The simplest case is when they are both unary products, so A = aA
′

i and B = aB
′

j . Here
we will show a slight strengthening of the lemma, namely that for any δ there is a p such
that either Jc(A) > δJc(B)K for all c > p or Jc(B) > δJc(A)

K for all c > p.

If commutativity shows A′ = B′ then by the soundness of the theory we must have for any
c that Jc(A

′) = Jc(B
′) and in order for it not to show A = B we must have i 6= j. W.l.o.g.

we assume i > j ≥ 0 and then set p = max(1, δ) giving us for all c > p

Jc(A) = Jc(ai)
Jc(A′) = cL

i·Jc(A′) = cL
i−1·Jc(A′)(K+1)

>δ(cL
i−1·Jc(A′))K ≥ δ(cLj ·Jc(B′))K = δJc(B)K ,

which shows the (stronger version of) the lemma. If instead commutativity cannot show
A′ = B′ the induction hypothesis applies. We pick δ1 = Lj−i+1 and then assume w.l.o.g.
that J(A′) > δ1J(B

′) for c > p1 for some p1. If also i > j then showing that Jc(a
A′
i) >

δJc(a
B′
j) for large enough c is trivial. The interesting case is when j > i, so that the base

and the exponent are 'pushing in di�erent directions'. In that case pick p = max(p1, δ, 1).

28

This gives that for all c > p

Jc(A) = Jc(ai)
Jc(A′) = cL

i·Jc(A′) > cL
i·Lj−i+1Jc(B′)

=cL
j ·Jc(B′)·(K+1) > δ(cL

j ·Jc(B′))K = δJc(B)K ,

which shows the (stronger version of the) lemma in this case also.

If they are not unary products then they can be written on the form A = a
A′1
i1
×aA

′
2

i2
×...×aA

′
k

ik
,

B = a
A′k+1

ik+1
× aA

′
k+2

ik+2
× ...× aA

′
t

jt
.

We then take any δ and do pair-wise applications of the earlier proof that the (stronger
version of the) lemma holds for comparing object-schemes with exponentiation as the

outer-most operator, and �nd that every pair a
A′s
is
, a

A′q
iq

can either be proven equal by

commutativity so that Jc(a
A′s
is
) = Jc(a

A′q
iq

) for all c, or there is some ps,q such that ei-

ther Jc(a
A′s
is
) > δJc(a

A′q
iq

)K for all c > p or the reverse. This means that the order <J on the

factors a
A′s
is

induced by Jc with c > p∗ = max(p1,1, p1,2, ..., p2,1, ..., pt,t) will not depend on

which such c is picked. We write a
A′s
is

=J a
A′q
iq

if Jc assigns the same cardinality to a
A′s
is

and

a
A′q
iq

for c > p∗, and note that this implies that a
A′s
is

= a
A′q
iq

is provable from commutativity.
We should also notice that clearly the order <J is a strict total order up to =J .

If we say that the multiplicity of a factor in A or B is the number of other factors there
are in the object-scheme which are equal by =J , then we can let S be the greatest factor
(by <J) which exists in higher multiplicity in one object-scheme than the other. This is
guaranteed to exist since equality in this order means provable equality by commutativity,
so if all factors have the same multiplicity A = B can be shown by commutativity. We can
assume w.l.o.g. that S has higher multiplicity in A, and let Q be a greatest factor in B less
than S by <J . Note that this means

Jc(S) > δJc(Q)K .

Again let Xc be the cardinality assigned by Jc to the product of all factors equal to or
greater than S in B (by <J). There will be corresponding factors in A assigned equal
cardinality to those in Xc since A has higher multiplicity of factors equal to S, and S was
the greatest where they di�ered in multiplicity. Then we have, for c > p∗

Jc(A) ≥ Xc · Jc(S) > δXc · Jc(Q)K ≥ Jc(B),

which completes the inductive step.

Theorem 3.3.4. If it is true in all CCC:s that there is an isomorphism A ∼= B then

commutativity shows nf(A) = nf(B) and Th1×T proves A = B.

29

Proof. If it is true in all CCC:s then in particular it is true in Finset for the equivalent
object-schemes, and also for their normal forms nf(A) ∼= nf(B). But if commutativity did
not show nf(A) = nf(B) then by 3.3.3 there is an assignment which proves that nf(A) �
nf(B) in Finset. This is a contradiction, so clearly we must have that commutativity
shows nf(A) = nf(B), and by 3.2 also Th1×T proves A = B.

