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Abstract

This paper presents a proof of Kuratowski’s Theorem and discuss prop-
erties of graphs embeddable on surfaces with respect to the embeddings
Euler characteristic and genus of the surface.



Acknowledgements

I would like to thank my supervisor Jörgen Backelin for suggesting the
topic and his invaluable support.



Contents

1 Introduction 2

2 Graph theory basics 3

3 Kuratowski’s Theorem 16

4 Surfaces 23
4.1 Special surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.2 Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3 Real Projective Plane . . . . . . . . . . . . . . . . . . . . 28
4.1.4 Klein Bottle . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Embedding graphs on surfaces 30
5.1 Forbidden minors . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Forbidden minors of the projective plane . . . . . . . . . . 33
5.2 Special embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Embeddings on surfaces of higher genus . . . . . . . . . . 35
5.2.2 Embeddings of the complete graphs . . . . . . . . . . . . 35



1 Introduction

Planar graphs, graphs that can be drawn on the plane with edges only inter-
secting at vertices, has properties in common with graphs embeddable on the
sphere, some of which are Euler characteristic 2 and a common set of forbidden
minors.
The purpose of this paper is to discuss these properties together with corre-
sponding properties for graphs embeddable on other surfaces, with respect to
their Euler characteristic, and give an extended proof of Kuratowski’s Theorem,
based on that of Diestel.

The paper assume some familiarity with graph theory and combinatorics.
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2 Graph theory basics

The definitions in Chapter 2 are based on those of Diestel [1].

Definition 2.1. A graph G is a pair of sets G = (V (G), E(G)) such that
E(G) is a set of 2-element subsets of V (G). The elements of V (G) are called
the vertices of G and the elements of E(G) are its edges.

In this paper all graphs will be simple and connected. Graphs will be sym-
bolically represented as a set of dots for vertices and lines between vertices
represent edges. The notation used for an edge e that connect two vertices x
and y will be e = xy

Figure 1: A graph G with vertex set V (G) = {v1, v2, v3, v4, v5} and edge set
E(G) = {v1v2, v1v4, v2v3, v2v4, v4v5}

Definition 2.2. A vertex v is incident to an edge e if v ∈ e.

Definition 2.3. Two vertices v, u ∈ V (G) are adjacent, or neighbours, if they
are connected by an edge, that is there are an edge e ∈ E(G) such that u, v ∈ e.

Hence the vertex v1 of the graph in figure 1 is incident to the edges v1v2 and
v1v4 as well as adjacent to the vertices v2 and v4.

Definition 2.4. A path is a sequence of vertices v1, ...., vk such that vi and
vi+1 are adjacent for all i = 1, ..., k − 1.

The graph in figure 1 has three possible paths between v1 and v4, P1 = v1v2v4,
P2 = v1v2v3v2v4 and P3 = v1v4.

Definition 2.5. A collection of paths are disjoint if no two paths in the collec-
tion has any vertices in common.
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Definition 2.6. A cycle is a path where v1 = vk and vi 6= vj for all other
i, j, i 6= j.

Definition 2.7. H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

Definition 2.8. H is a component of G if H is a maximal connected sub-
graph of G.

Definition 2.9. A graph is a complete graph if every pair of vertices are
connected by an edge. Let Kn denote the complete graph with n vertices.

Figure 2: The complete graph with five vertices, K5

Definition 2.10. A graph G is complete bipartite if V (G) can be divided into
two non empty subsets X and Y such that every x ∈ X is adjacent to every
y ∈ Y and no vertex is adjacent to another vertex in the same part. Let Km,n

denote the complete bipartite graph where X and Y contains m respectively n
vertices.

Figure 3: The complete bipartite graph K3,4
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Definition 2.11. Let G be a graph and assume there is an edge e = xy in G.
A subdivision of G is a graph obtained from G by removing an edge xy and
adding a new vertex v and new edges xv and yv, instead of e.
Let H = TG denote a graph H obtained as a subdivision of G.

Figure 4: H = TG obtained by subdividing the edge e = v3v4

Definition 2.12. The branch vertices of a graph H = TG are the vertices in
V (G).

In figure 4 the branch vertices of H are V1, V2, V3 and V4.

Definition 2.13. Let e = uv be an edge of a graph G. Let G/e, an edge
contraction, be the graph obtained from G by removing the edge e and replace
its incident vertices with a new vertex ve, which is adjacent to the former neigh-
bours of u and v.

Figure 5: Contracting the edge e = uv of G produces a new graph G/e
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Definition 2.14. A graph H is a minor of a graph G if H can be obtained
from G by edge contractions, removing edges and removing isolated vertices.

Hence if a graph H = TG then G is also a minor of H.

