
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Post-Quantum Lattice-Based Key Encapsulation Mechanisms

av

Jennifer Chamberlain

2019 - No M2

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

Post-Quantum Lattice-Based Key Encapsulation Mechanisms

Jennifer Chamberlain

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Jonas Bergström, John Mattson

2019

Abstract

Lately there has been increased interest in post-quantum cryptography, and
NIST is in the process of standardizing one or more quantum-resistant cryp-
tosystems. Among the many submissions to their call for proposals, lattice-
based cryptosystems are popular, and this thesis looks at a number of the lattice
problems these cryptosystems can be based on, with particular focus on differ-
ent versions of the learning with errors problem (LWE). I give an overview and
comparison of three key encapsulation mechanisms (KEMs) based on different
versions of this problem (FrodoKEM, NewHope and CRYSTALS-Kyber), and
I also adapt CRYSTALS-Kyber, which is based on the module version of LWE
(MLWE), to use only the module learning with rounding problem (MLWR),
which makes the system more efficient, and discuss how this change affects the
security of the system.

1

Acknowledgements

I want to thank my supervisors Jonas Bergström at SU and John Mattsson at
Ericsson, as well as Erik Thormarker, also of Ericsson, for their support and
ideas throughout my work on this thesis. I also want to thank my referee Sven
Raum for quick and useful feedback.

2

Contents

1 Introduction 5
1.1 Report outline . 7

2 Preliminaries 7
2.1 Notation . 7
2.2 Lattices . 8

2.2.1 Finding short vectors in a lattice 12
2.2.2 Example of Babai’s rounding off procedure 14
2.2.3 The LLL-algorithm . 15
2.2.4 Variants of LLL . 16
2.2.5 Hermite Normal Form . 17
2.2.6 Multiplying polynomials 18
2.2.7 Gaussian distribution . 20

2.3 Hard lattice problems . 20
2.3.1 SVP and variants . 20
2.3.2 CVP and variants . 21
2.3.3 Hardness of SVP and CVP 22

2.4 Cryptography . 22
2.4.1 Types of cryptosystems 22
2.4.2 The Random Oracle Model (ROM) 25
2.4.3 The Quantum Random Oracle Model (QROM) 27
2.4.4 Security notions . 27
2.4.5 The Fujisaki-Okamoto transform 30
2.4.6 Modular FO transformations 31
2.4.7 Tighter QROM security 33
2.4.8 Different notions of correctness 33

3 Lattice based cryptography 35
3.1 SIS . 35

3.1.1 Hardness of SIS . 36
3.2 NTRU . 36

3.2.1 NTRU with polynomial rings 38
3.3 SIS over rings . 39

3.3.1 Hardness of RSIS . 41
3.3.2 SIS over module lattices 41

3.4 LWE . 42
3.4.1 Hardness of LWE . 43
3.4.2 LWE over rings . 43
3.4.3 LWE over module lattices 45

3.5 Variants of LWE . 46
3.5.1 LWR . 47
3.5.2 MLWR . 49
3.5.3 Other variants of MLWE 50

3

4 Examples of cryptosystems 51
4.1 FrodoKEM . 52

4.1.1 The algorithms . 52
4.1.2 Decapsulation error . 55
4.1.3 Security . 55

4.2 NewHope . 56
4.2.1 The algorithms . 56
4.2.2 Security . 57

4.3 Kyber . 59
4.3.1 Algorithms . 60
4.3.2 Security . 63
4.3.3 Attacks . 66

4.4 Comparison between FrodoKEM, NewHope and Kyber 69
4.4.1 Sizes and speeds . 70

5 Kyber using MLWR 72
5.1 Transform . 74
5.2 Error probability . 74
5.3 Design rationale . 75
5.4 Security . 76
5.5 Attacks . 77
5.6 Making bigger changes . 78
5.7 Conclusion . 79

4

1 Introduction

Since ancient times, cryptography has been used to send messages in such a
way that even if intercepted, they cannot be read by anyone but the intended
receiver. One way to achieve this is to have some secret key known to both the
sender and receiver, with which the message can be encrypted to a ciphertext,
from which the message can only be recovered with the secret key. This is called
symmetric cryptography, and one example of this is the one-time pad cipher,
which is impossible to crack but requires single-use keys of the same size as
the message. In general, symmetric encryption relies on both parties having
access to a secret key that no one else knows (it cannot simply be sent over
an open channel, as it might then be intercepted), and this becomes especially
inconvenient when it comes to communication over the internet.

An alternative that has only been around since the 1970s is asymmetric
cryptography, where each party has a public key and a private key. The public
key is published, and anyone can use it to, for instance, encrypt a message to
a ciphertext from which the message can only be recovered using the private
key. This is called a public key encryption scheme, or PKE. Asymmetric cryp-
tography is also used for key exchanges, which are used to agree on a key that
is shared between two parties while keeping it secret from any potential eaves-
droppers, and for signature schemes, which are used to send a message along
with a token that the receiver can use to confirm that the message came from
the correct sender.

A public key encryption scheme is usually not as fast or as memory efficient
as a symmetric scheme, but it has the advantage of requiring only two keys per
party, one public and one private, whereas a symmetric scheme requires one key
per communication link which is inconvenient for someone who needs to send or
receive encrypted information to many others. Therefore if there is a sufficiently
efficient public key encryption scheme it might be used for communication, but
otherwise asymmetric encryption is used only for the key exchange, and then
symmetric encryption is used for sending actual messages.

RSA schemes, whose security relies on the difficulty of factoring large num-
bers, are especially popular for public key encryption. The most well known key
exchanges are Diffie-Hellman type schemes, which rely on the hardness of find-
ing discrete logarithms in finite groups, often elliptic curves. However, things
are changing with the advent of quantum computers.

Quantum computers have different capabilities than classical computers, and
can query functions on inputs in superposition, evaluating the functions at sev-
eral positions at once. Such computers are not in general faster than classical
computers, but there are some problems which they can solve especially well,
and as Shor showed in [35] these include the problems of factoring large numbers
and finding discrete logarithms in finite fields. At present, quantum comput-
ers actually able to implement Shor’s algorithm are not available, but in 2015,
Mosca estimated in [27] that by 2031 chances of breaking RSA with 2048-bit

5

modulus using a quantum computer will be 50%.1 This means that sensitive
information that needs to remain confidential for more than about a decade to
come should even now be encrypted in some way less vulnerable to quantum
computers.

The National Institute of Standards and Technology (NIST) has started a
process to find and standardise schemes that will remain secure against quan-
tum computers, and in 2016 they called for submissions to their “Post-Quantum
Cryptography Standardization Project”. By the end of 2017, 59 submissions
for public key encryption schemes or key encapsulation mechanisms had been
received (as well as 23 signature schemes). Key encapsulation mechanisms
(KEMs) are another way to exchange a secret key, sometimes constructed from
a public key encryption scheme (PKE) by deriving a shared secret key from
a message which is sent from one party to the other using a PKE. These are
of interest because it is often more efficient to exchange a key with asymmet-
ric encryption and then use symmetric encryption, than to conduct an entire
communication with only public key encryption.

A majority of the PKEs and KEMs submitted to NIST are either code-based
(using error correcting codes) or lattice-based. Lattice-based schemes have the
advantage of comparatively strong security proofs, not in the sense that they
can be shown to be entirely unbreakable like for instance a one-time pad cipher
but in the sense that breaking lattice-based schemes can (depending on the
specific scheme) be shown to be as hard as finding short vectors in any lattice,
a problem which is believed to be computationally very hard. So far there is
no known algorithm with running time t that, in a general lattice, will find a
vector that is no more than a factor γ longer than the shortest vector, without
either γ of t growing exponentially (or nearly exponentially) in the dimension of
the lattice. The disadvantage of lattice based schemes is that they have much
larger keys and ciphertexts than for instance elliptic curve cryptography, which
so far has not been broken for key sizes of 163 bits or more. As contrast, lattice
based schemes may have keys many thousand bytes large. This, however, is
not uncommon in post quantum cryptography, and code based schemes tend to
have fairly similar sizes, with smaller ciphertexts but larger public keys. There
have been several attempts to make lattice-based schemes more efficient, both
in running time and in the size of keys and ciphertexts, by restricting them to
certain more structured lattices, and while this restriction means that the proofs
are likewise restricted to finding short vectors in more structured lattices there
are so far no known attacks which make more structured lattice-based schemes
unsuitable for public key cryptography.

1Matteo Mariantoni said in an invited talk at the 2014 PQCrypto conference that a quan-
tum computed capable of factoring a 2000-bit number in 24 hours might be possible to build
by about 2030 (though he said that this was a rough time estimate and would depend, among
other things, on the money put into development), that it would require a dedicated nuclear
power plant and the cost would be about a billion dollars.

6

1.1 Report outline

Section 2 contains background on lattices and cryptography, including hard
lattice problems and an overview of different variants of the transform by Fu-
jisaki and Okamoto [17] which takes a passively secure PKE and returns an
actively secure PKE. Section 3 concerns the short integer solution and learning
with errors problems, whose hardness relies on hard lattice problems and on
which encryption (or signature) schemes can be based, and learning with round-
ing which is a variant of the learning with errors problem but without error
sampling. In Section 4 we give some idea of three of the lattice-based KEMs
submitted to NIST, one of which (Frodo [39]) uses general lattices while the
other two (NewHope [40] and Kyber [41]) use more structured lattices. Sec-
tion 5 contains a suggestion for a version of Kyber that relies on learning with
rounding rather than learning with errors, and a discussion of the security of
this adapted scheme.

2 Preliminaries

2.1 Notation

Z denotes the ring of integers, and similarly Q,R,C are the rationals, the reals
and the complex numbers respectively. Z[X] denotes the polynomials in X
with integer coefficients. For f(X) ∈ Z[X], (f(X)) denotes the ideal of Z[X]
generated by f(X). For any ring R and any integer q, Rq = R/qR.

Matrices are written in uppercase bold, e.g. A, vectors in lowercase bold.
All vectors are column vectors, and the transpose of a vector a is aT . Similarly
the transpose of a matrix A is AT . Matrices and vectors can have entries in
any ring.

• The inner product of two vectors a = (a1, ..., an)T and b = (b1, ..., bn)T in
Cn is 〈a,b〉 =

∑n
i=1 ai · bi.

• The Euclidean norm for a vector a = (a1, ..., an)T ∈ Rn is defined as
||a|| =

√
a2

1 + ...+ a2
n.

• For any real number r, brc is the largest integer such that brc ≤ r, dre is
the smallest integer such that dre ≥ r, and rounding to the nearest integer
(with ties broken upwards) is written as bre = br + 1/2c.

• Componentwise multiplication is denoted ◦. For polynomials a =
∑n
i=1 aiX

i

and b =
∑n
i=1 biX

i with coefficients in some ring, a ◦ b =
∑n
i=1 aibiX

i.

• Pr[E] denotes the probability of an event E, and for any E we always have
0 ≤ Pr[E] ≤ 1.

• If χ is some probability distribution, e ← χ means that e is sampled
according to χ, and e← χn means that e = (e1, ..., en)T where ei ← χ for
i = 1, ..., n.

7

• For any algorithm A, g ← A means that g is the output of A.

• In computer algorithms, two strings or tuples are concatenated using ||,
so (a1, ..., an)||(b1, ..., bn) = (a1, ..., an, b1, ..., bn).

Let f(x) and g(x) be real-valued functions of x, defined on an unbounded
set of the positive real numbers, such that g(x) is positive for sufficiently high
values of x. We have the following asymptotic notation.

• f(x) = O(g(x)): There is N and a positive constant C such that |f(x)| ≤
Cg(x) for all x ≥ N .

• f(x) = Õ(g(x)): For some k > 0, f(x) = O(g(x) logk(x)), i.e., we ignore
all logarithmic factors.

• f(x) = o(g(x)): For every positive constant ε there is N such that |f(x)| ≤
εg(x) for all x ≥ N .

• f(x) = ω(g(x)): For every positive constant ε there is N such that |f(x)| ≥
εg(x) for all x ≥ N .

• f(x) = Θ(g(x)): There is N and positive constants C1, C2 such that
C1g(x) ≤ |f(x)| ≤ C2g(x) for all x ≥ N .

• g(x) = poly(x): g(x) is bounded by a polynomial in x.

2.2 Lattices

Much of the following material on lattices can be found in [21] by Hoffstein,
Pipher and Silverman.

Definition 2.1. A lattice is a discrete additive subgroup of Rn. The dimension
of a lattice L is the maximum size of a set of linearly independent vectors in L.

The dimension of a lattice is sometimes also called the rank of the lattice,
and a lattice L ⊂ Rn that has dimension n is known as a full-rank lattice. In
this text, unless otherwise specified, all lattices are assumed to be full-rank.

A lattice L ⊂ Rn always has a basis, a set of linearly independent vectors
v1, . . . ,vn in Rn such that any vector w ∈ L can be written as a linear combi-
nation with integer coefficients of v1, . . . ,vn. Given a basis we can also define
the specific lattice generated by that basis.

Definition 2.2. Let B = {v1, . . . ,vn} be a set of linearly independent vectors
in Rn. Then L(B) = {

∑n
i=1 aivi : ai ∈ Z for all i} is the lattice generated by

the basis B.

The basis of a lattice is not unique. If v1, . . . ,vn is a basis for a lattice L,
then any other set of linearly independent vectors in Rn that generate L is also
a basis for L. A basis for a lattice of dimension n always consists of n basis
vectors.

8

Assume v1, . . . ,vn and w1, . . . ,wn are two bases for L. Then there are
integers aij for i, j ∈ {1, ..., n} such that

w1 = a11v1 + a12v2 + · · ·+ a1nvn
w2 = a21v1 + a22v2 + · · ·+ a2nvn
...

...
wn = an1v1 + an2v2 + · · ·+ annvn,

that is, (w1,w2, ...,wn) = (v1,v2, ...,vn)A where

A =

a11 a21 · · · an1

a12 a22 · · · an2

...
...

. . .
...

a1n a2n · · · ann

 .

Since both v1, . . . ,vn and w1, . . . ,wn are bases for L, A must be invertible,
and A−1 must have integer entries. Therefore det A and det(A−1) are both
integers, and since

1 = det I = det A det(A−1)

it follows that det A = ±1. This shows that if we have two bases for a lattice,
there is some square integer matrix with determinant ±1 (such a matrix is
called unimodular, it is invertible and its inverse is also an integer matrix with
determinant ±1), which multiplied with the first basis will produce the second.
The converse also holds, for if v1, . . . ,vn is a basis for the lattice L and A is a
unimodular n× n matrix, then (v1,v2, ...,vn)A is also a basis for L.

In a vector space, an orthogonal basis can be created from any basis by
using the Gram-Schmidt Algorithm. However, given a basis for a lattice, the
Gram-Schmidt Algorithm will not in general yield an orthogonal basis for the
lattice since the vectors produced by the algorithm are unlikely to belong to the
lattice. We can still talk about more or less orthogonal bases, and a reasonably
orthogonal basis for a lattice is sometimes called a “good” basis, while a basis
that is far from orthogonal is called a “bad” basis. Note that these are vague
and relative terms, and while one can sometimes say more specifically what is
a “good enough” basis for a particular purpose there is no general definition.

Example. Let L ⊂ R2 be the lattice spanned by v1 = (−351, 122) and v2 =
(108, 447). The two unimodular matrices

A =

(
3 4
5 7

)
and B =

(
7 29
8 33

)
,

give two more bases w1,w2 and u1,u2 for L, with

w1 = 3v1 + 5v2 = (513, 2601)

w2 = 4v1 + 7v2 = (−648, 3617)

u1 = 7v1 + 8v2 = (−1593, 4430)

u2 = 29v1 + 33v2 = (−6615, 18289).

9

The angle between v1 and v2 is about 84.5 degrees, whereas that between
w1 and w2 is about 21.3 degrees and that between u1 and u2 only about 0.1
degrees, so the vectors u1 and u2 are nearly parallell. Probably most would
agree that u1,u2 is a “bad” basis and v1,v2 a “good” one, though with no
actual definition of these terms these are not objective truths. However, we can
certainly say that w1,w2 is a better basis than u1,u2, and v1,v2 is better than
either.

Dual lattices. For any lattice L ∈ Rn, the dual of L is

L∗ := {y ∈ Rn : 〈x,y〉 ∈ Z for all x ∈ L}.

q-ary lattices. A lattice L is q-ary for some integer q if qZn ⊆ L ⊆ Zn. For
positive integers q,m, n, and A ∈ Zm×nq , we define two particular q-ary lattices

Λq(A) = {y ∈ Zn : y = AT s mod q for some s ∈ Zm}
Λ⊥q (A) = {y ∈ Zn : Ay = 0 mod q}.

Ideal and module lattices. Let ξ be an algebraic number, i.e. a complex
root of a polynomial in Q[X], and K the number field Q(ξ). This is a Q-vector
space of dimension n, where n is the degree of the unique monic irreducible
polynomial f such that ξ is one of its roots (the minimal polynomial of f). An
algebraic number whose minimal polynomial is in Z[X] is an algebraic integer.
The set of algebraic integers in K form a ring called the ring of integers of K.
In lattice cryptography, we tend to consider only cases where ξ is a primitive
ν-th root of unity, so that it is a root of the ν-th cyclotomic polynomial Φν and
K is a cyclotomic field. Then n = φ(ν) (where φ is Euler’s totient function)
and the ring of integers is Z[ξ].

Let K be a number field and R its ring of integers. There is an embedding σH
from K to Rn (it has to do with the canonical embeddings, field homomorphisms
σj : K → C defined by σj : ξ 7→ ξj for j ∈ Z×ν , and Langlois and Stehlé write
more about it in [25]) and for an ideal I of R, σH(I) is a lattice called an ideal
lattice. Similarly, (σH , ..., σH) is an embedding from Kd to Rnd, and it maps
a finitely generated module M ⊆ Kd of R to a lattice called a module lattice2.
Note that the ideal lattice corresponding to the ideal I has dimension n and the
module lattice corresponding to the module M ⊆ Kd has dimension nd.

In lattice cryptography, lattice problems over ideal or module lattices are
often described using polynomial rings instead, by considering polynomials in
rings of the form R := Z[X]/f for some polynomial f ∈ Z[X] of degree n rather
than vectors in the corresponding lattice.

2Langlois and Stehlé write in Section 2.1 of [25] that because K is a number field R is a
Dedekind domain, and therefore any R-module M ∈ Kd has a pseudo-basis in which elements
of M are uniquely represented.

10

Fundamental domain. The fundamental domain of a lattice L together with
a basis B = {v1, . . . ,vn} is

FB = {t1v1 + t2v2 + · · ·+ tnvn : −1

2
≤ ti <

1

2
for all i}.

The fundamental domain is the generalisation to dimension n of a parallellepiped,
and every vector in Rn can be written, uniquely, as a sum of a vector in L and
a vector in FB.

Lattice invariants. The n-dimensional volume of the fundamental domain
is denoted Vol(FB). For B = {v1, . . . ,vn}, let V be the matrix such that
(v1,v2, ...,vn) = (e1, e2, ..., en)V where ei is the vector with a 1 in entry i and
zeros elsewhere. Then

Vol(FB) = |det V|.

The fundamental domain depends on the basis, but its volume does not because
we change basis by multiplication with a unimodular matrix (and for two square
matrices M and N of equal size, det(MN) = det M · det N). Thus Vol(FB)
does not depend on which basis for L is used to calculate it. We define the
determinant of L by detL = Vol(FB).

The determinant of a lattice is a lattice invariant, meaning it is a property
of the lattice that does not depend on the choice of basis. There are a number
of other lattice invariants, for instance the length of the shortest nonzero vector
in a lattice. Because a lattice is discrete, a shortest nonzero vector must exist
(though it need not be unique). The length of a shortest vector in a lattice L is
called the minimum distance of L, and is denoted λ1(L).

Similarly, the i-th successive minimum of L, which is the smallest value r
such that L has i linearly independent vectors of norm at most r, is a lattice
invariant. It is denoted λi(L).

Finding a short vector in a lattice is not a straightforward problem, but we
can at least get some idea of how long such a vector will be.

Theorem 2.1. (Minkowski’s Theorem) Let L be a lattice of dimension n, and
S ⊂ Rn a symmetric convex set such that

Vol(S) > 2n detL.

Then S contains a nonzero lattice vector. Moreover, if S is closed, the inequality
need not be strict.

Applying Minkowski’s theorem to a hypercube gives the following bound for
the minimum distance of a lattice.

Theorem 2.2. (Hermite’s Theorem) For any lattice L of dimension n, there
is some vector v ∈ L such that

||v|| ≤
√
n · (detL)1/n.

11

Minkowski’s theorem can be applied to a hypersphere instead of a hypercube
to get a better estimate. Let Br(0) be a ball of radius r in Rn, centered at 0.
By Theorem 6.30 in [21], the volume of Br(0) is

Vol(Br(0)) =
πn/2rn

Γ(1 + n/2)
,

where Γ(s) =
∫∞

0
ts−1e−tdt (for s > 0) is the gamma function. By Proposition

6.29 in [21],

Vol(Br(0)) =
πn/2rn

Γ(1 + n/2)
=
(√2πe

n
r
)n
· 1√

πeO(1)
as n→∞.

Thus for large enough n, it follows from Minkowski’s theorem that an n-

dimensional lattice L contains a vector of length at most
√

2n
πe (det(L))1/n ·

π1/2neO(1/n), which gives a better bound than Hermite’s theorem when n is
large.

It is also interesting to ask how long we might reasonably expect a shortest
vector to be in a lattice that is somehow randomly chosen. Intuitively, the
number of lattice points in Br(0) is approximately the volume of Br(0) divided
by det(L) = Vol(FB) for any basis B of L (though lattice points near the
boundary of Br(0) will create an error). Therefore to estimate how large Br(0)
needs to be to contain one lattice point, we set Vol(Br(0)) = det(L) and solve
for r. Assuming n is large enough that

Vol(Br(0)) ≈
(√2πe

n
r
)n
,

it follows that Vol(Br(0)) = det(L) for r ≈
√

n
2πe · (detL)1/n.

This gives the Gaussian expected shortest length

σ(L) =

√
n

2πe
· (detL)1/n,

and the Gaussian heuristic, which says that for any “randomly chosen lattice”
L, λ1(L) ≈ σ(L).

2.2.1 Finding short vectors in a lattice

There are a number of lattice problems that are computationally hard, in that
there are no known algorithms that can solve them to within some useful ap-
proximation in reasonable time, by which (at least in cryptography) we mean
that neither the approximation factor nor the time should grow more quickly
than a polynomial in the dimension of the lattice. Most of these are variants
of two main problems, the shortest vector problem (SVP) and the closest vector
problem (CVP). These are defined in Section 2.3, but informally, to solve SVP is
to find a shortest vector in a given lattice (there can be several shortest vectors,

12

in which case it suffices to find one), and to solve CVP is to find, given a lattice
and a vector not belonging to the lattice, a lattice vector that is closest to the
given vector.

Both these problems are trivial given an orthogonal basis, but when working
with lattices orthogonal bases are not common. Both SVP and CVP are still
fairly easy to solve, at least up to some approximation, if given access to a suffi-
ciently “good” basis (how good it needs to be depends on what approximation
factor is acceptable), but they are difficult to solve given only a “bad” basis.

Since the volume of a parallellepiped with sides of fixed length is greatest
when the sides are pairwise orthogonal, we have, for a fundamental domain
Vol(F) of a lattice L and any basis B = {v1, . . . ,vn} of L,

detL = Vol(FB) ≤ ||v1|| ||v2|| · · · ||vn||.

This is called Hadamard’s inequality.

Definition 2.3. Let L be a lattice with a chosen basis B = {v1, . . . ,vn}. We
define the Hadamard ratio of B to be

H(B) =
(det(L)

||v1|| ||v2|| · · · ||vn||

)1/n

.

By Hadamard’s inequality, 0 < H(B) ≤ 1. The Hadamard ratio is not a
lattice invariant, but can be used as a heuristic to judge how good a basis is,
because it is closer to 1 when the basis is more orthogonal, and closer to 0
when it is less orthogonal. Thus the Hadamard ratio can be used to compare
two bases for the same lattice and see which is “better”, i.e., closer to being
orthogonal.

In 1982, Lenstra, Lenstra and Lovász introduced the LLL-algorithm, which
uses the above fact to produce a comparatively good basis in polynomial time.
This new basis can be used to find approximate solutions to SVP and CVP
in a small lattice, but it does not work as well for larger lattice dimensions
because the approximation factors are exponential in the lattice dimension n.
The LLL-algorithm, and some later variants of it, are described in Section 6.12
of [21].