Corollary 3.3.5. For any objects A and B reducing them to normal form and checking if

there is some way to commute nf(A) to get nf(B) constitutes a valid decision procedure

for determining if A ∼= B in any CCC.

Proof. If you can commute nf(A) to get nf(B) then by 3.2 Th1×T proves A = B, and by
3.1.6 this implies A ∼= B in all CCC:s. The other direction was just proved above.

4 Extending to in�nity

After obtaining a good understanding of the isomorphisms which hold in all Cartesian
closed categories we will now try to restrict ourselves to only those which contain 'in�nite'
objects. The simplest or most natural example of an in�nite set is probably N, and we will
similarly consider what are called natural number objects, based on the presentation in [5].

4.1 Natural number objects and types

De�nition 4.1.1. An object N in a Cartesian closed category along with arrows 0 : 1→ N
and s : N → N is called a strong natural number object (NNO) if, given any diagram of
the form

1 X Xa f

there is a unique arrow h : N → X such that

h0 = a, hS = fh,

as in this commutative diagram

N N

1 X X

s

h h0

a f

30

In Set of course N is a natural number object with the map from a singleton set to 0 being
the arrow 0 : 1 → N, and the successor function being s : N → N. The unique function
h : N → X will take 0 to a and then take n to f(f(f(...a...))) repeated n times. A weak

natural number object is an object like above where h is not necessarily unique. An example
of a weak NNO in Set is N ∪ {−1} with the standard successor function, since where h
maps the −1 is irrelevant and there are thus many valid choices.

It is shown in [5, Cor. 9.2] that a CCC with weak NNO N will, for any objects B, have
arrows IB : B×BB×N → B with the property that for any arrows a : 1→ B, f : 1→ BB,
n : 1→ N ,

IB〈a, f, 0〉 = a, IB〈a, f, Sn〉 = fIB〈a, f, n〉.
You can think of this as essentially iterating f on a a total of n times.

We can use this to de�ne a natural number type in λ-calculus.

De�nition 4.1.2. A typed λ-calculus with natural number type follows de�nition 2.5.1
except in addition it has:

• The type N

• The constant 0 : N , and the term forming rules:

� If n : N is a term, then S(n) : N is a term.

� If a : A, f : A⇒ A,n : N are terms, then IA(a, f, n) : A is a term.

• The equations:

� IA(a, f, 0) = a. for all types A

� IA(a, f, S(n)) = fIA(a, f, n) for all types A.

Proposition 4.1.3. For a λ-calculus L with natural number type, its corresponding cate-

gory of types C(L) is a CCC with a (weak) natural number object.

Proof. We already know that it is a CCC. The natural number object is obviously the object
corresponding to the type N , and if z : 1, n : N are variables then the arrow 0: 1 → N
is given by [λz.0] and the arrow S : N → N is given by [λn.S(n)]. Finally, given arrows
a : 1 → A = [a], f : A → A = [f] we get the arrow h : N → A from [λn.I(f, a∗, n)], and a
routine λ-calculation will show that it ful�lls de�nition 4.1.1.

As we might have expected, λ-calculi with natural number types and CCC:s with weak
natural number objects are in fact equivalent, as shown in [5, p. 72-80]. If you add that
equality of terms should be closed under term induction:

31

• Let h(n), h′(n) : A be terms with a free variable n : N . Then if h(0) = h′(0) and
there is an f : A ⇒ A such that h(S(n)) = fh(n), h′(S(n)) = fh′(n), we conclude
h(n) = h′(n).

then it will correspond to a CCC with a strong natural number object, since that exactly
corresponds to the uniqueness of the arrow h in de�nition 4.1.1. It is easy to see that
term induction will not be valid with only a weak NNO when considering examples of weak
NNO:s like N ∪ {−1}, where there are elements which are not of the form S(S(S(...0...))).
h and h′ might act very di�erently on −1 in this case, while still ful�lling the requirements
for term induction.

In particular notice that if A = N, f = S and h′(n) = n then h(0) = 0 and h(S(n)) =
S(h(n)) is enough to conclude h(n) = n. This is the particular instance of the rule which
we will use later.

4.2 Primitive recursive functions in λ-calculus

In order to understand isomorphisms in CCC:s with natural number objects we will, fol-
lowing [5], try to understand which numerical functions are representable in a λ-calculus
with natural number type. We will speci�cally consider the primitive recursive functions, a
famous and very well-behaved set of functions which take some number of natural number
arguments and map them to a single natural number. We say that a function taking k
natural number arguments is k−ary.
De�nition 4.2.1. The basic primitive recursive functions are:

(i) the 0-ary constant function 0, which takes no arguments and always takes the value
0.

