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Abstract

In this report we study a generalization of the adjoint to Quillens functor λ from the cat-
egory of differentially graded Lie algebras to simplicial sets. We describe its construction
and prove that its image is a Kan complex.
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Introduction

One aspect of mathematics is to classify objects and divide them into different cat-
egories. The methods are plentiful but mostly involve searching for properties that are
invariant under certain operations. In topology, and for topological spaces X, two com-
mon invariants are the the homotopy groups πn(X) and the singular homology groups
Hn(X). These groups are invariant under homeomorphisms, but are too wide in the
sense that non-homeomorphic spaces can have isomorphic homotopy/homology groups.
Recall that two topological spaces X and Y are homotopy equivalent if there are two
continuous maps f : X → Y and g : Y → X such that that gf ' idX , and fg ' idY . In
particular the homotopy groups πn(X) and πn(Y ) are isomorphic, induced by f and g.
Homotopy equivalence imposes an equivalence relation on spaces, and the study of spaces
modulo the relation of homotopy equivalence is called homotopy theory. Calculating the
homotopy groups is however complicated and methods to overcome this difficulty are
of great importance. One way of simplification is by the means of rational homotopy
theory. The theory is based on the observation that π0(X) = π1(X) = 0 for simply
connected spaces X and further that πn(X) = Zr ⊕ T for n ≥ 2 if X is a CW-complex
of finite type, and T denotes an abelian group generated by elements of finite order.
The group T , also known as the torsion, is one component complicating the calculation
of the homotopy groups. One way of simplification is to tensor the homotopy groups
with Q. This effectively removes the torsion, since elements of finte order vanish when
tensored with Q. What remains is a vector space πn(X) ⊗ Q = Qr over Q. Serre [8]
was the first to formalize the way of removing torsion, and his work lay the foundation
for the rational homotopy theory. Later it was Quillen [7] who developed a theory on
this freshly ploughed land. Quillen proved the existence of a differentially graded Lie
algebra λ(X) associated to a simply connected space X so that H∗(λ(X)) ∼= π∗(X)⊗Q.
The functor λ : Top → DGL showed that these categories were identical on the level
of rational homotopy and homology respectively. Theoretically this construction was a
succes, but as Hess [5] (p.768) puts it: “Performing actual calculations [...] was impos-
sible in practice.” Methods were developed to bridge this computability gap, with one
of the pioneers being Sullivan [9] who’s work is greatly influential in the theory today.
Recently, the quartet Buijs, Félix, Murillo and Tanré [1] constructed a pair of functors
that extends the functor of Quillen. In this report we will investigate further into the
construction of one of their functors. But first we need to understand their approach to
the subject at hand.

It turns out if you want to study topological spaces up to homotopy, you may as
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well study another object, namely simplicial sets. A simplicial set is an abstraction of
a simplex, carrying some of the essential properties from simplices. The advantage is
that we can induce this simplicial structure on all kind of mathematical objects such
as groups, chain complexes and topological spaces. Since all these objects are based on
sets, these are at the same time simplicial sets. The category of simplicial sets is denoted
sSet. Its relation to topology is made explicit through the functors

S• : Top→ sSet

| · | : sSet→ Top,

where S• is the singular simplicial set, and | · | the realization functor. We study these
functors in greater detail in chapter 1. Just as we can associate the homotopy group to
a topological space, there is a similar group structure we can associate to a simplicial
set. Such simplicial sets are called Kan complexes and the associated group is, just
as its topological counterpart, called the homotopy group and is denoted by πn(X).
This similarity is no coincidence, since the theory of topological homotopy groups and
simplicial homotopy groups are almost equivalent. In fact the task of calculating the
homotopy group of a topological space can be translated to calculating the homotopy
group of a simplicial set by using the functors S• and | · |. This cements the idea of
studying simplicial sets instead of topological spaces.

In [1] the authors constructed the functors

〈·〉 : DGL→ sSet

L : sSet→ DGL,

where 〈·〉 is also referred to as the realization functor. The functor L generalize Quillens
functor λ, and similarly 〈·〉 generalize the adjoint of λ. These functors have the advantage
of being much simpler than the functors created by Quillen. Further they satisfy

Hn(L(K), ∂a) ∼= πn+1(K)⊗Q

when K is a simply connected finite simplicial complex, and

Hn(L, ∂) ∼= πn+1(〈L〉, 0)

when L is a complete DGL concentrated in finite degrees. In this report we will study
the construction of the functor 〈·〉, and some of its properties.

Writing this report I had two goals in mind. Firstly, to clarify some of the results
presented in the original report. The main contribution is some minor clarification
of their results which are presented in section 4 and 5, the most important being to
show that 〈L〉 is a Kan complex. The second goal was to present the material in an
approachable way to readers with no experience of simplicial homotopy theory. Therefore
the necessary background is presented on a fairly simple level, plentiful of examples
have been included, and most proofs are carried out in detail, even for basic concepts.
Some prerequisites are topology, homological algebra and preferably some understanding
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of category theory. However most of the concepts are defined thoroughly and results
presented within close range of the definitions.

Disposition: In the first section we give a brief introduction to simplicial sets,
including standard examples and constructions. Further we define a special kind of
simplicial sets, namely Kan complexes and show that we can associate the homotopy
group to such simplicial sets. In section 2 we introduce the notion of differentially
graded Lie algebras (DGLs) and some related basic definitions. The realization functor
〈·〉 is defined using a collection of DGLs L•, and the examples of this section are well
connected to its construction and will be frequently referred to in later sections. Section
3 presents a fundamental result from simplicial homotopy theory, namely the the Dold-
Kan correspondence. This correspondence plays two parts. On the one hand as an
example that connects section 1 and 2. On the other hand it acts as a prelude to section
5 where we construct 〈·〉 and see that the Dold-Kan correspondence serves a special case
of 〈·〉. In section 4 we define the cosimplicial DGL L•, following the construction from
[1] and show related results. In section 5 we present the definition of 〈L〉 and prove that
it is a Kan complex when L is a complete DGL. We further show that πn〈L〉 ∼= Hn−1(L)
for L concentrated in positive degrees. We end the section with calculating the rational
homotopy groups of the n-dimensional spheres.
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Chapter 1

Simplicial Theory

The idea behind simplicial theory is to study objects whose structure is similar to that
of a simplex. Our understanding of simplices begins with its geometrical interpretation.
A topological n-simplex |∆|n is the convex hull of n + 1 points in a general position,
usually described by

|∆n| = {(t0, ..., tn) ∈ Rn+1 | ti ≥ 0 and
∑

ti = 1}.

Thus a 0-simplex |∆0| is a point, a 1-simplex |∆1| is a line, a 2-simplex |∆2| a triangle and
so on. With this perspective, it is clear that |∆n| contain lower-dimensional simplices as
faces. For example the triangle |∆2| contains three lines |∆1| represented by the subspaces
{(0, t1, t2) | t1 + t2 = 1}, {(t0, 0, t2) | t0 + t2 = 1} and {(t0, t1, 0) | t0 + t1 = 1}. Similarly
|∆2| contains three points |∆0| represented by {(1, 0, 0)}, {(0, 1, 0)} and {(0, 0, 1)}. A
more general concept of simplices should preserve this structure. As we noted, |∆n| is
the convex hull of n + 1 points in a general position. With this convention, it becomes
clear that the k-dimensional faces of |∆n| is in a bijective correspondence with subsets
of {0, 1, ..., n} of size k. That is, if we label the vertices of |∆n| with the integers 0, ..., n,
then any collection of k integers corresponds to a k-simplex of |∆n|.