Definition 2.4. A basis v1, ...,vn for the lattice L is called LLL-reduced if it
fulfills the two conditions

(Size condition) |µi,j | =
|〈vi,v∗j 〉|
||v∗j ||2

≤ 1

2
for all 1 ≤ j < i ≤ n

(Lovász condition) ||v∗i ||2 ≥
(3

4
− µ2

i,i−1

)
||v∗i−1||2 for all 1 < i ≤ n,

where v∗1, ...,v
∗
n is the Gram-Schmidt orthogonal basis associated to v1, ...,vn.

Notice that the order of the vectors affects whether the basis fulfills the size
condition.

13

Any LLL-reduced basis v1, ...,vn for the lattice L has the properties

n∏
i=1

||vi|| ≤ 2n(n−1)/4 detL,

||vj || ≤ 2(i−1)/2||v∗i || for all 1 ≤ j ≤ i ≤ n.

Moreover, the first basis vector v1 fulfills

||v1|| ≤ 2(n−1)/4|detL|1/n

and is a solution for the apprximate shortest vector problem SVPγ for approxi-
mation factor γ = 2(n−1)/2, meaning that it is longer than a shortest vector by
at most a factor γ = 2(n−1)/2.

Babai offers two procedures for finding an approximate solution to CVP in
[5], the rounding off procedure and the nearest plane procedure. In the following,
recall that for a ∈ R, bae is the closest integer to a (with ties broken upwards).

Given a lattice L ⊂ Rn with basis v1, . . . ,vn, a vector w = a1v1 + a2v2 +
· · · + anvn with a1, ..., an ∈ R, and a function γ(n), the challenge is to find a
vector x such that ||w − x|| ≤ γ(n)||w − u||, where u is a closest lattice vector
to w.

The Rounding off Procedure. Set bi = baie for i = 1, 2, ..., n, and set
x = b1v1 + b2v2 + · · ·+ bnvn.

The Nearest Plane Procedure. Let U be the linear subspace of Rn
spanned by v1, . . . ,vn−1, and L′ the sublattice spanned by v1, . . . ,vn−1. Find
a vector z ∈ L such that the distance between w and U + z is minimal and let
w′ be the orthogonal projection of w on U + z.3

Recursively, find y ∈ L′ near w′ − z and let x = y + z.

Theorem 2.3. (Theorem 3.1, [5]) If v1, . . . ,vn is an LLL-reduced basis4, then
the nearest plane procedure produces a vector x closest to w to within a factor
γ = 2n/2.

Theorem 2.4. (Theorem 3.2, [5]) If v1, . . . ,vn is an LLL-reduced basis, then
the rounding off procedure produces a vector x closest to w to within a factor
γ = 1 + 2n(9/2)n/2.

2.2.2 Example of Babai’s rounding off procedure

The following example illustrates how Babai’s rounding off procedure works in
a good and a bad basis, respectively.

3To find z and w′, write w as a linear combination α1v∗1 + · · ·+αnv∗n of the orthogonalised
basis v∗1 , · · · ,v∗n and let c = bαne. Then w′ = α1v∗1 + · · ·+ αn−1v∗n−1 + cv∗n and z = cvn.

4Babai uses a Lovász-reduced basis instead, where the second condition is

||v∗i || ≥
||v∗i−1||√

2
for all 1 < i ≤ n.

Since the size condition in Definition 2.2 requires µ2i,i−1 ≤ 1/4, an LLL-reduced basis is also
Lovász-reduced.

14

Let L ⊂ R2 be the lattice spanned by v1 = (−351, 122) and v2 = (108, 447).

This basis has a Hadamard ratio of H(v1,v2) =
√

detL
||v1|| ||v2|| ≈ 0.998 so it is

quite a good basis.
We want to find the closest lattice vector to w = (40119, 72324). Using the

rounding off procedure, we write w ≈ −59.52 · v1 + 178.04 · v2, and get the
approximate answer

x = −60v1 + 178v2 = (40284, 72246),

with
||w − x|| ≈ 183.

Now we try to solve the same problem using another basis for the lattice,
with basis vectors u1 = 7v1 + 8v2 = (−1593, 4430) and u2 = 29v1 + 33v2 =

(−6615, 18289). This basis has a Hadamard ratio of H(u1,u2) =
√

detL
||u1|| ||u2|| ≈

0.043 so is significantly worse than the previous one.
Again using the rounding off procedure, we write w ≈ 7127.29 ·u1−1722.43 ·

u2, and the procedure gives the vector

x′ = 7127u1 − 1722u2 = (37719, 78952),

with
||w − x′|| ≈ 7049.

2.2.3 The LLL-algorithm

Algorithm 1 The LLL algorithm

Input: Basis {v1, . . . ,vn} for the lattice L
Output: Produces an LLL-reduced basis for the lattice L

1: k = 2
2: v∗1 = v1

3: while k ≤ n do
4: for j = 1, 2, ..., k − 1 do
5: vk = vk − bµk,jev∗j . Size reduction

6: if ||v∗k||2 ≥ (3/4− µ2
k,k−1)||v∗k−1||2 then . Lovász condition

7: k = k + 1
8: else
9: Swap vk−1 and vk . Swap step

10: k = max(k − 1, 2)

11: return {v1, . . . ,vn}
At each step v∗1, . . . ,v

∗
k is the set of orthogonal vectors obtained by applying

Gram-Schmidt to the current v1, . . . ,vk, and µi,j = (vi · v∗j)/||v∗j ||2.

The LLL-algorithm, shown in Algorithm 1, produces an LLL-reduced basis
for L in polynomial time (the main loop is executed no more than O(n2 log n+

15

n2 logB) times, where B is the length of the longest vector of the basis which
is to be reduced). Due to the swap step (line 9), the sublattices spanned by
v1, ...,vl for 1 ≤ l < n change, and what the algorithm is attempting to do
is to minimize the determinants of each of these sublattices, along with size
reductions where possible.

The value 3/4 in the Lovász condition (line 6) can be replaced by any value
strictly smaller than 1, and the algorithm will still terminate in polynomial time,
but if it is replaced by 1 (which is needed to guarantee that the determinants
of the sublattices will be minimized) this may not be the case (it is an open
problem). In practice a value between 3/4 and 1 is usually used, though a larger
value will not always give a better basis. The order of the vectors in the input
basis affects the output basis.

There are some issues with the LLL-algorithm. Firstly, the Gram-Schmidt
orthogonalisation is not always the same, so even if it is stored for repeated
use when possible, it must still be calculated many times. Moreover, for high
dimensions n the intermediate calculations involve huge numbers and it can
be necessary, as Schnorr and Euchner suggest in [34], to use floating point
approximations for the numbers |µi,j | and ||v∗i ||2, leading to round off errors.

Efficiently implemented the algorithm will terminate after no more than
O(n6(logB)3) basic operations.

Remark. According to Section 6.11.2 of [21], LLL and other lattice reduction
algorithms can easily find the shortest vector if it is significantly shorter than
the Gaussian expected shortest length (say O(2n) shorter). Therefore, if it is
important that it should be hard to find a shortest vector in a lattice, no vector
should be too much shorter than the Gaussian expected shortest length.

2.2.4 Variants of LLL

There are alternatives to the LLL algorithm which give better results, though
at the cost of longer run time. The deep insertion method, presented by Schnorr
and Euchner in 1994 [34], may not terminate in polynomial time, but according
to [21] (Section 6.12.4) it will in practice run quite quickly on most lattices and
tends to give a significantly better result than the LLL-algorithm. Instead of a
swap step, the deep insertion method inserts the vector vk between the vectors
vi−1 and vi, where i is chosen to get a large size reduction. Specifically (for
some chosen δ such that 1/4 < δ < 1), i = 1 if δ · ||v∗1 ||2 > ||v∗k||2, and otherwise
i is chosen to be the largest i ∈ [1, k − 1] such that

δ · ||v∗i ||2 ≤ ||v∗k||2 −
i−1∑
j=1

µk,j ||v∗j ||2.

If this inequality holds for all 1 ≤ i < k, vk is not moved at all.
In [34] floating point arithmetic is used for the vector norms.

Definition 2.5. Let v1, ...,vn be a set of vectors. For i = 0, ..., n, let πi : L →

16

Rn be the maps defined by

π0(v) = v and πi(v) = v −
i∑

j=1

〈v,v∗j 〉
||v∗j ||2

v∗j ,

where v∗1, ...,v
∗
n is the Gram-Schmidt orthogonal basis associated to v1, ...,vn.

A basis v1, ...,vn for a lattice L is called Korkin-Zolotarev reduced if

1. v1 is a shortest nonzero vector of L.

2. For i = 2, 3, ..., n, vi is chosen so that πi−1(vi) is the shortest vector in
πi−1(L).

3. For all 1 ≤ i < j ≤ n, |〈πi−1(vi), πi−1(vj)〉| ≤ 1
2 ||πi−1(vi)||2.

In general a KZ-reduced basis is far better than an LLL-reduced basis, and
by definition its first vector is always a solution to SVP. It is therefore not
surprising that all known methods for finding such a basis require exponential
time, in the dimension n.

The BKZ-LLL algorithm, where BKZ stands for block Korkin-Zolotarev,
compromises by replacing the swap step of the LLL-algorithm with a block
reduction, where a block of b vectors spanning some sublattice is reduced to a
KZ-reduced basis for the same sublattice. Larger blocks give a better basis, but
also slow down the algorithm, and the block-size b can be chosen with this in
mind.

The BKZ-LLL algorithm gives a better basis for larger block size, but on the
other hand the larger block size means that the algorithm takes longer to run.
According to Remark 6.76 in [21], using BKZ-LLL to find a vector no more than
a factor γ = O(nδ) longer than the shortest vector (for some fixed δ) requires,
both in theory and (according to experimental evidence) in practice, that as n
grows the block size must grow linearly in n, and then the running time grows
exponentially.

2.2.5 Hermite Normal Form

Lattice cryptography sometimes means working with large matrices A ∈ Zm×nq ,
which may be expressed slightly more efficiently using the Hermite normal
form.5

Definition 2.6. A matrix H ∈ Zm×n, with m ≥ n, is in (lower triangular)
Hermite normal form (HNF) if

• any columns consisting entirely of zeros are to the right,

5Because these matrices usually have entries in Zq rather than Z, they are not formally
expressed using Hermite normal form, which is only defined for integer matrices, but they
can still be written in a way that resembles Hermite normal form and by which they can be
expressed more compactly.

17

• the pivot (first nonzero entry) of each nonzero column is positive, and
strictly below the pivot of the column immediately to the left, and

• entries to the left of a pivot are nonnegative and strictly smaller than the
pivot.

The third condition can be seen as requiring elements to the left of a pivot
to be reduced modulo that pivot. The second condition together with m ≥ n
implies that H is lower triangular, i.e., hij = 0 for i < j. A matrix H ∈ Zn×m,
with m ≥ n, has upper triangular Hermite normal form if its transpose has
lower triangular Hermite normal form.

For any integer matrix A ∈ Zm×n, there exists a unique matrix H ∈ Zm×n
and a square unimodular matrix U such that H = AU.

2.2.6 Multiplying polynomials

Some problems based on more structured lattices can be described using polyno-
mial rings, and it then becomes relevant to find efficient ways to multiply poly-
nomials. A popular method is to use the number-theoretic transform (NTT), a
specialization over Zq for some integer q of the discrete Fourier transform.

Number-theoretic Transform NTT
Let R = Z[X]/(Xn + 1) and Rq = R/qR. If n is a power of 2 and q is a

prime such that 2n|(q − 1), there exists a primitive n-th root of unity ω and

its square root mod q, γ. For g =
∑n−1
i=0 giX

i ∈ Rq, the NTT transform is the
function NTT : Rq → Rq defined by

NTT(g) = ĝ =

n−1∑
i=0

ĝiX
i, where ĝi =

n−1∑
j=0

γjgjω
ij mod q.

NTT is invertible, and the inverse is denoted NTT−1.
The point of the transform is that it allows us to multiply polynomials in

Rq by coefficient-wise multiplication of their images under the NTT transform.
That is, for a, b ∈ Rq,

ab = NTT−1(NTT(a) ◦ NTT(b)),

where ◦ denotes coefficient-wise multiplication.
In many schemes, it is argued that the choice of n as a power of 2 makes

the transform more efficient, but other choices of n are possible. In fact, it is
not even necessary that q be prime, as long as a principal nth root of unity6 ω
exists.

Using the GNU Multiple Precision Arithmetic library
In [16], Fateman discussed encoding polynomials with integer coefficients

as big numbers and then using GMP (GNU Multiple Precision) to multiply

6That is, ωn = 1 and
∑n−1

j=0 ω
jk = 0 for 1 ≤ k < n.

18

them. This way we take advantage of the considerable effort that is put into
maintaining and developing GMP. To multiply two polynomials in this way, we
encode them as integers by evaluating them at one point, chosen depending on
their degrees and sizes of their coefficients to be large enough to allow decoding
(translating back into polynomials) without errors after multiplying the integers.
Working in a finite field (as is the case for the lattice schemes discussed here)
simplifies the choice of point for evaluation. If the polynomials to be multiplied
are in Rq = R/qR as above, the point at which they are evaluated need not be
larger than nq2 (if we are only multiplying two polynomials, and then decoding
the result), though in practice it is more convenient to chose the smallest power
of 2 larger than this number as it simplifies encoding and decoding.

Note that if we are multiplying polynomials in Rq, we first have to express
them as polynomials in Z[X] (choosing their respective representatives with
degree under n and coefficients between 0 and q − 1). Encoding, multiplying
and decoding these polynomials gives their product in Z[X], and to recover the
product in Rq we must reduce this product in Z[X] by (Xn + 1), and reduce
each coefficient modulo q, and Fateman comments that there does not seem to
be any particularly quick way of doing this.

This method seems to have no additional requirements on n and q beyond
that they be positive integers.

Karatsuba multiplication for polynomials. Karatsuba multiplication for
polynomials means splitting one multiplication of large polynomials into three
multiplications of polynomials of half the size (which can recursively be multi-
plied using Karatsuba multiplication). Adapting Bernsteins description in Sec-
tion 5 of [8] to the case of integer polynomials, let a and b be two polynomials
of degree strictly less than 2n in Z[X], and rewrite them as a0 +a1Y, b0 + b1Y ∈
Z[X,Y] where a0, a1, b0, b1 ∈ Z[X] have degree less than n. This is done by map-
ping a and b into Z[X,Y]/(Xn − Y) and then lifting them to Z[X,Y], choosing
representatives for them in such a way that Y replaces Xn where possible. We
can now compute

(a0 + a1Y)(b0 + b1Y) = t+ ((a0 + a1)(b0 + b1)− t− u)Y + uY 2,

where t = a0b0 and u = a1b1. Thus instead of a product of two polynomials of
degree < 2n, we have three products of polynomials of degree < n, and a few
additions and subtractions. Substituting Xn for Y will then give the product
ab.

Karatsuba can be used recursively to compute the products a0b0, a1b1 and
(a0 + a1)(b0 + b1) until the polynomials are so small that it is more efficient to
use some other more naive method for multiplication.

Toom-Cook multiplication. Toom-Cook multiplication is a generalisation of
Karatsuba, where one polynomial multiplication is split into several multiplica-
tions, comparatively smaller than those in Karatsuba. For instance, instead of
one multiplication of 4n-degree polynomials, we can have seven multiplications
of n-degree polynomials.

19

2.2.7 Gaussian distribution

For s > 0, the n-dimensional Gaussian function is the function ρs : Rn → R+

defined by ρs(x) = exp(−π||x||2/s2).

Definition 2.7. For s > 0, the n-dimensional Gaussian distribution is the
distribution over Rn defined by the probability density function

Ds(x) = ρs(x)/s.

Definition 2.8. For s > 0 and a lattice L ⊂ Rn, the discrete Gaussian distri-
bution is defined as

DL,s(x) =
ρs(x)

ρs(L)
for x ∈ L,

where ρs(L) =
∑

v∈L ρs(v) (and DL,s(x) = 0 for x /∈ L).

2.3 Hard lattice problems

The two main lattice problems are the shortest vector problem and the closest
vector problem. The former asks for the shortest vector in a given lattice, or one
of them if the shortest vector is not unique. The latter asks for a lattice vector
closest to some given vector which is not in the lattice.

2.3.1 SVP and variants

There are several variants of the shortest vector problem. One variant asks
about the shortest vector length, one asks for the unique shortest vector and
another for a shortest basis for the lattice. Most of the variants (all of those given
here) only ask for approximate solutions, since this is more useful in reductions
to other problems like the shortest integer solution problem and the learning
with errors problem (Sections 3.1 and 3.4 respectively).

In all the following definitions, let L be an n-dimensional lattice, and let B
be a basis for L.

Definition 2.9. (The Shortest Vector Problem, SVP) Given B, find a vector
v ∈ L such that ||v|| = λ1(L).

Definition 2.10. (The Approximate Shortest Vector Problem, SVPγ) Given B
and a function γ over n, find a vector v ∈ L such that ||v|| ≤ γ(n)λ1(L).

Taking γ(n) = 1 gives the original problem.

Definition 2.11. (Decisional Approximate SVP, GapSVPγ) Given B and a
function γ over n, and knowing that either λ1(L) ≤ 1 or λ1(L) > γ(n), deter-
mine which is the case.

Definition 2.12. (Approximate Unique Shortest Vector Problem, uSVPγ) Given
B and a function γ over n, uSVPγ , and knowing that λ2(L) ≥ γλ1(L), find a
vector in L of length λ1(L).

20

This is a promise problem, meaning that the problem assumes something
which is not necessarily true in general. In this case, it is assumed as part of
uSVPγ that λ2(L) ≥ γλ1(L), which does not hold in all lattices, so the problem
is restricted to certain lattices. Note that a solution to uSVPγ is unique up to
a factor −1, unless γ = 1.

Definition 2.13. (Approximate Shortest Independent Vectors problem, SIVPγ)
Given B and a function γ over n, find a set of n linearly independent lattice
vectors, all of length at most γ(n)λn(L).

A solution to SIVPγ is a (approximate) shortest basis for L. In [25], Langlois
and Stehlé use a slightly more general version of SIVPγ . Note that replacing φ
in the following definition gives back the usual SIVPγ problem.

Definition 2.14. (Approximate General Independent Vectors problem, GIVPφγ)
Given B, a function γ over n, and a function φ on L, find a set of n linearly
independent lattice vectors, all of length at most γ(n)φ(L).

2.3.2 CVP and variants

The closest vector problem has fewer variants, and is less commonly used for
reductions. Again, let L be an n-dimensional lattice, and let B be a basis for L.

Definition 2.15. (The Closest Vector Problem, CVP) Given B and a vector
w ∈ Rn that is not in L, find a vector v ∈ L that minimizes ||w − v||.

According to Peikert [30], no cryptosystem based on CVP or its approximate
variant has yet been proved secure. However, there is a more useful variant of
CVP called the bounded distance decoding problem, where w is guaranteed to
be rather close to some lattice point, and the solution is unique.

Definition 2.16. (Bounded Distance Decoding Problem, BDDγ) Given B, a
function γ over n and and a vector w ∈ Rn that is not in L with the guarantee
that dist(w,L) < d = λ1(L)/(2γ(n)), find the unique lattice vector v such that
||w − v|| < d.

Note that like uSVPγ , BDDγ is a promise problem, but where uSVPγ has
certain restrictions on which lattices can be used BDDγ has a solution in any
lattice as long as some care is taken in the choice of the vector w.

FrodoKEM, a cryptosystem submitted to NIST, uses a variant of BDD where
the adversary is assumed to have access to an oracle providing discrete Gaussian
samples.

Definition 2.17. (Bounded Distance Decoding Problem with Discrete Gaus-
sian Samples, BDDwDGSd,r) Given B, positive real values d < λ1(L)/2 and
r > 0, a vector w ∈ Rn that is not in L with the guarantee that dist(w,L) ≤ d,
and access to an oracle that samples from DL∗,s for any adaptively queried s ≥ r
(where L∗ is the dual of L), find the unique lattice vector v closest to w.

21

BDDwDGS is a variant of the closest vector problem with preprocessing
(CVPP) which is essentially CVP except that the lattice is assumed to be fixed
beforehand, and an attacker is allowed unlimited time to preprocess the lattice.
Among other things, the attacker can compute samples from DL∗,r, which can
be used to approximate the periodic Gaussian function f : Rn → R+ defined by

f(w) =
ρ1(L+ w)

ρ1(L)
=

∑
x∈L+w exp(−π||x||2)∑
x∈L exp(−π||x||2)

.

This approximation, denoted fW , can be made in the preprocessing stage, and
then f(w) can be approximated efficiently. Because fW (w) attains its maxima
in the lattice points it can be used to find the nearest lattice point to w if the
distance from w to the lattice is no more than about O(

√
log n/n) ·λi(L). Thus,

with preprocessing, or alternatively with an oracle that samples from DL∗,r for

some fixed r, we can solve BDDγ for γ = O(
√
n/ log n). For details on this, and

improvements on the bound, see [15].
However according to the specification [39] of FrodoKEM, known algorithms

to solve this problem use samples from DL∗,r for some fixed r, whereas the
reduction from BDDwDGS to LWE uses the fact that, as in the definition of
BDDwDGS above, s ≥ r can be adaptively queried.

2.3.3 Hardness of SVP and CVP

The closest vector problem CVP is known to be NP-hard, and the shortest
vector problem SVP is NP-hard under randomised reduction, i.e., if the class
of polynomial-time algorithms is enlarged to include algorithms which with high
probability will terminate in polynomial time with a correct result. According
to [21] (Section 6.5.1), CVP can often be reduced to SVP in a slightly higher
dimension, so CVP is considered a little bit harder than SVP.

The approximate versions are NP-hard under random reduction, but only
for certain approximation factors, smaller than those used in cryptography.
However, the approximate problems, including the approximate GapSVP, SIVP
and BDD problems, are not easy to solve. Peikert writes in [30] that the known
polynomial-time algorithms give nearly exponential (2Θ(n log logn/ logn)) approx-
imation factors, and known algorithms that give approximation factors that are
at most polynomial in n require superexponential (2Θ(n logn)) time, or exponen-
tial (2Θ(n)) time and space.

2.4 Cryptography

2.4.1 Types of cryptosystems

Key Exchange (KE).
A key exchange is some method by which two parties create a secret key

which they both have, but which an eavesdropper should not be able to work
out from the (often public and unencrypted) exchanges between the parties
agreeing on a key. The most common type of key exchange protocol follows

22

the Diffie-Hellman model, where there are two parties A and B, and a public
parameter P (either already published, or sent openly from B to A when A asks
for it). The key exchange is executed as follows:

• A chooses a secret a and computes MA as a function of a and P , and
sends MA to B.

• B chooses a secret b and computes MB as a function of b and P , and sends
MB to A.

• A derives a key KA from P, a,MB .

• B derives a key KB from P, b,MA.

If the key exchange is successful KA = KB , and if it is well-designed an eaves-
dropper should not be able to derive KA or KB from only P,MA and MB . In
practice, we do not expect it to be impossible to derive the keys with only the
public information, but just that in practice, it should take too many compu-
tations to be feasible in a reasonable amount of time. For instance, if a and b
can only take a finite number different values, an attacker can try every possible
value of a and find one that, together with P , gives MA, and can then derive the
key KA from P, a,MB . It is important to make sure sets of possible values for
secret parameters are large enough that this type of attack (called a brute-force
attack) is not computationally feasible in a reasonable amount of time.

Authenticated Key Exchange (AKE). One possible attack on a key ex-
change is the man in the middle attack. This is when an attacker M intercepts
the key exchange by claiming to be B when communicating with A, and A when
communicating with B, so that A and B think they have agreed on a shared key
but have in fact both agreed on different shared keys with M. M can then read
and relay their ensuing communication, or alter the communication between
them.

An authenticated key exchange is a key exchange with some sort of iden-
tification of one or both parties. For instance, in the communication between
a client and a server it is common that the server is identified by a certificate
authority, but the client is often not identified. The certificate authority is a
trusted third party, which issues a certificate to the server which it sends to the
client as part of the key exchange so that the client can trust it is not commu-
nicating with an impostor. (Somehow the client must decide which certificate
authorities to trust. In the context of the secure browsing protocol HTTPS,
which is a common use for certificate authorities, it is the browser that makes
this decision, and the certificate authorities’ incentive to stay honest is the risk
of no longer being supported by browsers if they are found to have provided
false certificates.)