(ii) the 1-ary successor function S, which maps n 7→ n+ 1.

(iii) the projections pki , which are k−ary functions mapping (n1, n2, ..., nk) 7→ ni. In
other words they pick the i:th element of the k−tuple.

The set of primitive recursive functions is the smallest set of functions containing the basic
ones and being closed under the following two schemes for generating new functions:

(i) Composition, if f , a k−ary function, and g1, g2, ..., gk, all m−ary functions, are all
primitive recursive, then the m−ary function h which maps an m−tuple a ∈ Nm to
f(g1(a), g2(a), ..., gk(a)) is primitive recursive.

(ii) Primitive recursion, if f , a k−ary function, and g, a (k+2)-ary function, are both
primitive recursive, then also the (k + 1)-ary h with

h(0, x1, .., xk) = f(x1, ..., xk) h(S(n), x1, ..., xk) = g(n, h(n, x1, ..., xk), x1, ..., xk),

32

is primitive recursive.

Primitive recursion can be interpreted as repeatedly applying g to f (both parameterized
by x1, ..., xk), except g also takes the current 'loop-number' as a �rst argument. This turns
out to be a very powerful construction, and many commonly used numeric functions are
primitive recursive.

Remark 4.2.2. In particular the following functions are primitive recursive:

• The 2-ary functions of addition, multiplication and exponentiation.

• The 1-ary function sgn given by

sgn(n) =

{
0, if n = 0
1, otherwise

• The 2-ary function "monus" (written −̇) given by

x−̇y =

{
x− y, if x > y
0, otherwise

• The 2-ary functions of integer division and remainder.

For a proof of this see [3, p. 10�15].

Now we will look at how this relates to λ-calculi (cf. [5, p. 257]).

De�nition 4.2.3. Let #n be the term S(S(S(︸ ︷︷ ︸
n times

...0...))). We say that a k−ary function

f is representable in a λ-calculus with natural number type L if there is a closed term
F : Nk ⇒ N such that

F 〈...〈#n1,#n2〉, ...,#nk〉 = #f(n1, n2, ..., nk)

for every k-tuple (n1, n2, ..., nk) ∈ Nk.

We now present [5, Th. 2.4].

Theorem 4.2.4. All primitive recursive functions are representable in any λ-calculus with
natural number type.

Proof. First we show that the basic primitive recursive functions are representable:

(i) The constant function 0 is represented by the term 0.

33

(ii) The successor function S is represented by the term λn.S(n), where n : N .

(iii) The projections are given by terms applying π1, π2 correctly to navigate to the position
you wish to project. For instance p32 = λx.π2(π1(x)), where x : (N ×N)×N .

It is obvious that we can do composition, but showing that primitive recursion is possible
will take some more work. Given terms F : Nk ⇒ N , G : ((N×N)×Nk)⇒ N representing
f and g we write Fx = Fx and Gx = λu.G〈u, x〉, where x : Nk, u : N × N are variables.
Obtaining the term H : (N × Nk) ⇒ N so that it matches the h generated by primitive
recursion could now almost be done by using the iterator construction IN×Nk to iterate Gx

on Fx n times - however Gx still needs to know which loop it is on as a second argument. We
can solve this by iterating Kx = λu.〈S(π1(u)), Gxu〉 on Cx = 〈0, Fx〉 instead, using the left
part to keep track of which iteration we are on. If we write Ix(n) = I(N×N)×Nk(cx, kx, n),
the iterator equations are:

• Ix(0) = Cx = 〈0, Fx〉

• Ix(S(n)) = KxIx(n) = 〈S(π1(Ix(n))), GxIx(n)〉

These are easier to understand if we split the expression into two parts - so that I1x(n) =
π1(Ix(n)), I

2
x(n) = π2(Ix(n)). Then the above equations become

(i) I1x(0) = 0, I1x(S(n)) = S(I1x(n)),

(ii) I2x(0) = Fx, I2x(S(n)) = Gx〈I1x(n), I2x(n)〉.

Since we have (for any x) I1x(#0) = #0 and I1x(#(n + 1)) = S(Lx(#n)) simple induction
on n shows that I1x(#n) = #n. Thus I2x(#(n+ 1)) = Gx〈#n, I2x(#n)〉 which is starting to
look a lot like the iteration we want. It is now simple to engineer the term H so that

H〈n, x〉 = I2x(n)

We then write #a = 〈...〈#a1,#a2〉, ...,#ak〉 and prove that H represents h by induction,
starting with the base case:

H〈#0,#a〉 = I2#a(#0) = F#a = F#a = #f(a1, a2, ..., ak).