0

1

2

0

2

5

01
0 1

3

4

34

01

02

12

012

Interpretation of single numbers as 0-simplices, pair of numbers as 1-simplices and
triples as 2-simplices.

Using this idea we define the abstract n-simplex ∆n as the powerset of {0, ..., n}. The
set of k-simplices ∆n

k of ∆n can then be interpreted as increasing k-tuples on {0, ...n}.
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That is
∆n
k = {(v0, ..., vk) | 0 ≤ vi < vi+1 ≤ n}.

Thus the abstract 1-simplex ∆1 becomes the set {(0), (1), (0, 1)} and the abstract 2-
simplex ∆2 is the set {(0), (1), (2), (0, 1), (0, 2), (1, 2), (1, 2, 3)}. Later in this chapter we
will also allow degenerate simplices such as (0, 0) in the definition of ∆n. This has
the advantage that a k-simplex (x0, ..., xk) in ∆n can be interpreted as a monotone
increasing map ϕ : {0, ..., k} → {0, ..., n} by defining ϕ(i) = xi. This observation leads
to the construction of a category ∆ where the objects are sets of the form [n] = {0, ..., n}
and the morphisms are monotone increasing maps between these sets, just as ϕ above.
This will act as the foundation on which the simplicial theory lies upon.

We properly define ∆ together with other basic concepts of simplicial theory in the
first part of this chapter. We include several examples, including the topological n-
simplex |∆n| and the abstract n-simplex ∆n. We also describe a method of creating
functors from any category to the category of simplicial sets. One application of this is
the construction of the functor 〈·〉 : DGL → sSet in section 4. In the second part we
introduce the Kan condition of a simplicial set. Any simplicial set that satisfy the Kan-
condition is called a Kan complex. We further define the homotopy group corresponding
to a Kan complex and prove that this group is well defined and satisfies the group axioms.
Lastly we provide an example from topology involving the singular simplicial set functor
S• : Top→ sSet and its adjoint, the realization functor | · | : sSet→ Top.

Definitions and examples of simplicial objects

Definition 1.1. Let ∆ be the category where

Objects: Sets on the form [n] = {0, ..., n} for n ∈ N.
Morphisms: Monotone increasing maps ϕ : [m]→ [n].

That is every morphism ϕ : [m]→ [n] satisfies ϕ(i) ≤ ϕ(j) for 0 ≤ i ≤ j ≤ m.

The category ∆ contains two families of morphisms, namely

di : [n− 1]→ [n], 0 ≤ i ≤ n,

si : [n+ 1]→ [n], 0 ≤ i ≤ n,

where di is the unique injective function not containing i in its image, and si is the unique
surjective function where i is hit twice. These maps have two fundamental properties.
Firstly, these maps generate the category ∆ in the sense that every morphsim is a
composition of di and si. Secondly, they satisfy the following list of relations

djdi = didj−1, i < j

sjdi = disj−1, i < j

sidi = sidj+1 = 1

sjdi = di−1sj, i ≥ j

sjsi = sisj+1, i ≤ j.
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This list is complete in the sense that every other relation between the di and si are
derivable from these [4] (p.4). We can visualize this as

{0} {0, 1} {0, 1, 2} · · ·
d0
d1

s0

d0

d1
d2

s0

s1

Both perspectives of the morphisms of ∆ will be used throughout this paper.

Definition 1.2. Let C be a category. A simplicial object C in C is a covariant functor

C : ∆op → C.

We use the notation Cn = C([n]) and ϕ∗ = C(ϕ) : Cn → Cm when ϕ : [m] → [n].
The simplicial objects of a category C is itself a category, denoted sC. The objects are
simplicial objects of C and the morphisms are natural transformations. More explicitly
if X, Y are two objects in sC, a morphism from X to Y is a collection of C-morphisms
ψi : Xi → Yi so that

Xn Yn

Xm Ym

ψn

X(ϕ) Y (ϕ)

ψm

commutes for every ϕ : [m] → [n]. By the properties of di and si, a simplicial object
C in C is equivalent to a sequence {Cn}n≥0 together with morphisms corresponding to
di and sj. This fact leads to an equivalent definition of simplicial objects. A simplicial
object is a sequence of objects {Cn}n≥0 in C together with morphisms

di : Cn → Cn−1, 0 ≤ i ≤ n

si : Cn → Cn+1, 0 ≤ i ≤ n

satisfying the relations

didj = dj−1di, i < j

disj = sj−1di, i < j

disi = di+1si = 1

disj = sjdi−1, i ≥ j

sisj = sj+1si, i ≤ j.

Writing this as a diagram we have
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C0 C1 C2 · · ·
d0

d1

s0

d0

d1

d2

s0
s1

The maps di and si will be referred to the i:th face map and i:th degeneracy map
respectively. The elements of the set Cn are called the n-simplices of C. Any n-simplex
in the image of a degeneracy map si is called degenerate, and non-degenerete otherwise.

Remark 1.3. Any simplicial object we consider is naturally included into the category
of simplicial sets sSet using the forgetful functor.

Example 1.4. The standard n-simplex ∆n is the simplicial set where the k-simplices is
the set of morphisms in ∆ from [k] to [n]. That is ∆n

k = Hom∆([k], [n]). Naturally this is
a covariant functor Hom∆(−, [n]) : ∆op → Set since f ∈ ∆n

k and ϕ : [l]→ [k] imply that
ϕ∗(f) ∈ ∆n

l since ϕ∗(f) = f ◦ϕ : [l]→ [n]. Each map f ∈ ∆n
k may be naturally identified

with a k-tuple of elements from the set [n] so that the sequence is monotone increasing.
Thus equivalently we may identify ∆n

k with the set {(v0, ..., vk) ∈ [n]k | vi ≤ vi+1}. In
this context the face and degeneracy maps are defined as

di : ∆n
k → ∆n

k−1, (v0, ..., vk) 7→ (v0, ..., v̂i, ..., vk)

si : ∆n
k → ∆n

k+1, (v0, ..., vk) 7→ (v0, ..., vi, vi, ..., vk).

The notation (v0, ..., v̂i, ..., vn) denotes removing the element vi from the n + 1-tuple.
In other words, (v0, ..., v̂i, ..., vn) := (v0, ..., vi−1, vi+1, ..., vn). For simplicity we write
(v0, ..., vn) as v0...vn.
The boundary ∆̇n of ∆n is the simplicial subset generated by all k-simplices for 0 ≤ k ≤ n
except the n-simplex 01...n. The p-horn Λn

p of ∆n is the simplicial subset generated by
all k-simplices 0 ≤ k ≤ n except 0...n and dp(0...n). As the name suggests, there is a
natural way of associating the non-degenerate vertices of the standard n-simplex ∆n to
the picture of a (surprise) n-simplex. We illustrate this below for the standard 2-simplex
∆2, its boundary ∆̇n and the 0-horn Λn

i respectively.

∆2

Simplices Non-degenerate Degenerate
0 0, 1, 2 -
1 01, 02, 12 00, 11, 22
2 012 000, 001, 002, 011, 022,

111, 112, 122, 222
3 - 0000, 0001, 0002,...
...

