
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

System T and the Dialectica Interpretation

av

Friðgeir Ingi Jónsson

2019 - No K36

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

System T and the Dialectica Interpretation

Friðgeir Ingi Jónsson

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Peter Lumsdaine

2019

Abstract
The Dialectica interpretation and system T were first introduced by Kurt
Gödel in 1958. The original Dialectica interpretation was an interpre-
tation of intuitionistic arithmetic into a typed functional theory called
system T. In this thesis we present a modernized version of the Dialectica
interpretation along with a proof of the soundness of the interpretation.
We also look at two different ways to provide semantics for System T.

Acknowledgements
I would like to thank my supervisor Peter LeFanu Lumsdaine for intro-
ducing me to the deeply fascinating Dialectica interpretation as well as
for his support and the invaluable advise he has given me.

System T and the Dialectica Interpretation

Friðgeir Ingi Jónsson

Contents
1 Introduction 2

2 The systems HA, T and HA+T 3
2.1 Heyting Arithmetic . 3

2.1.1 Syntax of HA . 3
2.1.2 Deductions in HA . 4

2.2 System T . 6
2.2.1 Types of T . 6
2.2.2 Terms of T . 7
2.2.3 Sequences . 10

2.3 Higher type arithmetic . 12
2.3.1 HA+T . 12

3 The Dialectica Interpretation 15
3.1 The witness and counter types 15
3.2 Translating HA . 16
3.3 The soundness of the Dialectica interpretation 21

4 Semantics of T 40
4.1 A term model for T . 40
4.2 Denotational semantics for T . 41

5 Conclusion 48

1

1 Introduction
In 1958 an article was published by Kurt Gödel in a special issue of the journal
Dialectica, issued to commemorate the 70th birthday of the mathematician Paul
Bernays. The article, titled ’Über eine bisher noch nicht benützte Erweiterung
des finiten Standpunktes’ which has been translated into English as ’On a hith-
erto unutilized extension of the finitary standpoint’, described what is now called
the Dialectica interpretation, an interpretation of intuitionistic arithmetic into
a typed functional theory that Gödel called system T. The interpretation was
meant by Gödel to provide a consistency proof for classical arithmetic by using
it in conjunction with his double negation translation, which interprets classical
theories into intuitionistic ones.

The Dialectica interpretation as well as system T have since then been shown
to have a wide variety of applications within the studies of both mathematical
logic and computer science. A survey of some of these applications can be found
in Avigad and Feferman (1998).

In this paper we will present the original Dialectica interpretation in a mod-
ernized form and prove the soundness of it. This presentation is inspired by
presentations of the interpretation in both Avigad and Feferman (1998) and
Pédrot (2015). It is the writers opinion that this modernized form of the pre-
sentation makes it both clearer and more palatable for modern readers.

The paper also includes a short chapter on the semantics of system T. We
show how to construct two very different models of system T and discuss some
properties of these models.

2

2 The systems HA, T and HA+T
The Dialectica interpretation translates the formulas of Heyting arithmetic
(HA) into formulas of a logical system we call HA+T, a first order theory
of arithmetic taking its terms from a term rewriting system called system T.
This section is dedicated to the presentation of these three systems.

2.1 Heyting Arithmetic
Heyting arithmetic (HA) is a first order theory of aritmethic identical in ev-
ery sense to Peano arithmetic (PA) with the exception that the underlying
deductive system of the theory is intuitionistic instead of classical.

2.1.1 Syntax of HA

The language of HA consists of the logical constants ∧,∨,→,∃,∀,⊥; denumer-
ably many variables x, y, z, . . . ; an equality predicate symbol =; a symbol 0,
denoting zero; a symbol S, denoting the successor function; and symbols +, ·,
denoting addition and multiplication respectively.

Definition 2.1. The terms of HA are defined inductively as follows

1. Every variable x, y, z, . . . and the constant 0 are terms.

2. If t1 and t2 are terms, then St1, t1 + t2 and t1 · t2 are terms.

Definition 2.2. The formulas of HA are defined inductively as follows

1. If t1 and t2 are terms of HA, then t1 = t2 is a formula of HA.

2. ⊥ is formula of HA.

3. If ϕ and ψ are formulas, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ→ ψ) are formulas
as well.

4. If ϕ is a formula and x is a variable, then ∀xϕ and ∃xϕ are formulas as
well.

We call the formulas of clauses 1 and 2 in this definition the prime formulas of
HA.

Notation 2.3. We list some notational conventions:

• We let ¬ϕ abbreviate ϕ→ ⊥.

• We let ϕ↔ ψ abbreviate (ϕ→ ψ) ∧ (ψ → ϕ).

• We stick to the convention of letting ¬ and the quantifiers bind stronger
than ∧ and ∨, who in turn bind stronger than → and ↔, for example
ϕ ∨ ¬ψ → θ ∧ χ is equivalent to (ϕ ∨ (¬ψ))→ (θ ∧ χ).

3

We end the discussion of the syntax of HA by giving a formal definition of free
and bound variables in HA.

Definition 2.4. We define the set of free variables of a formula ϕ of HA,
denoted by FV(ϕ), inductively as follows.

• If ϕ is a prime formula and x a variable occurring in ϕ, then x ∈ FV(ϕ).

• If ϕ = ψ ∧ θ, ϕ = ψ ∨ θ or ϕ = ψ → θ where ψ and θ are formulas, then
FV(ϕ) = FV(ψ) ∪ FV(θ).

• If x is a variable, then FV(∀xϕ) = FV(ϕ)− {x} and
FV(∃xϕ) = FV(ϕ)− {x}.

2.1.2 Deductions in HA

In the historical presentations of the Dialectica InterpretationHA has been pre-
sented using Hilbert-style axioms and rules as its deduction system (see Gödel
(1990), Troelstra (1973) and Avigad and Feferman (1998)). Rather than doing
so we opt to present deduction in HA using a natural deduction style system.

Before presenting the deduction rules we give a few definitions.

Definition 2.5. A capture free substitution of a free variable x with a term s in
a formula ϕ, denoted by ϕ[x := s], is defined inductively as follows for variables
x and y, terms t, s and r and formulas ψ1 and ψ2

1. 0[x := s] = 0.

2. x[x := s] = s.

3. y[x := s] = y, if y 6= x.

4. S(t)[x := s] = S(t[x := s]).

5. ⊥[x := s] = ⊥.

6. (t = r)[x := s] = (t[x := s] = r[x := s]).

7. (ψ1 ∧ ψ2)[x := s] = (ψ1[x := s] ∧ ψ2[x := s]). The definition is the same
for (ψ1 ∨ ψ2)[x := s] and (ψ1 → ψ2)[x := s].

8. (∃xψ1)[x := s] = ∃xψ1 and (∃yψ1)[x := s] = ∃z(ψ1[y := z][x := s]) where
z is chosen fresh for both ϕ and s, if x 6= y. The definition is the same for
(∀xψ1)[x := s] and (∀yψ1)[x := s] where x 6= y.

Definition 2.6. An environment is a list of formulas, possibly empty. Envi-
ronments can be defined inductively as follows

1. An empty list is an environment.

2. If Γ is an environment and ϕ a formula then Γ, ϕ is an environment.

4

Definition 2.7. A sequent is an expression of the form Γ ` ϕ where Γ is an
environment and ϕ a formula.

The intuitive meaning of a sequent Γ ` ϕ should be clear, that from the formulas
of the environment Γ one is able to deduce the formula ϕ. The way in which
these deductions are done is of course governed by the rules of intuitionistic
arithmetic, which we will list out now. We begin by giving the two so called
structural rules:

Axiom
Γ, ϕ ` ϕ

Γ ` ϕ
Weakening

Γ, ψ ` ϕ
followed by the rules of intuitionistic propositional logic:

Γ ` ϕ Γ ` ψ ∧I
Γ ` ϕ ∧ ψ

Γ ` ϕ ∧ ψ ∧E1Γ ` ϕ
Γ ` ϕ ∧ ψ ∧E2Γ ` ψ

Γ ` ϕ ∨I1Γ ` ϕ ∨ ψ
Γ ` ψ ∨I2Γ ` ϕ ∨ ψ

Γ ` ϕ ∨ ψ Γ, ϕ ` θ Γ, ψ ` θ ∨E
Γ ` θ

Γ, ϕ ` ψ →I
Γ ` ϕ→ ψ

Γ ` ϕ→ ψ Γ ` ϕ →E
Γ ` ψ

Γ ` ⊥ ⊥E
Γ ` ϕ

By adding the following four rules for quantifiers to those above we get first
order predicate logic:

Γ ` ϕ ∀I
Γ ` ∀xϕ

Γ ` ∀xϕ ∀E
Γ ` ϕ[x := t]

Γ ` ϕ[x := t]
∃I

Γ ` ∃xϕ
Γ ` ∃xϕ Γ, ϕ ` ψ ∃E

Γ ` ψ
In ∀I x cannot occur freely in any of the formulas in Γ and in ∃E x cannot occur
freely in any of the formulas of Γ nor can it occur freely in ψ.

Taken together, these rules form the deduction system of first order intu-
itionistic logic. Should one want to expand this system to a classical one it
suffices to add the law of excluded middle

LEM` ϕ ∨ ¬ϕ
to the system.

To getHA we add to the system of first order intuitionistic logic the following
rules. The rules for equality:

Γ ` n = n
Γ ` n = m Γ ` ϕ[x := n]

Γ ` ϕ[x := m]

the defining rules for S and 0:

5

Γ ` ¬(0 = Sn)
Γ ` Sn = Sn

Γ ` n = n

the defining rules for addition and multiplication:

Γ ` n+ 0 = n Γ ` n+ Sm = S(n+m)

Γ ` n · 0 = 0 Γ ` n · Sm = n+ (n ·m)

and the induction rule:

Γ ` ϕ[x := 0] Γ ` ϕ[x := y]→ ϕ[x := Sy]

Γ ` ϕ[x := n]

2.2 System T
In Gödel’s original article on the Dialectica translation the target language of
the translation was a system he called system T. In that article system T was
a full blown quantifier-free theory of arithmetic, a system including a typed
term-rewriting system as well as a quantifier-free logic allowing one to reason
about these terms.

What we call systemT is basically the term-rewriting part of Gödel’s system.
In short our T is a typed λ-calculus with a few extra tools allowing us to encode
arithmetic in it.

2.2.1 Types of T

Every term of system T is endowed with a type. We therefore begin our discus-
sion of T by introducing the type-structure of T.

Definition 2.8. The types of T are defined inductively as follows

1. N is a type.

2. If τ and σ are types, then τ → σ is a type.

The base-type N should be understood to be the type of the natural numbers
and for each two types τ and σ the type τ → σ should be understood to be the
type of functions from elements of type τ to elements of type σ.

Notation 2.9. We stick to the convention of associating parentheses to the
right, i.e.

τ1 → τ2 → · · · → τn−1 → τn

we read as
τ1 → (τ2 → . . . (τn−1 → τn) . . .).

6

2.2.2 Terms of T

Having defined the types of T we can now show how the terms of T are formed.
Since each term has a type it is very important keep track of the type structure
of the terms formed. We define the terms of T with this in mind.

Definition 2.10. The set of terms of T is defined inductively as follows, where
t : τ reads as t is of the type τ .

1. The constant 0 : N is a term.

2. For each type τ of T the variables xτ : τ, yτ : τ, zτ : τ, . . . , are terms.

3. When n : N is a term, then S(n) : N is a term.

4. When xσ is a variable and t : τ is a term, then (λxσ.t) : σ → τ is a term.

5. When t : σ → τ and s : σ are terms, then t(s) : τ is a term.

6. When f : τ , g : N→ τ → τ and n : N are terms, then Rτ (f, g, n) : τ is a
term.

Terms of the form λxσ.t : σ → τ are called λ-abstractions. They are the main
tool we use construct functions from terms of type σ to terms of type τ . Terms
of the form t(s) : τ where s : σ and t : σ → τ are called applications. An
application should be considered to be the value of a function t applied to the
term s.

The constants 0, S and Rτ are used to code arithmetic. Just as in HA
the constant 0 should be interpreted as zero and the constant S as the function
that takes a natural number to its successor. The constant Rτ is the so called
recursor. It is used to define primitive recursive functions such as multiplication
and addition.

Notation 2.11. Before moving on we introduce a few notational conventions
designed to increase readability.

• Parentheses are omitted when there is no danger of confusion.

• Whenever it is clear from the context we suppress the type superscript of
variables xτ , yτ , . . . and the type subscript ofRτ and simply write x, y, . . .
and R.

• We write λx1x2 . . . xn.t as a shorthand for λx1.λx2. . . . λxn.t.

• When we have terms t : σ1 → · · · → σn → τ, s1 : σ1, . . . , sn : σn, we
usually write t(s1, . . . , sn) instead of t(s1) . . . (sn).

As we will see here below when defining the reduction rules of T, λ-abstractions
are an incredibly simple and elegant tool to define functions. But before we can
define the reduction rules we must have a clear notion of substitution. There
are certain precautions that must be made when defining substitution in terms
involving λ-abstractions to avoid syntactic mix-ups.

7

We will therefore state a few definitions and conventions regarding the nam-
ing of variables, substitutions and equivalences. These conventions ensure that
our definitions of the reduction rules for T, which we give later in this section,
are unproblematic.

In a λ-abstraction of the form λx.t, the λ-symbol is said to bind any free
occurrence of the variable x in the term t. We make this notion of free and
bound variables precise in the following definition.