Now we assume that H〈#n,#a〉 = #h(n, a1, ..., ak), and get

H〈#(n+ 1),#a〉 = I2#a(#(n+ 1)) = G#a〈#n, I2x(#n)〉
=G〈〈#n,H〈n, x〉〉,#a〉 = #g(n, h(n, a1, ..., ak), a1, ..., ak).

Thus we have shown that H represents h by induction and completed the proof.

34

It is worth noting that (i) implies I1x(n) = n for a variable n : N if we use term induction,
and that I2x is thus the unique (up to equivalence) term ful�lling (ii). Furthermore the
proof gives a term RF,G, labeled H in the proof, which is the unique term ful�lling

RF,G〈0, x〉 = Fx RF,G〈S(n), x〉 = G〈〈n,RF,G〈n, x〉〉, x〉.

We thus see that primitive recursion and composition are both possible do to within a λ-
calculus with natural number type and term induction. That is, you do not just get terms
that represent primitive recursive functions but terms that exactly mirror their equational
de�nition for variables n : N . We will also take the time to state a simple lemma we will
use later building on this result.

Lemma 4.2.5. If P,Q : N ⇒ N are terms of a typed λ-calculus with natural number type

and term induction so that P0 = Q0 and PS(n) = QS(n) for all n, then P = Q.

Proof. Let x : N ×N be a variable and de�ne G = λx.PS(π1(x)) : (N ×N) ⇒ N . Then
RP0,G : N ⇒ N is the unique term with the property

RP0,G0 = P0, RP0,GS(n) = G〈n,RP0,G〈n, x〉〉 = PS(n).

Since both P and Q also ful�ll this equation we must have RP0,G = P = Q.

Finally we get around to stating the main result of this section.

Theorem 4.2.6. In any CCC with strong natural number object N , N ×N ∼= N .

Proof. The cantor pairing function π : N× N→ N de�ned by

π(k1, k2) :=
1

2
(k1 + k2)(k1 + k2 + 1) + k2

is bijective and primitive recursive, as shown in [3, prop. 5.4]. The inverses s1, s2 : N→ N,
while slightly more di�cult to state, are also primitive recursive. The proof uses only the
primitive recursive de�nitions of the functions, and they imply that π(s1(n), s2(n)) = n
and for any 2-tuple a, (s1(π(a)), s2(π(a))) = a. Since we have a strong NNO, which is
equivalent to a λ-calculus with term induction, we can exactly mirror these de�nitions
within the category and get terms P, S1, S2 so that P and λn.〈S1n, S2n〉 are in fact the two
directions of an isomorphism N ×N ∼= N .

A Cartesian closed category with a weak NNO N is not guaranteed to have this property.
As an example we look back at the CCC ω-cpo, which was de�ned in 2.4.2.

Given any set S we write S⊥ for the ω − cpo with underlying set S ∪ {⊥} where a ≤ b if
and only if a = b or a = ⊥. It is essentially S as an unordered set with ⊥ inserted as a
least element. For instance we have N⊥, presented here as a Hasse-diagram where there is
a line upward from a to b if a < b and there is no z such that a < z < b :

35

0 1 2 3 ...

⊥

We can now show that ω − cpo in fact has a weak NNO.

Proposition 4.2.7. N⊥ with arrows 0 : {⊥} → N which maps ⊥ 7→ 0 and S : N⊥ → N⊥
which maps n 7→ n+ 1 and ⊥ 7→ ⊥, is a weak NNO in ω − cpo.

Proof. Since there are no strictly increasing in�nite sequences in N ω-completeness will
always hold, and clearly ⊥ is a least element. Furthermore, 0 and S are both ω-continuous
since they are monotone and there are no tricky suprema to preserve. Given any X, f, a as
in 4.1.1 we can let h(⊥N) = ⊥X and h(n) = f(f(f(...a...))) repeated n times, completing
the commuting diagram

N⊥ N⊥

{⊥} X X

S

h h
0

a f

so N⊥ is a weak NNO. However, there will be many cases where we can map ⊥N to
something other than the given least element in the other set. It might for instance have
multiple least elements we could pick from. This means that in general h will not be unique,
so N⊥ is not a strong NNO.

Finally we get to the point of all this - providing an exception to the rule N ×N ∼= N .

Proposition 4.2.8. In the category ω-cpo, N⊥ × N⊥ � N⊥

Proof. If we look at a Hasse-diagram of some select elements of N⊥ × N⊥

(0, 0) (0, 1) (1, 0) (1, 1) ...

