
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Applying the Hilbert Class Field to Primes of the Form x2 + ny2

av

Carl Lindblom

2019 - No M3

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Applying the Hilbert Class Field to Primes of the Form x2 + ny2

Carl Lindblom

Självständigt arbete i matematik 30 högskolepoäng, avancerad nivå

Handledare: Wushi Goldring

2019





Abstract

In this thesis we discuss some already known methods for determining when, given a fixed positive integer
n, a prime number can be expressed as x2 + ny2, where x and y are integers. In particular, we focus mainly
on the theory behind a method involving the Hilbert class field, i.e., the maximal unramified abelian field
extension, of the quadratic field Q(

√−n). This method can be applied only for n satisfying some special
conditions, once the corresponding Hilbert class field is known. Before discussing the theory behind this
method, we give some background in number theory and Galois theory, and we look at the theory of cubic
and biquadratic reciprocity, and how to apply it to the cases n = 27 and n = 64 respectively, in which the
Hilbert class field cannot be applied. In the last section, we give a brief explanation of the ring class field of
an order in a number field, and a more general method involving the ring class field.
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1 Introduction

The problem of determining whether a prime p ∈ Z is of the form x2 + ny2 for some x, y ∈ Z given a fixed
n ∈ Z≥1 has been studied by some of the greatest mathematicians during the last few hundred years. In
this thesis, we will explain the theory for solving the problem of primes of the form x2 + ny2, for some
special cases. The main source is the book Primes of the Form x2 +ny2 by D. A. Cox.[1] This book includes
many more methods, which do not appear in this thesis, as well as an excellent explanation of the historical
background, dating back to Fermat in the 17th century.

The cases of n = 27 and n = 64 can be solved using the theories of cubic and biquadratic reciprocity,
and are the main focus of Section 3. This section is based on Cox, Chapter 1, §4.[1] A method for n satis-
fying some special conditions will be described in Section 4, which is based on Cox, Chapter 2, §5.[1] This
method involves the Hilbert class field of the number field Q(

√−n). In Section 5 we will briefly describe a
more general theorem, which holds for any n ∈ Z≥1. This method involves the ring class field of Q(

√−n)
and is given in Cox, Chapter 2, §9. Sadly, methods involving the Hilbert class field and ring class field can
be applied only if we know the Hilbert and ring class field respectively. Methods for actually determining
these fields, which involves finding a primitive element for the field extension, require way more advanced
theory in most cases.

Section 2 covers some background in number theory and Galois theory. We assume the reader to be some-
what familiar with the theory of groups, rings, and modules, and anything that would appear in a first-level
course in mathematics. In particular, integral domains, principal ideal domains, unique factorization do-
mains, Euclidean domains, and fields, and all basic properties of ideals and elements in these types of rings
(such as being a zero-divisor, prime, maximal, unit, etc.), as well as notions such as the field of fractions of
an integral domain, finite fields, and the multiplicative group of a ring, are some of the required background
knowledge.
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The main focus of this thesis is the theory behind the methods for solving the problem of primes of
the form x2 + ny2, rather than applications of these methods. Since n could be arbitrarily large, there
is an infinite number of cases to explore further, some of which may be solved relatively easily using the
methods presented in this thesis (such as n = 243 for applying cubic reciprocity and n = 17 for applying
the Hilbert class field, according to Cox, Chapter 1, §4, Exercis 4.15, and Chapter 2, §5, Exercises 5.25–5.26
respectively[1]) and some requiring more advanced theory, such as the theory of complex multiplication,
which appears in Chapter 3 of Cox.[1]. There is a wide range of related topics to explore further, such as
problems involving reciprocity (e.g., reciprocity of higher degrees, discussed in Cox, Chapter 1, §4(C)[1]) or
the Hilbert class field (e.g., field towers, mentioned in Cox, Chapter 2, §5(C)[1]).

2 Some background in number and Galois theory

In this part we will present some necessary background from number theory (Section 2.1) and Galois theory
(Section 2.2).

2.1 Number theory

Definitions 2.1 and 2.3 below are according to Dummit and Foote, Chapter 13, Sections 13.1 and 13.2
respectively, and Proposition 2.2, is stated and proved as Theorem 14 in Section 13.2.[2]

Definition 2.1. Let F be a field. Any field K such that F ⊂ K is called a field extension of K. This
extension is often denoted K/F or F ⊂ K. The dimension of K as a vector space over F is called the degree
of K over F and is denoted [K : F ]. If [K : F ] is finite, then we say that the extension is finite. If there
exists α1, α2, · · · ∈ K such that K is the smallest field containing all of α1, α2 · · · (that is, for any field L
such that F ⊂ L, it holds that K ⊂ L whenever α1, α2, · · · ∈ L), then we write K = F (α1, α2, · · · ), and we
say that K is generated by α1, α2 · · · over F . If K = F (α) for some element element α ∈ K, then α is called
a primitive element for the extension F ⊂ K.

Proposition 2.2. Let F,K and L be fields such that F ⊂ K ⊂ L. Then

[L : F ] = [L : K][K : F ].

Proof. See Dummit and Foote, Chapter 13, Section 13.2, Theorem 14.

Definition 2.3. Let F be a field and let K be any field extension of F . An element α ∈ K is said to be
algebraic over F if f(α) = 0 for some nonzero f ∈ F [x]. If every element in K is algebraic over F , then K
is said to be an algebraic field extension of F .

Definitions 2.4 and 2.5 below are according to Ireland and Rosen, Chapter 12, §2, and Chapter 6, §1
respectively.[3]

Definition 2.4. A field K is called an (algebraic) number field if K is a subfield of C and [K : Q] is finite.
(Note that any subfield of C is a field extension of Q, since any subfield of C contains {0, 1}, and, thus,
n · 1 = n and 1/n for every n ∈ Z \ {0})
Definition 2.5. An element α ∈ C is called an algebraic number if α is algebraic over Q, that is, f(α) = 0
for some nonzero f ∈ Z[x]. (Note that this is equivalent to f(α) = 0 for some nonzero f ∈ Q[x], by
multiplication by the least common multiple of the denominators of the coefficients.) If there exists a monic
g ∈ Z[x] such that g(α) = 0, then α is called an algebraic integer .

In accordance with Cox, Chapter 2, §5, Section A,[1] and Dummit and Foote, Chapter 15, Section 15.3,[2]
if K is a number field, we denote the set of algebraic integers in K by OK . Dummit and Foote define this
set as the integral closure of Z in K, see Definition 2.6 below.[2]

Definition 2.6. Let R be a ring and let S be a subring of R. Let r ∈ R. We say that r is integral over S
if there exists a monic g ∈ S[x] such that g(r) = 0. The subset of R consisting of the elements which are
integral over S is called the integral closure of S in R. If S is its own integral closure in R, then we say that
S is integrally closed in R.
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Lemma 2.7. Let R be a ring and let S be a subring of R. Then the integral closure of S in R is a ring.

Proof. This fact is proved in Dummit and Foote, Chapter 15, Section 15.3, Corollary 24(2).[2]

Proposition 2.8. Let K be a number field. Then OK is an integral domain.

Proof. By definition OK is the set of all α ∈ K satisfying that g(α) = 0 for some monic g ∈ Z[x], i.e., the
integral closure of Z in K. By Lemma 2.7, OK is a ring. Since OK is a subring of K, any zero-divisor of OK
is also a zero-divisor of K. Since K is an integral domain (since it is a field), it has no zero-divisors, and the
same goes for OK . This shows that OK is an integral domain.

Remark 2.9. A number field K is always the field of fractions of its ring of integers OK . This fact is proved
in Dummit and Foote, Chapter 15, Section 15.3, Theorem 29(2).[2]

The following definition is given in Ireland and Rosen, Chapter 5, §3.[3]

Definition 2.10. Let n ∈ Z≥1. If ζ is a root of the polynomial xn − 1, then ζ is called an nth root of unity.
The nth roots of unity are precisely the elements e2kπi/n, k = 1, 2, · · · , n. If ζ = e2kπi/n where k and n are
relatively prime, then ζ is called a primitive nth root of unity.

The proposition below follows from Theorem 2 in Samuel, §2.9 and the remark which follows.[5]

Proposition 2.11. Let p ∈ Z be a prime, let r ∈ Z be any positive integer, and let ζ be a prth root of
unity. Then, if K = Q(ζ), it holds that OK = Z[ζ].

Proof. In Samuel, §2.9, Theorem 2, this results is proved for primitive p1th roots of unity, and in the remark,
it is stated that, for all k ∈ Z≥1, the result holds for all primitive pk-roots of unity.[5] Since every prth root of
unity is a primitive pkth root of unity for some k ∈ Z≥1, the result must hold for all prth roots of unity.

The following proposition is stated and proved in Dummit and Foote, Chapter 13, Section 13.2.[2] In
Ireland and Rosen, Chapter 6, §1, the corresponding proposition (6.1.7) is stated and proved for F = Q and
α being any algebraic number.[3] Definitions 2.13 and 2.14 is according to Dummit and Foote, Chapter 13,
Section 13.2, and Chapter 14, Section 14.6, respectively.[2]

Proposition 2.12. Let F be a field and let K be any field extension of F . If α ∈ K is algebraic over
F , then, there exists a unique polynomial mα,F ∈ F [x] such that mα,F is monic and irreducible over F ,
mα,F (α) = 0, and for any f ∈ F [x] such that f(α) = 0, it holds that mα,F | f in F .

Definition 2.13. The polynomial mα,F of the previous proposition is called the minimal polynomial of α
in F .

Definition 2.14. Given any polynomial f ∈ C[x] in one variable (of degree n ≥ 1). Then, we define the
discriminant Df of f to be

Df :=
∏

1≤i<j≤n
(αi − αj)2,

where α1, · · · , αn are the roots of f .

2.2 Galois Theory

Definition 2.15. Let F be a field and let K be any extension of F . We denote by Aut(K/F ) the set of
automorphisms of K which fix F .

The following proposition is stated as part of Proposition 1 in Dummit and Foote, Chapter 14, Section
14.1.[2]

Proposition 2.16. The set Aut(K/F ) of Definition 2.15 is a group under composition.
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Proof. This proposition is proved in less detail in Dummit and Foote, Chapter 14, Section 14.1, Proposition
1. Clearly the identity automorphism id : α 7→ α fixes F and, thus, belongs to Aut(K/F ). Given any two
σ1, σ2 ∈ Aut(K/F ), we have that, for any α ∈ F ,

(σ1 ◦ σ2)(α) = σ1(σ2α) = σ1α = α,

thus, σ1 ◦ σ2 ∈ Aut(K/F ), since the composition of any two automorphisms is an automorphism. The
inverse automorphism σ−11 also fixes F , and, thus, belongs to Aut(K/F ). Since the composition of maps is
associative, the set Aut(K/F ) satisfies all the group axioms.

The following proposition is also stated and proved in Dummit and Foote, as Corollary 10 in Chapter 14,
Section 14.2.[2]

Proposition 2.17. Given any finite extension K of F , it holds that

|Aut(K/F )| ≤ [K : F ].

Proof. See Dummit and Foote, Chapter 14, Section 14.2, Corollary 10.[2]

Definitions 2.18 and 2.19 below are given in Dummit and Foote, Chapter 14, Section 14.1, in the definitions
following Proposition 5 and Corollary 6 respectively, and Definition 2.20 is given in Section 14.2, Exercise
17.[2] Theorem 2.21 below is stated as Theorem 14 in Dummit and Foote, Chapter 14, Section 14.2.[2]

Definition 2.18. Let F be a number field and let K be any finite extension of F . We say that K is Galois
over F if |Aut(K/F )| = [K : F ]. If K is Galois over F , then we call Aut(K/F ) the Galois group of K over
F and we denote it by Gal(K/F ).

Definition 2.19. Let F be a number field. Assume that f(x) ∈ F [x] is separable (meaning that all of its
roots are distinct). We define the Galois group of f to be the Galois group of the splitting field of f (the
smallest field containing all the roots of f). This field is Galois over F , according to Dummit and Foote,
Chapter 14, Section 14.1, Corollary 6.[2]

Definition 2.20. Let F be a number field and let K be any finite extension of F . Let α ∈ K. Assume that
K is Galois over F . Then, the norm N(α) of α from K to F is defined to be the product

N(α) =
∏

σ∈Gal(K/F )

σα.

