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ON MINKOWSKI’S THEOREM ON THE FINITE SUBGROUPS

OF GLnQ

ALBIN ANDERSSON

Abstract. In his book ”Finite groups: An Introduction”, Jean-Pierre Serre

presents an explanation of Minkowski’s theorem regarding the finite subgroups
of GLn(Q). This thesis aims to unpack and explain the steps used in Serre’s

explanation, and to make explicit many of the tools which Serre uses. The goal

of this simplification is to make the theorem understandable to students with
only a basic level knowledge of group theory. This is done through a series

of steps, starting with explaining how to turn the theorem into a statement
about l-groups. The thesis then walks through the steps of linking these l-

groups to the order of GLn(Fp), followed by constructing the function M(n, l)

in a manner such that it can be linked back to this order. Finally, it explains
how these steps are connected to prove the first step of Minkowski’s theorem

for primes l > 2.

1. Introduction

This essay aims to introduce the proof of a theorem relating to the group
GLn(Q). For this purpose, we begin by recalling the definition of this group.

Definition 1.0.1. The group GLn(Q) is the group of n×n matrices which have a
multiplicative inverse, with entries among the rational numbers.

Minkowski’s theorem is about the finite subgroups of GLn(Q). It states that
finite subgroup G of GLn(Q), the order of G is bounded by a particular integer
M(n), dependent on the factor n. This paper aims to walk through the methods
of how the theorem is proven in Finite Groups: An Introduction [2], with a focus
on deconstructing each proof into separate parts and giving each part a thorough
explanation.

For this purpose, the text is primarily focused on articulating the arguments in
order to give a coherent surface-level overview of how to approach this theorem
with only a basic understanding of group theory.

2. The main theorem

2.1. Definitions. To state the main theorem, we first begin by defining M(n) as
follows

Definition 2.1.1. Let n ∈ N and let l be a prime number. Set

M(n, l) =

[
n

l − 1

]
+

[
n

l(l − 1)

]
+

[
n

l2(l − 1)

]
+ ...,

Date: June 2019.

1
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then
M(n) =

∏

l

lM(n,l)

Here, the brackets indicate that only the integral parts of the results are consid-
ered. We can already note that M(n, l) will only give nonzero results for primes
l ≤ (n+1), meaning that for every n there will be a finite amount of nonzero results
given by M(n, l). We can then note that when calculating M(n) there will be a
limited amount of primes which do not become one by virtue of their corresponding
M(n, l) equaling 0. This ultimately leads to M(n) being a finite integer, despite
being defined as an infinite product dependent on an infinite sum.

2.2. Statement. The theorem itself consists of two claims, stated as follows:

Theorem 2.2.1. (1) The order of a finite subgroup of GLn(Q) divides M(n)
(2) M(n) is the smallest integer having property (1)

We will demonstrate how the theorem is applied by computing M(10), using the
definition given above.

Example 2.2.2. If we wished to compute M(10), it would go as follows:
We begin by computing all applicable M(10, l) which give nonzero results

M(10, 2) =[10/1] + [10/2] + [10/4] + [10/8] + [10/16] + . . . = 10 + 5 + 2 + 1 + 0 + . . . = 18

M(10, 3) =[10/2] + [10/6] + [10/18] + . . . = 5 + 1 + 0 + . . . = 6

M(10, 5) =[10/4] + [10/20] + . . . = 2 + 0 + . . . = 2

M(10, 7) =[10/6] + [10/42] + . . . = 1 + 0 + . . . = 1

With all applicable M(10, l) calculated, we then know that M(10) is calculated
as

218 · 36 · 52 · 71 = 262, 144 · 729 · 25 · 7 = 33, 443, 020, 800

This integer, according to the theorem, will be divided by the order of any finite
subgroup of GL10(Q).