Public Key Encryption (PKE). A public key encryption scheme consists of
three algorithms and a message space M:

23

• KeyGen()→ (pk, sk), key generation algorithm (probabilistic), outputs a
public key pk and a secret key sk.

• Enc(pk,m) → c, encryption algorithm (probabilistic or deterministic),
takes message m ∈M and pk as input, outputs ciphertext c. (The encryp-
tion algorithm can be deterministic and is then denoted Enc(pk,m; r)→ c,
where the randomness r, chosen from the randomness space R, is given
as explicit input.)

• Dec(sk, c) → m′ or ⊥, decryption algorithm (deterministic), takes c and
sk as input, outputs message m′ ∈M or an error symbol ⊥ /∈M.

Since the key generation algorithm takes no input it must of course be prob-
abilistic. The encryption algorithm may be either probabilistic or deterministic,
but the decryption algorithm should recover the message and is designed to be
deterministic.

Key Encapsulation Mechanism (KEM). A key encapsulation mechanism
consists of three algorithms and a keyspace K:

• KeyGen()→ (pk, sk), key generation algorithm (probabilistic), outputs a
public key pk and a secret key sk.

• Encaps(pk)→ (K, c), encapsulation algorithm (probabilistic), takes pk as
input, outputs encapsulation c and shared secret K ∈ K.

• Decaps(sk, c)→ K ′, decapsulation algorithm (deterministic), takes c and
sk as input, outputs shared secret K ′ ∈ K.

Again, the key generation algorithm must be probabilistic. The encapsula-
tion algorithm must also be probabilistic since it only takes pk as input. The
decapsulation algorithm is of course designed to be deterministic if everything
goes well. However, occasionally something goes wrong (the ciphertext input
into the decapsulation algorithm can be invalid, and some schemes allow the
possibility of decapsulation errors where decapsulation can fail to recover the
key despite valid input) and some KEMs hide this by outputting a “fake shared
key” which is randomly or pseudorandomly generated in some way so that it is
not easily distinguishable from a genuine key. This is called implicit rejection,
as opposed to explicit rejection where the decapsulation algorithm outputs an
error symbol ⊥ /∈ K in case of failure.

In practice, a KEM can be built from a PKE, and then the encapsulation
algorithm will pick a random message m in the message space of the PKE,
and use the encryption algorithm to compute the ciphertext c, while the shared
secret K will be computed from m. The decapsulation algorithm will then
retrieve the message using the decryption algorithm of the PKE, and compute
the shared secret K ′ from this message.

Definition 2.18. • A PKE is perfectly correct if Dec(sk, Enc(pk,m)) = m
with probability 1 for all m ∈M, where (pk, sk)← KeyGen().

24

• A KEM is perfectly correct if Decaps(sk, c) = K with probability 1 if
c = Encaps(pk), where (pk, sk)← KeyGen().

If the PKE above is perfectly correct, we always have m = m′ if both parties
are honest. Similarly if the KEM is perfectly correct, K = K ′ if both parties
are honest. It is convenient for a PKE or KEM to be perfectly correct, but
sometimes it is not possible to make a scheme perfectly correct, or doing so
impacts performance too much. This tends to be the case for lattice based
PKEs (and KEMs), and these often have a small but nonzero probability of
decryption (or decapsulation) error.

Data Encapsulation Mechanism (DEM). A data encapsulation mechanism,
according to Shibuya and Shikata [36], is symmetric (meaning that both parties
have access to the same key), and consists of a key space K, a message space
M and two algorithms:

• Encaps(dk,m)→ c encapsulation algorithm (deterministic), takes dk ∈ K
and message m ∈M as input, outputs ciphertext c.

• Decaps(dk, c)→ m decapsulation algorithm (deterministic), takes dk and
c as input, outputs message m ∈M or ⊥ /∈M.

Typically it is more convenient to use a hybrid scheme that consists of a
KEM (for exchanging a key) and a DEM (for actually exchanging messages)
than to use a PKE for an entire communication, because symmetric schemes
tend to be more efficient than asymmetric ones.

2.4.2 The Random Oracle Model (ROM)

To show theoretical security for an encryption scheme, we typically want to show
that it is as hard as some mathematical problem which is known, or believed,
to be hard to solve. This is done with a reduction proof. Let X and Y be
two problems. A reduction from X to Y is an algorithm R that solves problem
X by using a Y-solver A as a subroutine. A is treated as an oracle or black
box, meaning that it solves Y, but we do not know how it does so, and therefore
cannot alter it to turn it into an X-solver. However, if we can formulate problem
X in terms of problem Y so that solving Y will give a solution to X, then we
can use A to solve Y, and thereby X.

A reduction is tight if R has approximately the same running time and
success probability as A. A sufficiently tight reduction from X to Y proves
that if there is a reasonably efficient algorithm that will solve Y, then there is
a reasonably efficient algorithm that will solve X, that is, that Y is hard if X
is hard. (If the reduction is so loose that R takes an unreasonable amount of
time, or has a high likelihood of being unsuccessful, even if A is efficient, then
it does not say anything meaningful about the hardness of problem Y because
then Y could be easy to solve despite X being hard.)

A cryptographic scheme also tends to contain hash functions, functions that
map data of arbitrary size to data of fixed size. The hash functions used in

25

cryptography should have output that looks random, in the sense that if two
inputs are close to each other this should not be evident from their outputs, and
though a hash function is not in general injective it should be collision-resistant,
meaning that it should be hard to find two different inputs that will map to the
same output (collisions). This also means that it should be difficult to find a
preimage to an output from a hash function.

When proving a reduction, we must take these hash functions into account
somehow. Ideally we want them to act as though they were really random
functions, giving truly random output but (being functions) always giving the
same output for any particular input. We can simulate such a function using a
table where we store each input on which the function has been queried together
with the output. This way, when the function is queried it first searches through
the table to see if that input has been queried before and in that case returns the
same output, and otherwise returns a random output and stores the new input
and output in the table. Unfortunately, the table would get impractically large
(and since it would contain perfectly random values it could not be compressed
to a more manageable size) and looking up an entry in it would on average take
exponential time in the size of the input.

Thus the hash functions cannot actually be random functions, and we cannot
even assume for the sake of the proof that they are because if we want to rule
out brute force attacks we cannot allow anything to take exponential time.

Definition 2.19. A random oracle is an oracle that given some input will
respond with a truly random output, chosen uniformly from its output domain.
Given the same input again, the oracle will give the same output as before.

We use the concept of random oracles to prove reductions in the random
oracle model (ROM), meaning that we assume that there is a random oracle,
whose inner workings we know nothing about but which in constant time returns
the kind of output we would get from a random function. Proving a reduction
reduction from X to Y in the ROM means proving the reduction under this
assumption.

In the cryptosystem the random oracles of the security proof are replaced
with practical hash functions, and confidence in the system then relies on the
hope that the fact that the hash functions are not random oracles will not
impact security. Thus the random oracle model does not allow us to rule out all
attacks, but we can essentially rule out those that do not use the hash functions.

It is worth noting that in the random oracle model queries the adversary
makes to the random oracle can be detected, because the oracle is assumed to
be outside of the adversary (who is using A to solve Y) and the simulator (who
is using A as a subroutine of R in order to solve X). The simulator can detect
what preimages the adversary sends to the random oracle, and even program
the answers that are sent back ([6] calls this extractability/preimage awareness
and adaptive programmability, respectively). This means that it is permissable
to use knowledge of the adversary’s queries to the oracle to prove a reduction
from X to Y in the ROM.

26

2.4.3 The Quantum Random Oracle Model (QROM)

To show that an encryption scheme is secure against quantum computers, we
must of course show that the underlying mathematical problem seems to remain
hard to solve even for quantum computers, but we should also take another
look at the reduction. The quantum random oracle model aims to model the
situation where the adversary has access to a quantum computer, by allowing
the adversary to send quantum states to the random oracle and receive the
evaluated quantum state in reply. This leads to some complications, since proofs
using the random oracle model often make use the extractability and adaptive
programmability of the model. In the quantum random oracle model these
properties do not work quite as well, because the adversary may query the
oracle on an exponential number of states in superposition, and it is not clear
which is the actual query. Moreover, the adversary may get information about
exponentially many states right at the beginning, making it difficult for the
simulator to program the oracle adaptively.

As a result, reductions in the random oracle model do not automatically
carry over to the quantum random oracle model.

2.4.4 Security notions

There are many different notions of security, of varying strength. One very weak
notion of security is one-wayness, defined by Fujisaki and Okamoto in [18] as
an adversary being unable to completely decrypt the encryption of a random
plaintext. This is also called OW-CPA, One-Wayness under Chosen Plaintext
Attacks. Another variant is OW-PCA, One-Wayness under Plaintext Checking
Attacks, which is OW-CPA except that the adversary is assumed to have access
to an oracle that takes a plaintext m and a ciphertext c and returns 1 if m is
the decryption of c.

Definition 2.20. Let PKE=(KeyGen, Enc, Dec) be a public key encryp-
tion scheme with message space M. The OW-CPA advantage of an adver-
sary A against PKE AdvOW-CPA

PKE (A) is defined as the probability that A,
given access only to the public information about PKE, can completely de-
crypt c←Enc(pk,m) where (pk, sk)←KeyGen() and m is sampled at random
from M.

One can also talk of security in terms of indistinguishability under various
types of attack. Security notions are often defined in terms of games, with a
challenger and an adversary. In the indistinguishability games for PKEs, the
adversary chooses two messages m0 and m1 from the message space, and the
challenger encrypts one of these and returns the ciphertext c. If the adversary
cannot tell with a greater success rate than a random guess of which message c is
the encryption, the system is considered secure in terms of indistinguishability.
The idea is that the adversary, or anyone who does not have the private key,
should learn nothing from the ciphertext. The adversary always has access to
public information, i.e., the algorithms and the public key, and may also have

27

access to certain oracles depending on the attack. The time allowance is limited:
since any cryptosystem could be broken with brute force given sufficient time,
the adversary may only use a polynomially bounded amount of time (meaning
that anything that takes time - oracle queries, any kind of computations - must
be polynomially bounded in number). The encryption oracle is public, so the
adversary is allowed to use it.

Chosen Plaintext (CPA). An encryption scheme is IND-CPA (INDistin-
guishability under Chosen Plaintext Attack) secure if the adversary cannot dis-
tinguish, in polynomial time and with probability significantly greater than 1/2,
between the ciphertexts of two messages from the message space.

Definition 2.21. Let PKE=(KeyGen, Enc, Dec) be a public key encryption
scheme with message space M. The IND-CPA advantage of an adversary A
against PKE is defined as AdvIND-CPA

PKE (A) := |p−1/2| where p is the probability
that an adversary A, given access only to the public information about PKE,
can correctly determine whether b = 0 or b = 1 where

• b is chosen uniformly at random from {0, 1}

• c←Enc(pk,mb)

• (pk, sk)←KeyGen()

• m0 and m1 are chosen by A from M

Note that there are only two possible values for b, and we are trying to
measure how much better A can do than simply guessing b at random. This is
why AdvIND-CPA

PKE (A) is defined as |p− 1/2| rather than simply p.

Chosen Ciphertext (CCA1). Here the adversary has access to a decryption
oracle, but may only use it before choosing m0 and m1. An encryption scheme
is IND-CCA1 (INDistinguishability under Chosen Ciphertext Attack) secure
if the adversary cannot distinguish, in polynomial time and with probability
significantly greater than 1/2, between the ciphertexts of two messages from
the message space.

Adaptive Chosen Ciphertext (CCA2 or CCA). Here the adversary is al-
lowed to call on the decryption oracle even after receiving the ciphertext from
the challenger, with the important limitation that once the adversary has re-
ceived the ciphertext c∗ the decryption oracle will not work for this particular
ciphertext. An encryption scheme is IND-CCA2 (INDistinguishability under
Adaptive Chosen Ciphertext Attack) secure if the adversary cannot distinguish,
in polynomial time and with probability significantly greater than 1/2, between
the ciphertexts of two messages from the message space.

These definitions work for PKEs. In KEMs the message is chosen by the
encapsulation algorithm and is simply used to generate a ciphertext and a shared

28

Algorithm 2 IND-CCA game for KEMs

1: Challenger runs the key generation algorithm to get the secret and the public
keys.

2: Challenger chooses b randomly from {0, 1}.
3: Challenger runs the encapsulation algorithm on the public key to get ci-

phertext c and shared secret K0.
4: Challenger chooses K1 randomly from the key space.
5: Challenger publishes the public key, c and Kb

6: Adversary performs computations in polynomial time, including calls to a
decapsulation oracle that will not work on c.

7: Adversary returns a guess b′ ∈ {0, 1}.
8: If b′ = b, the adversary wins.

secret. In [39] indistinguishability for KEMs is defined using the game shown in
Algorithm 2.

The KEM is IND-CCA secure if the adversary’s chance of winning is no
better than a random guess.

Definition 2.22. Let KEM=(KeyGen, Encaps, Decaps) be a public key en-
cryption scheme with key space K. The IND-CCA advantage of an adversary A
against KEM is defined as AdvIND-CCA

KEM (A) := |p−1/2| where p is the probabil-
ity that an adversary A, given access to the public information about KEM and
a decapsulation oracle, can correctly determine whether b = 0 or b = 1 where

• b is chosen uniformly at random from {0, 1}

• (K0, c)←Encaps(pk)

• (pk, sk)←KeyGen()

• K1 is sampled at random from K.

For a PKE to be secure under any of these indistinguishability notions, the
encryption algorithm has to be probabilistic. Otherwise the adversary need only
run the encryption algorithm on both m0 and m1 and see which is encrypted to c
(whereas with a probabilistic encryption algorithm the encryption of a message
will be different every time). Of course, in reality, someone trying to break the
cryptosystem will usually not know that the ciphertext is the encryption of one
out of only two known messages, so as long as the message space is large enough
that encrypting every element of it is not feasible in a reasonable amount of time
a deterministic encryption algorithm is not necessarily insecure. This assumes
that the adversary does not already have an idea what messages to expect,
which may not be the case unless the message is chosen randomly (e.g. a key).

The encapsulation algorithm of a KEM, however, can never be deterministic,
because it takes only the public key as input. However, many KEMs are built
from PKEs, and then the encapsulation algorithm basically chooses a random

29

message m, generates a shared secret from that, and encrypts m with the en-
cryption algorithm of the PKE to get the ciphertext. This encryption algorithm
can be deterministic, as long as the choice of m is not. This way, a KEM can be
for instance IND-CCA secure even if the underlying PKE has a deterministic
encryption algorithm and is only OW-CPA secure.

2.4.5 The Fujisaki-Okamoto transform

In 1999 Fujisaki and Okamoto published an article [17] with a transform that
made it easier to construct an IND-CCA2-secure PKE (a revised version [18]
was published in 2013). Instead of constructing a PKE and then having to
prove that it fulfilled this security notion, one could take an OW-CPA-secure
PKE and use the Fujisaki-Okamoto transform to obtain a PKE which, in the
classical random oracle model, would be IND-CCA2-secure. This was useful,
since it is easier to construct a OW-CPA-secure scheme (and prove its security)
than one that is IND-CCA2-secure.

Specifically, the FO transform taken a one-way secure (OW-CPA-secure)
asymmetric encryption scheme Easy

pk (message; coins), a one-time secure7 sym-
metric encryption scheme Esy

a (message) (where a is the private key used) and
two hash functions G and H, and gives a hybrid encryption scheme where the
message m is encrypted as the concatenation

Ehy
pk (m;σ) = Easy

pk

(
σ;H(σ, c)

)
||Esy

G(σ)(m),

where c = Esy
G(σ)(m) and σ is a random string8. With the additional assumption

that the asymmetric scheme is ω(log k)-spread, meaning that any plaintext in
its message space has at least 2ω(log k) possible ciphertexts (for some sufficiently

large k), Ehy
pk is IND-CCA2 secure under the random oracle model.

More recently, Targhi and Unruh gave a variant of the transform which
yielded a PKE that what IND-CCA2-secure against a quantum adversary in the
QROM. However, both the FO and the TU transforms assume that the input
PKE has perfect correctness, which lattice-based PKEs tend not to have. (They
can, as Hofheinz, Hövelmanns and Kiltz point out in [19], be made perfectly
correct by adjusting the parameters, but not without also making them either
less secure or less efficient.)

Remember that a reduction from problem X to problem Y is an algorithm R
that solves problem X by using as a subroutine an adversary A against problem
Y. In the context of the FO and TU transforms, X is the OW-CPA-secure PKE,
and Y is the IND-CCA2-secure PKE obtained by applying the transform. If
the reduction is not tight, problem Y may be easier to solve than problem X,
and sometimes X may need to be made harder in order for the reduction to
actually say anything meaningful about the hardness of Y. In practice, this
may mean that the parameters must be chosen with extra margin for security,

7[18] defines one-time security as an adversary being unable to distinguish from each other
the encryptions under a one-time private key of two plaintexts m0 and m1.

8In the original paper [17], m was used in place of c in H(σ, c).

30

whereas if the reduction were tight smaller parameters could be used, making
the cryptosystem more efficient.

Unfortunately, the security reduction of the FO transform is not tight which
means security parameters must be adjusted accordingly. There is a variant
which is tight, but it requires the input PKE be OW-PCA secure which is not
common in lattice-based schemes.

In [19], Hofheinz, Hövelmanns and Kiltz give a collection of transformations
more suitable for lattice-based schemes, in that they do not (all) require the in-
put PKE to be OW-PCA secure, and moreover do not require the input PKE to
be perfectly correct. Using one of these transformations, or two in combination,
will transform a PKE with weaker security (usually OW-CPA or IND-CPA) to
an IND-CCA-secure KEM. The security reductions for most of these transforms
are tight in the classical random oracle model, and some hold in the quantum
random oracle model (though in that model none of the reductions are tight).
Combining the two which are secure in QROM and tight in ROM transforms an
IND-CPA PKE and three hash functions into an (quantum) IND-CCA secure
KEM, by way of an OW-PCA-secure PKE. This combination is used in many
of the lattice-based schemes submitted to the recent NIST call for proposals.

All transformations in [19] take a PKE as input. The authors comment that
it might be useful to have transforms that instead take a KEM as input as it
might be more efficient.

2.4.6 Modular FO transformations

Many of the IND-CCA-secure KEMs submitted to NIST (conveniently listed in
Table 1 of [22] by Jiang et al.) use some (variant of a) transform from [19], the
most popular being QFO⊥[PKE, G,H,H ′] = (Gen, QEncaps, QDecaps⊥) and
QFO 6⊥[PKE, G,H,H ′] = (Gen6⊥, QEncaps, QDecaps 6⊥), where PKE= (Gen,
Enc, Dec) has message space M = {0, 1}n and randomness space R, and

• G : M → R, H : {0, 1}∗ → {0, 1}n and H ′ : {0, 1}n → {0, 1}n are hash
functions;

• Gen 6⊥ returns (pk, sk′ := (sk, s)) where (pk′, sk′)← Gen and s is sampled
uniformly from M;

• QEncaps(pk) returns (K := H(m, c), c :=Enc(pk,m;G(m)), d := H ′(m)),
where m is sampled uniformly from M;

• QDecaps⊥(sk, c, d) returns, for m′ = Dec(sk, c), the secret K := H(m′, c)
if c =Enc(pk,m′;G(m′)) and d = H ′(m′), and ⊥ otherwise;

• QDecaps 6⊥(sk′ = (sk, s), c, d) returns, for m′ = Dec(sk, c), K := H(m′, c)
if c =Enc(pk,m′;G(m′)) and d = H ′(m′), and K := H(s, c, d) otherwise.

These transforms are slightly different than those actually given in [19], QFO⊥m
and QFO6⊥m, where the shared secret is simply K := H(m), rather than K :=
H(m, c).

31

If PKE is OW-CPA-secure, the KEMs obtained by QFO⊥ and QFO 6⊥ are
IND-CCA-secure in the QROM, but the QROM reductions given in [19] (for
QFO⊥m and QFO6⊥m) are highly non-tight: the success probability of the reduction

R against the security of the KEM is ε ≤ 8qRO

√
δq2
RO + qRO

√
ε′, where ε′ is

the success probability of an adversary A against the security of the PKE, δ
is the probability of decryption error in the PKE, and qRO is a bound on the
number of queries made by R to quantum random oracles. (The running time
of A is about that of R.)

The ROM security reductions for QFO⊥m and QFO6⊥m are tight if PKE is
IND-CPA-secure, but not if it is only OW-CPA-secure.

Another transform from [19] which is fairly popular among the NIST sub-
missions is FO 6⊥[PKE, G,H] = (Gen 6⊥, Encaps, Decaps 6⊥), where PKE, G,H
and Gen 6⊥ are as above, and

• Encaps(pk) returns (K := H(m, c), c :=Enc(pk,m;G(m))), where m is
sampled uniformly from M;

• Decaps 6⊥(sk′ = (sk, s), c) returns, for m′ = Dec(sk, c), K := H(m′, c) if
c =Enc(pk,m′;G(m′)), and K := H(s, c) otherwise.

No reduction showing QROM security is given in [19] for FO 6⊥, and (as for
QFO⊥m and QFO 6⊥m) the ROM reduction is tight if PKE is IND-CPA-secure, but
not if it is only OW-CPA-secure.

The only difference between QFO 6⊥ and FO 6⊥ is the extra hash d = H ′(m)
(where H ′ is length preserving) that is found in the former but not the latter.
This extra hash is also present in QFO⊥m and QFO6⊥m and is used in the QROM
reduction. Note that d must be sent, so in practice it must be included in the
ciphertext.

All these transforms reencrypt the decrypted message m′ to ensure c was
in fact the encryption of m′, because they are a combination of a transform
T that produces an OW-PCA secure PKE and one of several transforms that
then produces an IND-CCA-secure KEM. However, the reencryption is done in
T and two of the partial transforms given in [19] that supposedly produce an
IND-CCA-secure KEM (specifically, U 6⊥m and U⊥m) do not actually require the
input PKE to be OW-PCA-secure, suggesting that they could be used without
T to obtain an IND-CCA-secure KEM from a deterministic PKE which is OW-
CPA-secure (or OW-VA-secure, where the adversary has access to an oracle
that checks whether c is a valid ciphertext). Omitting the reencryption would
of course save time in the decapsulation, but Bernstein and Persichetti give
counterexamples in the appendix of [10] to the security claims of these two
transforms, using the fact that an OW-CPA-secure (or OW-VA-secure) PKE
is not necessarily what they call “rigid”, i.e., Dec(sk, c) = m if and only if
Enc(pk,m) = c (where m is in the message space of a deterministic PKE= (Gen,
Enc, Dec) and (pk, sk) ← Gen). However, as Bernstein and Persichetti point
out, the PKE obtained by applying T to an OW-CPA-secure PKE is rigid,
so these counterexamples do not affect the security claims of the composite
transforms like FO 6⊥, QFO⊥ and QFO 6⊥.

32

2.4.7 Tighter QROM security

Saito, Xagawa and Yamakawa give two transforms in [37] (similarly to [19], these
are composites of modular transforms), both producing an IND-CCA-secure
KEM, one from an OW-CPA-secure deterministic PKE and the other from an
IND-CPA-secure PKE. The transforms themselves are similar to QFO 6⊥m (though
the one starting from an OW-CPA-secure deterministic PKE omits the extra
hash d), but unlike those given in [19] the reductions require the underlying
PKEs to be perfectly correct. Unfortunately this is rarely the case for lattice
based cryptosystems.

In [22], Jiang et al. point out that 18 of the 25 IND-CCA-secure KEMs
submitted to NIST are not perfectly correct, and that since correctness errors
affect the security of the scheme, it is relevant to consider QROM security
for transformations that allow correctness errors. They show that the KEMs
produced by transforms FO 6⊥ and FO6⊥m in [19] (where FO 6⊥m is essentially the
same as FO6⊥, except K := H(m)) are IND-CCA-secure in the QROM, meaning
that we can omit the extra hash d to get a smaller ciphertext and still have IND-
CCA-security in the QROM. Moreover, the reductions for FO6⊥ and FO 6⊥m in [22]
(Theorems 1 and 2) are tighter than those given in [19] (Theorem 4.4 combined
with 4.5 or 4.6 respectively) for QFO⊥m and QFO6⊥m: the success probability of
the reduction R against the security of the KEM produced by the transforms in
[22] is ε / qRO

√
δ + qRO

√
ε′, where ε′ is the success probability of an adversary

A against the OW-CPA-security of the PKE, δ is the probability of decryption
error in the PKE, and qRO is a bound on the number of queries made by R to
quantum random oracles. (Approximately, because there is also a term on the
right hand side which is either qRO/|M| for FO6⊥, or the success probability of
an adversary against the pseudorandom function used in FO6⊥m.)