Figure 6: K5 can be obtained by successive edge contractions or by deleting
the vertex x and replace y and its incident edges with the edge v2v3

Definition 2.15. A graph H is a topological minor of a graph G if a subdivi-
sion of H is isomorphic to a subgraph of G.

Figure 7: H is a topological minor of G

By the definition it follows that every topological minor is also an ordinary
minor, the converse is however not necessarily true.
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Definition 2.16. A graph is planar if it can be drawn in the plane such that
any two edges intersects at a vertex or not at all.

Figure 8: A planar graph

Definition 2.17. A vertex has degree n if it has exactly n incident edges. Let
deg(v) denote the degree of a vertex v.

Theorem 2.18. A graph G contains K5 or K3,3 as a minor if and only if
it contains K5 or K3,3 as a topological minor.

Proof. Based on [1, p. 103].
As every topological minor of G is also a minor of G, if G contains K5 or K3,3

as a topological minor then G also contains K5 or K3,3 respectively as a minor.

If G contains K3,3 as a minor then K3,3 is obtained from G by first removing
edges and vertices, giving the connected graph G′, and then contracting edges
to obtain K3,3. Where the edge contractions are not equivalent with removing
edges and vertices.

7



Denote the parts of K3,3 by {vi,1, vi,2, vi,3}, i ∈ {1, 2} and let Ui,j , j ∈ {1, 2, 3},
denote the subgraph of G′ which was contracted into vi,j .
As K3,3 is obtained from G′ each pair of subgraphs Ui,j and U3−i,k, k ∈ {1, 2, 3},
are connected in G′.

Figure 9: Ui,j and U3−i,k are connected in G′

Let uv be a contracted edge, if deg(u) = 1 or deg(v) = 1 the edge contraction
operation is equivalent with the operation of removing the vertex with degree 1
and its incident edge, hence deg(u), deg(v) ≥ 2.
As the vertices of K3,3 has degree 3 it follows that deg(u), deg(v) ≤ 3 as the
contraction of an edge e = xy can not produce a new vertex ve of lesser degree
than x or y, unless x or y is of degree 1. Furthermore if deg(u) = deg(v) = 3
then the contracted vertex would be of degree 4, a contradiction as K3,3 is ob-
tained from G′ by contracting edges.

Hence deg(u) = deg(v) = 2 or deg(u) = 2 and deg(v) = 3, but then the
contraction of uv is equivalent to a topological minor.

Figure 10: Contracting uv is equivalent to a topological minor

It follows that if G contains K3,3 as a minor then it also contains a subgraph
that is a subdivision of K3,3, hence G contains K3,3 as a topological minor.
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If G is minimal with the property of containing K5 as a minor then K5 is
obtained from G by first removing edges and vertices, giving the minimal con-
nected graph G′ and then contracting edges in G′ to obtain K5.

Denote the vertices of K5 by vi, i ∈ {1, 2, 3, 4, 5}, and let Ui denote the sub-
graph of G′ which was contracted into vi.
By the minimality of G′ each Ui is minimally connected, and hence a tree, and
there are exactly one edge between any pair of subgraphs Ui and Uj , i 6= j.

Let Ti denote Ui together with the four edges that join it to the other sub-
graphs Uj .
If each Ti is a TK1,4 then G′ is a subdivision of K5.
If not then at least one Ti has two vertices, x, y, of degree 3. This yields a K3,3

minor in G′ by contracting Ti into the two vertices x and y, contracting every
other Tj into a single vertex and then remove two edges.

Figure 11: K3,3 minor in G′

But as a K3,3 minor is also a topological K3,3 minor, if G contains K5 as a
minor then it contains a subgraph that is a subdivision of K5 or a subgraph
that is a subdivision of K3,3.
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Definition 2.19. Let G = (V,E) be a graph. If S ⊂ V and G − S is discon-
nected then S is a separator of G.

Hence if a graph G = (V,E) can be divided into two nonempty subsets A,B ⊆ V
such that S ⊂ V separates A and B in G, then S is a separator of G. Moreover
any path containing vertices in both A and B must also contain at least one
vertex in S.

Figure 12: S = {v} separates the graph G = (A ∪B ∪ {v}, E), whence any
path between A and B must also contain v

Definition 2.20. A graph G is n-connected if no two vertices in G are sepa-
rated by fewer than n other vertices in G.

By definition 2.20 the graph in figure 12 is 1-connected as it has a separator of
one vertex, S = {v}.
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Theorem 2.21. Menger’s theorem. Let G = (V,E) and A,B ⊆ V . The
minimum number of vertices separating A from B in G is equal to the maximum
number of disjoint A−B paths in G.

Figure 13: A and B are separated by a minimum of four vertices and there are
exactly four disjoint A−B paths

Proof. Based on [1, p. 67]
Let G be a graph and let n denote the minimum number of vertices separating
A from B in G. Then the maximum number of disjoint A−B paths in G is, by
the pigeonhole principle, less than or equal to n.