2.3. Strategy for the proof. The proof that these functions have the properties
described in (1) was presented by Minkowski in three parts:

(i) He showed that if G is a finite subgroup of GLn(Q), then the order of G will
divide the order of GLn(Fp) for every prime greater than 2. This will be shown in
Section 3.
(ii) He showed that if p is greater than 2, then any l-factor which is part of the
prime factorisation of the order of GLn(Fp) is lM(n,l). This is shown in Section 5
using the propositions established in section 4.
(iii) The second step is then shown to apply for p = 2 as well, by replacing GLn
with the orthogonal group On.

While working with these steps, part of the proof of (ii) will include the use of
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the cyclic nature of (Z/l2Z)×, specifically in Section 4, Proposition 4.0.13. These
groups are only cyclic for l > 2, and proving the case l = 2 requires moving beyond
the propositions established in this thesis, hence this thesis only covers the case
l > 2.
This paper only aims to explain the methods used to show (i) and (ii) as described
in Finite Groups: An introduction [2] pp. 143-146.

3. First reductions from GLn(Q) to GLn(Fp)

This section will explain how the order of a finite subgroup G of GLn(Q) is
related to the order of the group GLn(Fp) through proving three separate propo-
sitions. The key purpose of this is to transform statement (1) of the theorem into
a statement about l-subgroups.

Definition 3.0.1. Let l be a prime. A finite l-subgroup of a group G is then a
finite subgroup of G whose order is a power of l.

Proposition 3.0.2. We can replace replace statement (1) of Theorem 2.2.1 with
a modified but equivalent version (1’), which goes as follows:
(1’) If l is a prime number, and A is a finite l-subgroup of GLn(Q), then |A| ≤
lM(n,l)

First we recall the definition of l-sylow subgroups, as well as Sylow’s theorem as
presented by Serre [2] p. 16.

Definition 3.0.3. For any given group G, an l-sylow subgroup is a subgroup whose
order is the greatest power of l which divides |G|
Theorem 3.0.4. For any given group G, there exists an l-sylow subgroup.

Proof. (1)⇒ (1′)
To begin, we look at statement (1), which posits that the order of G divides M(n).
This would mean that the prime-factorisations of |G| and M(n) would have to
consist of the same primes in order for divisibility to be maintained. We also know
that no power of any one prime in |G| can be greater than the power of the same
prime in M(n), or divisibility would fail. Therefore, it is clear that if |G| divides
M(n), then the order of any given l-subgroup would be less than or equal to the
l-factor of M(n) which is lM(n,l) by definition. Therefore, (1) implies (1’).
(1′) ⇒ (1) Theorem 3.0.4 tells us that any given group G will have a subgroup A,
whose order is the greatest power of l which divides the order of G. If we assume
the validity of (1’), then any l-subgroup must have an order less than or equal to
its corresponding lM(n,l). By theorem 3.0.4, there will be one such l-group A whose
order is the greatest power of l which divides G. Since the order of A, according
to (1’), is less than or equal to lM(n,l), any given l-factor of G will be less than
the corresponding l-factor of M(n). This means that as in (1), every l-component
of G is shared with M(n), and the powers in G are less than or equal to the
powers in M(n), ensuring that divisibility is always maintained, and subsequently
showing that (1′) ⇒ (1). As each statement implies the other, they are therefore
equivalent. �

Proposition 3.0.2 allows us to focus our efforts on establishing propositions re-
lated to l groups, as opposed to all finite subgroups of GLn(Q). From here on, l is
fixed, as is the l-group A ⊂ GLn(Q).
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Definition 3.0.5. The group GLn(Z[1/q]) is the group of invertible n×n matrices
consisting of the rational numbers whose denominator divide q.

Lemma 3.0.6. There exists positive integer q such that GLn(Z[1/q]) contains A ⊂
GLn(Q).