One of the NIST submissions [39] mentions the proofs of [22], but since it was
then only an eprint and had not been posted for long, the authors of [39] wrote
that it was too early to know if the results were correct. The paper has now been
published, however, and so far there seem to be no counterexamples. Moreover,
in [20] Hövelmanns et al. modify the proof of one of the transformations given
in [37] which is similar to FO6⊥m to allow for small non-zero decryption errors,
and the reduction is about as tight as that in [22].

2.4.8 Different notions of correctness

Several NIST submissions (e.g. Frodo, Kyber and Saber [39, 42, 43]) define a
KEM to be δ-correct if Pr[Decaps(sk, c) 6= K | K ← Encaps(pk)] ≤ δ, where the
probability is taken over (pk, sk)←KeyGen() and the random coins of Encaps.
However, [19] uses a different notion of correctness.

Definition 2.23. A PKE with is δ-correct if

E[max
m∈M

Pr[Dec(c, sk) 6= m | c← Enc(m, pk)]] ≤ δ

where the expected value is taken over all (pk, sk)← KeyGen().

33

In [19] this is equivalently expressed as a game where it is apparent that with
this definition of correctness a PKE is δ-correct if an adversary A with access
to both the public and the secret keys (which are generated with KeyGen),
actively trying to find a message m that will result in a decryption error will
succeed with probability δ. Moreover, a PKE that uses a random oracle G is
defined as δ(qG)-correct if δ(qG) bounds the probability that an adversary A
with access to G and to (pk, sk) ←KeyGen can find a message m such that
Dec(sk, Enc(pk,m)) 6= m.

The other two articles discussed here concerning transforms that allow de-
cryption errors, [22, 20], also define δ-correctness as in definition 2.23. As a
result, any NIST submission using the notion of correctness seen in [39, 42, 43]
but citing [19] or [22] in support of the IND-CCA security of their KEMs are
using two different notions of correctness. Since [19] says that their definition
of correctness “has been carefully crafted such that it is sufficient to prove our
main theorems (i.e., the security of the Fujisaki-Okamoto transformation)”, this
would affect the theoretical security claims of such NIST submissions.

Moreover, at least two of the NIST submissions (Kyber and Saber), applying
FO 6⊥ to an IND-CPA secure PKE to obtain an IND-CCA secure KEM, claim
that by [19] the probability of decapsulation errors in their respective KEMs
is the same as the probability of decryption errors in the respective underlying
PKEs (see Section 5 of [43] and Section 4 of [42]). However, with the definition
of correctness used in [19], this is not necessarily true because the transform T
(which derandomises and reencrypts, and is a part of FO 6⊥ and other transforms
in [19]) does not preserve correctness.

T takes as input a public key encryption scheme PKE = (KeyGen,Enc,Dec)
with message spaceM and randomness space R, and a hash function G :M→
R, and outputs a public key encryption scheme PKE1 = (KeyGen,Enc1,Dec1),
where Enc1(pk,m) = Enc(pk,m;G(m)), and for m′ = Dec(sk, c),

Dec1(sk, c) =

{
⊥ if m′ = ⊥ or Enc(pk,m′;G(m′)) 6= c

m′ otherwise.

Theorem 3.1 of [19] proves that if PKE is δ-correct (in the sense used in that
article) then PKE1 = T[PKE,G] is δ1-correct (in the ROM) with δ1(qG) = qG ·δ.
The proof depends on the fact that since we assume PKE is δ-correct each of
the at most qG distinct queries G(m1), ..., G(mqG) has, in the ROM, probability
at most δ of producing a decryption error. Thus, with at most qG queries to G,
PKE1 is (qG · δ)-correct.

In the QROM, Lemma 4.3 of [19] shows that if PKE is δ-correct then PKE1 =
T[PKE,G] is δ1-correct with δ1(qG) ≤ 8 · (qG + 1)2 · δ.

Neither Jiang et al. in [22] nor Hövelmanns et al. in [20] make any claims
as to whether their versions of the FO6⊥ transform preserves correctness. (Saito
et al. in [37] assume the underlying PKE is perfectly correct, so naturally the
question would not arise.)

34

3 Lattice based cryptography

3.1 SIS

Lattice-based cryptosystems do not tend to be based on SVP and CVP directly,
but are instead based on certain problems more convenient than SVP and CVP
for constructing cryptosystems, but whose hardness rests on that of some vari-
ant of SVP or CVP. One of these problems is the short integer solution problem
(SIS), which was introduced by Ajtai in 1996 and has been used, among other
things, for hash functions and digital signatures, but not for public-key encryp-
tion. More details on SIS can be found in e.g. [30], but an overview is given
here.

In the following definition, we assume that the matrix A ∈ Zn×mq is uniformly
random. This means that each element in the matrix is sampled independently
from Zq according to the uniform distribution.

Definition 3.1. (Short Integer Solution, SISn,q,β,m) Let n, q,m be positive
integers and β a positive real. Given a uniformly random matrix A ∈ Zn×mq

with column vectors ai, find a nonzero vector z ∈ Zm such that ||z|| ≤ β and

Az =

m∑
i=1

ai · zi = 0 mod q.

Equivalently, SISn,q,β,m is the problem of finding a short vector of length at
most β in the lattice Λ⊥q (A), for a uniformly random A ∈ Zn×mq .

The SIS problem does not become harder for larger m, because the column
ai of A can be ignored simply by choosing zi = 0, for any i (but of course not
all at once, since the solution must be a nonzero vector).

Note that β must not be too large, because unless β < q, z = (q, 0, ..., 0) ∈
Zm is always a valid solution. On the other hand, β and m must be large
enough that a solution is guaranteed to exist; it suffices that β ≥

√
dn log qe

and m ≥ dn log qe, because then by the above we can assume m = dn log qe and
so there are qn vectors of the form {0, 1}m. By the pigeonhole principle there
must be two such vectors x,x′ such that Ax = Ax′ ∈ Znq . Their difference has
length at most β and is a solution to SISn,q,β,m.

Hermite normal form. If q is prime, a uniformly random matrix A ∈ Zn×mq

has full rank with high probability. Permuting the columns does not change
the SIS problem, except that the solutions will also be permuted, so we can
permute the columns of A so that the first n columns are linearly independent
over Zq. Thus assuming that A has full rank, we can assume without further
loss of generality that A = (A1|A2), where A1 is square and invertible over
Zq. We can then replace A with A−1

1 A = (In|A−1
1 A2), which is in upper

triangular Hermite normal form.9 This has the same set of SIS solutions as

9More accurately, if we see the entries of this matrix simply as integers between 0 and q,
then it is in Hermite normal form.

35

A, and because A2 is uniformly random and independent of A1, A−1
1 A2 is

uniformly random. Therefore the SIS problem is at least as hard to solve given
the matrix (In|A−1

1 A2) as it is with the matrix A.
This is convenient if A needs to be stored or sent, as it means that A−1

1 A2 ∈
Zn×(m−n)
q can be used instead of the larger matrix A ∈ Zn×mq (In being treated

as implicit).
SIS does not require q to be prime, but even if it is not the likelihood

of A having full rank remains high, at least as long as q is the product of
reasonably large primes. For any selection of n columns of A, the square matrix
A′ consisting of those columns is invertible if (and only if) det A′ ∈ Z×q , which,
if all possible values of the determinant are equally likely, it is with probability
φ(q)/q, where φ is Euler’s totient function. For A to be full rank, it suffices
that the matrix consisting of any choice of n columns of A (out of out of
m ≥ dn log qe) is invertible.

If, in the worst case, a uniformly random A ∈ Zn×mq should not be full
rank, presumably in implementations it would be discarded and a new matrix
sampled.

3.1.1 Hardness of SIS

Ajtai proved that solving the average-case SIS problem is at least as hard as
solving various approximate lattice problems in the worst case. This result has
since been strengthened, in that it has been shown to hold for tighter bounds for
the modulus q and the the approximation factor γ. Incorporating these tighter
bounds in Theorem 4.1.2 of [30], we have the following theorem.

Theorem 3.1. For any m = poly(n), any β > 0 and any q ≥ β·nε, where ε > 0,
solving SISn,q,β,m with non-negligible probability is at least as hard as solving

GapSVPγ and SIVPγ for some γ = β · Õ(
√
n), on arbitrary n-dimensional

lattices, with overwhelming probability.

For more details, see Section 3 (in particular Theorem 3.8) of [29].
Note that since solving GapSVPγ and SIVPγ on arbitrary lattices means

solving them in the worst case, whereas SIS is a problem over a random lattice,
so it is an average-case problem. The theorem therefore states that there is a
worst-case to average-case reduction, i.e., if there is an efficient algorithm for
solving the average-case problem SIS, then there is also an efficient algorithm
for solving the problems GapSVPγ and SIVPγ in the worst case.

3.2 NTRU

As we have seen, lattice based schemes can be as hard to break as certain hard
lattice problems on general lattices, but a downside is that the public key tends
to be the entire matrix A, which is large and inconvenient to send, or at least
some seed from which A must then be pseudorandomly generated, which slows
down the encryption. It is possible to get faster schemes and smaller key sizes
by restricting the problems to some more structured group of lattices, especially

36

since, for some choices of restricted lattice, the problems can be presented using
polynomial rings instead of matrices and vectors. Such a restricted version of
SIS (see Section 3.3) was presented in 2002, inspired by the NTRU scheme.

NTRU is a public-key encryption scheme by Hoffstein, Pipher and Silverman,
published in 1998, which uses polynomial rings. It can also be described using
specially structured lattices, as Micciancio and Regev do in [28].

Let T be the n× n matrix

T =

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 =
(0T 1

I 0

)
,

and define T∗v = (v,Tv, . . . ,Tn−1v), for a vector v ∈ Zn. This is called a
cyclic matrix.

The NTRU cryptosystem has parameters n, q, p and d, all integers, where
the dimension n is prime, p should be small, and it is recommended that q be a

power of 2. The private key is a vector

(
f
g

)
∈ Z2n, where f ∈ e1 + {p, 0,−p}n

and g ∈ {p, 0,−p}n are randomly chosen such that f −e1 and g each have d+ 1
positive entries and d negative entries (and all remaining entries equal to 0).
Additionally, (T∗f) must be invertible modulo q.

Having chosen these vectors f and g, we have the q-ary lattice

Λq

((
T∗f
T∗g

)T)
= {y ∈ Z2n : y =

(
T∗f
T∗g

)
s mod q for some s ∈ Zn}.

We say that this is a cyclic lattice, and it has a basis (in Hermite normal form)

H =

(
I 0

T∗h q · I

)
where h = (T∗f)−1g (mod q),

which can be represented simply by the vector h ∈ Znq . This is the public key.
A message is encrypted by first encoding it as a vector m ∈ {1, 0,−1}n with

d+1 positive and d negative entries. A random vector r ∈ {1, 0,−1}n is chosen,
also with d + 1 positive and d negative entries. Concatenating these gives a

short error vector

(
−r
m

)
∈ {1, 0,−1}2n, which can be reduced modulo H to

(
−r
m

)
mod

(
I 0

T∗h q · I

)
=

(
0

(m + (T∗h)r) mod q

)
.

The ciphertext is the vector c = m + (T∗h)r ∈ Znq .
To decrypt c ∈ Znq , the ciphertext is multiplied by (T∗f). Because for any

vectors x and y (T∗x)(T∗y) = T∗(T∗x)y, this multiplication yields the vector

(T∗f)c mod q = (T∗f)m + (T∗g)r mod q.

37

In the unlikely event that all the entries of (T∗f) and (T∗g) line up perfectly
with regards to sign, the entries of (T∗f)m + (T∗g)r are still bounded above
by 4pd+ 2p+ 1 and below by −4pd− 1. This means that assuming d < (q/2−
1)/(4p)−1/2, the exact value of the vector (T∗f)m+(T∗g)r, without reduction
modulo q, can be recovered. (Even for larger values of d the vector can be
recovered with high probability.)

Because of how f and g were chosen, (T∗f) ≡ I (mod p) and (T∗g) ≡
0 (mod p), so reducing (T∗f)m + (T∗g)r modulo p recovers the message m.

There is no known proof of security for the NTRU cryptosystem, but it
appears to be hard to recover m without knowing f . (The probability that any
other vector than f and its rotations will work as a decryption key is very low.)

According to Hoffstein, Pipher and Silverman [21] (Proposition 6.61), the

vector

(
f
g

)
∈ Z2n is a factor O(1/

√
n) shorter than the the Gaussian heuristic

predicts the shortest vector of Λq

((T∗f
T∗g

)T)
to be, so a shortest vector in the

lattice is likely to be a rotation of

(
f
g

)
∈ Z2n. Thus, solving SVPγ in the

NTRU lattice for γ ≈ nε where ε < 1/2 will probably give a decryption key.
This estimate assumes that d ≈ n/3 and q ≈ 6d ≈ 2n, but more generally we
still have ∣∣∣∣∣∣ (f

g

) ∣∣∣∣∣∣
σ
(

Λq

((T∗f
T∗g

)T)) ≈
√

4d√
nq/πe

=

√
4πed

nq
.

(In the formula for the Gaussian heuristic, keep in mind that Λq

((T∗f
T∗g

)T)
has dimension 2n.)

3.2.1 NTRU with polynomial rings

Another way to describe NTRU is using polynomial rings, and this section gives
an idea of how this is done.

Take integers N, p, q such that N is prime and gcd(N, q) = gcd(p, q) = 1.
Let R be the polynomial ring R = Z[X]/(XN − 1), and let Rp = R/pR and
Rq = R/qR. Finally, for positive integers d1, d2 let

T (d1, d2) =
{
a(X) ∈ R :

a(X) has d1 coefficients equal to 1
a(X) has d2 coefficients equal to − 1
a(X) has all other coefficients equal to 0

}
.

The NTRU cryptosystem has public parameters (N, p, q, d). The public key
h(X) is constructed by randomly choosing f(X) ∈ T (d + 1, d) and g(X) ∈
T (d, d) such that Fq(X) = f(X)−1 in Rq and Fp(X) = f(X)−1 in Rp exist.

38

Then the public key is

h(X) = Fq(X) · g(X) ∈ Rq.

For m(X) ∈ R with coefficients between −p/2 and p/2 and a random r(X) ∈
T (d, d), the ciphertext is

c(X) = p · h(X) · r(X) +m(X) ∈ Rq.

To decrypt the message, one then computes a(X) = f(X) · c(X) ∈ Rq, and
b(X) = Fp(X) · a′(X) ∈ Rp, where a′(X) is the unique polynomial in R with
coefficients in (−q/2, q/2] such that a′(X) mod q = a(X). Then assuming the
parameters were chosen correctly, b(X) and m(X) are equal modulo p.

3.3 SIS over rings

Schemes using SIS have large keys, with the public key typically consisting of
the n ×m matrix A (or the more compact n × (m − n)-matrix A−1

1 A2 where
A = (A1|A2)), where n ≥ 100 and m ≥ dn log qe. Thus keys take some time to
generate and are inconvenient to send, and though vector operations are fast,
multiplying large matrices ends up being relatively time consuming. Inspired
by NTRU, Micciancio introduced a variant of SIS over more structured lattices
which came to be known as ring-SIS. This is SIS over a special class of lattices
called ideal lattices, which correspond to ideals in polynomial rings. The cyclic
lattices used in NTRU are a special case of ideal lattices.

In general, RSIS is described using not lattices but polynomial rings, but we
will later see the connection to lattices.

Let R be the polynomial ring R := Z[X]/(f(X)) for some polynomial f(X) ∈
Z[X] of degree n. For some positive integer q, let Rq := R/qR = Zq[X]/(f(X)).

To be able to talk about short vectors, we need to define a norm on R.
One possible way to do this is to simply associate z ∈ R with the vector of
its coefficients, but then the length of a vector would depend on the choice
of representatives of R. For security analysis, it is better to use the canonical
embedding, which maps z ∈ R to the vector (z(α1), z(α2), ..., z(αn)) ∈ Cn, where
the αi are the complex roots of f(X).

We can now define the short integer solution problem over rings.

Definition 3.2. (Short Integer Solution Problem over Rings, RSISq,β,m) Given
a uniformly random vector a ∈ Rmq , find a nonzero vector z ∈ Rm of norm
||z|| ≤ β, for some given β > 0, such that

aT z = 0 ∈ Rq.

(Peikert writes in Section 4.3.1 [30] that in order for a solution to exist, it
suffices that m ≈ log q, rather than m ≈ n log q as for SIS.)

An early suggestion was to use f(X) = Xn − 1, making the corresponding
lattice a cyclic lattice as in NTRU. However, it was found that SIS is easy to
solve in a cyclic lattice, because multiplying a cyclic matrix with a constant

39

vector will always yield a constant vector. In this case, it will yield a constant
vector in a finite space, where there are only q constant vectors, meaning that by
the pigeon hole principle some constant vectors must map, under multiplication
with a cyclic matrix, to the same constant vector, and therefore the difference
between two such vectors is a nonzero vector that is mapped to zero. Thus we
can restrict the problem considerably by only looking at the constant vectors.
(It is of course conceivable that all nonzero constant vectors that map to zero
have too large a norm to be solutions to the SIS problem, but this seems too
unlikely to make it worth the risk.)

This problem, however, does not arise if f(X) = X2k + 1, so this is a
more secure and still convenient choice for RSIS. More generally, Micciancio and
Regev describe in [28] (though in the context of hash functions), the structured
lattice corresponding to a certain choice of f(X). Essentially, an instance of
RSIS over R = Z[X]/(f(X)) for f(X) = Xn+fnX

n−1+...+f1 with a uniformly
random a ∈ Rmq corresponds to an instance of SIS for the matrix

A = (A1, ...,Am),

i.e., to finding short vectors in Λ⊥q (A), where each square matrix Ai is of the
form F∗ai for vectors a1, ...,am ∈ Znq (chosen independently and uniformly at
random) and

F =

0 0 · · · 0 −f1

1 0 · · · 0 −f2

0 1 · · · 0 −f3

...
...

. . .
...

...
0 0 · · · 1 −fn

 .

If f(X) = Xn − 1, F is equal to the matrix T used in NTRU, whereas if

f(X) = X2k + 1, F is the 2k × 2k matrix

F =

0 0 · · · 0 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

so the matrices Ai = F∗ai are similar to the cyclic matrices of NTRU, except
that the elements above the diagonal have changed signs. This seemingly small
change makes a big difference: finding short vectors in the lattice Λ⊥q (A) for
A = (F∗a1, ...,F

∗am/n) is as hard as solving lattice problems like approximate
SVP and SIVP in the worst case over ideal lattices, as long as

• for any two unit vector u and v, ||(F∗u)v|| is small, typically O(
√
n), and

• f(X) ∈ Z[X] is irreducible over the integers.

40

3.3.1 Hardness of RSIS

RSIS is more efficient than SIS for several reasons.

• If n is the dimension of R over Z, then there is an additive group iso-
morphism which approximately preserves shortness between R and Zn,
and between Rq and Znq . In this way one element of R corresponds to n
(non-independent) integers in Z.

• The domain Znq used in SIS is treated as a Z-module, while the Rq of RSIS
is treated as an R-module. The latter has a richer structure which makes
it more efficient.

• RSIS is more compact than SIS, in that the number m of elements ai
needed to guarantee that a short solution exists is only m ≈ log q, as
opposed to m ≈ n log q for SIS.

On the other hand, the richer structure of Rq that makes RSIS more efficient
than SIS has its drawbacks. Because RSIS uses ideal lattices rather than general
ones, the hardness proofs of SIS no longer apply. RSIS can still be shown to
be as hard as certain lattice problems in the worst case, but these are lattice
problems in ideal lattices. In such lattices, GapSVPγ for small γ = poly(n)
is easy, and the problems SVPγ and SIVPγ are (almost) equivalent. However,
SVPγ and SIVPγ still appear to be very hard on the ideal lattices typically
used in cryptography, and for relevant choices of γ; usually γ is taken to be
polynomial in n. The best known algorithms (including quantum algorithms)
for solving SVPγ in typical ideal lattices and for γ = poly(n) take exponential
time, but ideal lattices have not been studied as carefully as general lattices.

3.3.2 SIS over module lattices

In [25], Langlois and Stehlé introduced a variant of SIS over module lattices,
with a security reduction to show that this problem is at least as hard as SIVP
on module lattices (lattices corresponding to finitely generated modules). In
module-SIS as in RSIS we have a ring R = Z[X]/(f(X)) of dimension n, but
we work with elements in the module Rdq of rank d. Thus the following problem
corresponds to SIS over a module lattice of dimension nd.

Definition 3.3. (The Shortest Integer Solution Problem for Modules, MSISq,m,β)
Given uniformly random a1, ...am ∈ Rdq , find z ∈ Rm such that 0 < ||z|| ≤ β
and

m∑
i=1

ai · zi = 0 mod q.

Again, it is convenient for security analysis to consider the norm in terms of
the canonical embedding.

The reduction from SIVP to SIS allows for converse reductions, meaning
that while being able to solve SIS in general means being able to solve SIVP in
the worst case, the converse also holds. However according to [25] no such result

41

is known for the reduction from SIVP on ideal lattices to RSIS, so it is possible
that SIVP on ideal lattices is easier than RSIS. The reduction from SIVP on
module lattices to MSIS (though in fact the reduction in [25] uses GIVP rather
than SIVP) does allow converse reductions, meaning that MSIS and SIVP on
module lattices are possibly harder than RSIS, which is possibly harder than
SIVP on ideal lattices.

3.4 LWE

Another lattice problem whose hardness rests on that of variants of SVP and
CVP is the learning with errors problem, which, unlike SIS, can be used for
public-key encryption. Again, [30] has more details.

There are two versions of the original learning with errors problem: the
search problem, where the task is to find a secret vector s, and the decision
problem, where the task is to determine whether there even is an s to find,
or whether the given samples are from the uniform distribution. These two
problems are polynomially equivalent.

Let χ be a probability distribution on Zq. By e ← χ we mean that e is
sampled according to χ.

Definition 3.4. (Search-LWEn,q,χ,m) Given m samples (ai, bi = 〈ai, s〉+ ei) ∈
Znq × Zq, where s ∈ Znq and for 1 ≤ i ≤ m, ai ∈ Znq is uniformly random and
ei ← χ, find s.

Definition 3.5. (Decision-LWEn,q,χ,m) Given m samples (ai, bi) ∈ Znq × Zq,
where for 1 ≤ i ≤ m, ai ∈ Znq is uniformly random, determine whether the
bi ∈ Zq are also uniformly random, or whether there is s ∈ Znq such that for
every i, bi = 〈ai, s〉+ ei (where ei ← χ).

In practice it is more convenient to sample s from the error distribution
(modulo q) rather than uniformly. This is called normal form and is at least
as hard as uniform secret (up to a small difference in the number of samples).
Though theoretical hardness proofs tend to assume χ is a discrete Gaussian
distribution, it is also more convenient not to use this distribution for the errors
in practice, since it is inefficient to sample from. Many applications ([39, 40, 41,
44, 45]) use some other distribution which is easier to sample from, sometimes
but not always designed to approximate a discrete Gaussian, with the argument
that the best known attacks do not depend on the exact distribution of the
errors.

Like SIS, the problems can be formulated using linear algebra instead of
talking about a collection of samples. Let A ∈ Zn×mq be the matrix with
columns ai, let b ∈ Zmq the vector with entries bi, and e ← χm. Then the
search-LWE problem is to find s ∈ Znq given

b = AT s + e.

Search-LWE can be seen as average-case BDD on the lattice

L(A) := {AT s : s ∈ Znq }+ qZm.

42

In search-LWE, the vector b will be fairly close to exactly one vector in this
lattice, whereas in the uniform case of decision-LWE, b will in all likelihood be
far from all vectors of L(A).

3.4.1 Hardness of LWE

When introducing the LWE problem, Regev also gave a security reduction show-
ing that LWE is at least as hard as quantumly solving GapSVP and SIVP on
arbitrary lattices. This result has been strengthened slightly, and is given in
[30] as follows.

Theorem 3.2. For any m = poly(n), any modulus q ≤ 2poly(n), and any
(discretized) Gaussian error distribution χ of parameter αq ≥ 2

√
n where 0 <

α < 1, solving the decision-LWEn,q,χ,m problem is at least as hard as quantumly
solving GapSVPγ and SIVPγ on arbitrary n-dimensional lattices, for some γ =

Õ(n/α).

