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Abstract

The Platonic solids have fascinated humanity for more than 2000 years. This
thesis explores polygons and polyhedra in order to find the regular polyhe-
dra. It turns out there are five of them; the regular tetrahedron, the cube,
the regular octahedron, the regular icosahedron and the regular dodecahe-
dron. They are together called the Platonic solids, named after Plato, who
wrote about them in his dialogue ”Timaeus”. The thesis also examines the
rotation groups of the Platonic solids, as well as the other two finite sub-
groups of the rotation group SO(3).
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1 Introduction

1.1 The history of the Platonic solids

1.1.1 Plato, Theaetetus and Euclid

Our story of the regular polyhedra will begin around 360 BC. At that time,
Plato (429-347 BCE)[3] wrote about them in his dialogue “Timaeus”, and
consequently they are called Platonic solids [2]. In the dialogue he linked the
regular solids to the elements fire, water, earth and air. The tetrahedron
was fire, since it is the sharpest of the solids, it is also the smallest and
therefore the driest. The cube was earth, because it is the most stable.
The octahedron was air, since it can easily be spun between two fingers and
is therefore the most unstable. The icosahedron was water, because of its
many sides it flows easily. At last the dodecahedron was the universe, since
it is the biggest of the solids and can enclose all the others.

The story continues with Theaetetus (417-369 BCE)[3], who was active
at Plato’s Academy in Athens. He studied the Platonic solids mathemati-
cally and realised that there are only five regular solids. He also gave a proof
of this fact, which is probably the first proof of it.

The earliest preserved mathematical script that deals with the regular
solids is called Elements and is written by Euclid (lived around 300 BCE) [3].
Elements consists of thirteen books, and in the last one Euclid constructs
the regular solids and shows how they can be enclosed in a sphere. He also
compares the edges of the solids to the radius of the sphere. The proof by
Theaetetus, that there are only five regular solids, is included in the book.

1.1.2 Kepler and Euler

Throughout the history many scientists have investigated the Platonic solids.
One that took a special interest in them was Kepler (1571-1630)[3]. He
thought that it must be special that there are only five of them and tried to
connect that fact to the rest of the world.

In that time only six planets in our solar system were known. These six
planets had to be linked to the regular solids according to Kepler. First, he
tried to correlate the orbits of the planets to polygons, but soon realized that
it did not work. Then he made spheres of the orbits and placed the regular
polyhedra inside the spheres. The first sphere was the orbit of Saturn, inside
that sphere he inscribed a cube. Inside the cube, he inscribed another
sphere that represented the orbit of Jupiter. He then continued with a
regular tetrahedron, a sphere, a regular dodecahedron, a sphere, a regular
icosahedron, a sphere, a regular octahedron and a sphere. In this way he
argued that all the orbits of the planets were represented by the spheres
separated by the regular solids. Since he knew that the orbits were not
circular, he gave the spheres a thickness to fit better to the data presented
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by Copernicus (1473-1543). But even then, some parts of his model did not
quite fit with the data. He solved this by simply stating that the data was
wrong and that his model was right. He published the model in his first
book ”Mysterium Cosmographicum” in 1596. An illustration of the model
from the book can be seen in Figure 1. Later in his life, Kepler used the
same data to discover the laws of planetary motions.

The next big step for the Platonic solids where made by Euler (1707-
1783)[3]. He wanted to classify the polyhedra by counting their features.
He began with naming the different parts of the solids; the 0-dimensional
components he called vertices, the 1-dimensional components he called edges
and the 2-dimensional components he called faces. By counting the differ-
ent components, he found the simple formula V − E + F = 2. To his own
knowledge, he was the first to notice this relationship. It is surprising that
it took this long for someone to notice this relationship, even though count-
less mathematicians have studied the Platonic solids for over 2000 years.
But before Euler, the study of the polyhedra was focused on the properties
that could be measured; the length, area, volume and angles. No one had
explicitly referred to the edges before or tried to classify the polyhedra by
the number of vertices, edges and face, and thus no one had counted them
in order to compared them.

Figure 1: Kepler attempted to correlate the Platonic solids to the orbits of
the six known planets (at the time). [12]
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2 Polytopes

In order to understand what the Platonic solids are, this section will present
some basic definitions about polygons and polyhedra. We start with some
definitions about sets.

Definition 2.1. A set is a collection of selected objects. An object x in a
set A is called an element of A, written x ∈ A.

Definition 2.2. Let A and B be two sets. If every element of A is also an
element of B, then A is a subset of B, written A ⊆ B.

Definition 2.3. A subset S in Rn is convex if for every two points x̄ and ȳ
in S

(1− t)x̄+ tȳ ∈ S, for all 0 ≤ t ≤ 1.

Theorem 2.1. Given any collection of convex sets, their intersection is
itself a convex set.

Proof. The intersection can either be empty, consist of a single point or con-
sist of more than a single point. For an intersection that is empty or consists
of a single point, the theorem is true by definition. For an intersection that
contains more than a single point, choose two points A and B in the inter-
section. The line AB between the points must lie in each convex set, and
thereby also in the intersection.

Definition 2.4. The convex hull of a subset M of Rn is the intersection
of all convex sets containing M . Since the intersection of any collection of
convex sets is convex, it follows that the convex hull of M is itself convex,
and it is the smallest convex set containing M .

Definition 2.5. A hyperplane in Rn is the set of solutions of a linear equa-
tion of the form

a1x1 + . . .+ anxn = b

where the numbers a1, . . . , an are not all zero.

Definition 2.6. Let P be the set of solutions of a finite collection of linear
inequalities of the following form

bk,1x1 + . . .+ bk,nxn ≤ bk,0
where say 1 ≤ k ≤ N . Assume that the inequalities are not redundant, and
the set of solutions is non-empty and bounded. Then P is a polytope in Rn,
and N is the number of hyperplanes that bound the polytope. If the interior
of P is not empty, then we will say that P is a non-degenerate polytope. [1]
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2.1 Polygons

The first step towards the Platonic solids is the polygon. A polygon is a
two-dimensional polytope that has edges and vertices. Here follow some
definitions of different polygons.