Theorem 2.21. (The Fundamental Theorem of Galois Theory) Let F be a field and let K be a Galois
extension of F . Then there is a one-to-one correspondence between the subgroups of Gal(K/F ) and the
subfields of K containing F , such that a subfield E of K containing F corresponds to the subgroup H of
Gal(K/F ) which fixes E. This correspondence is inclusion reversing. Furthermore, if E and H are such a
subfield and subgroup respectively, then

(i) [K : E] = |H| and [E : F ] = |Gal(K/F ) : H| (where |Gal(K/F ) : H| denotes the index of H in
Gal(K/F )),

(ii) the extension K/E is Galois and Gal(K/E) = H

(iii) the extension E/F is Galois if and only if H E Gal(K/F ) (where the notation H E Gal(K/F ) indicates
that H is a normal subgroup of Gal(K/F )),

(iv) if the extension E/F is Galois, then Gal(E/F ) ∼= Gal(K/F )/H,

(v) if E′ is another subfield of K containing F and H ′ is the subgroup of Gal(K/F ) corresponding to
E′, then E ∩E′ corresponds to 〈H,H ′〉 (the group generated by H and H ′) and E1E2 corresponds to
H ∩H ′.

Proof. See Dummit and Foote, Chapter 14, Section 14.2, Theorem 14.[2]
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3 Cubic and biquadratic reciprocity

In 1849, the unfinished book in number theory Tractatus de numerorum doctrina capita sedecim, quae
supersunt written by Euler in 1749–1750, was published. According to Cox, Chapter 1, §1(D),[1] Euler states,
in the two chapters which deal with cubic and biquadratic residues respectively, the following conjectures
for primes of the form x2 + 27y2 and x2 + 64y2, which were first proved by Gauss using the theories of cubic
and biquadratic reciprocity.

Theorem 3.1. For any prime p, it holds that

p = x2 + 27y2 for some x, y ∈ Z ⇐⇒
{
p ≡ 1 (mod 3) and

2 is a cubic residue modulo p

Theorem 3.2. For any prime p, it holds that

p = x2 + 64y2 for some x, y ∈ Z ⇐⇒
{
p ≡ 1 (mod 4) and

2 is a biquadratic residue modulo p

In Definition 3.3 below we explain the notions of quadratic, cubic, and biquadratic residue.

Definition 3.3. Given any prime p ∈ Z and any a ∈ Z, the integer a is said to be a quadratic residue
modulo p if x2 ≡ a (mod p) has a solution in Z. Similarly, a is said to be a cubic residue modulo p if there
is an integer solution to x3 ≡ a (mod p) and a biquadratic residue modulo p if there is an integer solution to
x4 ≡ a (mod p).

Related to this is the notion of the Legendre symbol, see Definition 3.4. This definition can also be
extended to the cubic and biquadratic cases (see Sections 3.1–3.3). The first version of this definition is
given in Samuel, Chapter 5, Section 5.5,[5] (without considering the case p | z) and in Ireland and Rosen,
Chapter 5, §1.[3] The second version is equivalent to the first, by Proposition 3.5, and is analogous to the
definitions of the generalized Legendre in the cubic and biquadratic cases, given in Cox, Chapter 1, §4.[1]

Definition 3.4. Given an integer prime p 6= 2, the Legendre symbol is the function
( ·
p

)
: Z → {0,±1}

defined by

(
z

p

)
:=





0 if p | z
1 if p - z and z is a quadratic residue modulo p

−1 if p - z and z is not a quadratic residue modulo p.

For z ∈ Z, we can also define the Legendre symbol
(
z
p

)
as 0 if p | z, and otherwise as the unique square root

of unity such that

z(p−1)/2 ≡
(
z

p

)
(mod p).

Proposition 3.5. Given an integer prime p, The two definitions of the Legendre symbol
(
z
p

)
, for z ∈ Z such

that p - z, stated in Definition 3.4 are equivalent.

Proof. Note that (p − 1)/2 is an integer, since p is odd. Thus, if p - z and z is a quadratic residue modulo
p, then z ≡ a2 (mod p) for some a ∈ Z, hence

z(p−1)/2 ≡ (a2)(p−1)/2 ≡ a2(p−1)/2 ≡ ap−1 ≡ 1 (mod p),

where the last congruence is according to Fermat’s Little Theorem. If instead z is not a quadratic residue
modulo p, then, since the multiplicative group (Z/pZ)∗ of Z/pZ is cyclic of order p − 1, (since Z/pZ is a
finite field, see Dummit and Foote, Chapter 9, Section 9.5, Proposition 18[2]), we can write z = bk for some
nonzero b ∈ (Z/pZ)∗ and some odd k ∈ Z≥1, which gives us

z(p−1)/2 ≡ 1 (mod p) =⇒ bk(p−1)/2 ≡ 1 (mod p) =⇒
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(p− 1) | k(p− 1)/2 in Z =⇒ k/2 ∈ Z =⇒ k is even.

This shows that z(p−1)/2 6≡ 1 whenever z is not a quadratic residue modulo p. Since, by Fermat’s Little
Theorem,

(z(p−1)/2)2 ≡ z2(p−1)/2 ≡ z(p−1) ≡ 1 (mod p),

we have that z(p−1)/2 ≡ ±1 (mod p), that is, z(p−1)/2 is always congruent to a square root of unity modulo
p. (The square roots of unity are ±1 and are always incongruent modulo p, since p 6= 2.) This completes
the proof.

3.1 The rings Z[ω] and Z[i]
This section is based on Cox, Chapter 1, §4.[1] All definitions are according to Cox, unless stated otherwise.
Studying the theory of cubic and biquadratic reciprocity involves studying the sets Z[ω] = {a+bω | a, b ∈ Z}
and Z[i] = {a+ bi | a, b ∈ Z} respectively, where

ω = e2πi/3 = (−1 +
√
−3)/2, i = e2πi/4 =

√
−1

are primitive third and fourth roots of unity respectively (see Definition 2.10). The latter is known as the
ring of Gaussian integers, named after Gauss, who, according to Ireland and Rosen, Chapter 1, §4,[3] was
the first to study its properties in detail. Note that

ω + ω2 = (−1 +
√
−3− 1−

√
−3)/2 = −1. (3.1)

According to Proposition 2.11, Z[ω] and Z[i] are the rings of integers of Q(ω) and Q(i) respectively. This
also follows from Proposition 4.23.

Proposition 3.6. The fields Q(ω) and Q(i) are Galois extensions of Q.

Proof. A basis for Q(ω) as a vector space over Q is given by {1, ω}, since ω2 = −1−ω, by (3.1), and ω3 = 1,
thus,

[Q(ω) : Q] = 2.

The map
σ : (ω, ω2) 7→ (ω2, ω),

is an automorphism which fixes Q, since it takes ω2 = −1− ω to ω = −1− ω2. The identity automorphism
idQ(ω) : x↔ x on Q(ω) also fixes Q. By Proposition 2.17, Q(ω) cannot have more than two automorphisms
that fix Q, hence,

|Aut(Q(ω)/Q)| = 2 = [Q(ω) : Q],

i.e., the extension Q ⊂ Q(ω) is Galois. The proof is very similar for the extension Q ⊂ Q(i). We have that

[Q(i) : Q] = 2,

since {1, i} is a basis for Q(i) over Q (since i2 = −1). The map

τ : i 7→ −i

is indeed an automorphism of Q(i) which fixes Q, since τ(−i) = −τ(i). (This automorphism is the complex
conjugate map.) Again, the identity automorphism idQ(i) fixes Q. By Proposition 2.17, Q(ω) cannot have
more than two automorphisms that fix Q, hence,

|Aut(Q(i)/Q)| = 2 = [Q(i) : Q],

i.e., the extension Q ⊂ Q(i) is Galois.
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Remark 3.7. Since Q(ω) and Q(i) are Galois extensions of Q, we can compute their field norm according
to Definition 2.20. In the proof of Proposition 3.6 above, we saw that Gal(Q(ω)/Q) = Aut(Q(ω)/Q) consists
of the identity and the automorphism σ : ω ↔ ω2. Since

ω2 = −1− ω = −1− −1 +
√
−3

2
=
−2 + 1−

√
−3

2
=
−1−

√
−3

2
= ω,

we see that σ is the complex conjugate map. In the proof, we saw that the same goes for Gal(Q(i)/Q) =
Aut(Q(i)/Q). It is well known that the complex conjugate is additive and multiplicative, thus, we see that,
for any element α in Q(ω) or Q(i), the norm of α is given by

N(α) = αα

This norm is multiplicative, by Definition 2.20, since any ring automorphism is multiplicative. (This also
follows from the multiplicativity of complex conjugation).

Remark 3.8. For u, v ∈ Q not both zero, it holds that

N(u+ vω) = (u+ vω)(u+ vω) = (u+ vω)(u+ vω2) = (3.2)

u2 + uv(ω + ω2) + v2ω3 = u2 − uv + v2 > 0

(where the last inequality holds because u2 − uv + v2 ≥ u2 − 2uv + v2 = (u − v)2 ≥ 0 if u and v have the
same signs, and −uv ≥ 0 if u and v have opposite signs), and

N(u+ vi) = (u+ vi)(u+ vi) = (u+ vi)(u− vi) = u2 + v2 > 0. (3.3)

By (3.2) and (3.4), N takes any nonzero element in Z[ω] or Z[i] respectively to some positive integer.

Proposition 3.9. Z[ω] and Z[i] are Euclidean domains, with Euclidean function being the field norm of
Q(ω) and Q(i) respectively restricted to Z[ω] and Z[i] respectively.

Proof. The proof given here is a more detailed version of the proof of Proposition 4.3 in Cox, Chapter 1,
§4(A),[1], where Cox assumes that the field norm Q(ω) is multiplicative (which we have already shown in
Remark 3.7), and leaves that part of the proof as an exercise. For α, β ∈ Z[ω] such that β 6= 0, we have that

α

β
=
αβ

ββ
=

αβ

N(β)
.

Since N(β) ∈ Q, we have that α/β ∈ Q(ω), thus, we can write α/β = u + vω for some u, v ∈ Q. Let u1
and v1 be the integers obtained when rounding u and v respectively to the nearest integer. We have that
|u− u1|, |v − v1| ≤ 1/2. If we let γ := u1 + v1ω and δ := α− γβ, then γ, δ ∈ Z[ω] and

α = γβ + δ.

Since

N

(
α

β
− γ
)

= N((u− u1) + (v − v1)ω) = (u− u1)2 − (u− u1)(v − v1) + (v − v1)2 ≤

1

4
+

1

4
− (u− u1)(v − v1)︸ ︷︷ ︸

∈[−1/4, 1/4]

< 1,

we have that

N(δ) = N(α− γβ) = N

(
β

(
α

β
− γ
))

= N(β)N

(
α

β
− γ
)
< N(β).

This shows that Z[ω] is a Euclidean domain. The same argument goes for Z[i] if we replace ω by i and
compute N(α/β − γ) as

N

(
α

β
− γ
)

= N((u− u1) + (v − v1)i) = (u− u1)2 + (v − v1)2 ≤

1

4
+

1

4
=

1

2
< 1.
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Proposition 3.10. Every Euclidean domains is a principal ideal domain (P.I.D.) and every principal ideal
domain is a unique factorization domain (U.F.D.).

Proof. These two facts are proved in Dummit and Foote, Chapter 8, Section 8.1, Proposition 1 and Section
8.3, Theorem 15, respectively.[2]

Corollary 3.11. The rings Z[ω] and Z[i] are principal ideal domains and unique factorization domains.

Proof. By Proposition 3.9, the two rings are Euclidean domains, hence, by Proposition 3.10, they are principal
ideal domains and unique factorization domains.

The following two propositions are, in the case of Z[ω], stated as Lemma 4.5 and Lemma 4.6 respectively
in Cox, Chapter 1, §4(A), and in Chapter 1, §4(B) it is stated that the analogs hold in the case of Z[i].[1]
Proposition 3.12 is also stated as Proposition 9.1.1 in Ireland and Rosen, Chapter 9, §1, for the cubic case,
and as Exercise 33 in Chapter 1 for the biquadratic case.[3]

Proposition 3.12.

(i) An element α in Z[ω] or Z[i] is a unit if and only if N(α) = 1.

(ii) The units in Z[ω] are ±1,±ω,±ω2.

(iii) The units in Z[i] are ±1,±i.

Proof. This proof is based on the proof of the cubic case given in Ireland and Rosen, Chapter 9, §1, Propo-
sition 9.1.1.[3] Assume that α ∈ Z[ω] is a unit. Then, there exists a β ∈ Z[ω] such that αβ = 1. Since N is
multiplicative, it holds that

1 = 12 = N(1) = N(α)N(β).

Since N takes every nonzero element in Z[ω] to some positive integer (by Remark 3.8), we have

N(α) = N(β) = 1.