Definition 2.12. The set of free variables of a term t of T, denoted by FV(t),
are defined inductively as follows. Let t, s and r be terms and x a variable.
Then

1. FV(0) = ∅,

2. FV(x) = {x},

3. FV(S(t)) = FV(t)

4. FV(λx.t) = FV(t)− {x},

5. FV(t(s)) = FV(t) ∪ FV(s), and

6. FV(R(t, s, r)) = FV(t) ∪ FV(s) ∪ FV(r).

A member of FV(t) is said to be free in t. Any variable occurring in t that is
not free is said to be bound in t. If FV(t) is empty we say that t is closed.

There are two different notions of substitution in our system, the so-called
capture-free substitution used for free variables and the so-called change of
bound variables (sometimes also called α-conversion). We now define these
two notions.

Definition 2.13. A capture-free substitution of a free variable xτ with a term
s : τ in a term t, denoted t[x := s], is defined inductively as follows where the
variables x and y, and the terms t, s, r and u are of the appropriate types:

1. 0[x := s] = 0.

2. x[x := s] = s.

3. y[x := s] = y, if y 6= x.

4. S(t)[x := s] = S(t[x := s])

5. t(r)[x := s] = t[x := s](r[x := s]).

6. R(t, r, u)[x := s] = R(t[x := s], r[x := s], u[x := s])

7. (λx.t)[x := s] = λx.t.

8. (λy.t)[x := s] = λz.(t[y := z][x := s]) where z is chosen fresh for t and s,
if y 6= x.

8

Definition 2.14. We call it a change of a bound variable in a term t (or α-
conversion of a term) when some part of t of the form λx.s is swapped out for
λy.(s[x := y]) where the variable y is fresh in s.

When discussing the reduction rules of T we will note that a change of bound
variables in a term does not constitute any change in the operational meaning
of that term. Thus we define the following class of equivalences.

Definition 2.15. We say that two terms s and t are α-equivalent, written

s ≡α t

if t can be obtained by a series of changes of bound variables in s.

Since all α-equivalent terms behave in the same way we will from here on out
identify terms that are α-equivalent. But while we do not want to distinguish
between α-equivalent terms we do want to distinguish between terms that differ
only in the names of their free variables. For example, we would let λx.x = λy.y
while λx.yx 6= λx.zx.

Thus whenever we have two or more different terms where certain variables
occur freely in some terms but bounded in others we change those bound vari-
ables to variables that do not occur in any of those terms. Following this con-
vention ensure that there is no danger that substitution results in free variables
unintentionally becoming bound.

Remark 2.16. While following the conventions we just introduced ensures
that no problems arise when using substitution, we did omit a lot of technical
details needed for a perfectly rigorous treatment of these issues. However such
a treatment is really outside the scope of this presentation. For a detailed
treatment of these issues the reader can look up chapter 2 and appendix C
in Barendregt’s The Lambda Calculus, Its Syntax and Semantics (1984) and
appendix A1 of Hindley and Shelley’s Lambda-Calculus and Combinators, an
Introduction (2008).

As T is a term rewriting system it must have some rewriting rules. We introduce
the reduction rules in T.

Definition 2.17. If u and v are terms we define the relationship u . v by the
following directed equations, the so called reduction rules of T:

1. (λx.t)s . t[x := s], where x : σ is a variable and t : τ and s : σ are terms.

2. Rτ (f, g, 0) . f , where f : τ and g : N→ τ → τ are terms.

3. Rτ (f, g,Sn) . g(n,R(f, g, n)), where n : N, f : τ and g : N → τ → τ are
terms.

The first reduction rule is usually called β-reduction. Note that all these equa-
tions are directed. This is because these are reduction rules, they describe how
complex terms are reduced to simpler ones. These rules allow us to define the
notion of reduction.

9

Definition 2.18. Let u and v be terms.

1. We say that u reduces to v in one step, written u→ v, if v can be obtained
by replacing some subterm t of u by a term s such that t . s.

2. We say that u reduces to v, written u →∗ v, if v can be obtained from u
by a finite sequence of one step reductions.

3. We write u ∗↔ v, if u→∗ v or v →∗ u.

Note that →∗ is the reflexive and transitive closure of → and ∗↔ the reflexive,
symmetric and transitive closure of →.

We close this section with a little demonstration of the expressive power of
system T.

Example 2.19. To illuminate the expressive power of the system we show how
to define a few useful primitive recursive functions in T.

ADD : N→ N→ N = λxy.R(x, λpq.Sq, y)

MULT : N→ N→ N = λxy.R(0, λpq.ADD(x, q), y)

SIGN : N→ N = λx.R(1, λpq.0, x)

PRED : N→ N = λx.R(0, λpq.p, x)

SUB : N→ N→ N = λxy.R(x, λpq.PRED(q), y)

DIFF : N→ N→ N = λxy.ADD(SUB(x, y), SUB(y, x)).

The terms ADD(x, y), MULT(x, y), SUB(x, y) and DIFF(x, y) are usually de-
noted by x+ y, x · y, x .− y and |x− y| respectively.

2.2.3 Sequences

For the Dialectica interpretation mere terms of T do not suffice. We often need
sequences of terms as well. It is surprisingly simple to reason about sequences
of terms in system T. If one just follows a few simple notational convention one
can treat sequences of terms of T almost as one would treat single terms.

The notational conventions presented here are taken from Pédrot (2015).
Interestingly, while these notational convention are not made explicit, neither in
the original, Gödel (1990), nor in the more recent presentations of the Dialectica
by Troelstra (1973), (1990) and Avigad and Feferman (1998), they are usually at
least implicitly followed. Making these explicit therefore adds a valuable clarity
to the presentation.

Notation 2.20. A sequence t1, . . . , tn of terms will be denoted by ~t and a
sequence τ1, . . . , τn of types will be denoted by ~τ . A sequence, whether of terms
or of types, can be a singleton, that is a single term t or a single type τ , or an
empty sequence, denoted by ∅. For any sequence ~x we let |~x| denote the length
of the sequence and we let ~x, ~y denote the concatenation of two sequences.

10

Now let ~τ = τ1, . . . , τn be a sequence of types and τ a type. Then we let
τ → ~τ denote a sequence of types:

τ → ~τ = τ → τ1, . . . , τ → τn

and we let ~τ → τ denote a type:

~τ → τ = τ1 → . . . τn → τ.

Note that in this notation, given that |~σ| = n and |~τ | = m, we get

~σ → ~τ = σ1 → · · · → σn → τ1, . . . , σ1 → · · · → σn → τm

regardless of whether you expand ~σ or ~τ first which showing us that this is not
an ambiguous notation.

We deal with terms in a corresponding way. Given a sequence of terms
~t = t1, . . . , tn and a term t we let ~t (t) denote a sequence of terms:

~t (t) = t1(t), . . . , tn(t)

and we let t(~t) denote a term:

t(~t) = t(t1, . . . , tn).

The λ-abstractions must be dealt with in a way that matches the definition on
applications so if we are additionally given a sequence of variables ~x = x1, . . . , xn
and a variable x we let λx.~t denote a sequence of terms:

λx.~t = λx.t1, . . . , λx.tn

and we let λ~x.t denote a term:

λ~x.t = λx1 . . . xn.t.

We also let ~t : ~τ denote
t1 : τ1, . . . , tn : τn

given that |~t | = |~τ | = n.
Since empty sequences are used a lot in the Dialectica interpretation we list

out here below all the different types of situations in which empty sequences
might occur in types and terms:

∅ → τ = τ t∅ = t λ∅.t = t

τ → ∅ = ∅ ∅t = ∅ λx.∅ = ∅
These are of course all special cases of notational conventions for sequences in
general.

Given the right length of sequences the rules for the relationship : between
terms and types, established in Definition 2.10, extend naturally to sequences
and so does β-reduction, i.e. if |~x| = |~s|, then

(λ~x.~t)~s . ~t [~x := ~s]

11

where the substitution [~x := ~s] denotes the substitution of of each variable in ~x
for the corresponding term in ~s and . is taken to mean that the reduction rule
holds for the terms corresponding to each other in the sequences on both sides
of the symbol.

Thus we see that this notation allows us to extend T from single terms to
sequences of terms with remarkable ease.

2.3 Higher type arithmetic
As we mentioned in the introductory remarks for section 2.2 Gödel intended
system T to be the target language of the Dialectica translation. We also
mentioned that Gödel’s system T was endowed with an underlying logic. Since
we have stripped T of all of its logical content, we must devise a logical system
to reason about the terms of T and act as a target language for the Dialectica
translation. We therefore introduce HA+T, a first-order theory of arithmetic
for higher types.

2.3.1 HA+T

The logical theory HA+T is really just HA extended to allow reasoning about
the terms of T. We will show below that HA is just a fragment of HA+T.

The terms of HA+T are simply the terms of T and the formulas of HA+T
are defined as the formulas of HA are with two crucial changes: the prime
formulas are restricted to equalities between terms of type N and variables in
the scope of quantifiers are only allowed to range over terms of one type.

Definition 2.21. The formulas of HA+T are defined inductively as follows.

1. If t : N and s : N are terms of HA+T, then t = s is a formula of HA+T.

2. ⊥ is a formula of HA+T.

3. If ϕ and ψ are formulas of HA+T, then (ϕ ∧ ψ), (ϕ ∨ ψ) and (ϕ → ψ)
are formulas of HA+T as well.

4. If ϕ is a formula of HA+T and x : τ a variable then ∀x : τ.ϕ and ∃x : τ.ϕ
are formulas of HA+T as well.

As in HA we call the formulas consisting only of equalities as well as ⊥ prime
formulas. We let ¬ϕ and ϕ ↔ ψ denote the same formulas as we did in HA.
We also stick to the same convention on how strongly logical connectives bind
and the dropping of parentheses.

Notation 2.22. When we have a sequence ~x : ~τ of variables and a formula ϕ(~x)
in which the variables of ~x possibly occur freely we use the following notation:

∃~x : ~τ .ϕ(~x) = ∃x1 : τ1. . . .∃xn : τn.ϕ(~x)

∀~x : ~τ .ϕ(~x) = ∀x1 : τ1. . . .∀xn : τn.ϕ(~x)

12

The rules of HA+T are very similar to the rules of HA but there are some key
differences so we state them in their entirety for the sake of clarity. Definitions
2.5 and 2.6, of environments and sequents, can be used unchanged for HA+T
and we define the rules of HA+T as follows. First we state the structural rules
and the rules of propositional logic, all of which stay completely unchanged:

Axiom
Γ, ϕ ` ϕ

Γ ` ϕ
Weakening

Γ, ψ ` ϕ

Γ ` ϕ Γ ` ψ ∧I
Γ ` ϕ ∧ ψ

Γ ` ϕ ∧ ψ ∧E1Γ ` ϕ
Γ ` ϕ ∧ ψ ∧E2Γ ` ψ

Γ ` ϕ ∨I1Γ ` ϕ ∨ ψ
Γ ` ψ ∨I2Γ ` ϕ ∨ ψ

Γ ` ϕ ∨ ψ Γ, ϕ ` θ Γ, ψ ` θ ∨E
Γ ` θ

Γ, ϕ ` ψ →I
Γ ` ϕ→ ψ

Γ ` ϕ→ ψ Γ ` ϕ →E
Γ ` ψ

Γ ` ⊥ ⊥E
Γ ` ϕ

The rules for first-order logic on the other hand all have to be changed to make
sure the type-structure of the terms of T is respected:

Γ ` ϕ x : τ ∀I
Γ ` ∀x : τ.ϕ

Γ ` ∀x : τ.ϕ t : τ ∀E
Γ ` ϕ[x := t]

Γ ` ϕ[x := t] t : τ
∃I

Γ ` ∃x : τ.ϕ

Γ ` ∃x : τ.ϕ t : τ Γ, ϕ ` ψ ∃E
Γ ` ψ

The restrictions of x not occurring freely in Γ in ∀I and x not occurring freely
in Γ or ψ in ∃E are maintained here as usual.

There are also some changes made in the rules of arithmetic. The equality
rules are changed to ensure that equality is only admissible between terms of
the type of natural number:

n : N
Γ ` n = n

Γ ` n = m Γ ` ϕ[x := n]

Γ ` ϕ[x := m]

The defining rules for 0 and S remain unchanged but since + and · can be
defined in T we remove the defining axioms for these and instead add a rule
that allows for substitution between terms that are equivalent in terms of the
rewriting rules:

Γ ` ¬(0 = Sn)
Γ ` Sn = Sn

Γ ` n = n

t
∗↔ s Γ ` ϕ[x := t]

Γ ` ϕ[x := s]

13

The induction rule is only changed to ensure that the terms in question are
natural numbers:

y : N, n : N Γ ` ϕ[x := 0] Γ ` ϕ[x := y]→ ϕ[x := Sy]

Γ ` ϕ[x := n]

When it is necessary to make a distinction between derivations made in HA
and derivations made in HA+T we write `HA to denote that a derivation was
made in HA and `HA+T to denote that a derivation was made in HA+T.

It should be noted that any term of HA can easily be translated to a term
of type N in T. This is done inductively: the base cases, 0 and the variables of
variables of HA are translated to their obvious counterparts in T, the successor
function of HA translates to its counterpart in T and the functions + and ·
translate to the function we denote by these symbols in example 2.19. Thus any
term of HA has a counterpart in T.

Using this translation of the terms the formulas of HA can be translated
by induction to formulas of HA+T: terms are translated in the way stated
above, logical connectives of HA are translated to their corresponding logical
connectives in HA+T and the quantifiers of HA are translated to quantifiers
binding variables of type N. This way of translating terms and formulas of HA
into HA+T will be used implicitly from here on.

Given this translation the following proposition holds.

Proposition 2.23. Given an environment Γ of HA and a formula ϕ of HA,
if Γ `HA ϕ, then Γ `HA+T ϕ.

Proof. This is proved by induction on the rules of HA. Most of the rules of HA
translate directly into almost identical rules inHA+T, the only difference being
that in some cases there are restriction on the type of the terms in question.
Since all of the terms of HA are of the type N this poses no problem and the
proof follows immediately for these.

