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Abstract

In this thesis we study formal differential graded algebras and coalge-
bras. As our tools we use theory of Koszul algebras and some homotopical
algebra. We also give some examples of Koszul algebras, formal differ-
ential graded algebras and non-formal differential graded algebras from
algebraic topology.
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1 Introduction and notation

The homotopy groups πn(X) of a topological space X play an important role in
algebraic topology. They are however often very hard to compute. A standard
example which illustrates this is the fact not even for spheres are there complete
descriptions of the homotopy groups. In rational homotopy theory the groups
πn(X) ⊗ Q are studied for simply connected spaces X. The idea is to forget
about the torsion in order to get a more computable theory. This was made
precise by Serre in [14] and it was in some sense a success. For example there
are complete descriptions of the rational homotopy groups of spheres. Later,
Quillen and Sullivan would come up with ways to model rational homotopy
theory of simply connected spaces using differential graded Lie algebras and
commutative differential graded algebras respectiely [15], [16]. But even the
rational homotopy groups can be hard to compute which is why formal topo-
logical spaces are interesting. Formal topological spaces are topological spaces
whose rational homotopy type is determined by the rational cohomology ring
H•(X;Q). There are some equivalent definitions of formal spaces but one is
that the differential graded cochain algebra C•(X) is connected to its cohomol-
ogy by a zig zag of quasi isomorphisms. There is a similar notion of coformal
spaces which are defined by the property that the algebra C•(ΩbX) be con-
nected to its homology by a zig zag of quasi isomorphisms (here ΩbX denotes
the based loops space of X and the algebra structure on C•(ΩbX) comes from
the monoidal structure on ΩbX). For this reason, a differential graded algebra
with the property that it is connected to its (co)homology by a zig zag of quasi
isomorphisms is called formal. These will be some of our main objects of study.
More precisely we will examine how the notions of formality and koszulity are
related in algebra and also in topology. This thesis consists of five chapters.
In chapter one we introduce some terminology and theory that will be used in
later chapters. The most important objects for us will be differential graded
algebras and differential graded coalgebras (abbreviated dga algebras and dga
coalgebras respectively). In chapter two we summarise some theory necessary
for us to state and prove the main theorem of this thesis. Most of the theory
in chapter two concerns how dga coalgebras and dga algebras are related; we
construct the bar and cobar functor, we give the space of linear maps from a
dga coalgebra to a dga algebra the structure of a dga algebra and we introduce
the twisted tensor product of a dga coalgebra and a dga algebra. In chapter
three we prove the following special case of theorem 2.9 in [1].

Theorem 1. Let κ : C → A be a Koszul twisting morphism where A is a
connected dga algebra and C is a connected dga coalgebra. The following are
equivalent:

(1) C and A are formal.

(2) A is formal and H∗(A) is Koszul.

(3) C is formal and H∗(C) is Koszul.
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We do so without having to introduce operads or A∞-algebras. Instead of
introducing A∞-algebras we spend section 3.2 establishing certain factorisation
and lifting properties in the category of dga algebras to prove the following
preliminary result.

Proposition 2. Let κ : C → A be a Koszul twisting morphism where A is
a connected dga algebra and C is a connected dga coalgebra. If C ∼ C ′ and
A ∼ A′ then there is a Koszul twisting morphism κ′ : C ′ → A′.

In chapter four we explain how our main theorem connects to algebraic
topology. We introduce the notion of Koszul spaces and give two examples of
such, namely spheres and euclidean configuration spaces (where we assume the
number of points to be less than or equal to the dimension). We follow a proof
from [2] for the intrinsic rational formality of Euclidean configuration spaces
but as a warm up example we show how the same ideas can be used to prove
intrinsic rational formality of spheres.

In chapter five we give an example of a topological space whose cohomology
ring is Koszul but which is not formal over Z2. The example is F4(R2) and the
proof of its non-formality comes from [2].

1.1 Preliminary definitions

The aim of this section is to establish the notation which we will use throughout
the thesis. First of all we will denote by K a field and the vector spaces, algebras
and coalgebras will be over K. Almost all objects we are interested in will be
graded vector spaces with extra structure. So let us first make precise what we
mean by a graded vector space.

Definition 3. A graded vector space is a vector space V with a direct sum
decomposition

V =
⊕

j∈Z
Vj .

For a homogenous element v ∈ V we denote by |v| its degree.

Most of the graded vector spaces that occur in this thesis come with what
we call a differential structure. Here is the precise definition.

Definition 4. A differential graded vector space (V, d), also called a chain com-
plex is a graded vector space together with a differential d : V → V such
that d(Vi) ⊂ Vi−1 for all i and d2 = 0. A morphism of chain complexes
(V, dV ) → (W,dW ), also called a chain map, is a linear map, homogenous of
degree 0, which commutes with the differentials.

We recall that any chain complex gives rise to a new graded vector space
which is smaller in some sense.

Definition 5. The homology of a chain complex is by definition the graded
vector space H•(V, dV ) := ⊕n∈Zker(d : Vn → vn−1)/im(d : Vn+1 → Vn). Any
chain map induces a linear map in homology. A chain map which induces an
isomorphism in homology is called a quasi isomorphisms.
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We will think of K as a chain complex with trivial differential which is zero in
all degrees except 0 where it is K. (We say that it is concentrated in degree 0.)
A differential graded vector space (V, dV ) is called augmented if there is a chain
map from (V, dV )→ (K, 0). An augmented vector space is called acyclic if the
augmentation map is a quasi isomorphism. This means we might call a chain
complex acyclic if either their homology vanishes or their homology consists
of just one copy of K in degree zero (it should be clear from context which is
meant).

Sometimes we will encounter chain complexes (V, dV ) with differentials of
degree +1 rather than −1. We call them cochain complexes and we indicate
their grading with superscript as in V = ⊕j∈ZV j . We say that a chain complex
is homologically graded and a cochain complex is cohomologically graded. The
following convention will however allow us to restrict ourselves to the study of
chain complexes.

Convention 6. We think of a cochain complex (V, dV ) as a chain complex which
is homologically graded by Vn := V −n. We note that with this convention dV :
Vn = V −n → V −n+1 = Vn−1 is of degree −1 with respect to the homological
degree.

Now we move on to the notion of algebras and coalgebras.

Definition 7. An associative algebra is a vector space A equipped with a linear
map µ : A⊗A→ A such that the following diagram commutes

A⊗A⊗A A⊗A

A⊗A A

1⊗µ

µ⊗1 µ

µ

.

The algebra A is called unital if comes equipped with a linear map u : K → A
such that the following diagram commutes

K⊗A A⊗A A⊗K

A

u⊗1

∼= µ

1⊗u

∼=
.

Notice that a unital algebra has an identity element u(1K) which we usually
denote 1A. The last diagram in the previous definitions shows that 1A is indeed
a two-sided identity for the multiplication.

Together with the notion of algebras comes a notion of structure preserving
maps between algebras.

Definition 8. Let (A,µ) and (A′, µ′) be associative algebras. A linear map
f : A → A′ is called an algebra morphism if it respects the multiplication. In
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other words if the following diagram commutes

A⊗A A′ ⊗A′

A A′

f⊗f

µ µ′

f

.

If A and A′ are unital we also require that f(1A) = 1A′

We note that K is itself a unital associative algebra with the usual multipli-
cation and the unit being the identity map K→ K.

Definition 9. An algebra A is called augmented if there is an algebra morphism
ε : A→ K. One often denotes by Ā the kernel of the augmentation map ε.

A lot of the algebras we will be dealing with come with an extra graded
structure. Here is the precise definition.

Definition 10. We say that the algebra A is graded if it has a vector space
decomposition

A =
⊕

j∈Z
Aj

such that the multiplication µ respects this decomposition meaning µ(Ai⊗Aj) ⊂
Ai+j . A morphism of graded algebras f : A → A′ is a morphism of algebras
which respects the grading, meaning f(Aj) ⊂ A′j .

Example 11. The polynomial ring A = K[x1, ..., xm] is an example of a graded
algebra. The degree n part is the linear span of all monomials of degree n:
An = 〈xn1

i1
xn2
i2
· · ·xnkik |n1 + n2 + ...+ nk = n〉.

When working in the graded setting one often has to deal with a lot of minus
signs which can make computations much harder to follow. There is however
a convention which can make things somewhat simpler called the Koszul sign
convention:

Convention 12. Throughout this thesis we will, unless otherwise stated, define
the tensor product of two linear maps f : V → V ′, g : W →W ′ by the rule

f ⊗ g(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w).

We now define the type of algebras that we will mostly be interested in,
namely algebras which are also chain complexes.

Definition 13. A differential graded associative algebra (dga algebra for short)
(A, d) is a graded associative algebra (A,µ) together with a differential d : A→
A which is a derivation for the product. In other words d is a linear map of
degree minus one which satisfies

d2 = 0, and d ◦ µ = µ ◦ (d⊗ 1 + 1⊗ d).
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A morphism of dga algebras f : A→ A′ is a morphism of graded algebras which
commutes with the differentials, meaning f ◦ dA = dA′ ◦ f. A dga algebra A
is called augmented if there is a morphism of dga algebras A → K where K is
thought of as a dga algebra concentrated in degree 0.

Because a dga algebra (A, d) is a chain complex if we just forget about the
algebra structure we can of course take homology of a dga algebra. Because
the differential is a derivation for the product the homology of a dga algebra
inherits the structure of a graded algebra.

As with chain complexes, any morphism of dga algebras f : A→ A′ induces
an algebra morphism f• : H•(A) → H•(A′). We are particularly interested in
those maps f : A → A′ that induce isomorphisms on homology. As for chain
complexes we will call such maps quasi isomorphisms.

Example 14. Consider the unital algebra A = K[x, y]/I where I = (x2, y2).
We can force a grading on it by specifying the degree of the generators. Setting
|x| = 0 and |y| = 1 for example then forces |xy| =|x|+|y| = 1. Also the degree of
1 in any unital graded algebra must be zero because |1A| = |1A ·1A| = |1A|+|1A|.
We see that with this grading we get A0 = 〈1, x〉, A1 = 〈y, xy〉 and Ai = 0 for
all other i. We can define a differential by specifying what it does on the
generators, d : y 7→ x and d : x 7→ 0, and then use the Leibniz rule from
definition 13 to extend this to any product of the generators (one also has to
check that d(I) ⊂ I). For example d(xy) = d(x)y + xd(y) = 0 + x2 = 0. This
makes A into a dga algebra. We saw that A is concentrated in degrees 0 and 1
and as a chain complex it looks like

... 0 K1A ⊕Kx Ky ⊕Kxy 0 ...
d d d d d

and it is not so hard to compute its homology, H0(A) = K1A, H1(A) = Kxy.
As a graded algebra H•(A) is the trivial algebra on one generator xy of degree
1.

Sometimes a graded algebra A comes equipped with an extra grading which
we will call weight. Such algebras we will call weight graded. The multiplication
of A must respect both the original grading and this extra weight grading. We
will require weight gradings to be concentrated in non negative weight. For an
element a ∈ A of a weight graded algebra we will denote by |a| the degree and
by w(a) the weight of a. A weight graded dga algebra is often abbreviated wdga
algebra.

An other type of algebraic objects that will occur frequently in this thesis
are coalgebras. They are in a sense dual to algebras.

Definition 15. A coalgebra is a vector space C equipped with a linear map
∆ : C → C ⊗ C, called the coproduct, we call C an coassociative coalgebra if
the following diagram commutes

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C
∆

∆

1⊗∆

∆⊗1
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and we say it is counital if it is equipped with a linear map ε : C → K making
the following diagram commute.

C

C ⊗K C ⊗ C K⊗ C
∼= ∆

∼=

1⊗ε
ε⊗1

.

A morphism of coalgebras f : C → C ′ is a linear map which commute with
the coproduct, meaning ∆C′ ◦ f = (f ⊗ f) ◦ ∆C . If the coalgebras C and C ′

are counital with counits u : C → K and u′ : C ′ → K we also require that f
commutes with the counits, meaning u′ ◦ f = u.

We note that K is itself a counital associative coalgebra with multiplication
defined by 1 7→ 1⊗ 1 and the counit being the identity K→ K.

Definition 16. A counital coalgebra C is called coaugmented if there is a
coalgebra morphism u : K→ C. We denote by 1C the image of 1 under u.

We note that if C is coaugmented we must have ε ◦ u = idK because u
is a coalgebra morphism which means that it commutes with the counits but
the counit of K is idK. Moreover there is a natural way to define a coalgebra
structure on ker(ε) namely by ∆̄(x) = ∆(x)−1C⊗x−x⊗1C . If ∆ is coassociative
then ∆̄ is too.

Definition 17. We say that a coaugmented coalgebra C is conilpotent if for all
c ∈ C̄ there is an integer n such that ∆̄n(c) = 0 where ∆̄n is defined inductively
as ∆̄n(c) := (∆̄⊗ 1⊗n−1) ◦ ∆̄n−1(c).

As with algebras we will often encounter coalgebras with a graded structure.
Here is the precise definition.

Definition 18. A graded coalgebra is a coalgebra C which has a vector space
decomposition

C =
⊕

j∈Z
Cj

such that the coproduct respects the grading, meaning

∆(Cn) ⊂
⊕

i+j=n

Ci ⊗ Cj .

A morphism ofgraded coalgebras f : C → C ′ is a morphism of coalgebras which
respects the grading, meaning f(Ci) ⊂ f(C ′i) for all i.

Definition 19. A differential graded associative coalgebra (dga coalgebra for
short) (C, d) is a graded associative coalgebra (C,∆) together with a differential
d : C → C which is a coderivation for the coproduct. In other words d is a linear
map of degree −1 which satisfies

d2 = 0 and ∆⊗ d = (d⊗ 1 + 1⊗ d) ◦∆.
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Example 20. If we take the linear dual of the algebra A from example 14 we
get a coalgebra C = A∗ whose coproduct is given by the composite

A∗ (A⊗A)∗ ∼= A∗ ⊗A∗µ∗A .

(The isomorphism above exists since dim(A) < ∞.) We can give C a grading
by C0 = 〈1∗A, x∗〉, C−1 = 〈y∗, (xy)∗〉 where we have fixed the basis of A∗ dual
to the one in example 14. Then we can compute for example the coproduct of
(xy)∗ by applying µ∗((xy)∗) to the basis elements of A⊗A obtained by taking
tensor product of basis elements of A. We get

µ∗A((xy)∗)(1A ⊗ xy) = (xy)∗(µA(1⊗ xy)) = (xy)∗(xy) = 1,

µ∗A((xy)∗)(x⊗ y) = (xy)∗(µA(x⊗ y)) = (xy)∗(xy) = 1,

µ∗A((xy)∗)(xy ⊗ 1A) = (xy)∗(µA(xy ⊗ 1A)) = (xy)∗(xy) = 1,

and then the rest is zero because no other product of basis elements of A contain
xy as a term so we get µ∗A((xy)∗) = 1∗A⊗ (xy)∗+ x∗⊗ y∗+ (xy)∗⊗ 1∗A. We also
get a differential on C by taking the dual of the differential d in example 12.
Explicitly it is given by

d∗ : 1∗A 7→ 0, x∗ 7→ y∗, y∗ 7→ 0, (xy)∗ 7→ 0.

Using that µA is associative and that d is a derivation for µA one can check
that µ∗A is coassociative and that d∗ is a coderivation for µ∗A so (C, d∗) is a dga
coalgebra.

Finally a connected (co)algebra is a non-negatively graded (co)algebra such
that A0 = K (C0 = K). A weight graded (co)algebra is connected with respect
to weight if A(0) = K (C(0) = K).

Next we introduce two functors that assign to any vector space V an algebra
and a coalgebra respectively. The algebra is usually denoted T (V ) and called
the tensor algebra and the coalgebra is denoted T c(V ) and called the tensor
coalgebra. Each of these satisfy a universal property that will come in handy
in later chapters. For the proofs of the properties of the tensor (co) algebra we
refer to [3].

Definition 21. Given a vector space V the tensor algebra of V is an algebra
whose underlying vector space is

T (V ) := K⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ ...

The elements of T (V ) are sums of elements of the form v1 ⊗ v2 ⊗ ...⊗ vn. It is
however customary to omit the tensor sign and denote this element by v1 · · · vn.
The multiplication is given by concatenating words meaning

v1 · · · vn ⊗ u1 · · ·um 7→ v1 · · · vnu1 · · ·um.

10



As we mentioned the tensor algebra is a functor from the category of vector
spaces to the category of augmented associative algebras; it assigns to any linear
map f : V →W the algebra morphism

⊕n≥0f
⊗n : T (V )→ T (W ).

It is not so hard to check that this is indeed an algebra morphism and that this
assignment respects the identity and the composition of maps. Now we move
on to the universal property of the tensor algebra.

Proposition 22. Let V be a vector space. The tensor algebra T (V ) of V
satisfies the following universal property: For any unital associative algebra A
and linear map f : V → A there is an algebra morphism f̃ : T (V )→ A making
the following diagram commute

V T (V )

A

i

f
f̃

where i is the inclusion V ↪→ T (V ).

We recall that if V and W are two graded vector spaces then V ⊗ W is
graded too by

(V ⊗W )n = ⊕i+j=nVi ⊗Wj .

This way when V is a graded vector space then T (V ) is graded too and moreover
the multiplication on T (V ) respects this grading so in this case T (V ) is a graded
algebra with the grading induced from V . Here is a result which allows us to
uniquely extend any linear map V → T (V ) to a derivation T (V ) → T (V ). We
state the graded version here.

Proposition 23. Let V be a graded vector space. For any linear map f : V →
T (V ) of degree −1 there is unique derivation df : T (V ) → T (V ) which makes
the following diagram commute

V T (V )

T (V )

i

f
df .

The corresponding construction for coalgebras goes as follows.

Definition 24. Given a vector space V the tensor coalgebra of V is the coal-
gebra whose underlying vector space is

T c(V ) := K⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ ...
with comultiplication defined by deconcatenation of words meaning

v1 · · · vn 7→
n∑

i=0

v1 · · · vi ⊗ vi+1 · · · vn ∈ T c(V )⊗ T c(V )

.
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The tensor coalgebra is a functor from the category of vector spaces to the
category of coaugmented associative coalgebras. It assigns to any linear map
f : V → W the map ⊕n≥0f

⊗n : T c(V ) → T c(W ). Again it is not so hard
to check that this is a coalgebra morphism and that this assignment respects
the identity and the composition of maps. The tensor coalgebra also satisfies a
universal property. It is in fact dual to the one the tensor algebra satisfied in
the sense that all the arrows are just reversed.

Proposition 25. Let V be a vector space. The tensor coalgebra T c(V ) satisfies
the following universal property: For any conilpotent coalgebra C, and linear
map f : C → V with f(1C) = 0 there is a unique morphism of coaugmented
coalgebras f̃ : C → T c(V ) making the following diagram commute

T c(V )

V C

p

f

∃!f̃

where p is the projection T c(V ) � V.