(0,⊥) (⊥, 0) (1,⊥) (⊥, 1) ...

(⊥,⊥)

we can notice that the height of the diagram is now 3 instead of 2. If we imagine an
isomorphism f : N⊥ × N⊥ → N⊥, it would have to map e.g. the sequence (⊥,⊥) ≤

36

(⊥, 0) ≤ (0, 0) to some sequence a ≤ b ≤ c, but since there are no strictly increasing
sequences of three elements in N⊥ we would have a = b or b = c, contradicting that f is an
isomorphism.

Re�ecting on this we realize that there must be, and indeed is, a realization P of the cantor
pairing function in this category, since only a weak NNO is required for that. It maps all
the pairs of natural number elements of N⊥ × N⊥ to the natural number elements of N⊥
bijectively. However, in ω− cpo this is not enough, it would also have to map all the pairs
which include ⊥ in order to be an isomorphism, which we have shown to be impossible.

4.3 Toward a decision procedure for N-objects

We will now look closer at the implications of N × N ∼= N in CCC:s with strong natural
number objects.

De�nition 4.3.1. An N-object is an object which is constructed from just 1 and N as
basic objects, using products and exponentials.

This allows us to prove a very general valid isomorphism.

Theorem 4.3.2. For any N-object A in any CCC with a strong NNO, A×A ∼= A.

Proof. In remark 3.2.4 we saw that nf(A) will either be 1 or have no occurrences of 1 and
that only basic objects will be in the 'base' of exponentials in A. Combining these we �nd
that either A×A ∼= 1× 1 ∼= 1, or all exponential object-parts of A are of the form NX for
some X. In general we then have

A = NX1 ×NX2 × ...×NXn ×N × ...×N.

We then remember that for any X rule (iv) of Th1×T gives that NX ×NX ∼= (N ×N)X ∼=
NX . This means, using commutativity and associativity to rearrange the product

A×A ∼= (NX1 ×NX1)× (NX2 ×NX2)× ...× (NXn ×NXn)× (N ×N)× ...× (N ×N)

∼=NX1 ×NX2 × ...×NXn ×N × ...×N = A

On the other hand, we can use Set to demonstrate some isomorphisms which are not valid.

Proposition 4.3.3. If A,B are N-objects whose normal forms have di�erent exponential

depth, then they are not isomorphic in all CCC:s with strong NNO:s.

37

Proof. Set with N is a CCC with a strong NNO. We will show that if A,B are on normal
form and D(A) > D(B), then also card(A) > card(B). This will be done by induction on
D(A), and we will make heavy use of the fact that any N-objects A,B on normal form are
either in�nite or isomorphic to 1, which means

card(A×B) = max(card(A), card(B)), (2)

will always apply (assuming axiom of choice).

• First assume D(A) = 1, D(B) = 0. Then B is a �nite product N × ... ×N , and by
(2) card(B) = card(N). A on the other hand is a �nite product of NN and N . Notice
that Cantor's theorem gives that for any object A card(A) < card(NA), so (2) gives
card(A) = card(NN) > card(N).

• Now assume that for any A′, B′ with D(A′) < k,D(B′) < D(A′) it is true that
card(A′) > card(B′). Then assume D(A) = k, so that in general A is a product
A1×...×An where we can write any Ai on the form NA′i if we let A′i = 1 when Ai = N .
If card(A′j) ≥ card(A′i) for all i then by the induction hypothesis D(Aj) = k− 1, and

by (2) we have card(A) = card(NA′j).

By a similar argument we show that for any B with D(B) = l < k we have card(B) =
card(NB′i) with D(B′i) = l − 1 < k − 1. So by the induction hypothesis card(A′j) >
card(B′i) and thus card(A) > card(B).

Since two sets with di�erent cardinality by de�nition cannot be isomorphic, A � B if they
have di�erent exponential depth.

Thus we are only uncertain about which isomorphisms are valid between two objects of the
same exponential depth. The earlier equation (2) can quite easily be used to show that in
Set any two N-objects with the same exponential depth are isomorphic, and we already
know that (2) works in any CCC with strong NNO for products A × A. The problem is
determining whether it also holds when the two factors are di�erent. We can in fact prove
a special case of this in the general setting.

Proposition 4.3.4. In any CCC with strong natural number object N we have NN ×N ∼=
NN .

Proof. Given any term 〈F, n〉 : NN ×N and variable k : N we can construct the term

P (F, n) = λk.(n · (S(0)−̇sgn(k)) + f(k−̇S(0)) · sgn(k)) : NN

using terms for +, −̇, sgn, · as in remark 4.2.2, de�ned exactly like the corresponding prim-
itive recursive functions, where of course a+ b is here short for +〈a, b〉 etc.