...
...

Table 1: Elements of the standard 2-simplex ∆2
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∆̇2

Simplices Non-degenerate Degenerate
0 0, 1, 2 -
1 01, 02, 12 00, 11, 22
2 - 000, 001, 002, 011, 022,

111, 112, 122, 222
3 - 0000, 0001, 0002,...
...

...
...

Table 2: Elements of the boundary ∆̇2 of the 2-simplex.

Λ̇2
0

Simplices Non-degenerate Degenerate
0 0, 1, 2 -
1 01, 02 00, 11, 22
2 - 000, 001, 002, 011, 022,

111, 222
3 - 0000, 0001, 0002,...
...

...
...

Table 3: Elements of the 0-horn Λ2
0 of the 2-simplex.

0

1

2 0

1

2 0

1

2

Diagram of the 2-simplex ∆2, the 2-boundary ∆̇2 and the 0-horn Λ2
0.

Note that not all 3-simplices are in the boundary ∆̇2. For example 0012 is not, since it
is only generated by 012. Similarly 112 and 122 are not contained among the 2-vertices
of the 0-horn Λ2

0 since they are generated by d0(012) = 12.

Example 1.5. Let G be a group. The nerve N•G of G is the simplicial set with
NnG = {(g1, ..., gn) | gi ∈ G} and face and degeneracy maps defined as

di(g1, ..., gi, gi+1, ..., gn) = (g1, ..., gi · gi+1, ..., gn)

si(g1, ..., gi, gi+1, ..., gn) = (g1, ..., gi, e, gi+1, ..., gn)

with the exception that d0(g1, ...gn) = (g2, ..., gn) and dn(g1, ..., gn) = (g1, ..., gn−1).
Equivalently the n-simplices are the unique compositions of n morphisms on G

G G G · · · G G G
g1 g2 g3 gn−2 gn−1 gn
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corresponding to multiplication by the elements (g1, ..., gn). The i:th face map corre-
sponds to compose the morphisms gi and gi+1, and the i:th degeneracy map corresponds
to inserting the identity-morphism in the i:th position.

Definition 1.6. Let D be a category. A cosimplicial object D in D is a covariant functor

D : ∆→ D.

We use the notation D([n]) = Dn and ϕ∗ = D(ϕ) : Dn → Dm when ϕ : [n] → [m].
Equivalently a cosimplicial object is a sequence of objects {Dn}n≥0 in D with morphisms
di : Dn−1 → Dn and si : Dn−1 → Dn satisfying the relations of the morhpisms of ∆.
The maps di and si are usually referred to the i:th coface and i:th codegeneracy maps.

Remark 1.7. Notice the the difference in notation with simplicial objects, where the
k-simplices of a simplicial object is denoted by Ck and the k-simplices of a cosimplicial
object is denoted by Ck.

Example 1.8. The collection of standard simplices ∆• = {∆n}n∈N is a cosimplicial
object. The coface maps dk : ∆n → ∆n+1 are defined by

dk(i0...ip) = (j0...jp) where jl =

{
il if l < k

il + 1 if l ≥ k

0 ≤ k ≤ n+ 1
0 ≤ p ≤ n.

The codegeneracy maps sk : ∆n → ∆n−1 are defined as

sk(i0...ip) = (j0...jp) where jl =

{
il if l ≤ k

il − 1 if l > k
0 ≤ k, p ≤ n.

Unless explicitly stated, ∆n will denote the standard n-simplex.

Example 1.9. The standard topological n-simplex is the topological space

|∆n| = {(t0, ..., tn) ∈ Rn+1 | ti ≥ 0 and
∑

ti = 1}.

The collection {|∆n|}n≥0 is a cosimplicial topological space. The simplicial map ϕ∗ :
|∆m| → |∆n| induced by ϕ : [m]→ [n] is defined by

ϕ∗(t0, ..., tm) = (s0, ..., sn), where sk =
∑

i∈ϕ−1(k)

ti.

Due to their functorial nature, simplicial and cosimplicial objects can themselves
generate a multitude of simplicial and cosimplicial sets.

Example 1.10. Let X be a cosimplicial object in the category C. The composition of
the functors X : ∆→ C and HomC(−,−) : Cop × C → Set give the functor

HomC(X( · ) ,−) : ∆op × C → Set.
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This can be viewed a functor from C to sSet. The object HomC(X( · ) , C) is a simplicial
set for any object C in C with the set of n-vertices being the morphisms

HomC(X(n) , C) = HomC(Xn , C).

The map ϕ∗ : HomC(Xm , C)→ HomC(Xn , C) induced by ϕ∗ : Xn → Xm is defined on
f ∈ HomC(Xm , C) by ϕ∗f = f ◦ ϕ∗. Similarly a simplicial object Y induces a functor

HomC(− , Y ( · )) : C → sSetop.

from C to cosimplicial sets.

Remark 1.11. In section 5 we will construct the functor 〈·〉 : DGL → sSet in this
manner. That is we construct a cosimplicial DGL L• and define the simplicial set
〈L〉 = HomDGL(L•, L) for L ∈ DGL.

Example 1.12. The singular simplicial set S•(T ) of a topological space T is the sim-
plicial set S•(T ) = HomTop({|∆n|}n≥0 , T ).

Example 1.13. Let ∆• be the cosimplicial set from example 1.8. This defines the
functor

HomsSet(∆
• ,−) : sSet→ sSet.

If X is a simplicial set, then HomsSet(∆
• , X) ∼= X by Yoneda’s lemma. In particular

the isomorphism of the n-simplices

HomsSet(∆
n , X•) ∼= Xn

means that a simplicial map f : ∆n → X is uniquely determined by where it maps
(0...n).

The homotopy group πn(X, x0) of a simplicial set

Next up we will define a group πn associated so simplicial sets, called the n:th ho-
motopy group. This group can however only be associated to simplicial sets that satisfy
the Kan condition.The Kan condition has a straightforward geometric interpretation.
Suppose that we have a horn of the 2-simplex. That is two 1-simplices l1, l2 that have
a 0-simplex in common. We might fill this horn by finding a 2-simplex t containing l1
and l2.

l1

l2

l1

l2

t+
l3

Filling the 2-horn.
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More generally, a simplicial set is a Kan complex if each horn Λn
k can be filled by an

n-simplex. Given a Kan complex X, one can define the n:th homotopy group πn(X, x0).
The elements πn(X, x0) will be a subset of the n-simplices of X having the n−1-simplex
x0 as their only face, modulo some equivalence relation. The group operation is best
visualized for the 1:st homotopy group π1(X). Let l1 and l2 be two 1-simplices that
have a 0-simplex in common. Together they become a horn of a 2-simplex. Since X is
a Kan complex, one can fill the horn with some 2-simplex t having l1 and l2 as faces.
One defines the third face l3 of t to be their product. We note here the necessity of X
being a Kan complex to guarantee the existence of l3. This operation is however only
well defined under the equivalence relation we impose. This section is devoted to define
these concepts and verify that it is well defined.

Definition 1.14. Let X be a simplicial object. We say that X is a Kan complex if for
each simplicial map f : Λn

k → X, there is a simplicial map g : ∆n → X so that the
following diagram commutes.