Proof. It is possible to construct the group GLn(Z[1/q]) by using a specific q for
every A such that A is contained in GLn(Z[1/q]). We do this by taking as q, the
product of all denominators of all coefficients of every matrix belonging to A. �
Remark 3.0.7. This is not the most efficient method of constructing this group,
but it is sufficient for the purpose of this theorem.

We then recall the definition of the finite field Fp.

Definition 3.0.8. The finite field Fp is the set of integers mod p. It can also be
denoted as Z/pZ

Lemma 3.0.9. If p is a prime number which does not divide q, then q is invertible
in Fp.

This gives us a ring homomorphism Z[1/q]→ Fp, as every element of Z[1/q] can
be taken to the integers Z by applying the multiplicative inverse of q. The result
can then be reduced to Fp, creating a ring. This then also gives us a homomorphism
between the invertible matrices using the elements of Z[1/q] and Fp:

GLn(Z[1/q])→ GLn(Fp).

Proposition 3.0.10. The homomorphism

A→ GLn(Z[1/q])→ GLn(Fp)

is injective.

In order to prove this proposition, we are going to show that no matrix a ∈ A,
outside of the identity, reduces to the identity in GLn(Fp). This will be done
by examining all non-identity matrices a ∈ A and for each of them, identifying a
nonzero entry xa which is not placed along the diagonal of the matrix. We will
then use the product of all these entries to identify a p for which the proposition
holds true.

Notation 3.0.11. For every matrix a ∈ A, except the identity, create the associated
matrix q(a− I). In this matrix, some non-diagonal entry will be a nonzero integer.
We denote this entry xa.

We know that xa will be an integer. By lemma 3.0.6 all entries in a have
denominators which divide q. This means that the entries in qa has purely integer
coefficients, as does q(a−I). As we have excluded the identity from the examination,
we also know that for every a, at least one non-diagonal entry of q(a − I) will be
nonzero. This is the entry where we find the value for xa.

Remark 3.0.12. While we know that this nonzero entry of the matrix q(a − I)
must exist, it will not necessarily be the same entry for every matrix a.

Lemma 3.0.13. No matrix in A except for the unit matrix reduces to the identity
in Gln(Fp).
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First we establish a lemma.

Lemma 3.0.14. Reduction from Mn(Z[1/q]) to Mn(Fp) is a ring homomorphism.

After which we recall the definition of a ring homomorphism

Definition 3.0.15. A ring homomorphism from a ring R to a ring S is a function
f : R → S such that f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) i.e. f takes
sums to sums and products to products.

Proof of Lemma 3.0.13. We will now make use of the fact that GLn(Z[1/q]) is a
subset of Mn(Z[1/q]), and that GLn(Fp) is a subset of Mn(Fp). This allows us to
make a broader observation within Mn(Z[1/q]) and Mn(Fp), which we can then
apply back to GLn(Z[1/q]) and GLn(Fp) respectively. The primary reason for this
is to make use of lemma 3.0.14 and Definition 3.0.15.

What these lemmas tell us is, that any given a ∈ A might reduce to I in Mn(Fp),
through use of the morphism between Mn(Z[1/q]) and Mn(Fp), which I will label f .
If this were to happen then f(a)−f(I) = I−I = 0, and according to lemma 3.0.15,
this also means that f(a − I) = 0, and vice versa. Since this morphism includes
a reduction mod p, such a result would imply that any potential non-diagonal,
nonzero entries in a were divisible by p and thus reduced to 0 mod p. Such an
element has already been identified earlier, in the form of xa.
This tells us that for any given p we might want to reduce to, if q(a− I) has an xa
which is divisible by said p, then xa would reduce to 0 in Fp. If this is the case, then
it becomes possible, though not guaranteed, that a could reduce to the identity in
Mn(Fp). If, on the other hand, p does not divide the product of all identified xa,
thus not dividing any of them individually, this means that every matrix a ∈ A has
some nonzero element not placed on the diagonal after reduction to Fp. By defini-
tion, the identity matrix only has nonzero integers along the diagonal, therefore this
result contradicts the possibility of any a reducing to the identity. Thus, as long
as we choose a p which divides no xa we can conclude that no element in A apart
from the identity reduces to the identity in Fp, proving that the homomorphism is
injective. �
Proposition 3.0.16. If p is large enough, then the order of the l-subgroup A divides
rn(p) =

∏n
i=1(pi − 1).