The proof is by first showing that search-LWE is at least as hard as GapSVP
and SIVP via a quantum reduction, and then a classical reduction shows that
decision-LWE is equivalent to search-LWE (up to polynomial blow-up of m).
The first part is accomplished by using an oracle for search-LWE and a source
of discrete Gaussian samples to solve BDD, and then using an oracle for BDD
to quantumly generate discrete Gaussian samples with narrower parameter. It-
erating will yield sufficiently narrow discrete Gaussian samples to give solutions
to GapSVP and SIVP.

There is also a classical reduction by Peikert, proving that LWE with error
rate α is at least as hard as GapSVPγ on arbitrary lattices, for γ = Õ(n/α).
However, this reduction only works for GapSVP, and moreover it requires q ≥
2n/2. (It has since been shown by Brakerski et al. that as long as q is bounded
below by some small polynomial, hardness for a given error rate α depends
mainly on n log q rather than n and q themselves.)

Another useful quality of LWE is that it is robust, in the sense that even if an
attacker has some bounded information about the secret, the problem remains
as hard as if the secret was still perfectly secret, albeit for a lower dimension n
and error rate α.

3.4.2 LWE over rings

Like for SIS, there is a ring version of the LWE problem, introduced by Lyuba-
shevsky, Peikert and Regev in [23]. Let R = Z[X]/(f(X)) for some f(X) ∈ Z[X]
of degree n, Rq = R/qR and let χ be an error distribution over R.

Definition 3.6. Given m samples (ai, bi) ∈ Rq × Rq, where the ai ∈ Rq are
uniformly random, the decisional LWE problem over rings (RLWEq,χ,m) is to
determine whether the bi ∈ Rq are also uniformly random, or whether bi =
s · ai + ei mod q for all i, where s ∈ Rq and ei ← χ.

43

RLWE corresponds to the LWE problem over ideal lattices, and the ad-
vantage is the efficiency and compactness compared to LWE. Multiplication in
RLWE is quick, and more importantly fewer multiplications are necessary. A
cryptosystem using LWE will typically have a large square matrix A as a public
key, meaning that encryption requires multiplying this matrix with a vector. A
system using RLWE will just have a polynomial a as a public key, and encryp-
tion requires a single polynomial multiplication. Thus RLWE has significantly
smaller keys and faster computations, and also faster key generation.

In the original work the problem was defined over a fractional ideal dual to
R, which is more convenient for proofs, but this gets quite technical and is not
repeated here. Lyubashevsky, Peikert and Regev showed in [23] that RLWE is
as hard as SIVP on ideal lattices, using this other definition of the problem, and
Langlois and Stehlé (using the same definition) adapted this using GIVP over
ideal lattices instead of SIVP. The theorem here most closely resembles Langlois
and Stehlé’s Theorem 4.5 in [25].

In the following theorem, RLWEq,Υα is a version of the RLWE problem de-
fined over a fractional ideal dual to R, where R = Z[X]/(f(X)) for the ν-th
cyclotomic polynomial f(X) ∈ Z[X] of degree φ(ν) = n where φ is Euler’s
totient function, and the errors are sampled from an elliptical Gaussian distri-
bution Υα. The smoothing parameter ηε for a lattice L and ε > 0, ηε is the
smallest s such that ρ1/s(L∗\{0}) ≤ ε). For more details see [23, 25]

Theorem 3.3. Let ε(n) = n−ω(1), α ∈ (0, 1), and prime q ≥ 2 such that
ν|(q − 1), αq > ω(

√
log n) and q ≤ poly(n). Then there exists a quantum

reduction from solving GIVPηεγ on ideal lattices (in the worst case, with high

probability) with γ =
√
n ·ω(

√
log n)/α to solving RLWEq,Υα in polynomial time

with non-negligible probability.

The quantum reduction is to the search version of RLWE, with a differ-
ent error distribution than the decision problem, and this has fewer require-
ments on q (it requires q ≥ 2 such that the factorisation of q is known and
αq > ω(

√
log n)). With the additional requirements on q, there is a classical

polynomial time search-to-decision reduction.
Though the theorem only assumes that the ring R is cyclotomic, in practice

many cryptosystems use power-of-two cyclotomics, i.e., they take f(X) = Xn+1
where n is a power of two. This restriction is not strictly necessary but the
arguments usually given in favour of this choice are the ease of working with this
particular type of ring and the relative efficiency of the multiplication algorithm
NTT (see Section 2.2.6) over these rings compared to others. (Though this is
not necessarily the best choice of multiplication algorithm for polynomials of
the size typically used.)

In [24], Lyubashevsky, Peikert and Regev offer techniques for using arbitrary
cyclotomic rings for LWE, with no loss in the underlying worst-case hardness
guarantees, and very little loss in efficiency, but of the contributions to the NIST
call for proposals almost all that use some variant of RLWE use power-of-two
cyclotomic rings. A drawback of this is that it severely limits the possible values

44

for n as the only power-of-two values in a reasonable interval is n = 512 and
n = 1024, which makes it hard to tightly meet security goals.

As for the error distribution, most cryptosystems will not use a Gaussian dis-
tribution, but will instead use some distribution which approximates a discrete
Gaussian distribution but is more efficient to sample from.

3.4.3 LWE over module lattices

As previously mentioned, RLWE gets quite inflexible if the polynomial f(X)
is taken to be a power of two cyclotomic polynomial, but despite this such
polynomials are popular. In 2011, Brakerski, Gentry and Vaikuntanathan in-
troduced a problem that allows for more flexibility while still using power of
two cyclotomics (though it is not restricted only to such polynomials). This is
the learning with errors problem over module lattices.

Let R = Z[X]/(f(X)) for some f(X) ∈ Z[X] of degree n, Rq = R/qR, χ be
an error distribution over R, and d a positive integer.

Definition 3.7. (Decision-MLWE) Given m samples (ai, bi) ∈ Rdq ×Rq, where

the ai ∈ Rdq are uniformly random, determine whether the bi ∈ Rq are also

uniformly random, or whether bi = aTi s + ei mod q for all i, where s ∈ Rdq and
ei ← χ.

The underlying lattice has dimension nd, where d is usually small. This
makes it possible to scale the problem to a greater extent than is possible with
RLWE. For instance, the recommended parameter choices for the MLWE-based
KEM Kyber (a submission to the NIST call for proposals) is n = 256 and d = 3,
which gives a lattice of dimension nd = 768 (the key that is encapsulated is 256
bits long, and to minimise the risk of decapsulation errors n should therefore
not be smaller than 256).

Langlois and Stehlé showed in [25] that MLWE was as hard as GIVP over
module lattices. Like the proofs for RLWE this requires a different formulation
of the problem, analogous to that of RLWE above. With that definition of the
MLWE problem, we have the following theorem.

Theorem 3.4. (Theorem 4.7, [25]) Let ε(nd) = (nd)−ω(1), α ∈ (0, 1), and
prime q ≥ 2 such that ν|(q − 1), αq > 2

√
d · ω(

√
log n) and q ≤ poly(nd). Then

there exists a quantum reduction from solving GIVPηεγ on module lattices (in

the worst case, with high probability) with γ =
√

8nd2 · ω(
√

log n)/α to solving
MLWEq,Υα in polynomial time with non-negligible probability.

This is a simplified version of the theorem in [25]; as for RLWE, the quantum
reduction is to the search version of MLWE for a different error distribution,
and again this reduction requires only of q that q ≥ 2 such that the factorisation
of q is known and αq > 2

√
d ·ω(

√
log n)). The classical polynomial time search-

to-decision reduction requires the additional conditions on q.
It is known that GapSVPγ , though believed to be a hard problem in general

for γ that is polynomial in the security parameter, is easy for ideal lattices.

45

Langlois and Stehlé comment that this problem should not be easy in the worst
case for module lattices (of rank > 1), since this would make it possible to
efficiently solve (decisional) RLWE with just two samples, by using these to
construct a module lattice. If the shortest vector in this module lattice were close
to the bound in Hermite’s theorem, then this would indicate that the RLWE
samples were uniformly random, but if the lattice contained an unexpectedly
short vector they were not.

Langlois and Stehlé also give converse reductions (for power-of-two n, though
they say that they expect the result to hold for cyclotomic rings in general)
showing that not only can GIVP over module lattices be solved using a solver
for MLWE, but the converse also holds. Such a result is not known to hold for
RLWE and GIVP over ideal lattices, so GIVP over ideal lattices may in fact be
easier than RLWE.

Albrecht and Deo give a reduction in [2] from MLWE to RLWE for different
parameters. However, for decision versions of MLWE and RLWE, the reduction
does not preserve non-negligible advantage unless q is superpolynomial (i.e.,
grows faster than a polynomial of n as n grows). For search versions of the
problem the reduction works better, and for power of two cyclotomic rings they
show that there is an efficient reduction from (search) MLWE with modulus
q, rank d and error rate α to (search) RLWE with modulus qd and error rate
α · n2

√
d.

3.5 Variants of LWE

There are many variations of the LWE problem, all of which consist (in the
decision version of the problem) of distinguishing uniformly random samples
from samples that are some kind of “noisy products”. As the decision problems
are more commonly used in cryptography than the search problems, only the
former are given below.

When LWE was suggested in 2005 there was already a similar problem called
the learning parity with noise problem, which is equivalent to the problem of
decoding linear codes.

Denote as Berτ the Bernoulli distribution on Z2 with parameter τ (where
0 < τ < 1/2).

Definition 3.8. (Decision-LPN) Given m samples (ai, bi) ∈ Zn2 × Z2, where
for 1 ≤ i ≤ m, ai ∈ Zn2 is uniformly random, determine whether the bi ∈ Z2

are also uniformly random, or whether there is s ∈ Zn2 such that for every i,
bi = 〈ai, s〉+ ei (where ei ←Berτ).

Thus LPN is essentially LWE in the special case where q = 2. Operations
using LPN are very efficient, since multiplication is simply the logical operation
AND and addition is XOR. The quantum reduction from GapSVPγ and SIVPγ
does not hold for LPN, since the reduction requires q ≥ 2

√
n/α (where 0 < α <

1), so in particular q > 2. Despite this the problem still seems to be hard, at least
for a classical attacker. The best known classical algorithms require 2Θ(n/ logn)

time and samples (given only a linear number of samples, exponential time is

46

required), but in a recent article [33] from April 2017 Ristè et al. show that
a quantum attacker would require only a logarithmic number of samples and
linear time (as functions of the problem size n) to solve LPN. Therefore it does
not seem a useful problem for cryptosystems that need to provide post quantum
security.

3.5.1 LWR

A more recent variant of LWE, introduced in 2012 by Banerjee, Peikert and
Rosen in [11] and studied further by Alwen, Krenn, Pietrzak and Wichs in [4],
is the learning with rounding problem. Here the noisy products are formed using
a rounding function rather than by adding an error to the product, meaning that
the noise is deterministic.

For integers p < q, define a function b·ep : Zq → Zp by x 7→ b(p/q) · xe.

Definition 3.9. (Decision-LWR) Given m samples (ai, bbiep), where for 1 ≤
i ≤ m, ai ∈ Znq is uniformly random, determine whether the bi ∈ Zq are also
uniformly random, or whether there is s ∈ Znq such that for every i, bi = 〈ai, s〉.

The hardness of LWR rests on that of LWE: if LWE with sufficiently small
error size is hard, then LWR for sufficiently large q/p is hard, because then
b〈a, s〉ep ≈ b〈a, s〉+eep. More specifically, as Alwen et al. showed in [4]10, LWR
with parameters n,m, q, p is hard if LWE with parameters n′,m, q, β is hard,
and

n ≥ log q

log 2γ
(1 + n′ + λ) and q ≥ 2γ(nmβp),

for some γ ≥ 1, where q is prime and β is the error size, and λ is a security
parameter of which all other parameters are functions. If the attack on LWE
succeeds with advantage ε, that on LWR succeeds with advantage m(2nε + 3 ·
2−λ).

The above still holds if q is not prime, as long as the largest prime factor of
q divides q only once, and is greater than or equal to 2γ(nmβp).

Though the flexibility of γ allows for some choice in the parameters, at least
one of the modulus and the dimension of the LWR instantiation must be very
large for this result to hold, especially if q is not prime.

Bogdanov et al. also studied LWR in [9], where they showed that for integers
p, q, n,m and B such that q > 2pB,

PrA,s,e[A(A, bAs + eep) = s] ≥ PrA,s[A(A, bAsep) = s]2

(1 + 2pB/q)m
,

where A is any algorithm, A ∈ Zn×mq is uniformly random, s ∈ (Znq)× is chosen
from any distribution and the noise e is chosen independently over the m co-
ordinates from a distribution such that ei ∈ {−B, ..., B}, Pr[ei ≥ 0] ≥ 1/2 and
Pr[ei ≤ 0] ≥ 1/2 for each coordinate ei of e.

10Alwen et al. used a slightly different rounding function, b·cp : Zq → Zp by x 7→ b(p/q) ·xc.

47

This gives a lower bound for the probability that an algorithm can find the
secret vector s in an instance of the LWR problem with a given A, in terms
of the probability that the same algorithm can find s if given rounded samples
from an instance of the LWE problem with the same parameters.

This is still not a very tight result, and since m is typically at least as large
as n, which is typically in the hundreds, and p cannot be very much smaller than
q while keeping the risk of decryption errors reasonably low, the denominator
of the right hand side will be impractically large.11

Alperin-Sheriff and Apon give two reductions in [1]. For security parameter
λ, n ∈ N and B > 0, let ψ be a distribution over Z, and let p, q,m =poly(λ)
such that q ≥ 4e · Bmpλ. Then Alperin-Sheriff and Apon show that if there
exists a probabilistic polynomial time algorithm A succeeding with advantage
ε ≥ λ−c (for some constant c ≥ 1) in solving (decisional) LWR with parameters
n,m, q, p, then there exists a probabilistic polynomial time algorithm A′

• solving (decisional) LWE with parameters n,m, q, ψ with advantage ε′ ≥
(λmB)−c/4, if every prime factor of q is greater than B and ψ is B-
bounded;

• solving (decisional) LWE with parameters n − c,m, q, ψ with advantage
ε′ ≥ (λm)−c/4, if ψ is Dα and D(a2+ω(log λ)) is B-bounded.

This still means a considerable increase of q. Indeed, all these reductions
allow q to be polynomial in the security parameter only by bounding the number
of samples m (except the first reduction given by Banerjee, Peikert and Rosen in
[11] along with the definition of LWR, which allows for unbounded samples but
requires superpolynomial q). When constructing a KEM, however, this does not
really present a problem, as m is typically not much larger than the dimension
n.

Montgomery suggests a way [26] to get unbounded samples while keeping
q polynomial, but this builds on a different version of the problem, called NL-
WLR (Nearby Learning with Lattice Rounding), which consists of distinguish-
ing “NLWLR-samples” from uniform. NLWLR-samples are obtained by sam-
pling vectors s,ui, δi and a matrix B, from various distributions, and solving
Ais = Bui + δi for Ai using Gaussian elimination. The NLWLR-samples are
(Ai, zi = ui mod 2). The idea is that we are rounding to a lattice rather than to
simply the nearest multiple of some given p, but, as Montgomery points out, this
approach has drawbacks: the samples Ai are not uniform, which is impractical,
and rounding to a lattice is not particularly efficient.

The main advantage of using LWR rather than LWE is the efficiency gain
of not having to sample errors. Depending on whether there is something else
that is randomly sampled, this may mean that a PKE using LWR will have a

11Kyber [41], which like the sample (A, bAs+eep) on the left hand side above uses both error
sampling and rounding, though on module lattices, has p = 211 ≈ q/4, and a probability of
decapsulation failure of ≤ 2−142. This gives us some idea, so for a conservative lower bound on
the denominator we let 2pB ≈ q/4 and m ≈ 500, which gives (1 + 2pB/q)m ≈ 3 · 1048 ≈ 2161.

48

deterministic encryption algorithm, which can be an advantage or a disadvan-
tage depending on what one wants to use it for. In particular, a PKE with
an entirely determinstic encryption algorithm is not IND-CPA secure because
encrypting a message several times (with the same public key) will always yield
the same ciphertext. On the other hand, this property is useful when using a
PKE to construct a KEM, since transformations that do this tend to require
re-encryption in the encapsulation algorithm of the KEM to ensure the received
ciphertext was honestly generated.

3.5.2 MLWR

As LWE can be restricted to ideal or module lattices, so can the determinis-
tic variant LWR. The module learning with rounding problem is very similar to
the module learning with errors problem, except the noise is formed using the
rounding function b·ep. Applying this function to a polynomial simply means ap-
plying it to each coefficient in the polynomial. As before, let R = Z[X]/(f(X))
for some f(X) ∈ Z[X] of degree n, Rq = R/qR, and d a positive integer.

Definition 3.10. (Decision-MLWR) Given m samples (ai, bbiep) ∈ Rdq × Rq,
where the ai ∈ Rdq are uniformly random, determine whether the bi ∈ Rq are

also uniformly random, or whether bi = aTi s mod q for all i, where s ∈ Rdq is
uniformly random.

Bogdanov et al., who have looked at the hardness of the LWR problem, also
give in the same article [9] a similar result for the ring version of the problem,
i.e., for MLWR with d = 1. They show that for integers p, q, n,m and B such
that q > 2pB, any function g over Rq and any algorithm A,

Pra,s,e[A(a, bas+ eep) = g(s)] ≥ Pra,s[A(a, basep) = g(s)]2

(1 + 2pB/q)nm
,

where a ∈ Rmq is uniformly random, s is chosen from any distribution over the
units of Rq and the noise e is chosen independently over the m coordinates from
a distribution such that e ∈ {−B, ..., B}, Pr[e ≥ 0] ≥ 1/2 and Pr[e ≤ 0] ≥ 1/2
for each coefficient e in each coordinate of e.

This inequality gives a lower bound for the probability that an algorithm can
find, for any g over Rq, some information g(s) about the secret s belonging to
an instance of the MLWR problem with a given A, in terms of the probability
that the same algorithm can find the same information g(s) about the same
secret s if given rounded samples from an instance of the MLWE problem with
the same parameters as the MLWR instance.

Unfortunately, like the version for general lattices, this bound is too loose to
say much about the theoretical security of RLWR. Even though instantiations
of RLWE may use m = 1 (see e.g. [40]), the denomitator of the right hand side
becomes very large.12

12With the parameters of NIST-submission NewHope which uses RLWE (q = 12289, B =

49

Alperin-Sheriff and Apon’s reduction [1] for LWR also holds in the module
setting, and that seems rather tighter with regards to the advantage, though it
requires a larger modulus than the reduction of Bogdanov et al.

3.5.3 Other variants of MLWE

I-MLWE. In [13] Chunsheng suggested a variant of RLWE over the ring of
integers modulo some large number rather than a polynomial ring. This ring
was formed by taking some instance of RLWE with ring R′ = Z[X]/(f(X)) (for
some f(X) ∈ Z[X] of degree n) and modulus q, and then replacing X with q
to get a new ring R = Z/NZ where N is the polynomial f evaluated at X = q.
The error distribution χ remains a discrete Gaussian distribution.

One of the submissions to the NIST call for proposals called ThreeBears
[44] uses the module version of this problem, and calls it the integer module
learning with errors problem. It is not defined using an instance of RLWE, but
the principle is the same.

Let R = Z/NZ for some N ∈ Z, let d,m be integers, and let χ be an error
distribution over R.

Definition 3.11. (Decision-I-MLWE) Given m samples (ai, bi) ∈ Rd×R, where
for 1 ≤ i ≤ m, ai ∈ Rd is uniformly random, determine whether the bi ∈ R
are also uniformly random, or whether there is s ∈ Rd such that for every i,
bi = aTi s + ei (where ei ← χ).

The modulus N is very large (in ThreeBears N = 23120 − 21560 − 1) so the
system deals with very large numbers, but operations are still quicker than the
polynomial multiplications of RLWE and MLWE. As for security, I-MLWE is a
very new problem and not much studied.

MP-LWE. In [32] Roşca, Sakzad, Stehlé, and Steinfeld suggested a variant of
RLWE called middle-point LWE. This uses so called middle-point multiplication
to multiply two polynomials of some maximum degree, and keeping only the
middle n terms.

More formally, let m,n, q be integers and let Z<nq [X] denote the set of poly-
nomials in Zq[X] of degree less than n. For a ∈ Z<nq [X] and s ∈ Z<2n−1

q [X]
define

a�n s = b(a · s mod X2n−1)/Xn−1c ∈ Z<nq [X].

Thus, a�ns means that we multiply a and s, reduce the maximum degree of the
terms in the product by modding by X2n−1, then divide by Xn−1 and round to
zero all resulting terms that have X to a negative power.

Definition 3.12. (Decision-MP-LWE) Given m samples (ai, bi) ∈ Z<nq [X] ×
Z<nq [X], where for 1 ≤ i ≤ m, ai ∈ Z<nq [X] is uniformly random, determine
whether the bi ∈ Z<q [X] are also uniformly random, or whether there is s ∈

8,m = 1, and n = 512 or n = 1024), and choosing p = 256 (which is probably far too small
for a low error rate) the factor (1 + 2pB/q)nm is about 1064 ≈ 2212 for n = 512, and about
10128 ≈ 2425 for n = 1024.

50

Z<2n−1
q [X] such that for every i, bi = ai �n s + ei (where ei ← χ for χ some

error distribution over Z<nq [X]).

This is a bit more technical than most other variations of LWE, and the
implementation is not very efficient. One of the submissions the the NIST call
for proposals, Titanium [45], uses MP-LWE, and is about on level with the
submission using plain LWE (FrodoKEM [39]) when it comes to both runtime
and keysizes.

The point of using MP-LWE is that it comes with a security reduction which
shows that as long as RLWE over R = Z[X]/(f(X)) is hard for some f ∈ F ,
MP-LWE is hard, where F is a polynomial family of exponential size in the
security parameter (it contains polynomials of the form Xm+

∑
i≤k(m) fiX

i for

some k(m)). Therefore, MP-LWE is a good basis for a cryptosystem if we think
that polynomials f such that RLWE is hard over R = Z[X]/(f(X)) exist and
are common enough that F will usually contain such an f , but that we cannot
with reasonable certainty identify for which f RLWE is hard (since if we could
do so, it would be more efficient simply to use RLWE for such an f).

However, unless there is room for improvement when it comes to efficiency,
it may be better to simply use plain LWE in situations when we are not ready
to trust RLWE or MLWE.

4 Examples of cryptosystems

Many of the schemes submitted to NIST on their recent call for proposals are
lattice based, which gives an idea of how schemes will work that are based on the
various lattice problems mentioned so far. This section gives some idea of three
of these, but the reader is warned that less of the notation and terminology is
explained from now on.

The three cryptosystems discussed in this section are FrodoKEM, which
is based on plain LWE, NewHope, which uses RLWE, and Kyber, which uses
MLWE. In each case the (main) product is an IND-CCA secure KEM, which
is obtained by applying a transform to an IND-CPA secure PKE. There are
a number of options for transforms (see Sections 2.4.5-2.4.7) but some care
must be taken in the case of lattice schemes since many transforms assume the
underlying PKE is perfectly correct (i.e. that the decryption algorithm always
recovers the correct message if the ciphertext is valid). Lattice schemes do not
tend to be perfectly correct, though they can be made so at the cost of either
security or efficiency.

Each scheme comes with a few suggested sets of parameters, giving different
security levels. The NIST call for proposals [38] defines five levels or categories
of security. Quoted from the call for proposals, these are:

1. “Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 128-bit key (e.g. AES128)

51

2. Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for col-
lision search on a 256-bit hash function (e.g. SHA256/SHA3-256)

3. Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 192-bit key (e.g. AES192)

4. Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for col-
lision search on a 384-bit hash function (e.g. SHA384/SHA3-384)

5. Any attack that breaks the relevant security definition must require com-
putational resources comparable to or greater than those required for key
search on a block cipher with a 256-bit key (e.g. AES 256)”

Different metrics may be used to measure the computational resources, and
in order for a scheme to fulfill any of the above requirements any attack must
require comparable or greater resources than the above bounds, with respect
to all metrics that may be relevant. This includes quantum metrics, and NIST
recommends restricting quantum attacks to some fixed maximum circuit depth,
MAXDEPTH, which may range from 240 to 296.

4.1 FrodoKEM

FrodoKEM, being based on plain LWE, is the simplest of the schemes to explain.
It offers IND-CCA security at two levels: level 1 and level 3, comparable to key
search on block ciphers with a 128-bit and 192-bit key, respectively, with respect
to relevant classical and quantum metrics. It is significantly less efficient than
more structured variants but according to the paper submitted to NIST [39]
it is still practical for the vast majority of devices, networks and applications,
and since there are few requirements on the parameters it is possible to meet
security targets rather tightly.