The exact same argument can be used for Z[i] instead of Z[ω]. Conversely, assume that α = a + bω ∈
Z[ω], a, b ∈ Z satisfies that N(α) = 1. Then, since (by Remark 3.7)

1 = N(α) = αα

and since
α = (a+ bω) = a+ bω2 = a− b︸ ︷︷ ︸

∈Z

−bω ∈ Z[ω],

we have that αβ = 1 for some β ∈ Z[ω] (namely, β = α), that is, α is a unit. If instead α = a + bi ∈
Z[i], a, b ∈ Z, then, again 1 = N(α) = αα, and, since α = a− bi ∈ Z[i], α is a unit. This proves (i).

In order to prove (ii), we will use some theory of quadratic forms discussed in Section 4.37. Since

1 = 1 · 1 = (−1) · (−1) = ω · ω2 = (−ω) · (−ω2),

we see that ±1,±ω,±ω2 are units of Z[ω]. If some element α = a+ bω ∈ Z[ω], a, b ∈ Z, is a unit, then, by
(i),

1 = N(α) = N(a+ bω) = a2 − ab+ b2,

or, equivalently,
4 = 4a2 − 4ab+ 4b2 = (2a− b)2 + 3b2.

Since (2a− b)2 and 3b2 are both positive integers, one of the following must hold.

(1) 2a− b = ±1 and b = ±1.

(2) 2a− b = ±2 and b = 0.
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In case (1) above, if the two ± symbols have the same sign, then b = ±1 and a = (±1+±1)/2 = ±2/2 = ±1,
that is,

α = ±1 +±ω = −± (−1− ω) = −± ω2.

If instead the two ± symbols have opposite signs, then b = ±1 and a = (− ± 1 + ±1)/2 = 0/2 = 0, that
is, α = ±ω. In case (2) above, we have that b = 0 and 2a = ±2/2 = ±1, that is α = ±1. This proves (ii).
Similarly, (iii) holds, since

1 · 1 = −1 · −1 = i · (−i) = 1,

thus, ±1,±i are units of Z[i], and if some element γ = c+ di ∈ Z[i] is a unit, then

1 = N(γ) = N(c+ di) = c2 + d2,

which implies that either c = 0 and d = ±1, or c = ±1 and d = 0, since c2 and d2 are positive integers and
add up to 1, hence either

γ = 0± i = ±i
or

γ = ±1 + 0 = ±1.

This proves (iii).

Proposition 3.13. An element α in Z[ω] or Z[i] is prime whenever N(α) is a prime in Z.

Proof. This proof is, in the case α ∈ Z[ω], given in Cox, Chapter 1, §4(A), Lemma 4.6.[1] Using the
multplicativity of the norm N , the unique factorization into primes in Z, and the property that, in a
unique factorization domain, the irreducible elements are precisely the prime elements. By exactly the same
argument, this Proposition also holds in the case α ∈ Z[i]. The argument goes as follows: if N(α) is prime
in Z, and α is not a prime in Z[i] (or Z[ω]), then, we can write α = βγ for some β, γ ∈ Z[i] (or Z[ω]), thus

N(α) = N(βγ) = N(β)N(γ),

which implies that one of N(β) and N(γ) is 1 (since N(α) is prime in Z), that is, one of β and γ is a unit
by Proposition 3.12(i). Since Z[i] (Z[ω]) is a unique factorization domain, α is a prime in Z[i] (Z[ω]), since
it is irreducible and Z[i] (and Z[ω]) are unique factorization domains.

3.2 Cubic reciprocity

This section is based on Cox, Chapter 1, §4(A).[1] The following theorem is stated as Proposition 4.7 in Cox,
Chapter 1, §4(A),[1] and as Proposition 9.1.4 in Ireland and Rosen, Chapter 9, §1.[3]

Proposition 3.14. Let p ∈ Z be a prime. Then,

(i) if p = 3, then p = −ω2(1− ω)2, and 1− ω is a prime in Z[ω] (by Proposition 3.13 and (3.4) below),

(ii) if p ≡ 1 (mod 3), then p = ππ for some prime π in Z[ω], and π is a prime not associate to π,

(iii) if p ≡ 2 (mod 3), then p is a prime in Z[ω],

and every prime in Z[ω] is associate to one of those listed above.

Proof. See Ireland and Rosen, Chapter 9, §1, Proposition 9.1.4.[3]

We use the following notation in accordance with Cox, Chapter 1, §4(A) (apart from the parentheses,
which are omitted in Cox).[1]

Definition 3.15. Given α, β, γ ∈ Z[ω], we write α ≡ β (mod γ) to indicate that α and β belong to the same
coset in Z[ω]/γZ[ω].

The following lemma is necessary for defining the Legendre symbol in the cubic case (see Definition 3.4)
and how it relates to cubic reciprocity. It is stated as Lemma 4.8 in Cox, Chapter 1, §4(A).[1]
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Lemma 3.16. Let π ∈ Z[ω] be a prime. Then Z[ω]/πZ[ω] has N(π) elements and either N(π) = p or
N(π) = p2 for some integer prime p. Furthermore,

(i) if N(π) = p, then p = 3 or p ≡ 1 (mod 3), and Z/pZ ' Z[ω]/πZ[ω],

(ii) if N(π) = p2, then p ≡ 2 (mod 3) and, Z/pZ is the unique subfield of Z[ω]/πZ[ω] of order p.

Proof. In Ireland and Rosen, Chapter 9, §2, Proposition 9.2.1 it is stated and proved that Z[ω]/πZ[ω] has
N(π) elements and is a field. Since

N(1− ω) = (1− ω)(1− ω2) = 1− ω2 − ω + ω3 = 1− (−1− ω)− ω + 1 = 1 + 1 + 1 = 3. (3.4)

and, if π = p for some prime p ≡ 2 (mod 3),

N(π) = N(p) = pp = p2,

we see that the cases (i)–(ii) of Proposition 3.14 correspond to the case N(π) = p (case (i) of this Lemma),
and the case (iii) of Proposition 3.14 corresponds to the case N(π) = p2 (case (ii) of this Lemma). Proposition
3.14. The isomorphism of (i) in this Lemma follows from the argument given in the proof in Ireland and
Rosen, where it is shown that every element in Z[ω]/πZ[ω] is congruent to some element in Z/pZ modulo
π.[3] It is well-known that Z/pZ is a finite field with p elements (See Dummit and Foote, Chapter 13, Section
13.1, Example (2) following Proposition 1[2]). In the proof in Ireland and Rosen,[3] it is shown that, in the
case N(π) = p2,

Z[ω]/πZ[ω] = {a+ bω | a, b ∈ {0, 1, · · · , p− 1}},
thus

Z/pZ ⊂ Z[ω]/πZ[ω].

To see that Z/pZ is the unique subfield of p elements, note that any subfield F of Z[ω]/πZ[ω] with p elements
must contain 1 and 0, since it is a field, and all of {0, 1, 1 + 1, 1 + 1 + 1, · · · } = {0, 1, · · · , p − 1}. (Both
Z[ω]/πZ[ω] and F have characteristic p.)

Remark 3.17. If π - 3 and N(π) = p, then, by (i) of Lemma 3.16,

N(π)− 1 ≡ p− 1 ≡ 1− 1 ≡ 0 (mod 3),

and if N(π) = p2, then, by (ii) of Lemma 3.16,

N(π)− 1 ≡ p2 − 1 ≡ 22 − 1 ≡ 1− 1 ≡ 0 (mod 3),

thus, 3 | N(π)− 1 always holds whenever π - 3.

Remark 3.18. The quotient ring Z[ω]/πZ[ω] is indeed a field, by Lemma 4.3 of Section 4.1, since the prime
ideal πZ is maximal (since Z[ω] is a principal ideal domain, see Dummit and Foote, Chapter 8, Section 8.2,
Proposition 7[2]). Since Z[ω]/πZ[ω] is a finite field, by Lemma 3.16, it follows that its multiplicative group
(Z[ω]/πZ[ω])∗ is cyclic of order N(π)−1 (see Dummit and Foote, Chapter 9, Section 9.5, Proposition 18[2]).

This gives us the following corollary, stated as Corollary 4.9 in Cox, Chapter 1, §4(A),[1] which is an analog
to Fermat’s Little Theorem.

Corollary 3.19. Let π ∈ Z[ω] be a prime and let α ∈ Z[ω] be such that π - α. Then

αN(π)−1 ≡ 1 (mod π).

Proof. Let x be a generator of (Z[ω]/πZ[ω])∗. We have that xN(π)−1 is the identity in (Z[ω]/πZ[ω])∗. Since
we can write α = xr for some r ∈ Z≥1, we have that

αN(π)−1 = (xr)N(π)−1 = xr(N(π)−1) = (xN(π)−1)r

is the identity on (Z[ω]/πZ[ω])∗, that is,

αN(π)−1 ≡ 1 (mod π).
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If π and α ∈ Z[ω] are defined as in Corollary 3.19, and, furthermore, π - 3, then, since 3 | N(π) − 1 ∈ Z,
by Remark 3.17, it holds that α(N(π)−1)/3 ∈ Z[ω] and

(α(N(π)−1)/3)3 − 1 ≡ α(N(π)−1) − 1 ≡ 0 (mod π),

thus α(N(π)−1)/3 is congruent to a cube root of unity modulo π. Note that all cube roots of unity are
incongruent modulo π, since if any two were congruent, then we would have, 1 − ω ≡ 0 (mod π) (by
multiplying each side of the congruences 1 ≡ ω, ω ≡ ω2, ω2 ≡ 1 (mod π) by 1, ω2, and ω respectively)
contradicting that 1− ω is prime. A similar argument is given in Cox, Chapter 1, §4(A)[1]). In accordance
with Cox,[1] we can, therefore, generalize the Legendre symbol (defined for the quadratic case in Definition
3.4) to the cubic case in the following way.

Definition 3.20. Let π ∈ Z[ω] be a prime and let α ∈ Z[ω] be such that π - 3, α. Then the Legendre symbol(
α
π

)
3

is defined to be the unique cube root of unity satisfying

α(N(π)−1)/3 ≡
(
α

π

)

3

(mod π).

Lemma 3.21 below explains how this generalized Legendre symbol relates to cubic reciprocity.

Lemma 3.21. If α, π ∈ Z[ω] and π is a prime such that π - 3, α, then

(
α

π

)

3

= 1 ⇐⇒ x3 ≡ α (mod π) solvable in Z[ω].

Proof. We have that
x3 ≡ α (mod π) solvable in Z[ω] =⇒

α ≡ β3 (mod π) for some β ∈ (Z[ω]/πZ[ω])∗ =⇒
α(N(π)−1)/3 ≡ βN(π)−1 (mod π) for some β ∈ (Z[ω]/πZ[ω])∗ =⇒

α(N(π)−1)/3 ≡ 1 (mod π),

where the last implication follows from Corollary 3.19. Conversely, since the group (Z[ω]/πZ[ω])∗ is cyclic
of order N(π) − 1, we may assume that it is generated by some element y ∈ (Z[ω]/πZ[ω])∗ and that
α ≡ ym (mod π) for some integer m ∈ {1, · · · , N(π)− 1}, thus,

α(N(π)−1)/3 ≡ 1 (mod π) =⇒ ym(N(π)−1)/3 = 1 =⇒

ym(N(π)−1)/3 = yN(π)−1 =⇒ (N(π)− 1) | m(N(π)− 1)/3 in Z =⇒
3 | m in Z =⇒ x3 ≡ ym (mod π) solvable in Z[ω] =⇒

x3 ≡ α (mod π) solvable in Z[ω].

This shows that

x3 ≡ α (mod π) solvable in Z[ω] ⇐⇒ α(N(π)−1)/3 ≡ 1 (mod π).

Below, the Law of Cubic Reciprocity is stated, in accordance with Cox, Chapter 1, §4(A), Theorem 4.12.[1]
First note that, by Proposition 3.12, given a prime π ∈ Z[ω], the elements ±π,±πω, and ±πω2 are associates,
and, by Ireland and Rosen, Chapter 9, §3, Proposition 9.3.5[3], if π - 3, then precisely one of these pairs
are congruent to ±1 modulo 3. Therefore, we can restrict ourselves to primes π ∈ Z[ω] such that π - 3 and
π ≡ ±1. In Cox, Chapter 1, §4(A), such a prime is referred to as a primary prime.[1]

Theorem 3.22. (The Law of Cubic Reciprocity) If π, θ ∈ Z[ω] are primes such that π, θ - 3, π, θ ≡ ±1, and
N(π) 6= N(θ), then (

π

θ

)

3

=

(
θ

π

)

3

Proof. See Ireland and Rosen, Chapter 9, §4 and §5, for two different proofs.