Assume that, for all graphs with fewer edges than G, there are n disjoint A−B
paths in G and apply induction on the number of edges.

If E = ∅, then |A ∩ B| = n and there are n disjoint paths from A to B in
G, as any vertex in |A ∩B| is an A−B path.

Suppose G has an edge e = xy, let ve be the contracted vertex of G/e and
let

A′ :=

{
A, if A ∩ {x, y} = ∅
A− {x, y}+ {ve}, otherwise

B′ :=

{
B, if B ∩ {x, y} = ∅
B − {x, y}+ {ve}, otherwise.

Then A′ − B′ paths in G/e that does not contain ve are also A − B paths
in G, as the vertices in the path remain unchanged by the edge contraction.
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Consider an undirected A′ −B′ path in G/e, P ′, which contain ve.
Let P ′ = v0...vivevi+1...vn, ve /∈ A′ ∩ B′, then P ′ induces one of three possible
undirected paths, P , in G.

• P = v0...vixyvi+1...vn

• P = v0...vixvi+1...vn

• P = v0...viyvi+1...vn

Figure 14: P ′ induces one of three possible undirected paths, P , in G

Furthermore, if ve ∈ A′ ∩B′ then at least one of the following cases occur:

• x ∈ A ∩B, y /∈ A ∩B

• y ∈ A ∩B, x /∈ A ∩B

• x ∈ A, y ∈ B

• y ∈ A, x ∈ B

• or x, y ∈ A ∩B

where the first four cases induce a corresponding path P as before and the last
case correspond to two possible disjoint paths in G, P = x and P = y.

Hence each collection of disjoint A′ − B′ paths in G/e has a corresponding
collection of disjoint A−B paths in G.

As |E(G/e)| < |E(G)| the assertion hold for G/e, hence there is a C ⊆ V [G/e]
which separates A′ from B′ in G/e. If C has exactly n vertices the proof is
done, hence it remains to consider the case where C has fewer than n vertices.

If ve /∈ C then C would also separate A and B in G, contradicting |C| < n.
Hence ve ∈ C.
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As C separates A′ and B′ in G/e, any path in G between A and B must
contain vertices either in C − ve or {x, y}.

Figure 15: (C − ve) ∪ {x, y} separates A and B in G

Hence D := (C − ve) ∪ {x, y} separates A from B in G, and by the induction
hypothesis, |D| ≥ n.
Since |D| = |C| − 1 + 2 = |C|+ 1 and |C| < n, it follows that |D| = n.

Consider G− e and let S separate A from D in G− e.
Furthermore, since D is an A−B separator in G, it must also separate A from
B in G−e. If not there would exist an A−B path in G−e not going through D,
however this path would then also be an A−B path in G not passing through
D. This gives a contradiction as D is an A−B separator in G.

As every A − D path in G − e must pass through S, and D is an A − B
separator in G− e, S is also an A−B separator in G− e and |S| ≥ n.

Figure 16: S and D are A−B separators in G− xy
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Since |E(G−e)| < |E(G)| the assertion hold for G−e, hence G−e has n disjoint
A−D paths.
Similarly there are n disjoint B −D paths in G− e.

If an A − D path meet any B − D path outside of D they would form an
A − B path not going through D, but as D separates A and B this gives a
contradiction. Hence A−D and B −D paths can only meet in D.
As each collection of A − D and B − D paths are disjoint each path end at a
distinct vertex in D. Hence, since |D| = n, the n disjoint A−D paths and the
n disjoint B −D paths can be combined to n disjoint A−B paths in G− e.

However, as the edge e = xy connects two vertices in D, no path contain both
the vertices x and y. Therefore the n disjoint A−B paths of G− e are also the
n disjoint A−B paths of G.

Definition 2.22. Let G be a planar graph, then the regions of G enclosed by
edges are the faces of G.

Hence the planar graph in figure 8 has six faces, one outer face and five faces
enclosed by the cycles v1v2v3v1, v1v2v5v1, v2v3v4v2, v2v4v5v2 and v3v4v5v3.

Theorem 2.23. Euler’s formula. Let G = (V,E) be a simple, connected
planar graph with v vertices, e edges and f faces, then v − e+ f = 2.

Proof. By induction on f .

If f = 1 then G does not contain any cycles and e = v − 1, hence v − e + f =
v − (v − 1) + 1 = 2

Assume the assertion hold for f ≤ n and consider the case where f = n+ 1.
As f > 1 there exists an edge xy which separates two faces of G. Then G− xy
is connected and has v vertices, e − 1 edges and f − 1 faces. Hence, by the
induction hypothesis, v − (e− 1) + (f − 1) = v − e+ f = 2.
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Corollary 2.24. The graphs K5 and K3,3 are non planar.