Commenting on FrodoKEM, Bernstein argues that one of the security claims
(regarding quantum security) is incorrect because the relevant theorem does
not hold unless the parameters are increased so much as to render the scheme
impractical, and that another is formulated so vaguely that it says nothing about
the scheme. However, in a reply to this comment Peikert clarifies that in the
FrodoKEM submission, the theoretical security proofs refer to the asymptotic
security of a parametrisable scheme, and that the parameter choices for the
specific instantiations are supported by cryptanalysis (see also Section 1.2.2 of
[39]).

4.1.1 The algorithms

FrodoKEM is obtained by applying a transform to the IND-CPA secure PKE
FrodoPKE, which consists of the algorithms FrodoPKE.KeyGen, FrodoPKE.Enc

52

and FrodoPKE.Dec, Algorithms 3, 4 and 5. These contain some integer param-
eters, n, n̄, m̄, lenA and lenE, and there are a number of separate algorithms
that convert bit strings to matrices and vice versa, or sample matrices from
bit string seeds. These processes are described in words in the pseudo code
below, glossing over the details, but it is perhaps worth noting that the matrix
A, which has entries in Zq is generated using a different algorithm than the
error matrices, which have integer entries. In the sampling of error matrices,
different indices are used as domain separators so that different matrices can be
generated from the same seed, like S and E in FrodoPKE.KeyGen.

Algorithm 3 FrodoPKE.KeyGen(): key generation

Output: Public key pk
Output: Secret key sk

1: Choose a uniformly random seed seedA ∈ {0, 1}lenA

2: Generate pseudorandom matrix A ∈ Zn×nq deterministically from seedA,
using AES128 or cSHAKE128

3: Choose a uniformly random seed seedE ∈ {0, 1}lenE

4: Generate pseudorandom matrices S,E ∈ Zn×n̄ deterministically from seedE,
using cSHAKE

5: Compute B = AS + E
6: return public key pk = (seedA,B) and secret key sk = S

Algorithm 4 FrodoPKE.Enc(pk, µ): encryption

Input: Public key pk
Input: Message µ (bit string)
Output: Ciphertext c

1: Generate A ∈ Zn×nq from seedA as in KeyGen

2: Choose a uniformly random seed seedE ∈ {0, 1}lenE

3: Generate pseudorandom matrices S′,E′ ∈ Zm̄×n from seedE

4: Generate pseudorandom matrix E′′ ∈ Zm̄×n̄ from seedE

5: Compute B′ = S′A + E′ and V = S′B + E′′

6: return ciphertext c = (C1,C2) where C1 = B′ and C2 is the sum of V
and the message µ, encoded as a matrix

Note that seedE in FrodoPKE.Enc is different from seedE in FrodoPKE.KeyGen
(but just in case they should happen to be the same, the algorithm sampling
error matrices still has a different value of the domain separator for each of
E,S,E′,E′′,S′).

The algorithms for FrodoKEM are formed from FrodoPKE using the trans-
form QFO6⊥m from [19] (see Section 2.4.6) with some adjustments. The transform
as given in [19] uses random coins G(m) for encryption, and has the shared key
K = H(m) and d = H ′(m), for message m and hash functions G,H and H ′.
The transform used in [39] differs in the following ways:

53

Algorithm 5 FrodoPKE.Dec(): decryption

Input: Secret key sk
Input: Ciphertext c
Output: Message µ′

1: Compute M = C2 −C1S
2: return message µ′, M expressed as a bit string

• One hash function generates (r, k, d), where r are the random coins (G(m)
in QFO 6⊥m) and k is used in generating K.

• The hash function generating (r, k, d) takes the public key as input as well
as the message.

• The computation of the shared secret K takes c, k and d as input, rather
than just the message.

• The key generation algorithm for FrodoKEM also includes pk as part of
sk, though the description of the transform does not. In practice, since
the decapsulation algorithm reencrypts the message, it will of course need
to have access to the public key.

The resulting transform is denoted QFO6⊥m
′.

The FrodoKEM algorithms also converts matrices that are to be sent (e.g.
B in the public key) or used as input in hash functions (e.g. C1 and C2) to bit
strings.

The suggested parameters are

• q = 2D for D = 15 and D = 16, respectively;

• integers n, n̄, m̄ such that n ≡ 0 (mod 8);

• lenA = 128;

• lenE = 128 and lenE = 192, respectively;

• B = 2 and B = 3, respectively (B ≤ D is the number of bits encoded in
each matrix entry).

There is also an error distribution used in sampling the error matrices, which
should ideally be a discrete Gaussian, but since this is inefficient to sample from
the scheme uses another distribution that approximates a discrete Gaussian.

Generating A is costly: it is about 40% of the cost of encapsulation and
decapsulation. The matrix A could be fixed, but this brings a risk of backdoors
and all-for-the-price-of-one attacks. The authors suggest it could instead be
reused a small number of times without greatly increasing risks.

54

4.1.2 Decapsulation error

A critical part of the decapsulation algorithm is of course recovering µ′. Let M
denote the matrix that is µ encoded as a matrix. Then

M = C−V = C− (S′B + E′′).

Decaps has access to A,S,B,B′ and C, but not to S′, so it approximates
S′B + E′′ as B′S. Since

S′B + E′′ −B′S = S′E−E′S + E′′,

this only works if E′′′ = S′E − E′S + E′′ is so small that rounding B′S will
yield S′B + E′′. This rounding occurrs in decoding C − B′S as a bit string.
The decoding algorithm applies the function dc(·) to each entry of the matrix,
interprets the resulting integers as B-bit strings and concatenates these into one
larger string (B is some integer such that B ≤ D, given as part of the parameter
set), where

dc(c) = bc · 2B/qe mod 2B .

The encoding algorithm which encodes a bit string as a matrix with entries
in Zq splits the bit string into B-bit substrings, interprets each substring as an
integer, and applies the function ec(·) to each integer in turn to get the entries
for a matrix, where

ec(k) = k · q/2B .

Thus dc(ec(k)) = k as long as 0 ≤ k < 2B , so the decapsulation algorithm
will recover µ by decoding C − B′S as long as all entries of E′′′ are strictly
larger than −q/2B+1 and at most q/2B+1. (In the suggested parameter sets,
q/2B+1 = 212.) Fortunately, this is usually the case. The level 1 security
parameter set has failure probability 2−148.8, and the level 3 security parameter
set has failure probability 2−199.6.

4.1.3 Security

The paper [39] for FrodoKEM offers a number of security reductions:

• FrodoKEM is an IND-CCA-secure KEM assuming FrodoPKE is an IND-
CPA PKE and the hash functions used (cSHAKE) are random oracles.13

• FrodoPKE is an IND-CPA PKE assuming that the corresponding normal
form LWE problem is hard.

• Justification for substituting exact rounded Gaussian errors with the dis-
tribution used. Bounds for exact security loss.

• Replacing A sampled from a truly uniform distribution with pseudoran-
dom A generated from random seed.

13This is claimed to be supported by [19], but the specification of Frodo uses a different
definition of correctness than [19]; see Section 2.4.8.

55

• Normal form LWE is hard assuming uniform-secret LWE is hard for same
parameters (small loss of samples).

• Average-case uniform-secret LWE is hard assuming that the worst-case
BDDwDGS problem is hard for related parameters.

Recall that the BDDwDGS (BDD with discrete Gaussian samples) problem
is a variant of the BDD problem on the lattice L, where the adversary has access
to an oracle that samples from the discrete Gaussian distribution DL∗,s for any
adaptively queried s ≥ r, where r > 0 is given and L∗ is the dual of L.

The authors of FrodoKEM note that for a given distance bound, known
BDDwDGS algorithms use samples that all have the same parameter s, but the
reduction to LWE uses the ability to vary s.

BDDwDGS is used instead of GapSVP or SIVP since the standard deviation
used in FrodoKEM is too small for the reduction to GapSVP and SIVP to hold.
However, even so the theoretical security does not say much for the suggested
parameters in FrodoKEM, because the reductions are too loose. They prove
asymptotic security, but the security of specific instantiations is estimated using
cryptanalysis, and this is how the parameter choices are motivated.

4.2 NewHope

NewHope is based on RLWE over cyclotomic rings R = Z[X]/(Xn + 1) for n a
power of 2, and offers IND-CCA security at two levels: level 1 and level 5. It is
less flexible than FrodoKEM, and the algorithms are optimized for n = 512 or
n = 1024, and q = 12289 and k = 8, where q is the modulus and k a parameter
for noise distribution. Instead of discrete Gaussian errors, NewHope uses the
centered binomial distribution of parameter k = 8, which has standard deviation√
k/2 = 2.
For multiplying polynomials NewHope uses NTT, and it can not easily be

used with any other method for multiplication since some of the messages are
sent in the NTT domain to reduce the number of necessary transforms. (This
means that no other definition or parametrisation of NTT can be used with
NewHope, at least not without then transforming messages to fit this definition
and parametrisation.) Using NTT affects the choice of parameters, since it
requires q to be a prime congruent to 1 mod 2n. The smallest such prime, for
either value of n, is q = 12289. (According to [40], the security level grows with
n and the noise-to-modulus ratio, so q should be as small as possible. A small
q is also makes NTT more efficient.)

4.2.1 The algorithms

Like FrodoKEM, NewHope starts from an IND-CPA secure PKE, shown in Al-
gorithms 6, 7 and 8, and applies the exact same transform QFO6⊥m

′ as FrodoKEM
to obtain an IND-CCA secure KEM.

56

Algorithm 6 NewHope-CPA-PKE.Gen(): key generation

Output: Public key pk
Output: Secret key sk

1: Choose a uniformly random seed∈ {0, ..., 255}32

2: Compute z1, z2 ∈ {0, ..., 255}32 as (z1, z2) =SHAKE256(64,seed)
3: Generate pseudorandom polynomial â ∈ Rq deterministically from z1, using

SHAKE128
4: Generate pseudorandom polynomials e, s ∈ Rq deterministically from z2,

and bit-reverse them.
5: Compute ê =NTT(e) and ŝ =NTT(s)

6: Compute b̂ = â ◦ ŝ + ê
7: return (pk, sk) where pk is b̂ encoded as a byte string, concatenated with
z1, and sk is s encoded as a byte string

As in FrodoKEM, different domain separators ensure that e 6= s though
they are generated in the same way from the same seed. Generation of â is
done using a different algorithm.

Bit-reversal, for a sequence of 2l integers, is a permutation of the sequence,
and is done by writing the integers in binary representation, padded to have
length l, and reversing the order. For a polynomial s, bit-reversal is defined as
the polynomial where the exponents have been bit-reversed.

Inputs to NTT would normally need to be bit-reversed if implementations
use in-place NTT algorithms, and this is therefore included in the algorithms
for key generation and encryption. However, since the polynomials that go into
NTT are pseudorandom they can be considered already bit-reversed, and as
an optimization NewHope “allow[s] implementations to skip these bit-reversals
for forward transformation”. The operation ◦ is coordinate-wise multiplication
modulo q. Because of the NTT-transform, NTT−1(â ◦ ŝ) = a · s. Since the a is
not needed, â is generated in the NTT domain.

(There are different ways, not repeated here, to turn polynomials into byte
strings and vice versa. Most of these are more or less the same, sometimes with
built-in concatenation with some other byte string, but some differ in the length
of the resultant byte string. See the NewHope specification [40] for details.)

Like most lattice based cryptosystems, NewHope is not perfectly correct,
but the probability of decryption error is 2−213 for the smaller parameter set,
and 2−216 for the larger.

4.2.2 Security

Like FrodoKEM, NewHope comes with a number of security reductions, more
details on which can be found in the NewHope paper [40]. These reductions
are:

• Using the centered binomial distribution instead of a discrete Gaussian
one gives negligible advantage to the adversary.

57

Algorithm 7 NewHope-CPA-PKE.Encrypt(pk, µ, coin): encryption

Input: Public key pk
Input: Message µ
Input: Random coins coin
Output: Ciphertext c

1: Recover b̂ and z1 from pk
2: Generate â ∈ Rq from z1, as in Gen
3: Generate pseudorandom polynomials e′, s′ ∈ Rq deterministically from coin,

and bit-reverse them
4: Generate pseudorandom polynomial e′′ ∈ Rq deterministically from coin
5: Compute t̂ = NTT(s′)
6: Compute û = â ◦ t̂ + NTT(e′)
7: Encode message µ as a polynomial v ∈ Rq
8: Compute v′ = NTT−1(b̂ ◦ t̂) + e′′ + v
9: Compress v′ into a byte string h

10: Encode û as a byte string, concatenate with h, and denote this c
11: return ciphertext c

Algorithm 8 NewHope-CPA-PKE.Decrypt(sk, c): decryption

Input: Secret key sk
Input: Ciphertext c
Output: Message µ′

1: Recover (û, h) from c
2: Recover polynomial ŝ from byte string sk
3: Recover polynomial v′ from byte string h
4: Recover message µ′ by decoding v′ − NTT−1(û ◦ ŝ)
5: return message µ′

58

• Using a pseudorandomly generated â instead of a uniformly random â
gives no advantage to the adversary, assuming SHAKE128 is a random
oracle.

• NewHope-CCA-KEM is an IND-CCA-secure KEM assuming NewHope-
CPA-PKE is an IND-CPA PKE and the hash functions used (SHAKE256)
are random oracles.14

• NewHope-CPA-PKE is an IND-CPA PKE assuming that the correspond-
ing decision RLWE problem is hard.

• Decision RLWE is hard assuming approximate SVP is hard (in the worst
case) on ideal lattices in R, for appropriate parameters.

NewHope rests on the assumption that SVP is still hard even on more struc-
tured lattices, which, at least so far, it seems to be. The best known (quantum)
polynomial-time algorithm for approximate-SVP gives subexponential approx-

imation factors 2Õ(
√
n) which is better than has so far been achieved in more

general lattices, but this is still larger than the approximation factors used in
cryptography.

4.3 Kyber

Kyber, or properly CRYSTALS-Kyber [41], is based on MLWE, but the noisy
products are also rounded as in MLWR. This is mainly done to decrease the
message sizes, and though it adds noise and therefore increases security it is not
considered in the security analysis. Like NewHope and many others, it uses a
cyclotomic ring R = Z[X]/(Xn + 1) for n a power of 2, but instead of using
simply polynomials of Rq it uses short vectors of polynomials, of length k. This
way, the dimension of the underlying lattice is not n, but nk, allowing for better
scaling. Kyber uses n = 256, and k between 3 and 5, giving lattice dimensions
512, 768 and 1024, respectively, for instantiations of the scheme with IND-CCA
security at level 1, 3 and 5.

Like NewHope, Kyber uses NTT for multiplying polynomials, and therefore
n should be a power of 2, and q the smallest prime congruent to 1 modulo 2n.
The choice of n as 256 specifically has to do with the length of the keys to be
encrypted. These are 256 bits, and choosing a smaller n would mean encoding
more than one bit into each polynomial coefficient, which would require lower
noise levels. A larger n would make the ability to scale less interesting.

This smaller n than in NewHope has the added advantage of allowing for a
smaller q, which makes NTT more efficient: Kyber uses q = 7681 as opposed to
NewHope’s q = 12289.

14This is claimed to be supported by [19]. The specification [40] for NewHope does not
define correctness, but if it uses the same definition as Frodo, among others, then this is not
the same as the definition of correctness used in [19]; see Section 2.4.8.

59

Kyber also has parameters η, for noise magnitude, and du, dv, dt, for round-
ing. Noise is sampled from a centered binomial distribution Bη, which samples

(a1, ..., aη, b1, ..., bη)← {0, 1}2η

and outputs
η∑
i=1

(ai − bi).

All three instantiations Kyber512, Kyber768 and Kyber1024 share the pa-
rameters (n, q, du, dv, dt) = (256, 7681, 11, 3, 11), while k and η vary, with (k, η) ∈
{(2, 5), (3, 4), (4, 3)}. The middle instantiation, Kyber768, with (k, η) = (3, 4),
is recommended.

4.3.1 Algorithms

Let R = Z[X]/(Xn + 1) and Rq = Zq[X]/(Xn + 1) and let B denote the set
{0, ..., 255}. Kyber uses a number of functions in its algorithms.

• BytesToBits takes a byte array (b1, ..., bl) of length l and outputs a bit array
(β1, ..., β8l) of length 8l, by computing βi = ((bdi/8e/2

(i mod 8)) mod 2)

• NTT is as in Section 2.2.6, with ω = 3844 and γ = 62.

• br256 reverses the bits of an 8-bit integer. That is, write an integer i ∈
{0, ..., 255} in base 2, padding it with zeros if necessary so that it has length
8 exactly. Reverse the order of the bits. This is the base 2 representation
of br256(i).

• For x ∈ Zq and d < dlog2(q)e, Compressq(x, d) = d2d/q · xc mod +2d ∈
{0, ..., 2d − 1}.

• Decompressq(x, d) = dq/2d · xc ∈ Zq.

• Symmetric primitives: Kyber uses a pseudorandom function PRF : B32 ×
B → B∗, an extendable output function XOF : B∗ → B∗ and two hash
functions H : B∗ → B32 and G : B∗ → B32 × B32.

If x ∈ R or Rq, Compressq(x, d) and Decompressq(x, d) are applied to each
coefficient individually. It is these functions which do the rounding in Kyber.

Decompressq(x, d) is almost the inverse of Compressq(x, d), in that, for x ∈
Zq,

|Decompressq(Compressq(x, d), d)− x mod ±q| ≤ dq/2d+1c.

Note that Kyber does not use the canonical embedding for the norm of
elements in R, but instead associates an element in R with the vector of its
coefficients and takes the l2 or linf norm.

The NTT transform of a polynomial can be computed conveniently in place,
if we assume polynomials in the NTT domain to be in bit-reversed order, mean-
ing that coefficient ĝi of ĝ = NTT(g) is stored at position br256(i).

60

The main algorithms of Kyber also use a few algorithms for sampling or
encoding. Detailed descriptions of these can be found in [41].

• Parse takes a byte stream b0, b1, ... ∈ B∗ and outputs a polynomial â ∈ Rq,
which is assumed to be in the NTT domain. If the input byte stream is
statistically close to a uniformly random byte array, the output polynomial
is statistically close to a uniformly random element of Rq. Since the NTT
maps uniformly random polynomials to uniformly random polynomials,
we can assume that the output is in the NTT domain.

• CBDη samples from the centered binomial distribution Bη. It outputs an
element of Rq whose coefficients are sampled from Bη using the input byte
array of length 64η (assuming n = 256).

• Encodel encodes a polynomial in Rq with coefficients in {0, ..., 2l − 1} as
a byte array of length 32l. Applied to a vector of polynomials means
applying it to each polynomial individually and concatenating the output
polynomials.

• Decodel is the inverse of Encodel, and decodes a byte array of length 32l
as a polynomial in Rq with coefficients in {0, ..., 2l − 1}.

Key generation, encryption and decryption for the IND-CPA secure PKE
Kyber.CPAPKE are given in algorithms 9, 10 and 11, which are algorithms 4,
5 and 6 in the Kyber specification [41].

Algorithm 9 Kyber.CPAPKE.KeyGen(): key generation

Output: Public key pk ∈ Bdt·k·n/8+32

Output: Secret key sk ∈ B13·k·n/8

1: d← B32

2: (ρ, σ) := G(d)
3: N := 0
4: for i from 0 to k − 1 do . Generate Â ∈ Rk×kq in NTT domain
5: for j from 0 to k − 1 do
6: Â[i][j] := Parse(XOF(ρ||j||i))
7: for i from 0 to k − 1 do . Sample s ∈ Rkq from Bη
8: s[i] := CBDη(PRF(σ,N))
9: N := N + 1

10: for i from 0 to k − 1 do . Sample e ∈ Rkq from Bη
11: e[i] := CBDη(PRF(σ,N))
12: N := N + 1

13: ŝ := NTT(s)

14: t := NTT−1(Â ◦ ŝ) + e
15: pk := (Encodedt(Compressq(t, dt))||ρ) . pk := As + e
16: sk := Encode13(ŝ mod +q) . sk := s
17: return (pk, sk)

61

Algorithm 10 Kyber.CPAPKE.Enc(pk,m, r): encryption

Input: Public key pk ∈ Bdt·k·n/8+32

Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

1: N := 0
2: t := Decompressq(Decodedt(pk), dt)
3: ρ := pk + dt · k · n/8
4: for i from 0 to k − 1 do . Generate Â ∈ Rk×kq in NTT domain
5: for j from 0 to k − 1 do
6: ÂT [i][j] := Parse(XOF(ρ||i||j))
7: for i from 0 to k − 1 do . Sample r ∈ Rkq from Bη
8: r[i] := CBDη(PRF(r,N))
9: N := N + 1

10: for i from 0 to k − 1 do . Sample e1 ∈ Rkq from Bη
11: e1[i] := CBDη(PRF(r,N))
12: N := N + 1

13: e2 := CBDη(PRF(r,N)) . Sample e2 ∈ Rq from Bη
14: r̂ := NTT(r)

15: u := NTT−1(ÂT ◦ r̂) + e1 . u := AT r + e1

16: v := NTT−1(NTT(t)T ◦ r̂) + e2 + Decode1(Decompressq(m, 1)) .

v := tT r + e2 + Decompressq(m, 1)
17: c1 := Encodedu(Compressq(u, du))
18: c2 := Encodedv (Compressq(v, dv))
19: return c = (c1||c2) . c := (Compressq(u, du),Compressq(v, dv))

Algorithm 11 Kyber.CPAPKE.Dec(sk, c): decryption

Input: Secret key sk ∈ B13·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Message m ∈ B32

1: u := Decompressq(Decodedu(c), du)
2: v := Decompressq(Decodedv (c+ du · k · n/8), dv)
3: ŝ := Decode13(sk)
4: m := Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) .

m := Compressq(v − sTu, 1)
5: return m

62

Like FrodoKEM and NewHope, Kyber uses a transformation to obtain an
IND-CCA secure KEM Kyber.CCAKEM, but the transformation Kyber uses is
slightly different from FrodoKEM and NewHope, which both use a variant of
QFO 6⊥m from [19]. In Kyber, the extra hash of the message (used in [19] to prove
that the QFO6⊥m-transformation of an OW-CPA secure PKE will be IND-CCA
secure in QROM) is not included, and instead a variant of FO 6⊥ is used. The
authors do not seem to give any reasons for using this transform, which in [19]
is not proven to give QROM security, rather than the other, but a contributing
reason may be the proof of Jiang et al. in [22] that FO 6⊥ does in fact give QROM
security (see Section 2.4.7).

Key generation, encapsulation and decapsulation for Kyber.CCAKEM are
given in algorithms 12, 13 and 14, which are algorithms 7, 8 and 9 in [41].

Algorithm 12 Kyber.CCAKEM.KeyGen(): key generation

Output: Public key pk ∈ Bdt·k·n/8+32

Output: Secret key sk ∈ B(13+dt)·k·n/8+96

1: z ← B32

2: (pk, sk′) := Kyber.CPAPKE.KeyGen()
3: sk := (sk′||pk||H(pk)||z)
4: return (pk, sk)

Algorithm 13 Kyber.CCAKEM.Enc(pk): encapsulation

Input: Public key pk ∈ Bdt·k·n/8+32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Shared key K ∈ B32

1: m← B32

2: m← H(m) . Do not send output of system RNG
3: (K̄, r) := G(m||H(pk))
4: c := Kyber.CPAPKE.Enc(pk,m; r)
5: K := H(K̄||H(c))
6: return (c,K)

4.3.2 Security

In the original Kyber specification of November 2017, the security of the scheme
is expressed in terms of Advmlwem,k,η(A), which is defined as

Advmlwem,k,η(A) =
∣∣∣Pr[b′ = 1|A← Rm×kq ; (s, e)← Bkη ×Bmη ; b = As + e; b′ ← A(A,b)]−

Pr[b′ = 1|A← Rm×kq ; b← Rm×kq ; b′ ← A(A,b)]
∣∣∣,

for any algorithm A, and they note that, since the public key and the ciphertext
are pseudorandom, for any adversary A there exist adversaries B and C such

63

Algorithm 14 Kyber.CCAKEM.Dec(c, sk): decapsulation

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Input: Secret key sk ∈ B(13+dt)·k·n/8+96

Output: Shared key K ∈ B32

1: pk := sk + 13 · k · n/8
2: h := sk + (13 + dt) · k · n/8 + 32 ∈ B32

3: z := sk + (13 + dt) · k · n/8 + 64
4: m′ := Kyber.CPAPKE.Dec(s, (u, v))
5: (K̄ ′, r′) := G(m′||h)
6: c′ := Kyber.CPAPKE.Enc(pk,m′; r′)
7: if c = c′ then
8: K := H(K̄ ′||H(c))
9: else

10: K := H(z||H(c))

11: return K

that
AdvIND-CPA

Kyber.CPAPKE(A) ≤ 2Advmlwek+1,k,η(B) + AdvprfPRF(C)

(where AdvprfPRF(C) is not defined, but presumably signifies the success proba-
bility of the algorithm C attacking the security of the pseudorandom function
PRF, for some appropriate security notion).