11



3.3 Biquadratic reciprocity

This section is mostly based on Cox, Chapter 1, §4(B).[1] Proposition 3.23 below is stated as Proposition
4.18 in Cox, Chapter 1, §4(B),[1] and as Proposition 18(2) in Dummit and Foote, Chapter 8, Section 8.3.[2]

Proposition 3.23. Let p ∈ Z be a prime. Then,

(i) if p = 2, then p = i3(1 + i)2, and 1 + i is a prime in Z[i],

(ii) if p ≡ 1 (mod 4), then p = ππ for some prime π in Z[i], and π is a prime not associate to π,

(iii) if p ≡ 3 (mod 4), then p is a prime in Z[i],

and every prime in Z[i] is associate to one of those listed above.

Proof. See Dummit and Foote, Chapter 8, Section 8.3, Proposition 18(2).[2]

The following notation is analogous to the one given in Definition 3.15, and is also used by Cox (apart
from the parentheses, which are omitted in Cox).[1]

Definition 3.24. Given α, β, γ ∈ Z[i], we write α ≡ β (mod γ) to indicate that α and β belong to the same
coset in Z[i]/γZ[i].

Remark 3.25. As in the case of Z[ω] (Lemma 3.16), given a prime π ∈ Z[i], the set Z[i]/πZ[i] is a finite
field of N(π) elements, by Proposition 9.8.1 in Ireland and Rosen, Chapter 9, §8.[3] As in the case of Z[ω],
there are two possibilities: either N(π) = p for some prime p ∈ Z or N(π) = p2 for some prime p ∈ Z, and,
by Proposition 3.23, the former corresponds to the case p = 2 or p ≡ 1 (mod 4), and the latter to the case
p ≡ 3 (mod 4). Note that

N(1 + i) = (1 + i)(1 + i) = (1 + i)(1− i) = 1 + 1 = 2.

By the same argument as in the case of Z[ω] (Corollary 3.19), we have that (Z[i]/πZ[i])∗ is cyclic of order
N(π) − 1, implying the following corollary, stated as (4.19) in Cox, Chapter 1, §4(B),[1] which is also an
analog to Fermat’s Little Theorem.

Corollary 3.26. Let π ∈ Z[i] be a prime and let α ∈ Z[i] be such that π - α. Then

αN(π)−1 ≡ 1 (mod π).

Proof. The proof is analogous to the proof of Corollary 3.19, replacing every Z[ω] with Z[i].

Given any prime π not dividing 2, i.e., not associate to 1 + i, it follows from Proposition 3.23 that

N(π) ≡ 1 (mod 4),

since 32 ≡ 1 (mod 4), thus 4 | N(π)− 1. Also the four fourth roots of unity ±1,±i are incongruent modulo
π, since

i ≡ −i (mod π) =⇒ 1 ≡ −1 (mod π) =⇒ 2 ≡ 0 (mod π),

and
−1 ≡ −i (mod π) =⇒ 1 ≡ i (mod π) =⇒ −i ≡ 1 (mod π) =⇒

i ≡ −1 (mod π) =⇒ 1 + i ≡ 0 (mod π),

which shows that any congruence modulo π between two units of Z[i] implies a contradiction, since π - 2, 1+i.
If α is such that π - α, then

(α(N(π)−1)/4)4 − 1 ≡ αN(π)−1 − 1 ≡ 0 (mod 4),

which shows that α(N(π)−1)/4 is a fourth root of unity. In accordance with Cox, Chapter 1, §4(B),[1] we can,
therefore, generalize the Legendre symbol to the biquadratic case in the following way.
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Definition 3.27. If π, α ∈ Z[i], π is prime, and π - 2, α, then the Legendre symbol
(
α
π

)
4

is defined to be
the unique fourth root of unity satisfying

α(N(π)−1)/4 ≡
(
α

π

)

4

(mod π).

As in the cubic and quadratic cases, the Legendre symbol is related to biquadratic reciprocity, as explained
in the following result.

Lemma 3.28. If π, α ∈ Z[i], π is prime, and π - 2, α, then

(
α

π

)

4

= 1 ⇐⇒ x4 ≡ α (mod π) solvable in Z[i].

Proof. This proof is analogous to the proof of Lemma 3.21. We have that

x4 ≡ α (mod π) solvable in Z[i] =⇒

α ≡ β4 (mod π) for some β ∈ (Z[i]/πZ[i])∗ =⇒
α(N(π)−1)/4 ≡ βN(π)−1 (mod π) for some β ∈ (Z[i]/πZ[i])∗ =⇒

α(N(π)−1)/3 ≡ 1 (mod π),

where the last implication follows from Corollary 3.26. Conversely, since the group (Z[i]/πZ[i])∗ is cyclic
of order N(π) − 1, we may assume that it is generated by some element y ∈ (Z[i]/πZ[i])∗ and that α ≡
ym (mod π) for some integer m ∈ {1, · · · , N(π)− 1}, thus,

α(N(π)−1)/4 ≡ 1 (mod π) =⇒ ym(N(π)−1)/4 = 1 =⇒

ym(N(π)−1)/4 = yN(π)−1 =⇒ (N(π)− 1) | m(N(π)− 1)/4 in Z =⇒
4 | m in Z =⇒ x4 ≡ ym (mod π) solvable in Z[i] =⇒

x4 ≡ α (mod π) solvable in Z[i].

This shows that

x4 ≡ α (mod π) solvable in Z[i] ⇐⇒ α(N(π)−1)/4 ≡ 1 (mod π).

An important property of the Legendre symbol is the one stated in the following proposition.

Proposition 3.29. If π, α, β ∈ Z[i] satisfy that π is prime and π - 2, α, β, then

(
αβ

π

)

4

=

(
α

π

)

4

(
β

π

)

4

,

that is, the Legendre symbol is multiplicative.

Proof. By Definition,
(
αβ
π

)
4

is the unique fourth root of unity such that

(αβ)(N(π)−1)/4 ≡
(
αβ

π

)

4

(mod π),

that is,

α(N(π)−1)/4β(N(π)−1)/4 ≡
(
αβ

π

)

4

(mod π).

Since
(
α
π

)
4

and
(
β
π

)
4

are the unique fourth roots of unity such that

α(N(π)−1)/4 ≡
(
α

π

)

4

(mod π)
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and

β(N(π)−1)/4 ≡
(
β

π

)

4

(mod π)

respectively, it follows that (
αβ

π

)

4

=

(
α

π

)

4

(
β

π

)

4

,

Below, the Law of Biquadratic Reciprocity is stated, in accordance with Cox, Chapter 1, §4(B), Theorem
4.21.[1] First note that, by Proposition 3.12, given a prime π ∈ Z[i], the elements ±π,±πi are associates, and,
by Ireland and Rosen, Chapter 9, §8, Lemma 7,[3] if π - 2, then precisely one of these elements congruent to 1
modulo (1+i)3 = (1+i)(1+i)(1+i) = (1+2i−1)(1+i) = 2i−2, or, equivalently, modulo −i(2i−2) = 2+2i).
Therefore, we can restrict ourselves to primes π ∈ Z[i] such that π - 2 and π ≡ 1 (2 + 2i). In Cox, Chapter
1, §4(B), such a prime is referred to as a primary prime.[1]

Theorem 3.30. (The Law of Biquadratic Reciprocity) If π, θ ∈ Z[i] are primes such that π 6= θ and
π, θ ≡ 1 (2 + 2i), then (

π

θ

)

4

=

(
θ

π

)

4

(−1)(N(π)−1)(N(θ)−1)/16

Proof. See Ireland and Rosen, Chapter 9, §9.[3]

3.4 The case n = 27

Proof of Theorem 3.1. The proof presented here is a version of the proof given at the end of Cox, Chapter 1,
§4(A),[1] and is a great example of how the result in Section 3.2 (especially the Law of Cubic Reciprocity)
can be applied. Assume that p ≡ 1 (mod 3) and 2 is a cubic residue modulo p. By Proposition 3.14, there
exists a prime π ∈ Z such that

p = N(π) = ππ,

where π and π are nonassociate. We may assume that π ≡ ±1 (mod 3), since it is associate to such a prime.
It follows that there exist a, b ∈ Z, such that π = a+ 3bω and a ≡ 1 (mod 3), hence,

4p = 4N(π) = 4(a2 − 3ab+ 9b2) = 4a2 − 12ab+ 36b2 = (4a2 − 12ab+ 9b2) + 27b2 = (2a− 3b)2 + 27b2.

Note that 2 is a prime in Z[ω], by Proposition 3.14. Also note that 2 ≡ −1 (mod 3). By the isomorphism of
Lemma 3.16(i), since 2 is a cubic residue modulo p, the congruence x3 ≡ 2 (mod π) also has a solution in
Z[ω], that is (

2

π

)

3

= 1,

which, by the Law of Cubic Reciprocity (Theorem 3.22), implies that

(
π

2

)

3

= 1.

By Definition 3.20, since (N(2)− 1)/3 = (4− 1)/3 = 1,

a+ 3bω ≡ π ≡ π1 ≡ π(N(2)−1)/3 ≡
(
π

2

)

3

≡ 1 (mod 2),

which implies that b is even and a is odd. Since b is even, it follows that 2a− 3b and b are even, thus,

p =
(2a− 3b)2

4
+ 27

b2

4
=

(
2a− 3b

2

)2

+ 27

(
b

2

)2

,

is of the form x2 + 27y2.
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Conversely, assume that p = x2 + 27y2 for some x, y ∈ Z. Then p ≡ 1 (mod 3), since 27y2 ≡ 0 (mod 3) and
x 6≡ 0 (mod 3) (since p = x2 + 27y2 > 3 is a prime), which implies that x2 ≡ 1 (mod 3). As in the first part
of this proof, by Proposition 3.14, there exists a prime π ∈ Z such that

p = N(π) = ππ,

where π and π are nonassociate, and we may again assume that π ≡ ±1 (mod 3). Since

p = x2 + 27y2 = (x+ 3
√
−3y)(x− 3

√
−3y),

and √
−3 = 1 + 2ω ∈ Z[ω],

we have that π = (x + 3
√
−3y) is a prime in Z[ω], by Proposition 3.13, since its norm is a prime, and, by

Proposition 3.14, π is a prime not associate to π. Since 2 ≡ −1 (mod 3), (x + 3
√
−3y) ≡ x mod 3, and

x ≡ 1 or x ≡ −1 (mod 3), we can apply the Law of Cubic Reciprocity (Theorem 3.22), which gives us

(
2

π

)

3

=

(
π

2

)

3

.

By Definition 3.20, since (N(2)− 1)/3 = (4− 1)/3 = 1,

π ≡ π1 ≡ π(N(2)−1)/3 ≡
(
π

2

)

3

(mod 2).

Since, p = x2 + 27y2 > 2 is a prime, it is not even, hence, x must be odd if y is even and vice versa. This
implies that

π ≡ x+ 3
√
−3y ≡ x+ 3(1 + 2ω)y ≡ x+ 3y + 6ωy ≡ x+ 3y ≡ x+ y ≡ 1 (mod 2),

This gives us (
2

π

)

3

=

(
π

2

)

3

= 1

By the isomorphism of Lemma 3.16(i), it follows that 2 is a cubic residue modulo p.

3.5 The case n = 64

As in the previous section, this section contains a version of a proof given in Cox, Chapter 1, §4.[1] This time
it is the result of Section 3.3 that will be applied, but we will also use the following two lemmas, referred to
as supplementary laws in Cox, Chapter 1, §4(B).[1]

Lemma 3.31. If π = a+ bi ∈ Z[i], (a, b ∈ Z) is a prime such that π ≡ 1 (mod 2 + 2i), then

(
i

π

)

4

= i−(a−1)/2.

Lemma 3.32. If π = a+ bi ∈ Z[i], (a, b ∈ Z) is a prime such that π ≡ 1 (2 + 2i), then

(
1 + i

π

)

4

= i(a−b−1−b
2)/4.

The following lemma is stated as Theorem 4.23(i) in Cox, Chapter 1, §4(B), [1] and follows from the
previous two, although, acoording to Cox, it can also be proved using only biquadratic reciprocity.[1]

Lemma 3.33. If π = a+ bi ∈ Z[i], (a, b ∈ Z) is a prime such that π ≡ 1 (2 + 2i), then

(
2

π

)

4

= iab/2.
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Proof of Theorem 3.2. The proof presented here is based on the proof given in Cox, Chapter 1, §4(B),
Theorem 4.23(ii).[1] If p ≡ 1 (mod 4), then, by Proposition 3.23, ππ for some π not associate to its complex
conjugate π. In the discussion right before Theorem 3.30 near the end of Section 3.3, we saw that this
prime is associate to a prime congruent to 1 modulo 2 + 2i, hence, we may assume that π itself satisfies this
property. If we write π = a+ bi, we have that

π = (2 + 2i)γ + 1

for some γ ∈ Z[i]. Let c, d ∈ Z be such that γ = c+ di. Then

π = a+ bi = 2c+ 2di+ 2ci− 2d+ 1 = (2c− 2d+ 1) + 2i(c+ d),

which implies that a is odd and b is even. By the same argument as in the case of Z[ω], we have the
isomorphism Z/pZ ∼= Z[i]/πZ[i]. By Lemma 3.33,

2 is a biquadratic residue ⇐⇒ iab/2 = 1 ⇐⇒ 4 | ab/2 ⇐⇒ 8 | b.