The following definition of a polygon can be shown to be equivalent to
that of a non-degenerate polytope in R2.

Definition 2.7. A polygon consists of a circuit of p line-segments A1A2,
A2A3, ... , ApA1 that are not allowed to intersect except at endpoints of
adjacent segments. The line-segments are joined in consecutive pairs of p
points A1, A2, ... , Ap. The line-segments are called edges, the points are
called vertices. The name of the polygon is determined by the number of
edges. [1]

Definition 2.8. Let A be a set of points in R3. If it exists a plane that
contains all the points in A, then the points are called coplanar.

Definition 2.9. A polygon is called plane if all the vertices are coplanar.
If not, the polygon is called skew.

A plane polygon divides its plane into two regions. The region that is
finite is called the interior (or the inside) of the polygon. The other region
is called the exterior (or the outside) of the polygon.

In this paper, polygons will always refer to plane polygons.

Example 2.1. Figure 2 shows two polygons. Although they look different,
since they both have six edges, both are called hexagons. The left one is a
convex hexagon and the right one is a non-convex hexagon.

(a) A convex polygon (b) Not a convex polygon

Figure 2: Two hexagons, one convex and one not convex.

Definition 2.10. A polygon is called equilateral if all its edges are the same
length.

Definition 2.11. A polygon is called equiangular if all its interior angles
are equal.
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Definition 2.12. A polygon is regular if it is both equilateral and equian-
gular.

What do all these types of polygons look like? In Figure 3, a sample
of different polygons is collected. All the polygons in the figure are convex,
except the left equilateral polygon. A regular polygon is always convex, it
is not possible for a polygon to be both equiangular and equilateral if it is
not convex.

Figure 3: Different polygons. [7] [8]

2.2 Polyhedra

In three dimensions the polytopes are called polyhedra. They can have
different characteristics and therefore look very different. The Platonic solids
are one type of polyhedra, called regular. One of them, the cube, is shown
in Figure 4.

Figure 4: The faces, edges and vertices of a cube. [9]
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The following definition of a polyhedron can be shown to be equivalent
to that of a non-degenerate polytope in R3 from Definition 2.6.

Definition 2.13. A polyhedron is a finite, connected set of plane polygons,
such that every side of each polygon belongs to just one other polygon,
provided that in each point of intersection between more than two polygons,
the surrounding polygons form a single circuit. The polygonal surfaces of a
polyhedron are called faces. The lines of intersection between two faces are
called edges. The points of intersection between more than two faces are
called vertices. Two faces only intersect on an edge, at a vertex or not at
all. [1]

The Platonic solids are regular polyhedra. For a polyhedron to be reg-
ular, it should satisfy a few conditions [4]:

1. The polyhedron is convex.

2. Every face of the polyhedron is a regular polygon.

3. All faces are identical.

4. Every vertex is surrounded by the same number of faces.

In this paper, a definition based on flags and automorphisms will be
used. We want to be able to define a regular polyhedron in a way that is
related to rotations, which will be explored in Section 4.

Definition 2.14. A flag is a sequence of subsets S0, S1, . . . , Sk of a subset
S of Rn, for which

S0 ⊂ S1 ⊂ . . . ⊂ Sk.
A flag is complete if dimSi = i and k + 1 = dimS.

Figure 5: A complete flag of a cube (a vertex, an edge and a face).

For a polyhedron P , the subsets in a flag are represented by the vertices,
edges and faces. The vertices are the 0-dimensional points P0, the edges are
1-dimensional lines P1 and the faces are 2-dimensional polygons P2. A flag
is the sequence of one vertex, one edge and one face that satisfy

P0 ⊂ P1 ⊂ P2.
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This forms a complete flag since dimPi = i and k+ 1 = dimP . An example
of a flag is shown in Figure 5.

To be able to define an automorphisms of a polyhedron, a definition of
Euclidean motions is needed.

Let u = (x1, . . . , xn) and v = (y1, . . . , yn) be vectors in Rn. Recall that
that the inner product in Rn is defined by the formula 〈u, v〉 = x1y1 + . . .+
xnyn. The norm of u is |u| =

√
〈u, u〉. More generally, the inner product

has a geometric interpretation 〈u, v〉 = |u||v| cos (u, v).

Definition 2.15. In a Euclidean n-space Rn with the inner product 〈−,−〉
and the norm |v| =

√
〈v, v〉, a Euclidean motion is a function f : Rn → Rn

for which |f(x)− f(y)| = |x− y| for any two x, y ∈ Rn. [2]

Before we move on to automorphisms and regular polyhedra, we will
investigate some facts about Euclidean motions.

Lemma 2.1. Let T : Rn → Rn be a Euclidean motion that satisfies
T (0̄) = 0̄. Then T preserves norms, which means that |T (ū)| = |ū| for all
vectors ū ∈ Rn.

Proof. Since T is a Euclidean motion, and T (0̄) = 0̄, we can write

|T (ū)| = |T (ū)− T (0̄)|.

Since
|T (ū)− T (0̄)| = |ū− 0̄| = |ū|.

we get that |T (ū)| = |ū|.

In Definition 2.15, a Euclidean motion is defined as a transformation
that preserves distances. We shall now see that they also preserve inner
products, which suggests that the Euclidean motions preserve angles. We
begin with proving it for Euclidean motions that preserve the zero vector.

Lemma 2.2. Let T : Rn → Rn be a Euclidean motion that satisfies T (0̄) =
0̄. Then T preserves inner products, which means that 〈T (u), T (v)〉 = 〈u, v〉
for any ū, v̄ ∈ Rn.

Proof. Since T is a Euclidean motion, we know that

|T (ū)− T (v̄)| = |ū− v̄|.

If we square the left side and expand it, we get

|T (ū)− T (v̄)|2 = 〈T (ū)− T (v̄), T (ū)− T (v̄)〉
= |T (ū)|2 − 2〈ū, v̄〉+ |T (v̄)|2

= |ū|2 − 2〈ū, v̄〉+ |v̄|2.
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Similar calculations give us

|ū− v̄|2 = |ū|2 − 2〈ū, v̄〉+ |v̄|2.