Proof. Assume G = K5 with v = 5 vertices and e = 10 edges is planar. By
Theorem 2.23, v − e+ f = 2, hence f = 2− v + e = 7.

Consider a face of G.
As any cycle of G has a minimum of three edges, and as each edge is the bound-
ary of two faces, the minimum number of edges in G is e = 3f

2 = 3·7
2 . But as

21
2 > 10 this gives a contradiction, hence G is non planar.

Assume G = K3,3 with v = 6 vertices and e = 9 edges is planar. By Theo-
rem 2.23, v − e+ f = 2, hence f = 2− v + e = 5.

Consider a face of G.
As G is bipartite any cycle of G has a minimum of four edges, and as each edge
is the boundary of two faces, the minimum number of edges in G is e = 4f

2 = 10.
But as 10 > 9 this gives a contradiction, hence G is non planar.
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3 Kuratowski’s Theorem

Lemma 3.1. If G is 3-connected and |G| 6= 4 then G has an edge e such that
G/e is 3-connected.

Proof. Based on [1, p. 64].
Assume there is no such edge. Then, for each edge xy, the graph G/xy obtained
by contracting the edge xy can be divided into two subgraphs that are separated
by a set S containing at most two vertices.
Since every vertex in G is at least three connected, the contracted vertex vxy of
G/xy must lie in S and, as G/xy is 2-connected, |S| = 2. Hence G has a vertex
z /∈ {x, y} such that S = {vxy, z} separates G/xy.

Figure 17: G/xy has a separating set S of exactly two vertices

Let T := {x, y, z}, then any two vertices separated by S in G/xy are separated
by T in G. As T separates G every vertex in T has a neighbour in every maxi-
mal connected subgraph C of G− T .

Choose xy, z and C such that |C| is as small as possible and let u be a neigh-
bour of z in C. By assumption G/zu is again not 3-connected, hence there
exists a vertex v such that U = {z, u, v} separates G, and every vertex in U has
a neighbour in every component of G− U .

As x and y are adjacent and U separates G, G − U has a component D such
that D ∩ {x, y} = ∅.

Figure 18
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Then, as u ∈ C, every neighbour of u in D is also in C and D ∩C 6= ∅, whence
D ⊂ C. This gives a contradiction as xy, z and C were chosen such that |C|
was as small as possible.

Lemma 3.2. Every 3-connected graph G without a K5 or K3,3 minor is planar.

Proof. Based on [1, p. 104].
By induction on |G|.
Let |G| = 4, as G is 3-connected it follows that G = K4 and the assertion hold.

Let |G| > 4 and assume the assertion hold for smaller graphs. By Lemma 3.1
G has an edge xy such that G/xy is 3-connected, and as the minor relation is
transitive G/xy has no K5 or K3,3 minor either.

Hence, by the induction hypothesis, G/xy has an embedding G′ in the plane.
Let vxy be the contracted vertex of G/xy and f the face of G′ − vxy which
contained vxy, with boundary C.

Let X := NG(x)\{y} and Y := NG(y)\{x}.
As vxy ∈ f , G′′ := G′ − {vxyv|v ∈ Y \X} is equivalent with an embedding of
G− y, in which x is represented by vxy.

Figure 19: G′′

An embedding of G can then be constructed by adding y to G′′.

Since G′ is 3-connected G′ − vxy is 2-connected, and hence C is a cycle.
Let x1, ..., xk be the vertices of X on C and let Pi = xi...xi+1, (i = 1, ..., k; k+1 =
1), be the paths on C between them.
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Suppose Y * V (Pi) for some i and consider the three possible cases.
If y has a neighbour y′ ∈ Pi for some i, it has another neighbour y′′ ∈ C − Pi
separated in C by x′ := xi and x′′ := xi+1. Then x, y′, y′′ and y, x′, x′′ form the
branch vertices of a TK3,3 in G, a contradiction.

Figure 20: Branch vertices of a TK3,3 in G

If Y ⊆ X and Y ∩X ≤ 2, then y has exactly two neighbours, y′ and y′′, on C,
separated by two vertices x′ and x′′. As in the first case these form the branch
vertices of a TK3,3 in G, a contradiction.
If y and x has three common neighbours on C, v1, v2, v3, then these form the
branch vertices of a TK5 in G, a contradiction.

Figure 21: Branch vertices of a TK5 in G

Hence Y ⊆ V (Pi) for some i.