Λn
k X

∆n

f

g

Note that a simplicial map f : Λn
k → X is uniquely determined where it maps its

nondegenerate n− 1-simplices. Thus defining f is equivalent of choosing a collection of
n− 1 vertices x0, ..., x̂k, ..., xn in X so that

dixj = dj−1xi for i < j and i, j 6= k. (1.0.1)

Note that g is uniquely defined by some n-vertice x in X by example 1.13. Thus equiva-
lently, X is a Kan complex if for each collection x0, ..., x̂k, ..., xn ∈ Xn−1 satisfying (1.0.1),
there is an x ∈ Xn so that dix = xi for i 6= k. This condition will be referred to as the
Kan-condition.

Example 1.15. A general simplicial set is not a Kan complex. Here follows three
standard examples.

• The standard n-simplex ∆n is not a Kan complex. As an example, consider the
standard 1-simplex ∆1 and the vertices y0 = 00 and y2 = 01. But the 2-simplices
000 and 011 are the only ones that satisfy d0(000) = y0 and d2(011) = y2 respec-
tively. Since they are not equal, the Kan condition is not satisfied.

• Every simplicial group G• is a Kan complex. Since the simplicial maps are group
homomorphism, they preserve a rich enough structure so that a lift is possible. For
example see [4].

• The singular simplicial set S•(T ) of a topological space T is a Kan complex. For
details see example 1.21.
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Let X be a simplicial set and x ∈ Xn. Let δx denote the n+ 1-tuple containing the
images of x under the face maps di. That is

δx = (d0x, d1x, ..., dnx).

Let x0 ∈ X0. A base-point x0 is the collection of degenerate vertices that can be obtained
from x0. Due to the simplicial relations, any such element will be on the form sn0x0. For
brevity we let x0 denote sn0x0.

Definition 1.16. Let X be a Kan complex and x0 ∈ X0 a base point. Let n ≥ 1 and
consider the set τn(X, x0) of n-simplices x ∈ Xn so that δx = (x0, ..., x0). That is

τn(X, x0) = {x ∈ Xn | δx = (x0, ..., x0)}.

Define a relation ∼ on τn(X, x0) by

x ∼ y if and only if ∃ω ∈ Xn+1 so that δω = (x, y, x0, ..., x0).

We will show that ∼ is an equivalence relation, and we set πn(X, x0) to be the set of
equivalence classes under this relation. That is πn(X, x0) = τn(X, x0)/ ∼.
Proposition 1.17. The relation ∼ is an equivalence relation.

Proof. Reflexivity: Let x ∈ τn(X, x0). The simplex s0x gives

δs0x = (d0s0x, d1s0x, d2s0x, ..., dn+1s0x)

= (x, x, s0d1x, ..., s0dnx)

= (x, x, x0, ..., x0).

By definition this means that x ∼ x.
Symmetry: Let x, y ∈ τn(X, x0) so that x ∼ y. Let ω ∈ Xn+1 where

δω = (x, y, x0, ..., x0).

Consider the collection of n+ 1 simplices

(ŷ0, y1, y2, y3, ..., yn+1) := ( · , s0y, ω, x0, ..., x0).

These vertices satisfy the Kan condition (1.0.1) and so we find χ ∈ Xn+2 so that diχ = yi.
In particular if we set y0 = d0χ, then

δy0 = (y, x, x0, ..., x0)

due to the relation djy0 = d0yj+1 for 0 ≤ j ≤ n. Hence y ∼ x.
Transitivity: Suppose that x ∼ y and y ∼ z. Since we have already shown symmetry,
we have z ∼ y. Thus there are ω, χ ∈ Xn+1 so that

δω = (x, y, x0, ..., x0)

δχ = (z, y, x0, ..., x0).
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The collection of n+ 1 simplices

(ŷ0, y1, y2, y3, ..., yn+1) = ( · , ω, χ, x0, ..., x0)

satisfy the Kan condition. Let θ ∈ Xn+2 so that diθ = yi for i ≥ 1. Set y0 = d0θ and
from the simplicial identities we gather

δy0 = (x, z, x0, ..., x0).

Hence x ∼ z, and we have shown that ∼ is an equivalence relation on π(X, x0).

Remark 1.18. Let ∼′ be a relation on τn(X, x0) defined as

x ∼′ y if and only if δω = (x0, ..., x0, x, y, x0, ...x0).

It turns out that this is also an equivalence relation, and that is equivalent to ∼. That
is x ∼ y if and only if x ∼′ y. For example see lemma 1.22 [2].

So far we have shown that τn(X, x0)/ ∼ is a collection of equivalence classes. Next
up we want to define a group operation on πn(X, x0) making it into a group. We note
that if x, y ∈ τn(X, x0), then the collection

(y0, ŷ1, y2, y3, ..., yn+1) = (y, · , x, x0, ..., x0)

of n-vertices satisfies the Kan-condition. Let ω be the n+1-simplex which fills this horn.
In other words

δω = (y, d1ω, x, x0, ..., x0).

We use this construction to define a group operation on πn(X, x0).

Proposition 1.19. The assignment x · y = d1ω is a well defined group operation on the
equivalence classes of πn(Xn, x0).

Definition 1.20. The group πn(X, x0) is called the n:th homotopy group at the base
point x0.

Proof. First we show that the product is well defined on the equivalence classes, and
thereafter we prove the group axioms.
Well defined: We will show that the operation is well defined in two steps. First that
x ∼ x′ implies that x · y ∼ x′ · y, and then second that y ∼ y′ implies that x · y ∼ x · y′.
It then follows that the operator as a whole is well defined. Suppose that x ∼ x′ with
the n+ 1 vertices ωx, χ, χ′ such that

δωx = (x′, x, x0, x0, ..., x0)

δχ = (y, (x · y), x, x0, ..., x0)

δχ′ = (y, (x′ · y), x′, x0, ..., x0).
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The collection
(y0, y1, ŷ2, y3, y4, ..., yn+1) = (χ′, χ, · , ωx, x0, ..., x0)

satisfy the Kan-condition. Let θ be the corresponding n + 2 vertex and set y2 = d2θ.
Then y2 satisfies

δy2 =
(
(x′ · y), (x · y), x0, ..., x0

)
.

Hence x · y ∼ x′ · y. Assuming y ∼ y′, then a similar argument can be made to show
x · y ∼ x · y′. Let ωy, χ, χ′ be the n+ 1 vertices satisfying

δωy = (x0, y, y
′, x0, ..., x0)

δχ = (y, (x · y), x, x0, ..., x0)

δχ′ = (y′, (x · y′), x, x0, ..., x0).

Note the use of remark 1.18 for ωy. Then the collection

(y0, ŷ1, y2, y3, y4, ..., yn+1) = (ωy, · , χ, χ′, x0, ..., x0)

satisfies the Kan-condition, and gives the n+ 1 vertex y1 showing x · y ∼ x · y′.
Identity: The vertex x0 is the identity. This follows from remark 1.18 by

x ∼ x ⇐⇒ δω = (x, x, x0, ..., x0) some ω ∈ Xn+1

⇐⇒ δχ = (x0, x, x, x0, ..., x0) some χ ∈ Xn+1.