1.2 Simplicial sets

We end this first chapter with a short introduction to simplicial sets. This
will mostly be used in chapter five but since simplicial sets give rise to natural
examples of dga algebras we include it here. Denote by ∆ the category whose
objects are the sets [n] := 0, 1, ..., n for n ≥ 0 and whose morphisms are functions
f : [n]→ [m] such that i ≤ j =⇒ f(i) ≤ f(j).

Definition 26. A simplicial set is a contravariant functor X : ∆→ Sets. The
elements of X([n]) are called n-simplices

Consider the following morphisms in ∆

dj : [n− 1]→ [n], dj(i) =

{
i, if i < j

i+ 1, if i ≥ j

sj : [n+ 1]→ [n], sj(i) =

{
i if i ≤ j
i− 1, if i > j

.

Given a simplicial set X we will denote by dj and sj the set-functions X(dj)
and X(sj) respectively. These functions are called face and degeneracy maps
respectively. An element x ∈ X([n]) is called degenerate if x = sj(y) for some j
and some y ∈ X([n− 1]).

12



The set-functions dj , si satisfy the following identities [5]





didj = dj−1di if i < j

disj = sj−1di if i < j

djsj = 1 = dj+1sj

disj = sjdi−1 if i > j + 1

sisj = sj+1si if i ≤ j

.

Given a simplicial set X we can define a chain complex C•(X) over any field K
as follows. In degree n we have Ĉn(X) = KX([n]) is the free K-vector space on
the set X([n]). The differential is given by

∂ : Ĉn(X)→ Ĉn−1(X), x 7→
n∑

i=0

(−1)idi(x).

Using the identities above one can see that ∂2 = 0. Also using the identities
above one can show that the subspaces DX

n ⊂ ĈXn spanned by the degenerate
elements of X([n]) form a sub complex and we define the normalised chain
complex of X to be

C•(X) = Ĉ•(X)/D•(X).

We will however be more interested in the dual cochain complex
C•(X) := (⊕nHom(Cn(X),K), ∂∗). The cochain complex C•(X) has a prod-
uct, called the cup product. Let f ∈ Cp(X), g ∈ Cq(X), x ∈ X([p + q]) and
let

ι : [p]→ [p+ q], i 7→ i

and
η : [q]→ [p+ q], i 7→ p+ i.

Then the cup product can be defined by the following formula

f ∪ g(x) = (−1)pq(f ◦X(ι)(x)) · (g ◦X(η)(x)).

Directly from these formulas one can show the cup product is associative and
that the following formula holds

∂∗(f ∪ g) = ∂∗(f) ∪ g + (−1)|f |f ∪ ∂∗(g).

In other words (C•(X),∪, ∂∗) is dga algebra.
There is another multiplication that we will use which is of degree −1

∪1C
p(X) ⊗ Cq(X) → Cp+q−1(X). If f, g are as before and y ∈ X([p + q − 1])

and if we for j ∈ {0, 1, ..., p− 1} define

ιj : [p]→ [p+ q − 1], i 7→
{
i if i ≤ j
i+ q − 1 if i > j

ηj : [q]→ [p+ q − 1], i 7→ i+ j

13



then ∪1 can be defined by

f ∪1 g(y) =

p−1∑

j=0

(−1)(p−j)(q+1)(f ◦X(ιj)(y))(̇g ◦ Y (ηj)(y)).

The definition goes back to Steenrod [13] and he also proved that the following
formula hold.

Proposition 27.

∂∗(f ∪1 g) = ∂∗(f) ∪ g + (−1)pf ∪ ∂∗(g) + (−1)p+q−1f ∪ g + (−1)pq+p+qg ∪ f.

Example 28. An example of a simplicial set is the set of singular simplices of
a topological space T . It is defined on objects by

S(T )([n]) = {σ : ∆n → T : σ is continuous}.

It is defined on morphisms by
S(T )(h : [n]→ [m])(σ) = σ ◦ 〈xh(0), xh(1), ..., x(h(m))〉 where
〈xh(0), xh(1), ..., x(h(m))〉 : ∆n → ∆m is the map sending a point (t0, ..., tn) ∈ ∆n

to
∑n
i=0 tieh(i) and {ei} is the standard basis of Rm. The face are given explicitly

by
di : Sn(X)→ Sn−1(X), σ 7→ σ ◦ 〈x0, ..., x̂i, ..., xn〉

where x̂i means we omit xi. The degeneracy maps are given by

si : Sn(X)→ Sn+1, σ 7→ σ ◦ 〈x0, ..., xi, xi, ..., xn〉.

We can then define the normalised singular chain complex of T with coefficients
in some field K as we did for a general simplicial set above C•(T ) := C•(S(T )).
It gives rise to the homology of T

H•(T ;K) := H•(C•(S(T ))).

We can further define the cochain algebra of the topological space T with coef-
ficients in K by

C•(T ;K) := C•(S(T ))

which gives rise to the cohomology ring of T

H•(T ;K) := H•(C•(S(T ))).

A map between simplicial sets is a natural transformation X → Y . One can
show that this is equivalent to a family of maps X([n])→ Y ([n]) that commute
with the face and degeneracy maps. A sub simplicial set Z ⊂ X is a simplicial
set such that Z([n]) ⊂ X([n]) for all n and Z(f : [n] → [m]) = X(f : [n] →
[m])|Z([m]). Given a map of simplicial sets φ = {φn : X([n]) → Y ([n])} and a
sub simplicial set Z ⊂ Y the inverse image φ−1(Z) is a sub simplicial set of X
in a natural way. Also the intersection of two sub simplicial sets Z ⊂ X and
Y ⊂ X is a simplicial set in a natural way by Z ∩ Y ([n]) := Z([n])∩ Y ([n]) and
Z ∩ Y (f : [n]→ [m]) = X(f : [n]→ [m])|Z([m])∩Y ([m]).
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2 Bar construction, cobar construction & twist-
ing morphisms

In this chapter we study the relation between dga algebras and dga coalgebras
further. We introduce the convolution algebra and twisted tensor products.
We also study the bar and cobar adjunction. The theory in this chapter can
be found in chapter two of [3]. I have decided to only go into detail on those
proofs that I find especially interesting or that are only sketched in [3]. In this
chapter the algebras (coalgebras) will assumed to be augmented (coaugmented)
and concentrated in non-negative degrees.

2.1 Bar and cobar construction

There are functors going from from the category of dga algebras to the category
of dga coalgebras and vice versa. These functors will occur a lot in this thesis
so let us give explicit descriptions of them and prove some properties that they
enjoy.

Starting with a dga algebra (A,µ, dA) the bar construction of A is the coalge-
bra T c(Ks⊗Ā) where Ks is a one dimensional graded vector space concentrated
in degree 1. We use the notation sĀ := Ks⊗ Ā. We will define two differentials
d1 and d2 on A and show that their sum d1 + d2 is a differential as well.

The first differential d1 comes from dA. Indeed, we can define a differential

d
(1)
1 on sĀ by sa 7→ −sdA(a). We can then take the tensor product of this to

get differentials

d
(n)
1 =

∑

i

1⊗ ...⊗ d(1)
1 ⊗ ...⊗ 1 : (sĀ)⊗n → (sĀ)⊗n.

We can then define d1 to be the direct sum of all the d
(i)
1 ’s (d(0) = 0) which is

then a differential on T c(V ).
The second differential d2 is induced by the product in A. In formulas we

have

d2(sa1⊗...⊗san) =
∑

i

(−1)i−1+|a1|+|a2|+...+|an|sa1⊗...⊗sµ(ai, ai+1)⊗...⊗san.

Proposition 29. d1 and d2 are indeed differentials on the graded coalgebra
T c(sĀ). Moreover, they anti commute so that their sum d1 + d2 is again a
differential.

Proof. To prove that d1 and d2 are coderivations for the coproduct one just has
to write out the formulas. The fact that d1 squares to zero follows from dA being
a differential. To see that d2

2 = 0 one has to write out the formulas, keeping
close attention to the signs and use the associativity of µ. Finally, proving that
d1 ◦ d2 + d2 ◦ d1 = 0 also just comes down to writing out the formulas and using
the fact that dA is a derivation for µ.
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We can now conclude that BA = (T c(sĀ), d = d1 + d2) is a differential
graded coalgebra. To see that B is in fact a functor we have to say what it does
on morphisms. If f : A → A′ is a morphism of augmented dga algebras then
f(Ā) ⊂ Ā′. Then we can define a linear map fs : sĀ→ sĀ′ by sa 7→ sf(a). But
then we can take tensor powers of fs to get linear maps f⊗ns : (sĀ)⊗n → (sĀ′)⊗n.
Finally we take the direct sum of of these maps to get Bf :

Bf :=
⊕

n≥0

f⊗ns : T c(sĀ)→ T c(sĀ′).

It is not so hard to check that Bf is a coalgebra morphism that commutes with
the differential and that B1A = B1BA and B(f ◦ g) = Bf ◦ Bg when f and g
are composable.

Now we move on to the cobar functor Ω. So let (C,∆, dC) be a coaugmented
dga coalgebra. As an associative graded algebra we have

ΩC := T (s−1C̄)

where s−1C̄ is short for Ks−1⊗C̄. Ks−1 being the one dimensional vector space
concentrated in degree −1. As with B we have two differentials on Ω, let us
call them δ1 and δ2. The first one comes from the original differential on C.

First we get a differential δ
(1)
1 : s−1C̄ → s−1C̄ by sc 7→ −sdC(c). Then we get

differentials

δ
(n)
1 =

∑
1⊗ ...⊗ δ(1)

1 ⊗ ...⊗ 1 : (s−1C̄)⊗n → (s−1C̄)⊗n

for all n. Finally we can take the direct sum of all of these to get

δ1 =
⊕

i≥0

δ
(i)
1 : ΩC → ΩC.

The other differential δ2 is induced by the coproduct on C. More precisely,
we can define it as follows. Let ∆s : Ks−1 → Ks−1 be the map defined by
s−1 7→ −s−1 ⊗ s−1. Let τ : Ks−1 ⊗ C̄ → C̄ ⊗ Ks−1 be the map defined by
s−1 ⊗ c 7→ (−1)|c|c ⊗ s−1 and let ∆̄ be the reduced coproduct in C. Then we
consider the following composition

Ks−1 ⊗ C̄ Ks−1 ⊗Ks−1 ⊗ C̄ ⊗ C̄

Ks−1 ⊗ C̄ ⊗Ks−1 ⊗ C̄ T (s−1C̄)

∆s⊗∆̄

1⊗τ⊗1
.

This composition is a linear map Ks−1C̄ → T (Ks−1C̄). It has degree −1
because ∆s does and all the other maps have degree 0. Hence by proposition
23 it extends uniquely to a derivation δ2 : T (Ks−1C̄)→ T (Ks−1C̄).

Proposition 30. δ1 and δ2 are indeed differentials on the graded algebra
T (s−1C̄). Moreover, the two differential δ1 and δ2 anti commute so that their
sum δ1 + δ2 is again a differential.
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Proof. To see that δ1 is a derivation one just has to write out the formulas.
After showing this, the fact that δ1 squares to zero follows from the fact that
dC does. We know already that δ2 is derivation so let us prove that it squares
to zero. Let s−1c be an element of s−1C̄ and let

∆̄(c) =
∑

i

ai1 ⊗ ai2.

We then note that the linear map s−1C̄ → T (s−1C̄) we used to define δ2 is
given explicitly by

s−1C̄ 3 s−1c 7→ −
∑

i

(−1)|a
i
1|s−1ai1 ⊗ s−1ai2.

Now let us call ∆̄(ai1) =
∑
j b
ij
1 ⊗ bij2 and ∆̄(ai2) =

∑
j f

ij
1 ⊗f ij2 . Then, using the

formula for δ2(s−1c) from above, the fact that δ2 is a derivation and the fact
that ∆̄ respects the grading of C̄ we get

δ2
2(s−1c) =

∑

ij

(−1)|b
ij
2 |s−1bij1 ⊗ s−1bij2 ⊗ s−1ai2 +

∑

ij

(−1)|f
ij
1 |−1s−1ai1 ⊗ s−1f ij1 ⊗ s−1f ij2 .

But since ∆̄ is coassociative we know
∑
ij s
−1bij1 ⊗s−1bij2 ⊗s−1ai2 =

∑
ij s
−2ai1⊗

s−1f ij1 ⊗ s−1f ij2 and since

(s−1C̄)⊗3 =
⊕

n,r,t∈Z
s−1C̄n ⊗ s−1C̄r ⊗ s−1C̄t

is a direct sum we see that the components, on each side of the equality, be-
longing to C̄n ⊗ C̄r ⊗ C̄t, must equal for all n, r, t ∈ Z. But then, if we fix n, r
and t and only consider the terms in the two sums

∑

ij

(−1)|b
ij
2 |s−1bij1 ⊗ s−1bij2 ⊗ s−1ai2 +

∑

ij

(−1)|f
ij
1 |−1s−1ai1 ⊗ s−1f ij1 ⊗ s−1f ij2

belonging to C̄n ⊗ C̄r ⊗ C̄t we have |bij2 | = |f ij1 | = r so if we still only consider
the terms belonging to C̄n ⊗ C̄r ⊗ C̄t we get

∑

ij

(−1)rs−1bij1 ⊗ s−1bij2 ⊗ s−1ai2 +
∑

ij

(−1)r−1s−1ai1 ⊗ s−1f ij1 ⊗ s−1f ij2 =

(−1)r
∑

ij

s−1bij1 ⊗ s−1bij2 ⊗ s−1ai2 + (−1)r−1
∑

ij

s−1ai1 ⊗ s−1f ij1 ⊗ s−1f ij2 = 0.

But since the same argument holds for all n, r and t we see that δ2
2(s−1c) is

indeed 0. Because δ2
2 is zero on the generators of ΩC it follows that δ2

2 = 0
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It remains to show that the two differentials anti commute. First we show
that δ1 ◦ δ2 + δ2 ◦ δ1 is zero on s−1C̄. To do this we recall that we have

δ1|s−1C̄ = 1⊗ dC : Ks−1 ⊗ C̄ → Ks−1 ⊗ C̄,

δ1|(s−1C̄)⊗2 = 1⊗ dC ⊗ 1⊗ 1 + 1⊗ 1⊗ 1⊗ dC : (Ks−1 ⊗ C̄)⊗2 → (Ks−1 ⊗ C̄)⊗2

and

δ2|s−1C̄ = (1⊗ τ ⊗ 1) ◦ (∆s ⊗ ∆̄) : Ks−1 ⊗ C̄ → (Ks−1 ⊗ C̄)⊗2.

Then we check

δ2 ◦ δ1|s−1C̄ = (1⊗ τ ⊗ 1) ◦ (∆s ⊗ ∆̄) ◦ (1⊗ dC) =

(1⊗ τ ⊗ 1) ◦ (∆s ⊗ (∆̄ ◦ dC)).

Using that dC is a coderivation we get

(1⊗ τ ⊗ 1) ◦ (∆s ⊗ ((1⊗ dC + dC ⊗ 1) ◦ ∆̄)) =

−(1⊗ τ ⊗ 1) ◦ (1⊗ 1⊗ 1⊗ dC + 1⊗ 1⊗ dC ⊗ 1) ◦ (∆s ⊗ ∆̄) =

−(1⊗ 1⊗ 1⊗ dC + 1⊗ dC ⊗ 1⊗ 1) ◦ (1⊗ τ ⊗ 1) ◦ (∆s ⊗ ∆̄) =

−δ1 ◦ δ2|s−1C̄

where the minus sign appears because the map (1⊗dC+dC⊗1) which is of degree
−1 jumps over the map ∆s which is also of degree −1. The above computations
shows that δ1 ◦ δ2 + δ2 ◦ δ1 is zero on s−1C̄. Now because δ1 ◦ δ2 + δ2 ◦ δ1 is zero
on the generators of ΩC an inductive argument show that it is in fact zero on
all of ΩC.

We have seen that the cobar construction of a coaugmented dga coalge-
bra is an augmented dga algebra (the augmentation is given by the projection
T (s−1C̄) → K). But the cobar construction is in fact a functor from the cate-
gory of conilpotent dga coalgebras to the category of augmented dga algebras.
Indeed, it assigns to any morphism of conilpotent dga coalgebras f : C → C ′

the map

1⊕
(⊕

n≥0

(1⊗ f |C̄)⊗n
)

: T (s−1C̄)→ T (s−1C̄ ′).

It is not so hard to check that this map is indeed a morphism of dga algebras
and that this assignment respects the identity and composition of maps
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2.2 The convolution algebra

In this section we give the set of linear maps from a dga coalgebra to a dga
algebra Hom(C,A) the structure of a dga algebra. We identify, in this algebra,
certain elements called twisting morphisms. These twisting morphisms give rise
to a chain complex structure on C ⊗A which we call twisted tensor products.

We will denote by Hom(C,A) the set of all linear maps from C to A. We
give it a graded structure by Hom(C,A)r := {f : C → A|f(Ci) ⊂ Ai+r}. Define
a multiplicaiton in Hom(C,A) by

f ? g := µ ◦ (f ⊗ g) ◦∆.

Since ∆ and µ have degree zero and f⊗g has degree |f |+|g| we see that ? respects
the grading on Hom(C,A). Finally we define a differential on Hom(C,A).

Proposition 31. The linear map ∂ : Hom(C,A)→ Hom(C,A) defined by

∂(f) = dA ◦ f − (−1)|f |f ◦ dC

makes (Hom(C,A), ?, ∂) into a dga algebra.

Proof. To see that ? is associative one just has to write out the formulas. Let
us check that ∂ is a differential. First we note that since dC and dA both have
degree −1 the map ∂(f) has degree |f |−1 which means ∂ is of degree −1. Next
we check that ∂ is a derivation for ?:

∂(f ? g) = dA ◦ (f ? g)− (−1)|f |+|g|(f ? g) ◦ dC =

dA ◦ µ ◦ (f ⊗ g) ◦∆− (−1)|f |+|g|µ ◦ (f ⊗ g) ◦∆ ◦ dC .
But using that dA is a derivation and dC is a coderivation we can move things
around until we get to

µ ◦
(
(dA ◦ f − (−1)|f |f ◦ dC)⊗ g

)
◦∆+

(−1)|f |µ ◦
(
f ⊗ (dA ◦ g − (−1)|g|g ◦ dC)

)
=

∂(f) ? g + (−1)|f |f ? ∂(g).

Checking that ∂2 = 0 again just comes down to writing out the formulas.

We are interested in certain special elements in this dga. These will play an
important roll in adjunction between the bar functor and the cobar functor.