We have already proven that every element of A reduces to an equivalent element
in GLn(Fp). As such, A is isomorphic to a subgroup B within GLn(Fp). This tells
us that the orders of these subgroups are the same, which subsequently tells us that
the order of A also divides the order of GLn(Fp). This leaves for us to prove that
the order of GLn(Fp) does indeed contain the mentioned rn(p).

Lemma 3.0.17. The order of GLn(Fp) contains the part
∏n
i=1(pi − 1).

Proof of lemma 3.0.17. GLn(Fp) stands in bijection to the bases of Fnp , as every
base for such a space can be represented by the columns of any given element of
GLn(Fp). This means that the order of GLn(Fp) can be discerned by looking at
all the possible ways in which we can construct the bases of (Fp)

n.
For the first element of the base, we can choose any combination of n elements
between 0 and p, save for making a base entirely out of zeroes, giving us (pn − 1)
choices. Next, we can choose any base, except the p multiples of the first base,
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giving us (pn − p) choices, and so on. Eventually this process will give us the
product of all these binomials from (pn − 1) to (pn − p(n−1)).
From each of these separate binomials, we then factor out different power of p. For
instance, from the first one we do not factor out anything, as there are no common
factors in (pn − 1), then from the second we factor p from (pn − p), followed by
factoring p2 from (pn − p2), and so on.
At the end of this process, we will be left with the product of a rather large power
of p, as well as the remaining binomials, which, after rearranging them, are in the
form of rn(p). Expressed as such:

|GLn(Fp)| = pn(n−1)/2rn(p)

At this point, we know that the order of an l-subgroup, A, divides a power of p
times rn(p). As l is a prime, and we can choose p to be a prime greater than l so
that we know that l can not divide p or its powers. Thus l must divide the other
part of the order, proving that l divides rn(p). �

Why we are interested in rn(p) in particular will be explained in Section 5.

4. l-adic valuations as they are used in the construction of M(n, l)

This section aims to use what are called l-adic valuations in order to construct
the form of M(n, l) as it was described in the statement of the theorem. This sec-
tion will also serve as the basis for linking M(n, l) to the order of GLn(Fp)

Definition 4.0.1. The l-adic valuation of a number x, denoted by vl(x), is the
largest integer m such that lm divides x.

In essence, l-adic valuations are statements about the maximum powers of primes
which are contained within an integer’s prime factorization. As the previous section
makes several statements regarding prime factorizations and divisibility, these esti-
mations will be valuable tools, as will be established in the following propositions.

Proposition 4.0.2. If m is a non-zero integer, then the l-adic valuation of m! will
be

vl(m!) = [
m

l
] + [

m

l2
] + [

m

l3
] + ....

The proof for the proposition will come after we have established several lemmas,
beginning with a basic rule.

Lemma 4.0.3. The valuation of a product, is equal to the sum of the individual
valuations of the factors:

vl(xy) = vl(x) + vl(y)

Proof. We rewrite the factors x and y as compound integers of the forms x = lm ·a
and y = ln · b. Here, m = vl(x) and n = vl(y). This implies that xy = lm ·a · ln · b =
lm+n · ab. It then becomes clear that the greatest power of l which divides xy can
be found by adding up their individual valuations �
Corollary 4.0.4. If we label each factor of m! as z, then vl(m!) =

∑m
z=1 vl(z).

We then define the term aj so we can construct a more compact form of the sum
in Corollary 4.0.4
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Definition 4.0.5. For every possible integer j, we let aj be the value of z for which
vl(z) = j.