Hence [x0][x] = [x][x0] = [x].
Inverse: We note that there always exist an inverse of x by observing that the n-vertices

(y0, y1, ŷ2, y3..., yn) = (x, x0, · , x0, ..., x0)

satisfies the Kan-condition. So there is a n+ 1 vertex ω so that

δω = (x, x0, y, x0, ..., x0).

That is [y][x] = [x0] and so [x]−1 = [y].
Associativity: Let x, y, z ∈ πn(X, x0) and consider the n + 1 simplices ω0, ω1, ω3 that
correspond to y · z, (x · y) · z and x · y respectively. That is

δω0 =
(
z, (y · z), y, x0, ..., x0

)

δω1 =
(
z,
(
(x · y) · z

)
, (x · y), x0, ..., x0

)

δω3 =
(
y, (x · y), x, x0, ..., x0

)
.

The collection (ω0, ω1, · , ω3, x0, ..., x0) satisfies the Kan-condition. Let θ be the corre-
sponding n+ 2 vertex and set ω2 = d2θ. Then by the simplicial identities we have

d0ω2 = d1ω0 = yz

d1ω2 = d1ω1 = (xy)z

d2ω2 = d2ω3 = x.

However note that d0ω2 = yz and d2ω2 = x, and so by definition d1ω2 = x(yz). This
together with the statement above gives

(
[x][y]

)
[z] = [x]

(
[y][z]

)
.
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The usefullness of the homotopy group comes into play when considering functors
between sSet and other categories that have a similar structure.

Example 1.21. As mentioned in example 1.15, the singular simplicial set is a Kan
complex. One way of showing this is through finding a functor | · | : sSet → Top that
is left adjoint to S•(·) : Top → sSet. Let X be a simplicial set and ∆n the topological
n-simplex. The geometric realization |X| of X is the topological space defined by the
quotient

|X| =
∐

n≥0

Xn ×∆n/ ∼ .

The relation ∼ is induced by all ϕ : [m]→ [n] by

(ϕ∗(x), t) ∼ (x, ϕ∗(t)

for all x ∈ Xn and all t ∈ ∆m. The realization functor is left adjoint to the singular
simplicial set functor. That is, there is a bijection of the set of morphisms Top(|X|, T ) ∼=
sSet(X,S•(T )). What we can note is that the geometric realization of the standard n-
simplex ∆n is homeomorphic to the standard topological simplex |∆n|, explaining the
notation. Similarly the realization of the k-horn Λn

k is homeomorphic to the topological
k-horn. We use this to show that S•(T ) is a Kan complex. Note the relation between
the geometric n-simplex and geometric k-horn

|∆n| = {(t0, ..., tn) ∈ Rn+1 |
n∑

i=0

ti = 1 and ti ≥ 0}

|Λn
k | = {(t0, ..., tn) ∈ |∆n| | tk = 0} ⊂ |∆n|.

In particular we can define a strong deformation retract H : |∆n| × [0, 1]→ |∆n| of |∆n|
into |Λn

k | by

H
(
(t0, ..., tn), s

)
= (t0 + s

tk
n
, ..., (1− s) · tk, ..., tn + s

tk
n

).

Thus if T is a topologcial space and f : |Λn
k | → T a continuous map, then one can define

g : |∆n| → T using the deformation retract. Adjointness then gives a lift g′ : ∆n → T of
f ′ : Λn

k → S•(T ) since Top(|Λn
k |, T ) ∼= sSet(Λn

k , S•(T )).

| Λn
k | T

| ∆n |

f

g
Λn
k S•(T )

∆n

f ′

g′

Thus S•(T ) is a Kan complex.
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Remark 1.22. Simplicial theory was first developed as a tool to study the topological
homotopy groups from a combinatorial perspective. The adjointness of S• and | · | is
one of the fundamental results showing that these structures are similar. In particular,
if X ∈ sSet is a Kan complex, then

πn(|X|, x) = πn(X, x).

Similarly for a topological space T we have that

πn(T, t) ∼= πn(S•(T ), t).

Thus if one want to study topological spaces up to homotopy equivalence, then it is
sufficient to study homotopy in sSet.
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Chapter 2

Lie Theory and Chain complexes

The aim of this report is to describe the functor 〈·〉 : DGL → sSet constructed in
[1]. In the first chapter we introduced the target category sSet of 〈·〉. In this chapter we
instead focus on the domain of this functor, namely differentially graded Lie algebras,
ord DGLs in short. DGLs are often used in deformation theory and rational homotopy
theory, but we do not study any such connections in this report. In short a DGL is a
Lie algebra with the additional structure of a chain complex. Recall that a Lie algebra
L is a vector space together with a bilinear product

[−,−] : L× L→ L

called a Lie bracket. The chain complex structure is given on L by a decomposition
L =

⊕
p∈Z Lp together with a differential ∂p : Lp → Lp−1. That is a linear map so that

∂2 = 0. The decomposition gives a grading of the elements of L which the Lie bracket
preserve in the sense that if x ∈ Lp and y ∈ Lq, then [x, y] ∈ Lp+q. The chain complex
structure also imply that we can study L by means of homology

Hn(L, ∂) = ker ∂n/ im ∂n+1.

We will construct 〈·〉 as in example 1.10 by finding a cosimplicial DGL L• and the
purpose of this chapter is to define the necessary tools to achieve this.

In this chapter we first present the axioms of a DGL. Further we define related
concepts needed in the construction of L•, such as completeness and the free Lie algebra
L(V ) generated by V . Lastly we include examples and results of DGLs linked to L•.

Basic definitions

Definition 2.1. A differential graded Lie algebra L consists of a triple (L, [−,−], ∂)
where L is a vector space over Q, [−,−] : L × L → L is a bilinear map and ∂ : L → L
is a linear map satisfying the following properties

• L is a graded vector space. That is
– L =

⊕
p∈Z Lp where Lp are vector spaces. If x ∈ Lp for some p, then say that

x is homogeneous of degree p. We denote this by |x| = p.
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• The map [−,−] is a Lie bracket. That is if x, y, z are homogeneous elements, then
– [x, y] = −(−1)|x||y|[y, x]

(Graded antisymmtetry)

– (−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0
(Graded Jacobi identity)

– |[x, y]| = |x|+ |y|

• The linear map ∂ is a differential. That is

– ∂2 = 0

and for homogeneous elements x, y it satisfies

– |∂x| = |x| − 1

– ∂[x, y] = [∂x, y] + (−1)|x|[x, ∂y]. (Graded Leibniz rule)

We will usually refer to a differentially graded Lie algebra by DGL-algebra. Further a
DGL without differential is a Graded Lie algebra and a Lie algebra when there also is
no grading.
A DGL subalgebra I ⊂ L is a Lie ideal if [L, I] ⊂ I. The grading of L together with the
differential ∂ defines a natural chain complex on the homogeneous components of L.

· · · Ln+1 Ln Ln−1 . . .∂n+1 ∂n

The n:th homology group Hn(L, ∂) is the quotient ker ∂n/ im ∂n+1. We say that L is
concentrated in positive degrees or positively graded if L =

⊕
p≥0 Lp An element a ∈ L−1

is called a Maurer-Cartan element if

∂a = −1

2
[a, a].

Denote the set of Maurer-Cartan elements by MC(L). If α ∈ L, then adα : L → L is
called the adjoint map defined by adα(x) = [α, x]. If a ∈MC(L) and ∂ a differential on
L, then we set ∂a(x) = ada(x) + ∂(x). In particular ∂a(x) is a differential on L so that
|∂a(x)| = |x| − 1.