Definition 32. An element α of the dga algebra Hom(C,A) is called a twisting
morphism if it has degree −1, satisfies the Mauer-Cartan equation α?α+∂(α) =
0 and if it is zero when composed with the augmentation map of A or with the
coaugmentation map of C. The subset consisting of all twisting morphisms of
Hom(C,A) is denoted Tw(C,A).
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Starting with two chain complexes (V, dV ) and (W,dW ) there is a natural
way to define a chain complex structure on their tensor product V ⊗W . Indeed,
we have already used that dV ⊗ 1 + 1⊗dW is a differential on the graded vector
space V ⊗ W . We will now introduce a different chain complex structure in
the case V = C is a dga coalgebra and W = A is a dga algebra and there is a
twisting morphism α : C → A. For this purpose we note that any linear map
α : C → A gives rise to a linear map dα : C⊗A→ C⊗A, namely the composite

C ⊗A C ⊗ C ⊗A C ⊗A⊗A C ⊗A∆⊗1 1⊗α⊗1 1⊗µ
.

Lemma 33. For α and β in Hom(C,A) we have the following relation

dα ◦ dβ = dα?β

Proof. We have

dα ◦ dβ = (1⊗ µ) ◦ (1⊗ α⊗ 1) ◦ (∆⊗ 1) ◦ (1⊗ µ) ◦ (1⊗ β ⊗ 1) ◦ (∆⊗ 1).

Using that µ is associative and ∆ is coassociative we can move things around
until we reach

(1⊗ µ) ◦ (1⊗ (µ ◦ (α⊗ β) ◦∆)⊗ 1) ◦ (∆⊗ 1) = dα?β .

Proposition 34. If α : C → A is a twisting morphism then the map d′α =
dα + dC ⊗ 1 + 1⊗ dA is a differential on C ⊗A. The chain complex (C ⊗A, d′α)
is referred to as the twisted tensor product of C and A and denoted C ⊗α A.

Proof. We need to show that d′2α = 0. Using that (1⊗ dA + dC ⊗ 1) squares to
zero we get

(dα + 1⊗ dA + dC ⊗ 1)2 = d2
α + dα ◦ (1⊗ dA + dC ⊗ 1) + (1⊗ dA + dC ⊗ 1) ◦ dα.

If we expand the second two terms we get

dα ◦ (1⊗ dA + dC ⊗ 1) + (1⊗ dA + dC ⊗ 1) ◦ dα =

dα ◦ (1⊗ dA) + dα ◦ (dC ⊗ 1) + (1⊗ dA) ◦ dα + (dC ⊗ 1) ◦ dα.
Using the definition of dα we see that the first and the third term above give

(1⊗µ)◦ (1⊗α⊗1)◦ (∆⊗1)◦ (1⊗dA) + (1⊗dA)◦ (1⊗µ)◦ (1⊗α⊗1)◦ (∆⊗1).

Using the fact that dA is a derivation for µ we can move things around until we
reach

(1⊗ µ) ◦ (1⊗ (dA ◦ α)⊗ 1) ◦ (∆⊗ 1) = ddA◦α.

Similarly one can show that dα◦(dC⊗1)+(dC⊗1)◦dα = dα◦dC . Then if we put
all of this together and use the previous lemma and the fact that composition
and tensor products of linear maps are additive operations, we get

(dα + 1⊗ dA + dC ⊗ 1)2 = d2
α + ddA◦α + dα◦dC = dα?α+∂(α).

But this last expression is zero since α satisfies the Mauer-Cartan equation.
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As we showed in the previous proposition any twisting morphism α : C → A
gives rise to a chain complex (C ⊗α A). We are particularly interested in those
that give rise to an acyclic chain complex.

Definition 35. A Koszul twisting morphism is a twisting morphism α : C → A
for which the twisted tensor product C ⊗α A is acyclic.

2.3 Bar-cobar adjunction and the fundamental theorem
of twisting morphisms

Twisting morphisms are closely related to the bar and cobar functors that we
introduced in the previous section. In fact, as we will see the bar and cobar
functors form a pair of adjoint functors and the easiest way to describe the
adjunction is through Tw(C,A).

Proposition 36. Let C be a conilpotent dga coalgebra and let A be an aug-
mented dga algebra. There are bijections

Homdga−alg(ΩC,A) ∼= Tw(C,A) ∼= Homconil. dga−coalg.(C,BA).

Proof. The first bijection goes as follows. To a morphism f : ΩC → A of
dga algebras we assign the map f̃ = f ◦ ι where ι : C → ΩC is defined by
1C 7→ 0, C̄ 3 c 7→ s−1c. Then f̃ has degree −1, vanishes on K ⊂ C and maps
C̄ into Ā. To see that f̃ satisfies the Mauer-Cartan equation we note that

0 = dA ◦ f(s−1c)− f ◦ δ1(s−1c)− f ◦ δ2(s−1c) =

dA ◦ f̃(c) + f̃ ◦ dC(c) + f̃ ? f̃ = ∂(f̃)(c) + f̃ ? f̃(c)

where the first equality follows from f being a chain map. On the other hand if
α ∈ Tw(C,A) we can define a degree zero map α′ : s−1C̄ → A by s−1c 7→ α(c).
By the universal property of the tensor algebra we get an algebra morphism
fα : ΩC → A. To see that fα is a chain map we let ∆̄(x) =

∑
i xi ⊗ yi which

gives

dA(fα(s−1c))− fα(dΩC(s−1c)) = dA(fα(s−1c))− fα(δ1(s−1c))− fα(δ2(s−1c)) =

dA(fα(s−1c)) + fα(s−1dC(c))− fα(
∑

i

(−1)|xi|s−1xi ⊗ s−1yi)) =

dA(fα(s−1c)) + fα(s−1dC(c))−
∑

i

(−1)|xi|fα(s−1xi)fα(s−1yi) =

dA(fα(s−1c)) + fα(s−1dC(c))−
∑

i

(−1)|xi|α(xi)α(yi) = ∂(α)(c) + α ? α(c) = 0.

Finally we check that these assignments are inverses of each other. First we
assign to f ∈ Homdga−alg(ΩC,A) the twisting morphism f̃ = f ◦ ι. Then we

assign to the twisting morphism f̃ the unique dga algebra morphism F : ΩC →
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A which satisfies F (s−1c) = f̃(c). But f(s−1c) = f ◦ ι(c) = f̃(c) so F = f . On
the other hand, if we assign to the twisting morphism α : C → A the unique
dga algebra morphism fα : ΩC → A which satisfies fα(s−1c) = α(c). To fα
we then assign the twisting morphism f̃α = fα ◦ ι which is precisely α since
fα(s−1c) = α(c). This proves the first bijection.

For the second bijection let g : C → BA be a morphism of conilpotent
dga coalgebras. Let g̃ be the composition π ◦ g where π : BA → A is zero
everywhere except on sĀ on which it is defined as sa 7→ a. Then g̃ is of degree
−1 it vanishes on K ⊂ C and it maps C̄ into Ā. Next we show that g̃ satisfies
the Mauer-Cartan equation. Let c ∈ C. Since g is a chain map we have

π ◦ g ◦ dC(C) = π ◦ dBA ◦ g(c). (4)

The left hand side is g̃ ◦ dC(c). The right hand side we can rewrite as

π ◦ d1 ◦ g(c) + π ◦ d2 ◦ g(c).

Let us first study the first term. For this purpose let g(c) = sc1 +M where M
consists of terms of word length other than one. Since d1 fixes word length and
π vanishes on everything of word length other than one we get π ◦ d1 ◦ g(c) =
π ◦ d1(sc1) = π(−sdA(c1)) = −dA(c1) = −dA ◦ π ◦ g(c) = −dA ◦ g̃(c).
Now we study the second term which I claim is precisely −g̃ ? g̃. To see this we
will show that the following diagram commutes

C BA BA A

C ⊗ C BA⊗BA A⊗A

g

∆C

d2

∆BA

π

g⊗g π⊗π

−µ .

This would prove the claim because composing the arrows on top gives us pre-
cisely π ◦ d2 ◦ g and going down, right, right and then up is precisely −g̃ ? g̃.
The first square however commutes because g is a morphism of coalgebras so
it remains to check that the pentagon to the right commutes. Because π ◦ d2

and (π ⊗ π) ◦ ∆BA both vanish on elements of BA of word lenght other than
two it remains to check that the pentagon commutes for elements of the form∑
i sai⊗sbi. Let us use small and large tensor symbols (⊗ and

⊗
) to distinguish

between elements of BA and BA⊗BA. We have

−µ ◦ (π ⊗ π) ◦∆BA

(∑

i

sai ⊗ sbi
)

=

−µ ◦ (π ⊗ π)
(∑

i

(1
⊗

sai ⊗ sbi + sai
⊗

sbi + sai ⊗ sbi
⊗

1)
)

=

−µ
(∑

i

(−1)|ai|+1ai ⊗ bi
)

=
∑

i

(−1)|ai|µ(ai ⊗ bi).

On the other hand we have

π ◦ d2

(∑

i

sai ⊗ sbi
)

= π
(∑

i

(−1)|ai|sµ(ai ⊗ bi)
)

=
∑

i

(−1)|ai|µ(ai ⊗ bi)
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so the diagram does indeed commute. But then we can rewrite the equation
(4) as

g̃ ◦ dC = −dA ◦ g̃ − g̃ ? g̃
or if we bring everything to the left hand side we get precisely

∂(g̃)(c) + g̃ ? g̃(c) = 0

and since c was arbitrary we see that g̃ satisfies the Mauer-Cartan equation so
it is a twisting morphism.

On the other hand if we start with a twisting morphism ψ : C → A we can
define a linear map ψ̂ as the composite

C Ā sĀ BA
ψ S

where the map S is defined by 1A 7→ 0 and a 7→ sa for a ∈ Ā. We see that ψ̂ has
degree zero. Since ψ is a twisting morphism ψ(1C) = 0 and since BA is cofree
on the vector space sĀ proposition 25 tells us that there is a unique coalgebra
morphism Ψ : C → BA which lifts ψ̂. To see that ψ̂ is in fact a morphism of
dga coalgebras we must show that

Ψ ◦ dC(c) = dBA ◦Ψ(c)

for any c ∈ C. To do this we recall from the proof of proposition 1.2.1 in [3]
that Ψ can be defined by the following formula

Ψ(c) =
∑

n≥1

ψ̂⊗n ◦ ∆̄n−1(c).

Then we have

Ψ◦dC(c) =
∑

n≥1

ψ̂⊗n◦∆̄n−1◦dC(c) =
∑

n≥1

n−1∑

i=0

ψ̂⊗n◦(1⊗i⊗dC⊗1⊗n−i)◦∆̄n−1(c) =

∑

n≥1

n−1∑

i=0

(ψ̂⊗i ⊗ (ψ̂ ◦ dC)⊗ ψ̂n−i−1) ◦ ∆̄n−1(c).

We also have
dBA ◦Ψ(c) = d1 ◦Ψ(c) + d2 ◦Ψ(c).

To give a more explicit description of the first term let d′A be the map defined
by sa 7→ −sdA(a). Then we get

d1◦Ψ(c) = d1

(∑

n≥1

ψ̂⊗n◦∆̄n−1(c)

)
=
∑

n≥1

n−1∑

i=0

(1⊗i⊗d′A⊗1⊗n−i−1)◦ψ̂⊗n◦∆̄n−1(c) =

∑

n≥1

n−1∑

i=0

(ψ̂⊗i ⊗ (d′A ◦ ψ̂)⊗ 1⊗n−i−1) ◦ ∆̄n−1(c).
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To give a more explicit description of the second term d2 ◦Ψ(c) let us define a
map S−1 : sĀ → A by sa 7→ a. Then we note that the differential d2 has the
following formula when restricted to (sĀ)⊗n

d2|(sĀ)⊗n = −
n−2∑

i=0

(1⊗i ⊗ (S ◦ µ ◦ (S−1 ⊗ S−1))⊗ 1n−i−2).

This gives

d2 ◦Ψ(c) = d2

(∑

n≥1

ψ̂⊗n ◦ ∆̄n−1(c)

)
=

−
∑

n≥1

n−2∑

i=0

(1⊗i ⊗ (S ◦ µ ◦ (S−1 ⊗ S−1))⊗ 1n−i−2) ◦ ψ̂⊗n ◦ ∆̄n−1(c) =

−
∑

n≥1

n−2∑

i=0

(ψ̂⊗i ⊗ (S ◦ µ ◦ (S−1 ⊗ S−1) ◦ ψ̂⊗2)⊗ ψ̂n−i−2) ◦ ∆̄n−1(c).

Because BA =
⊕

n≥0(sĀ)⊗n is a direct sum it is enough to check that the

component of Ψ ◦ dC(c) that lies in (sĀ)⊗n equals the component of dBA ◦Ψ(c)
that lies in (sĀ)⊗n for each n. Using the explicit expressions we have found this
amounts to showing that

n−1∑

i=0

(ψ̂⊗i ⊗ (ψ̂ ◦ dC)⊗ ψ̂n−i−1) ◦ ∆̄n−1(c) =

n−1∑

i=0

(ψ̂⊗i ⊗ (d′A ◦ ψ̂)⊗ 1⊗n−i−1) ◦ ∆̄n−1(c)−

n−1∑

i=0

(ψ̂⊗i ⊗ (S ◦ µ ◦ (S−1 ⊗ S−1) ◦ ψ̂⊗2)⊗ ψ̂n−i−1) ◦ ∆̄n(c).

If we rewrite the last sum in the following way

n−1∑

i=0

(ψ̂⊗i ⊗ (S ◦ µ ◦ (S−1 ⊗ S−1) ◦ ψ̂⊗2)⊗ ψ̂n−i−1) ◦ ∆̄n(c) =

n−1∑

i=0

(ψ̂⊗i ⊗ (S ◦ µ ◦ (S−1 ⊗ S−1) ◦ ψ̂⊗2 ◦ ∆̄)⊗ ψ̂n−i−1) ◦ ∆̄n−1(c)

and collect all three sums on the left side and use bilinearity of the tensor
product we are left with showing that

n−1∑

i=0

(ψ̂⊗i⊗
(
ψ̂◦dC−d′A◦ψ̂+(S◦µ◦(S−1⊗S−1)◦ψ̂⊗2◦∆̄)

)
⊗ψ̂n−i−1)◦∆̄n−1(c) = 0.
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But using that ψ̂(x) = sψ(x) and ψ(1C) = 0 the last expression can be written
as

s(∂(ψ)(x) + ψ ? ψ(x))

which is zero since ψ is a twisting morphism. So Ψ is indeed a morphism of dga
coalgebras.

To see that these assignments are inverses to each other let g : C → BA be
a morphism of conilpotent dga coalgebras. Then we assign to it the twisting
morphism g̃ = π ◦ g. Then to g̃ we assign the unique morphism of conilpotent
dga coalgebras C → BA that lifts S ◦ g̃. But if p : BA → sĀ we see that
p ◦ g = S ◦ π ◦ g = S ◦ g̃ so g lifts S ◦ g̃. If we on the other hand start with
a twisting morphism ψ, we assign to it the unique morphism of conilpotent
dga coalgebras Ψ that lifts S ◦ ψ. Then we assign to Ψ the twisting morphism
π◦Ψ = S−1 ◦p◦Ψ = S−1 ◦S ◦ψ = ψ. We have thus proved the second bijection.

When discussing these bijections it is helpful to have the following diagram
in mind

C BA

ΩC A

ι

fα

α π

gα

where ι, α and π are linear maps between graded vector spaces, fα is a morphism
of conilpotent dga coalgebras and gα is a morphism of augmented dga algebras.
When we refer to the (co)algebra morphisms corresponding to a twisting mor-
phism α we will usually denote them by fα and gα as in this diagram.

The following fundamental theorem on twisting morphisms gives a close
relation between quasi isomorphisms ΩC → A, Koszul twisting morphisms C →
A and quasi isomorphisms C → BA through the bijections from the proposition
above. We only sketch the proof and refer the reader to [3] for details.

Theorem 37. For any twisting morphism α : C → A, where C is a connected
wdga coalgebra and A is a connected wdga algebra which is connected with
respect to weight and homological degree the following are equivalent:
1) The twisted tensor product C ⊗α A is acyclic.
2) The map gα : ΩC → A corresponding to α through the bijections of the
previous proposition is a quasi isomorphism.
3) The map fα : C → BA corresponding to α through the bijections of the
previous proposition is a quasi isomorphism.

Proof. The proof depends on the following facts:

1) π : BA→ A is a Koszul twisting morhpism,

2) ι : C → ΩC is a Koszul twisting morphism,
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3) given a map f : C → C ′ between wdga coalgebra, a map g : A → A′

between wdga algebras and twisting morphisms α : C → A and α′ : C ′ → A′

such that f ⊗ g : C ⊗α A → C ′ ⊗α′ A′ is a chain map we have that if two out
of the maps f , g and f ⊗ g are quasi isomorphisms then so is the third.

Then to prove the equivalence 1) ⇐⇒ 2) we consider the map idC ⊗ gα :
C⊗ιΩC → C⊗αA. By the second fact C⊗ιΩC is acyclic. Also one checks that
idC ⊗ gα is a chain map which means, using fact 3), that α is a Koszul twisting
morphism if and only if gα is a quasi isomorphism. Similarly one proves the
equivalence 1) ⇐⇒ 3) by considering the map fα ⊗ idA : C ⊗α A→ BA⊗π A.

Remark 38. The theory introduced in chapter 2 before this last theorem works
just as well over an arbitrary commutative ring rather than a field. The proof
of this last theorem however, and in particular the proof of fact 3, cannot be
modified in any obvious way to work for arbitrary modules over some commu-
tative ring. The problem arises in the comparison lemma in [3] (which is what
we called fact 3 in the proof above). The proof of this lemma begins by filtering
the weight n part of the twisted tensor product by

Fs(C ⊗A)(n) :=
⊕

d+m≤s
C

(m)
d ⊗A(n−m).

Then one looks at the associated spectral sequence and notes that first differ-
ential is dC ⊗ 1A and the second differential is 1C ⊗ dA. Working over a field
one can then conlcude that the second page of the spectral sequence look like

E2
pq = ⊕nm=0Hp−m(C

(M)
• ) ⊗ H(t+m)(A

(n−m)
• ). But for this to be true when

working over some commutative ring we would need the extra requirement that

A
(m)
k and H(k)(C

(m)
• ) are flat modules.

3 Koszulity, formality and how they are related

The goal of this chapter is to give a detailed proof of theorem 2.9 of [1] restricted
to the case of associative algebras. By restricting ourselves to the associative
case we do not need to introduce operads. To prove proposition 2.5 of [1] we
devote one section to prove certain factorization and lifting properties in the
category of dga algebras.