The only rules of HA that do not have a direct counterpart in HA+T are
the defining rules for addition and multiplication. These rules are easily shown
to correspond to the way in which these functions are defined in T and thus the
substitution-rule for ∗↔ -equivalent terms provides the proof for these terms. �

This shows that HA is a fraction of HA+T, more precisely HA is just HA+T
restricted to terms of type N and allowing only the functions + and ·.

14

3 The Dialectica Interpretation
The Dialectica interpretation provides for each well formed formula, ϕ, in the
language of HA a Dialectica translation, ϕD, which is a HA+T formula of the
form

ϕD = ∃~x :Wϕ.∀~y : Cϕ.ϕD(~x, ~y)

whereWϕ is a so called witness type, Cϕ is a so called counter type and ϕD(x, y)
is a quantifier-free formula in the language of HA+T.

An intuitive way to understand ϕD is to think of it in the terms of game
semantics. On this reading the formula ϕD(~x, ~y) is a ‘game’ or a set of ‘rules’
and ~x : Wϕ represents the possible ‘moves’ one player can make while ~y : Cϕ
represents the possible ‘moves’ of his opponent.

Then ϕD reads as the statement that there exists some sequence of terms
~t : Wϕ that represents moves that will defeat any possible choice of moves
y : Cϕ at the game ϕD(~x, ~y). The hope is therefore that T provides such a
witness for any theorem of HA. As we shall see, the beauty of Gödel’s Dialectica
interpretation is that T does in fact do this.

3.1 The witness and counter types
To begin our presentation of the interpretation we give a definition of the witness
and counter types of each formula of HA.

Definition 3.1. The witness types and counter types of the formulas of HA,
denoted byWϕ and Cϕ respectively, where ϕ is a formula are sequences of types
defined as follows

1. If ϕ is prime, then Wϕ = Cϕ = ∅.

Otherwise assume that ψ1 and ψ2 are formulas. Then

2. Wψ1∧ψ2
=Wψ1

,Wψ2
and Cψ1∧ψ2

= Cψ1
, Cψ2

3. Wψ1∨ψ2
= N,Wψ1

,Wψ2
and Cψ1∨ψ2

= Cψ1
, Cψ2

4. W∀zψ1
= N→Wψ1

and C∀zψ1
= N, Cψ1

5. W∃zψ1
= N,Wψ1

and C∃zψ1
= Cψ1

6. Wψ1→ψ2
=Wψ1

→Wψ2
,Wψ1

→ Cψ2
→ Cψ1

and Cψ1→ψ2
=Wψ1

, Cψ2
.

If Wϕ = ∅ or Cϕ = ∅ we say that these types are empty.

Notation 3.2. Given a sequence Γ = ϕ1, . . . , ϕn of HA formulas we let

WΓ =Wϕ1 , . . . ,Wϕn

and
CΓ = Cϕ1

, . . . , Cϕn .

15

We end this discussion of the witness and counter types by presenting an im-
portant lemma involving them.

Lemma 3.3. For any formula ϕ of HA and any variable x, if t is a term of
HA then

Wϕ[x:=t] =Wϕ

and
Cϕ[x:=t] = Cϕ.

Proof. By induction on the length of ϕ. �

This lemma shows that the witnesses and counters are invariant of which free
variables or terms occur in the formulas of HA, so the witness and counter
types are only determined by the logical structure of their formulas.

3.2 Translating HA
The crux of the Dialectica interpretation is the Dialectica translation itself.

Definition 3.4. For any formula ϕ in the language of HA its Dialectica
translation, ϕD, is a HA+T formula of the form

∃~x :Wϕ.∀~y : Cϕ.ϕD(~x, ~y)

where ϕD is a quantifier-free formula in the language of HA+T. The formulas
ϕD and ϕD are defined inductively as follows:

1. If ϕ is a prime formula then Wϕ and Cϕ are empty, so ϕD = ϕD = ϕ.

Otherwise assume

ψD1 = ∃~x :Wψ1 .∀~y : Cψ1 .ψ1D(~x, ~y) and ψD2 = ∃~u :Wψ2 .∀~v : Cψ2 .ψ2D(~u,~v).

Then

2. (ψ1 ∧ ψ2)D = ∃~x, ~u :Wψ1∧ψ2
.∀~y,~v : Cψ1∧ψ2

.(ψ1D(~x, ~y) ∧ ψ2D(~u,~v))

3. (ψ1∨ψ2)D = ∃z, ~x, ~u :Wψ1∨ψ2
.∀~y,~v : Cψ1∨ψ2

.((z = 0∧ψ1D(~x, ~y))
∨ (z = 1 ∧ ψ2D(~u,~v)))

4. (∀zψ1)D = ∃ ~X :W∀zψ1 .∀z, ~y : C∀zψ1 .ψ1D(~X(z), ~y)

5. (∃zψ1)D = ∃z, ~x :W∃zψ1
.∀~u : C∃zψ1

.ψ1D(z, ~x, ~y)

6. (ψ1 → ψ2)D = ∃~U, ~Y :Wψ1→ψ2 .∀~x,~v : Cψ1→ψ2 .(ψ1D(~x, ~Y (~x,~v))→ ψ1D(~U(~x), ~v)).

From our definition of ¬ϕ one can add the following to the list above.

7. (¬ψ1)D = (ψ1 → ⊥)D = ∃~Y :Wψ1
→ Cψ1

.∀~x :Wψ1
.(ψ1D(~x, ~Y (~x))→ ⊥)

16

The Dialectica translation is structured in such a way that the free variables of
ϕD are always either free in ϕ or components of ~x : Wϕ or ~y : Cϕ. The only
cases where there is any threat that variables bound in a formula ϕ become free
in ϕD is when ϕ is a formula including quantifiers, that is in clauses 4 and 5 in
the definition above. In both cases it is avoided by integrating the previously
bounded z into the witness sequence.

This is makes the following proposition possible.

Proposition 3.5. If ϕ is a formula of HA and z is a variable that is free in ϕ
but does not occur in ~x :Wϕ or ~y : Cϕ, then for any term t

ϕ[z := t]D(~x, ~y) = ϕD(~x, ~y)[z := t].

Proof. By induction on the length of ϕ. �

Example 3.6. At first encounter the Dialectica translation can seem very con-
fusing. In order to disperse some of that confusion we give examples of the
Dialectica translations of two formulas of HA.

1. Let us first look at the formula ∀x(x = 0∨∃y(x = Sy)), a theorem of HA.
We let the formula be denoted by ϕ. A translation of a formula relies on
the translation of each of its subformulas so we should begin by looking at
the translations of the smallest subformulas. These are the prime formulas
x = 0 and x = Sy which have empty witness and counter types and trivial
translations. The second smallest subformula is ∃y(x = Sy) which has the
witness type N, an empty counter type and translates as

(∃y(x = Sy))D = ∃y : N.(x = Sy)

The next subformula is x = 0∨∃y(x = Sy). This formula has the witness
type N,N an empty counter type and the translation

(x = 0 ∨ ∃y(x = Sy))D =

∃y, z : N,N.((z = 0 ∧ x = 0) ∨ (z = 1 ∧ x = Sy)).

We can then translate ϕ. The formula has the witness and counter types

Wϕ = N→ N,N→ N and Cϕ = N

and its Dialectica translation is

ϕD = ∃Y,Z :Wϕ.∀x : Cϕ.((Z(x) = 0∧x = 0)∨(Z(x) = 1∧x = S(Y (x)))).

It is not difficult to construct effective witnesses for ϕ. We let

t1 = λx.R(0, λpq.1, x) and t2 = PRED

and then it is easy to see that

`HA+T (t1(x) = 0 ∧ x = 0) ∨ (t1(x) = 1 ∧ x = S(t2(x)))

regardless of how x is chosen.

17

2. Define x ≤ y as the formula ∃z(x+ z = y). We take a look at the formula
∀x(S(0) ≤ x) → ∀y(0 ≤ y). This implication is undeniably a theorem of
HA and although it may seem like a silly example since the hypothesis is
clearly not provable and the conclusion is provable independently of the
hypothesis, its translation provides an illuminating demonstration of how
the Dialectica interpretation treats implications.

Let ϕ denote the whole formula and let ψ1 and ψ2 denote ∀x(S(0) ≤ x)
and ∀x(0 ≤ x) respectively. By following the same method as in the the
previous example we get

Wψ1
=Wψ2

= N→ N

Cψ1
= Cψ2

= N

and

ψD1 =∃Z :Wψ1
.∀x : Cψ1

.(S(0) + Z(x) = x)

ψD2 =∃U :Wψ2 .∀y : Cψ2 .(0 + U(y) = y)

Thus for ϕ we get the following witness and counter types

Wϕ =(N→ N)→ (N→ N), (N→ N)→ N→ N

Cϕ =N→ N,N

and ϕ translates as

ϕD =∃U ′, X :Wϕ.∀Z, y : Cϕ.
((S(0) + Z(X(Z, y)) = X(Z, y))→ (0 + U ′(Z, y) = y)).

There are several different ways of constructing witnesses t1 and t2 for ϕ
such that

`HA+T (S(0) + Z(t1(Z, y)) = t1(Z, y))→ (0 + t2(Z, y) = y)

for all Z, y. For example we might let t1 = λpq.0. Then the hypothesis
leads to absurdity, proving the translation regardless of how t2 is chosen.
Similarly we could let t2 = λpq.q which would prove the translation re-
gardless of the choice of t1. These two choices of witnesses represent the
proofs of ϕ in HA consisting of either showing the absurdity of ψ1 or
proving ψ2 independently of ψ1.

Interestingly enough T offers another way of constructing witnesses for ϕ.
Let

t1 = λpq.q and t2 = λpq.S(p(q)).

Then we get
S(0) + Z(y) = y → 0 + S(Z(y)) = y.

Not only do these two terms effectively witness the translation but they are
also very much in the spirit of the Dialectica translation of implications,

18

t1 effectively converts witnesses of the hypothesis into witnesses of the
conclusion and t2 converts counters of the conclusion into counters of the
hypothesis.

The main result of Gödel’s original article is that system T effectively provides
sequences of terms witnessing the Dialectica translation of every theorem of
HA. This is proved by induction over the length of deductions in HA. We have
mentioned that in the historical presentations of the Dialectica interpretation,
deductions in HA are usually presented in Hilbert style systems. We however
chose to present deductions in a natural deduction style system. In Theorem 3.7,
we will present a version of Gödel’s main result modified to suit the parameters
of our presentation of HA. For us to be able to present and prove such a result
we need a way to extend the Dialectica translation to sequents.

Luckily for us there is a natural way to do this. Let Γ = ϕ1, . . . , ϕn be an
environment. We remind the reader of the following well known metatheorem:

Γ ` ψ if and only if ` ϕ1 ∧ · · · ∧ ϕn → ψ.

A Dialectica translation of the sequent on the left hand side should therefore be
the same as stating that the Dialectica translation of the formula on the right
hand side is provable in HA+T. In accordance with this we define the witness
and counter types for sequents as follows:

Wϕ1,...,ϕn`ψ = Wϕ1∧···∧ϕn→ψ
= Wϕ1

→ · · · → Wϕn →Wψ,
Wϕ1

→ · · · → Wϕn → Cψ → Cϕ1
,

. . . ,
Wϕ1 → · · · → Wϕn → Cψ → Cϕn

Cϕ1,...,ϕn`ψ = Cϕ1∧···∧ϕn→ψ
= Wϕ1

, . . . ,Wϕn , Cψ
If we were to define the Dialectica translation of the sequent in the same manner
we would get the following:

(Γ ` ψ)D = (ϕ1 ∧ · · · ∧ ϕn → ψ)D

= ∃~U, ~Y :WΓ`ψ.∀~x,~v : CΓ`ψ.
(ϕ1D(~x1, ~Y1(~x,~v)) ∧ · · · ∧ ϕnD(~xn, ~Yn(~x,~v))→ ψD(~U(~x), ~v))

where ~x = ~x1, . . . , ~xn and ~Y = ~Y1, . . . , ~Yn.
However this is a very cumbersome formula so we would like some simpler

way of stating a Dialectica translation of a sequent. Note that the Dialectica
translation of a sequent is equivalent with the meta-statement that there exists
a sequence of terms ~U, ~Y1, . . . , ~Yn :WΓ`ψ such that

ϕ1D(~x1, ~Y1(~x,~v)), . . . , ϕnD(~xn, ~Yn(~x,~v)) `HA+T ψD(~U(~x), ~v)

19

for any choice of counters ~x1, . . . , ~xn, ~v : CΓ`ψ. By letting ~x and ~Y keep the same
meaning as above we can use the following method to abbreviate environments
in HA+T:

ΓD(~x, ~Y (~x,~v)) = ϕ1D(~x1, ~Y1(~x,~v)), . . . , ϕnD(~xn, ~Yn(~x,~v)).

The Dialectica translation of a sequent can then be stated in relatively compact
way as:

There exists a sequence ~U, ~Y :WΓ`ψ such that

ΓD(~x, ~Y (~x,~v)) `HA+T ψD(~U(~x), ~v)

for any choice of ~x,~v : CΓ`ψ.

This last statement of the translation captures the meaning of the translation
perfectly. We will therefore use it as our Dialectica translation of sequents from
here on.

We finish this section by taking a little deeper look into the inner workings of
the Dialectica translation. Let us think of what it means to prove a formula
of the form ϕD = ∃~x : Wϕ.∀~u : Cϕ.ϕD(~x, ~y) in a constructive manner. To do
so one would construct a sequence of terms ~t : Wϕ such that `HA+T ϕD(~t, ~y)
given any possible choice of a counter ~y : Cϕ. In terms of the game semantics
reading we gave above, one has to construct a witness capable of defeating any
counters at the game ϕD.