Note that 8 | b if and only if p = ππ = a2+b2 is of the form x2+64y2. Conversely, if p is of the form x2+64y2,
then x must be odd, since p is prime, and, since 32 ≡ 12 ≡ 1 (mod 4), it follows that p ≡ 1 (mod 4).

4 The case n 6≡ 3 (mod 4), n squarefree, and the Hilbert class field

In the previous part, we were working in the rings Z[ω] and Z[i], which are the rings of integers (see Definition
2.5) of Q[ω] and Q[i] respectively, by Proposition 2.11 (or by Proposition 4.23). We saw that the rings of
integers in these cases are Euclidean domains and, thus, principal ideal domains and unique factorization
domains. This need not be the case for an arbitrary field extension K of Q. In the Section 4.1, we see that
the ring OK of integers in K is always a Dedekind domain (see Theorem 4.5) in which unique factorization
holds for ideals. The theory of number fields discussed in this section allows us to state the existence theorem
of the Hilbert Class field in Section 4.2. In Sections 4.3–4.4 we explained how to apply the Hilbert class field
to primes of the form x2 + ny2. In Section 4.3 we also discuss some theory of quadratic forms which will
prove helpful for applying the Hilbert class fields (e.g., for the case n = 14 considered in Section 4.5).

4.1 Dedekind domains

The following definition is according to §3.4 in Samuel.[5]

Definition 4.1. Let R be an integral domain. Then, R is called a Dedekind domain if

(i) R is integrally closed, i.e., if α belongs to the fraction field of R and f(α) = 0 for some monic f ∈ R[x],
then α ∈ R, (see Definition 2.6)

(ii) R is Noetherian, i.e., for every ascending chain I1 ⊂ I2 ⊂ · · · of ideals in R, there exists an index
n0 ∈ Z≥1 such that In = In0

for all integers n ≥ n0,

(iii) every nonzero prime ideal P of R is maximal

The corollary of Theorem 9 in Marcus states the following.[4]

Proposition 4.2. Let K be a number field. Then its ring of integers OK is a free Z-module of rank [K : Q].

Proof. See the corollary of Theorem 9 in Marcus,[4] where the term abelian group is used instead of Z-module.
(The two notions are equivalent, as explained in Dummit and Foote, Chapter 10.[2])

The two lemmas below is stated as Propositions 12–13 and Corollary 3 in Dummit and Foote, Chapter 7,
Section 7.4 and 7.1 respectively.[2]

Lemma 4.3. Let R be any commutative ring with a multiplicative identity 1 and let I be an ideal of R.
Then
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(i) I is a prime ideal of R if and only if R/I is an integral domain

(ii) I is a maximal ideal of R if and only if R/I is a field.

Proof. This proof is based on the proofs Dummit and Foote, Chapter 7, Section 7.4, Proposition 12. Part
(i) follows from the definitions of a prime ideal, an integral domain, and a quotient ring in the following way.

I is prime ⇐⇒ for all a, b ∈ R, a ∈ I or b ∈ I if ab ∈ I ⇐⇒

for all a, b ∈ R, a+ I = 0 + I or b+ I = 0 + I if ab+ I = 0 + I ⇐⇒
for all a, b ∈ R/I, a = 0 or b = 0 if ab = 0 ⇐⇒ R/I is an integral domain

The proof of part (ii) uses the Fourth Ring Isomorphism Theorem, stated in Dummit and Foote, Chapter 7,
Section 7.3, Theorem 8(3), which states that, for ideals A of R containing I, the map A 7→ R/A is bijective.[2]
Since

I is maximal ⇐⇒ J = I or J = R whenever I ⊂ J ⊂ R ⇐⇒
it follows from the Fourth Ring Isomorphism Theorem that

I is maximal ⇐⇒ J/I = I/I or J/I = R/I whenever I/I ⊂ J/I ⊂ R/I,

that is, if I is maximal, R/I has only two ideals I/I = (0) and R/I itself. This is equivalent to R/I being a
field, since, if (0) and R/I are the only ideals of R/I, then, for any nonzero a ∈ R/I, the ideal (a) contains the
multiplicative identity 1, that is, a has a multiplicative inverse in R/I, thus, R/I is a field, and, conversely,
if R/I is a field, then any nonzero element in R/I has a multiplicative inverse, thus, any ideal other than
(0) contains (1) = R/I.

Lemma 4.4. Every finite integral domain is a field.

Proof. This lemma follows from the cancellation law in integral domains. Let R be any finite integral domain.
Let a ∈ R \ {0} be arbitrary. We need to show that there exists a multiplicative inverse a−1 of a such that
aa−1 = 1. For any two b1, b2 ∈ R,

ab1 = ab2 =⇒ b1 = b2,

since R is an integral domain. This shows that the map b 7→ ab (multiplication by a) is injective. Since R is
finite, the map a 7→ ab is an automorphism. It follows that aa−1 = 1 for some a−1 ∈ R. The proof given in
Dummit and Foote, Chapter 7, Section 7.1, Corollary 3 follows the same idea (it is stated as a corollary of
the cancellation law).[2]

The following theorem is stated in Dummit and Foote, Chapter 16, Section 16.3 as Proposition 14(2),[2]
and in Cox, Chapter 2, §5(A) as Theorem 5.5.[1]

Theorem 4.5. Let K be a number field. Then OK is a Dedekind domain.

Proof. See Dummit and Foote, Chapter 16, Section 16.3, Proposition 14(2).[2]

Below we discuss some important properties of Dedekind domain. In particular, these properties hold in
OK for any number field K, by Theorem 4.5. Most of these definitions and propositions can be extended
to integral domains (with some modification), as seen in Dummit and Foote, Chapter 16, Section 16.2.[2]
Dummit and Foote state the following definition.[2]

Definition 4.6. Let R be a Dedekind domain and let K be its field of fractions. An R-submodule A of K
is called a fractional ideal of R if it satisfies one of the following equivalent conditions.

(i) dA ⊂ R for some d ∈ R \ {0}.

(ii) A = d−1I for some d ∈ R \ {0} and some nonzero ideal I of R.

A principal fractional ideal of R is an ideal of the form xR, where x ∈ K \ {0}. This definition agrees with
the definitions given in Cox, Chapter 2, §5(A),[1] where it is stated for rings of integers of a number field in
particular, and in Dummit and Foote, Chapter 16, Section 16.2.[2]
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Remark 4.7. To see that (i) implies (ii), note that, if dA ⊂ R, then dA is an R-submodule of R. Since
the R-submodules of R are precisely the ideals of R (by the definition of a module and the definition of an
ideal in a commutative ring, see Dummit and Foote, Chapter 10, Section 10.1, Example (1)[2]) we may put
I = dA, which gives us

A = d−1dA = d−1I,

where I is an ideal of R. Is is also clear that (ii) implies (i), because if A = d−1I, for some d ∈ K \ {0} and
some nonzero ideal I of R, then dA = I ⊂ R.

Remark 4.8. In Marcus, Chapter 3, Exercise 31,[4] a fractional ideal in a Dedekind domain is defined
differently, namely, as a set of the form xI, where x ∈ K \ {0} and I is a nonzero ideal.

In Definition 4.9 below, we give the definition of the product of two fractional ideals. This definition is
given Dummit and Foote, Chapter 16, Section 16.2.[2]

Definition 4.9. Let R be a Dedekind domain and let K be its field of fractions. Given two fractional ideals
A = c−1I and B = d−1J , where c, d ∈ R \ {0} and I, J are nonzero ideals of R, we define their product AB
as

AB :=
{ r∑

i=1

aibi | r ∈ Z≥1, ai ∈ A, bi ∈ B for all i ∈ {1, · · · , r}
}

=

{ r∑

i=1

c−1gid
−1hi | r ∈ Z≥1, gi ∈ I, hi ∈ J for all i ∈ {1, · · · , r}

}
=

c−1d−1
{ r∑

i=1

gihi | r ∈ Z≥1, gi ∈ I, hi ∈ J for all i ∈ {1, · · · , r}
}

= c−1d−1IJ = (cd)−1IJ

The following proposition is stated as part of Theorem 15 in Dummit and Foote, Chapter 16, Section
16.3,[2]

Proposition 4.10. Let R be a Dedekind domain. Then any nonzero fractional ideal A of R is invertible,
that is, there exists a fractional ideal A−1 such that AA−1 = R.

Proof. See Dummit and Foote, Chapter 16, Section 16.3, Theorem 15.[2]

Definition 4.11. Let R be a Dedekind domain and let K be its field of fractions. In accordance with
Cox, Chapter 2, §5(A),[1] we let IK denote the set of fractional ideals of R and we let PK denote the set of
principal fractional ideals of R. If R is a Dedekind domian, then, by Proposition 4.10, IK and PK denote
the sets of all fractional ideals and principal fractional ideals respectively.

The following proposition is stated as part of Proposition 9 in Dummit and Foote, Chapter 16, Section
16.2.[2]

Proposition 4.12. Let R be a Dedekind domain and let K be its field of fractions. Then IK is a group
under multiplication and PK is a subgroup of IK .

Proof. Since R itself is an ideal of R and PK consists of invertible ideals of the form xR, x ∈ K \ {0}, we
have that PK ⊂ IK . It follows from Definition 4.9 that PK and IK are closed under multiplication, and
that the multiplication is associative and commutative in both sets (since this is the case in R). By the
definition of the product of ideals, R ∈ PK ⊂ IK is the identity element, and, since every fractional ideal in
IK is invertible, IK is closed under inversion. The same is true for PK , since the inverse of xR is given by
x−1R.

The following definition is stated in Dummit and Foote, Chapter 16, Section 16.2.[2]

Definition 4.13. Let R be a Dedekind domain and let K be its field of fractions. Then the quotient group
IK/PK is called the ideal class group of R. In accordance with Cox, Chapter 2, §5(A) (where this definition
is stated for a ring of integers in a number field in particular),[1] we denote the ideal class group by C(R).
The class number of R is defined as the order of C(R).
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The following Proposition, is stated as part of Theorem 15 in Dummit and Foote, Chapter 16, Section
16.3,[2] and Proposition 4.15 follows. (It is stated as part of Corollary 5.6 in Cox, Chapter 2, §5(A).[1])

Proposition 4.14. Let R be a Dedekind domain. Then every nonzero proper ideal I of R can be written
uniquely (up to order) as the product

I = P1 · · ·Pr, r ∈ Z≥1,

of nonzero prime ideals.

Proof. See Dummit and Foote, Chapter 16, Section 16.3, Theorem 15.[2]

Proposition 4.15. Let R be a Dedekind domain, and let I, r, P1, · · · , Pr be as in 4.14, then, given any
prime ideal P in R, it holds that I ⊂ P if and only if P = Pi for some i ∈ {1, · · · , r}.

Proof. This argument is based on the proof of A ⊂ B ⇐⇒ B|A, for ideals A,B in a Dedekind domain,
given in Dummit and Foote, Chapter 16, Section 16.3.[2] If P = Pi for some i ∈ {1, · · · , r}, then every
element in I is the sum of terms of the form ap, a ∈ R, p ∈ P , hence every element in I is also an element
in P . Conversely, if I ⊂ P , we have that

IP−1 ⊂ PP−1 = R,

thus, IP−1 is a fractional ideal contained in R, i.e., an ideal. Since

I = IP−1P

and since the factorization into prime ideals is unique, by Proposition 4.14, we can conclude that P = Pi for
some i ∈ {1, · · · , r}.

Remark 4.16. The P ′is in Proposition 4.14 need not be distinct, and, therefore, we may write the product
as

I = Pn1
1 · · ·Pns

s , s ∈ Z≥1, n1, · · · , ns ∈ Z≥1.