If we compare the two equations, we see that

〈T (ū), T (v̄)〉 = 〈ū, v̄〉.

Lemma 2.3. Let T : Rn → Rn be a Euclidean motion that satisfies
T (0̄) = 0̄. Then the inner product 〈T (u), T (v)〉 preserves angles.

Proof. If we use the geometric interpretation of the inner product

|T (ū)| · |T (v̄)| · cos (T (ū), T (v̄)) = |ū| · |v̄| · cos (ū, v̄)

we see that
cos (T (ū), T (v̄)) = cos (ū, v̄)

which means that the inner product preserves angles.

Lemma 2.4. Let T : Rn → Rn be a Euclidean motion that satisfies
T (0̄) = 0̄. Then T preserves angles.

Proof. Let T̄ (ū) = T (ū)− T (0̄). Then T̄ is a Euclidean motion and

T̄ (0̄) = T (0̄)− T (0̄) = 0̄.

This means that T̄ is a linear Euclidean motion that preserves inner prod-
ucts. Since T (ū) = T̄ (ū) + T (0̄), and T (0̄) is a translation, then T (ū) pre-
serves angles. Which means that since a Euclidean motion preserves norms,
it also preserves angles.

Definition 2.16. An automorphism of a polyhedron is a Euclidean motion
which transforms a convex polyhedron into itself.

Definition 2.17. If any two complete flags in a convex polyhedron P can be
transformed into one another by an automorphism of P , then the polyhedron
is called regular.

A polyhedron P that satisfies the definition of a regular polyhedron, also
satisfies the conditions listed on page 10.

Every complete flag can be transformed into any other complete flag.
Which means that in P , every face can be transformed into any other face,
every edge can be transformed into any other edge and every vertex can be
transformed into any other vertex. In order to have an automorphism of P
that performs the transformations, all the faces need to be identical and all
vertices need to be surrounded by the same number of faces.
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An automorphism preserves distances. Which means that the distance
between a vertex and the centre of a face is the same in every complete flag
of P , the same apply to a vertex and a mid-edge point and to a mid-edge
point and the centre of a face. This means that every polygonal face needs
to be regular.

Since a regular polyhedron is convex according to the definition, it sat-
isfies the conditions.

2.3 Schläfli symbol

In order to denote the regular polytopes, the Schläfli symbol can be used.
It contains the information of the structure of the polytope. The symbol is
named after the Swiss mathematician Ludwig Schläfli (1814-1895).

A regular polygon is denoted {p}, where p is the number of edges on the
polygon. An equilateral triangle has the Schläfli symbol {3} because of its
three edges.

A regular polyhedron is denoted {p, q}, where p is the type of polygon
its faces are made of and q is the number of edges that meet in each vertex.
A cube has the Schläfli symbol {4, 3} since the faces are squares and three
edges meet at each vertex.

The symbol can also be used in higher dimensions. The d-dimensional
regular polytope P has the Schläfli symbol {p1, p2, ... , pd−1}, where p1 is the
type of polygon and {p2, ... , pd−1} are its excellent vertex figures (defined
in Definition 3.4).

2.4 Graphs

Instead of seeing a polyhedron as a three-dimensional body, we can for-
get that the faces should be polygons and convert the polyhedron into a
graph, which often is called its skeleton, formed by its vertices and edges.
With graphs, a specific formula called Euler’s formula (Theorem 2.2) can be
proven.

Definition 2.18. A graph G = (V,E) consists of two finite sets V and E,
such that the elements in E are unordered pairs of elements from V . The
elements in V are called vertices and the elements in E are called edges.
Two vertices u, v are connected by an edge if {u, v} is an element in E.

If an element {u, v} only is allowed once in E, then the graph is called
a simple graph. If an element {u, v} are allowed several times in E and
elements of the type {v, v} are allowed in E, then the graph is called a
multigraph. In a multigraph, there can be several edges between u and v,
and edges that go from v to v, called loops.

Unless stated otherwise, graphs will refer to simple graphs.
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Definition 2.19. A walk is a sequence of vertices v1, v2, . . . , vn in a graph,
such that vi and vi+1 is connected by an edge for 1 ≤ i ≤ n− 1. [5]

Definition 2.20. Let v be a vertex in a graph G. If there exists a walk
from v to all the other vertices in G, the graph is called connected.

Definition 2.21. If a graph G can be drawn on a plane with no edges
crossing each other, G is called a planar graph.

In planar graphs, the connected components of the complement of the
graph are called faces.

Definition 2.22. Let a planar graph G have V vertices, E edges and F
faces. Create a new planar graph G′ that has a vertex for every face in G.
For every edge in G, let there be an edge between the two vertices in G′ that
correspond to the two faces in G separated by the edge. For every vertex in
G, there now exists a corresponding face in G′. The graph G′ is called the
dual graph of G with F vertices, E edges and V faces.

An example of how a dual graph of a planar graph can be created is
demonstrated in Figure 6.

Figure 6: The steps for creating a dual graph. [10]

2.5 Dual polyhedra

Every convex polyhedron has a special relationship to another convex poly-
hedron, called the dual polyhedron. For a convex polyhedron with F faces,
E edges and V vertices, the dual polyhedron has V faces, E edges and F
vertices.

Definition 2.23. The dual polyhedron of a convex polyhedron is the convex
hull of the centres of its faces. [2]

To find a dual polyhedron, begin with marking a point in the centre of
every face of a convex polyhedron. If the polyhedron has F faces, these
points will be the F vertices of the dual.

Then draw lines between the points that are on adjacent faces of the
polyhedron. These lines form polygons that create the faces of the dual. This
makes one polygon for every vertex in the polyhedron, and if the polyhedron
has V vertices, the dual has V faces.
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The dual now has V faces and F vertices, but does it have E edges? It
does, because for every edge between two vertices in the polyhedron, there
is an edge separating two faces in the dual and since the polyhedron has V
vertices and the dual has V faces, the edges remain the same.