Let us now look at the Dialectica translation with this in mind. The defini-
tion of the translations of prime formulas, conjunctions and formulas involving
existential quantification does not need much explanation. The translation does
not need much explanation for disjunctions either, to prove a translated disjunc-
tion we simply have to construct witnesses for each disjunct and a term z : N
containing information pointing at a witness that defeats its counters.

The translation of formulas involving universal quantification are proved by
constructing a function that maps each natural number z : N to a witness of ϕ.
This makes sense since a constructive proof of a formula of the form ∀xϕ should
indeed consist of constructing a function mapping each element of the domain
of discourse to a proof of ϕ.

To prove the translation of implications is perhaps the most confusing part.
To do so one has to construct two functions, one from the witnesses of the
hypothesis to the witnesses of the conclusion and another one from the witnesses
of the hypothesis to a function from the counters of the conclusion to counters
of the hypothesis. The basic idea is that if an implication is provable, then
from any witness of the hypothesis one should be able to find both a witness of
the hypothesis and a function transforming the counters of the conclusion into
counters of the hypothesis.

There is another more technical way to justify the Dialectica interpretation,
by showing through induction that ϕ ↔ ϕD. We will see that this is only
possible by allowing the use of a few non-intuitionistic principles.

20

It is clear that if ϕ is prime formula, then ϕ ↔ ϕD. It is also easy to
see that the equivalences (ϕ ∧ ψ)D ↔ (ϕD ∧ ψD), (ϕ ∨ ψ)D ↔ (ϕD ∨ ψD)
and (∃zϕ(z))D ↔ ∃z(ϕ(z)D) are all justified intuitionistically. However the
equivalence (∀zϕ(z))D ↔ ∀z(ϕ(z)D) can only be justified by an application of
the axiom of choice

∀x∃yϕ(x, y)→ ∃Y ∀xϕ(x, Y (x)), (AC)

a principle not generally accepted to be constructive.
The equivalence (ϕ → ψ)D ↔ (ϕD → ψD) requires a bit more work than

the rest. It is justified by stepwise applying the following equivalences:

∃~x∀~yϕD(~x, ~y)→ ∃~u∀~vψD(~u,~v) ↔ (i)
∀~x(∀~yϕD(~x, ~y)→ ∃~u∀~vψD(~u,~v)) ↔ (ii)
∀~x∃~u(∀~yϕD(~x, ~y)→ ∀~vψD(~u,~v)) ↔ (iii)
∀~x∃~u∀~v(∀~yϕD(~x, ~y)→ ψD(~u,~v)) ↔ (iv)
∀~x∃~u∀~v∃~y(ϕD(~x, ~y)→ ψD(~u,~v)) ↔ (v)

∃~U ~Y ∀~x~v(ϕD(~x, ~Y (~x,~v))→ ψD(~U(~x), ~v)).

Of these equivalences only (i) and (iii) are intuitionistically acceptable. Equiv-
alence (v) is a double application of the axiom of choice. Equivalence (ii) can
be justified as a special case the classically acceptable independence principle

(ϕ→ ∃xψ)→ ∃x(ϕ→ ψ) (IP)

and equivalence (iv) can be justified using a special case of Markov’s principle

¬∀xθ → ∃x¬θ (MP’)

where θ is quantifier-free. Neither (IP) nor (MP’) are generally accepted as con-
structive principles. Interestingly enough however, the Dialectica interpretaion
verifies the three non-intuitionistic principles (AC), (IP) and (MP’) making it
an interpretation of slightly more than just pure intuitionistic arithmetic. We
will not discuss this any further but interested readers can look up section 3.1
in Avigad and Feferman (1998) as well as sections 7.4 and 7.6 of Pédrot (2015).

3.3 The soundness of the Dialectica interpretation
We now want to show the soundness of the Dialectica interpretation, that is to
say that for any sequent it is possible to deduce in HA, there exists a sequence
of terms in T witnessing the sequents Dialectica translation. We state this as a
theorem.

Theorem 3.7. Let Γ = ϕ1, . . . , ϕn be an environment in HA and ψ be a
formula of HA and assume that

Γ `HA ψ.

21

Then there exist sequences of terms

~p+
ψ :WΓ →Wψ,

~p−ϕ1
:WΓ → Cψ → Cϕ1

,

. . . ,

~p−ϕn :WΓ → Cψ → Cϕn ,

of system T terms such that

ϕ1D(~x1, ~p
−
ϕ1

(~x,~v)), . . . , ϕnD(~xn, ~p
−
ϕn(~x,~v)) `HA+T ψD(~p+

ψ (~x), ~v)

for any choice of sequences ~x :WΓ = ~x1 :Wϕ1
, . . . , ~xn :Wϕn and ~v : Cψ.

Note that ~p+
ψ , ~p

−
ϕ1
, . . . , ~p−ϕn are precisely the components of a sequence of terms

of type WΓ`ψ. When we translate sequents in the proof of this theorem we will
use the superscript + to mark components that are of the witness to witness
part of a witness of the sequent while the superscript − will mark components
of the witness to counter to counter part. In particular we let ~p−Γ = ~p−ϕ1

, . . . , ~p−ϕn
denote the sequence of terms producing the counters for an environment Γ =
ϕ1, . . . , ϕn.

For the proof of Theorem 3.7 we need a few definitions and lemmas.

Definition 3.8. For each type τ of T we define its dummy term ∅τ inductively
as follows:

• ∅N = 0,

• ∅σ→τ = λx.∅τ for some fresh variable x.

The dummy terms ensure that each witness and counter type is inhabited. They
are useful when the structure of witness types of HA formulas requires an
inactive placeholder term.

Notation 3.9. Dummy terms can naturally be extended to sequences:

∅~τ = ∅τ1 , . . . ,∅τn .

Definition 3.10. For each formula ϕ of HA define the function

Decideϕ :Wϕ → Cϕ → N

as follows:

• Decide⊥ = S(0)

• Deciden=m = λ~x~y.|n−m|

• Decideϕ∧ψ = λ~x~u~y~v.(Decideϕ(~x, ~y) + Decideψ(~u,~v))

• Decideϕ∨ψ = λz~x~u~y~v.R(Decideϕ(~x, ~y), λpq.Decideψ(~u,~v), z)

22

• Decideϕ→ψ = λ~U ~Y ~x~v. SIGN(Decideϕ(~x, ~Y (~x,~v))) ·Decideψ(~U(~x), ~v))

• Decide∀zϕ = λ ~Xz~y.Decideϕ(~X(z), ~y)

• Decide∃zϕ = λz~x~y.Decideϕ((z, ~x), ~y).

The definitions of the functions SIGN and |n − m| can be found in Example
2.19.

Lemma 3.11. If ϕ is a formula of HA and ~x :Wϕ, ~y : Cϕ, then

`HA+T (Decideϕ(~x, ~y) = 0 ∧ ϕD(~x, ~y)) ∨ (Decideϕ(~x, ~y) 6= 0 ∧ ¬ϕD(~x, ~y)).

Proof. This is proved by induction on the length of ϕ and by checking on case
by case basis when needed. The details are both tedious and obvious so we skip
writing up the whole proof. �

This lemma shows us that for any formula ϕ of HA, the formula ϕD is decidable.
We can therefore use classical logic to reason about ϕD. More importantly it
allows us to define the following very important function.

Definition 3.12. For each formula ϕ of HA define the function

Mergeϕ : Cϕ → Cϕ →Wϕ → Cϕ

as follows:
Let ~y1 = y1,1, . . . , y1,n and ~y2 = y2,1, . . . , y2,n be sequences of the type Cϕ.

We first define Mergekϕ for k = 1, . . . , n as

Mergekϕ = λ~y1~y2~x.R(y2,k, λpq.y1,k,Decideϕ(~x, ~y1)).

Then we define Mergeϕ as

Mergeϕ = λ~y1~y2~x.Merge1
ϕ(~y1, ~y2, ~x), . . . ,Mergenϕ(~y1, ~y2, ~x).

While it might seem unnecessarily complex to do the definition like this it is in
fact necessary to get around the restriction that R takes terms as arguments
but not sequences of terms. While the definition might not be particularly
transparent a little inspection reveals that

Mergeϕ(~y1, ~y2, ~x) =

{
~y1 if Decideϕ(x, ~y1) 6= 0

~y2 if Decideϕ(x, ~y1) = 0.

In other words Mergeϕ has the value ~y2 if ` ϕD(~x, ~y1) and the value ~y1 other-
wise. The purpose of the function is make it possible to create one counter by
merging two counters. This is summed up in following lemma.

Lemma 3.13. If ϕ is a formula of HA and ~x :Wϕ, ~y1 : Cϕ, ~y2 : Cϕ, then

`HA+T ϕD(~x,Mergeϕ(~y1, ~y2, ~x))↔ ϕD(~x, ~y1) ∧ ϕD(~x, ~y2).

23

Proof. We first prove ` ϕD(~x,Mergeϕ(~y1, ~y2, ~x))→ ϕD(~x, ~y1)∧ϕD(~x, ~y2). We
already know from Lemma 3.11 that ϕD is decidable so we can assume that ei-
ther ` ϕD(~x, ~y1) or ` ¬ϕD(~x, ~y1). If ` ϕD(~x, ~y1), then Decideϕ(~x, ~y1) = 0 and
Mergeϕ(~y1, ~y2, ~x) = ~y2 so ϕD(~x,Mergeϕ(~y1, ~y2, ~x)) ≡ ϕD(~x, ~y2). Then both
conjuncts of the conclusion are true whenever the hypothesis is true, proving the
implication. If ` ¬ϕD(~x, ~y1), thenDecideϕ(~x, ~y1) 6= 0 andMergeϕ(~y1, ~y2, ~x) =
~y1 giving us ϕD(~x,Mergeϕ(~y1, ~y2, ~x)) ≡ ϕD(~x, ~y1). Then the hypothesis be-
comes false and this proves the implication.

We then prove ` ϕD(~x, ~y1) ∧ ϕD(~x, ~y2) → ϕD(~x,Mergeϕ(~y1, ~y2, ~x)). We
already know that if ` ϕD(~x, ~y1) then ϕD(~x,Mergeϕ(~y1, ~y2, ~x)) ≡ ϕD(~x, ~y2).
So it is clear that if we can prove the hypothesis, the conclusion follows and this
concludes the proof. �

This makes it clear that if a witness is to beat a merger of two counters it must
be able beat both of the counters.

Notation 3.14. It is possible to extend the definition of Merge to a sequence
Γ = ϕ1, . . . , ϕn of formulas as follows:

MergeΓ : CΓ → CΓ →WΓ → CΓ
MergeΓ(~y1, ~y2, ~x) = Mergeϕ1

(~y1,1, ~y2,1, ~x1), . . . ,Mergeϕn(~y1,n, ~y2,n, ~xn).

We are now ready to prove Theorem 3.7.

Proof of Theorem 3.7. This theorem is proved by induction on the length
of deductions in HA, that is we assume as an induction hypothesis that it has
been shown to hold for the premises of each rule and show that in that case
it also holds for the conclusion. We will use the letter p for the witnesses we
construct for conclusions and the letters q, r and s for witnesses we extract from
the translation of premises.

We begin with the structural rules.

1. Axiom
Γ, ϕ ` ϕ

This rule has no premises so we simply have to extract the witnesses directly
from the Dialectica translation of the conclusion. This is very simple for ~p+

ϕ :

~p+
ϕ :WΓ →Wϕ →Wϕ

~p+
ϕ = λ(~x :WΓ)(~u :Wϕ).~u

as well as for ~p−ϕ :

~p−ϕ :WΓ →Wϕ → Cϕ → Cϕ
~p−ϕ = λ(~x :WΓ)(~u :Wϕ)(~v : Cϕ).~v.

24

It is slightly more complicated to construct the sequence ~p−Γ since there is no
obvious way of extracting it from the translation of the sequent. Here the
dummy terms come in handy:

~p−Γ :WΓ →Wϕ → Cϕ → CΓ
~p−Γ = λ(~x :WΓ)(~u :Wϕ)(~v : Cϕ).∅CΓ .

We now have to show that these terms actually witness the Dialectica-translation
of the sequent in HA+T, that is:

ΓD(~x, ~p−Γ (~x, ~u,~v)), ϕD(~u, ~p−ϕ (~x, ~u,~v)) ` ϕD(~p+
ϕ (~x, ~u), ~v).

A simple unfolding of the definitions of each of our witnesses gives us

ΓD(~x,∅CΓ), ϕD(~u,~v) ` ϕD(~u,~v)

which clearly holds in HA+T.

2. Γ ` ϕ
Weakening

Γ, ψ ` ϕ
A translation of the premise gives us witnesses of the following types:

~q+
ϕ :WΓ →Wϕ

~q−Γ :WΓ → Cϕ → CΓ
and an induction hypothesis:

ΓD(~x, ~q−Γ (~x,~v)) ` ϕD(~q+
ϕ (~x), ~v).

We simply construct ~p+
ϕ and ~p−Γ using the witnesses extracted from the premise:

~p+
ϕ :WΓ →Wψ →Wϕ

~p+
ϕ = λ(~x :WΓ)(~w :Wψ).~q+

ϕ (~x)

~p−Γ :WΓ →Wψ → Cϕ → CΓ.
~p+
ϕ = λ(~x :WΓ)(~w :Wψ)(~v : Cϕ).~q−Γ (~x,~v).

We then use a dummy term to construct the remaining witness:

~p−ψ :WΓ →Wψ → Cϕ → Cψ
~p−Γ = λ(~x :WΓ)(~u :Wψ)(~v : Cϕ).∅Cψ .