3.1 Main theorem

Given a Koszul twisting morphism C → A we will in this section investigate
some equivalent conditions for when C and A are both formal. These equivalent
conditions use the notion of Koszul algebras and Koszul coalgebras. We begin
by giving some definitions

Definition 39. A weak equivalence of dga algebras A and A′ is just a quasi
isomorphism. We say that two dga algebras A and A′ are weakly equivalent if
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there is a zig-zag diagram of weak equivalences connecting them

A→̃B0←̃ · · · →̃Bk←̃A′.
A weak equivalence between dga coalgebras C and C ′ is a morphism of dga
coalgebras f such that Ωf : ΩC → ΩC ′ is a quasi isomorphism. We say that
two coalgebras C and C ′ are weakly equivalent if there is a zig-zag diagram of
weak equivalences connecting them

C→̃D0←̃ · · · →̃Dk←̃C ′.
Finally we say that a dga algebra (dga coalgebra) is formal if it is weakly
equivalent to its homology.

Now let A be a weight graded dga algebra with A(0) = K (recall that we
require weight gradings to be concentrated in non negative weight). Then A is
augmented with the augmentation map being the projection onto A(0). This
weight grading carries over to the bar construction. Because the bar construc-
tion comes with another natural grading, namely word length, the coalgebra
BA is in fact bigraded. Because Ā is concentrated in positive weight BA will
have a lower triangular structure which is depicted in table 1. Recall from the
previous chapter that the differential on BA is a sum d1 +d2 where d2 decreases
the word length by one. Let us denote by D the diagonal

⊕
i≥0(sA(1)⊗i) of

BA. Let us further denote the intersection D ∩ ker(d2) by A¡.

Definition 40. We say that the dga algebra A is Koszul if there is a weight
grading on A such that A(0) = K and the inclusion A¡ ↪→ BA is a quasi
isomorphism.

We can do something similar with coalgebras. Assume C is a weight graded
dga coalgebra and assume C(0) = K. C is then counital with counit given by
the projection C → C(0) = K. Also it is conilpotent because

∆̄ : C(n)→
⊕

k+l=n, k,l>0

C(k)⊗ C(l)

lowers weight in each factor. The weight grading on C gives a weight grading on
ΩC. ΩC is then bigraded, by weight and word length. Because C̄ is concentrated
in positive degree ΩC will have a lower triangular structure as depicted in table
2. The differential on ΩC is a sum δ1 +δ2 where δ2 increases the word length by
one. Let us denote by DC the diagonal

⊕
n(s−1C(1))⊗n of ΩC. Let us further

denote by C ¡ the quotient DC/(imδ2 ∩DC).

Definition 41. We say that the dga coalgebra C is Koszul if there is a weight
grading on C such that C(0) = K and the projection ΩC → C ¡ is a quasi
isomorphism.

Proposition 42. Let κ : C → A be a Koszul twisting morphism where C is
a coaugmented connected dga coalgebra and A is an augmented connected dga
algebra. If C and A both have trivial differentials then C and A are Koszul.
Moreover C ∼= A¡ and A ∼= C ¡.
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Proof. Because κ is a twisting morphism we get a commutative diagram

C BA

ΩC A

fκ

κι π

gκ

where fκ is a morphism of dga coalgebras and gκ is an morphism of dga algebras.
Moreover, since κ is a Koszul twisting morphism it follows from the fundamental
theorem of twisting morphisms that fκ and gκ are quasi isomorphisms. Note
that A and C are weight graded by homological grading because they both
have trivial differentials so the fundamental theorem of twisting morphisms does
indeed apply. Now we define a weight grading on C by

C(p) = f−1
κ

(
(sĀ)⊗p

)
.

Because fκ is a morphism of augmented coalgebras C(0) = f−1
κ (K) = K. Next

we will define a weight grading on A. First we note that since the differential
on C is trivial the differential on ΩC increases word length by precisely 1. From
this it follows that the homology of the cobar construction admits a weight
grading

H•(ΩC) =
⊕

p≥0

ker(dΩC : (s−1C)⊗p → s−1C)⊗p−1)

im(dΩC : (s−1C)⊗p+1 → s−1C)⊗p)
.

But then we can transport this weight grading to A via

H•(ΩC) ∼= H•(A) = A

where the last equality follows from the fact that dA = 0.
Now we show that A¡ ↪→ BA is a quasi isomorphism. To do this I claim

that κ vanishes outside weight 1. Indeed this follows from that fact that π
vanishes outside word length 1. Also I claim that im(κ) ⊂ A(1). Indeed,
Since κ vanishes outside C(1) it is enough to check that κ(C(1)) ⊂ A(1). Let
c ∈ C(1). Then ι(c) = s−1c ∈ s−1C(1) lies on the diagonal of ΩC. Because
dΩC increases word length by precisely 1 any element on the diagonal is a cycle.
So [s−1c] ∈ H∗(ΩC)(1) and gκ(s−1c) = (gκ)∗[s−1c] ∈ A(1). Since κ = gκ ◦ ι it
follows that κ lands in A(1). But since im(κ) ⊂ A(1) it follows from how the
second bijection of proposition 36 is defined that fκ(C) ⊂ DA. Also since C has
trivial differential fκ(C) ⊂ ker(dBA) so fκ(C) ⊂ A¡. I claim that this inclusion
is in fact an equality. To see this let x ∈ A¡. Because fκ is a quasi isomorphism
there is a cycle z ∈ C such that fκ(z) = x+ b for some boundary b. Because fκ
lands on the diagonal DA b is a boundary in the diagonal but D ∩ imdBA = 0
so fκ(z) = x and fκ(C) = A¡ and since fκ is a quasi isomorphism and dC = 0
fκ must be injective and then C ∼= A¡. But this implies A is Koszul because we
have a commutative diagram

C BA

A¡

∼
∼= .
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Next we show that also p : ΩC � C ¡ is a quasi isomorphism. To do this I claim
that ker(p) = ker(gκ). For the inclusion (⊂) we note that since κ vanishes
outside C(1) it follows from how the first bijection of proposition 36 is defined
that gκ vanishes outside the diagonal DC . Also since gκ is a chain map it takes
boundaries to boundaries but A has trivial differential so gκ vanishes on imdΩC

aswell. For the inclusion (⊃) suppose x ∈ ker(gκ). Then since both p and
gκ vanish outside DC we can assume x ∈ DC . But dΩC is trivial on DC so
then x is a cycle and (gκ)∗[x] = 0. But gκ is quasi isomorphism so x must be
a boundary and then p(x) = 0. This means gκ descends to an injective map
ĝκ : C ¡ → A and since A has trivial differential and gκ is a quasi isomorphism
gκ is surjective and then gκ is too. So C ¡ ∼= A. But then C is Koszul because
we have a commutative diagram

ΩC A

C ¡

∼
∼= .

Now we are ready to state the main theorem. We will however postpone the
proof of it until the end of this chapter.

Theorem 43. Let κ : C → A be a Koszul twisting morphism where A is a
connected dga algebra and C is a connected dga coalgebra. The following are
equivalent:

(1) C and A are formal.

(2) A is formal and H•(A) is Koszul.

(3) C is formal and H•(C) is Koszul.

3.2 Factorisation- and lifting properties in the category of
dga algebras

In this section we show that the morphisms of augmented dga algebras have
certain nice factorization and lifting properties. The main purpose of this section
is to prove the following result.

Proposition 44. Let κ : C → A be a Koszul twisting morphism where A is
a connected dga algebra and C is a connected dga coalgebra. If C ∼ C ′ and
A ∼ A′ then there is a Koszul twisting morphism κ′ : C ′ → A′.

But the theory developed in this chapter has a broader interest and is part
of what is often called homotopical algebra.

First we recall that given a chain complex (V, dV ) the tensor algebra T (V )
is an augmented dga algebra. Indeed by proposition 23 the composition

V V T (V )
dV
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induces a unique derivation on T (V ) and because d2 = 0 on the generators it
follows that d2 = 0.

Next, we show that the category of augmented dga algebras has pushouts.
Consider the following diagram of augmented dga algebras and morphisms of
such

C B

A

f

g

. (∗)

We construct its pushout as follows. Think of (Ā⊕ B̄, d = dA ⊕ dB) as a chain
complex. Then we saw that the tensor algebra T (Ā⊕ B̄) is an augmented dga
algebra. In the following proposition we show that a pushout of the diagram
above can be defined as

A ∗f,g B := T (Ā⊕ B̄)/I

where I is the two sided ideal generated by all elements of the following form

a1 ⊗ a2 − µA(a1 ⊗ a2), b1 ⊗ b2 − µB(b1 ⊗ b2), f(c)− g(c)

for a1, a2 ∈ Ā b1, b2 ∈ B̄ and c ∈ C̄.

Proposition 45. A ∗f,g B is an augmented dga algebra. Moreover A ∗f,g B is
a pushout of the diagram (∗)

Proof. To prove this we first note that I is generated by homogenous elements
(µA, µB , f g are all linear maps of degree zero) so I is a graded ideal and then
T (Ā ⊕ B̄)/I inherits a grading from T (Ā ⊕ B̄). Next we show that d(I) ⊂ I
which would then imply d descends to a differential on A ∗f,g B. It is enough
that d(α) ∈ I on the generators α. We have

d(a1 ⊗ a2 − µA(a1 ⊗ a2)) =

dA(a1)⊗ a2 − µA(dA(a1)⊗ a2) + (−1)|a1|a1 ⊗ dA(a2)− (−1)|a1|µA(a1 ⊗ dA(a2))

which is in I. Similarly d(b1 ⊗ b2 − µB(b1 ⊗ b2)) ∈ I. Finally we check that

d(f(c)− g(c)) = dA(f(c))− dB(g(c)) = f(dC(c))− g(dC(c)) ∈ I.

For the second statement suppose we have a commutative diagram of the form

C B

A D

f

g

k

h

.

Then we claim there is a unique morphism of augmented algebras φ : A∗f,gB →
D such that φ ◦ iA = h and φ ◦ iB = k where iA : A → A ∗f,g B is defined by
1A 7→ 1 and Ā 3 a 7→ a and similarly for iB : B → A ∗f,g B. But since we have
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a linear map h ⊕ k : Ā ⊕ B̄ → D the universal property of the tensor algebra
gives us a unique morphism of algebras φ̃ : T (Ā ⊕ B̄) → D. Let us check that
φ̃(I) = 0. We have

φ̃(a1 ⊗ a2 − µA(a1 ⊗ a2)) = h(a1)h(a2)− h(µA(a1 ⊗ a2)) =

h(a1)h(a2)− h(a1)h(a2) = 0

and similarly φ̃(b1⊗b2−µB(b1⊗b2)) = 0. Also φ̃(f(c)−g(c)) = h◦f(c)−k◦g(c) =
0. So we get a well defined map φ : A ∗f,g B → D which makes everything
commute. Also this map φ is unique because if there was some other map φ′

then φ and φ′ agrees on iA(A) and iB(B) which generate A ∗f,g B so they agree
everywhere.

We will now use pushouts to construct new algebras from old ones by adding
generators. This construction reminds us of adding cells to topological spaces
because it can be used to turn cycles of the original algebra into boundaries.
Let A be a dga algebra. Let V be a chain complex with zero differential and let
CV = V ⊕ sV be the chain complex with differential defined by

v 7→ 0, sv 7→ v.

The composition V ↪→ CV ↪→ T (CV ) induces an algebra morphism T (V ) →
T (CV ). Now if we choose a basis {ei} for V and to each basis element a cycle of
A ai we can define a morphism of dga algebras T (V )→ A by specifying ei 7→ ai.
In this scenario we say that a dga algebra B is obtained from A by adding cells
if B fits into a pushout diagram

T (V ) T (CV )

A B

.

Moreover, we say that a morphism of augmented dga algebras f : A → B is a
relative cell algebra inclusion if there is a sequence

A = A0 → A1 → A2 → ...

such that Ai is obtained from Ai−1 by adding cells and such that B is the colimit
of this sequence.

Proposition 46. Let f : A→ B be a relative cell algebra inclusion. Then f has
the following lifting property. For any surjective quasi isomorphism p : X � Y
and commutative diagram

A X

B Y

h

f p

k

there exists H : B → X such that H ◦ f = h and p ◦H = k.
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Proof. We prove this in four steps.
Step 1 : We show that for any vector space V the inclusion V ↪→ CV has

the corresponding lifting property in the category of chain complexes. Indeed,
consider the commutative diagram

V X

CV Y

h

i p

k

where p is a surjective quasi isomorphism. Then I claim that for each v ∈ V
there exists a x ∈ X such that dX(x) = h(v). To see this, note that since v is
a cycle in V and h is a chain map h(v) is a cycle in X. But then [ph(v)] is an
element of H(Y ). But

[ph(v)] = [k(v)] = [kdCV (sv)] = [dY (k(sv))] = 0

and since p• : H(X) → H(Y ) is an isomorphism [h(v)] = 0. In other words
h(v) is a boundary so there is an x ∈ X such that h(v) = dX(x). Moreover, I
claim that we can choose x such that p(x) = k(sv). To see this let x′ be such
that dX(x′) = h(v). Then since dY k(sv) = k(v) = ph(v) = pdX(x′) = dY p(x

′)
we see that p(x′) − k(sv) ∈ ker(dY ). But then since p• : H(X) ∼= H(Y )
there is a cycle w ∈ X such that [p(w)] = [p(x′) − k(sv)] or in other words
p(w) = p(x′) − k(sv) + dY (a) for some a ∈ Y . But since p is surjective there
is a c ∈ X such that p(c) = a. If we then set x = x′ − w + dX(c) we have
dX(x) = dX(x′) = h(v) and

p(x) = p(x′)− p(w) + pdX(c) = p(x′)− p(x′) + k(sv) + dY (a)− dY p(c) =

k(sv) + dY (a)− dY (a) = k(sv).

Now we can define H : CV = V ⊕sV → X as follows. Let {ei} be a basis for V .
Then {ei} ∪ {sei} is a basis for CV . We define H by ei 7→ h(ei) and sei 7→ xi
where xi ∈ X is an element such that p(xi) = k(sei) and dX(xi) = h(ei) (such
xi exist by the argument above). Then H is a chain map by construction and
H ◦ i = h and p ◦H = k.

Step 2 : We show that the induced morphism of augmented dga algebras
T (V ) → T (CV ) has the lifting property. For this purpose we consider the
following commutative diagram of dga algebras

T (V ) X

T (CV ) Y

h

i p

k

.

By only considering the underlying chain complexes we get a commutative dia-
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gram of chain complexes

V T (V ) X

CV T (CV ) Y

h

i p

k

.

From the first step of this proof we know there is a linear map H : CV → X
which turns the commutative (big) rectangle into two commutative triangles. By
the universal property of the tensor algebra there is a unique algebra morphism
H̃ : T (CV )→ X such that

X

CV T (CV )

H

H̃

commutes. But then the linear map V ↪→ T (V ) → X extends to two algebra
morphisms h : T (V ) → X and H ◦ i : T (V ) → X so by the universal property
of T (V ) we get h = H̃ ◦ i. Also the linear map CV ↪→ T (CV )→ Y extends to
two algebra morphisms k : T (CV ) → Y and p ◦ H̃ : T (CV ) → Y so we must
have p ◦ H̃ = k. The fact that H̃ is a chain map follows from H being a chain
map.

Step 3 : We show that if Ai+1 is obtained from Ai by adding cells then the
map Ai → Ai+1 has the lifting property. Again we consider a commutative
diagram

Ai X

Ai+1 Y

j

h

p

k

where p is a surjective quasi isomorphism. Because Ai+1 is obtained from Ai
by adding cells we get a commutative diagram

T (V ) Ai X

T (CV ) Ai+1 Y

s

j

h

p

t k

where the left square is a pushout diagram. In step 2 we proved there is a map
H̃ : T (CV )→ X such that the big rectangle above splits into two commutative
triangles. But then since the left square is a pushout diagram we get a map
H : Ai+1 → X such that H ◦ t = H̃ and H ◦ j = h. It remains to check that
p ◦ H = k. This too follows from the fact that the left square is a pushout
because the maps p ◦ h : Ai → Y and k ◦ t : T (CV )→ Y induces a unique map
Ai+1 → Y but both k and p ◦H fit.
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step 4 : We show that the relative cell algebra inclusion f : A → B has the
lifting property in the statement of the proposition. Since f is a cell algebra
inclusion there is a diagram

A = A0 → A1 → A2 → ...

and B is the colimit of this diagram. This means we have maps fi : Ai → B
such that

... Ai−1 Ai Ai+1 ...

B

fi−1 fi
fi+1

commutes for all i > 1. Starting with the commutative diagram

A X

B Y

h

f p

k

we can replace f and get a new commutative diagram

A X

A1 B Y

h

p

f1 k

and since A1 is obtained from A by adding cells we saw in step 3 of this proof
that there exists H1 : A1 → X such that

A X

A1

h

H1

commutes and k ◦ f1 = p ◦H1. But then we get a commutative diagram

A1 X

A2 B Y

H1

p

f2 k

and we get a map H2 such that

A1 X

A2

H1

H2
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commutes and k ◦ f2 = p ◦H2. Continuing like this we get maps Hi : Ai → X
such that

Ai X

Ai+1

Hi

Hi+1

commutes and k ◦ fi = p ◦Hi for all i. But since B = ColimAi we get a map
H : B → X such that Hi = H◦fi for all i. In particular h = H0 = f0◦H = f◦H.
It remains to check that p ◦ H = k. This however follows from the universal
property of a colimit because we get maps k ◦ fi : Ai → Y such that

Ai Ai+1

Y

k◦fi
k◦fi+1

commutes for all i. But then there is a unique map F : B → Y such that
k ◦ fi = F ◦ fi but both k and p ◦H fits as F so they must equal.

Next we will prove an extremely useful factorization property that mor-
phisms in the category of augmented dga algebras enjoy.

Proposition 47. Any morphism of augmented dga algebras f : A→ B factors
as f = p ◦ j where j is a relative cell algebra inclusion and a quasi isomorphism
and p is surjective. Moreover j has the following lifting property: for any
surjective morphism q : X → Y and commutative diagram

A X

B X

h

j q

k

there exists a map H : B → X such that H ◦ j = h and q ◦H = k.

Proof. Let V be the graded vector space with basis {s−1eb}b∈B where |eb| =
|b| − 1. Let A[eb]b∈B be the algebra we get from the pushout

T (V ) T (CV )

A A[eb]b∈B

uA◦εT (V ) (∗)

where the leftmost map is the composite of the augmentation of T (V ) and the
unit of A. Then let W be the graded vector space with basis {s−1xb}b∈B where
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|xb| = |b|. Then we define A[eb, xb, dxb = eb]b∈B as the pushout

T (W ) T (CW )

A[eb]b∈B A[eb, xb, dxb = eb]b∈B

s−1xb 7→eb . (∗∗)

Then let j : A → A[eb, xb, dxb = eb]b∈B be the inclusion. Further let f ′ :
A[eb]b∈B → B be the map induced by f : A→ B and T (CV )→ K→ B. Then
we let p : A[eb, xb, dxb = eb]b∈B → B be the map induced by f ′ : A[eb]b∈B → B
and T (CW ) → B, s−1xb 7→ db, xb 7→ b. Now I claim that p ◦ j = f . Indeed
if we denote by i : A → A[eb]b∈B and i′ : A[eb]b∈B → A[eb, xb, dxb = eb]b∈B we
see that f = f ′ ◦ i = p ◦ i′ ◦ i = p ◦ j.