From now on, we will, in particular, restrict ourselves to rings of integers in number field, which are
Dedekind domains by Proposition 4.5 The following definitions are stated in Cox, Chapter 2, §5(A).[1]

Definition 4.17. Given two number fields K,L such that K ⊂ L, and given a prime ideal P of OK , we can,
according to Proposition 4.14, write the ideal POL of OL generated by the set P as the product POL =
Qe11 · · ·Q

eg
r , where, g ∈ Z≥1, the Qi’s are distinct (nonzero) prime ideals of OL, and, for each i ∈ {1, · · · , g},

ei ∈ Z. We call ei the ramification index of P in Qi, and we call the degree fi := [OL/Qi : OK/P ] of the
field extension OK/P ⊂ OL/Qi, the inertial degree of P in Qi. If ei > 1 for some i ∈ {1, · · · , g}, then we
say that P ramifies in L. If K ⊂ L is a Galois extension, then, by Cox, Chapter 2, §5(A), Theorem 5.9,[1]
the ramification indices ei, i = 1, · · · , g are all equal, and the same goes for the inertia degrees. In this case,
if we let e denote the ramification index and let f denote the inertia degree, we say that P splits completely
in L if e = f = 1.

For fractional ideals of OK , we have a similar unique factorization, as explained in the following proposition,
which is stated as Proposition 5.7 in Cox, Chapter 2, §5(A),[1] but in this case we also allow the exponents
to be negative.

Proposition 4.18. Let K be a number field. Then every fractional ideal I of OK can be written uniquely
(up to order) as the product

I = Pn1
1 · · ·Pnr

r , r ∈ Z≥1, n1, · · · , nr ∈ Z,

where P1, · · · , Pr are prime ideals of OK .

Proof. See Cox, Chapter 2, §5(A), Proposition 5.7.[1]
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The following theorem is stated as Theorem 21 in Marcus, Chapter 3,[4] and as Theorem 5.8 in Cox,
Chapter 2, §5(A).[1]

Theorem 4.19. Using the same notation as in Definition 4.17, it holds that

g∑

i=1

eifi = [L : K].

Proof. See Marcus, Chapter 3, Theorem 21, where this Theorem is proved both for the special case K = Q
and for the general case.[4]

Regarding the problem of primes of the form x2 + ny2, there is one type of number fields that play an
important role, namely, the quadratic fields, and, in particular, the imaginary quadratic fields (see Definition
4.20 below). Quadratic fields are explained in more detail in Cox, Chapter 2, §5(B),[1] in Ireland and Rosen,
Chapter 13, §1,[3] and in Samuel, Chapter 2, §2.5.[5]

Definition 4.20. A field K is called a quadratic (number) field if [K : Q] = 2. Every such field K is of the
form Q(

√
m), where m ∈ Z is squarefree (as shown in Samuel, Chapter 2, §2.5, Proposition 1[5]), and, thus,

a number field. If
√
m is imaginary, i.e., if m < 0, then K is called an imaginary quadratic (number) field.

Note that m 6= 0, since 0 is not squarefree, and m could be any squarefree integer except 1, since
√
m ∈ Q

if and only if m = 1.

The following definition is given in Ireland and Rosen, Chapter 12, §1–2.[3]

Definition 4.21. Let K be any number field and let L/K be any algebraic field extension of K (see
Definition 2.3). If α1, · · · , αn, n ∈ Z≥1 is a basis for this extension. Given an element α ∈ L, the trace of α
is the sum

tr(α) := a1 + · · ·+ an,

where ai, i ∈ {1, · · · , n}, denotes the coefficient of the αi-term when expressing ααi as a linear combination of
α1, · · · , αn. Given some elements β1, · · · , βr ∈ L, r ∈ Z≥1, their discriminant is defined to be det(tr(βiβj)),
where (tr(βiβj)) denotes the matrix




tr(β1β1) · · · tr(β1βr)
...

. . .
...

tr(βrβ1) · · · tr(βnβn)


 .

If K is an arbitrary algebraic extension of Q, then the discriminant of K (or the discriminant of OK) is
the discriminant of any integral basis for OK , i.e., any basis α1, · · · , αn ∈ OK for K/Q such that OK =
Zα1 + · · ·+Zαn. (Such a basis exists according to Ireland and Rosen, Chapter 12, §2, Proposition 12.2.2.[3])

Proposition 4.22 is stated (as Proposition 13.1.2) and proved in Ireland and Rosen, Chapter 13, §1,[3] and
Proposition 4.23 is stated (as Theorem 1) and proved in Samuel, Chapter 2, §2.5.[5]

Proposition 4.22. Let K = Q(
√
m) be a quadratic field. Then the discriminant DK of K is given by

DK =

{
m if m ≡ 1 (mod 4)

4m otherwise

Proof. See Ireland and Rosen, Chapter 13, §1, Proposition 13.1.2.[3]

Proposition 4.23. Let K = Q(
√
m) be a quadratic field. Then the ring of integers OK in K is given by

OK =

{
Z[(1 +

√
m)/2] if m ≡ 1 (mod 4)

Z[
√
m] otherwise

Proof. See Samuel, Chapter 2, §2.5, Theorem 1.[5]
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Remark 4.24. If K = Q(
√−m), m ∈ Z≥1, is an imaginary quadratic field, then, the extension K/Q is

Galois (as is the case for every quadratic extension of Q as explained in Dummit and Foote, Chapter 14,
Section 14.1, page 563, Example 2[2]), and the automorphisms of K which fix Q are the identity automor-
phism and complex conjugation τ :

√−m 7→ −√−m. To prove this, one can use the same argument as for
Q(i) = Q(

√
−1) in the proof of Proposition 3.6.

The following Proposition is stated as part of Exercise 5.19(a) in Cox, Chapter 2, §5.[1]

Proposition 4.25. Given an imaginary quadratic field K and a Galois extension L of K. Then the extension
L/Q is Galois whenever L = τ(L), where τ denotes complex conjugation.

Proof. Suppose that L = τ(L). Then, for any σ ∈ Gal(L/K), it holds that τ ◦ σ ∈ Aut(L/Q), since τ and
σ fix Q. Since τ does not fix K, we have that τ ◦ σ /∈ Gal(L/K). This shows that each σ ∈ Gal(L/K) gives
rise to two distinct automorphism σ, τ ◦ σ ∈ Aut(L/Q). For any two σ1, σ2 ∈ Gal(L/K),

τ ◦ σ1 = τ ◦ σ2 =⇒ σ1 = τ ◦ τ ◦ σ1 = τ ◦ τ ◦ σ2 = σ2,

since τ is its own inverse, which shows that

|Aut(L/Q)| ≥ 2|Gal(L/K)| = 2[L : K].

By Proposition 2.2,
[L : Q] = [L : K][K : Q] = 2[L : K] ≤ |Aut(L/Q)|,

and, by Proposition 2.17,
|Aut(L/Q)| ≤ [L : Q],

thus, |Aut(L/Q)| = [L : Q], i.e., the extension L/Q is Galois.

Remark 4.26. The converse of Proposition 4.25 also holds, according to Cox, Chapter 2, §5, Exercise
5.19(a),[1] but we leave out the proof of this fact.

4.2 The Hilbert Class Field

In this section we will state the existence and uniqueness of the Hilbert class field of a number field (Theorem
4.29), which is stated as Theorem 5.18 in Cox, Chapter 2, §5(C) and proved in Chapter 2, §8(A).[1] In order
to define the Hilbert class field, we need a few more definitions, namely, Definitions 4.27 and 4.28 below,
which are both stated in Cox, Chapter 2, §5(C).

Definition 4.27. Let K,L be number fields such that K ⊂ L. The extension K ⊂ L is called abelian if it
is Galois and the Galois group Gal(L/K) is abelian.

Definition 4.28. Let K be a number field. A nonzero prime ideal of OK is called a finite prime of K.
An embedding K → R is called a real infinite prime of K and a pair of embeddings K → C, where the
embedding are complex conjugates of each other, is called a complex infinite prime of K. Let L be extension
of K. We say that an infinite prime σ of K ramifies in L if it is real and can be extended to a complex
infinite prime of L. We say that the extension K ⊂ L is unramified if no infinite nor finite primes of K
ramify in L.

The following proposition states the existence and uniqueness of the Hilbert class field, and is stated as
Theorem 5.18 in Cox, Chapter 2, §5(C), and proved i x8(A).[1]

Theorem 4.29. Let K be any number field. Then there exists a finite extension L of K, such that L is an
unramified and abelian extension of K, and M ⊂ L whenever M is an unramified abelian extension of K,
that is, L is the maximal everywhere unramified abelian extension of K.

Proof. This theorem is proved in Cox, Chapter 2, §8(A) (see Theorem 8.10 of this section).[1]

Definition 4.30. The field L of Theorem 4.29 is called the Hilbert class field of K.
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The following proposition states the existence and uniqueness of the Artin symbol, and is stated as Lemma
5.19 in Cox, Chapter 2, §5(C).[1]

Proposition 4.31. Let K be any number field, and let L/K be a Galois extension. If a prime P of K is
unramified in L and Q is a prime of L containing P , then there is a unique σ ∈ Gal(L/K) such that

σα ≡ α|OK/P | (mod Q),

i.e., σα and α|OK/P | belong to the same coset in OK/P , for all α ∈ OK .

Proof. See Cox, Chapter 2, §5(C), Lemma 5.19.[1]

Definition 4.32. The element σ of Proposition 4.31 is called the Artin symbol and is denoted

(
L/K

Q

)
.

This symbol depends on Q (and the fields K and L), since P = K ∩Q.

Remark 4.33. If L/K is an abelian extension, that is, Gal(L/K) is abelian, then the Artin symbol depends
only on P , as explained in Cox, Chapter 2, §5(C),[1] thus, in this case, we can write

(
L/K

P

)
:=

(
L/K

Q

)

If Gal(L/K) is abelian, the Artin symbol can also be extended to fractional ideals of K in the following
way.

Definition 4.34. Given a fractional ideal F of a number field K with prime factorization (according to
Proposition 4.18)

F = Pn1
1 · · ·Pnr

r ,

where r ∈ Z≥1, n1, · · · , nr ∈ Z, and P1, · · · , Pr being prime ideals of K, and an unramified abelian extension
L of K, we can define the Artin symbol to be

(
L/K

F

)
:=

r∏

i=1

(
L/K

Pi

)ni

.

Definition 4.35. Let K be any number field, and let L/K be an unramified abelian extension. Then, the
map (

L/K

·

)
: IK → Gal(L/K)

is called the Artin map. This map is a homomorphism, since Gal(L/K) is abelian.

The following theorem relates the ideal class group (see Definition 4.13) to the Hilbert class field and is
stated as Theorem 5.23 in Cox, Chapter 2, §5(C).[1]

Theorem 4.36. (The Artin Reciprocity Theorem for the Hilbert Class Field) Let K be a number field

and let L be its Hilbert class field. Then the Artin map
(L/K
·
)

is surjective with kernel PK (see Definition
4.11), thus, by the First Isomorphism Theorem for Groups (see Dummit and Foote, Chapter 3, Section 3.3,
Theorem 16[2]),

C(OK) = IK/PK ∼= Gal(L/K).

Proof. See Cox, Chapter 2, §8(A), (8.9).[1]
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4.3 The form class group and its relation to the ideal class group

In this section we will discuss some results from the theory of quadratic forms. In the end of this section, we
will define the form class group and explain how it relates to the ideal class group. In the next section we
will see that this result is of high importance for the problem of applying the Hilbert class field to primes of
the form x2 +ny2. Most of this section is based on Cox, Chapter 1, §2(A),[1] where, if not stated otherwise,
the definitions, propositions and theorems of this section are to be found.

Definition 4.37. Given a quadratic form f(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z, in the two variables x
and y, we say that m ∈ Z is represented by f (or that f represents m) if m = f(x, y) for some nonzero
(x, y) ∈ Z2. Furthermore, if m = f(x, y) where x and y are relatively prime, we say that m is properly
represented by f . We say that f is positive definite if it represents only positive integers and negative definite
if it represents only negative integers. If f represents both positive and negative integers, then we say that
f is indefinite. The quadratic form f is called primitive if a, b, c are all relatively prime. Throughout this
section, all quadratic forms will be assumed to be primitive, even if not stated.

Definition 4.38. Given a primitive quadratic form ax2 + bxy + cy2, a, b, c ∈ Z, in the two variables x and
y, the discriminant D of ax2 + bxy + cy2 is defined to be the integer

D = b2 − 4ac.

Proposition 4.39. Given a primitive quadratic form f(x, y) = ax2+bxy+cy2, a, b, c ∈ Z with discriminant
D, it holds that D < 0 if and only if f is positive or negative definite. Furthermore, if D < 0, then f is
positive definite if and only if a > 0, and negative definite if and only if a < 0.