Definition 2.2. Let V be a graded vector space, L a graded Lie algebra and i : V → L a
morphism of graded vector spaces. If every morphism of graded vector spaces f : V → A
factors uniquely through i for every graded Lie algebra A, then L is free on V . In other
words, for every morphism of graded vector spaces f : V → A, there is a unique Lie
algebra morphism g : L→ A so that the diagram commutes.

V L

A

i

f
g
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A DGL-algebra is free if it free as a graded Lie algebra, and we denote such an algebra
by L(V ). We will also say that L(V ) is the free Lie algebra generated by V . We may also
extend the definition to free Lie algebras generated by a collection of elements {ai}i∈I
of given degrees. We denote this by L({ai}i∈I), and interpret it as the free Lie algebra
generated by the graded vector space V spanned by {ai}i∈I . Similarly as other free
structures, any morphism of DLGs f : L(V ) → L is completely determined where it
maps the generators.

For every graded vector space V , there is a free Lie algebra L(V ) generated by V .
This algebra is unique up to isomorphism.

Example 2.3. Construction of L(V ): Let V be a graded vector space over Q. Define
the tensor algebra T (V ) as

T (V ) =
⊕

i≥1

V i⊗ = V ⊕ (V ⊗ V )⊕ ...

This is a graded associative algebra, with multiplication defined as x · y = x ⊗ y, and
with degrees for pure tensors given by |x ⊗ y| = |x| + |y|. From this we can define a
graded Lie algebra T (V )Lie on the same underlying set by letting the bracket be defined
as

[x, y] = x⊗ y − (−1)|x||y|y ⊗ x.
A routine check shows that this bracket preserves grading, satisfies graded antisymmetry
and the graded Jacobi identity. Next define the sequence of graded vector spaces ΓnV
inductively, where Γ1V = V and Γn+1V = [V,ΓnV ] for n ≥ 1. The ΓnV s are disjoint
except at 0 and satisfy [ΓnV,ΓmV ] ⊂ Γm+nV . Further

⊕∞
i=0 ΓiV ⊂ T (V )Lie is a Lie

subalgebra, and it is free on V . Thus we may set L(V ) =
⊕∞

i=0 ΓiV .

Remark 2.4. Note that there are two gradings of a free graded Lie algebra. One that is
given by the degree of the elements as described in definition 2.1, and one that is given
by the composition

⊕∞
i=0 ΓiV described in example 2.3 The latter corresponds to how

many brackets each term is composed of.

Definition 2.5. Let L(V ) be the free graded Lie algebra generated by V and consider the
sequence ΓnV from example 2.3. If x ∈ ΓnV for some n, then say that x is homogeneous
of length n. We denote this by |x|l = n. We will only say that x is homogeneous if it is
clear from context that we refer to degree or length. Let ϕ : L(V )→ L(W ) be a graded
Lie algebra morphism. We write

ϕ = ϕ1 + ϕ2 + ϕ3 + ...

where ϕi denotes the DGL-morphism that satisfy

|ϕi(x)|l = |x|l + i− 1

for x homogeneous by length. That is, ϕi is the component of ϕ that increases the length
of elements by i− 1. Say that ϕ is of length i.
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Example 2.6. Let V be a graded vector space with basis {x, y} each of degree 0. Then
L(V ) = Γ1V ⊕ Γ2V ⊕ Γ3 ⊕ · · · where the first components are spanned by the elements
below.

Γ1V : x, y

Γ2V : [x, y]

Γ3V : [x, [x, y], [y, [x, y]]

Example 2.7. If (L, ∂) is a free DGL, then we may decompose the differential ∂ by
length as

∂ = ∂1 + ∂2 + ∂3 + · · ·
where |∂i(x)|l = |x|l + i− 1. Note in particular that this decomposition gives that

∂2 = (∂1∂1) + (∂1∂2 + ∂2∂1) + (∂1∂3 + ∂2∂2 + ∂3∂1) + ...

where each component
∑k

i=1 ∂i∂k+1−i is of length k. Hence ∂2 = 0 implies that each
component

∑k
i=1 ∂i∂k+1−i = 0. In particular ∂2

1 = 0, and so ∂1 : L → L is a differential
on L. We call ∂1 the linear part of ∂.

Definition 2.8. Let L be a Lie algebra and let {ΓnL}n≥1 be the lower central series of
L. That is a sequence of Lie ideals defined by

Γ1L = L, ΓnL = [L,Γn−1L] for n ≥ 2.

The quotients L/ΓnL are Lie algebras, and the projections on the form pn : L/ΓnL →
L/Γn−1L are Lie morphism since Γn+1L ⊂ ΓnL. Thus we gather the tower of Lie algebras

L/Γ1L L/Γ2L L/Γ3L · · ·p2 p3

Note in particular that L/Γ1L = 0. The completion of L is a Lie algebra L̂ together
with morphisms αi : L̂→ L/ΓiL so that

i) αk−1 = pk ◦ αk for every pk : L/ΓkL→ L/Γk−1L.

ii) For any other such L̂′ with maps βi : L̂′ → L/ΓiL satisfying i), there is a map
ψ : L̂′ → L̂ so that βk = αk ◦ ψ.

L̂′

L̂

L/Γk−1L L/ΓkL

ψ

βk−1

βk

αk

αk−1

pk
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Every Lie algebra have a completion and we say that L is complete if it isomorphic to
its completion. If V is a graded vector space and L(V ) the free Lie algebra generated by
V , then we denote its completion by L̂(V ).

Remark 2.9. If L is a complete free Lie algebra, then any α ∈ L can be described as a
possibly infinite sum

α =
∞∑

i=0

αi

where |αi|l = i. In fact the completion make such sums well defined as long as αi ∈ ΓiL.
This convergence can also be verified from a topological viewpoint. The lower central
series defines a neighborhood basis of the identity element, which by addition can be
extended to a neighborhood basis of every point, and in particular define a topology.
Any such series will converge in this topology.

The first components of L•
With the newly defined concepts in mind we are able to construct the the first DGLs

of the cosimplicial DGL L•. The first example corresponds to the 0-simplex, and the
LS-interval corresponds to the 1-simplex. Lastly we include how two LS-intervals may
be glued together to a third interval using the BCH product. This will set the framework
on which L• will be constructed.

Example 2.10. Define (L0, ∂) to be the complete free DGL (L̂(a), ∂) where a is a
Maurer-Cartan element. Note that the differential is uniquely defined by this since
∂a = −1

2
[a, a]. We see that L0 is spanned by a in degree −1 and [a, a] in degree −2.

This is so since [a, [a, a]] = 0. Note that in this case (L(a0), ∂) = (L̂(a0), ∂).

Definition 2.11. The Lawrence-Sullivan model of the interval is the complete free DGL-
algebra (L̂(a, b, x), ∂) where a, b are Maurer-Cartan element and x is of degree zero. The
differential in defined on x by

∂x = adx(b) +
∞∑

i=0

Bi

i!
adix(b− a)

where Bi are the Bernoulli-numbers. For more details of this construction see [6].

Remark 2.12. Note that if (L̂(a, b, x), ∂) is a LS-interval, then (L̂(b, a,−x), ∂) is an
LS-interval as well. One do this by showing

∂(−x) = [−x, a] +
∞∑

i=0

Bi

i!
adi−x(a− b).