The fact that j is a cell algebra algebra inclusion follows from the fact that
A[eb, xb, dxb = eb]b∈B was obtained from A in two steps by adding cells. Also,
p is surjective by construction.

It remains to check that j has the lifting property.
We first show that the linear map 0 → CW has the corresponding lifting

property in the category of chain complexes. Indeed, consider the following
commutative diagram of chain complexes

0 X

CW Y

p

where p is surjective. We can then define H : CW → X by xb 7→ cb where cb is
any element in the preimage p−1(k(xb)) and s−1xb 7→ dX(cb).

As in the proof of the previous proposition it then follows that the morphism
of dga algebras T (0) = K→ T (CW ) has the desired lifting property.

But using the fact that (∗) and (∗∗) are pushout diagrams one can show that
there is a pushout diagram

K A

T (CW ) A[eb, xb, dxb = eb]b∈B

l j . (∗ ∗ ∗)

and then we are done because we have seen that K → T (CW ) has the desired
lifting property and as in the proof of the previous proposition we get that j has
it too. Finally we show that j is a quasi isomorphism. To do this we introduce
the dga algebra

A[CW ] = K⊕ Ā⊕ (Ā⊗ CW ⊗ Ā)⊕ (Ā⊗ CW ⊗ Ā⊗ CW ⊗ Ā)⊕ ...

with multiplication given by

a1 ⊗ s−1xb ⊗ ...⊗ xb′ ⊗ an
⊗

a′1 ⊗ xb′′ ⊗ ...⊗ a′m 7→
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a1 ⊗ s−1xb ⊗ ...⊗ xb′ ⊗ ana′1 ⊗ xb′′ ⊗ ...⊗ a′m
and where the differential is obtained from dA and dCW by taking tensor prod-
ucts and direct sums. Now I claim that A[CW ] also fits into the pushout diagram
(∗ ∗ ∗) where T (CW ) is identified with the subalgebra

K⊕ (K1A ⊗ CW ⊗K1A)⊕ (K1A ⊗ CW ⊗K1A ⊗ CW ⊗K1A)⊕ ... ⊂ A[CW ]

and A is identified with the subalgerba K⊕ Ā ⊂ A[CW ]. We have to show that
given a commutative diagram

K A

T (CW ) D

φ1

φ2

there is a unique morphism φ : A[CW ]→ D such that

T (CW ) A[CW ] A

D

φ2 φ
φ1

commutes. If φ exists it is unique because A and T (CW ) generate A[CW ]. For
existence we define φ(a1⊗s−1xb⊗...⊗x′b⊗an) = φ1(a1)φ2(s−1x) · · ·φ2(x′b)φ1(an).
This is well defined because on each direct summand Ā⊗CW⊗Ā⊗CW⊗ ...⊗Ā
it is the composition of φ1 ⊗ φ2 ⊗ φ1 ⊗ φ2 ⊗ ...⊗ φ1 and the product in D. The
fact that φ is a chainmap and an algebra morphism follows from the fact that
φ1 and φ2 are. But then since A[CW ] and A[eb, xb, dxb = eb]b∈B both fit in the
pushout diagram (∗ ∗ ∗) there is an isomorphism A[CW ] ∼= A[eb, xb, dxb = eb]
which fixes A. Because CW is acyclic it follows from Kunneth’s formula [9]
that H(A[CW ]) = K⊕H(Ā) = H(A) and the inclusion A ↪→ A[CW ] is a quasi
isomorphism but then so is j : A ↪→ A[eb, xb, dxb = ex]b∈B because there is a
commutative diagram

A A[eb, xb, dxb = eb]b∈B

A[CW ]

j

∼ ∼= .

We prove one final lifting property. In the language of homotopical algebra
this shows that shows that ΩC is cofibrant.

Proposition 48. Let C be a coaugmented dga coalgebra which is connected.
Then the the unit map K→ ΩC has the following lifting property: For any sur-
jective quasi isomorphism of dga algebras p : A→ B and dga algebra morphism
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f : ΩC → B we can find a lift H as in the diagram below

A

ΩC B

p

f

H .

Proof. We define maps Hn : T (s−1(⊕ni=0C̄i)) → A inductively. Set H−1 :
T (0) = K → A be the unit map for A. Assume by induction that we have
constructed a morphism of augmented dga algebras Hn−1 such that

A

T (⊕n−1
i=0 s

−1C̄i) ΩC B

p
Hn−1

f

commutes. This gives us a commutative diagram of vector spaces

A

⊕n−1
i=0 s

−1C̄i ΩC B

p
φn−1

f

where φn−1 is the composition ⊕n−1
i=0 s

−1C̄i T (⊕n−1
i=0 s

−1C̄i) A
Hn−1

.

We will extend it to a map φn : ⊕ni=0s
−1C̄i → A. Let {enα} be a basis for

C̄n. Let zα = Hn−1(dΩC(s−1enα)). Note that Hn−1 is defined on dΩC(enα) be-
cause dΩC = d1 + d2 where d1 is induced by dC which maps enα into ⊕n−1

i=0 s
−1C̄i

and d2 which is induced by the coproduct maps enα into

⊕

i+j=n

s−1C̄i ⊗ s−1C̄j ⊂ T (⊕n−1
i=0 s

−1C̄i).

Because dΩC(s−1enα) is a cycle in T (⊕n−1
i=0 s

−1C̄i) and Hn−1 is a chain map zα is
a cycle too. Also dΩC(s−1enα) is a boundary in ΩC so p(zα) = f(dΩC(s−1enα))
is a boundary in B. But since p is a quasi isomorphism this implies zα is a
boundary in A. Let aα ∈ A be such that dA(aα) = zα. Then since

dB(p(aα)) = p(Hn−1(dΩC(s−1enα))) = f(dΩC(s−1enα)) = dB(f(s−1enα))

we see that p(aα) − f(s−1enα) is a cycle in B. But the fact that p is surjective
and that p is a quasi isomorphism implies that there is a cycle a′α ∈ A such that
p(a′α) = p(aα) − f(s−1enα). Then dA(aα − a′α) = dA(aα) = Hn−1(dΩC(s−1enα))
and p(aα−a′α) = f(s−1enα). We can now define a linear map φn : ⊕ni=0s

−1C̄i →
A by φn = φn−1 on ⊕n−1

i=0 s
−1C̄i and φn(enα) = aα − a′α. This induces Hn :

T (⊕ni=0s
−1C̄i)→ A and Hn is a morphism of dga algebras because is commutes

with the differential on all the generators by construction. Moreover we have
f |T (⊕ni=0s

−1C̄i) = p ◦Hn by construction.
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Now we are ready to prove proposition 45.

Proof. We will prove four special cases from which the proposition will then
follow. As the first case let’s assume there is a weak equivalence C ′ → C and
A = A′. Then since κ : C → A is a Koszul twisting morphism there is a quasi
isomorphism ΩC → A (fundamental theorem of twisting morphisms). But since
there is a weak equivalence C → C ′ we get a quasi isomorphism ΩC ′ → ΩC and
since composition of quasi isomorphisms is again a quasi isomorphism we get
a quasi isomorphism ΩC ′ → A and then there is a Koszul twisting morphism
κ′ : C → A (fundamental theorem of twisting morphisms).

The second case where we assume C = C ′ and assume there is a weak
equivalence A→ A′ is very similar to the first case.

As our third case we assume there is a weak equivalence C → C ′ and A = A′.
Then there is a quasi isomorphism f : ΩC → ΩC ′. I claim that there is one in
the opposite direction as well. Indeed, we know that f admits a factorization
f = p ◦ j where p is surjective and j is a quasi isomorphism which has the
lifting property described in proposition 48. But since f and j are both quasi
isomorphisms it follows that p must be too. We get a commutative diagram

K ΩC B

ΩC ′ ΩC ′

j

p

=

.

By proposition 49 we get a map H

K ΩC B

ΩC ′ ΩC ′

j

p

=

H

such that everything commutes. Also, because p is a quasi isomorphism so is
H. Next consider the commutative diagram

ΩC ΩC

B K

=

j .

Because of the lifting property that j enjoys we get a map h as in the diagram

ΩC ΩC

B K

=

j h

and beacuse j is a quasi isomorphism h is too. But then h ◦H : ΩC ′ → ΩC is a
quasi isomorphism and composing with the quasi isomorphism ΩC → A we get

39



a quasi isomorphism ΩC ′ → A and then there is a Koszul twisting morphism
C ′ → A.

As our last case we consider C = C ′ and there is a quasi isomorphism
g : A′ → A. Factorize g as q◦i where p is surjective and i is a quasi isomorphism
with the lifting property described in proposition 48. By proposition 49 we get
the dashed arrow φ in the diagram below

A′ D

ΩC A

i

q
φ .

Because i and g = q ◦ i are quasi isomorphisms q is too. But then since the
bottom arrow is a quasi isomorphism φ must be as well. Now by the lifting
property that i enjoys we get the dashed arrow k in the diagram below.

A′ A′

D K

=

i
k .

Because i is a quasi isomorphism k is too. But then k ◦ φ : ΩC → A′ is a quasi
isomorphism and then there is a Koszul twisting morphism κ′ : C → A′ (by the
fundamental theorem of twisting morphisms).

Before moving on to the proof of the main theorem we state a proposition
very similar to proposition 49 which we will use later in chapter 4.

Proposition 49. Let W be a graded coalgebra which as a vector space has an
extra weight grading W = ⊕n≥0W(n). If (T (W ), d) is a dga algebra such that
d is homogenous of degree −1 with respect to weight then (T (W ), d) has the
same lifting property as ΩC in proposition 49.

Proof. The proof is very similar to that of proposition 49 but instead of using
induction on the homological degree we use induction on the weight.

3.3 Proof of main theorem

The following lemma is the final thing needed to prove the main theorem.

Lemma 50. Suppose there is a quasi isomorphism of dga coalgebras φ : C →
BA. Then it is a weak equivalence, i.e. ΩC → ΩBA is a quasi isomorphism.

Proof. There are commutative diagrams,

BA BA

ΩBA A

=

π

ε

,

C BA

ΩC A

φ

κ π

ψ
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where all the vertical maps are quasi isomorphisms. Now I claim that we have
an equality of maps ε ◦ Ωφ = ψ. To see this let s−1c1 ⊗ ...⊗ s−1ck be an
element of ΩC. Then from how the functor Ω is defined on morphisms we see
that

Ωφ(s−1c1 ⊗ ...⊗ s−1ck) = φ(c1)⊗ ...⊗ φ(ck).

But then, since ε is the algebra morphism corresponding to the twisting
morphism π through the bijections of proposition 36 we see that

ε ◦ Ωφ(s−1c1 ⊗ ...⊗ s−1ck) = π ◦ φ(c1) · · ·π ◦ φ(ck).

But then by commutativity of the diagram above we see that the last
expression equals κ(c1) · · ·κ(ck) which is precisely ψ(s−1c1 ⊗ ...⊗ s−1ck).
Now since ε and ε ◦ Ωφ = ψ are both quasi isomorphisms it follows that Ωφ is
too.

We are ready to prove the main theorem.

Proof. We begin by proving that (1) =⇒ (2) and (3). Assume C and A are
formal. By proposition 45 there is a Koszul twisting morphism κ′ : H•(C) →
H•(A). Since these have trivial differential it follows from proposition 43 that
H•(C) and H•(A) are Koszul.

Next we prove (2) =⇒ (1). Since A ∼ H•(A) =: A′ proposition 45 tells
us there is a Koszul twisting morphism κ′ : C → A′. By the fundamental
theorem of twisting morphisms there is a quasi isomorphism C → BA′ and by
the previous lemma this is in fact a weak equivalence. But A′ is Koszul so the
inclusion A′¡ ↪→ BA′ is a quasi isomorphism. The previous lemma implies that
this is in fact a weak equivalence. ButA′¡ has trivial differential soH•(A′¡) = A′¡.
From what we just said we know that H•(A′¡) ∼= H•(BA′) and since we had
a quasi isomorphism C → BA′ we have an isomorphism H•(C) ∼= H•(BA′).
Putting all of this together gives a zig-zag diagram

C→̃BA′←̃A′¡ = H•(A
′¡) ∼= H•(BA

′¡) ∼= H•(C)

which proves that C is formal.
Finally we prove (3) =⇒ (1). Since C is now formal we know C ∼ H•(C) =:

C ′. By proposition 45 there is a Koszul twisting morphism κ′ : C ′ → A.
But then there is a quasi isomorphism ΩC ′ → A. Also, since C ′ is Koszul
there is a quasi isomorphism ΩC ′ → C ′¡. But C ′¡ has trivial differential so
H•(C ′¡) = C ′¡. Since we already said there are quasi isomorphisms ΩC ′ → A
and ΩC ′ → C ′¡ we get isomorphisms H•(A) ∼= H•(ΩC ′) ∼= H•(C ′¡). Since quasi
isomorphisms between dga algebras are by definition weak equivalences we get
a zig-zag diagram

A←̃ΩC ′→̃C ′¡ = H•(C
′¡) ∼= H•(ΩC

′) ∼= H(A)

which proves that A is formal.
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3.4 Alternative definition of Koszul algebras

The definition of Koszul algebras that we gave in section 3.1 is somewhat differ-
ent from the classical notion of Koszul algebras in two ways. The more classical
way refers to some quadratic data of the algebra when defining the Koszul prop-
erty, where as the definition we use is not a priori limited to quadratic algebras.
The other difference is that the definition we use allows for the algebra to come
with a differential. We will in this section show that for algebras with triv-
ial differential a Koszul algebra using our definition is equivalent to the more
classical. Let us briefly recall the classical definition.

Definition 51. A quadratic data (V,R) is a graded vector space V and a
subspace R ⊂ V ⊗ V . A quadratic algebra with quadratic data (V,R) is a
graded algebra A(V,R) isomorphic to T (V )/(R). A quadratic coalgebra with
quadratic data (V,R) is a graded coalgebra C(V,R) isomorphic to the following
subcoalgebra of the tensor coalgebra

K⊕ V ⊕R⊕
(
R⊗ V ∩ V ⊗R

)
⊕ ...⊕

( ⋂

i+2+j=n

V ⊗i ⊗R⊗ V ⊗j
)
⊕ ...

One can show [3] that given quadratic data (V,R) there is a twisting mor-
phism

α : C(sV, s2R)→ A(V,R)

which is zero everywhere except on the weight one part sV where it is defined
by sV 3 sv 7→ v ∈ V . The more classical definition of Koszul algebras is as
follows.

Definition 52. The quadratic algebra (V,R) is Koszul in the classical sense if
the twisting morphism α : (sV, s2V )→ (V,R) is a Koszul twisting morphism.

Proposition 53. If a connected weight graded algebra A is Koszul as in section
3.1 then it is quadratic and Koszul in the classical sense.

Proof. A being Koszul means by definition that A¡ ↪→ BA is a quasi isomor-
phism. By the fundamental theorem of twisting morphisms we have a commu-
tative diagram

BA

A¡ A

ΩA¡

∼

∼

where the arrows marked with ∼ are quasi isomorphisms. Almost by definition
A¡ is the weight graded coalgebra

A¡ = K⊕ sA(1)⊕ (sA(1))⊗2 ∩ ker(d2 : (sA(1))⊗2 → sA(2))⊕ ...
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⊕
⋂

i+2+j=n

(
(sA(1))⊗i⊗(sA(1))⊗2∩ker(d2 : (sA(1))⊗2 → sA(2))⊗(sA(1))⊗j

)
⊕...

Then ΩA¡ looks as in table 2 with C replaced by A¡ and we see that the diagonal
is just the tensor algebra of A(1), DΩA¡ = T (s−1A¡(1)) = T (A(1)). As in the
proof of proposition 43 one can show that the quasi isomorphism g : ΩA¡ → A
in the diagram above vanishes outside the diagonal. Moreover, since A has
trivial differential, so does A¡ and then the only differential on ΩA¡ is the one
induce by the coproduct δ2. But then, since the diagonal of ΩA¡ is contained
in the kernel of δ2 and the map g is a quasi isomorphism we see that A is
isomorphic to a quotient of the diagonal A ∼= T (A(1))/(im(δ2) ∩ T (A(1))).
But (im(δ2) ∩ T (A(1)) is precisely the two sided ideal in T (A(1)) generated by
im
(
δ2 : s−1A¡(2)→ A(1)⊗A(1)

)
⊂ A(1)⊗A(1). This proves that A is quadratic

with quadratic data (V,R) = (A(1), im(δ2 : s−1A¡(2)→ A(1)⊗A(1))).
To see that A is Koszul in the classical sense we just have to note that under

the identification A ∼= T (V )/(R) we have ker
(
d2 : sA(1) ⊗ sA(1) → sA(2)

)
=

ker
(
d2 : sV ⊗sV → s(V ⊗V/R)

)
= s2R because d2 is induced by the product of

A and under the identification A ∼= T (V )/(R) this is just concatenating tensors
and then taking the quotient. But then we see that A¡ = C(sV, s2R) and the
Koszul twisting morphism in the diagram above is precisely the map α from
definition 20.

4 Connection to topology and some examples

Much of the algebra developed in the previous chapters is motivated by problems
in algebraic topology. For instance the cobar construction Ω is closely related
to Moore’s loop space construction of a topological space (denoted Ωb). Adams’
theorem states that H•(ΩC•(X)) ∼= H•(ΩbX) for a simply connected topological
space X. Also the theory of chapter 3.2 is related to topology; the category of
topological spaces is one of the first examples of model categories. The main
theorem in this thesis has a topological counterpart too. We will state, but not
prove it, in the following section.

4.1 Coformal and formal topological spaces

The notion of formality originally comes from algebraic topology.

Definition 54. Let K be a field. A topological space X is K-formal if C•(X;K)
is formal as a dga algebra.

For topological spaces we also have the notion of coformality. Before giving
the precise definition we recall what Moore’s loop space of a topological space X
is and we quickly describe the algebra structure on it. Moore’s loop space of a
pointed topological space (X,x0) is the set of pairs (f, t0) where f is continuous
function [0,∞) → X and t0 ∈ [0,∞) such that f(0) = x0 and f(t) = x0 for all
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t ≥ t0. It inherits a topology from the product X [0,∞)× [0,∞). Moreover it has
a natural monoid structure defined by

(f, t0)(̇g, t1) = (f ∗ g, t0 + t1)

where f ∗ g : [0,∞)→ X is the function defined by

f ∗ g(t) =

{
f(t), 0 ≤ t ≤ t0
g(t), t0 ≤ t ≤ t0 + t1.