Fix i so that Y ⊆ Pi. The set C\Pi is contained in one of the two faces of
the cycle Ci := xPix, let the other face of Ci be fi. Since fi contains points of
f , close to x, but no points of its boundary C, fi ⊆ f .
The plane edges xxj , j /∈ {i, i + 1}, meet Ci only in x and end outside fi in
C\Pi, whence fi meet none of those edges. Therefore fi is contained in, and
equal to a face of G′′, and y and its incident edges can be placed in fi
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Lemma 3.3. Let Υ be a set of 3-connected graphs. Let G be a graph with
a proper separation {V1, V2} of order κ(G) ≤ 2. If G is edge maximal without
a topological minor in Υ, then so are G1 := G[V1] and G2 := G[V2], and
G1 ∩G2 = K2

Proof. Based on [1, p. 105].
As G is maximal with the property of having no topological minor in Υ, every
edge e added to G must lie in a TK ⊆ G+ e, K ∈ Υ.
Let S := V1 ∩ V2 and v ∈ S.
If, for some v, v is not connected to a neighbour in every component of Gi − S,
i ∈ {1, 2}, then S\{v} would separate G, contradicting |S| = κ(G).
Hence every v must have a neighbour in every component of Gi − S, i ∈ {1, 2}.

If S = ∅, let e join a vertex, v1, in V1 to a vertex, v2, in V2. By Theorem
2.21 a 3-connected TK must have its branch vertices in a single Vi, i ∈ {1, 2}.
Since the arising TK must contain e and there can only be one path, containing
e, between G1 and G2 a contradiction is reached.

Figure 22: S = ∅
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If S = {v}, let e join a neighbour of v in V1\S, v1, to a neighbour of v in V2\S,
v2. As in the previous case, a 3-connected TK must have all its branch vertices
in a single Vi, i ∈ {1, 2}, and can, at most, meet V3−i in a path P containing v
and e. But as vivjPv can be replaced with viv a TK is produced in Gi ∈ G, a
contradiction is reached.

Figure 23: S = {v}

Let S = {x, y} and assume that S 6= K2. Let e = xy be an additional edge for
G, then there must be a TK ⊆ G+ e with e in TK. As in the previous cases a
3-connected TK must have its branch vertices in a single Vi, i ∈ {1, 2}, and e
must be an edge in the arising TK. But then a contradiction is reached as e can
be replaced with an xPy path, as x and y are connected to every component of
Gi − S, which yields a TK in G. Hence S = K2.

Figure 24: S = {x, y}, e 6= xy

It remains to show that G1 and G2 are edge maximal with the property of not
having a topological minor in Υ.
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Let P be a path as above and e be an additional edge for Gi, i ∈ (1, 2), replacing
xPy with xy if necessary. This yields a TK either in Gi + e or Gi−3.
If the TK lies in Gi it shows edge maximality of Gi. If it lies in Gi−3 a contra-
diction is reached as Gi−3 ⊆ G.

Lemma 3.4. If |G| ≥ 4 and G is edge maximal without a TK3,3 or TK5 then
G is 3-connected

Proof. Based on [1, p. 106].
By induction on |G|.
For |G| = 4, G = K4 and the assertion hold.

For |G| > 4, let G be edge maximal with the property of not having a TK3,3 or
TK5. Let G have a proper separation {V1, V2}, G1 := G[V1] and G2 := G[V2],
and suppose κ(G) ≤ 2. As the forbidden TK5 and TK3,3 are 3 connected we
have, by lemma 3.3, that since G is edge maximal without a TK5 or TK3,3 then
so are G1 and G2, and G1 ∩G2 = K2.
Hence, by the induction hypothesis, G1 and G2 are either a triangle or 3-
connected, and, by lemma 3.2, planar as they cannot contain a TK5 or TK3,3.

Let G1 ∩ G2 = {x, y} and choose a drawing of Gi, i ∈ {1, 2}, with a face
fi containing xy and a vertex zi 6= x, y on its boundary. Let z1z2 be an addi-
tional edge for G and, as G is edge maximal, let K denote the arising TK5 or
TK3,3 in G+ z1z2.

Figure 25: G+ z1z2

If the branch vertices of K lies in the same Gi of G+ z1z2 then z1z2 can be re-
placed by a path containing ziPx or ziPy. But then either Gi+xzi or Gi+yzi,
which are planar by the choice of zi, contains a K, a contradiction.
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If K is a TK5 there must, by Theorem 2.21, be at least four independent
paths between its branch vertices. But G + z1z2 contains three independent
paths between G1 −G2 and G2 −G1, a contradiction.

If K is a TK3,3 with one branch vertex, v, in G1 − G2 or G2 − G1, assume
K lies in G1 with v in G2 − G1. Then G1 + v + {vx, vy, vz1}, which is planar
by the choice of z1, can be drawn with v in f1, a contradiction.

Figure 26: G1 + v + {vx, vy, vz1}

If K is a TK3,3 with more than one branch vertex in G1 − G2 or G2 − G1 at
least four indepent paths is required between G1−G2 and G2−G1, by Theorem
2.21. As G + z1z2 has at most three independent paths between G1 − G2 and
G2 −G1, a contradiction is reached.

Theorem 3.5. kuratowski’s theorem. A graph G is planar if and only if it
contains neither K5 nor K3,3 as a minor.