We have now formed a dual polyhedron with V faces, E edges and F
vertices. This result is the same dual as taking the convex hull of the centres
of the polygons faces, as in Definition 2.23, because the centres of the faces
are chosen as the vertices, and the lines drawn, together with the faces that
were created, is the same as the convex hull.

An example of a dual polyhedron can be seen in Figure 7. The dual of
a dual polyhedron is the original polyhedron, only smaller.

Figure 7: The octahedron is the dual of the cube. [11]

Definition 2.22 defined the dual of a planar graph. This can also be used
to find the dual of a polyhedron P .

First, convert P into a planar graph G with the same number of faces,
edges and vertices as P . The dual of G is G′, which describes the dual
polyhedron P ′ as well, since P ′ will have the same number of faces, edges
and vertices as G′. The dual polyhedron P ′ can be created from the dual
graph G′ by connecting the vertices in P ′ according to how the vertices in
G′ are connected by the edges. This will create the same number of faces in
P ′ as in G′. All that is left is to adjust the edges in order to make the faces
regular polygons and the dual polyhedron is found.

2.6 Euler’s formula

The 14:th of November in 1750 was a special day for the polyhedra. On this
day Euler sent a letter to his friend Christian Goldbach. The letter contained
the definition of an edge of a polyhedron and a relationship between the
number of vertices, edges and faces in a convex polyhedron. The relationship
is known as Euler’s formula.

Theorem 2.2. A convex polyhedron with V vertices, E edges and F faces
satisfies

V − E + F = 2. (1)
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Proof. To prove Euler’s formula, begin with projecting a convex polyhedron
into a plane and make it a planar connected multigraph. We can imagine
that we remove one of the faces of the polyhedron and then unfold it and
place it on a plane. This creates a planar graph. The edges and vertices
of the polyhedron are represented by edges and vertices in the graph. The
faces of the polyhedron are represented by the area enclosed by the edges
and vertices, the face that we imagine that we removed is represented by
the area outside the graph. Since the graph is a planar graph, no edges are
crossing each other, and every face is enclosed by at least three vertices and
three edges in the beginning (since every face on a polyhedron is enclosed
by at least three vertices and three edges).

Now we want to remove edges and vertices until there is only one vertex
and no edges left. Begin with choosing an edge. If it is enclosed between two
vertices, shrink the edge until it disappears, and the two vertices join and
become one vertex. Now the number of vertices has decreased by one, and
the number of edges has decreased by one. The number of faces is conserved.
The expression V − E + F remains the same.

If the edge chosen is a loop, remove it (a loop can be created when we
eliminate an edge {u, v} and a vertex v if there are two edges between v and
u, which is allowed in a multigraph). Then the number of edges decreases
with one and the number of faces decreases with one. The number of vertices
is conserved. Even now the expression V − E + F remains the same.

Continue to shrink and remove edges until no edges remain. All that do
remain are one vertex and one face (the outside), see Figure 8. Now

V − E + F = 1− 0 + 1 = 2.

Since the expression V −E+F have not changed while removing and shrink-
ing edges, the equation

V − E + F = 2

is true for the graph we began with, and therefore true for the polyhedron.

Figure 8: By removing edges, the multigraph can be reduced. [12]
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3 The Platonic solids

Finally, we have reached the Platonic solids after studying the theory behind
them. In this section we will learn more about the regular polyhedra and
investigate why there are only five of them. We will take a closer look on
each of the solids to see what makes them so special.

Figure 9: The five Platonic solids. [12]

Definition 3.1. The Platonic solids are:

• The regular tetrahedron

• The regular hexahedron (cube)

• The regular octahedron

• The regular icosahedron

• The regular dodecahedron

Polyhedron Vertices Edges Faces

Tetrahedron 4 6 4

Cube 8 12 6

Octahedron 6 12 8

Icosahedron 12 30 20

Dodecahedron 20 30 12

Table 1: The number of vertices, edges and faces of the Platonic solids.

3.1 Tetrahedron

The tetrahedron is made of four triangles. It has four vertices, six edges and
four faces, as can be seen in Table 1. The regular tetrahedron is made of
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four equilateral triangles. It is the first polyhedron from the left in Figure
9, and has the Schläfli symbol {3, 3}.

To form a regular tetrahedron, begin with an equilateral triangle as a
base. Through the centre of the triangle, draw a line perpendicular to the
base. Choose a point on the line. From that point, draw lines to the three
vertices of the triangle. Each such line is the same length, which means
that three isosceles triangles are formed. Adjust the distance to the point
on the line to make the isosceles triangle into equilateral triangles. These
four equilateral triangles form the regular tetrahedron.

Example 3.1. The tetrahedron can also be formed by the convex hull of
four vertices in a cube. For it to be a regular tetrahedron, all the edges of the
convex hull must be the same length. For a cube with vertices (±1,±1,±1),
a regular tetrahedron is formed by the vertices

(1,−1, 1), (1, 1,−1), (−1,−1,−1), (−1, 1, 1).

The dual of a tetrahedron is another tetrahedron. It is self-dual. A
convex hull of the centres of its faces creates triangles, and because the solid
has both four vertices and four faces, the result is a tetrahedron upside down
as seen in Figure 10.

Figure 10: The dual of a tetrahedron is another tetrahedron. [13]

3.2 Cube

The regular hexahedron is called a cube. It has eight vertices, twelve edges
and six faces. It is the second polyhedron from the left in Figure 9. The
cube has the Schläfli symbol {4, 3}.

In order to form a cube, begin with a square as a base. Draw lines
perpendicular to the base through each of the four vertices of the square.
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On a chosen side of the square, make one point on each of the lines at the
same distance from the square. The convex hull of those four points creates
a square, fill in those new lines. Adjust the distance to the points from the
base to make the rectangles into squares. These six squares form the cube.

3.3 Octahedron

The third polyhedron from the left in Figure 9 is called a regular octahedron.
It consists of eight equilateral triangles and has six vertices, twelve edges and
eight faces. The octahedron has the Schläfli symbol {3, 4}. The cube and
octahedron are duals, as can be seen in Figure 11.