The rest is easy since

ΓD(~x, ~p−Γ (~x, ~u,~v)), ψD(~w, ~p−ψ (~x, ~w,~v)) ` ϕD(~p+
ϕ (~x, ~w), ~v).

unfolds to
ΓD(~x, ~q−Γ (~x,~v)), ψD(~w,∅Cψ) ` ϕD(~q+

ϕ (~x), ~v).

and this clearly follows from the induction hypothesis and the weakening rule
of HA+T.

Next are the rules of propositional logic

25

3. Γ ` ϕ Γ ` ψ ∧I
Γ ` ϕ ∧ ψ

This is the first rule in which we have two premises. There are certain things
that we must keep in mind any time we deal with rules with multiple premises.
We begin as usual though, by unfolding the witness types of the premises:

~q+
ϕ :WΓ →Wϕ

~q−Γ :WΓ → Cϕ → CΓ
~r+
ψ :WΓ →Wψ

~r−Γ :WΓ → Cψ → CΓ.

We then get the following two induction hypotheses:

ΓD(~x, ~q−Γ (~x,~v)) ` ϕD(~q+
ϕ (~x), ~v)

ΓD(~x,~r−Γ (~x, ~w)) ` ψD(~r+
ψ (~x), ~w)

It is obvious how these witnesses are used to define ~p+
ϕ∧ψ:

~p+
ϕ∧ψ :WΓ →Wϕ,WΓ →Wψ

~p+
ϕ∧ψ = ~q+

ϕ , ~r
+
ψ .

It is a bit more difficult to define ~p−ϕ∧ψ. We begin by unfolding its type:

~p−Γ :WΓ → Cϕ∧ψ → CΓ
:WΓ → Cϕ → Cψ → CΓ.

There are two ways of extracting a sequence of this type from the witnesses
of the premises, one from ~q−Γ and one from ~r−Γ . The problem is that we will
need both of them to get access to both of the induction hypotheses. Here the
Merge function comes in handy. We use it to merge the counters produced by
each premise:

~p−Γ = λ(~x :WΓ)(~v : Cϕ)(~w : Cψ).MergeΓ(~q−Γ (~x,~v), ~r−Γ (~x, ~w), ~x).

We have to show that

ΓD(~x, ~p−Γ (~x,~v, ~w)) ` ϕD(~q+
ϕ (~x), ~v) ∧ ψD(~r+

ϕ (~x), ~w).

This unfolds to

ΓD(~x,MergeΓ(~q−Γ (~x,~v), ~r−Γ (~x, ~w), ~x)) ` ϕD(~q+
ϕ (~x), ~v) ∧ ψD(~r+

ϕ (~x), ~w)

and Lemma 3.13 tells us that

ΓD(~x,MergeΓ(~q−Γ (~x,~v), ~r−Γ (~x, ~w), ~x))↔ ΓD(~x, ~q−Γ (~x,~v)) ∧ ΓD(~x,~r−Γ (~x, ~w))

26

where ΓD ∧ΓD denotes the pointwise conjuction of the terms of each sequence.
It therefore all boils down to showing that

ΓD(~x, ~q−Γ (~x,~v)),ΓD(~x,~r−Γ (~x, ~w)) ` ϕD(~q+
ϕ (~x), ~v) ∧ ψD(~r+

ϕ (~x), ~w)

which clearly follows from the two induction hypotheses and the ∧I-rule in
HA+T. We will see the Merge function used like this every time we need to
show the soundness of rules with more than one premise.

4. Γ ` ϕ ∧ ψ ∧E1Γ ` ϕ

We give the proof for this rule and skip the analogous proof for ∧E2. We begin
by unfolding the types of the witnesses for the premise:

~q+
ϕ∧ψ :WΓ →Wϕ,WΓ →Wψ

~q−Γ :WΓ → Cϕ → Cψ → CΓ

Let us call the first and second component of ~q+
ϕ∧ψ, ~q

+
ϕ and ~q+

ψ respectively.
Then the induction hypothesis is:

ΓD(~x, ~q−Γ (~x,~v, ~w) ` ϕD(~q+
ϕ (~x), ~v) ∧ ψD(~q+

ψ (~x), ~w)

Defining ~p+
ϕ is simple:

~p+
ϕ :WΓ →Wϕ

~p+
ϕ = ~q+

ϕ .

The term ~q−Γ is almost of the right type for ~p−Γ the only difference is that the
term takes a Cψ term as an argument. We get around this by using a dummy
term:

~p−Γ :WΓ → Cϕ → CΓ
~p−Γ = λ(~x :WΓ)(~v : Cϕ).~q+

ϕ (~x,~v,∅Cψ).

Then we just have to prove that

ΓD(~x, ~p−Γ (~x,~v)) ` ϕD(~p+
ϕ (~x), ~v)

which boils down to proving

ΓD(~x, ~q−Γ (~x,~v,∅Cψ)) ` ϕD(~q+
ϕ (~x), ~v)

but this follows from the induction hypothesis and the the ∧I1-rule in HA+T.

5. Γ ` ϕ ∨I1Γ ` ϕ ∨ ψ

27

As with the elimination rules for conjunction we only give the proof for this rule
and skip the analogous one for ∨I2. The witness types of the premise are the
following:

~q+
ϕ :WΓ →Wϕ

~q−Γ :WΓ → Cϕ → CΓ

and this gives the induction hypothesis:

ΓD(~x, ~q−Γ (~x,~v)) ` ϕD(~q+
ϕ (~x), ~v)

The type of ~p+
ϕ∨ψ is

~p+
ϕ∨ψ :WΓ → N,Wϕ,Wψ

:WΓ → N,WΓ →Wϕ,WΓ →Wψ.

The three components of ~p+
ϕ∨ψ we denote by ~p+

z , ~p+
ϕ and ~p+

ψ respectively. Since
we can extract an effective witness of first disjunct, ϕ, from the induction hy-
pothesis the natural number is supposed to be 0. For the witness of ψ we use a
dummy term. So we have:

~p+
z = λ(~x :WΓ).0

~p+
ϕ = λ(~x :WΓ).~q+

ϕ (~x)

~p+
ψ = λ(~x :WΓ).∅Wψ

.

The ~p−Γ part its easy to extract from ~q−Γ :

~p−Γ :WΓ → Cϕ → Cψ → CΓ
~p−Γ = λ(~x :WΓ)(~v : Cϕ)(~w : Cψ).~q−Γ (~x,~v).

We then show that the following holds

ΓD(~x, ~p−Γ (~x,~v, ~w))

` ((λ~x.0)~x = 0 ∧ ϕD(~q+
ϕ (~x)), ~v) ∨ ((λ~x.0)~x = 1 ∧ ψD((λ~x.∅Wψ

)~x, ~w))

this can of course be reduced to

ΓD(~x, ~q−Γ (~x,~v)) ` (0 = 0 ∧ ϕD(~q+
ϕ (~x), ~v) ∨ (0 = 1 ∧ ψD(∅Wψ

, ~w)).

Since 0 = 0 always holds this clearly follows from the induction hypothesis and
the ∨I1-rule in HA+T.

6. Γ ` ϕ ∨ ψ Γ, ϕ ` θ Γ, ψ ` θ ∨E
Γ ` θ

28

This one is quite difficult. The first of the premises give us the following witness
types:

~q+
ϕ∨ψ :WΓ → N,WΓ →Wϕ,WΓ →Wψ

~q−Γ :WΓ → Cϕ → Cψ → CΓ

Let the respective parts of ~q+
ϕ∨ψ be called ~q+

z , ~q+
ϕ and ~q+

ψ . Then the first
induction hypothesis is:

ΓD(~x, ~q−Γ (~x,~v, ~w)) ` (~q+
z (~x) = 0∧ϕD(~q+

ϕ (~x), ~v))∨ (~q+
z (~x) = 1∧ψD(~q+

ψ (~x), ~w)).

The other two premises give us witnesses with the following types:

~r+
θ :WΓ →Wϕ →Wθ

~r−Γ :WΓ →Wϕ → Cθ → CΓ
~r−ϕ :WΓ →Wϕ → Cθ → Cϕ
~s+
θ :WΓ →Wψ →Wθ

~s−Γ :WΓ →Wψ → Cθ → CΓ
~s−ψ :WΓ →Wψ → Cθ → Cψ

and the following two induction hypotheses:

ΓD(~x,~s−Γ (~x, ~u,~t)), ϕD(~u,~s−ϕ (~x, ~u,~t)) ` θD(~s+
θ (~x, ~u),~t)

ΓD(~x,~r−Γ (~x, ~y,~t)), ψD(~y, ~r−ψ (~x, ~y,~t)) ` θD(~r+
θ (~x, ~y),~t).

The types of the witnesses we are seeking are:

~p+
θ :WΓ →Wθ

~p−Γ :WΓ → Cθ → CΓ.

We begin by constructing ~p+
θ as follows

~p+
θ = λ~x :WΓ.R(~r+

θ (~x, ~q+
ϕ (~x)), λcd.~s+

θ (~x, ~q+
ψ (~x)), ~q+

z (~x)).

This is of course a blatant abuse of notation, sinceR only takes three arguments,
not three sequences of arguments. Such a function could of course be defined
using similar tricks as we used to define Merge. We however skip showing the
details of such a definition to keep an already long proof from becoming any
longer.

For the construction of ~p−Γ we have three different ways to get to a sequence

29

of the right type, one from each premise:

~p−q :WΓ → Cθ → CΓ
~p−q = λ(~x :WΓ)(~t : Cθ).~q−Γ (~x,~r−ϕ (~x, ~q+

ϕ (~x),~t), ~s−ψ (~x, ~q+
ψ (~x),~t))

~p−r :WΓ → Cθ → CΓ
~p−r = λ(~x :WΓ)(~t : Cθ).~r−Γ (~x, ~q+

ϕ (~x),~t)

~p−s :WΓ → Cθ → CΓ
~p−s = λ(~x :WΓ)(~t : Cθ).~s−Γ (~x, ~q+

ψ (~x),~t).

We then have to merge all of these counters:

~p−Γ :WΓ → Cθ → CΓ
~p−Γ = λ(~x :WΓ)(~t : Cθ).MergeΓ[~p−q (~x,~t),R(~p−r (~x,~t), λcd.~p−s (~x,~t), ~q+

z (~x)), ~x].

We have here again the same abuse of the notation R as before. This function
merges the counter extracted from the first premise and one of the counters
extracted from the other premises, depending on which one of the disjuncts is
proved by the first premise. Now we have to use all of this to show that

ΓD(~x, ~p−Γ (~x,~t)) ` θD(~p+
ϕ (~x),~t).

We begin by noting that from the induction hypotheses we can easily see that
either ~q+

z (~x) = 0 or ~q+
z (~x) = 1. If ~q+

z (~x) = 0, then an unfolding of ~p−Γ (~x,~t) and
~p+
ϕ (~x) gives

ΓD(~x,MergeΓ(~p−q (~x,~t), ~p−r (~x,~t), ~x)) ` θD(~r+
θ (~x, ~q+

ϕ (~x)),~t).

As we already pointed out Lemma 3.13 shows that this boils down to

ΓD(~x, ~p−q (~x,~t)),ΓD(~x, ~p−r (~x,~t)) ` θD(~r+
θ (~x, ~q+

ϕ (~x)),~t). (∗)

From the first induction hypothesis, the fact that ~p−q (~x,~t) is of the form ~q−Γ (~x,~v, ~w)
and the assumption ~q+

z (~x) = 0 we can deduce that

ΓD(~x, ~p−q (~x,~t)) ` ϕD(~q+
ϕ (~x), ~v)

and the second induction hypothesis reads:

ΓD(~x,~s−Γ (~x, ~u,~t)), ϕD(~u,~s−ϕ (~x, ~u,~t)) ` θD(~s+
θ (~x, ~u),~t).

From these two facts it is easy to show that (∗) holds.
The proof is analogous if ~q+

z (~x) = 1.

7. Γ, ϕ ` ψ →I
Γ ` ϕ→ ψ

30

We unfold the witness types of the premise:

~q+
ψ :WΓ →Wϕ →Wψ

~q−Γ :WΓ →Wϕ → Cψ → CΓ
~q−ϕ :WΓ →Wϕ → Cψ → Cϕ

and the induction hypothesis:

ΓD(~x, ~q−Γ (~x, ~u, ~w)), ϕD(~x, ~q−ϕ (~x, ~u, ~w)) ` ψD(~q+
ψ (~x, ~u), ~w).

The witness types of the conclusion are as follows:

~p+
ϕ→ψ :WΓ →Wϕ →Wψ,WΓ →Wϕ → Cψ → Cϕ
~p−Γ :WΓ →Wϕ → Cϕ → CΓ.

These have the same types as the witnesses of the premise, so we simply put:

~p+
ϕ→ψ = ~q+

ψ , ~q
−
ϕ

~p−Γ = ~q−Γ .

We then have to show that

ΓD(~x, ~q−Γ (~x, ~u, ~w) ` ϕD(~x, ~q−ϕ (~x, ~u, ~w))→ ψD(~q+
ψ (~x, ~u), ~w)

but this follows directly from the induction hypothesis and the →I-rule.

8. Γ ` ϕ→ ψ Γ ` ϕ →E
Γ ` ψ

We begin as usual. From the premises we get the following witnesses:

~q+
ϕ→ψ :WΓ →Wϕ →Wψ,WΓ →Wϕ → Cψ → Cϕ
~q−Γ :WΓ →Wϕ → Cψ → CΓ
~r+
ϕ :WΓ →Wϕ

~r−Γ :WΓ → Cϕ → CΓ.