Proof. Let G = (V,E) be a graph and {TK5, TK3,3} * G. Let S be a set of
additional edges such that G‘ = (V,E + S) is edge maximal with the property
of having no topological minor in {K5,K3,3}.
By lemma 3.4 G‘ is 3-connected and hence, by lemma 3.2, G‘ is planar.

AsG‘ is planar it has an embedding in the plane, but then, by removing the edges
in S, so does G, and, by Theorem 2.18, G contains no minor in {K5,K3,3}.
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4 Surfaces

The definitions in Chapter 4 are, unless otherwise stated, based on those of P.A.
Firby and C.F. Gardiner [2].

Definition 4.1. A surface is a connected compact Hausdorff topological space
locally homeomorphic to a unit disc in the plane.
All surfaces considered in this paper will be compact surfaces.

Definition 4.2. A surface is orientable if a two dimensional figure following
any closed loop on the surface can not return to its starting point as a mirror
image of itself, otherwise the surface is non orientable.

Definition 4.3. A plane model is a polygonal representation, showing cer-
tain pairs of edges as identified, of a surface.
Figure 27 shows a plane model of a torus constructed by making two loop cuts,
which allow the torus to be opened up and form a plane model. Direction of
edges are indicated by arrows on the edge.

Figure 27: Acquiring a plane model of a torus

By definition 4.2 the Möbius band is a non orientable surface as any figure trav-
eling a lap around the Möbius band will return to its starting point as a mirror
image of itself.

Figure 28: Two dimensional figure traveling along the plane model of a
Möbius band
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Definition 4.4. A crosscap is obtained by making a hole in a sphere and attach
the boundary of a Möbius band to it [10].

As the Möbius band, and hence a crosscap, is a non orientable surface a sphere
with crosscaps is also non orientable.

Figure 29: Attaching a Möbius band to a hole in a surface

Definition 4.5. The genus of a surface is the number of handles attached to
a sphere if the surface is orientable, or the number of crosscap attached to a
sphere if the surface is non orientable.
Let Mk denote a orientable surface M of genus k and let Nk denote a non ori-
entable surface N of genus k.

Figure 29 and 30 visualizes the process of attaching a Möbius band and a handle
respectively to a surface. It follows that a surface is orientable precisely if it
does not contain a crosscap, and non orientable otherwise.

Figure 30: Attaching a handle to a surface
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Definition 4.6. Let a graph triangulate a surface such that it has an embed-
ding on the surface where any two triangles are either disjoint or meet at a
common vertex or along a complete common edge. This gives a triangulation
of the surface.

Figure 31: Triangulation of the surface N1

Definition 4.7. The Euler Characteristic χ of a closed surface S, with a trian-
gulation consisting of v vertices, e edges and f faces is given as χ(S) = v−e+f .

Definition 4.8. For a closed surface S with Euler characteristic χ(S) its genus
g is given by

g = 1− χ(S)
2 if S is orientable.

g = 2− χ(S) if S is non orientable.

Definition 4.9. Two surfaces are homeomorphic if one of the surfaces can
be stretched, bent or squashed to look like the other, without tearing or gluing
points together.

Figure 32: Two homeomorphic surfaces M1.
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Theorem 4.10. Two compact surfaces S1 and S2 are homeomorphic if and
only if they are both either orientable or non-orientable and χ(S1) = χ(S2).

Proof. See [3, pp. 393-399]

4.1 Special surfaces

As the genus of a surfaces increase, by the addition of extra handles for ori-
entable surfaces and crosscap for non orientable surfaces, its Euler character-
istic decrease, by 4.8. Hence, by 4.10, a new surface is obtained that is not
homeomorphic to the previous surface.

4.1.1 Sphere

Figure 33: Sphere. Image by Geek3
https://commons.wikimedia.org/wiki/File:Sphere wireframe 10deg 10r.svg

The sphere is the basic orientable surface of genus 0, with Euler characteristic
χ(S) = 2− 2g = 2. Let S or M0 denote the sphere.

Figure 34: Plane model of the sphere
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4.1.2 Torus

Figure 35: Torus. Image by LucasVB
https://commons.wikimedia.org/wiki/File:Torus.png

The torus is the orientable surface formed by adding a handle to a sphere,
whence the torus has genus 1 and Euler characteristic χ(T ) = 2 − 2g = 0. Let
T or M1 denote the torus.

Figure 36: Plane model of the torus
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4.1.3 Real Projective Plane

The real projective plane is the basic non orientable surface of genus 1, with
Euler characteristic χ(P ) = 2 − g = 1, obtained by adding a crosscap to a
sphere. Let P or N1 denote the real projective plane.