In order to form a regular octahedron, make two pyramids with squares
as bottoms and triangles as sides. Adjust the edges of the bottom and
the height of the pyramids to make the triangles equilateral. Then place the
pyramids base to base and remove the two squares. We have now constructed
an octahedron of eight equilateral triangles.

Example 3.2. Since the octahedron is the dual of the cube, the octahedron
can also be created by the convex hull of the centres of the faces of the cube.
If the cube has the vertices (±1,±1,±1), then the vertices of the octahedron
is formed by the points (±1, 0, 0), (0,±1, 0) and (0, 0,±1).

Figure 11: The dual of the cube is the octahedron. [14]

3.4 Icosahedron

The icosahedron is the Platonic solid that has the largest number of faces.
Its twenty faces are made of equilateral triangles. The solid has twelve
vertices and thirty edges. The icosahedron is the second polyhedron from
the right in Figure 9.
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First, a description of how a regular icosahedron can be constructed will
be given, but since this description is quite informal, a formal proof will
follow.

To construct a regular icosahedron, begin with a regular octahedron.
Colour the faces alternately black and white. Create a direction on each edge
so that the face on the left side of the edge is black and the face on the right
side is white when following the edge in the chosen direction, see Figure 12a.
Choose a point on each line in any given ratio a:b in the chosen direction.
Since the octahedron has twelve edges, we get twelve points. The convex
hull of these points forms the icosahedron, but it will not automatically be
regular.

In order to make the icosahedron regular, the ratio a : b need to be
specified. Begin with noticing that eight of the triangles on the icosahedron
lie on the faces of the octahedron. If the edges on the regular octahedron
is a + b, the eight triangles are equilateral with edges

√
a2 + b2 − ab. The

rest of the triangles on the icosahedron are isosceles with two edges that are√
a2 + b2 − ab and one that is

√
2a.

We want to choose the ratio a : b to make all the triangles equilateral, so

√
2a =

√
a2 + b2 − ab

which give
a

b
=

√
5− 1

2
=

1

τ
.

To conclude, we divide the twelve edges on a regular octahedron accord-
ing to the golden ratio τ to find the vertices of a regular icosahedron, see
Figure 12b.

(a) [15] (b) [16]

Figure 12: By colouring the octahedron alternately black and white like in
(a), the icosahedron can be found by dividing the edges of the octahedron
according to the golden ratio, like in (b).
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Example 3.3. For a regular octahedron with vertices (±1, 0, 0), (0,±1, 0)
and (0, 0,±1), the length of the edges will be

√
2. If a+ b = 1, the vertices

on the regular icosahedron will be

(0,±a,±b), (±b, 0,±a), (±a,±b, 0)

given that a = 1 − τ and b = τ . The length of the edges on the regular
icosahedron is then 2(1− τ).

Our next task is to prove that the icosahedron is a regular polyhedron.
For this we need to use vertex figures and a regularity criterion.

A vertex figure of a polyhedron can be formed by choosing a vertex and
then mark one point on each of the edges connected to the vertex. Draw
straight lines between those points to form a polygon. This polygon is called
a vertex figure of the polyhedron. An example of how it can look like is given
in Figure 13. A more explicit definition uses a closed half space.

Figure 13: A vertex figure of a cube. [17]

Definition 3.2. Let h : Rn → R be a linear function. Let γ be a real
number. Then H is a closed half space of Rn if

H = {x ∈ Rn : h(x) ≤ γ}.

The boundary of H is

∂H = {x ∈ H : h(x) = γ}.

Definition 3.3. Let v be a vertex of a polyhedron P . A vertex figure Q of
P is the intersection between P and the boundary of a closed half space H
that contain all vertices of P except for v:

Q = P ∩ ∂H.
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A special kind of vertex figures is the one that goes through all the
vertices that is connected to the vertex v by an edge. This figure is called
an excellent vertex figure and is shown in Figure 14. The excellent vertex
figure of a regular polyhedron is a regular polygon.

Definition 3.4. Let v be a vertex in a regular polyhedron P . Let a closed
half space H contain all vertices of P except for v, and let the boundary of
the closed half space ∂H go through the vertices that is connected to v by
one edge. The intersection between P and ∂H is called an excellent vertex
figure.

Figure 14: An excellent vertex figure of a cube. [18]

Lemma 3.1. Regularity criterion. A convex polyhedron P is regular if it
has a vertex v with the following properties: [2]

(i) For every vertex w of P ther is an automorphism of P that transforms
v to w.

(ii) There is a regular vertex figure Q of P at v.

(iii) For every automorphism γ of Q there is an automorphism g of P with
g(v) = v and g|Q = γ.

We want to prove that if a polyhedron satisfies the regularity criterion,
then it is regular according to Definition 2.17.

Proof. Let P be a polyhedron that satisfies the criterion of Lemma 3.1.
First, let (v, e1, f1) and (v, e2, f2) be two complete flags of P containing

the vertex v. We want to show that there exists an automorphism g of P
such that

g(v) = v
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g(e1) = e2

g(f1) = f2.

For i = 1, 2 let
xi = Q ∩ ei
wi = Q ∩ fi

Then xi is a vertex of Q and wi is an edge of Q. Which means that (x1, w1)
and (x2, w2) are complete flags of Q.

According to ii), there exists an automorphism γ of Q such that

γ(x1) = x2

γ(w1) = w2.

According to iii), there exists an automorphism g of P such that

g(v) = v

g(x1) = x2

g(w1) = w2.

Since xi ∈ ei and wi ∈ fi then

g(e1) = e2

g(f1) = f2.

This proves that any two complete flags, containing the vertex v, can be
transformed into each other by an automorphism of P .

Now let (v, e1, f1) and (w, e2, f2) be any two complete flags of P . Ac-
cording to i), there is an automorphism h of P such that

h(v) = w.

We can write
h−1(w, e2, f2) = (v, e′, f ′).

By the first part of the proof we know that there is an automorphism g of
P such that g(v) = v, g(e1) = e′ and g(f1) = f ′. Then

hg(v) = w

hg(e1) = e2

hg(f1) = f2.