This multiplication is continuous and hence induces a multiplication on C•(X).
One can show that this makes C•(X) into a dga algebra.

Definition 55. A topological space is K-coformal if C•(ΩbX;K) is formal as a
dga algebra.

Spaces that are both formal and coformal have the special property that their
loop space homology can be computed from their cohomology algebra. Here is
the topological counterpart to the main theorem in the previous chapter.

Theorem 56. Let X be a simply connected topological space of finite K-type
then conditons 1-3 below are equivalent and they imply condition 4.
1) X is both formal and coformal,
2) C•(X;K) is formal as a dga coalgebra and H•(X) is Koszul.
3) C•(ΩX : K) is formal as a dga algebra and H•(ΩX) is Koszul.
4) H•(ΩbX : K) and H•(X) are both Koszul and they are Koszul dual

H•(ΩbX : K) ∼= H•(X : K)!.

4.2 Bigraded- and filtered models

In what follows we will work with cochain algebras of topological spaces. These
are concentrated in non-negative cohomological degree. In this section we de-
velop some tools that will aid us in our study of these cochain algebras and in
particular formality of those. More precisely we define the bigraded model of a
graded algebra A. Then we describe how the differential of the bigraded model
can be perturbed to get a filtered model for any cochain algebra whose cohomol-
ogy is A. Halperin and Stasheff first used these ideas in their article [7] when
studying obstructions to homotopy equivalences and Haouari later generalised
their ideas to the non-commutative case.

Definition 57. Let A be a graded algebra concentrated in non-negative coho-
mological degrees. A bigraded model forA is a quasi isomorphism ρ : (T (V ), d)→
(A, 0) such that
i) V = ⊕k,n≥0V

k
n is a bigraded vector space, making T (V ) a bigraded algebra,

and d : T (V )kn → T (V )k+1
n−1,

ii)Hn(T (V ), d) = 0 for n > 0. We call the upper grading on V and T (V )
cohomological degree and the lower grading weight.
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If A is for example the cohomology algebra of a dga algebra (Y, dY ) then a
bigraded model for A together with the following theorem can be of use when
examining whether (Y, dY ) is formal or not.

Theorem 58. Let C be a dga algebra concentrated in positive cohomological
degrees and assume the cohomology H(C) = A is connected. If ρ : (T (Z), d)→
(A, 0) is a bigraded model for A then there is a differential D on T (Z) and a
morphism of dga algebras π : (T (Z), D)→ (C, dC) such that

i)(D − d) : Zn →
⊕n−2

i=0 T (Z)i
ii)if z ∈ T (Z0) then π(z) is a cycle in C and [πz] = ρz
iii)π is a quasi isomorphism.
Moreover, if D′ is some other differential such that (T (V ), D′) also has all the
properties above, then there is an isomorphism ψ : (T (W ), D) → (T (W ), D′)
such that φ− id lowers filtration level.

The proof is from an article by Stephen Halperin and James Stasheff [7].
They prove it for graded commutative dga algebras but the same arguments
work for non-commutative dga algebras. We include the proof of the existence
since we will be referring to the construction performed in the proof. For the
last statement concerning uniqueness however we refer to [7] and [10] for the
non-commutative case. The proof of the theorem depends on the following
lemma.

Lemma 59. If we have a differential D′ on T (Z≤n) such that (D′ − d) : Zl →
⊕l−2
i=0T (Z)i for 0 ≤ l ≤ n. Then if u ∈ ⊕n−1

i=0 T (Z)i is in ker(D′) there are
elements v ∈ ⊕ni=0T (Z)i and α ∈ A such that u = D′(v) + η(α) where η : A→
T (Z0) is a linear map such that ρ ◦ η = idA.

Proof. The lemma is proved using induction on n. For n = 1 we have u ∈ T (Z)0.
Set α = ρ(u). Then since u and η(ρ(u)) both are in T (Z0) they are both in
ker(d). But ρ(u − η(ρ(u))) = 0 and since ρ is a quasi isomorphism there is a
v ∈ T (Z)1 such that dv = u − η(α). Finally since D′ − d lowers the weight by
2 D′ and d agree on T (Z)0 and we get

u = D′(v) + η(α).

Now assume the claim is proved up to n − 1 and we will prove it holds for n
aswell. Now u ∈ ⊕n−1

i=0 T (Z)i and we can write

u =
n−1∑

i=0

ui, ui ∈ T (Z)i.

By assumption (D′ − d)(u) ∈ ⊕n−3
i=0 T (Z)i and since D′(u) = 0 and d lowers the

weight by precisely 1 we get d(un−1) = 0. Because the cohomology H(T (Z), d)
vanishes in positive weight there is a v′ ∈ T (Z)n such that un−1 = d(v′). But
then u−D′(v′) = −(D′− d)(v′) ∈ ⊕n−2

i=0 T (Z)i and since D′(u−D′(v′)) = 0 the
induction hypothesis tells us there are α ∈ A and v′′ ∈ ⊕n−1

i=0 T (Z)i such that
u −D′(v′) = η(α) + D′(v′′) and if we set v = v′ + v′′ we get u = η(α) + D′(v)
as desired.
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Now we are ready to prove the theorem.

Proof. We construct the maps D and π inductively. We first set D = d on
T (Z≤1). Define π|Z0

: Z0 → C on a basis by sending a basis element z to any
representative of ρ(z) ∈ A = H(C). This extends to a unique morphism of
algebras T (Z0) → C and we have π ◦D = dC ◦ π = 0 on T (Z0) so it is in fact
a morphism of dga algebras. Next we define π on an basis of Z1. Let x ∈ Z1

be a basis element. Then I claim that π(d(x)) is a boundary in C. Indeed this
follows from how π was defined on T (Z0) because

[π(d(x))] = ρ(d(x)) = 0.

Then let c ∈ C be an element such that dC(c) = π(d(x)) and define π on Z1

by x 7→ c. This extends to a unique morphism of dga algebras T (Z≤1, D) →
(C, dC). Now we extend π and D to T (Z≤2) as follows. We fix a basis for Z2

and consider a basis element z. Then d(z) ∈ T (Z)1 ⊂ T (Z≤1) and because
D = d on T (Z≤1) we have d(z) ∈ ker(D). But since π : (T (Z≤1), D)→ (C, dC)
is a morphism of dga algebas π(d(z)) is a cycle in C so [π(d(z))] is an element
of A. D is then defined on Z2 by

z 7→ dz − η([π(d(z))]).

Note that since d is of degree 1 and η and π are both of degree 0 (upper
degree) D is of degree 1 and it then extends to a derivation on T (Z≤2). We
saw already that D2 = 0 on Z0 and Z1 and if z ∈ Z2 then D2(z) = dD(z) =
d(d(z)− η[π(d(z))]) = 0 because η lands in T (Z0) ⊂ ker(d). So D extends to a
differential on T (Z≤2). Now we extend π to Z2. We saw already that π(d(z)) is
a cycle in C and since η lands in T (Z0) ⊂ ker(D) and π : (T (Z≤1), D)→ (C, dC)
is a morphism of dga algebras π(η([π(d(z))])) is also a cycle of C. Then π(D(z))
is a cycle too and we have

[π(D(z))] = [π(d(z))]− [π(η([π(d(z))]))] = [π(d(z))]− ρ(η([π(d(z))])) =

[π(d(z))]− [π(d(z))] = 0

which means π(D(z)) is in fact a boundary in A. We then define π on a basis for
Z2 by z 7→ c where c is such that dC(c) = π(D(z)). This extends π to T (Z≤2).
Defined in this way D satisfies i) because (D − d) = 0 on Z0 and Z1 and for
z ∈ Z2 we have (D − d)(z) = η([π(d(z))]) ∈ T (Z0).

Now for the induction step assume a differential D is defined on T (Z≤n−1)
such that i) holds and suppose further π : (T (Zn−1, D)) → (C, dC) has been
defined. We then extend D to Zn. Fix a basis for Zn and let z be a basis
element. Then D(d(z)) = (D − d)(d(z)) ∈ ⊕n−3

i=0 T (Z)i ⊂ T (Z≤n−3) so by
the previous lemma there are elements α ∈ A and v ∈ ⊕n−2

i=0 T (Z)i such that
D(d(z)) = η(α) + D(v). Now I claim that α = 0. Indeed we have π(η(α)) =
π(D(d(z))) − π(D(v)) = dA(π(d(z) − v)) which means π(η(α)) is boundary so
0 = [π(η(α))] = ρ(η(α)) = α. This means d(z) − v ∈ ker(D). Then if (d(z))m
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and vm denote the components of d(z) and v of cohomological degree m we have
d(z)m − vm ∈ ker(D) for all m. Let w =

∑
m λmv

m where

λm =

{
0 if (d(z))m = 0,

1 if (d(z))m 6= 0
.

Then d(z)− w ∈ ker(D) aswell and we can extend D to Zn by

z 7→ d(z)− w − η([π(d(z)− w)]).

D|Zn is then homogenous of degree 1 and D2(z) = 0. Also,

(D − d)(z) = −w − η([π(d(z)− w)])) ∈ ⊕n−2
i=0 T (Z)i

so we can extend D to T (Z≤n) such that i) is satisfied. But then we note that
for z ∈ Zn we have

[π(D(z))] = [π(d(z)−w−η([π(d(z)−w)]))] = [π(d(z)−w)]−[π(η([π(d(z)−w)]))] =

[π(d(z)− w)]− [π(d(z)− w)] = 0

and we can define π on a basis of Zn by z 7→ c where dC(c) = π ◦D(z) and then
we get a morphism of dga algebras π : (T (Z≤n), D)→ (C, dC). This concludes
the induction step and so we have proved existence of D and π. It remains to
prove that π is a quasi isomorphism. If we think of A as a dga algebra with trivial
differential then since imη ⊂ T (Z0) ⊂ ker(D) we have η : (A, 0) → (T (Z), D)
is a morphism of cochain complexes. We know that π∗ ◦ η∗ = idA so η∗ is
injective. Also it follows from the previous lemma that η∗ is surjective so η∗ is
an isomorphism and then π∗ must be its inverse.

Now we explain how to get a bigraded model for a graded algebra A in
the case A is weight graded and Koszul. To do this introduce the following
convention.

Convention 60. The vector space Ks is concentrated in homological degree
1 and cohomological degree −1 and the vector space Ks−1 is concentrated in
homological degree −1 and cohomological degree 1. This is

Theorem 61. If A is a non-negatively graded algebra which is Koszul then a
bigraded model for A is given by ΩA¡ � A.

Proof. For the proof of this we do not use convention 6. The reason for this is
that we want to use the fact that a positively graded algebra can be thought of
as a dga algebra concentrated in non-negative homological degrees with trivial
differential but it can also be though of as a dga algebra concentrated in non-
negative cohomological degrees with trivial differential. We will however use
convention 60.

47



We call the grading on A homological grading and denote it by subscript.
We equip A with another grading called the cohomological grading, denoted by
superscript, which coincides with the homological grading: An = An for all n.
Recall that A being Koszul means that it also has an extra weight grading such
that A¡ ↪→ BA is a quasi isomorphism. Then we have a commutative diagram

A¡ BA

ΩA¡ A

f

κ

g

where the horizontal maps are quasi isomorphisms. Now A¡ ⊂ T c(sA(1)) which
has a homological grading and a cohomological grading that come from the
homological grading and cohomological grading of A and Ks (see the convention
above) and because d2 is homogenous with respect to both homological and
cohomological grading these gradings passes over to A¡ = ker(d2) ∩ T (sA(1)).
We also have a weight grading on A¡ namely A¡(k) = A¡ ∩ (sA(1))⊗k. Now
we introduce a weight grading on Ā¡ which we will call syzygy degree. Set
Ā¡[k] := A¡ ∩ (sA(1))⊗k+1 which induces a syzygy degree on ΩA¡ too. We have
that ΩA¡ has a triangular form with respect to weight and word length (see
table 2 with C = A¡). As in the proof of proposition 43 one can show that
g : ΩA¡ → A vanishes outside the diagonal. But ΩA¡ also has a triangular
form with respect to syzygy degree and weight (see table 3) and we see that
the column of syzygy degree 0 is precisely the diagonal in table 2 so g vanishes
outside (ΩA¡)[0]. Now we note that the differential δ2 of ΩA¡ is homogenous of
degree 1 with respect to cohomological degree. Also, ΩA¡ has a basis consisting
of elements which are homogenous with respect to homological and cohomolgical
grading and whose homological degree differ from their cohomological degree by
a multiple of two, and from this it follows that δ2 satisfies the Leibniz rule with
respect to the cohomological grading. I claim that ΩA¡ with the cohomological
grading and the syzygy grading is a bigraded model for A. Indeed the differential
δ2 is homogenous of degree −1 with respect to syzygy degree. The cohomology
H•(ΩA¡) vanishes in positive syzygy degree. The quasi isomorphism g respects
the cohomological grading because it vanishes outside syzygy degree 0 and in
syzygy degree 0 the cohomological degree agrees with the homological degree
(note that s−1A¡[0] = s−1sA(1) = A(1).

4.3 Spheres

Spheres are examples of Koszul spaces. We will here show that the rational
cohomology ring of spheres is Koszul. Then we use this fact to show that
spheres are formal.

We know from [6] that

Hm(Sn;Q) =

{
Q if m ∈ {0, n}
0 else

.
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The ring structure is then completely determined; for degree reasons we must
have H•(Sn : Q) ∼= Q[x]/(x2) where x has cohomological degree n. Let’s prove
that it is Koszul.

Proposition 62. Q[x]/(x2) is Koszul.

Proof. The algebra A := Q[x]/(x2) is weight graded with A(0) = Q1A and
A(1) = Qx and zero in every other weight. With this weight grading we have
A¡ = T c(sx) is the tensor coalgebra on one generator sx of degree n+1. We will
show that α : A¡ ↪→ BA � A is a Koszul twisting morphism. The kernel K of
the augmentation map A¡⊗αA� Q has a basis {(sx)n⊗1A| n ≥ 1}∪{(sx)n⊗
x|n ≥ 0}. Because A and A¡ both have trivial differential the differential on the
twisted tensor product is given by

dα((sx)n ⊗ xk) =

{
0 if n = 0 or k = 1

(sx)n−1 ⊗ xk+1 else
.

Then if ω =
∑
n,k cnk(sx)n ⊗ xk is in K ∩ ker(dα) we have cnk = 0 whenever

n 6= 0 and k 6= 1. But then ω is in fact of the form

ω =
∑

n 6=0

cn1(sx)n ⊗ x+ c011⊗ x =

dα(
∑

n 6=0

cn1(sx)n+1 ⊗ 1A + c01(sx)⊗ 1A).

This means α is a Koszul twisting morphism and by the fundamental theorem
of twisting morphisms A¡ ↪→ BA is a quasi isomorphism so A is Koszul.

Next we will show that spheres are formal over Q.
Let A = T (Qx)/(x2) be the cohomology ring of Sn. We construct its bi-

graded model as in the proof of theorem 59. We have

A¡ = Q⊕Qsx⊕ (Qsx)⊗2 ⊕ ...

where sx has cohomological degree n − 1. Since A is Koszul a bigraded model
for A is given by ΩA¡ where A¡ is bigraded with cohomological degree (denoted
by superscript) and syzygy degree (denoted by subscript).

Theorem 63. Sn is intrinsically formal over Q for n ≥ 2.

Proof. Let Y be a topological space with H•(Y ;Q) = H(Sn;Q) = A. Then by
theorem 4.2 there is a differential D on T (s−1Ā¡) such that (D− δ2) lowers the
syzygy degree by 2 and a quasi isomorphism π : (T (s−1Ā¡), D) → (C•(Y ), ∂).
We know that D = δ2 on (s−1Ā¡)≤1. And if z ∈ (s−1Ā¡)≥2 has weight at
least 2 then it has cohomological degree atleast 1 + 3(n − 1) = 3n − 2. But
if n ≥ 2 then 3n − 2 > n + 1. We see that D = δ2 in cohomological degree
(s−1Ā¡)≤n+1. Then we can define φ : (s−1Ā¡) → A by φ|(s−1Ā¡)≤1

= ρ and

φ|(s−1Ā¡)>1
= 0 where ρ is the quasi isomorphism T ((s−1Ā¡), δ2)→ (A, 0). Then
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we extend φ to an algebra morphism T (s−1Ā¡)→ A. I claim that this is in fact
a quasi isomorphism (T (s−1Ā¡), D) → (A, dA = 0). First we note that it is a
morphism of graded algebras because it respects the cohomological degree of
the generators. Next we check that it commutes with the differential. Because
dA = 0 this just comes down to checking that φ vanishes on boundaries. For
z ∈ T (s−1Ā¡)≤n+1 ⊂ T ((s−1Ā¡)≤1) we have

φ(D(z)) = φ(δ2(z)) = ρ(δ2(z)) = 0

since ρ vanishes on δ2-boundaries. Also, if z ∈ T (s−1Ā¡)≥n+2 then D(z) ∈
T (s−1Ā¡)≥n+2 and then φ(D(z)) ∈ A≥n+2 = 0.

The fact that φ is a quasi isomorphism follows from the fact that
H•(T (s−1Ā¡), D) = A vanishes in cohomological degree
≥ n+ 1 and T (s−1Ā¡)<n+1 ⊂ T ((s−1Ā¡)≤1) so φ• = ρ• is an isomorphism. But
then we have a zig-zag

(C•(Y ), ∂) (T (s−1Ā¡), D) (A, 0)∼
∼

proving that Y is formal.
By theorem 57 it then follows that spheres are both formal and coformal.

4.4 Euclidean configuration spaces

In this section we will see another example of a Koszul space, namely configu-
ration spaces. We prove that Fk(Rn) is intrinsically formal over Q, for k ≤ n,
following an article [2] by Paolo Salvatore. We will not explain how to compute
the cohomology ring of Fk(Rn) but refer to [1].

Proposition 64. The cohomology ring H•(Fk(Rn);Q) admits a quadratic pre-
sentation (V,R) where V is a free graded vector space concentrated in degree
n− 1 with basis

{Aij |1 ≤ i < j ≤ k}
and R ⊂ V ⊗ V is spanned by

{A2
ij} ∪ {AijAjk + (−1)nAjkAik + (−1)nAikAij |i < j < k}∪

{AijAkl − (−1)(n−1)2

AklAij}.