38

The term Fn thus represents the function

fn(k) =

{
n, if k = 0
f(k − 1), otherwise

where f is the function represented by F . Finally let

P ∗ = λx.P (π1(x), π2(x)) : (N
N ×N)⇒ NN ,

where x : NN ×N.

For the other direction, given a term G : NN , we can construct 〈Q1(G), Q2(G)〉 : NN ×N
by letting Q1(G) = λk.G(S(k)) and Q2(G) = G0. Then let

Q∗ = λy.〈Q1(y), Q2(y)〉 : NN ⇒ (NN ×N),

where y : NN .

We must now show that indeed P ∗, Q∗ provide the two directions of an isomorphism.

λy.P ∗(Q∗y) = λy.P (π1(〈Q1(y), Q2(y)〉), π2(〈Q1(y), Q2(y)〉))
=λy.P (Q1(y), Q2(y)) = λy.P (λk1.y(S(k1)), y0)

=λy.λk2.(y0 · (S(0)−̇sgn(k2)) + (λk1.y(S(k1))(k2−̇S(0))) · sgn(k2))
=λy.λk2.(y0 · (S(0)−̇sgn(k2)) + y(S(k2−̇S(0))) · sgn(k2)) (3)

Now we notice that

λk2.(y0 · (S(0)−̇sgn(k2)) + y(S(k2−̇S(0))) · sgn(k2))0
=y0 · (S(0)−̇sgn(0)) + y(S(0−̇S(0))) · sgn(0)
=y0 · (S(1)−̇0) + y(S(0)) · 0
=y0 · (S(0))
=y0

and
λk2.(y0 · (S(0)−̇sgn(k2)) + y(S(k2−̇S(0))) · sgn(k2))S(n)

=y0 · (S(0)−̇sgn(S(n))) + y(S(S(n)−̇S(0))) · sgn(S(n))
=y0 · (S(0−̇S(0)) + y(S(n)) · S(0)
=y0 · 0 + y(S(n))

=yS(n)

which shows by 4.2.5 that λk2.(y#0 · (#1−̇sgn(k2)) + y(S(k2−̇#1)) · sgn(k2)) = y, so that
(3) is in fact equal to λy.y. The other direction is similar.

Beyond this however the tools of primitive recursive functions and term induction seems to
be lacking, and this thesis will not show any more valid isomorphisms.

39

5 Final notes

In this thesis we have �rst shown that there is a sound and complete theory and decision
procedure for determining which isomorphisms hold in all CCC:s. We have then tried to
understand which further isomorphisms hold in all CCC:s with weak/strong NNO:s, where
only limited progress has been made. While we have narrowed the space of uncertain
isomorphisms in CCC:s with strong NNO:s from both directions we are far from completely
determining them. There is reason to believe that in fact the strong result from Set will
not hold in all cases, and that there can be objects with the same exponential depth which
are not isomorphic. This is because showing, for instance, NNN ×N ∼= NNN

would seem
to require functions which can do case-splitting on functions. An example solution in the
vein of 4.3.4 would be taking (f : NN → N,n) to

fn(g) =





n, if g is constant 0
f(g − 1), if g is some other constant function
f(g), otherwise

however there is no computable function which can check if g is constant, since that would
involve checking every function value. In [5, Th. 2.7] they show that any representable
function is computable, so the above could never work as a solution. This is of course not a
proof that no isomorphism could be constructed, but it would require some other method.

Perhaps more likely is that there are indeed CCC:s with strong NNO:s which do not have
these isomorphisms, and it would be very interesting to �nd examples of such.

Another question left open by this thesis is whether a modi�ed version of theorem 4.3.2
requiring only that A×A ∼= A if D(A) ≥ k holds for weak NNO:s with some k. The reason
this is left open is that the result does seem to hold in ω − cpo for k = 1, even though we
showed that it did not for k = 0. Finding examples of weak NNO:s where this does not
hold for higher k or proving that for some k this is indeed a valid theorem would both be
very interesting results.

40

References

[1] Steve Awodey. Category Theory. 2nd. New York, NY, USA: Oxford University Press,
Inc., 2010. isbn: 0199237182, 9780199237180.

[2] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. �Provable Isomorphisms of
Types�. In: Mathematical Structures in Computer Science 2 (June 1992), pp. 231�
247. doi: 10.1017/S0960129500001444.