This proves that any two complete flags of P can be transformed into
each other by an automorphism of P . Therefore, a polyhedron that satisfies
the regularity criterion also satisfies the definition of a regular polyhedron.
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Theorem 3.1. The icosahedron is the regular solid {3, 5}.

Proof. We start with our black and white coloured octahedron. There exists
an automorphism of the octahedron that does not change the colouring.
Every such automorphism is also an automorphism of the icosahedron that is
created by dividing the edges of the octahedron according to the golden ratio.
The automorphisms act transitively on the edges of the octahedron, which
means that they also act transitively on the vertices of the icosahedron.

The icosahedron can also be seen as an antiprism and two pentagonal
pyramids, with the bases of the pyramids placed on the top and bottom of
the antiprism. We can choose a vertex v and see it as the top of one of the
pyramids. Then the pentagonal base of that pyramid is an excellent vertex
figure of the icosahedron at v. The automorphism of the excellent vertex
figure is an automorphism of the icosahedron with v as a fixed point.

These descriptions of the automorphisms of the icosahedron result in
that the icosahedron satisfy the criteria for a regular polyhedron written in
Lemma 3.1. Therefore the icosahedron is the regular polyhedron {3, 5}.

3.5 Dodecahedron

The last of the regular polyhedra is the dodecahedron. It has twenty vertices,
thirty edges and twelve pentagonal faces. It is the dual of the icosahedron,
see Figure 15, and can be found by forming the convex hull of the centres
of the faces of the icosahedron.

(a) An icosahedron inside a
dodecahedron. [19]

(b) A dodecahedron inside an
icosahedron. [20]

Figure 15: The icosahedron and the dodecahedron are duals.

Since we proved that the icosahedron exists, the dodecahedron also ex-
ists. It is the first polyhedron from the right in Figure 9. It has the Schläfli
symbol {5, 3}.

To understand the construction of the dodecahedron, take a regular pen-
tagon and surround it by five regular pentagons, one on each edge of the
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first pentagon, and fold it to something that look like a bowl. Two such
bowls can be put together to form the dodecahedron, see Figure 16.

(a) Six pentagons create a bowl [21] (b) A regular dodecahedron [22]

Figure 16: The dodecahedron can be seen as two bowls that are put together.

Example 3.4. For a dodecahedron centred at the origin, with edge length
2
τ =
√

5− 1, the vertices are located at the following coordinates:

(±1,±1,±1), (0,±τ,±1/τ), (±1/τ, 0,±τ), (±τ,±1/τ, 0)

where τ =
√
5+1
2 .

3.6 The vertices of regular polyhedra

Now we have gone through the five Platonic solids, but how do we know
that there are not more of them? A rigorous proof will be given, but first
an informal argument. Can it be seen from how the vertices are constructed
that there are no more than five Platonic solids?

Figure 17: A vertex can be created with three, four or five equilateral trian-
gles, but not with six, since six equilateral triangles create a flat construction.
[23][24]

Each vertex in a regular polyhedron is made by at least three polygonal
faces whose vertices meet in one point.
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We will start with equilateral triangles. Create a vertex of three triangles,
this is the vertex of a regular tetrahedron. If another triangle is added, the
vertex of a regular octahedron is found. With five triangles, we get the vertex
of a regular icosahedron. What will happen if a sixth triangle added? Since
the inner angle of an equilateral triangle is 60◦, the total angle of a vertex
with six triangles is 360◦. This means that a vertex can not be created of six
equilateral triangles since it is a flat construction, see Figure 17. With more
than six triangles, the vertex will not be convex and therefore a polyhedron
made with these vertices will not be convex, which is a criterion for the
regular solids. Only three different regular solids can be constructed with
triangles.

The next regular polygon is the square. Three squares create the vertex
of a cube. Four squares create a flat construction, and thereby a vertex
can not be constructed of four squares. With more than four squares the
vertex will not be convex, so only one regular solid can be constructed with
squares.

Next we will use regular pentagons. Three pentagons construct the ver-
tex of a regular dodecahedron. The inner angle of a regular pentagon is
108◦. Three pentagons can create a vertex since they together are 324◦,
but a vertex of four or more pentagons will together be more than 360◦ and
therefore can not construct a convex vertex. Only a regular dodecahedron
can be constructed with regular pentagons.

What about the polyhedra made of regular polygons with more edges
than five? Three regular hexagons, with inner angle 120◦, will together
make a flat construction. More than three will not create a convex vertex.
For regular polygons with seven edges or more, not even three of them can
create a convex vertex since the total angle of these vertices are greater than
360◦. This means that only five different vertices, that could be a part of a
regular solid, can be created. They are shown is Figure 18.

Figure 18: Five possible vertices of the Platonic solids, laid flat at the top
and folded into a vertex at the bottom. [12]
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3.7 Five regular polyhedra

After examining the vertices, it is now time to formally prove that there are
no more than five Platonic solids.

Theorem 3.2. There are at most five regular polyhedra.

Proof. Assume that we have a regular polyhedron. Define n and m as

n= the number of edges on each face

m= the number of edges that meet at each vertex

The polyhedron has F faces, and on every face there are n edges. By
counting all edges on every face, all the edges have been counted twice, since
every edge belongs to two faces. This gives

E =
F · n

2
. (2)

Every face has n vertices (the same as the number of edges on each face).
When counting all the vertices on all the faces, the vertices are counted m
times too much since m faces meet at every vertex (the number of faces that
meet at each vertex is the same as the number of edges that meet at each
vertex). This gives

V =
F · n
m

. (3)

Euler’s formula states that

V –E + F = 2.

Insert Equation 2 and 3 in Euler’s formula:

F · n
m

–
F · n

2
+ F = 2.

Solving for F gives:

F =
4m

2n−mn+ 2m
.

Because m and the number of faces are positive

2n−mn+ 2m > 0. (4)

In order to create a polyhedron, we need at least three edges on each face
and at least three edges must meet at each vertex:

m,n ≥ 3. (5)

The inequalities in Equation 4 and 5 gives us

2(n+m) > mn (6)
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2n > m(n− 2)

2n

n− 2
> m ≥ 3

2n > 3n− 6

n < 6.