Example 4.0.6. To illustrate, if we were to look at v2(3!), then we can establish
that the valuations of 3!’s individual factors are:
v2(1) = 0, v2(2) = 1, and v2(3) = 0.
Looking at this, we see that there are two factors, 1 and 3, which have as their
valuation, 0. This gives us two z between 1 and 3, for which v2(z) = 0, meaning
that a0 = 2. The same method is applied to the only remaining integer, 2, whose
valuation is 1. This tells us that there is one integer z between 1 and 3, whose
v2(z) = 1, and therefore a1 = 1. Finally, any other indexes of aj become 0, as any
other power of 2 would be too large to divide any factor of 3!.

If we use this definition of aj in conjunction with lemma 4.0.3 , we get the
equality

vl(m!) =
m∑

z=1

vl(z) =
∑

j

jaj .

Notation 4.0.7. Let bj denote [mlj ]

We know this is a valid division, as every j is a possible valuation for some com-
ponent z of m!, and as such it will then also be less than m, giving us a nonzero
result. The number bj shows how many integer multiples of lj are present in m,
stated as the following lemma.

Lemma 4.0.8. Let m, k, and q be positive integers. Then [m/k] is the quotient q
left when dividing m by k with remainder.

Proof.
m = k · q + r, 0 ≤ r < k
m

k
= q +

r

k
, 0 ≤ r

k
< 1

hence, by definition of the integer part

q = [
m

k
]

�

Corollary 4.0.9. Using lemma 4.0.8, [mlj ] is the number of integral multiples q · lj,
q > 0 between 0 and m.

Proof. Take k = lj

�

Example 4.0.10. Going back to v2(3!), we examine its different bj:

b0 = [
3

20
] = 3

b1 = [
3

21
] = 1

b2 = [
3

22
] = 0
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.
And any greater j will once again continue to return the value 0. As we can see,

the results tell us that there are 3 multiples of 20, and 1 multiple of 21 between 0
and 3, as we would expect.

Lemma 4.0.11. Let aj be as defined as in Definition 4.0.5, and let bj denote the
same as in Notation 4.0.7. Then aj = bj − bj+1.

Proof. To start, we recall that the statement that some integer k has the valuation j
can be broken down into two statements. First: it means that lj divides k. Second:
it means that lj+1 does not divide k.
Therefore, when evaluating how many integers up to m have valuation j, we first
examine how many multiples of lj there are up to m, as this is equivalent to
examining how many integers up to m have the valuation of at least j. Next,
we count how many integers have the valuation of at least j + 1 and subtract these,
to ensure that we only keep the integers which have a valuation strictly smaller
than j + 1, fulfiling both parts of the statement. Thus, aj = bj − bj+1 �
Proof of proposition 4.0.2. Substitution of the terms from lemma 4.0.11 into the
sum from lemma 4.0.3 then gives us the following equality

vl(m!) = a1 + 2a2 + 3a3 + ...

= (b1 − b2) + 2(b2 − b3) + 3(b3 − b4) + ...

= b1 + b2 + b3 + ...

= [
m

l
] + [

m

l2
] + [

m

l3
] + ...

which is the form proposed by Proposition 4.0.2. �
Proposition 4.0.12. Let x, a, and b be integers such that a, b ≥ 1. Then [[x/a]/b] =
[x/ab]

We omit the proof of this and refer to Serre [2] p. 145.

The following propositions will make use of the group (Z/l2Z)×, which is the group
of integers mod l2 that have a multiplicative inverse.