Proposition 65. H•(Fk(Rn);Q) has a graded basis provided by the set

⋃

l≥0

{Ai1j1 · · ·Ailjl |j1 < · · · < jl, it < jt}

Remark 66. The generators Aij are in fact pullbacks of the standard generator
of H•(Sn−1) under the maps πij : Fk(Rn) → Sn−1 which maps (x0, ..., xk) ∈
Fk(Rn) to

xi−xj
|xi−xj | ∈ S

n−1.
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Let A = H•(Fk(Rn);Q). The basis in the previous proposition is a so called
PBW-basis and as a result of this A is a Koszul algebra [8]. Its Koszul dual
coalgebra is given by

A¡ := Q⊕ sV ⊕ s2R⊕ ...⊕
( ⋂

i+2+j=n

(sV )⊗i ⊗ (s2R)⊗ (sV )⊗j
)
⊕ ...

We note that A¡ is bigraded. The upper grading is the cohomological degree
and it is induced by the cohomological grading on V (recall it is concentrated
in cohomological degree n − 1 so sV is concentrated in degree n − 2) and the
lower grading is the syzygy degree introduced in the end of section 4.2. Since
A is Koszul ΩA¡ � A is a bigraded model for A.

Theorem 67. Fk(Rn) is intrinsically formal over Q for n ≥ k.

Proof. Let Y be a topological space with H•(Y ) ∼= H•(Fk(Rn)) = A. Recall
that we already constructed a bigraded model for A namely ΩA¡. Theorem 4.2
applied to the cochain algebra C := C•(Y ) gives a differential D on T (s−1Ā¡)
such that

(D − d2) : s−1Ā¡
l → ⊕l−2

i=0T (s−1Ā¡)i, for all l.

I claim that D = d2 on (s−1Ā¡)<n. To see this let x ∈ (s−1Ā¡)<n be a ho-
mogenous element of syzygy degree i. Since the syzygy degree is the word
length minus 1 and the elements of sV are of cohomological degree n − 2
(see proposition 65 and convention 61) we see that x must have cohomologi-
cal degree 1 + (i + 1)(n − 2). But then (D − d)(x) has cohomological degree
2 + (i+ 1)(n− 2). To get a contradiction assume (D− d)(x) 6= 0. Then there is
some non-zero homogenous monomial m ∈ T (s−1Ā¡) that occurs in (D− d)(x).
We note that m must lie in (s−1Ā¡)⊗l where l ≡ 2 modulo n − 2. This fol-
lows from the fact that the cohomological degree of (D − d)(x) is congruent
to 2 modulo n − 2 and the homogenous elements of s−1Ā¡ are all congruent
to 1 modulo n − 2. I claim that m cannot be in s−1Ā¡ ⊗ s−1Ā¡. Indeed,
since m was assumed homogenous this would mean m = va ⊗ vb for some
va ∈ (s−1Ā¡)a and vb ∈ (sĀ¡)b which means va ⊗ vb have cohomological degree
1 + (a + 1)(n − 2) + 1 + (b + 1)(n − 2) = 2 + (a + b + 2)(n − 2) which would
mean a+ b+ 2 = i+ 1. This would however imply va⊗ vb is have syzygy degree
a + b = i − 1 which contradicts the fact that (D − d) decreases syzygy degree
by atleast 2. But then m ∈ (s−1Ā¡)⊗l where l is atleast 2 + (n − 2) = n. But
then the cohomological degree of m is atelast n(1 + (n−2)) = 2 + (n+ 1)(n−2)
which would mean i is at least n which contradicts the fact that x ∈ (s−1Ā¡)<n.
So (D − d)(x) = 0 as claimed.

Then we can define a map φ : T (s−1Ā¡) → A by φ|(s−1Ā¡)<n = ρ and

φ|(s−1Ā¡)≥n = 0 where ρ is the quasi isomorphism (T (s−1Ā¡), d) → (A, 0). I

claim that φ is a quasi isomorphism (T (s−1Ā¡), D) → (A, 0). First we note
that it is a morphism of graded algebras because it respects the cohomological
grading on the generators. To see that it commutes with the differentials it is
enough to see that it vanishes on coboundaries. But if z ∈ T (s−1Ā¡)≤(k−1)(n−1)
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then z ∈ T ((s−1Ā¡)<n) and we have

φ(D(z)) = φ(d(z)) = ρ(d(z)) = 0

because ρ vanishes on d−boundaries. If z ∈ T (s−1Ā¡)>(k−1)(n−1) then Dz
has cohomological degree at least (k − 1)(n − 1) + 1 but then φ(D(z)) ∈
A1+(k−1)(n−1) = 0. Finally to see that φ is a quasi isomorphism we note that
because H•(C,D) = A only lives in degrees less (k − 1)(n − 1) where φ and ρ
agree we must have φ• = ρ• which is an isomorphism.

By theorem 57 it then follows that Fk(Rn) (with n ≥ k) is both formal and
coformal.

5 Non-formality of planar configuration space
with four points over characteristic two

In the previous two examples we used koszulness of the cohomology rings of
some topological spaces, together with the theory of bigraded and filtered mod-
els to prove formality of these spaces. In this section we will see that these ideas
can also be used to prove non-formality. We explain how Salvatore [2] proves
the non-formality of the planar configuration space with four points over char-
acteristic two. In the first section we introduce the Barratt-Eccles simplicial set
WSk where Sk denotes the symmetric group. Then we define a filtration on it
Ft(WSk) called the Smith’s filtration. This filtration has the property that in
level 2, its geometric realisation is homotopy equivalent to Fk(R2) which allows
us to study the formality of F4(R2) by studying the formality of the cochain
algebra of the simplicial set F2(WS4). To study the formality of this algebra
we construct the filtered model of it up to filtration level 2 which allow us to
define the obstruction class [α]. We then explain why non-triviality of this ob-
struction class implies the non-formality of the cochain algebra of the simplicial
set F2(WS4).

5.1 Barrat-Eccles simplicial set

Now we describe the simplicial set which has the property that its geomet-
ric realization is homotopy equivalent to F4(R2). Let us denote by Sk the
symmetric group on {1, 2, ..., k} and let us denote a permutation σ ∈ Sk by
σ = (σ(1) σ(2) · · · σ(k)). By definition the k’th Barrat-Eccles simplicial set is
the contravariant functor WSk defined on objects by WSk([l]) = Sl+1

k and on
morphisms by

WSk(f : [n]→ [m]) : Sm+1
k → Sn+1

k , (σ0, ..., σm) 7→ (σf(0), ..., σf(n)).

With these definitions we can make the face and degeneracy maps explicit:

di(σ0, ..., σn) = (σdi(0), ..., σdi(n−1)) = (σ0, ..., σi−1, σi+1, ..., σn)
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si(σ0, ..., σn) = (σsi(0), ..., σsi(n+1)) = (σ0, ..., σi, σi, ..., σn).

We define for all t ≥ 0 a filtration on WS2. More precisely we define a chain of
sub simplicial sets

... ⊂ Ft(WS2) ⊂ Ft+1(WS2) ⊂ ...
where Ft(WS2) is the sub simplicial set spanned by all non-degenerate simplices
of degree at most t− 1:

Ft(WS2)([n]) :=

{
WS2([n]), if n ≤ t− 1

∪isi(WS2([n− 1])) if n > t− 1
.

Now for all 1 ≤ i 6= j ≤ k consider the simplicial maps πij : WSk → WS2

defined on WSk([n]) by

πij(σ0, ..., σn) = (τ0, ..., τn)

where

τl =

{
(12) if σ−1

l (i) < σ−1
l (j)

(21) if σ−1
l (i) > σ−1

l (j)
.

Using these maps we can define filtrations on WSk for all k by

Ft(WSk) = ∩i,jπ−1
ij Ft(WS2).

We are particularly interested in F2(WSk).
The following proposition explains why we are interested in the simplicial set

Ft(WSk). The proof of this proposition requires more background on simplicial
sets so we simply refer to theorem 6.2 and proposition 7.9 in [11].

Proposition 68. The geometric realization of Ft(WSk) is homotopy equivalent
to Fk(Rt). Moreover the realization of the maps of simplicial πij defined above
corresponds, up to homotopy, to the projection πij : Fk(Rt)→ St−1 defined by

(x1, ..., xk) 7→ xi−xj
|xi−xj | .

Let us denote the normalised cochain algebra (over Z2) of F2(WSk) by E•2 (k).
We recall from chapter one that it is a dga algebra under the cup product.

5.2 Filtered model for E•2 (4)
Let A = H•(F4(R2);Z2). It has the same presentation as in proposition 64
but over Z2 now. We recall that since A is Koszul there is a quasi isomorphism
ΩA¡ � A. In this section we will however think of ΩA¡ in a slightly different way.
It follows from proposition 3.2.1 in [3] that there is an isomorphism of graded
coalgebras A¡ ∼= ⊕isi(A!(i))∗ where A! is the quadratic dual of A and A!(i) is the
image of (V ∗)⊗i under the projection T (V ∗) � A!. From now on we identify A¡

with the desuspended, graded dual of A! through this isomorphism. Under this
identification we have ΩA¡ = (T (W ), d) where W = s−1

(
⊕i≥1 s

i(A!(i))∗
)

and d
is now induced by the coproduct µ∗ of ⊕i≥1s

i(A!(i))∗ dual to the multiplicaiton
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of A!. The syzygy degree on Ā¡ described in the previous chapter corresponds
to the following weight grading (A!)∗(k) = (A!(k + 1))∗. We have the following
description of A!

Proposition 69. A! ∼= T (B)/(S) where B has a basis {Bij |1 ≤ i < j ≤ 4} and
S ⊂ B ⊗B is spanned by

BijBjk +BjkBij +BjkBik +BikBjk, i, j, k distinct,

BijBst +BstBij , for {i, j} ∩ {s, t} = ∅
where we use the convention that Bij = Bji.

Proof. Set Bij = A∗ij where Aij are the generators for A. We then have to

prove that R⊥ is spanned by the relations above where R is as in proposition
65 except with coefficients in Z2. It is not so hard to see that the relations
above all vanish on R so it remains to see that they span R. We know from
proposition 66 the Hilbert series for A starts with hA(x) = 1 + 6x+ 11x2 + ....
Then since A is Koszul theorem 3.5.1 in [3] tells us hA!(−x)hA(x) = 1 which
tells us hA! = 1 + 6x+ 25x2. So since dim(B ⊗ B) = 36 we only have to show
that the relations above span an 11 dimensional subspace but it is not so hard
to find 11 linearly independent relations of the desired form.

This is the so called Yang-Baxter algebra and in [12] the following basis is
computed for it.

Proposition 70. The algebra A!(n) admits a basis {Bi1j1 · · ·Binjn |j1 ≤ j2 ≤
... ≤ jn, it < jt for all t}.

Under the identification A¡ ∼= ⊕isi(A!(i))∗ the the quasi isomorphism ΩA¡ �
A is defined by B∗ij 7→ Aij and (Bi1j1 · · ·Binjn)∗ 7→ 0 for n > 1.

We know that H•(E•2 (4)) ∼= A so theorem 4.2 tells us that there is a differ-
ential D on T (W ) and a quasi isomorphism φ : (T (W ), D) → E•2 (4) such that
D−d decreases the weight by at least 2. In this section we will make the map φ
and the differential D explicit up to T (W≤2) by following the proof of theorem.
Before doing so we give names to certain elements of E•2 (k).

Definition 71. Set ωkij := (πij |F2(WSk))
∗((12), (21)

)
∈ E1

2 (k) for all k.

Definition 72. Set Ar :=
(
(132), (312)

)∗ ∈ E1
2 (3).

We want to transfer the element Ar to E1
2 (4). We do this using maps of

simplicial sets fijk : F2(WS4) → WS3, one for each triple 1 ≤ i < j < k ≤ 4.
These maps are defined as follows.

Definition 73. We set

fijk
(
σ0, ..., σm

)
=
(
τ1, ..., τm

)
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where τt is the permutation which only remembers how σt permutes i, j and k.
More precisely let τ ′ be the unique permutation on the set {i, j, k} such that
(τ(i) τ(j) τ(k)) is the order in which i, j and k occur in (σ(1) σ(2) σ(3) σ(4))
then let τ ∈ S3 be the permutation corresponding to τ ′ through the bijection
i↔ 1 j ↔ 2 k ↔ 3.

Now we start building the filtered model for E•2 (4)

Proposition 74. The algebra morphism φ : T (s−1W≤1) → E•2 (4) defined on
generators by

B∗ij 7→ ω4
ij , 1 ≤ i ≤ j ≤ 4,

s(s−1Bijs
−1Bkl)

∗ 7→





0, if i = k and j = l,

ω4
ij ∪1 ω

4
kl, if j 6= l,

f∗ikl(Ar) + ω4
il ∪1 ω

4
kl, if j = l and i < k

f∗kil(Ar), if j = l and i > k

agrees with the construction in the proof of theorem 4.2. In other words
φ : (T (s−1W≤1), d) → (E•2 (4), ∂) is a morphism of differential graded cochain
algebras and it can be extended to a filtered model (T (s−1W ), D)→ (E•2 (4), ∂)
as in theorem 4.2.

The proof is almost only computation. To perform these computations we
need the following two lemmas.

Lemma 75. An element (σ, τ, γ) ∈ WS3([2]) is in F2(WS3)([2]) if and only
if the order in which any two indices i 6= j ∈ {1, 2, 3} appear does not change
more than once in

(
σ, τ, γ

)
=
(
(σ(1) σ(2) σ(3)), (τ(1) τ(2) τ(3)), (γ(1) γ(2) γ(3))

)
.

Proof. ( =⇒ ) If the order of two indices i 6= j ∈ {1, 2, 3} does change more
than once in (σ, τ, γ) then πij(σ, τ, γ) ∈ WS2 is non-degenerate and therefore
not in F2(WS2) and then (σ, τ, γ) /∈ F2(WS3).
(⇐=) If the order in which i, j appear in σ, τ and γ only changes zero or one
time then πij((σ, τ, γ)) is degenerate and if this holds for all i 6= j ∈ {1, 2, 3}
then (σ, τ, γ) ∈ ⋂ij π−1

ij (F2(WS2([2]))) = F2(WS3)([2]).

Lemma 76. The set F2(WS3)([2]) contains the following 36 simplices

((321), (132), (123)) ((321), (213), (123)) ((321), (231), (123))

((321), (231), (213)) ((321), (312), (123)) ((321), (312), (132))

((231), (123), (132)) ((231), (213), (123)) ((231), (213), (132))

((231), (321), (132)) ((231), (321), (312)) ((231), (312), (132))

((312), (123), (213)) ((312), (132), (123)) ((312), (132), (213))
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((312), (321), (213)) ((312), (321), (231)) ((312), (231), (213))

((123), (132), (321)) ((123), (132), (312)) ((123), (213), (321))

((123), (213), (231)) ((123), (231), (321)) ((123), (231), (321))

((123), (312), (321)) ((132), (123), (213)) ((132), (123), (231))

((132), (213), (231)) ((132), (213), (231)) ((132), (321), (231))

((132), (312), (321)) ((132), (312), (231)) ((213), (123), (132))

((213), (123), (312)) ((213), (132), (312)) ((213), (321), (312))

((213), (231), (321)) ((213), (231), (312))

Proof. First we note that W is concentrated in cohomological degree 1 and
|ω4
ij | = |ω4

ij ∪1 ω
4
kl| = |f∗kil(Ar)| = |fkil(Ar)| = 1 so φ is a degree zero map.

Next we recall that in the proof of theorem 4.2 that when defining the map
φ on the generators in weight zero all we require is that they get mapped to
a cocycle which represents a the element in cohomology which that generator
gets mapped to by the bigraded model. In our case we need that ω4

ij is a
cocycle representing Aij . To see that it is a cocycle we check that ((12), (21))∗ ∈
E1

2 (WS2) is a cocyle. This however follows from the fact that F2(WS2)([2]) has
only degenerate simplices so E2

2 (WS2) = 0. On the generators s−1(sBijsBkl)
∗

1 of weight 1 all we require is that ∂∗φ(s−1(sBijsBkl)
∗) = φd(s−1(sBijsBkl)

∗).
To prove this we have to make some computations.

Computation 1 : For simplicity we drop the suspensions for a while. First
we compute φd((BijBkl)

∗). First thing to note is that d((BijBkl)
∗) ∈ W0 ⊗

W0 which has a basis {B∗ij ⊗ B∗kl|i < j, k < l}. Since we work over Z2 we
only have to check which such basis elements occur in d((BijBkl)

∗). Since d is
induced by the coproduct µ∗ dual to the multiplication of A! we will compute
µ∗(BijBkl)∗(Bst⊗Bqr) to see if B∗st⊗B∗qr occurs i the expression for d(BijBkl)

∗.
We have µ∗(BijBkl)∗(Bst⊗Bqr) = (BijBkl)

∗(BstBqr). But to compute the last
expression we must know how BstBqr is expressed in the basis of proposition
71. Using the relations in proposition 70 we get

BstBqr =





BstBqr if t ≤ r ,
BqrBst if r < t and s 6= q, r ,

BsrBst +BrtBst +BstBrt if r < t and s = q ,

BqrBrt +BqtBrt +BrtBqt if r < t and s = r

.

Then we can compute (BijBkl)
∗(BstBqr) by dividing into cases depending on

i, j, k and l. First we have (BijBij)
∗(BstBqr) = 1 only when (s, t) = (q, r) =

(i, j) so d(BijBij)
∗ = B∗ij ⊗B∗ij . Next we have for j 6= l

(BijBil)
∗(BstBqr) =

{
1 if (s, t) = (i, j) and (q, r) = (i, l) (from the case t ≤ r) ,
1 if (q, r) = (i, j) and (s, t) = (i, l) (from the case r < t, s 6= q, r)
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so d(BijBil)
∗ = B∗ij⊗B∗il+B∗il⊗B∗ij . Similar computations give the other cases

and all the computations can be summarised as

d(BijBkl) =





B∗ij ⊗B∗ij if (i, j) = (k, l),

B∗ij ⊗B∗kl +B∗kl ⊗B∗ij if j 6= l,

B∗ij ⊗B∗kl +B∗ij ⊗B∗ik +B∗kj ⊗B∗ik if j = l and i < k,

B∗ij ⊗B∗kl +B∗kj ⊗B∗ki +B∗ij ⊗B∗ki if j = l and i > k

.

Then finally we get

φ(d(BijBkl)
∗) =





ω4
ij ∪ ω4

ij if (i, j) = (k, l),

ω4
ij ∪ ω4

kl + ω4
kl ∪ ω4

ij if j 6= l,

ω4
ij ∪ ω4

kl + ω4
ij ∪ ω4

ik + ω4
kj ∪ ω4

ik if j = l and i < k,

ω4
ij ∪ ω4

kl + ω4
kj ∪ ω4

ki + ω4
ij ∪ ω4

ki if j = l and i > k

.

Finally we note that ω4
ij ∪ω4

ij = (πij |F2(WSk))
∗(((12), (21))∗ ∪ ((12), (21))∗) = 0

because ((12), (21))∗ ∪ ((12), (21))∗ ∈ E2
2 (2) = 0.