Because of the symmetry in Equation 6 we also get that

m < 6.

In total we have: 



3 ≤ n < 6
3 ≤ m < 6
2n−mn+ 2m > 0.

(7)

The only solutions the system in Equation 7 are

(n,m) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3)

which represent the five Platonic solids.

We have now proved that the five Platonic solids are:

• The regular tetrahedron {3, 3}

• The regular hexahedron (cube) {4, 3}

• The regular octahedron {3, 4}

• The regular icosahedron {3, 5}

• The regular dodecahedron {5, 3}

28



4 Rotation groups

In this section we will investigate the rotation groups of the Platonic solids.
The question to answer is: “In how many ways can a regular polyhedron be
rotated and still look the same?”. The answer is different depending on
which regular polyhedron that is considered. Dual polyhedra have the same
rotation group, so the cube and octahedron will share one group. The same
applies to the icosahedron and dodecahedron. The tetrahedron will have its
own group.

We will also take a quick look at the other finite subgroups of the rotation
group SO(3).

First, some definitions about groups.

Definition 4.1. A group consists of a set G, together with binary operation
∗ defined on G which satisfies the following axioms: [5]

1. (Closure) For all x and y in G:

x ∗ y ∈ G.

2. (Associativity) For all x, y and z in G:

(x ∗ y) ∗ z = x ∗ (y ∗ z).

3. (Identity) There is an element e, called the identity, in G such that

e ∗ x = x ∗ e = x

for all x in G.

4. (Inverse) For all x in G, there is an element x′, called the inverse, in
G such that

x ∗ x′ = x′ ∗ x = e.

Definition 4.2. Let G be a group, and let |G| be finite. Then |G| is called
the order of G.

Definition 4.3. Let G be a group and let H be a non-empty subset of G.
Then H is called a subgroup of G if for every x, y ∈ H:

xy ∈ H

x−1 ∈ H.
If G is finite, then xy ∈ H is enough for H to be a subgroup of G.

Definition 4.4. Let G be a group. If all the elements in G are a power of
an element x ∈ G, then G is called a cyclic group. The element x is called
the generator of G.
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4.1 Rotations of the tetrahedron

The rotation group of the regular tetrahedron has the order twelve, which
can be seen in Table 2. It is called the tetrahedral group.

4 axes through vertices and faces 2 elements each 8

3 axes through mid-edge points 1 element each 3

The identity 1

In total: 12 elements

Table 2: The order of the tetrahedral group is twelve.

A rotation has an axis and an angle. For a regular polyhedron with
Schläfli symbol {p, q}, there are three different kinds of rotations:

(i) q-fold: The axis passes through a vertex. The angle is a multiple of
2π/q.

(ii) twofold: The axis passes through the midpoint of an edge. The angle
is π.

(iii) p-fold: The axis passes through the centre of a face. The angle is a
multiple of 2π/p.

Figure 19: The rotation axes through a tetrahedron. [27]

For the regular tetrahedron, the q-fold and the p-fold rotations will be
the same, since an axis through a vertex will go through the face on the
opposite side of the tetrahedron. The axis can be rotated by an angle of
2π/3 two times, and since the tetrahedron has four vertices, the four axes
contribute with eight rotations.

The twofold rotations will have an axis that goes through two edges,
because the edges in the tetrahedron occur in antipodal pairs. The tetrahe-
dron’s six edges will contribute with three axes and therefore three rotations.

The last element of the tetrahedral group is the identity. All the seven
axes of rotation can be seen in Figure 19.
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4.2 Rotations of the cube and octahedron

In a regular octahedron, the vertices, edges and faces occur in antipodal
pairs. Which means that axes through half of the vertices, edges and faces
cover all the rotations. In an octahedron with F faces, E edges and V ver-
tices, there are V/2 q-fold axes through vertices, E/2 twofold axes through
edges and F/2 q-fold axes through centre of faces. All the axes can be seen
in Figure 20.

Figure 20: The rotation axes through an octahedron. [28]

The axis for a q-fold rotation can be rotated three times by an angle of
2π/4. The three antipodal pairs of vertices contribute to nine rotations.

The octahedron has six antipodal pairs of edges. An axis through the
edges can be rotated once by an angle of π. This contributes with six
rotations.

The last axis is through the faces. The four antipodal pairs of faces
create four axes that can be rotated by an angle of 2π/3 two times and
together contribute to eight rotations.

At last is the identity. In total the octahedral group has 24 elements,
which can be seen in Table 3.

3 axes through vertices 3 elements each 9

6 axes through mid-edge points 1 element each 6

4 axes through face centres 2 element each 8

The identity 1

In total: 24 elements

Table 3: The order of the octahedral group is 24.

The octahedron and the cube are duals. This means that they have
the same rotation group. The rotation around an axis through a vertex
in the octahedron corresponds to the rotation around an axis through a
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centre of a face in the cube. The axis through a mid-edge point in the
octahedron corresponds to an axis through a mid-edge point on the cube.
The axis through the centre of a face in the octahedron corresponds to an
axis through a vertex in the cube. An example with three axes can be seen
in Figure 21.

This means that since the octahedron has nine q-fold rotations, six
twofold rotations and eight p-fold rotations, the cube has eight q-fold rota-
tions, six twofold rotations and nine p-fold rotations.

Figure 21: The axes of rotation in the cube and octahedron correspond to
each other. [29]

4.3 Rotations of the icosahedron and dodecahedron

The group of rotations of the icosahedron and the dodecahedron is called
the icosahedral group. The elements of the group can be seen in Table 4.

6 axes through vertices 4 elements each 24

15 axes through mid-edge points 1 element each 15

10 axes through face centres 2 element each 20

The identity 1

In total: 60 elements

Table 4: The order of the icosahedral group is 60.

In a regular icosahedron the vertices, mid-edge points and the centres of
faces occur in antipodal pairs.