The first and second component of ~q+
ϕ→ψ we denote by ~q+

ψ and ~q−ϕ respectively.
Then we get the two induction hypotheses:

ΓD(~x, ~q−Γ (~x, ~u, ~w)) ` ϕD(~x, ~q−ϕ (~x, ~u, ~w))→ ψD(~q+
ψ (~x, ~u), ~w)

ΓD(~x,~r−Γ (~x, ~w)) ` ϕD(~r+
ϕ (~x), ~w)

The witnesses of the conclusion have the following types

~p+
ψ :WΓ →Wψ

~p−Γ :WΓ → Cψ → CΓ.

31

It is easy to construct ~p+
ψ :

~p+
ψ = λ(~x :WΓ)~q+

ψ (~x,~r+
ϕ (~x)).

We have two premises so as usual, for ~p−Γ we have to construct two sequences
of the right type, one from each premise, and then merge them. We construct
these two sequences as follows:

~p−q :WΓ → Cψ → CΓ
~p−q = λ(~x :WΓ)(~w : CΓ).~q−Γ (~x,~r+

ϕ (~x), ~w)

~p−r :WΓ → Cψ → CΓ
~p−r = λ(~x :WΓ)(~w : CΓ).~r−Γ (~x, ~q−ϕ (~x, ~w), ~w)

and then we merge them:

~p−Γ = λ(~x :WΓ)(~w : CΓ).MergeΓ(~p−q (~x, ~w), ~p−r (~x, ~w), ~x).

We must show that

ΓD(~x, ~p−Γ (~x, ~w)) ` ψD(~p+
ψ (~x), ~w).

This unfolds to

ΓD(~x,MergeΓ(~p−q (~x, ~w), ~p−r (~x, ~w), ~x)) ` ψD(~q+
ψ (~x,~r+

ϕ (~x)), ~w)

which by Lemma 3.13 is equivalent to

ΓD(~x, ~p−q (~x, ~w)),ΓD(~x, ~p−r (~x, ~w)) ` ψD(~q+
ψ (~x,~r+

ϕ (~x)), ~w).

We recall that ~p−q (~x, ~w) = ~q−Γ (~x,~r+
ϕ (~x), ~w) and ~p−r (~x, ~w) = ~r−Γ (~x, ~q−ϕ (~x, ~w), ~w),

so we can use the two induction hypotheses and the→E-rule in HA+T to show
that this holds.

9. Γ ` ⊥ ⊥E
Γ ` ϕ

A translation of the witness types of the premise gives us

~q+
⊥ :WΓ →W⊥

: ∅
~q−Γ :WΓ → C⊥ → CΓ

:WΓ → CΓ

and the induction hypothesis is simply:

ΓD(~x, ~q−Γ (~x)) ` ⊥.

32

The rest is very simple. We construct ~p+
ϕ and ~p−Γ as follows:

~p+
ϕ :WΓ →Wϕ

~p+
ϕ = λ(~x :WΓ).∅Wϕ

~p−Γ :WΓ → Cϕ → CΓ
~p−Γ = λ(~x :WΓ)(~v : Cϕ).~q−Γ (~x).

We then have to show that

ΓD(~x, ~p−Γ (~x,~v)) ` ϕD(~p+
ϕ (~x), ~v)

which unfolds to
ΓD(~x, ~q−Γ (~x)) ` ϕD(∅Wϕ

, ~v)

which follows from the induction hypothesis and ⊥E in HA+T.

Next up are the rules of first-order logic.

10. Γ ` ϕ ∀I
Γ ` ∀zϕ , where z does not occur freely in Γ.

We unfold the witness types of the premise:

~q+
ϕ :WΓ →Wϕ

~q−Γ :WΓ → Cϕ → CΓ.

The induction hypothesis then says that

ΓD(~x, ~q−Γ (~x,~v)) ` ϕD(~q+
ϕ (~x), ~v).

We then unfold the witness types of the conclusion:

~p+
∀zϕ :WΓ → N→Wϕ

~p−Γ :WΓ → N→ Cϕ → CΓ.

These are easy to construct these using the witnesses from the premise:

~p+
∀zϕ := λ(~x :WΓ)(z : N).~q+

ϕ (~x)

~p−Γ = λ(~x :WΓ)(z : N)(~v : Cϕ).~q−Γ (~x,~v).

We then have to show that

ΓD(~x, ~p−Γ (~x, z,~v)) ` ϕD(~p+
∀zϕ(~x, z), ~v)

but unfolding this thus just gives us the induction hypothesis:

ΓD(~x, ~q−Γ (~x,~v)) ` ϕD(~q+
ϕ (~x), ~v)

where the z occcurring freely in ~q−Γ , ~qϕ and ϕD have been absorbed by ~p−Γ and
~p+
∀zϕ, so we have the desired result.

33

11.
Γ ` ∀zϕ ∀E

Γ ` ϕ[z := t]

Unfolding the witnesses of the premise gives us:

~q+
∀zϕ :WΓ → N→Wϕ

~q−Γ :WΓ → Cϕ → N→ CΓ

and the induction hypothesis

ΓD(~x, ~q−Γ (~x, z,~v)) ` ϕD(~q+
∀zϕ(~x, z), ~v).

So to construct the witnesses of the conclusion, with the following types:

~p+
ϕ :WΓ →Wϕ

~p−Γ :WΓ → Cϕ → CΓ

we only need some natural number to occupy that position for a number in
the witnesses from the premises. Note that we have a term t : N that can be
extracted from the conclusion of the rule. We use this term t : N to construct
the witnesses as follows:

~p+
ϕ = λ(~x :WΓ).~q+

∀zϕ(~x, t)

~q−Γ = λ(~x :WΓ)(~v : Cϕ).~q−Γ (~x, t, ~v).

Then we have to show that

ΓD(~x, ~p−Γ (~x,~v)) ` ϕ[z := t]D(~p+
ϕ (~x), ~v)

which unfolds to

ΓD(~x, ~q−Γ (~x, t, ~v)) ` ϕ[z := t]D(~q+
∀zϕ(~x, t), ~v)

which is just the induction hypothesis where all occurrences of z in ϕD, ~q−Γ and
~q+
∀zϕ have been substituted for t, thus showing the desired result.

12. Γ ` ϕ[z := t]
∃I

Γ ` ∃zϕ

We begin by unfolding the types of the witnesses for the premise:

~q+
ϕ :WΓ →Wϕ

~q−Γ :WΓ → Cϕ → CΓ

and the induction hypothesis

ΓD(~x, ~q−Γ (~x,~v)) ` ϕ[z := t]D(~q+
ϕ (~x), ~v).

34

The witnesses of the conclusion have the following types:

~p+
∃zϕ :WΓ → N,WΓ →Wϕ

~p−Γ :WΓ → N→ Cϕ → CΓ

For ~p+
∃zϕ we will use ~p+

z and ~p+
ϕ to denote the first and second component

respectively. We construct these terms as follows:

~p+
z = λ(~x :WΓ).t

~p+
ϕ = λ(~x :WΓ).~q+

ϕ (~x)

~p−Γ = λ(~x :WΓ)(z : N)(~v : Cϕ).~q−Γ (~x,~v)

where t comes from the premise. Then we have to show that

ΓD(~x, ~p−Γ (~x, z,~v)) ` ϕD(~p+
z (~x), ~p+

ϕ (~x), ~v)

which unfolds to
ΓD(~x, ~q−Γ (~x,~v)) ` ϕD(t, ~q+

ϕ (~x), ~v)

which by Proposition 3.5 is equivalent to the induction hypothesis

ΓD(~x, ~q−Γ (~x,~v)) ` ϕ[z := t]D(~q+
ϕ (~x), ~v)

giving us the desired result.

13. Γ ` ∃zϕ Γ, ϕ ` ψ ∃E
Γ ` ψ , where z does not occur freely in Γ nor in ψ.

We unfold the witness types of the premises:

~q+
∃zϕ :WΓ → N,WΓ →Wϕ

~q−Γ :WΓ → Cϕ → CΓ
~r+
ψ :WΓ →Wϕ →Wψ

~r−ϕ :WΓ →Wϕ → Cψ → Cϕ
~r−Γ :WΓ →Wϕ → Cψ → CΓ.

As usual the two components of ~q+
∃zϕ, will be called ~q+

z and ~q+
ϕ . Then the two

induction hypotheses are:

ΓD(~x, ~q−Γ (~x,~v)) ` ϕD(~q+
z (~x), ~q+

ϕ (~x), ~v)

ΓD(~x,~r−Γ (~x, ~u, ~w)), ϕD(~u,~r−ϕ (~x, ~u, ~w)) ` ψD(~r+
ψ (~x, ~u), ~w).

The types of the witnesses for the conclusion are

~p+
ψ :WΓ →Wψ

~p−Γ :WΓ → Cψ → CΓ.

35

We construct ~p+
ψ in a way that may seem slightly odd at first glance:

~p+
ψ = λ(~x :WΓ).(λz.~r+

ψ (~x, ~q+
ϕ (~x)))~q+

z (~x).

We will explain this added substitution of z for ~q+
z (~x) later. To construct ~p−Γ

we do the usual work of constructing two different terms of the right type, one
extracted from each premise, and then merging them:

~p−q :WΓ → Cψ → CΓ
~p−q = λ(~x :WΓ)(~w : Cψ).~q−Γ (~x,~r−ϕ (~x, ~q+

ϕ (~x), ~w))

~p−r :WΓ → Cψ → CΓ
~p−r = λ(~x :WΓ)(~w : Cψ).(λz.~r−Γ (~x, ~q+

ϕ (~x), ~w))~q+
z (~x)

~p−Γ = λ(~x :WΓ)(~w : Cψ).MergeΓ(~p−q (~x, ~w), ~p−r (~x, ~w), ~x).

Note that we added an odd substitution of z for ~q+
z (~x) in our definition of ~p−r

as well. We then have to show that

ΓD(~x, ~p−Γ (~x, ~w)) ` ψD(~p+
ψ (~x), ~w).

We have seen how Merge functions a few times now so we know that this
equivalent to showing that

ΓD(~x, ~q−Γ (~x,~r−ϕ (~x, ~q+
ϕ (~x), ~w))),ΓD(~x,~r−Γ (~x, ~q+

ϕ (~x), ~w)) ` ψD(~r+
ψ (~x, ~q+

ϕ (~x)), ~w)

where any occurrence of z in ~r−Γ and ~r+
ψ has been substituted with ~q+

z (~x). The
first induction hypothesis gives us:

ΓD(~x, ~q−Γ (~x,~r−ϕ (~x, ~q+
ϕ (~x), ~w))) ` ϕD(~q+

z (~x), ~q+
ϕ (~x), ~r−ϕ (~x, ~q+

ϕ (~x), ~w))

which is equivalent to:

ΓD(~x, ~q−Γ (~x,~r−ϕ (~x, ~q+
ϕ (~x), ~w))) ` ϕD(~q+

ϕ (~x), ~r−ϕ (~x, ~q+
ϕ (~x), ~w))[z := ~q+

z (~x)].

The second induction hypothesis along with the →I-rule in HA+T gives us:

ΓD(~x,~r−Γ (~x, ~q+
ϕ (~x), ~w))

` ϕD(~q+
ϕ (~x), ~r−ϕ (~x, ~q+

ϕ (~x), ~w))→ ψD(~r+
ψ (~x, ~q+

ϕ (~x)), ~w)

Note that z does not occur freely in Γ by assumption and we have substituted
any occurrence of it in ~r−Γ and ~r+

ψ for ~q+
z . Hence we can freely substitute any

free occurrence of z left in ϕD for ~q+
z . This means that the two induction

hypotheses along with the →E rule gives us the desired result.

Lastly we do the rules of arithmetic. The establishing rules for 0,S,+ and · as
well as the first equality rule only deal with deductions of prime formulas and
to show that the theorem holds for them we do not really rely on the witnesses
for them but rather on the rules in HA+T corresponding these rules. We show
how to prove the result for the first equality axiom and then explain how to
show the result for the rest of these rules in a similar way.

36

14. Γ ` n = n

We have no premises here so there is no induction hypothesis. We therefore
begin directly with the unfolding of the types of the witnesses of the conclusion:

~p+
n=n :WΓ → ∅

: ∅
~p−Γ :WΓ → ∅ → CΓ

:WΓ → CΓ.

So there is no need to construct ~p+
n=n since it is empty and ~p−Γ is constructed

with a dummy term:

~p−Γ = λ(~x :WΓ).∅CΓ .

Then all that is left is to prove that

ΓD(~x, ~p−Γ (~x)) ` n = n.

This is just the first equality axiom of HA+T and thus we get the desired
result.

The proofs for the establishing rules for 0,S,+ and · are analogous to this one.
The only difference is that for the establishing rules for + and · we rely on the
fact the substitution rule for ∗↔ -equivalent terms and the way in which these
functions are defined in T instead of relying on any establishing rules.

15.
Γ ` n = m Γ ` ϕ[z := n]

Γ ` ϕ[z := m]

We unfold the witness types of the premises:

~q+
n=m : ∅
~q−Γ :WΓ → CΓ
~r+
ϕ :WΓ →Wϕ

~r−Γ :WΓ → Cϕ → CΓ

and the two induction hypotheses are

ΓD(~x, ~q−Γ (~x)) ` n = m

ΓD(~x,~r−Γ (~x,~v)) ` ϕ[z := n]D(~r+
ϕ (~x), ~v).

The witnesses for the conclusion have the following type:

~p+
ϕ :WΓ →Wϕ

~p−Γ :WΓ → Cϕ → CΓ.

37

We can construct ~p+
ϕ in an obvious way:

~p+
ϕ = λ(~x :WΓ).~r+

ϕ (~x)

and for ~p−Γ we use Merge as usual when we are dealing with two premises: The
witnesses for the conclusion have the following type:

~p−Γ = λ(~x :WΓ)(~v : CΓ).MergeΓ(~r−Γ (~x,~v), ~q−Γ (~x), ~x).