Computation 2 : Now we want to compute ∂∗(φ(BijBkl))
∗. We have of

course ∂∗(φ(BijBij)
∗) = ∂∗(0) = 0. Next, we want to compute ∂∗(φ(BijBkl)

∗)
for j 6= l. We have by definition of φ

∂∗(φ(BijBkl)
∗) = ∂∗(ω4

ij ∪1 ω
4
kl).

Because ω4
ij and ω4

kl are coboundaries proposition 27 tells us

∂∗(φ(BijBkl)
∗) = ∂∗(ω4

ij ∪1 ω
4
kl) = ω4

ij ∪ ω4
kl + ω4

kl ∪ ω4
ij .

Next we want to compute, for j = l and i > k, ∂∗(φ(BijBkl)) =
∂∗(f∗ikj(Ar)) = f∗kil(∂

∗Ar). We recall that

Ar ∈ E1
2 (3) = Hom(Z2F2(WS3)([2]),Z2).

Let us express ∂∗Ar in the basis dual to the one in lemma 77 Since

∂∗(Ar)(σ0, σ2, σ3) = Ar(σ1, σ2) +Ar(σ0 + σ2) +Ar(σ0 + σ1)

we see that out of the elements in lemma 1.3 dAr vanishes on all except those
in which (132) and (312) occur (in that order). We get

∂∗(Ar) = ((123), (132), (312))∗ + ((132), (312), (321))∗+

((132), (312), (231))∗ + ((213), (132), (312))∗.

Now I claim that this equals ω3
13 ∪ ω3

12 + ω3
23 ∪ ω3

12 + ω3
23 ∪ ω3

13. To prove this
we will compute these three cup products in terms of the basis dual to the one
in lemma 77. We first note that

ω3
ij ∪ ω3

kl(σ0, σ1, σ2) =
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ω3
ij(σ0, σ1)ω3

kl(σ1, σ2) = ((12), (21))∗
(
πij(σ0, σ1)

)
((12), (21))∗

(
πkl(σ1, σ2)

)
.

The last expression however is 1 precisely when (i j) is a subsequence of
(σ0(1) σ0(2) σ0(2)), (j i) is a subsequence of (σ1(1) σ1(2) σ1(2)), (k l) is a subse-
quence of (σ1(1) σ1(2) σ1(2)) and (l k) is a subsequence of (σ2(1) σ2(2) σ2(2)).
Using this we see that out of the elements in lemma 77 ω3

13 ∪ ω3
12 vanish on

all except ((123), (312), (321)), ((132), (312), (321)), ((132), (312), (231)) which
means

ω3
13 ∪ ω3

12 = ((123), (312), (321))∗ + ((132), (312), (321))∗ + ((132), (312), (231)).

Similarly one computes

ω3
23 ∪ ω3

12 = ((123), (132), (321))∗ + ((123), (312), (321))∗,

ω3
23 ∪ ω3

13 = ((123), (132), (321))∗ + ((123), (132), (312))∗ + ((312), (132), (312))∗

and adding these up gives

((123), (132), (312))∗ + ((132), (312), (321))∗+

((132), (312), (231))∗ + ((213), (132), (312))∗

which we said was ∂∗Ar. So we have

∂∗(φ(BijBkl)) = ∂∗(f∗ikj(Ar)) =

f∗kil(∂
∗Ar) = f∗kil(ω

3
13 ∪ ω3

12 + ω3
23 ∪ ω3

12 + ω3
23 ∪ ω3

13) =

f∗kil(ω
3
13) ∪ f∗kil(ω3

12) + f∗kil(ω
3
23) ∪ f∗kil(ω3

12) + f∗kil(ω
3
23) ∪ f∗kil(ω3

13).

But I claim that f∗kil(ω
3
13) = ω4

kl. To see this we apply f∗kil(ω
3
13) to a non-

degenerate simplex (σ0, σ1) ∈ F2(WS4)([1]).

f∗kil(ω
3
13(σ0, σ1) = ω3

13 ◦ fkil(σ0, σ1) =

π∗13(((12), (21))∗)(fkil(σ0, σ1)) = ((12), (21))∗(π13(τ0, τ1))

where τ0 and τ1 are as in the definition of fkil. This last expression however is
0 unless (1 3) is a subsequence of τ0 and (3 1) is a subsequence of τ1 in which
case it is 1. But this happens precisely when (k l) is a subsequence of σ0 and
(l k) is a subsequence of σ1 from which we conclude that

f∗kil(ω
3
13(σ0, σ1) = ((12), (21))∗(πkl(σ0, σ1)) = ω4

kl(σ0, σ1).

Similarly one can show that f∗kil(ω
3
12) = ω4

ki and f∗kil(ω
3
23) = ω4

il. We get

∂∗(φ(BijBkl)) = ω4
kl ∪ ω4

ki + ω4
il ∪ ω4

ki + ω4
il ∪ ω4

kl, for j = l, k < i.

Finally we will compute, for j = l and i < k

∂∗(φ(BijBkl)) = ∂∗(f∗ikl(Ar)) + ∂∗(ω4
il ∪1 ω

4
kl).
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The first term we just computed (but with the roles of i and k switched) and
for the second term we use proposition 27. This gives for j = l and i < k

∂∗(φ(BijBkl)) = ω4
il ∪ ω4

ik + ω4
kl ∪ ω4

ik + ω4
kl ∪ ω4

il + ω4
il ∪ ω4

kl + ω4
kl ∪ ω4

il =

ω4
il ∪ ω4

ik + ω4
kl ∪ ω4

ik + ω4
il ∪ ω4

kl

To summarise we have

∂∗(φ((BijBkl)
∗)) =





0 if (i, j) = (k, l),

ω4
ij ∪ ω4

kl + ω4
kl ∪ ω4

ij if j 6= l,

ω4
ij ∪ ω4

kl + ω4
ij ∪ ω4

ik + ω4
kj ∪ ω4

ik if j = l and i < k,

ω4
ij ∪ ω4

kl + ω4
kj ∪ ω4

ki + ω4
ij ∪ ω4

ki if j = l and i > k

.

Now we will define a map W2 → A(2) where. This map will in the next
section prove to be an obstruction to formality for E•2 (4).

Definition 77. α(w) := [φ(d(w))].

We note that this definitions makes sense since dw ∈ T (W≤1) on which φ is
defined and by the previous proposition we have

∂∗(φ(dw)) = φ(d2w) = 0

so φ(dw) is indeed a cycle. So far we have constructed the filtered model of
E•2 (4) up T (W≤1). We will however need to construct D one step further, to
T (W≤2). Following the construction in the proof of theorem 4.3 we see that we
need to fix a map linear η : A→ T (W0) such that ρ ◦ η = idA.

Definition 78. Define η : A→ T (W0) on the basis in proposition 65 by

Ai1j1 · · ·Aitjt 7→ B∗i1j1 ⊗ ...⊗B∗itjt ∈ T (W0).

We note that then ρ(B∗i1j1⊗...⊗B∗itjt) = ρ(B∗i1j1) · · · ρ(B∗itjt) = Ai1j1 · · ·Aitjt
as we wanted so we can define D on on W2 by D(z) = d(z)− η(α(z)) as in the
proof of theorem 4.2.

5.3 Hochshild homology

In this section we recall the twisted hom-space Homτ (W,A) and show that α
as defined in the previous section is a cycle in this complex. Then we explain
why non-triviality of the class of α is implies non-formality of Fk(R2). Consider
the map τ : W → A which is zero everywhere except in weight 1 where it is
given by sB∗ij 7→ Aij .

Lemma 79. τ ? τ = 0
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Proof. Because τ vanishes outside weight 1 and the coproduct of W respects
weight τ ? τ definitely vanishes outside W (2). To see that it vanishes in weight
2 as well we use the computations done in the proof of proposition 75. Because
d is induced by the coproduct we have (recalling the relations in A)

τ ? τ((BijBkl)
∗) =





A2
ij = 0 if (i, j) = (k, l),

AijAkl +AklAij = 0 if j 6= l,

AijAkj +AijAik +AkjAik = 0 if j = l, i < k,

AijAkj +AkjAki +AijAki = 0 if j = l, i > k

.

This will allow us to put a twisted differential structure on Hom(W,A). Let
us define ∂ : Hom(W,A)→ Hom(W,A) by f 7→ f ? τ + τ ? f .

Lemma 80. (Hom(W,A), ∂) is a dga algebra.

Proof. Then ∂ is indeed a differential because ∂2(f) = ∂(f ? τ + τ ? f) =
f ? τ ? τ + τ ? f ? τ + τ ? f ? τ + τ ? τ ? f = 0. Also ∂(f ? g) = f ? g ? τ + τ ? f ? g
where as ∂(f)?g+f ?∂(g) = f ?τ ?g+τ ?f ?g+f ?g?g+f ?τ ?g = f ?g?τ+τ ?f ?g.

We now note that the map α defined in the end of the last section is an
element of Hom(W,A) and we will see that it is in fact a cycle with respect to
the differential ∂.

Proposition 81. ∂(α) = 0

Proof. We first note that since α vanishes outside W2 and τ outside W0 we see
that α ? τ + τ ? α vanish outside W3. Let X ∈W3. Then we want to compute

µA ◦ (α⊗ τ) ◦ µ̄∗
A!(X) + µA ◦ (τ ⊗ α) ◦ µ̄∗

A!(X).

But since the differential d on T (W ) is induced by the coproduct of W we have

µA◦(α⊗τ)◦µ̄∗
A!(X)+µA◦(τ⊗α)◦µ̄∗

A!(X) = µA◦(α⊗τ)◦d(X)+µA◦(τ⊗α)◦d(X).

Because the syzygy degree is weight minus one, and the coproduct of W respects
the weight, it follows that d(X) ∈ W2 ⊗W0 ⊕W1 ⊗W1 ⊕W0 ⊗W2. Let us
write d(X) =

∑
xi ⊗ yi +

∑
ai ⊗ bi +

∑
wi ⊗ zi the first sum is in W2 ⊗W0,

the second in W1 ⊗W1 and the third in W0 ⊗W2. Then we see that

∂(α)(X) = µA ◦ (α⊗ τ)
(∑

xi ⊗ yi +
∑

ai ⊗ bi +
∑

wi ⊗ zi
)

+

µA◦(τ⊗α)
(∑

xi⊗yi+
∑

ai⊗bi+
∑

wi⊗zi
)

=
∑

α(xi)τ(yi)+
∑

τ(wi)α(zi).

Let us show that this is in fact zero in A. Since d(X) ∈W2 ⊗W0 ⊕W1 ⊗W1 ⊕
W0 ⊗W2 and since D − d lowers syzygy degree by 2 (see theorem 4.2) we see
that

D(dX) = (D − d)(dX) = (D − d)
(∑

xi ⊗ yi +
∑

ai ⊗ bi +
∑

wi ⊗ zi
)

=
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∑
(D−d)(xi)⊗yi+

∑
wi⊗(D−d)(zi) =

∑
η(α((xi))⊗yi+

∑
wi⊗η(α(zi))

where we used the definition of D on W2 from the end of the previous chapter
and the fact that we are working over Z2 for the last equality. But since φ can
be extended to a filtered model (T (W ), D)→ (E•2 (4), ∂) we see that φ(DdX) is
a boundary in E•2 (4). So

0 = [φ(DdX)] =
[∑

φ(ηα(xi))φ(yi) +
∑

φ(wi)φ(ηα(zi))
]
.

Because ηα(xi), yi, wi and ηα(zi) all land in W0 they are all cycles and then the
last expression equals

∑
[φ(ηα(xi))] · [φ(yi)] +

∑
[φ(wi)] · [φ(ηα(zi))].

By property ii) of the filtered model (see theorem 4.2) we have [φ(v)] = ρ(v)
for any v ∈W0 and since ρη = idA we see that the last expression equals

∑
α(xi) · ρ(yi) +

∑
ρ(wi) · α(zi).

However comparing the definitions of ρ and τ we see that they equal on W0

meaning the last expression is precisely
∑
α(xi)τ(yi) +

∑
τ(wi)α(zi) which we

said was ∂(α)(X) proving that α is a cycle in Hom(W,A).

We have now identified the obstruction class [α] ∈ H(Hom(W,A)). Proving
that it is non-trivial however requires some more work and we refer to [2] for
the details behind the following lemma.

Lemma 82. The class of α is non-trivial.

Let us however explain how the non-triviality of [α] implies non-formality of
Fk(Rn). First we have the following lemma from Salvatore’s article

Lemma 83. There is no isomorphism ψ : (T (W ), d) → (T (W ), D) such that
ψ − id lowers the syzygy degree.

Proof. To get a contradiction assume there is an isomorphism ψ as in the state-
ment of the lemma. Since ψ − id is supposed to lower the syzygy degree we
must have ψ = id on W0. On W1 ψ must be of the form ψ = id + f where
f : W1 → T (W0) and on W2 ψ must be of the form ψ = id + f1 + f0 where
f1 : W2 → T (W≤1) and f0 : W2 → T (W0). Now let x ∈ W2. By assumption
we have ψ ◦ d(x) = D ◦ ψ(x). Let us write d(x)(x) =

∑
ai ⊗ bi +

∑
ci ⊗ di ∈

W1 ⊗W0 ⊕W0 ⊗W1. Then

ψ(dx) = ψ(
∑

ai⊗bi+
∑

ci⊗di) =
∑

(id+f)(ai)⊗bi+
∑

ci⊗(id+f)(di) =

∑
ai ⊗ bi +

∑
ci ⊗ di +

∑
f(ai)⊗ bi +

∑
ci ⊗ f(di) =

dx+
∑

f(ai)⊗ bi +
∑

ci ⊗ f(di)
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and

D ◦ ψ(x) = D(x) +D ◦ f1(x) +D ◦ f0(x) = dx+ ηα(x) + d ◦ f1(x).

Comparing these two expressions we see that

∑
f(ai)⊗ bi +

∑
ci ⊗ f(di) = ηα(x) + d ◦ f1(x)

and applying ρ on both sides give

∑
ρ ◦ f(ai)⊗ ρ(bi) +

∑
ρ(ci)⊗ ρ ◦ f(di) = α(x).

Finally we note that ρ ◦ f : W1 → A and ρ = τ on W0 so the above equality
becomes α(x) = ∂(ρ ◦ f). Since x was arbitrary we see that [α] is trivial which
contradicts the previous lemma.

Now we are ready to state Salvatore’s main result in [2]

Theorem 84. The configuration space F4(R2) is not formal over Z2.

Proof. Recall from proposition 69 that the geometric realization of Fn(WSk)
is homotopy equivalent to Fk(Rn). This mean the following are quasi isomor-
phic C•(F4(R2)) ' C•(F2(WS4)) = E•2 (4) so formality of Fk(Rn) is equivalent
to formality of the dga algebra E•2 (4). Now to get a contradiction let us as-
sume E•2 (4) is formal. This means there is a zig-zag of dga algebras and quasi
isomorphisms

E•2 (4) A0 ... An = A∼
∼

∼ .

We may assume that this zig-zag induces the isomorphism H•(E•2 (4)) ∼= A
under which we have been working in this section (we can extend the zig zag
by a suitable isomorphism A ∼= A if necessary). I claim that in this situation
there is a quasi isomorphism q : (T (W ), d)→ E•2 (4) such that [q(w)] = ρ(w) for
all w ∈ T (W0). Indeed, to prove this it suffices to show that (T (W ), d) has the
following lifting property. Given quasi isomorphisms f : (T (W ), d) → (B, dB)
and g : (X, dX)→ (B, dB) there is a quasi isomorphism h : (T (W ), d)→ (X, dX)
such that the following diagram commutes on the level of homology

X

T (W ) B

g
h

f

.

To prove this we first factor g = p ◦ j as in proposition 48 where p : Y → B is
surjective and j : X → Y is a cell algebra inclusion and a quasi isomorphism
and it has the lifting property in proposition 48. But since g and j are quasi
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isomorphisms p is too. Then by proposition 50 there is a map h′ : (T (W ), d)→
(Y, dY ) such that

Y

T (W ) B

p
h′

f

commutes. Because f and p are both quasi isomorphisms h′ is too. But then
since j has the lifting property from proposition 48 there is a map h′′ such that

X X

Y

j

=

h′′

commutes. Note that h′′ is necessarily a quasi isomorphism. Then h = h′′ ◦ h′
is a quasi isomorphism with the desired property. But now we have two filtered
models

E•2 (4)

(T (W ), D) (T (W ), d)

φ

q

which by theorem 4.2 means there is an isomorphism ψ : (T (W ), d)→ (T (W ), D)
which lowers the syzygy degree. This however cannot happen by the previous
lemma so F4(Rn) is not formal.

So over Z2 F4(R2) gives an example of a space whose cohomology ring is
Koszul but which is not formal.
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0 1 2 3 4 · · ·
0 K 0 0 0 0 · · ·
1 0 sA(1) 0 0 0 · · ·
2 0 sA(2) sA(1)⊗ sA(1) 0 0 · · ·
3 0 sA(3) sA(1)⊗ sA(2)⊕ sA(2)⊗ sA(1) sA(1)⊗ sA(1)⊗ sA(1) 0 · · ·
4 0 sA(4)

⊕
i+j=4(sA(i))⊗ (sA(j))

⊕
i+j+k=4(sA(i))⊗ (sA(j))⊗ (sA(k)) (sA(1))⊗4 · · ·

...
...

...
...

...
...

Table 1: BA decomposed into weight and word length. The rows show the weight
that come from the weight grading on A. The columns show word lenght.

0 1 2 3 4 · · ·
0 K 0 0 0 0 · · ·
1 0 s−1C(1) 0 0 0 · · ·
2 0 s−1C(2) s−1C(1)⊗ s−1C(1) 0 0 · · ·
3 0 s−1C(3)

⊕
i+j=3 s

−1C(i)⊗ s−1C(j) s−1C(1)⊗ s−1C(1)⊗ s−1C(1) 0 · · ·
4 0 s−1C(4)

⊕
i+j=4 s

−1C(i)⊗ s−1C(j)
⊕

i+j+k=4 s
−1C(i)⊗ s−1C(j)⊗ s−1C(k) s−1C(1)⊗4 · · ·

...
...

...
...

...
...

Table 2: The table shows ΩC decomposed by weight and word length. The rows
show weight and the columns show word length.

· · · · · · · · · · · · (4)
0 s−1A¡[2] → (s−1A¡[0]⊗ s−1A¡[1])⊕ (s−1A¡[1]⊗ s−1A¡[0]) → s−1A¡[0]⊗ s−1A¡[0]⊗ s−1A¡[0] (3)
0 0 s−1A¡[1] → s−1A¡[0]⊗ s−1A¡[0] (2)
0 0 0 s−1A¡[0] (1)
0 0 0 K (0)
3 2 1 0

Table 3: ΩA¡ decomposed by syzygy degree (indicated on the last row) and
weight (indicated on the last column).
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