Proposition 4.0.13. Let x ∈ Z be such that its class mod l2 generates (Z/l2Z)×.
Let k be an integer such that k ≥ 1 . Then:

vl(x
k − 1) =

{
0, if k is not divisible by l − 1

vl(k) + 1, if k is divisible by l − 1

First, we recall what it means for x to be a generator of (Z/l2Z)×. The group in
question is cyclic for all primes l > 2, meaning that every element of the group can
be expressed as a power of a single element when using multiplicative notation as
we will be doing here. This single element is what we use for our x in the following
lemmas. We will also be making use of the fact that if an element is a generator
for (Z/l2Z)×, then it also follows that it generates (Z/lZ)× [2].
An important consequence of this is that that xy ≡ 1 (mod l2) if and only if
y = mn where m ≥ 1 and n is the order of the group which x generates. The order
of (Z/l2Z)× is l(l − 1) and the order of (Z/lZ)× is (l − 1) [2].
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We can now prove this proposition case by case.

Proof of case 1. Under these conditions, k is not a multiple of the order of (Z/lZ)×.
Therefore, xk is not equivalent to 1 (mod l). Since the l-adic valuation of an integer
is a statement about whether some powers of l divide that integer, the statement
that vl(x

k − 1) = 0 is equivalent to stating that l does not divide (xk − 1).
As x is a generator of (Z/lZ)× this means that any power of it will be part of
(Z/lZ)×. If a power is not divisible by l− 1 then it will be any other element than
1 of the group, i.e. xk = ql + r, 1 < r < l2. As r is strictly greater than 1, it
follows that xk− 1 will always have a remainder when divided by l, and thus is not
divisible by l.
Since not being divisible by l is equivalent to having an l-adic valuation of 0, this
tells us that vl(x

k − 1) = 0 in this case. �
Proof of case 2. In this case k is a multiple of l − 1, i.e. k = (l − 1)m, for m ≥ 1,
then we are going to prove that vl(x

k − 1) = vl(k) + 1
Since k is now a multiple of the order of (Z/lZ)×, and x is a generator of (Z/lZ)×

we know that xk is equivalent to 1 (mod l). In other words: xk = lq + 1. It then
follows that xk − 1 when divided by l would leave the remainder 0, telling us that
xk − 1 is a multiple of l. As such, it will have a nonzero l-adic valuation.

Notation 4.0.14. Let, x remain as the generator of (Z/lZ)×, and let y denote
xl−1

This notation implies that if k = (l − 1)m, then xk = ym. Because x is a
generator (mod l), the definition also implies that y = lq + 1, or in other words, it
is congruent to 1 mod l. We also know that l does not divide z. This is because
x, as a generator by definition is only equivalent to 1 when raised to the order
of the group it generates. Since it also generates the group (Z/l2Z)×, this means
that it is equivalent to 1 mod l2 if and only if it is raised to the power of l(l − 1):
xl(l−1) = zl2+1. If z divides l, this result would look different, which it by definition
can not. We also know that z is not a multiple of l, as that would make it equivalent
to 0 (mod l).
We then note that m = r·la if a = vl(m). The equivalence is clear as m by definition
will consist of some product of primes, as well as the a-th power of l thanks to the
definition of the l-adic valuation.
With these terms defined, we can set up the following equality, which will bring us
to the proof of case 2:

xk = ym = (yl
a

)r = ((1 + lz)l
a

)r = (1 + la+1z + ...)r = 1 + la+1zr + ...

The first three steps are substitutions, and the latter two are the expansions of
the binomials. Serre tells us that the unwritten terms are all divisible by la+2 [2].
As we already know that z and r are not divisible by any powers of l, we then
know that the l-adic valuation of the second term is equal to a + 1, as it is the
greatest power of l contained therein. As all other terms, except for the initial 1,
are divisible by at least la+2, we then know that la+1 is the greatest power of l
which divides all terms in the equality, discounting the 1.
If we then subtract 1 from ym, this leaves us with only the parts divisible by l left in
the binomial, and thus the greatest power of l which divides all of them would be the
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answer to vl(y
m−1). As we know that la+1 divides all terms in the expansion, and

that la+2 divides all terms except for one of them, this brings us to the conclusion
that the greatest power of l dividing all terms in the expansion is a + 1, and thus
vl(y

m − 1) = a + 1. Substituting our terms back, gives us vl(x
k − 1) = vl(k) + 1,

proving case 2. �

Proposition 4.0.15. If we allow x to be as previously defined, then

vl(
n∏

i=1

(xi − 1)) = M(n, l).