[3] S C. Russen. �Mathematical Logic: A Course with Exercises Part II: Recursion Theory,
Gödel's Theorems, Set Theory, Model Theory by René Cori; Daniel Lascar; Donald H.
Pelletier�. In: The Mathematical Gazette 88 (Jan. 2004), pp. 187�188. doi: 10.2307/
3621399.

[4] Joseph Gil and Yoav Zibin. �E�cient algorithms for isomorphisms of simple types�.
In: Mathematical Structures in Computer Science 15 (Oct. 2005), pp. 917�957. doi:
10.1145/640128.604146.

[5] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. New York,
NY, USA: Cambridge University Press, 1986. isbn: 0-521-24665-2.

[6] S. V. Solov'ev. �The category of �nite sets and Cartesian closed categories�. In: Journal
of Soviet Mathematics 22.3 (June 1983), pp. 1387�1400. issn: 1573-8795. doi: 10.1007/
BF01084396. url: https://doi.org/10.1007/BF01084396.

41

Appendix I

The proof of 3.2.3 follows, which references the rules in de�nition 3.2.1.

Proof. Let A
∗� B by applying rule (j) to an object-part at position p, and A

∗� C by
applying rule (k) to an object-part at position q. If p and q do not overlap, meaning
neither form an initial segment of the other, then we can obviously apply rule (k) to B at
position q and rule (j) to C at position p and get the same result, showing con�uence. It
becomes more interesting when the reductions overlap, so that p is an initial segment of q
or vice versa. Without loss of generality we can assume p is an initial segment of q so that
q = (p, q2). Then it will be su�cient to restrict our attention to the object-part at p, which
we might call M , where M �Mj by rule (j) applied to the whole of M , and then let the
other reduction (k) work on the object-part at position q2 of M . We will go through cases
according to the possible values of j, k and q2.

• If (j)=(i) then M = (DC)B for some object-schemes B,C,D. First we will illustrate
an important point with an example - if q2 is (0, 1) then applying (k) to the object

part at that position will simply be a reduction M
∗� Mk = (DC′)B where C � C ′

by (k). We can then apply (i) and get Mk � M∗ = DC′×B. We can also apply (k)

to Mj = DC×B at position (1, 0) and get Mj
∗� DC′×B = M∗ showing con�uence.

This same process can done if q2 has any of (0, 0), (1) or (0, 1) as an initial segment,
since such reductions won't mess with the structure required to apply (i). This leaves
two interesting cases.

� If q2 = () then (k) is also being applied to the whole of M , which is an expo-
nential, so rules (i),(ii),(v) and (vi) could hope to apply. However, DC could
never equal E × F for any object-schemes E,F or equal 1, so (ii) and (vi) are
out. Using the same rule at the same position is of course gonna give the same
result so we can ignore (i). This leaves (k) =(v), and in order to apply it we
need B = 1, giving us

M = (DC)1 �Mk = DC M �Mj = DC×1.

These can both be reduced to M∗ = DC , by doing nothing in the case of Mk or
applying rule (iii) at position (1) in the case of Mj .

� If q2 = (0) then the object-part at the position (DC) is again an exponential,
however we cannot ignore (i),(ii) and (vi) this time.

To apply rule (i) we need D = EF for some object-schemes E,F and we get

M = ((EF)C)B
∗�Mk = (EF×C)B M �Mj = (EF)C×B.

But both can be reduced to M∗ = E(F×C)×B, using rule (i) again and, when
reducing Mj , an application of (vii).

42

To apply rule (ii) we need D = E × F and we get

M = ((E × F)C)B ∗�Mk = (EC × FC)B M �Mj = (E × F)C×B.
But both of these can be reduced to M∗ = EC×B ×FC×B, by applying rule (ii)
again in both cases and then, in the case of Mk, applying rule (i) at position (0)
and position (1).

To apply rule (v) we need C = 1, and we get

M = (D1)B
∗�Mk = DB M �Mj = D1×B.

But both can be reduced to M∗ = DB by applying rule (iv) to Mj at position
(1).

Finally, to apply rule (vi) we need D = 1, and we get

M = (1C)B
∗�Mk = 1B M �Mj = 1C×B.

But both can be reduced to M∗ = 1 by applying (vi) again.

Thus we have shown con�uence in every case when (j)=(i).

• If (j)=(ii), then M = (D × C)B and once again any position that has (0, 0), (0, 1) or
(1) as an initial segment is uninteresting. This leaves two cases:

� If q2 = () then the object-part at that position is an exponential so once again
we deal with rules (i),(ii),(v),(vi). We can ignore (ii) since it is the same rule at
the same position, and since we will never have D×C = EF nor D×C = 1 we
can also ignore (i) and (vi).