However, in a later paper [42] this claim has been modified since the com-
pressing of t in line 15 of Algorithm 9 means that pk and c are no longer
indistinguishable from uniform. Instead, the authors show, for the adjusted
scheme Kyber.CPAPKE’ where t is not compressed, that for any algorithm A
there exists an adversary B such that

AdvIND-CPA
Kyber.CPAPKE’(A) ≤ 2Advmlwek+1,k,η(B).

The authors suggest that one way to make sure pk and c are indistinguish-
able from uniform in the actual scheme would be to add some small error after
compression, but this would be cumbersome and would add to the decryption
error. Instead, they choose to keep the compression of t without adding an
extra error, arguing that this choice should not affect security because the value
involving the decompressed t to which the message is added (in line 16 of algo-
rithm 10) is then compressed much more than t was originally, and also because
the proposed CCA-transformation does not actually require the output of the
underlying PKE to be pseudorandom.

In the original specification [41], security bounds in ROM and QROM are
then given, implying reductions from MLWE. However, because the reduc-
tion from MLWE in [42] was for the adjusted Kyber.CPAPKE’ rather than
Kyber.CPAPKE, the bounds in [42] do not use Advmlwek+1,k,η(A), but rather

AdvIND-CPA
Kyber.CPAPKE(A) and AdvprKyber.CPAPKE(B).

64

Theorem 4.1. (Theorem 3, [42]) For any classical adversary A that makes at
most qRO queries to random oracles H and G, and qD queries to the decryption
oracle, there exists an adversary B such that

AdvIND-CCA
Kyber.CCAKEM(A) ≤ 3AdvIND-CPA

Kyber.CPAPKE(B) + qRO · δ +
3qRO
2256

.

(Here, and in the following theorem, δ is the probability of decryption failure
for Kyber.CPAPKE15, and 2256 is the size of the message space.) This bound
is precisely that obtained in [19] for the transform FO6⊥, which is essentially the
transform used in Kyber.

For QROM security, the authors argue that Kyber.CPAPKE’, without the
compression of t, fulfills the additional property of “sparse pseudorandomness”
defined in [37], a slightly stronger security than IND-CPA, and that “pseudo-
randomness security” is given by

AdvprKyber.CPAPKE’(A) ≤ 2 ·Advmlwek+1,k,η(B).

Arguing that one can assume that Kyber.CPAPKE has this same property,
the authors obtain a bound for the QROM reduction. This bound is a com-
bination of the bound for the transformation SXY in [37] and the bound (in
QROM) for the transformation T in [19] (SXY requires a perfectly correct PKE
as input, but otherwise the combination of T and SXY is essentially FO6⊥ of
[19]).

Theorem 4.2. (Theorem 4, [42]) For any quantum adversary A that makes
at most qRO queries to quantum random oracles H and G, and qD (classical)
queries to the decryption oracle, there exists a quantum adversary B such that

AdvIND-CCA
Kyber.CCAKEM(A) ≤ 8q2

RO · δ + 4qRO ·
√

AdvprKyber.CPAPKE(B).

This reduction is non-tight, what with the square root and the factor 4qRO,
and so only indicates asymptotic security in the QROM, but there is a suggestion
that if we were to assume that the deterministic version DKyber.CPAPKE of
Kyber.CPAPKE (where the random coins r are derived deterministically from
the message) is is also sparse pseudorandom in the QROM, then [37] would give
a tight security bound in QROM. This would presumably done by applying just
the transformation SXY from [37] (T not being needed since DKyber.CPAPKE
would be deterministic already), and adding some term to the bound to account
for the fact that DKyber.CPAPKE would not be perfectly correct.

Extra hashes. Several of the hashes in Kyber (hashing H(pk) into the pre-key
K̂ and the random coins r, and hashing H(c) into the final key K) are not
necessary for the security reduction, but the authors of Kyber argue that they

15Be aware that this probability is defined differently in Kyber than in [19], which is cited
as source for this bound and as partial source for the bound in Theorem 4.2. See Section
2.4.8.

65

add robustness, and because the shared key K does not depend only on input
from one party, as it would if it were simply hashed from m, it is safe to use in
authenticated key exchange.

The reason for using H(pk) and H(c) here instead of just pk and c is to
make Kyber more convenient to use with a non-incremental hash API16. The
hashes H(pk) and H(c) are only 32 bytes long, whereas pk and c are rather
longer. Moreover, using H(pk) as input rather than pk speeds up the call to G
in decapsulation slightly, at the cost of 32 extra bytes in the secret key.

The hash of m in line 2 of algorithm 13 does not seem to be motivated
except for the comment in the algorithm that the output of the system random
generator should not be sent. In the somewhat simplified algorithms of [42],
this step seems to have been removed and the encapsulation simply samples
m← B32 and uses it to compute (K̄, r) := G(m||H(pk)), skipping m← H(m).

4.3.3 Attacks

Attacks against the MLWE problem. The best known attacks against
the MLWE problem do not use the structure of the module lattice, so the
security analysis for Kyber considers the MLWE problem as if it were LWE.
They mention recent works exploiting the structure of ideal lattices to solve
SVP in such lattices, but despite the reduction of Albrecht and Deo in [2]
from MLWE to RLWE (which has significant slowdown and moreover requires
superpolynomial modulus to preserve non-negligible advantage for the decision-
problems) these attacks do not seem to be an immediate threat to MLWE.

Some types of attacks against LWE can be ruled out because the attacker
only has access to a limited number ((k + 1)n) of LWE samples, leaving two
BKZ attacks known as primal and dual attacks.

Recall that the BKZ (or BKZ-LLL) algorithm is the LLL-algorithm (algo-
rithm 1) except that instead of the swap step it has a block reduction where
a block of b vectors is reduced to a KZ-reduced basis for the sublattice they
span. This reduction can be done using an SVP oracle in dimension b, but the
authors of Kyber say that it is difficult to evaluate the (polynomial) number of
calls to the oracle required for each block reduction, and they choose instead
to count only the cost of one call to the SVP oracle in dimension b, for each
block reduction. (This is called evaluating the core SVP hardness, and is a
strategy used in security analysis by other lattice-based KEMs [39, 40].) They
also choose conservative estimates for the cost of one such call.

The primal attack on an LWE problem in dimension n with m samples (and
the usual notation) consists of solving unique-SVP in the lattice

L = {x ∈ Zm+kn+1 : (A| − Im| − b)x = 0 mod q},

which has a unique shortest vector v = (s, e, 1) of norm λ ≈ ς
√
kn+m.17 The

number of samples may be chosen between 0 and (k + 1)n. Optimising m and

16At least in the sense used here, a hash function is incremental if it can produce a hash
h = H(m1||m2) without first copying m1 and m2 into a single string m = m1||m2.

17ς does not seem to be defined, but may be some value specific to the LWE instance.

66

b m Core-SVP (classical) Core-SVP (quantum)
Kyber512
Primal attack: 390 455 114 103
Dual attack: 385 485 112 102
Kyber768
Primal attack: 615 695 179 163
Dual attack: 610 690 178 161
Kyber1024
Primal attack: 845 835 244 221
Dual attack: 825 850 241 218

Table 1: Classical and quantum core-SVP hardness of the MLWE problem
underlying Kyber, treated as an LWE problem. The block dimension of BKZ
is denoted d, and m denotes the number of samples. Cost is given in log2 of
operations.

b under the condition that this shortest vector can be found gives the attack
costs shown in table 1 (table 4 of [41]).

The dual attack consists of finding a short vector in the lattice

L′ = {(x,y) ∈ Zm × Zkn : ATx = y mod q}.

Finding a vector of length l in this lattice gives an advantage ε = 4 exp(−2π2(lς/q)2)
against decision-LWE. For this to be useful to an attacker, ε needs to be at least
1/2, so to amplify the success probability of the attack, about 1/ε2 such short
vectors are needed. Optimising m and b gives the attack costs in table 1.

Attacks exploiting decryption failures. As we see in theorems 4.1 and 4.2
above, the probability of decapsulation failure affects the attacker’s advantage,
and in practice this is because decapsulation failure can reveal information about
the secret. Since the random coins r are hashed from the message m and the
public key pk an attacker could use different values for the message m to try and
find random coins that lead to decapsulation failure (though this computation
would only work for one specific public key pk, so finding such an m once will
not mean that the attacker can attack any other users with this m). This would
mean a brute force search, which a quantum attacker can perform more quickly
using Grover’s algorithm, though the speedup is limited by the fact that while a
quantum attacker can send quantum queries to G and H, it can still only send
classical queries to the decapsulation oracle. Therefore it cannot determine
offline whether a specific choice of r will lead to a decapsulation failure, and
the best bet is to use Grover’s algorithm to simply search for values of r that
will give e1, r with above average norm. Even for a quantum attacker such a
search is expensive and while it would increase the probability of decapsulation
error it would certainly not guarantee it. The Kyber specification suggests
that if Grover’s algorithm saves a square-root factor in the search for m that
gives r such that e1, r have above average norm, then the time to find a single
decryption error would still be > 2128.

67

The specification also argues that a single decapsulation error would give
away very little information about the secret, saying that “It seems extremely
unlikely that even 10 decapsulation failures in Kyber would allow an attacker
to recover any meaningful information about the secret key s.” The authors
conclude that decapsulation failures do not present a threat to Kyber.

However, D’Anvers, Vercauteren and Verbauwhede have recently (November
2018) published an eprint [14] with an attack exploiting decapsulation failures
(and boosting the likelihood of finding them), where they show that for schemes
that, like Kyber, have very low probability of decapsulation failure, the vari-
ance of the secret decreases drastically if the attacker can find a few failing
ciphertexts. By the estimate from the Kyber specification, a (primal) attack
on Kyber768 would cost 2163 operations, whereas the cost of D’Anvers, Ver-
cauteren and Verbauwhede’s attack is 2141 (with 24 decapsulation failures, and
2130 queries to the decapsulation oracle). Similarly, the cost of an attack on
Kyber1024 decreases from 2221 to 2169, with 95 decapsulation failures and 2157

queries to the decapsulation oracle.
These attacks are still quite expensive, and require more decapsulation queries

than the adversary is assumed to be able to make in the Call for Proposals, where
the limit is 264 decapsulation queries.

Side-channel attacks. The Kyber specification considers several possible side-
channel attacks, that is, attacks where some kind of information is gathered from
the scheme beyond simply its outputs. An attacker might collect information
about runtime and power use, and from this might be able to retrieve secret
information, or at least narrow down the options.

• Timing attacks collect information should not be a problem as Kyber
has no secret-dependent branches or table lookups. A little care must
be taken multiplication, but most non-constant-time multipliers do not
show timing variation for inputs of the size occurring in Kyber. Also, the
modular reductions must not be implemented via conditional statements,
but they are not in Kyber.

• The authors expect that Kyber will be vulnerable to differential or electro-
magnetic radiation attacks unless it is implemented with dedicated pro-
tection against such attacks, but say that this is true for most scheme that
uses non-ephemeral keys.

• The threat from template attacks18 seems a little uncertain; going by
previous work, the authors imply that Kyber’s constant runtime gives
it some protection, but that further research is required in this area, to
determine to what extent template attacks are a threat to constant-time
implementations of lattice-based schemes.

18Template attacks are two-phase attacks where the attacker builds templates or statistical
models for a device when the parameters and data are known, and then in the second phase
matches these templates with the information gathered from the device when not all the
parameters are known.

68

Multi-target attacks. No formal claim about bounds for multi-target security
is made, but the authors point out that the extra hashes (i.e., hashing pk into
K̄ and r) protects against an attacker trying to break one key out of many, or
to find some message m that gives especially large random coins r (which would
be possible if r depended only on m) and using this m against many users in
the hope of producing decryption failures. Moreover, the fact that the matrix
A is not a system parameter but is generated afresh each time protects against
all-for-the-price-of-one attacks.

Attacks against symmetric primitives. Kyber uses SHAKE256, SHAKE-
128, SHA3-256 and SHA3-512 to instantiate the functions modelled as random
oracles. Breaking any of these would of course compromise any instantiation of
Kyber using them.

4.4 Comparison between FrodoKEM, NewHope and Ky-
ber

FrodoKEM, NewHope and Kyber are similar in some ways and differ in oth-
ers. As previously mentioned, they are all IND-CCA secure KEMs obtained
by applying a transform to an IND-CPA secure PKE (Frodo and NewHope use
identical transforms, while that of Kyber differs slightly). All three schemes
are based on LWE, though over different lattices, which makes some difference.
FrodoKEM, with LWE over general lattices, enjoys the best theoretical security
proof, but the best known attacks that solve SVPγ for polynomial approxima-
tion factor γ take exponential time even for the more structured lattices used
in NewHope and Kyber. FrodoKEM is more scalable than the other two, with
no particular constraints on the dimension except that it be a multiple of 8.
Meanwhile, NewHope and Kyber, both using NTT for polynomial multiplica-
tion, are less flexible. NewHope requires a dimension that is a power of two,
while Kyber, because of the module structure, is somewhere in between with
dimension that is a multiple of 256.

NTT. Both Kyber and NewHope use NTT for polynomial multiplication, which
is fast. There are other contenders, but according to the Kyber specification
[41] some of these (Karatsuba and Toom) require extra memory, while NTT
can be computed in place. Both Kyber and NewHope have built NTT into the
scheme by sometimes sending messages in the NTT domain. NewHope does
this more than Kyber, sending messages and keys in the NTT domain whenever
this saves a transform NTT or NTT−1, meaning that if another multiplication
algorithm is used in implementation, NTT must then be applied to everything
that should be sent in the NTT domain. Kyber, on the other hand, compresses
everything that is sent except the seed used for generating the matrix Â, which
prevents them from sending messages in the NTT domain. However, NTT is
built into the scheme through the generation of Â, and the secret key, which is
not compressed, is also stored in the NTT domain.

69

Against all authority. All three schemes recommend generating the matrix
or polynomial A/a afresh every time, to prevent all-for-the-price-of-one attacks
where an attacker (with considerable effort) finds a good basis for the lattice
corresponding to A/a and can use this to attack all users. This is most expensive
for FrodoKEM, where generating A from a seed is about 40% of the cost of
encapsulation and decapsulation. All three schemes suggest that if generating
a new A/a every time is too expensive, one could cache them for a short time.

Gaussian noise. Despite the theoretical proofs assuming that the noise is sam-
pled from a discrete Gaussian distribution, all three schemes use other distri-
butions for efficiency reasons. FrodoKEM samples from {−s, ...,−1, 0, 1, ..., s}
(for a positive integer s) using a discrete probability density function, while
NewHope and Kyber both sample from a centered binomial distribution. In
all three cases, the distribution approximates a discrete Gaussian (this is, or
can be, shown using Rényi divergence). Moreover, Kyber argues that the best
known attack depend on the standard deviation of the distribution, rather than
the distribution itself.

Allowing decapsulation failures. Although decapsulation failures can be
used to attack the scheme, all three schemes choose to allow decapsulation
failures that happen with very low probability (the highest among all schemes
and parameter sets is 2−142). To guarantee the schemes to be perfectly correct
would mean sacrificing security by increasing the modulus or decreasing the
errors, or sacrificing efficiency by increasing the dimension to make up for the
loss in security. Kyber argues that negligible probability of decapsulation failure
is less of a threat than e.g. improvements of attacks targeting schemes with low
noise.

The attack of D’Anvers, Vercauteren and Verbauwhede in [14] using failure
boosting to find decapsulation errors and thus find out information about the
secret, can lower the attack cost for a quantum attacker. This attack should
be relevant for all three schemes, though NewHope is not included in the pa-
per. However, it does not seem to have produced any decapsulation failures for
FrodoKEM-976 which according to [39] has a error probability of about 2−200.
(NewHope has even lower error probability, and so may have been inconvenient
to include in the study for this reason.)

Implicit rejection. All three schemes have chosen a transform that produces
a KEM with implicit rejection, and according to [41] this makes implementa-
tions safe to use even if higher level protocols do not check the return value of
decapsulation.

4.4.1 Sizes and speeds

Table 2 shows the sizes (in bytes) of the keys and ciphertexts of FrodoKEM,
NewHope and Kyber. Note that the secret keys contain the public keys, as
these are used in the reencryption part of decapsulation for all three schemes,
so this contributes to the size of the secret keys.

70

Scheme Security level pk sk c
FrodoKEM-640 1 9616 19 872 9736
FrodoKEM-976 3 15 632 31 272 15 768
NH-512-CCA-KEM 1 928 1888 1120
NH-1024-CCA-KEM 5 1824 3680 2208
Kyber512 1 736 1632 800
Kyber768 3 1088 2400 1152
Kyber1024 5 1440 3168 1504

Table 2: Sizes (in bytes) of the public key, secret key, ciphertext and shared key
of the different instantiations of FrodoKEM, NewHope and Kyber.

Scheme Security level KeyGen Encaps Decaps
FrodoKEM-640-AES 1 1287 1810 1811
FrodoKEM-976-AES 3 2715 3572 3588
NH-512-CCA-KEM 1 117 181 206
NH-1024-CCA-KEM 5 245 377 437
Kyber512 1 142 205 246
Kyber768 3 243 333 394
Kyber1024 5 368 481 559

Table 3: Cycle counts (in thousands of cycles) of key generation, encapsulation
and decapsulation for FrodoKEM, NewHope and Kyber (reference implementa-
tions).

Table 3 shows the cycle counts (in thousands of cycles) for key generation, en-
capsulation and decapsulation for the reference implementations of FrodoKEM,
NewHope and Kyber. These are not quite comparable since different proces-
sors were used: FrodoKEM used a 3.4GHz Intel Core i7-6700 (Skylake), while
NewHope and Kyber both used an Intel Core i7-4770K (Haswell).

Note that the version of FrodoKEM shown here uses AES128 to generate
the matrix A, and this depends on hardware instructions. The alternative is to
generate A using cSHAKE128, which means a significant slowdown.

For the AES-version of FrodoKEM, AVX2 instructions does not notice-
ably improve performance, but cycle counts (again in thousands of cycles) for
NewHope and Kyber optimised using AVX and AVX219 instructions respec-
tively are shown in table 4.

It is apparent that the more structured problems RLWE and MLWE make a
big difference for performance. This is at least partly because schemes building
on the latter can be more compact, so that the main component of the public
key in NewHope is just a polynomial, and that in Kyber is a short vector of
polynomials (of lower degree), whereas FrodoKEM has an n × n (where n is

19AVX stands for Advanced Vector Extensions, and these operate on eigth 32-bit single-
precision or four 64-bit double-precision floating-point values in parallell. AVX2 is an expan-
sion of AVX.

71

Scheme Security level KeyGen Encaps Decaps
NH-512-CCA-KEM 1 68 110 114
NH-1024-CCA-KEM 5 130 210 221
Kyber512 1 55 76 74
Kyber768 3 85 113 109
Kyber1024 5 121 158 155

Table 4: Cycle counts (in thousands of cycles) of key generation, encapsulation
and decapsulation for NewHope and Kyber (optimised).

640 or 976) matrix with integer entries. As a result, the generation of A in
FrodoKEM takes much longer than the generation of a in NewHope and A in
Kyber. Moreover, operations in the polynomial rings of NewHope and Kyber
are very fast.

5 Kyber using MLWR

In the Kyber specification [41], it is suggested that Kyber could be adapted to
rely on MLWR instead of MLWE, by removing the error terms e, e1 and e2, and
possibly compressing a little, but the authors say that they choose not to do so
as generating noise is not particularly costly.

However, it seems interesting to make the attempt. Algorithms 15, 16 and 17
show the algorithms for a version of Kyber.CPAPKE based on MLWR instead
of MLWE.

Algorithm 15 LWRKyber.PKE.KeyGen(): key generation

Output: Public key pk ∈ Bdt·k·n/8+32

Output: Secret key sk ∈ B13·k·n/8

1: d← B32

2: (ρ, σ) := G(d)

3: for i from 0 to k − 1 do . Generate Â ∈ Rk×kq in NTT domain
4: for j from 0 to k − 1 do
5: Â[i][j] := Parse(XOF(ρ||j||i))
6: for i from 0 to k − 1 do . Sample s ∈ Rkq from Bη
7: s[i] := CBDη(PRF(σ, i))

8: ŝ := NTT(s)

9: t := NTT−1(Â ◦ ŝ)
10: pk := (Encodedt(Compressq(t, dt))||ρ) . pk := bAse2dt
11: sk := Encode13(ŝ mod +q) . sk := s
12: return (pk, sk)

72

Algorithm 16 LWRKyber.PKE.Enc(pk,m, r): encryption

Input: Public key pk ∈ Bdt·k·n/8+32

Input: Message m ∈ B32

Input: Random coins r ∈ B32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

1: t := Decompressq(Decodedt(pk), dt)
2: ρ := pk + dt · k · n/8
3: for i from 0 to k − 1 do . Generate Â ∈ Rk×kq in NTT domain
4: for j from 0 to k − 1 do
5: ÂT [i][j] := Parse(XOF(ρ||i||j))
6: for i from 0 to k − 1 do . Sample r ∈ Rkq from Bη
7: r[i] := CBDη(PRF(r, i))

8: r̂ := NTT(r)

9: u := NTT−1(ÂT ◦ r̂) . u := AT r
10: v := NTT−1(NTT(t)T ◦ r̂) + Decode1(Decompressq(m, 1)) .

v := tT r + Decompressq(m, 1)
11: c1 := Encodedu(Compressq(u, du))
12: c2 := Encodedv (Compressq(v, dv))
13: return c = (c1||c2) . c := (Compressq(u, du),Compressq(v, dv))

Algorithm 17 LWRKyber.PKE.Dec(sk, c): decryption

Input: Secret key sk ∈ B13·k·n/8

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Message m ∈ B32

1: u := Decompressq(Decodedu(c), du)
2: v := Decompressq(Decodedv (c+ du · k · n/8), dv)
3: ŝ := Decode13(sk)
4: m := Encode1(Compressq(v − NTT−1(ŝT ◦ NTT(u)), 1)) .

m := Compressq(v − sTu, 1)
5: return m

73

5.1 Transform

For LWRKyber.KEM, I choose to keep the same transform used in Kyber. This
gives the algorithms 18, 19 and 20. This transform has been shown to produce
an IND-CCA secure KEM (in the QROM) by Jiang et al. in [22].

Algorithm 18 LWRKyber.KEM.KeyGen(): key generation

Output: Public key pk ∈ Bdt·k·n/8+32

Output: Secret key sk ∈ B(13+dt)·k·n/8+96

1: z ← B32

2: (pk, sk′) := LWRKyber.PKE.KeyGen()
3: sk := (sk′||pk||H(pk)||z)
4: return (pk, sk)

Algorithm 19 LWRKyber.KEM.Enc(pk): encapsulation

Input: Public key pk ∈ Bdt·k·n/8+32

Output: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Output: Shared key K ∈ B32

1: m← B32

2: (K̄, r) := G(m||H(pk))
3: c := Kyber.CPAPKE.Enc(pk,m; r)
4: K := H(K̄||H(c))
5: return (c,K)

5.2 Error probability

If the parameters are unchanged from Kyber, the probability of decapsulation
error will be at most that of Kyber. According to Theorem 1 of [42], the
probability of decryption error in Kyber.CPAPKE is

δ = Pr[||eT r + e2 + cv − sTe1 − cTt − sT cu||∞ ≥ bq/4e],

where ct ← ψkdt , cu ← ψkdu , cv ← ψdv and ψkd is defined as the distribution of

(y − Decompressq(Compressq(y, d), d) mod ±q) where y← Rk.
For LWRKyber, this gives the error probability

δ′ = Pr[||cv − cTt − sT cu||∞ ≥ bq/4e] ≤ δ.