Linearity of the differential gives that

∂(−x) = −∂x = −[x, b]−
∞∑

i=0

Bi

i!
adix(b− a).
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Now Bi = 0 for odd i except i = 1 since then B1 = −1
2
. Further adix(c) = adi−x(c) for

even i. Thus

−[x, b]−
∞∑

i=0

Bi

i!
adix(b− a) = −[x, b] +

1

2
[x, b− a]−

∞∑

i=0
i 6=1

Bi

i!
adi−x(b− a)

One then easily notes that

−[x, b] +
1

2
[x, b− a] = [−x, a]− 1

2
[−x, a− b]

and so the claim follows since

∂(−x) =− [x, b] +
1

2
[x, b− a]−

∞∑

i=0
i 6=1

Bi

i!
adi−x(b− a)

= [−x, a]− 1

2
[−x, a− b] +

∞∑

i=0
i 6=1

Bi

i!
adi−x(a− b)

= [−x, a] +
∞∑

i=0

Bi

i!
adi−x(a− b).

Definition 2.13. Let L be a complete Lie algebra. Then we define the Baker-Campbell-
Hausdorff product ∗ on L for x, y ∈ L as the formal power series expansion

x ∗ y = log(exey).

We have the explicit formula given by

x ∗ y = x+ y +
1

2
[x, y] +

1

12
[x, [x, y]]− 1

12
[y, [x, y]] + · · ·

The product is associative, and −x is an inverse for x ∈ L, i.e x ∗ (−x) = 0. Note in
particular that the BCH product is closed on the subspace L0 of degree 0.

There is a natural way of adding two LS-intervals by means of the BCH-formula.

Proposition 2.14. Define the LS-intervals L,L1 and L2 as

L = (L̂(a, b, x), ∂)

L1 = (L̂(α, β, x1), ∂)

L2 = (L̂(β, γ, x2), ∂).

Set L3 = (L̂(α, β, γ, x1, x2), ∂) to be the free complete DGL with generators and relations
from L1 and L2. Then the map ψ : L → L3 defined by ψ(a) = α, ψ(b) = γ and
ψ(x) = x1 ∗ x2 is a DGL-morphism.
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α βx1
β γ

x2
α γ

x1 ∗ x2

ψ

Gluing two LS-intervals together with the BCH-formula.

In particular the image of ψ is an embedded LS-interval in L3. Further it is a sub-DGL
(
L̂(α, γ, (x1 ∗ x2)), ∂

)
⊂
(
L̂(α, β, γ, x1, x2), ∂

)
.

Proof. See Theorem 2 in [6].
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Chapter 3

Interlude: The Dold-Kan
correspondence

In this chapter we present a fundamental theorem of simplicial homotopy theory,
called the Dold-Kan correspondence. Not only is it an important result, it does also
serve as a special case of the realization functor 〈·〉 : DGL→ sSet in section 5. Essen-
tially the Dold-Kan is an equivalence between the category of simplicial abelian groups
sAb and the category of positively graded chain complexes Ch+. Furthermore this
equivalence preserve homology and homotopy in their respective categories. We present
the functors of this equivalence, so that a meaningful comparison of 〈·〉 : DGL→ sSet
can be made in section 4 and 5.

Consider the category of simplicial abelian groups sAb. That is, objects are sequences
A = {An}n≥0 of abelian groups together with face and degeneracy maps di and si which
are groups homomorphisms.

A0 A1 A2 · · ·
d0

d1

s0

d0

d1

d2

s0
s1

Note in particular that each object of sAb is a Kan-complex by example 1.15. Let Ch+

be the category of positively graded chain complexes. The objects of Ch+ are sequences
of Z-modules {Cn}n≥0 together with a differential ∂n : Cn → Cn−1,

0 C0 C1 C2 . . .
∂0 ∂1 ∂2

The morphisms of Ch+ are chain maps. The structure of these categories have some
similarities. Not only do their objects consist of sequences of abelian groups with ho-
momorphisms between them, there are also associated groups to each of the objects
respectively. Namely the homotopy group πn(A, a0) to a simplicial abelian group, and
the homology group Hn(C, ∂) to a positively graded chain complex. This similarity is
confirmed by the Dold-Kan correspondence.
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Theorem 3.1. (The Dold-Kan correspondence) There exists two functors

N : sAb→ Ch+ and K : Ch+ → sAb.

which together form an equivalence. Further if A is a simplicial abelian group, then

πn(A, 0) ∼= Hn(NA, ∂).

Knowing what we are aiming for, we present two ways of imposing a chain complex
structure on a simplicial abelian group. One of which is the normalization functor N in
the Dold-Kan correspondence.

Definition 3.2. Let A be a simplicial abelian group. The Moore complex AMo is the
chain complex with

AMo
n = An.

The differential ∂ : AMo
n → AMo

n−1 is defined using the face maps di : An → An−1 by

∂ =
n∑

i=0

(−1)idi.

A simple verification using the simplicial identities shows that ∂2 = 0.
The normalized chain complex NA is the chain complex with

NAn =
n−1⋂

i=0

ker di.

The differential ∂ : NAn → NAn−1 is defined by

∂ = (−1)ndn.

Similarly one verifies that ∂2 = 0 by the simplicial identities (dn−1dn = dn−1dn−1).

The construction of the normalized chain complex defines the functor N : sAb →
Ch+, and is the functor given in the Dold-Kan correspondence. Note however that the
normalized chain complex is not very different from the Moore complex. For one there
is a natural inclusion of chain complexes i : NA→ AMo. But it turns out that they have
more in common.

Let A ∈ sAb, and define Dn ⊂ An to be the subgroup generated by the degenerate
simplices of An. That is

Dn = {a ∈ An | a = sib for some b ∈ An−1}

where we interpret A−1 as the trivial group. If ∂ is the differential on the Moore-complex,
then ∂(Dn) ⊂ Dn due to the simplicial identites. In particular the quotient AMo

n /Dn, i.e
AMo modulo degeneracies, is a chain complex with the induced differential ∂ from AMo.
Denote the latter chain complex by AMo/D.
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Proposition 3.3. Let A be a simplicial abelian group, i : NA → AMo the natural
inclusion of chain complexes and p : AMo → AMo/D the projection of chain complexes.
Then the composite p ◦ i : NA→ AMo/D is an isomorphism of chain complexes.

Further the inclusion map i is a chain homotopy equivalence. That is

Hn(NA, ∂) ∼= Hn(AMo, ∂).

Proof. See theorem 2.1 in [4].

We now turn our focus to the other functor of the Dold-Kan correspondence. Re-
call from example 1.10 that a cosimplicial object C• in a category C defines a simpli-
cial set HomC(C•, X) for every object X ∈ C. In other words C• defines a functor
HomC(C•,−)) : C → sSet. We will use this idea to construct the functor K•, and so
the first step is to find a cosimplicial chain complex C•.