Figure 37: Plane model of the projective plane
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4.1.4 Klein Bottle

Figure 38: Klein bottle. Image by Theon
https://commons.wikimedia.org/wiki/File:Bouteille Klein 2Mobius.png

The Klein bottle is the non orientable surface of genus 2, and Euler character-
istic χ(K) = 2 − g = 0, obtained by adding two crosscaps to a sphere. Let K
or N2 denote the Klein bottle.

Figure 39: Plane model of the Klein bottle
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5 Embedding graphs on surfaces

The definitions in Chapter 5 are based on those of P.A. Firby and C.F. Gardiner
[2].

Definition 5.1. A graph is embedded on a surface if it has a fixed geometrical
representation on the surface such that any two edges does not intersect, other
than at a vertex.

Figure 40: K5 embedded on the torus, Klein bottle and projective plane
respectively

Definition 5.2. The characteristic of a graph G embedded on a compact sur-
face M is the maximum value of χ(M) for which G can be embedded. Let γ(G)
denote the characteristic of G.

Hence if a graph is not embeddable on a surface, there exist another surface,
obtained by attaching handles or crosscaps to the original surface, for which the
graph is embeddable.
Consider G = K5. G is not embeddable on the sphere but has an embedding
on the surface obtained by attaching a crosscap to the sphere, as seen in the
third image of figure 40. Hence γ(K5) = χ(N1) = 2− g = 1.

Definition 5.3. A graph G is minimally embedded in a compact surface M if
γ(G) = χ(M).

Definition 5.4. M is a minimal surface for G if G has a minimal embed-
ding on M .

By definition 5.3 and 5.4 K5 is minimally embedded in the projective plane
and the projective plane is a minimal surface for K5, as any other surface for
which K5 is embeddable has a lower Euler characteristic than the projective
plane.

Definition 5.5. A 2-cell embedding is an embedding of a graph such that
each of its faces is homeomorphic to an open disc.
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The proof of Theorem 5.6 lies outside the scope of this paper [2, p. 108].
Theorem 5.6. If the connected graph G with v vertices and e edges is embed-
ded on the compact surface M , and the embedding produces f faces, then
v − e+ f ≥ χ(M),
with equality if and only if the embedding is 2-cell.

Corollary 5.7. A graph is embeddable on the sphere if and only if it is planar.

Proof. The corollary follows from Theorem 2.23, Theorem 5.6 and the fact that
the sphere has Euler characteristic χ(S) = 2− 2g = 2.

Theorem 5.8. If the connected graph G with v vertices and e edges is 2-cell
embedded in a surface M with Euler characteristic χ(M), then χ(M) ≤ v − e

3 .

Proof. Let G be 2-cell embedded in a compact surface, producing f faces. Then,
by Theorem 5.6, χ(M) = v − e+ f .
As each cycle in the pattern formed by the graph has a minimum of three edges,
every edge must lie in exactly two faces, and every face must contain at least
three edges, which gives the inequality 3f ≤ 2e.
Hence χ(M) ≤ v − e+ 2e

3 = v − e
3 .

Corollary 5.9. If G is the complete graph Kn, n ≥ 3, then 5.8 becomes

χ(M) ≤ 7n−n2

6 .

Proof. As the complete graph Kn, n ≥ 3, has n vertices and
(
n
2

)
= n(n−1)

2
edges,

v − e
3 = n− n(n−1)

6 = 7n−n2

6 .

Equality in Corollary 5.9 for minimal embeddings on orientable surfaces, was
proven by a series of mathematicians [2, p. 116], and a professor of French lit-
erature, Jean Mayer [6, p. 519]. The Klein bottle, non orientable surface with
Euler characteristic χ(K) = 0, is a special case for which K7 does not embed,
proven by Philip Franklin in 1934 [4].

Definition 5.10. A well-quasi-ordering is a binary relation that is transitive
and reflexive such that any infinite sequence of elements contains a pair xi and
xj such that xi ≤ xj where i < j.

Theorem 5.11. Robertson–Seymour theorem. Ordering of finite graphs
by the minor relation provides well-quasi-orderings of them.

Theorem 5.11 was proven by Neil Robertson and Paul D. Seymour in a se-
ries of 20 papers between 1983 and 2004 [9], this proof lies outside the scope of
this paper.
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Definition 5.12. A family of graphs is minor closed if for any graph G in the
family, any minor of G is also in the family.

Theorem 5.13. For any family of graphs that is minor closed there is a fi-
nite set of forbidden minors.

Proof. Let F be a minor closed family of graphs and let G be the complement
of F . By Theorem 5.11 there is a finite set K of minimal elements in G, as there
can be no infinite antichain. The forbidden minors for F are then precisely the
graphs in K.
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5.1 Forbidden minors

The family of graphs that can be embedded in a closed surface is minor closed
and hence, by Theorem 5.13, has a finite set of forbidden minors. These are
currently known for the sphere, {K5,K3,3} [Theorem 3.5], and the projective
plane, with 35 forbidden minors or 103 forbidden topological minors [7, p. 198],
which were discovered by Glover H.H., Huneke J.P. and Wang C.S. [5, p. 49].
The complete set of forbidden minors for the torus, with more than 17’000
known forbidden minors [8], and the Klein bottle is an ongoing research topic.