Proof. We begin by denoting

Notation 4.0.16. Let N denote
∏n
i=1(xi − 1).

This notation implies that vl(N) will be equal to the sum of the valuation of
each factor of N according to lemma 4.0.3: vl(N) =

∑n
i=1 vl(x

i − 1). By propo-
sition 4.0.13 we already know that the valuation of (xi − 1) = 0 for every i which
is not divisible by l − 1. Therefore, for any index for which the valuation is not 0,
we can state that i = y(l − 1), 1 < y ≤ m = [ n

l−1 ]. The form of m reflects how the
upper limit of the sum changes once we substitute i with y. We also know by the
same proposition that when i is divisible by l− 1 the valuation is vl(i) + 1. Finally,
writing these substitutions down gives us:

vl(N) =
n∑

i=1

vl(x
i − 1) =

m∑

y=1

vl(x
(l−1)y − 1) =

m∑

y=1

vl((l − 1)y) + 1 =
m∑

y=1

1 + vl(y).

Now, a sum of valuations from 1 to m is equal to vl(m!), therefore

m∑

y=1

1 + vl(y) = m + vl(m!)

and by proposition 4.0.2 vl(m!) is equal to [ml ] + [ml2 ] + [ml3 ] + .... Substituting
back m = [ n

l−1 ] then gives us

[
m

lα
] = [

n
l−1
lα

] = [
n

(l − 1)lα
]

which tells us that

vl(N) =
∑

α≥0
[

n

(l − 1)lα
] = M(n, l)

proving the lemma. �

5. Proof of statement (1) for primes l > 2

We have now established all the propositions needed in order to prove statement
(1) of Theorem 2.2.1, which we recall as follows:

(1) The order of a finite subgroup of GLn(Q) divides M(n).
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5.1. Proof of (1). As previously stated, we will only present the proof of (1) for
all primes l > 2 as follows.

Proof. Beginning with recalling Dirichlet’s theorem on arithmetic progressions as
presented in A Course in Arithmetic [1]:

Theorem 5.1.1. If a and b are relatively prime integers, then there are infinitely
many primes of the form ax + b, as x ranges over the integers.

Therefore, we can find an arbitrarily large prime p whose equivalence class mod
l2 generates (Z/l2Z)×. This makes the p which we have chosen equivalent to the x
used as a generator in Propositions 4.0.13 and 4.0.15. As it is a large enough prime,
it also has the characteristics of the p chosen in Proposition 3.0.16. With these
requirements met, proposition 4.0.15 tells us that vl(rn(p)) = vl(

∏n
i=1(pi − 1)) =

M(n, l).
With this equality established, we go back to proposition 3.0.16 which established
that the order of A will divide rn(p). As |A| divides rn(p) the l-adic valuation of
|A| must be either less than or equal to the valuation of rn(p). That is to say, for
|A| to divide rn(p), they must share the prime l as part of their factorisations, and
the greatest power of that prime present in the factorisation of |A| must be less
than or equal to the power of the same prime in rn(p): vl(|A|) ≤ vl(rn(p)).
Therefore, as A is a finite l-subgroup, meaning its order is a power of l, stating that
the l-adic valuation of A is lesser than the l-adic valuation of rn(p) is equivalent to
stating that the entire order of A is less than l raised to the valuation of rn(p). As
Proposition 4.0.15 tells us that vl(rn(p)) = M(n, l), this tells us that |A| ≤ lM(n,l).
This proves statement (1’), which by Proposition 3.0.2 is equivalent to statement
(1), therefore proving statement (1) for primes l > 2. �
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