The only remaining case is (v), and in order to apply it we need B = 1, giving
us

M = (D × C)1 �Mk = D × C M �Mj = D1 × C1.

But both can be reduced to M∗ = D × C by applying rule (v) at positions (0)
and (1) in Mj .

� If q2 = (0) then the object-part at that position (D × C) is a product, meaning
we can apply rules (iii),(iv),(vii).

In order to apply (iii) we need C = 1, and we get

M = (D × 1)B
∗�Mk = DB M �Mj = DB × 1B.

But both can be reduced to M∗ = DB, where you reduce Mj by �rst applying
rule (vi) at position (1), then applying rule (iii) at position ().

(iv) is essentially the same as (iii), so we skip to (vii), which needs C = E × F .
We get

M = (D × (E × F))B ∗�Mk = ((D ×E)× F)B M �Mj = DB × (E × F)B.
But both can be reduced to M∗ = (DB × EB) × FB, by applying (ii) twice to
Mk and by reducing Mj through an application of (ii) at position (1) followed
by an application of (vii).

43

Thus we have shown con�uence in every case when (j)=(ii).

• If (j)=(iii) then M = A × 1. No reduction can be applied to 1, and as before any
position with initial segment (0) is uninteresting, so there is only one relevant position
- namely ().

The object-part at that position is a product, so rules (iii),(iv) and (vii) have a chance
of being applied. As usual we can ignore (iii) since it is the same rule at the same
position, and in the case of (iv) we need M = 1 × 1 and both rules reduce to 1, so
we have con�uence. Finally (vii) would need 1 = B × C which is impossible, so it
cannot actually be applied. This leaves no other cases and we have con�uence when
(j)=(iii).

• If (j)=(iv) then M = 1 × A, and as before the only interesting position is (), where
the only interesting rule to apply is (vii), since (iii) requires M = 1 × 1 which was
already covered.

In order to apply (vii) we need A = B × C, which gives

M = 1× (B × C) �Mk = (1×B)× C M �Mj = B × C.

But both can be reduced to M∗ = B×C, by applying rule (iv) to position (0) of Mk.

This covers all cases so we have con�uence for (j)=(iv).

• If (j)=(v) thenM = A1, and the only interesting position is once again (). The object-
part at that position is an exponential so rules (i),(ii),(v),(vi) could be applicable. As
usual we ignore (v).

To apply (i) we need A = DC for some object-schemes D and C, which gives M =
(DC)1, a case that was already covered. The same is true of (ii) which requires
M = (D × C)1.
That leaves (vi) which requires M = 11 and both rules reduce it to 1, showing
con�uence for (j)=(v).

• If (j)=(vi) then M = 1A and the only interesting position is (). The object-part at
that position is an exponential, but rules (i) and (ii) are both inapplicable since we
can't have 1 = DC or 1 = D × C for any D,C. To apply rule (v) we need M = 11

which was already covered, and (vi) is �ne since it is the same rule at the same
position. This covers all cases and shows con�uence for (j)=(vi).

• Finally, if (j) =(vii) then M = A× (B ×C), and the interesting positions are () and
(1).

� If q2 = (), then the object-part at the position (M) is a product and it might
be possible to apply rules (iii),(iv) and (vii). We ignore (vii) as usual, (iii) is
impossible since B × C 6= 1, and (iv) requires M = 1 × (B × C) which was
already covered.

44

� If q2 = (1) then we have a product once again. This time however, all three
product rules are applicable.

To apply (iii) we need C = 1 which gives

M = A× (B × 1)
∗�Mk = A×B M �Mj = (A×B)× 1.

But both can be reduced to M∗ = A×B by applying rule (iii) to Mj .

To apply (iv) we need B = 1 which gives

M = A× (1× C) ∗�Mk = A× C M �Mj = (A× 1)× C.

But both can be reduced toM∗ = A×C by applying rule (iii) toMj at position
(0).

To apply (vii) we need C = D × E, and we get

M = A×(B×(D×E))
∗�Mk = A×((B×D)×E) M �Mj = (A×B)×(D×E).

But both can be reduced to M∗ = ((A×B)×D)×E by further applications of
rule (vii).

Thus we have con�uence also for (j)=(vii).

This �nally covers all cases and shows local con�uence for all values of j, k and q2. We have
thus shown that even if the two reductions apply to overlapping positions p and (p, q2) we
can further reduce both B and C to D = A[M∗/p], showing local con�uence.

45