We then have to show that

ΓD(~x, ~p−Γ (~x,~v)) ` ϕ[z := m]D(~p+
ϕ (~x), ~v).

which is equivalent to

ΓD(~x,~r−Γ (~x,~v)),ΓD(~x, ~q−Γ (~x)) ` ϕ[z := m]D(~r+
ϕ (~x), ~v).

But by the induction hypotheses and the second equality rule of HA+T this
holds.

15.
Γ ` ϕ[z := 0] Γ ` ϕ[z := y]→ ϕ[z := Sy]

Γ ` ϕ[z := n]

This is the last and by far the most complex part of the proof. We must of
course begin as usual by unfolding the types of the witnesses of the premises:

~q+
ϕ :WΓ →Wϕ

~q−Γ :WΓ → Cϕ → CΓ
~r+
ϕ :WΓ →Wϕ →Wϕ

~r−ϕ :WΓ →Wϕ → Cϕ → Cϕ
~r−Γ :WΓ →Wϕ → Cϕ → CΓ.

These give us two induction hypotheses:

ΓD(~x, ~q−Γ (~x,~v)) ` ϕ[z := 0]D(~q+
ϕ (~x), ~v)

ΓD(~x,~r−Γ (~x, ~u,~v)) ` ϕ[z := y]D(~u,~r−ϕ (~x, ~u,~v))→ ϕ[z := Sy]D(~r+
ϕ (~x, ~u), ~v)

The types of the witnesses of the conclusion are the following:

~p+
ϕ :WΓ →Wϕ

~p−Γ :WΓ → Cϕ → CΓ.

Part of the difficulty of the proof lies in the fact that the witnesses of the
conclusion must all be defined at the same time because they rely on one another:

~p+
ϕ , ~p

−
Γ :=λ(~x :Wϕ).R((~q+

ϕ (~x), ~q−Γ (~x)),

λz~y ~f.(~r+
ϕ (~x, ~y), λ(~v : Cϕ).MergeΓ(~f(~r−ϕ (~x, ~y,~v)), ~r−Γ (~x, ~y,~v), ~x), n).

38

Now let ~p+
n and ~p−n stand for ~p+

ϕ and ~p−Γ respectively where n represents the n
in ~p+

ϕ , ~p
−
Γ . Then the following equivalences hold:

~p+
0 (~x)

∗↔ ~q+
ϕ (~x)

~p+
Sn(~x)

∗↔~r+
ϕ (~x, ~p+

n (~x))

~p−0 (~x,~v)
∗↔ ~q−Γ (~x,~v)

~p+
Sn(~x,~v)

∗↔MergeΓ(~p−n (~x,~r−ϕ (~x, ~p+
n (~x), ~v)), ~r−Γ (~x, ~p+

n (~x), ~v), ~x).

Now we must prove that

ΓD(~x, ~p−Γ (~x,~v)) ` ϕ[z := n]D(~p+
ϕ (~x), ~v).

We do this by induction. First assume that n = 0. Then we want to show that

ΓD(~x, ~p−0 (~x,~v)) ` ϕ[z := 0]D(~p+
0 (~x), ~v)

which is equivalent with the first induction hypothesis:

ΓD(~x, ~q−ϕ (~x,~v)) ` ϕ[z := 0]D(~q+
ϕ (~x), ~v)

giving us the desired result.
Now assume that we have already showed that the result holds for n = m,

using ~p−m and ~p+
m as witnesses. We want to show that it holds for n = Sm.

Then we have to show that

ΓD(~x, ~p−Sm(~x,~v)) ` ϕ[z := Sm]D(~p+
Sm(~x), ~v).

We know that this leads to the following by Lemma 3.13:

ΓD(~x, ~p−m(~x,~r−ϕ (~x, ~p+
n (~x), ~v))),ΓD(~x,~r−Γ (~x, ~p+

n (~x), ~v))

` ϕ[z := Sm]D(~r+
ϕ (~x, ~p−m(~x)), ~v).

By assumption we have

ΓD(~x, ~p−m(~x,~r−ϕ (~x, ~p+
n (~x), ~v))) ` ϕ[z := m]D(~r+

ϕ (~x, ~p−m(~x)), ~v)

and from the second induction hypothesis we have

ΓD(~x,~r−Γ (~x, ~p+
m(~x), ~v))

` ϕ[z := m]D(~u,~r−ϕ (~x, ~p+
m(~x), ~v))→ ϕ[z := Sm]D(~r+

ϕ (~x, ~p+
m(~x)), ~v)

and from these two results along with the→E-rule in HA+T we get the desired
result.

This concludes the proof. �

39

4 Semantics of T
This paper has up until now been dedicated entirely to explaining the Dialectica
interpretation and therefore we have only looked at system T in light of its role
as an interpreter of HA. However T is an interesting system in its own right.
To give the reader a little more insight into the inner workings of T this last
section will be dedicated to showing some ways in which semantics can be given
for T. We look in particular at two very different models, a purely syntactical
term model and a purely denotational model based on mathematical structures
called coherence spaces.

4.1 A term model for T
In section 2.2.2 we introduced the reduction rules of T. What kind of meaning
should be ascribed to these reduction rules? They are a finite set of rules that
determine a process through which certain terms can be reduced to other terms.
This certainly has a computational flavour to it. Let us now take a look at a
few concept that can be be defined using the reduction rules.

Definition 4.1.

1. A subterm s of a term t is called a redex if it is possible to apply a reduction
rule to it, that is if there exists a term r such that s . r.

2. If a term has a redex it is said to be reducible.

3. If a term is not reducible it is said to be in normal form or irreducible.

4. A term is said to be normalizable if it can be reduced to a term in normal
form. If every term of a system is normalizable, then the system is said
to be normalizing.

5. A term is said to be strongly normalizing if no infinite sequence of reduc-
tions begins with it, that is any sequence of reductions beginning with
the term ends with a term in normal form. If every term of a system is
strongly normalizable, then the system is said to be strongly normalizing.

6. A system is said to be confluent or have the Church-Rosser property if for
every term s of the system, when s→∗ u and s→∗ v then, there exists a
term t such that u→∗ t and v →∗ t.

It is easy to see that if a system is confluent every normalizable term will have
only one normal form. Moreover, if the system is also normalizing, then every
term will have a unique normal form. This suggests a very simple way to
construct a model for systems posessing both of these qualities, namely a so
called term model in which each term of the system is identified with its normal
form.

40

It is possible to show that T is both confluent and normalizing. In fact
system T is also strongly normalizing. Proofs of these facts can be found in ap-
pendices A2 and A3 of Hindley and Seldin’s Lambda-Calculus and Combinators,
an Introduction (2008).

The fact that T is strongly normalizing means that if a term of T has more
than one redex, it does not matter in which order the reduction rules are applied
to the redexes of the term, any chain of reductions starting with the term will
terminate and in fact, since T is confluent, result in the same term.

So we see that these properties allow us to create a term model for T. By
taking the computational flavour of the reduction rules even more seriously one
might think of the closed terms of T as programs that compute terms in normal
form when they are applied to other terms in normal form. With this reading
T is nothing more than a programming language.

There are certain interesting aspects to this interpretation. For example it
is obvious that each closed term in normal form of type N is a numeral. It is
therefore possible to identify these with the natural numbers. Then the fact
that T is confluent and normalizing makes it impossible to show that 0 = 1 and
thus gives us a way of showing the consistency of arithmetic.

This account of the term model for system T is based on sections 4.2 and
4.3 of Avigad and Feferman (1998). Readers interested in term models will find
more information on them there.

4.2 Denotational semantics for T
While the term model does provide an adequate model for T it is a very naive
model, in the sense that it doesn’t really interpret the terms of T as anything
other than other terms of T. One might therefore wish to find a denotational
model for T, a model that does not in any way involve the syntax of T.

There is of course an obvious way of constructing a denotational model using
set theory. In such a model the terms of type N would be identified with the
natural numbers and then each type σ → τ would represent the set of functions
from from the type σ to the type τ .

Another way of providing a model for T is given by Jean-Yves Girard in
chapters 8 and 9 of his book Proofs and Types (1989). There Girard uses ideas
developed from domain theory to construct a model for T. At the heart of this
model are structures called coherence spaces.

Definition 4.2. A coherence space is a set of sets A satisfying the following
two conditions:

1. If a ∈ A and a′ ⊂ a, then a′ ∈ A.

2. If X ⊆ A and for all a1, a2 ∈ X it holds that a1 ∪ a2 ∈ A, then
⋃
x∈X

x ∈ A.

The members of a coherence space A are called the points of A and the set
|A| = {α : {α} ∈ A}, the union of all the members of A, is called the web of A.
The elements of |A| are called the tokens of A.

41

For the readers familiar with domain theory it is possible to think of coherence
spaces as domains where the objects are ordered by inclusion. Then the minimal
member of every coherence space is the empty set, ∅.

Another possible way of looking at coherence spaces is to think of them as
a graph. We define the following relation on the members of |A|.

Definition 4.3. For any two tokens α1, α2 ∈ |A|, we say that α1 is coherent
with α2 modulo A, written

α1
_
^ α2 (mod A)

if and only if
{α1, α2} ∈ A.

Since the relationship _
^ is clearly both reflexive and symmetric it is clear that

a coherence space A must define an undirected graph with its web |A| as the set
of nodes and the relationship _

^ defining the edges. The points of A are simply
the complete subgraphs of this graph.

In fact any undirected graph defines a coherence space. This is easily seen
from the equivalence:

a ∈ A↔ a ⊆ |A| ∧ ∀α1, α2 ∈ a(α1
_
^ α2 (mod A)).

Example 4.4. We give few some simple examples to demonstrate how coher-
ence spaces work.

• The simplest possible coherence space is the one consisting only of ∅.

• Coherence spaces consisting only of singleton sets along with the empty
set are called flat spaces. A particularly important flat space is the set
we shall call Nat, consisting of the singletons {0}, {1}, {2}, . . . as well as
∅. The graphs representing flat spaces are the discrete graphs, that is the
graphs that have no edges.

• Let us look the set

A = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

This is not a coherence space since {{1}, {2}, {3}} ⊂ A and the union of
each pair of points in the subset is also a member of A and yet the union
of all the members of the subset, {1, 2, 3} is not in A. This clearly violates
the second condition of the definition of coherence spaces. However the
set

A ∪ {1, 2, 3}
is a coherence space.

Before moving on we define a few useful concepts.

42

Definition 4.5.

1. A family X of points of a coherence space A is said to be directed if for
every pair x1, x2 ∈ X there exists a y ∈ X such that x1 ∪ x2 ⊆ y.

2. An element a of a coherence space A is said to be maximal [minimal] if
for all a′ ∈ A, a ⊆ a′ [a′ ⊆ a] implies that a = a′.

3. The subset of a coherence space A consisting of all the finite members of
A is denoted by Afin

Our goal is to interpret each type of T as a coherence space. But for us to
be able to do so we must have some method of interpreting types of the form
σ → τ . We will now define a class of functions that can be used to construct
spaces suitable for the interpretation of these types.

Definition 4.6. Let A and B be coherence spaces. A function F : A → B is
said to be stable if it satisfies the following conditions:

1. If a1 ⊂ a2 ∈ A, then F (a1) ⊂ F (a2).

2. If X is a directed family of points of A, then
⋃
x∈X F (x) = F (

⋃
x∈X x).

3. If a1 ∪ a2 ∈ A, then F (a1 ∩ a2) = F (a1) ∩ F (a2).

The first two conditions should be familiar to those who are familiar with domain
theory. The first condition says that stable functions are monotone and the
second one says that stable functions are continuous in a domain theoretical
sense, that is to say they preserve least upper bounds of directed families of
points. The third condition says that the function has a property called stability.
This property allows us to prove the following lemma.

Lemma 4.7. Let F be a stable function from a coherence space A to a coherence
space B and let a ∈ A and β ∈ |B|. Then

1. If β ∈ F (a), then there exists a finite a0 ⊆ a such that β ∈ F (a0).

2. For each β there exists a unique minimal solution a0 to the first part of
the lemma.

Proof.

1. Let Xa denote the set of finite subsets of a. Then it is clear that a =⋃
x∈X x and thus

⋃
x∈X F (x) = F (

⋃
x∈X x) = F (a). Thus if β ∈ F (a)

there must exist some a0 ∈ X such that β ∈ F (a0).

2. Let a0 be a minimal solution to the first part of the lemma. Take some
finite a′ such that a′ ⊆ a and β ∈ F (a′). Then it is clear that a0 ∪ a′ ⊆ a
so a0 ∪ a′ ∈ A and thus, β ∈ F (a0) ∩ F (a′) = F (a0 ∩ a′). But since a0

is minimal we must have a0 ⊆ a0 ∩ a′ making it clear that a0 ⊆ a′. This
does indeed show that a0 is unique. �

43

This lemma allows us to make the following definition.

Definition 4.8. Let F be a stable function. Then the trace of F denoted by
Tr(F) is the set of pairs (a0, β) such that a0 ∈ A is finite, β ∈ F (a0) and for
any a′ ⊆ a0 such that β ∈ f(a′), a = a0.

The following lemma is then an immediate corollary of Lemma 4.7.

Lemma 4.9. The trace of every stable function F determines F completely
through the following equation:

F (a) = {β : ∃a0(a0 ⊆ a ∧ (a0, β) ∈ Tr(F))}.

We are now ready to show how to construct a coherence space defined by stable
functions.

Definition 4.10. Let A and B be coherence spaces. The function space of
functions from A to B denoted by A→ B is defined as follows:

• |A→ B| = Afin × |B|

• (a1, β1)_^ (a2, β2) (mod A→ B) if and only if:

1. if a1 ∪ a2 ∈ A, then β1
_
^ β2 (mod B), and

2. if a1 ∪ a2 ∈ A and β1 = β2, then a1 = a2

On first glance this definition seems rather arbitrary. But the following theorem
gives meaning to it.