Note that [42] claims that according to [19], the probability of decapsulation
error in Kyber.CCAKEM is the same as the probability of decryption error
in Kyber.CPAPKE (if G is a random oracle). However, it is not clear that
this claim is supported by [19], which uses a different notion of correctness.
Instead of (as in [42]) saying that a scheme is δ-correct if the probability of,
essentially, stumbling upon a decryption error does not exceed δ, [19] assumes

74

Algorithm 20 LWRKyber.KEM.Dec(c, sk): decapsulation

Input: Ciphertext c ∈ Bdu·k·n/8+dv·n/8

Input: Secret key sk ∈ B(13+dt)·k·n/8+96

Output: Shared key K ∈ B32

1: pk := sk + 13 · k · n/8
2: h := sk + (13 + dt) · k · n/8 + 32 ∈ B32

3: z := sk + (13 + dt) · k · n/8 + 64
4: m′ := Kyber.CPAPKE.Dec(s, (u, v))
5: (K̄ ′, r′) := G(m′||h)
6: c′ := Kyber.CPAPKE.Enc(pk,m′; r′)
7: if c = c′ then
8: K := H(K̄ ′||H(c))
9: else

10: K := H(z||H(c))

11: return K

that there is an algorithm actively searching for decryption errors. With this
notion of correctness, the transform T (which is part of the transform FO6⊥ used
in Kyber) increases the probability of decryption error by a factor of at most
qG in the ROM and at most 8(qG + 1)2 in the QROM, where qG is the number
of queries to the oracle G (which is used to generate the random coins, as the
hash function of the same name in Kyber) made by an adversary against the
correctness of the output PKE of T (see Section 2.4.8).

Using the “stumbling upon errors” notion of correctness, T does not increase
the probability of decryption errors in the ROM (or the QROM), though as seen
in [14] an adversary actively looking for decryption errors is a real threat.

5.3 Design rationale

Multiplication. In this version of LWRKyber we still use NTT for the multi-
plication. It would however be possible to use something else, e.g. Karatsuba,
and one way to do this is of course to generate Â in the NTT domain and ap-
ply NTT−1 to it before using some other form of multiplication, but this would
mean applying NTT−1 to each of the k2 entries of Â. If a different multiplication
seems preferable to NTT, it seems better to build it into the scheme itself, and
assuming that both key generation, encryption and decryption use this other
form of multiplication, and that Â is not generated in the NTT domain. (In
practice, it would be generated in exactly the same way, we would just not
assume the result to be in the NTT domain.)

One argument for using a different multiplication algorithm is that Kyber
inevitably has to apply NTT−1 more than for instance NewHope, which sends
the public key and the vector u in the NTT domain. Kyber cannot do this
as it would prevent using Compressq, and so it is certainly not an option in
LWRKyber where security relies entirely on Compressq.

75

Centered binomial distribution. The algorithms still use the centered bi-
nomial distribution to generate s and r. In theory, it would be possible to use
something else, but as the size of s and r affect the probability of decryption er-
rors they should be small, so they should not, for instance, be sampled uniformly
as A is. Therefore we retain the centered binomial distribution.

Parameters. Since the shared key we arrive at is 256 bits, n should not
be smaller than 256, otherwise multiple key bits must be encrypted into one
polynomial coefficient, increasing the risk of decryption failure. On the other
hand, to get the most out of the scalability given by the module structure, n
should not be much larger than 256.

If using NTT for multiplication, it seems convenient to keep Kyber’s param-
eter choices of n as a power of 2 and q a prime such that 2n|(q− 1), specifically
n = 256, q = 7681.

As for the other parameters, Kyber has k and η. These could stay about as
they are in Kyber, but to be certain one would need to examine the effects on
security and correctness. The parameters (du, dv, dt) decide how many bits are
dropped in rounding, and for Kyber (du, dv, dt) = (11, 3, 11). Since in LWRKy-
ber we do not add errors but rely solely on rounding for security, we might
consider a lower value for du and dt, increasing the number of bits dropped in
the rounding. The LWR-based NIST contribution Saber [43] uses du = dt = 10,
so this should be a feasible choice. If, however, decreasing du and dt is not pos-
sible without the probability of decryption failure increasing significantly, one
option to achieve the desired security might be to increase k slightly.

Extra hashes. Most of the extra hashes that appear in Kyber though they
are not strictly necessary according to the security reduction seem meaningful
for security and ease of implementation, and in the LWR version of Kyber
these remain. The only one that is removed is the hash of the message m done
immediately after sampling m in line 2 of algorithm 13, as this seems loosely
motivated and indeed had been removed in the later paper [42].

The nonce. Since the nonce N , present in the KeyGen and Enc algorithms
of Kyber.CPAPKE would have been used only in one for-loop in each of these
algorithms in LWRKyber, it has been replaced with i (where the for-loop is
over i) in LWRKyber. This should make very little actual difference, but seems
neater.

5.4 Security

The IND-CPA security of LWRKyber.PKE is somewhat delicate. In [42] (The-
orem 2), it is shown that if there exists an efficient attack on a version of
Kyber.CPAPKE without rounding, there is an efficient attack on the MLWE
problem, and the authors then assume that essentially the same security still
holds when rounding is introduced into the scheme. This strategy does not work
for LWRKyber.PKE, because a version of LWRKyber.PKE without rounding

76

would certainly not be secure: the public key would be As, where A is also
public, so s would not be secret for long.

Saber.PKE [43] is shown by Theorems 3 and 4 of that article to be as hard
as MLWR. That PKE is formed from a key exchange protocol, but the end
result is a PKE with algorithms that closely resemble those of LWRKyber.PKE.
It therefore seems reasonable to suppose that a similar result would hold for
LWRKyber.PKE.

Expressing the IND-CCA security of LWRKyber.KEM in terms of the IND-
CPA security of LWRKyber.PKE, on the other hand, is easy enough. The
transform used is that called FO6⊥ is [19], and Theorems 3.2 and 3.4 of that
article give a bound for the security in the ROM. If there is an IND-CCA
adversary B against LWRKyber.KEM making at most qG queries to the random
oracle G and at most qH to H (and at most qD queries to the decapsulation
oracle), then there is an IND-CPA adversary A against LWRKyber.PKE with
about the same running time as B such that

AdvIND-CCA
LWRKyber.KEM(B) ≤ qG · δ +

2qG + qH + 1

2256
+ 3AdvIND-CPA

LWRKyber.PKE(A),

where δ is the probability of decryption failure for LWRKyber.PKE and 2256 is
the size of the message space.

Theorem 1 of [22] gives a security bound in the QROM.20 That theorem,
gives a bound for IND-CCA security in terms of OW-CPA security rather than
IND-CPA, but using Lemma 2.3 in [19] this can easily be adapted to IND-CPA
instead. This shows that if there is an IND-CCA adversary B against LWRKy-
ber.KEM making at most qG and qH (quantum) queries to the random oracles
G and H respectively (and at most qD classical queries to the decapsulation
oracle), then there is an IND-CPA adversary A against LWRKyber.PKE with
about the same running time as B such that

AdvIND-CCA
LWRKyber.KEM(B) ≤ 2qH√

2256
+4qG

√
δ+2(qG+qH)

√
AdvIND-CPA

LWRKyber.PKE(A) +
1

2256
,

where δ is the probability of decryption failure for LWRKyber.PKE and 2256 is
the size of the message space. This bound could potentially be improved upon
using the results of Ambainis, Hamburg and Unruh in [3].

5.5 Attacks

Just as Kyber analyses MLWE as an LWE problem, Saber analyses the hardness
of MLWR as an LWE, arguing that there are no known attack that make use of

20Kyber uses [37] rather than [22] to prove QROM security, but the proofs in [37] (besides
assuming the input PKE to be perfectly correct which Kyber compensates for) requires the
PKE to fulfill a slightly stronger security notion than IND-CPA, and the argument for why
Kyber.CPAPKE does so uses the rounding-free version of that PKE. A rounding-free version
of LWRKyber.PKE would certainly not be secure, so it seems more appropriate to use the
results of [22] for LWRKyber.PKE.

77

the module or LWR structure. LWRKyber has limited samples just like Kyber,
so the possible attacks on the underlying MLWR problem as LWE would be the
BKZ attacks, and these should have approximately the same costs. Saber has
similar attack costs. (See [41] Section 5.1, [43] Section 6.1.)

LWRKyber will in general have nonzero probability of decapsulation failure,
and the attack in [14] would be a threat. This attack costs about the same for
Saber and Kyber, and the cost for attacking LWRKyber would presumably be
similar. (See [43] Table 1.)

When it comes to side-channel attacks and multi-target attacks, LWRKyber
is similar enough to Kyber that the same analysis holds. See [41] Section 4.5.

5.6 Making bigger changes

An alternative to the suggested scheme LWRKyber above would be one that
more closely resembles the LWR-based Saber [43], which was also submitted
to NIST21. The parameters of Saber have been chosen to balance performance,
security and low probability of decryption error, and they suggest that choosing
q and p as primes22, while facilitating the use of NTT, introduces bias. Instead,
they choose q and p as powers of two (specifically, q = 213 and p = 210) to ensure
that the rounding preserves pseudorandomness. Because of this, they do not
use NTT for multiplication, but instead four-way Toom-Cook multiplication, a
generalisation of Karatsuba. The authors comment that this is asymptotically
slower than NTT and that the possibility of reducing NTT transforms by e.g.
generating Â in the NTT domain is also a benefit, but in practice Saber seems
quite efficient. In the reference implementation it is faster than Kyber (about 70-
80% of the number of cycles), though with AVX2 optimisations Kyber overtakes
Saber.

Letting q be a power of two might not be a good idea, though, since several
of the reductions from LWE to LWR require, if not prime q, then at least
properties that are not true for power-of-two q, such as a lower bound for all
prime factors (or at least the largest prime factor) of q. Therefore it seems
preferable to keep q a prime unless this turns out to be a clear disadvantage to
security in other ways, such as the reduction from MLWR to LWRKyber.PKE
or the probability of decapsulation errors and information exposed by these.
The Toom-Cook multiplication of Saber could still be brought into LWRKyber
without changing the modulus, so an interesting compromise would be an LWR
version of Kyber similar to LWRKyber as shown in algorithms 15 to 20 but
with the following changes:

• Â is not generated in the NTT domain (this would make no actual differ-

ence in the generation of Â except calling it A).

• All NTT transforms are removed.

21I could not find the original specification at the time of writing, as the NIST website is
unavailable during the US government shutdown. However, an eprint from 2018 describes the
scheme.

22Note that Kyber, and LWRKyber as suggested above, has prime q but power-of-two p.

78

• Toom-Cook multiplication is used where the current algorithms have coefficient-
wise multiplication (denoted ◦).

Using Toom-Cook muliplication instead of NTT, it would also be possible to
use a ring R = Z[X]/(f(X)) for some other polynomial f(X) than Xn + 1 with
power-of-two n. Because security proofs for RLWE and MLWE (though not the
one for MLWR in [9]) tend to require f(X) to be cyclotomic we suggest that
cyclotomic f(X) be used, and that it should have degree at least 256 (the length
of the shared key) to lessen the risk of decapsulation failures.

5.7 Conclusion

While the more structured ring- and module versions of the LWE problem do
not have the same hardness proofs as the general version of the problem, and
while some problems (such as GapSVPγ) are easier to solve on ideal lattices,
so far no attacks have emerged that present a threat in the parameters used in
cryptosystems such as NewHope and Kyber, and the advantage of these over
schemes such as Frodo based on more general lattices when it comes to speed
and key sizes is so great that more structured schemes seem very promising for
post-quantum secure KEMs. That said, a scheme like Frodo is a good candidate
for situations where security is very important and speed and small key sizes
less so.

As for LWR, studies so far have not produced useful security proofs but
neither are there any known attacks that take advantage of the rounding, and
as long as none emerge LWR and its structured variants RLWR and MLWR
has the advantage of not needing to sample errors according to a Gaussian
distribution (or a distribution that approximates one). However, if as in Saber
the reduction from MLWR to a MLWR-based PKE depends on parameters that
do not satisfy the requirements of the many security proofs, this is troubling.
(Specifically, the reduction in Saber has power-of-two modulus, and while this
is allowed in some of the security proofs for MLWR it rules out others.) Both
these areas would benefit from further study, but MLWR-based schemes still
seem promising.

References

[1] Alperin-Sheriff J., Apon D. (2016) Dimension-Preserving Reductions from
LWE to LWR. Cryptology ePrint Archive, Report 2016/589. https://

eprint.iacr.org/2016/589

[2] Albrecht M.R., Deo A. (2017) Large Modulus Ring-LWE ≥ Module-LWE.
In: Takagi T., Peyrin T. (eds) Advances in Cryptology – ASIACRYPT
2017. ASIACRYPT 2017. Lecture Notes in Computer Science, vol 10624.
Springer, Cham

79

https://eprint.iacr.org/2016/589
https://eprint.iacr.org/2016/589

[3] Ambainis A., Hamburg M., Unruh D. (2018) Quantum security proofs using
semi-classical oracles. Cryptology ePrint Archive, Report 2018/904. https:
//eprint.iacr.org/2018/904

[4] Alwen J., Krenn S., Pietrzak K., Wichs D. (2013) Learning with rounding,
revisited. In Advances in Cryptology CRYPTO 2013, pages 57-74. Springer,
2013.

[5] Babai, L. (1986) On Lovász’ lattice reduction and the nearest lattice point
problem. In: Combinatorica 6:1

[6] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner and M.
Zhandry (2011) Random Oracles in a Quantum World. In: Lee D.H., Wang
X. (eds) Advances in Cryptology – ASIACRYPT 2011. ASIACRYPT 2011.
Lecture Notes in Computer Science, vol 7073. Springer, Berlin, Heidelberg

[7] Bellare M., Desai A., Pointcheval D., Rogaway P. (1998) Relations among
notions of security for public-key encryption schemes. In Krawczyk H. (ed)
Advances in Cryptology — CRYPTO ’98. CRYPTO 1998. Lecture Notes
in Computer Science, vol 1462. Springer, Berlin, Heidelberg

[8] D. J. Bernstein (2001) Multidigit multiplication for mathematicians. http:
//cr.yp.to/papers/m3.pdf

[9] Bogdanov A., Guo S., Masny D., Richelson S., Rosen A. (2016) On the
Hardness of Learning with Rounding over Small Modulus. In Kushilevitz
E., Malkin T. (eds) Theory of Cryptography. TCC 2016. Lecture Notes in
Computer Science, vol 9562. Springer, Berlin, Heidelberg

[10] Bernstein D., Persichetti E. (2018) Towards KEM Unification. Cryptology
ePrint Archive, Report 2018/526. https://eprint.iacr.org/2018/526

[11] Banerjee A., Peikert C., Rosen A. (2012) Pseudorandom Functions and
Lattices. In Pointcheval D., Johansson T. (eds) Advances in Cryptology
– EUROCRYPT 2012. EUROCRYPT 2012. Lecture Notes in Computer
Science, vol 7237. Springer, Berlin, Heidelberg

[12] Bellare M., Rogaway P. (1993) Random oracles are practical: A paradigm
for designing efficient protocols. In: Proc. of ACM Conference on Comput-
ers and Communication Security, pages 62-73, 1993.

[13] Chunsheng G. (2017) Integer Version of Ring-LWE and its Applications.
Cryptology ePrint Archive, Report 2017/641. https://eprint.iacr.org/
2017/641

[14] J.-P. D’Anvers, F. Vercauteren, I. Verbauwhede (2018) On the impact of de-
cryption failures on the security of LWE/LWR based schemes. Cryptology
ePrint Archive, Report 2018/1089. https://eprint.iacr.org/2018/1089

80

https://eprint.iacr.org/2018/904
https://eprint.iacr.org/2018/904
http://cr.yp.to/papers/m3.pdf
http://cr.yp.to/papers/m3.pdf
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2017/641
https://eprint.iacr.org/2017/641
https://eprint.iacr.org/2018/1089

[15] Dadush, D., Regev, O., Stephens-Davidowitz, N. (2014) On the Closest
Vector Problem with a Distance Guarantee. Proceedings of the Annual
IEEE Conference on Computational Complexity. 10.1109/CCC.2014.18.

[16] R. Fateman (2010) Can You Save Time in Multiplying Polynomials
By Encoding Them as Integers? https://people.eecs.berkeley.edu/

~fateman/papers/polysbyGMP.pdf

[17] Fujisaki E., Okamoto T. (1999) Secure integration of asymmetric and sym-
metric encryption schemes. In Wiener, M.J. (ed.) CRYPTO’99. LNCS, vol.
1666, pp. 537–554. Springer, Heidelberg (Aug 1999)

[18] Fujisaki, E., Okamoto, T. (2013) Secure integration of asymmetric and
symmetric encryption schemes. J. Cryptol. 26(1), 80–101

[19] Hofheinz D., Hövelmanns K., Kiltz E. (2017) A Modular Analysis of the
Fujisaki-Okamoto Transformation. In: Kalai Y., Reyzin L. (eds) Theory of
Cryptography. TCC 2017. Lecture Notes in Computer Science, vol 10677.
Springer, Cham

[20] Hövelmanns K., Kiltz E., Schäge S., Unruh D. (2018) Generic Authenti-
cated Key Exchange in the Quantum Random Oracle Model. Cryptology
ePrint Archive, Report 2018/928. https://eprint.iacr.org/2018/928

[21] Hoffstein, Pipher, Silverman An Introduction to Mathematical Cryptogra-
phy, Springer, 2008.

[22] Jiang H., Zhang Z., Chen L., Wang H., Ma Z. (2018) IND-CCA-Secure
Key Encapsulation Mechanism in the Quantum Random Oracle Model,
Revisited. In: Shacham H., Boldyreva A. (eds) Advances in Cryptology –
CRYPTO 2018. CRYPTO 2018. Lecture Notes in Computer Science, vol
10993. Springer, Cham

[23] Lyubashevsky V., Peikert C., Regev O. (2010) On Ideal Lattices and Learn-
ing with Errors over Rings. In: Gilbert H. (eds) Advances in Cryptology
– EUROCRYPT 2010. EUROCRYPT 2010. Lecture Notes in Computer
Science, vol 6110. Springer, Berlin, Heidelberg

[24] V. Lyubashevsky, C. Peikert, O. Regev (2013) A Toolkit for Ring-LWE
Cryptography. In: Johansson T., Nguyen P.Q. (eds) Advances in Cryptol-
ogy – EUROCRYPT 2013. EUROCRYPT 2013. Lecture Notes in Com-
puter Science, vol 7881. Springer, Berlin, Heidelberg

[25] Langlois A., Stehlé D. (2012) Worst-Case to Average-Case Reductions for
Module Lattices. Cryptology ePrint Archive, Report 2012/090. https://
eprint.iacr.org/2012/090

[26] Montgomery H. (2018) A Nonstandard Variant of Learning with Round-
ing with Polynomial Modulus and Unbounded Samples. In: Lange T.,
Steinwandt R. (eds) Post-Quantum Cryptography. PQCrypto 2018. Lec-
ture Notes in Computer Science, vol 10786. Springer, Cham

81

https://people.eecs.berkeley.edu/~fateman/papers/polysbyGMP.pdf
https://people.eecs.berkeley.edu/~fateman/papers/polysbyGMP.pdf
https://eprint.iacr.org/2018/928
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090

[27] Mosca M. (2015) Cybersecurity in an era with quantum computers: will
we be ready?. Cryptology ePrint Archive, Report 2015/1075. https://

eprint.iacr.org/2015/1075

[28] D. Micciancio, O. Regev (2008) Lattice-based Cryptography. https://

cims.nyu.edu/~regev/papers/pqc.pdf

[29] Micciancio D., Peikert C. (2013) Hardness of SIS and LWE with Small
Parameters. In: Canetti R., Garay J.A. (eds) Advances in Cryptology –
CRYPTO 2013. CRYPTO 2013. Lecture Notes in Computer Science, vol
8042. Springer, Berlin, Heidelberg

[30] Peikert C. (2015) A Decade of Lattice Based Cryptography. Cryptology
ePrint Archive, Report 2015/939 https://eprint.iacr.org/2015/939

[31] Pietrzak K. (2012) Cryptography from learning parity with noise. In SOF-
SEM 2012: Theory and Practice of Computer Science, pages 99- 114.
Springer, 2012.

[32] Roşca M., Sakzad A., Stehlé D., Steinfeld R. (2017) Middle-product
learning with error. Cryptology ePrint Archive, Report 2017/628. https:
//eprint.iacr.org/2017/628

[33] D. Ristè, M. P. da Silva, C. A. Ryan, A. W. Cross, A. D. Córcoles, J. A.
Smolin, J. M. Gambetta, J. M. Chow, B. R. Johnson (2017) Demonstration
of quantum advantage in machine learning. In npj Quantum Information
3, Article number: 16

[34] Schnorr, C.P., Euchner, M. (1994) Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems. Mathematical Program-
ming 66: 181. Springer-Verlag.

[35] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509,
October 1997.

[36] Shibuya Y., Shikata J. (2011) Constructing Secure Hybrid Encryption from
Key Encapsulation Mechanism with Authenticity. In: Chen L. (eds) Cryp-
tography and Coding. IMACC 2011. Lecture Notes in Computer Science,
vol 7089. Springer, Berlin, Heidelberg

[37] Saito T., Xagawa K., Yamakawa T. (2018) Tightly-Secure Key-
Encapsulation Mechanism in the Quantum Random Oracle Model. In:
Nielsen J., Rijmen V. (eds) Advances in Cryptology – EUROCRYPT
2018. EUROCRYPT 2018. Lecture Notes in Computer Science, vol 10822.
Springer, Cham

[38] NIST (2006) Submission Requirements and Evaluation Criteria for
the Post-Quantum Cryptography Standardization Process. https://

csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf

82

https://eprint.iacr.org/2015/1075
https://eprint.iacr.org/2015/1075
https://cims.nyu.edu/~regev/papers/pqc.pdf
https://cims.nyu.edu/~regev/papers/pqc.pdf
https://eprint.iacr.org/2015/939
https://eprint.iacr.org/2017/628
https://eprint.iacr.org/2017/628
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

[39] M. Naehrig, E. Alkim, J. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P.
Longa, I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, D. Stebila
(2017) Specification of FrodoKEM submitted to NIST.

[40] T. Poppelmann, E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, P.
Schwabe, D. Stebila (2017) Specification of NewHope submitted to NIST.

[41] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V.
Lyubashevsky, J. M. Schanck, G. Seiler, D. Stehlé (2017) Specification
of CRYSTALS-KYBER submitted to NIST. https://pq-crystals.org/
kyber/data/kyber-specification.pdf

[42] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, D. Stehlé (2018) CRYSTALS – Kyber: a CCA-
secure module-lattice-based KEM. 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018. https://pq-crystals.org/kyber/
data/kyber-20180716.pdf

[43] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren (2018)
Saber: Module-LWR based key exchange, CPA-secure encryption and
CCA-secure KEM. Cryptology ePrint Archive, Report 2018/230. https:
//eprint.iacr.org/2018/230

[44] M. Hamburg (2017) Specification of ThreeBears submitted to NIST.

[45] Steinfeld R., Sakzad A., Kuo Zhao R. (2017) Specification of Titanium
submitted to NIST.

83

https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-specification.pdf
https://pq-crystals.org/kyber/data/kyber-20180716.pdf
https://pq-crystals.org/kyber/data/kyber-20180716.pdf
https://eprint.iacr.org/2018/230
https://eprint.iacr.org/2018/230

	2019_M2_report
	thesis-RED-190211
	Introduction
	Report outline

	Preliminaries
	Notation
	Lattices
	Finding short vectors in a lattice
	Example of Babai's rounding off procedure
	The LLL-algorithm
	Variants of LLL
	Hermite Normal Form
	Multiplying polynomials
	Gaussian distribution

	Hard lattice problems
	SVP and variants
	CVP and variants
	Hardness of SVP and CVP

	Cryptography
	Types of cryptosystems
	The Random Oracle Model (ROM)
	The Quantum Random Oracle Model (QROM)
	Security notions
	The Fujisaki-Okamoto transform
	Modular FO transformations
	Tighter QROM security
	Different notions of correctness

	Lattice based cryptography
	SIS
	Hardness of SIS

	NTRU
	NTRU with polynomial rings

	SIS over rings
	Hardness of RSIS
	SIS over module lattices

	LWE
	Hardness of LWE
	LWE over rings
	LWE over module lattices

	Variants of LWE
	LWR
	MLWR
	Other variants of MLWE

	Examples of cryptosystems
	FrodoKEM
	The algorithms
	Decapsulation error
	Security

	NewHope
	The algorithms
	Security

	Kyber
	Algorithms
	Security
	Attacks

	Comparison between FrodoKEM, NewHope and Kyber
	Sizes and speeds

	Kyber using MLWR
	Transform
	Error probability
	Design rationale
	Security
	Attacks
	Making bigger changes
	Conclusion