Proof. This proposition is stated in Cox, Chapter 1, §2(A) without a proof and as Exercise 2.4(b).[1] Suppose
that D < 0. Then either a > 0 or a < 0, because a = 0 implies that D = b2 ≥ 0, which is a contradiction.
Since

4af(x, y) = 4a2x2 + 4abxy + 4acy2 = 4a2x2 + 4abxy + 4acy2 + b2y2 − b2y2 =

4a2x2 + 4abxy + b2y2 − (b2 − 4ac)y2 = (2ax+ by)2 −Dy2,
it follows that, if D < 0, then, for every nonzero (x, y) ∈ Z2, 4af(x, y) > 0, thus f is positive definite
whenever a > 0 and negative definite whenever a < 0.

Conversely, suppose that f is either positive or negative definite, then a 6= 0, because a = 0 implies that
f(x, y) = bxy + cy2, which is indefinite, since the sign of f(±2c, 1) = c(±2b + 1) depends on the sign ±.
Analogously, it also holds that c 6= 0. It follows that 4af(x, y) is either positive or negative definite. It
must be the case that a and c have the same sign, because otherwise ac < 0, which in turn implies that
4af(x, y) is negative for x = 0 and some y large enough, and positive for y = 0 and some x large enough,
thus, indefinite. If D ≥ 0, then b must be nonzero (since D is negative otherwise), thus

4af(−2c, b) = (−4ac+ b2)2 −Db2 = D2 −Db2 = D(D − b2) = −4Dac ≤ 0

and
4af(−2c, 0) = (−4ac)2 > 0,

contradicting that 4af(x, y) is positive or negative definite. It follows that D < 0.

Definition 4.40. Two primitive quadratic forms f and g in the two variables x and y are said to be
equivalent if f(x, y) = g(ax+ by, cx+ dy) for some a, b, c, d ∈ Z such that ad− bc = ±1. If ad− bc = 1, then
f and g are said to be properly equivalent.

Proposition 4.41. Proper equivalence between quadratic forms in the two variables x and y is an equivalence
relation.
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Proof. This proposition is stated in Cox, Chapter 1, §2(A) without a proof and as part of Exercise 2.2(a).[1]
Let f, g, and h be quadratic forms in the two variables x and y. By putting a = d = 1 and b = c = 0, we see
that

ad− bc = 1− 0 = 1,

and,
g(x, y) = g(ax+ by, cx+ dy)

which shows that g is properly equivalent to itself, that is, proper equivalence is a reflexive relation. If
f(x, y) = g(ax+ by, cx+ dy) for some a, b, c, d ∈ Z such that ad− bc = 1, then, g(x, y) = f(px+ qy, rx+ sy)
holds for some p, q, r, s ∈ Z if and only if

g(x, y) = g(apx+ aqy + brx+ bsy, cpx+ cqy + drx+ dsy) =

g((ap+ br)x+ (aq + bs)y, (cp+ dr)x+ (cq + ds)y).

Since ad− bc = 1, putting p = d, r = −c, q = −b, and s = a gives us that

ps− qr = ad− bc = 1,

ap+ br = cq + ds = ad− bc = 1,

aq + bs = −ab+ ab = 0

cp+ dr = cd− cd = 0,

thus, we can write g(x, y) = f(dx−by,−cx+ay), which shows that proper equivalence is a symmetric relation.
If f(x, y) = g(ax+by, cx+dy) for some a, b, c, d ∈ Z such that ad−bc = 1, and g(x, y) = h(a′x+b′y, c′x+d′y)
for some a′, b′, c′, d′ ∈ Z such that a′d′ − b′c′ = 1, then

f(x, y) = h(a′(ax+ by) + b′(cx+ dy), c′(ax+ by) + d′(cx+ dy)) =

h(a′ax+ a′by + b′cx+ b′dy, c′ax+ c′by + d′cx+ d′dy) =

h((a′a+ b′c)x+ (a′b+ b′d)y, (c′a+ d′c)x+ (c′b+ d′d)y).

Since
(a′a+ b′c)(c′b+ d′d)− (a′b+ b′d)(c′a+ d′c) =

a′c′ab+ a′d′ad+ b′c′bc+ b′d′cd− a′c′ab− a′d′bc− b′c′ad− b′d′cd =

a′d′ad+ b′c′bc− a′d′bc− b′c′ad = (a′d′ − b′c′)(ad− bc) = 1 · 1 = 1,

hence, the proper equivalence relation is transitive.

Proposition 4.42. Let f(x, y) be a quadratic form (with integer coefiicients). Then a ∈ Z is properly
represented by f if and only if f is properly equivalent to ax2 + bxy + cy2 for some b, c ∈ Z.

Proof. This proposition is proved in Cox, Chapter 1, §2(A), Lemma 2.3,[1] using that ps − qr = 1 for
some r, s ∈ Z if and only if p, q ∈ Z are relatively prime. Assuming that a = f(p, q) where p and q are
relatively prime, one can construct the quadratic form f(px+ ry, qx+ sy) which is properly equivalent to f
with the coefficient of the x2-term being a = f(p, q). In order to prove the converse, one can assume that
f(px+ ry, qx+ sy) has a as the coefficient of the x2-term and that ps− qr = 1, and put (x, y) = (1, 0).

Proposition 4.43. If f and g are equivalent quadratic forms in the two variables x and y, then they have
the same discriminant.
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Proof. This is proved in less detail in Cox, Chapter 1, §2(A).[1] Let f = ax2 + bxy + cy2, and let g(x, y) =
f(px+ qy, rx+ sy), where p, q, r, s ∈ Z such that ps− qr = ±1. Let D = b2 − 4ac be the discriminant of f .
Then

g(x, y) = a(px+ qy)2 + b(px+ qy)(rx+ sy) + c(rx+ sy)2 =

ap2x2 + 2apqxy + aq2y2 + bprx2 + bpsxy + bqrxy + bqsy2 + cr2x2 + 2crsxy + cs2y2 =

(ap2 + bpr + cr2)x2 + (2apq + bps+ bqr + 2crs)xy + (aq2 + bqs+ cs2)y2

has discriminant

(2apq + bps+ bqr + 2crs)2 − 4(ap2 + bpr + cr2)(aq2 + bqs+ cs2) =

4a2p2q2 + 4abpq2r + b2q2r2 + 4abp2qs+ 2b2pqrs+ 8acpqrs+ 4bcqr2s+

b2p2s2 + 4bcprs2 + 4c2r2s2 − 4a2p2q2 − 4abpq2r − 4acq2r2−
4abp2qs− 4b2pqrs− 4bcqr2s− 4acp2s2 − 4bcprs2 − 4c2r2s2 =

b2q2r2 − 4acq2r2 − 2b2pqrs+ 8acpqrs+ b2p2s2 − 4acp2s2 =

b2q2r2 + (D − b2)q2r2 − 2b2pqrs− 2(D − b2)pqrs+ b2p2s2 + (D − b2)p2s2 =

D(q2r2 − 2pqrs+ p2s2) + b2 (q2r2 − q2r2 − 2pqrs+ 2pqrs+ p2s2 − p2s2)︸ ︷︷ ︸
=0

=

D(ps− qr)2 = D · 1 = D

Definition 4.44. A positive definite quadratic form ax2 + bxy+ cy2, a, b, c ∈ Z, in the two variables x and
y, is called reduced if

(i) |b| ≤ a ≤ c, and

(ii) b ≥ 0 whenever |b| = a or a = c

Theorem 4.45. For every primitive positive definite quadratic form f(x, y) in the two variables x and y,
there exists a unique reduced quadratic form g(x, y) such that f and g are properly equivalent.

Proof. See Cox, Chapter 1, §2(A), Theorem 2.8.[1]

The following definition is according to Cox, Chapter 1, §2(A) and §3(A).[1]

Definition 4.46. Let D < 0 be an integer. We denote by C(D) the set of primitive positive definite reduced
quadratic forms of discriminant D. This set is called the (form) class group of D since it consists of the
equivalence classes under proper equivalence of primitive quadratic forms and it forms an abelian group
under Dirichlet composition (defined by Dirichlet in Zahlentheori, inspired by the work of Legendre), as
shown in Cox, Chapter 1, §3(A), Theorem 3.9, as well as under composition, as was shown by Gauss in
Disquisitiones Arithmetica, according to Cox.[1] We denote by h(D) the order of C(D), i.e., (by Theorem
4.45) the number of primitive positive definite reduced quadratic forms of discriminant D. This number is
called the class number of D.

Theorem 4.47. Let D < 0 be an integer. Then h(D) is finite

Proof. This theorem is proved in Cox, Chapter 1, §2(A), Theorem 2.13,[1] by showing that for a primitive
positive definite reduced quadratic form ax2 + bxy + cy2, the coefficients a and b can be chosen in only a
finite number of ways (and the same goes for c, which, for any fixed D, is determined by a and b, since
D = b2 − 4ac). This follows from the fact that b2 ≤ a2 and |b| ≤ a ≤ c (since ax2 + bxy + cy2 is reduced),
since

−D = 4ac− b2 ≥ 4a2 − b2 ≥ 3a2

implies that
a ≤

√
−D/3,

which is a finite positive number.
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The following theorem, stated as Theorem 5.30 in Cox, Chapter 2, §5(D),[1] gives us the relationship
between the form class group and the ideal class group (see Definition 4.13).

Theorem 4.48. Let K be any imaginary quadratic field and let DK be the discriminant of K (see Definition
4.21). Then,

(i) for any primitive positive definite quadratic form ax2 + bxy + cy2, a, b, c ∈ Z, in the two variables x
and y, the set

Ia,b,c := {ma+ n(−b+
√
DK)/2 | m,n ∈ Z}

is an ideal of OK , and

(ii) the map C(DK)→ C(OK), ax2 + bxy + cy2 7→ Ia,b,c, between the form class group C(DK) of DK and
the ideal class group C(OK) of OK is an isomorphism.

(Note that, by Proposition 4.22, since K is an imaginary quadratic field, it holds that DK < 0.)

Proof. See Cox, Chapter 2, §7(B), Theorem 7.7,[1] which is a more general theorem, stating that (i) and (ii)
hold for orders in a quadratic field (see Definition 5.1), which include the ring of integers. In Cox, Chapter
2, §7(A),[1] the notions of discriminant and the ideal class group is extended to orders of a number field.

4.4 Theorem for primes of the form x2 + ny2, where n 6≡ 3 (mod 4), n squarefree

The main theorem of this thesis, Theorem 4.49 below, gives us a necessary and sufficient condition for a
prime p to be of the form x2 + ny2, for n ∈ Z≥1 satisfying that n is squarefree and n 6≡ 3 (mod 4). Note
that the latter implies that −n 6≡ 1 (mod 4), hence, by Proposition 4.23, the ring of integers in Q(

√−n) is
Z[
√−n]. If we know the Hilbert class field of Q(

√−n), them, we can easily apply this theorem. Although
it holds for an infinite number of n’s, there is no general method for computing the Hilbert class field.

Theorem 4.49. Let n be a positive integer satisfying that n is squarefree and n 6≡ 3 (mod 4), and let p ∈ Z
be a prime such that p - n and p 6= 2. Let K = Q(

√−n) and let α ∈ R be a real algebraic number such that
L = K(α) is the Hilbert class field of K. Then, there exists a monic irreducible f ∈ Z[x] of degree h(−4n),
which is the minimal polynomial of α, such that, provided that p does not divide the discriminant of f ,

p = x2 + ny2 for some x, y ∈ Z ⇐⇒
{(−n

p

)
= 1 and f(z) ≡ 0 (mod p)

has a solution in Z

The proof of this theorem is given in Cox, Chapter 2, §5(D), Proof of Theorem 5.1.[1] Cox uses the following
lemmas.

Lemma 4.50. If K is an imaginary quadratic field and L is the Hilbert class field of K. Then the extension
L/Q is Galois.

Proof. This proof is given in Cox, Chapter 2, §5(D), Lemma 5.28.[1] The idea is to use that K = τ(K) ⊂ τ(L)
(where τ denotes complex conjugation) is an unramified abelian extension of degree [τ(L) : τ(K)] = [L : K],
and that L is the maximal unramified abelian extension of K. It follows that L = τ(L), hence, by Proposition
4.25, the extension L/Q is Galois.[1]

Lemma 4.51. If K = Q(
√−n), where n ∈ Z is squarefree and n 6≡ 3 (mod 4), L is the Hilbert class field

of K, and p ∈ Z is a prime such that p - n and p 6= 2, then

p = x2 + ny2 for some x, y ∈ Z ⇐⇒ pOK splits completely in L.