Theorem 4.11. The members of A→ B are the traces Tr(F), where F ranges
over the stable functions from A to B.

Proof. We begin by showing that if F is a stable function, then
Tr(F) ∈ A→ B. It is easy to see that Tr(F) ∈ |A→ B|. Let

(a1, β1), (a2, β2) ∈ Tr(F).

Assume that a1 ∪ a2 ∈ A. We know that β1 ∈ F (a1) and β2 ∈ F (a2). Thus by
the monotonicity of F we have {β1, β2} ⊆ F (a1 ∪ a2) which clearly implies that
β1

_
^ β2 (mod B).
Now assume that a1 ∪ a2 ∈ A and β1 = β2. Clearly a1 ∪ a2 ∈ A implies

that β1, β2 ∈ F (a1 ∪ a2). By the definition of Tr(F), a1 and a2 must be the
minimal subsets of a1∪a2 such that β1 ∈ F (a1) and β2 ∈ F (a2). But according
to Lemma 4.7 a1 and a2 are unique, so since β1 = β2 we must have a1 = a2.
This shows that Tr(F) ∈ A→ B.

We now want to show that if f ∈ A→ B, then there is some stable function
F : A → B such that f = Tr(F). We define a function F : A → B by the
following equation:

F (a) = {β : ∃a0(a0 ⊂ a ∧ (a0, β) ∈ f)}.

44

We first show that F is in fact a function from A to B. It is clear that given
any a ∈ A, F (a) ⊆ B. Thus we only have to show that the members of F (a) are
coherent modulo B. Let β1, β2 ∈ F (a). Then by the definition of F there exist
some a1, a2 ⊆ a such that (a1, β1), (a2, β2) ∈ f . But this implies a1∪a2 ⊆ a ∈ A
and then by the coherence of f we have β1

_
^ β2 (mod B).

We then show that F is stable. The monotonicity of F is immediate from
the definition. To prove the continuity of F assume that X is a directed family
of points of A and let a =

⋃
x∈X x. Then it is easy to see that monotonicity

forces
⋃
x∈X F (x) ⊆ F (a). Now let β ∈ F (a). Then there is some finite a0 ⊆ a

such that β ∈ F (a0). This also means that a0 ⊆
⋃
x∈X x and hence a0 ⊆ x′

for some x′ ∈ X. But then it clearly holds that β ∈ ⋃
x∈X F (x) showing that

f(a) ⊆ ⋃
x∈X F (x), proving the continuity of F .

Then we prove the stability of F . Assume that a1 ∪ a2 ∈ A. It is clear from
the monotonicity of F that F (a1 ∩ a2) ⊆ F (a1) ∩ F (a2). Now let β ∈ F (a1) ∩
F (a2). Then there are some a′1 ⊆ a1, a

′
2 ⊆ a2 such that (a′1, β), (a′2, β) ∈ f .

Thus (a′1, β) and (a′2, β) are coherent and since a′1 ∪ a′2 ⊆ a1 ∪ a2 ∈ A we must
have a′1 = a′2. It is clear that a′1 ⊆ a1 ∩ a2 so β ∈ F (a1 ∩ a2) showing that
F (a1) ∩ F (a2) ⊆ F (a1 ∩ a2). Thus F is a stable function.

Then the only thing left is to show that f = Tr(F). The inclusion Tr(F) ⊆ f
follows from Lemma 4.9. Assume that (a0, β) ∈ f . By the construction of
|A → B| we have a0 ∈ Afin and β ∈ |B| and by the construction of F we have
β ∈ F (a0). We then only have to show that for any a′ ⊆ a0, if β ∈ F (a′), then
a′ = a0. It is clear by the construction of F that if β ∈ F (a′) there is some
a′′ ⊆ a′ such that (a′′, β) ∈ f . But by the coherence of f and the fact that
a′′ ∪ a0 ∈ A we get a′′ = a0 which clearly forces a′ = a0. �

We now have defined all the concepts we need for our interpretation of T. In
what follows we shall use J·K to denote the interpretation function that maps
the objects of T to their interpretations.

The first order of business is to find a way to interpret N as a coherence
space. One might be tempted to try to interpret N as the flat coherence space
Nat, mentioned in Example 4.4 by the following obvious interpretation:

J0K = {0} and JSnK = S(JnK)
where S is defined by the following equations:

S({n}) = {n+ 1} and S(∅) = ∅.
However it turns out that this interpretation does not work. Here below we will
show how to interpret terms of the form R(f, g, n) with stable functions defined
on JNK. Now assume we have some terms t and s of T such that

R(t, s, 0) = n and R(t, s,S(x)) = m

for some integers n and m. Then we must have some stable function F which
interprets the function x 7→ R(t, s, x). It is clear that we would have

F ({0}) = {n} and F (S(x)) = {m}.

45

In particular we get F (S(∅)) = m. But S(∅) = ∅ ⊆ {0} while F (S(∅)) * F ({0})
which clearly contradicts the fact that F should be stable.

The problem here lies in the fact that we interpret S(∅) as ∅, something
lacking any information, while we do in fact have some information, we know
we have a successor. Hence we need a different way to interpret N.

So we construct a new coherence space in search of a way in which we can
make S(∅) have the desired meaning. We call this coherence space Nat+. We
let |Nat+| = {0, 0+, 1, 1+, 2, 2+, . . . }. Now assume that the variables n,m range
over{0, 1, 2, . . . } while the variables n+,m+ range over {0+, 1+, 2+, . . . }. Then
we define the coherence relationship modulo Nat+ as follows:

n_^m (mod Nat+) iff n = m

n+ _
^m (mod Nat+) iff n+ < m

n+ _
^m+ (mod Nat+) for all n+,m+.

Let us take a look at the maximal points of this space. There are two different
types of maximal points in Nat+.

• If a ∈ Nat+ is maximal and there is some n ∈ a, then
a = {0+, . . . , (n− 1)+, n}.

• If a is maximal and there is no n ∈ a, then a = {0+, 1+, 2+, . . . }.

We then interpret the elements of N as follows:

J0K = {0} and JSnK = S(JnK)
where S is the function defined by the following equation:

S(a) = {0+} ∪ {n+ 1 : n ∈ a} ∪ {(n+ 1)+ : n+ ∈ a}.

Under this interpretation we get JnK = {0+, . . . , (n − 1)+, n}, if n denotes the
n-th successor of 0. This notation also gives a meaning to the intuition that
applying the successor function to ∅ should convey more information than just
∅ since we get Sk(∅) = {0+, . . . , k+}.

Having found a suitable interpretation of the terms of type N we would like
to extend this interpretation to the type N itself. So we let

JNK = Int+.

We then simply interpret the rest of the types of T as follows

Jσ → τK = JσK→ JτK.

We now want to find a method to interpret the rest of the terms of T. We are
not interested in finding a good interpretation of all the terms of T though, we
are only really interested in interpreting the closed terms of T. However since
we will interpret each term componentwise, that is the interpretation of each

46

term relies on the interpretation of its subterms, we must have some method
that we can use to deal with free variables since they will inevitably occur in
the subterms of many closed terms. The following definition gives us a tool to
solve this problem.

Definition 4.12. A variable assignment is a function that assigns to each
variable xτ of T a unique element of JτK. If π is a variable assignment, xτ is
a variable and t ∈ JτK, then we let π[x ← t] denote the variable assignment
identical to π with the exception that π[x← t](x) = t.

We now let J·Kπ denote the interpretation function relative to the variable as-
signment π. Now assume that t is any term of T not of the form 0 or S(n). We
define JtKπ as follows:

• If t = x where x is a variable, we let JtKπ = π(x).

• Assume t = u(v) where u : σ → τ and v : σ. Then

JtKπ = {t′ : ∃v′(v′ ⊆ JvKπ ∧ (v′, t′) ∈ JuKπ)}

• Assume t = λx.u where x : σ and u : τ . Then let F (a) = JuKπ[x←a]. Then

JtKπ = Tr(F).

• Assume t = Rτ (f, g, n). Then JtKπ = F (JnK) where F is a function from
Nat+ to JτK defined by the following equations:

F ({0}) = JfKπ F (S(a)) = JgKπ(a)(G(a)) F (a) = ∅ if 0, 0+ /∈ a.

For J·K to be well defined the functions denoted by F must be stable. It is not
particularly difficult to prove this, neither in the case for λ-abstraction nor in
the case for R. However as these are very tedious proofs we omit them.

It is easy to see that if t is a closed term, then for any two variable assign-
ments π1 and π2 we have JtKπ1 = JtKπ2 . Thus for t closed the meaning of JtK
is unambiguous. When t is not closed it is just as clear that this equality will
not hold for every choice of π1 and π2. But as we already mentioned we are
not particularly interested in the interpretation of open terms so this is of no
particular concern for us.

We conclude this discussion of the denotational semantics of T by showing
that our interpretation satifies T, in the sense that for all terms t and s, if
t →∗ s, then JtK = JsK. It suffices to show that t . s implies JtK = JsK, that
is to check that this equality holds for the reduction rules of T. In the case of
β-reduction we want to show that J(λx.t)sKπ = Jt[x := s]Kπ :

J(λx.t)sKπ = {α : ∃s′[s′ ⊆ JsKπ ∧ (s′, α) ∈ Tr(a 7→ JtKπ[x←a])]}
= JtKπ[x←JsKπ].

It is obvious that Jt[x := s]Kπ = JtKπ[x←JsKπ] which gives us the desired equal-
ity. The result for the other two reduction rules follows immediately from the
definition of JR(f, g, n)Kπ. So we see that our interpretation satisfies T.

47

5 Conclusion
Let us now look back at our results, summarize them and see if we can draw any
conclusions and make some final comments. We have shown how the Dialectica
interpretation translatesHA into our higher type theory of arithmetic, HA+T.
Each formula ϕ of HA was given a translation

ϕD = ∃~x :Wϕ.∀~y : Cϕ.ϕD(~x, ~y).

We then showed how this translation could be extended to sequents allowing us
to prove the soundness of the interpretation.

The soundness proof has some interesting features. It consists of showing
that for each sequent Γ ` ϕ that can be deduced in HA, sequences ~p−Γ , ~p

+
ϕ

of terms of the correct witness type WΓ`ϕ can be constructed such that these
sequences satisfy

ΓD(~x, ~p−Γ (~x,~v)) `HA+T ϕD(~p+
ϕ (~x), ~v)

where each formula of the environment ΓD and the formula ϕD are decidable.
This shows that the real work of proving translations of HA sequents inHA+T
consists of constructing sequences of effective witnesses, as the fact that ΓD, ϕD
are decidable shows that for each sequence of the type WΓ`ϕ we can test algo-
rithmically whether it constitutes an effective witness of Γ ` ϕ or not.

If we now connect this observation to the discussions of the computational
aspects of T in section 4.1 we can make an interesting observation. The Dialec-
tica interpretation reduces the proofs of the theorems of HA to a computational
process. If we interpret the closed terms of T as programs in the programming
language T, as we did in section 4.1, the act of proving a Dialectica translation
of a theorem ϕ of HA boils down to writing a set of programs in T and then
testing them in the metaprogram ϕD to see whether they produce the desired
results.

This observation is very much in line with Gödel’s original ideas about the
Dialectica translation. In Gödel (1990) he devotes a chunk of the text to the
discussion of the idea that the Dialectica interpretation exposes the computa-
tional nature of intuitionistic arithmetic. I believe that in this discussion we
have corroborated this idea.

Before concluding this summary I want to make a few comments on the pre-
sentation of the Dialectica interpretation that can be found in this thesis. The
presentation of the translation as well as the soundness proof of the interpreta-
tion are in large part based on the presentation of the interpretation that can be
found in Pédrot (2015). There are some differences between the presentations,
I defined certain concepts in a different manner (the counter type C∃zϕ, the
definition of the Dialectica translation of sequents (which Pédrot treats as an
abuse of notation) and the functions Decide and Merge for example), I stated
the soundness theorem in a different way and I took different paths in the proof
of certain parts of it. However this thesis would never have taken the form it

48

has had it not been for the work of Pédrot and I am deeply grateful for having
been able to use it as a point of reference during the writing of this thesis.

49

References
Avigad, J., Feferman, S. (1998) ‘Gödel’s functional (‘Dialectica’) interpre-

tation’ in: Buss, S. R. (editor), Handbook of Proof Theory. Studies in Logic and
the Foundations of Mathematics. Vol. 137. Elsevier, Amsterdam, pp. 337–405.

Barendregt, H. P. (1984) The Lambda Calculus Its Syntax and Semantics.
Revised. Vol. 103. Elsevier, Amsterdam.

Girard, J.-Y., Lafont, Y. and Taylor P. (1989) Proofs and Types. Cambridge
University Press, Camebridge.

Gödel, K., Collected Work, Vol. 2, S. Feferman et al. (editors). (1990)
Oxford University Press, New York.

Gödel, K. ‘On a hitherto unutilized extension of the finitary standpoint’ in
Gödel (1990), pp. 241–251.

Gödel, K. ‘On an extension of finitary methods which has not yet been used’,
in: Gödel (1990), pp. 271–280.

Hindley, J. R., Seldin, J. P. (2008) Lambda-Calculus and Combinators, an
Introduction. Camebridge University Press, Camebridge.

Pédrot, P.-M. (2015). A Materialist Dialectica. Diderot, Paris.

Troelstra, A. S. (1973) ‘Realizability and functional interpretations’ in: Troel-
stra A.S. (editor) Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis. Lecture Notes in Mathematics, vol 344. Springer, Berlin, Heidel-
berg, pp. 175-274.

Troelstra, A. S. (1990) ‘Introductory note to 1958 and 1972’, in: Gödel
(1990), pp. 217–241.

50