5.1.1 Forbidden minors of the projective plane

The 35 forbidden minors of the projective plane are, by [7, p. 198]

• The three possible disjoint unions of the graphs K5 and K3,3.

• The three graphs obtained by merging an edge in 2K3,3, 2K5 or K3,3 and
K5.

• The six graphs that can be obtained by merging two edges of K5 and
K3,3, and, if the merged edges are adjacent to each other, removing the
edge connecting them.

• K3,5 and K4,4 − e, where e is an edge.

• The graph obtained by taking the disjoint union of 2K2,3 and label the
vertices in the two parts with three vertices v11, v12, v13 and v21, v22, v23
respectively. Then add the three edges v11v21, v12v22, v13v23.

• The graph obtained by, in the previous graph, contracting two of the edges
v11v21, v12v22, v13v23 and subdivide the remaining edge to get a vertex v.
Then add two edges such that v becomes adjacent to the two contracted
vertices.

• The graph obtained by, in one of the original K2,3 in the graph above, add
an edge connecting the two vertices in one of the parts with two vertices,
and, in the same K2,3, contract the edge between v and the vertex which
was subdivided.

• The graph obtained by taking the disjoint union of 2K4, and add edges to
connect one vertex in K4

i , i ∈ 1, 2, to two vertices in K4
3−i. Then connect

the rest of the vertices of K4
i to one other vertex in K4

3−i, such that one
vertex in each K4 has five neighbours and the rest has four neighbours.

• The graph obtained by taking the disjoint union of K4 and K2,3 and add
a total of four new edges to connect one of the vertices in the part of K2,3

with three vertices, H, to two vertices in K4. And connect the remaining
two vertices in H to each of the remaining two vertices in K4.
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• The graph obtained by taking the disjoint union of K4 and K2,3 and add
a total of five edges to connect two of the vertices in the part of K2,3

with three vertices to one vertex in K4. And connect the three remaining
vertices in K2,3 to unique vertices of the three remaining vertices of K4.

• The graph obtained by taking the disjoint union of 2K4 and add a total
of four edges to connect each vertex in one of the K4 to unique vertices
in the other K4.

• The graph obtained by taking the disjoint union of 2K5, select one edge
and one vertex not incident to the selected edge in each of the K5 and
merge the selected edges and vertices.

• The graph obtained by taking the disjoint union of K2,3 and K4 and add a
total of four vertices to K4 such that exactly one vertex in K4 is adjacent
to a vertex in the part of K2,3 with two vertices, and each vertex in the
part with three vertices is adjacent to exactly one unique vertex in K4,
such that each vertex in K4 has exactly four neighbours.

• The 12 graphs in figure 41.

Figure 41
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5.2 Special embeddings

5.2.1 Embeddings on surfaces of higher genus

For a graph to be 2-cell embeddable in a surface each of its faces must, by
definition 5.5, be homeomorphic to an open disc. Hence

• No face may meet itself other than along edges or at vertices.

• Each face must have a cycle at its boundary containing at least three
vertices.

• No two edges meet other than at vertices.

Therefore, as the genus of the surface increase, a graph must have one cycle for
each handle to be 2-cell embeddable on a surface.

5.2.2 Embeddings of the complete graphs

Consider 2-cell embeddings of the complete graph Kn, n ≥ 3, on a surface M .
By corollary 5.9,

• K3: χ(M) ≤ 7·3−32
6 = 2.

• K4: χ(M) ≤ 2.

• K5: χ(M) ≤ 5
3 .

• K6: χ(M) ≤ 1.

• K7: χ(M) ≤ 0.

• K8: χ(M) ≤ − 4
3 .

Hence, as the sphere has Euler characteristic χ(S) = 2, no complete graph with
five or more vertices are embeddable on the sphere. This result is consistent
with Theorem 3.5 as Kn is a minor of Kn+1.

As the torus has Euler characteristic χ(T ) = 0 it has an embedding of K7,
as seen in figure 43, but no embeddings of Kn, n ≥ 8
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The projective plane, with Euler characteristic χ(P ) = 1, has an embedding of
K6 but no embeddings of Kn, n ≥ 7.

Figure 42: K6 embedded on the plane model of the projective plane

The Klein bottle, with Euler characteristic χ(K) = 0, is a special case and has
no embedding of K7 [4]. Hence the complete graph with six vertices is the
largest complete graph embeddable on the Klein bottle.

Figure 43: K7 embedded on the torus and K6 embedded on the Klein bottle
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