Proof. See Cox, Chapter 2, §5(D), Theorem 5.26.[1]

Lemma 4.52. If K is an imaginary quadratic field and L is a number field containing K such that L/Q is
a Galois extension, then,

(i) there is a real algebraic integer α such that L = K(α), and
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(ii) if f ∈ Z[x] is the minimal polynomial of α over Q and Df is the discriminant of f , then, for any prime
p ∈ Z such that p - Df ,

pOK splits completely in L ⇐⇒
{(

DK

p

)
= 1 and f(z) ≡ 0 (mod p)

has a solution in Z,

where DK denotes the discriminant of K.

Proof. See Cox, Chapter 2, §5(D), Proposition 5.29.[1]

Proof of Theorem 4.49. The proof is given in Cox, Chapter 2, §5(D),[1] using the three lemmas above and
Theorems 4.36 and 4.48. The idea of the proof is as follows. If L is the Hilbert class field of K, then, by
Lemma 4.50, the extension L/Q is Galois, thus, by combining Lemmas 4.51 and 4.52, we have that L = K(α)
for some real algebraic integer α. If we let f ∈ Z[x] be the minimal polynomial of α over Q and Df the
discriminant of f , then, for any prime p ∈ Z such that p - Df and p - n,

p = x2 + ny2 for some x, y ∈ Z ⇐⇒
{(

DK

p

)
= 1 and f(z) ≡ 0 (mod p)

has a solution in Z
.

By Proposition 4.22, we have that DK = −4n, since −n 6= 1 (mod 4). It follows that

(
DK

p

)
=

(−4n

p

)
=

(−n
p

)
.

By the Artin Reciprocity Theorem for the Hilbert Class Field (Theorem 4.36) and Theorem 4.48,

[L : K] = |Gal(L/K)| = |C(OK)| = |C(DK)| = h(Dk) = h(−4n).

4.5 The case n = 14

The case n = 14 is considered in Cox, Chapter 2, §5(D), and the way the Hilbert Class Field of K = Q(
√
−14)

is applied is explained below.[1] The integer 14 = 2 · 7 is squarefree and not congruent to 3 modulo 4, hence,
by Theorem 4.49, there is a polynomial f ∈ Z[x] of degree h(−4·14) = h(−56) and is the minimal polynomial
of some real algebraic number α such that L = K(α) is the Hilbert class field of K = Q(

√
−14) given a

prime p ∈ Z such that p 6= 2, 7, Df (where Df denotes the discriminant of f),

p = x2 + 14y2 for some x, y ∈ Z ⇐⇒
{(−14

p

)
= 1 and f(x) ≡ 0 (mod p)

has a solution in Z,

It is stated in Cox, Chapter 2, §5(D), Proposition 5.31, that (one such) α is given by α =
√

2
√

2− 1.[1] We

can show that L = K(
√

2
√

2− 1) is the Hilbert class field of K by showing that it is the maximal unramified
abelian extension of K. By Cox, Chapter 1, §2(A), (2.14), the reduced quadratic forms in two variables of
discriminant −56 are x2 + 14y2, 2x2 + 7y2, 3x2 + 2xy + 5y2, and 3x2 − 2xy + 5y2, thus h(−56) = 4.[1] We

can determine a basis B for L over K by computing powers of α =
√

2
√

2− 1 (we assume that 1 ∈ B):

(√
2
√

2− 1

)1

=

√
2
√

2− 1,

(√
2
√

2− 1

)2

= 2
√

2− 1,

(√
2
√

2− 1

)3

=

(√
2
√

2− 1

)2√
2
√

2− 1 = (2
√

2− 1)

√
2
√

2− 1 = 2
√

2

√
2
√

2− 1−
√

2
√

2− 1.

We see that

B =

{
1,

√
2
√

2− 1,
√

2,
√

2

√
2
√

2− 1

}
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is a basis for L over K. (Note that α4 = (2
√

2− 1)2 = 9− 4
√

2 is a linear combination over K of two other
basis elements.) This shows that L has degree 4 over K. Therefore, if L is an unramified abelian extension
of K, then, it is the maximal such extension. In Cox, Chapter 2, §5(D), it is shown that this extension is
unramified.[1] Since, according to Cox,[1] the minimal polynomial of α is x4 + 2x2 − 7 = (x2 + 1)2 − 8, we
can use Exercise 13(b)(iii) of Dummit and Foote, Chapter 14, Section 14.6,[2] which states that the Galois
group of the polynomial x4 + ax2 + b, a, b ∈ Z, (which is separable, since it has the four distinct roots

±
√
±2
√

2− 1) has Galois group isomorphic to D8, the dihedral group of order 8 (see Dummit and Foote,
Chapter 1, Section 1.2[2]) if and only if b and b(a2− 4b) are not squares in Q. In this case a = 2 and b = −7,
which is a non-square in Q, hence,

b(a2 − 4b) = −7(4 + 28) = −7 · 32,

which is also a non-square in Q. By Definition 2.19 it follows that the Galois group of the splitting field of
x4 + 2x2 − 7, which must contain K(α), is isomorphic to D8. Since D8 has three subgroups of index 2 (see
Dummit and Foote, Chapter 2, Section 2.5, Example 4, for the subgroup structure of D8[2]), the splitting
field of x4 +2x2−7 contains three subfields of degree 2 over Q, by Theorem 2.21 (the Fundamental Theorem
of Galois Theory). These quadratic subfields of the splitting field are K = Q(

√
−14), Q(

√
2), and Q(

√
−7).

Note that D8 has order 8 = [K : Q] · [L : K], hence, by Proposition 2.2, L is the splitting field of x4 +2x2−7.
An element of Gal(L/Q) order 4 (two such elements exist in D8, with one being the inverse of the other, as

seen in Dummit and Foote, Chapter 14, Section 14.6[2]) must necessarily map the root
√

2
√

2− 1 to one of

±
√
−2
√

2− 1, which in turn must be mapped to −
√

2
√

2− 1, since, otherwise, it would have order 2 or 1.
It follows that an element of Gal(L/Q) order 4 does not fix Q(

√
2) nor Q(

√
−7), since it maps

√
2 =

((√
2
√

2− 1

)2

+ 1

)
/2

to ((
±
√
−2
√

2− 1

)2

+ 1

)
/2 = −

√
2,

and √
−7 =

√
−8 + 1 =

(√
2
√

2− 1

)(√
−2
√

2− 1

)

to (
±
√
−2
√

2− 1

)(
∓
√

2
√

2− 1

)
= −
√
−8 + 1 = −

√
−7.

We can conclude that the cyclic subgroup of D8 of order 4 is isomorphic to Gal(L/K), thus, the extension
L/K is abelian (since cyclic groups are abelian). According to Cox,[1] the polynomial x4 + 2x2 − 7 =
(x2 + 1)2 − 8 has discriminant −214 · 7 (which has no other prime factors than 2 and 7), hence, we have the
following theorem for the case n = 14.

Theorem 4.53. Let p ∈ Z such that p 6= 2, 7. Then

p = x2 + 14y2 for some x, y ∈ Z ⇐⇒
{(−14

p

)
= 1 and (x2 + 1)2 ≡ 8 (mod p)

has a solution in Z.

5 General n and the ring class field

In this section we will briefly look at the theory of the ring class field and state how it relates to the problem
of primes of the form x2 +ny2. In this Sections, all proofs are omitted. For details, we refer to Cox, Chapter
2, §7–9.[1]
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5.1 The ring class field

Definitions and Propositions 5.1–5.10 below are stated in Cox, Chapter 2, §7(A).[1]

Definition 5.1. A subset O of a quadratic field K is called an order in K if

(i) O is a ring containing 1

(ii) O is a finitely generated Z-module, i.e., there exists a finite subset {α1, · · · , αr} (r ∈ Z≥1) of O such
that O = {z1α1 + · · ·+ zrαr | z1, · · · , zr ∈ Z}

(iii) O contains a Q-basis for K, i.e., there exists a finite subset {β1, · · · , βs} (s ∈ Z≥1) of O such that every
element in K can be written as a linear combination q1β1 + · · ·+ qsβs, where q1, · · · , qs ∈ Q.

Proposition 5.2. Let K be a quadratic field and let O ⊂ K be an order in K. Then O is a free Z-module
of rank 2.

Proposition 5.3. Let K be a quadratic field and let O ⊂ K be an order in K. Then K is the field of
fractions of O.

Proposition 5.4. Let K be a quadratic field. Then OK is an order in K, and O ⊂ OK , for every order O
in K, that is, OK is the maximal order in K

As in the case of OK (or any Dedekind domain), the notion of a fractional ideal can be extended, in
accordance with Cox, Chapter 2, §7(A),[1] to an arbitrary order in K in the following way.

Definition 5.5. Let K be a quadratic field and let O ⊂ K be an order in K. Although O need not be a
Dedekind domain, we can still define the notion of a fractional ideal of O in a similar way. We call a subset
of O a fractional ideal of O if it is of the form αI, where I is an ideal of O and α ∈ K \ {0}. (This definition
is stated as one of two equivalent versions given in Cox, Chapter 2, §7(A)[1]) An ideal I of O is called proper
if

O = {α ∈ K | αI ⊂ I}.
Similarly, a fractional ideal J of O is called proper if

O = {β ∈ K | βJ ⊂ J}.

A fractional ideal of O is called principal if it is of the form βO, where β ∈ K \ {0}.
Definition 5.6. Let K be a quadratic field and let O ⊂ K be an order in K. We denote by I(O) the set
of proper fractional ideals in O, and by P (O) the set of principal fractional ideals in O.

Proposition 5.7. Let K be a quadratic field and let O ⊂ K be an order in K. Then a fractional ideal of
O is proper if and only if it is invertible.

Remark 5.8. Every principal fractional ideal αO of O is invertible, with inverse α−1O. By Proposition
5.9, it follows that P (O) ⊂ I(O).

Proposition 5.9. Let K be a quadratic field and let O ⊂ K be an order in K. Then I(O) is a group and
P (O) is a subgroup.

Definition 5.10. Given a quadratic field K and an order O in K, the quotient group I(O)/P (O) is called
the ideal class group of O, and is denoted C(O). Furthermore, if O = OK , then, this definition agrees with
Definition 4.13.

Definitions 5.11–5.12 below are stated in Cox, Chapter 2, §8(A), as is Theorem 5.13.[1] Definition

Definition 5.11. Let K be a number field. A modulus of K is a product

M :=
∏

P prime of K

PnP .

such that
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• nP ≥ 0 for all P , and only finitely many nP ’s are nonzero,

• if P is a complex infinite prime, then nP =, and

• if P is a real infinite prime, then nP = 0 or nP = 1.

Definition 5.12. Let K be a number field and let M be a modulus of K. By IK(M), we denote the
subgroup of the IK (see Definition 4.11) which are relatively prime to M , and by PK,1(M) the subgroup of
IK(M) generated by PK . A subgroup H of IK(M) satisfying that

PK,1 ⊂ H ⊂ IK(M)

is called a congruence subgroup for M

The following theorem states the existence of the ring class field, and it is stated without a proof (giving a
reference to the book Algebraic Number Fields by G. Janusz) as Theorem 8.6 i n Cox, Chapter 2, §8(A).[1]
Definition 5.14 is according to Cox, Chapter 2, §9(A).[1]

Theorem 5.13. Let K be a number field, let M be a modulus of K, and let H be a congruent subgroup
for M . Then there exists a unique abelian extension L/K satisfying that all primes in K that ramify in L
divide M , and H is the kernel or the artin map of K/L restricted to IK(M).

Definition 5.14. The field L of Theorem 5.13 is called the ring class field of K

5.2 Theorem for primes of the form x2 + ny2 for general n

The following theorem is a generalization of Theorem 4.49, and is stated as Theorem 9.2 in Cox, Chapter 2,
§9(A).[1]

Theorem 5.15. Let n be any positive integer and let p ∈ Z be a prime such that p - n and p 6= 2. Let
K = Q(

√−n) and let α ∈ R be a real algebraic number such that L = K(α) is the ring class field of the
order Z[

√−n] of K. Then, there exists a monic irreducible f ∈ Z[x] of degree h(−4n), which is the minimal
polynomial of α, such that, for a prime p ∈ Z not dividing 2 nor the order of f

p = x2 + ny2 for some x, y ∈ Z ⇐⇒
{(−n

p

)
= 1 and f(z) ≡ 0 (mod p)

has a solution in Z

Proof. See Cox, Chapter 2, §9(A).[1]

Remark 5.16. In Cox, Chapter 2, §5(B),[1] the Theorem 5.15 is applied to the orders Z[
√
−27] and Z[

√
−64]

of Q(
√
−3) and Q(

√
−1) respectively. This way, Cox provides alternative proofs of Theorems 3.1 and 3.2.[1]
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