An axis through two antipodal vertices will result in q-fold rotations. The
axis can be rotated four times by an angle of 2π/5. Since the icosahedron
has twelve vertices, the axes will contribute with 24 rotations.
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The twofold rotations are created by rotation around fifteen axes through
antipodal edges. These will contribute with 15 rotations.

The axis through an antipodal pair of centres of faces can be rotated two
times with an angle of 2π/3. These ten axes will contribute with 20 p-fold
rotations.

At last we also have the identity for the icosahedron. These 60 rotations
create the icosahedral group. The axes of rotation can be seen in Figure 22.

(a) The rotation axes through an
icosahedron. [25]

(b) The rotation axes through a
dodecahedron. [26]

Figure 22: The axes of rotation through an icosahedron and a dodecahedron
are the same.

4.4 Permutation groups

The tetrahedral, octahedral and icosahedral groups can be identified with
permutation groups.

Definition 4.5. Let X be a non-empty finite set. A permutation of X is a
bijection from X to X.

Definition 4.6. A permutation that exchanges the place of two elements in
a non-empty finite set, and leaves the rest unaltered, is called a transposition.

Definition 4.7. Let X be a non-empty finite set. Every permutation σ of X
can be written as a product of transpositions. If the number of transpositions
is even, then σ is an even permutation. If the number of transpositions is
odd, then σ is an odd permutation.

Definition 4.8. Let X be a non-empty finite set. Let G be a set of permu-
tations of X. If G is a group, then G is called a permutation group of X.
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Definition 4.9. Let Xn = {1, 2, ... , n} be a finite set with n elements. Let
Sn be a permutation group that contains all the permutations of Xn. Then
Sn is called a symmetric group. The order of Sn is n!.

Definition 4.10. Let Sn be a symmetric group. A subgroup An, consisting
of all even permutations in Sn, is called an alternating group. The order of
An is n!

2 .

Definition 4.11. Let G be a set of all automorphism of a polyhedron P .
Then G is called an automorphism group of P .

4.4.1 The tetrahedral group

The tetrahedral group can be identified as the alternating group A4. The
symmetric group S4, that consists of all permutations of four vertices, is
the same as the full automorphism group of the tetrahedron. The even
permutation are rotations, and these create A4.

4.4.2 The octahedral group

The octahedral group can be identified as the symmetric group S4. The
octahedron has four pairs of parallel faces, which the elements of the octa-
hedral group permute. No element that is not equal to the identity gives
the identity. All the 24 possible permutations occur, and these create S4.

4.4.3 The icosahedral group

The icosahedral group can be identified as the alternating group A5. To
show this, divide the edges of the icosahedron into five classes with six
edges in each. Let two edges belong to the same class if and only if they are
perpendicular or parallel to each other. In this way, the five edges connected
to the same vertex will belong to five different classes, see Figure 23, as well
as the five edges that belong to two faces that share an edge.

Figure 23: The five edges connected to the same vertex in the icosahedron
will belong to five different classes. [30]
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How are the five classes permuted by the icosahedral group? The q-fold
rotations will give cyclic permutations of order five, since there are five edges
connected to one vertex. The twofold rotations will give two transpositions
of the five classes, since there are five edges of two faces that share an edge.
The p-fold rotations will give cyclic permutations of three classes. The two
classes that do not contain an edge that belong to the face that axis goes
through, can not be permuted by these rotations.

This shows that the icosahedral group is a subgroup of S5. Since only
the 60 even permutations occur, the icosahedral group is the alternating
group A5.

4.5 Finite subgroups of the rotation group SO(3)

The tetrahedral, octahedral and icosahedral groups are subgroups of the
rotation group SO(3), which contains all the rotations around the origin in
R3. There are two other infinite series of finite subgroups of SO(3). They
are called the cyclic subgroup and the p-dihedral subgroup.

Definition 4.12. Let a group G consist of all transformations of the Eu-
clidean n-space Rn that preserve the distance between any two points in Rn.
If all the transformations in G fix a given point, G is called an orthogonal
group O(n). [6]

Definition 4.13. Let O(n) be an orthogonal group. Let a subgroup SO(n)
contain all transformations in O(n) that fix the origin. Then SO(n) is called
a special orthogonal group. In three dimensions, SO(n) is called the rotation
group SO(3). [7]

Up to conjugacy the finite subgroups of SO(3) are: [2]

• the cyclic groups of order p = 2, 3, ...

• the dihedral groups of order 2p (p = 2, 3, ... )

• the tetrahedral group

• the octahedral group

• the icosahedral group.

A cyclic subgroup consists of all rotations around a fixed axis. The
subgroups are of any order p < inf and the angles of rotation are 2πj/p,
where j = 1, 2, ... , p.

Let three lines be perpendicular to each other and go through the origin.
The identity and the rotations with an angle of 180◦ around each line form
a subgroup. This group is of order four and is called the 2-dihedral group.
Any two 2-dihedral groups are conjugate in SO(3).
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Let a polygon have p edges, with p ≥ 3, and be centred at the origin.
A line through the origin that is perpendicular to the polygon is an axis
that create p-fold rotations. The axes that are parallel to the polygon are
twofold and passes through the vertices and mid-edge points. There are p
such axes. These rotations form the p-dihedral group of order 2p. Any two
p-dihedral groups are conjugate in SO(3).
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5 Summary

The Platonic solids continue to fascinate mathematicians to this day. It can
easily be understood why so many have studied them throughout history.
There is much to learn and several different ways to investigate them. They
can be seen as 3-dimensional objects or as graphs, their rotations can be
seen as permutations or as groups. In this thesis we have concluded that
the Platonic solids are

• the regular tetrahedron

• the regular hexahedron (cube)

• the regular octahedron

• the regular icosahedron

• the regular dodecahedron.

We have found that the rotations of the solids can be divided into three
groups; the tetrahedral group of order twelve, octahedral group of order 24
and icosahedral group of order 60. We also took a quick look at the two
other finite subgroups of the rotation group SO(3), the cyclic groups of order
p = 2, 3 . . . and the dihedral groups of order 2p (p = 2, 3, . . . ).
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