Recall the standard n-simplex ∆n from example 1.4. It is in itself a simplicial set,
but it also a component of the cosimplicial set ∆• from example 1.8. Let FZ(∆n) be the
free abelian group generated by ∆n. The simplicial maps ϕ : ∆n

i → ∆n
j are extended to

homomorphisms ϕ∗ : FZ(∆n
i )→ FZ(∆n

j ) by the universal property of free abelian groups.
Similar to the cosimplicial set ∆• having ∆n as components, we set FZ(∆•) to be the
simplicial set whose components are the abelian groups FZ(∆n). The cosimplicial maps
ϕ : ∆n → ∆m naturally extends to group homomorphisms ϕ∗ : FZ(∆n) → FZ(∆m).
Now FZ(∆•) is a cosimplicial abelian group, but we want a cosimplicial chain complex.
By applying the normalization functor N on each component FZ(∆n) of FZ(∆•), we
gather a sequence of chain complexes NFZ(∆n). Denote this sequence by C∗(∆•), that
is C∗(∆•) = {NFZ(∆n)}n≥0. The cosimplicial maps of FZ(∆•) induce chain maps on
C∗(∆•) making it into the desired cosimplicial chain complex.

∆• FZ(∆•) C∗(∆•)

∆n+1 FZ(∆n+1) NFZ(∆n+1)

∆n FZ(∆n) NFZ(∆n)

si

si si
di

di di

Diagram of the cosimplicial structures of ∆•, FZ(∆•) and C∗(∆•).

Example 3.4. (The cosimplicial chain complex C∗(∆•)) Due to proposition 3.3 the
chain complexes NFZ(∆n) are isomorphic to the Moore-complex FZ(∆n)Mo modulo de-
generacies. In particular FZ(∆n)Mo modulo degeneracies is isomorphic to the free abelian
group generated by the non-degenerate simplices of ∆n due to the groups being free. So
NFZ(∆2) would correspond to the chain complex

0 FZ(0, 1, 2) FZ(01, 02, 12) FZ(012) 0.
d0 d0−d1 d0−d1+d2
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The coface maps di of C∗(∆•) act just as in ∆•, meaning that they represent the different
inclusions of the n-simplex into the n + 1-simplex. For example we may include the 2-
simplex 012 of ∆2 into the 2-simplex 123 of ∆3 by d0(012) = 123. Note that the faces of
012 map to the correct faces of d0(012) since d0(01) = 12, d0(12) = 23 and d0(02) = 13.

0

1

2 0

1

2

3

d0

Inclusion of 2-simplex into 3-simplex by 0:th face map

The codegeneracy maps si act similarly, but map any element to zero if its image is
degenerate.

We use the cosimplicial chain complex C∗(∆•) to define the functor K.

Definition 3.5. The Dold-Kan functor K• : Ch+ → sAb is defined by mapping D ∈
Ch+ to the simplicial abelian group K•(D) whose set of n-simplices is

Kn(D) = Ch+(C∗(∆
n), D).

A straightforward verification shows that Kn(D) is in fact an abelian group, and that
the face and degeneracy maps defined as in example 1.10 are group homomorphisms.

The functors N and K do not only form an equivalence, they preserve the homotopy
group and homology group of sSet and Ch+ respectively. The normalization functor N
preserve homology.

Theorem 3.6. If A is a simplicial abelian group, then

πn(A, 0) ∼= Hn(NA, ∂).

Similarly if L is a positively graded chain complex, then

πn(K(L), 0) ∼= Hn(L, ∂).

Proof. See corollary 2.7 in [4].
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Chapter 4

The cosimplicial DGL L•

In this section we follow the outline of [1] and construct the cosimplicial DGL L•.
The idea starts out simple. We first define a sequence of DGLs (Ln, ∂) which are free
and complete and whose generators correspond to the non-degenerate simplices of the
standard n-simplex ∆n. The grading of 0-simplices are −1, and increase for higher-
dimensional simplices. So the 1-simplices have degree 0, the 2-simplices have degree 1
and so on. We have already seen the definition of L0 and L1 in section 2, and will define
Ln inductively using them as the base case. At the same stage we define the cosimplicial
maps di : Ln → Ln+1 to be the inclusion of the i:th n-face into the n+ 1-simplex similar
to the cosimplicial topological space in example 1.9. Further we impose an additional
property of L•, namely that it is inductive. Essentially it means that the image of an
n-simplex under the differential is expressible by its faces. More precisely it maps the
n-simplex to an element generated by simplices of smaller dimension than n for n ≥ 2.
This property will prove useful in section 5 where we show that the simplicial set 〈L〉
is a Kan complex. Further we show that the twisted homology of Ln with a Maurer-
Cartan element is zero, that is H(Ln, ∂a0) = 0 and finish of with proving the existence
of the cosimplicial DGL L•. Our presentation of L• differs from [1] in three main ways.
Firstly we include a more detailed formulation of proposition 4.11, explicating both the
formulation and the proof. Secondly the proof of corollary 4.12 was only hinted at in
[1], but is here carried out in full detail. Lastly proposition 4.10 better clarifies the use
of proposition 2.14 but is otherwise similar. The remaining results are carried out in a
similar fashion for the sake of completion, except for the construction of the degeneracy
maps which have been left out. Their existence will only be of theoretical use in this
report.

Definition 4.1. Define D−1∆ to be the standard n-simplex without degeneracies. Set
D−1∆• to be the sequence {D−1∆n}n≥0. Now D−1∆• is naturally included in the cosim-
plicial set ∆• from example 1.8, and the coface maps dk∆n → ∆n+1 defined by

dk(i0...ip) = (j0...jp) where jl =

{
il if l < k

il + 1 if l ≥ k

0 ≤ k ≤ n+ 1
0 ≤ p ≤ n.

are well defined when restricted to D−1∆n. Thus D−1∆• have the same cosimplicial
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structure as ∆• excluding degenerate elements. Similarly we set D−1∆̇n and D−1Λn
k to

be the boundary and the k-horn excluding degenerate elements. We induce a grading on
D−1∆n by letting the p-vertices D−1∆n

p being of degree p−1. Let L̂(∆n) be the free and
complete graded Lie algebra generated by the set D−1∆n. Similarly we let L̂(∆̇n) and
L̂(Λn

k) be the free and complete graded Lie algebras generated by D−1∆̇n and D−1Λn
k

respectively. The generator corresponding to (i0, ..., ip) will be denoted ai0...ip .
Note that with this grading the 0-simplices a0, ..., an of L̂(∆n) have degree −1. We

define a differential d∆ on L̂(∆n) by

d∆ai0...ip =

p∑

k=0

(−1)kai0...̂ik...ip . (4.0.1)

Definition 4.2. A sequence of compatible models of ∆ is a sequence of DGLs {(Ln, ∂)}n≥0

so that

• Ln is the free complete graded Lie algebra generated by the set D−1∆n. That is
Ln = L̂(∆n).

• The linear part of ∂ satisfies ∂1 = d∆ as in (4.0.1).

• The generators a0, ..., an of degree −1 in Ln are Maurer-Cartan elements. That is
∂ai = −1

2
[ai, ai].

• The coface maps di : Ln−1 → Ln are induced by the coface maps on ∆• and are
DGL morphisms.

We refer to the elements of the sequence {Ln, ∂}n≥0 as models of ∆.

Remark 4.3. If (L̂(∆n), ∂) is a model of ∆, then the sub Lie algebras L̂(∆̇n) and L̂(Λn
k)

are DGLs by restricting the differential ∂ from L̂(∆n).

Remark 4.4. Note the similarity of the DGL (L̂(∆n), ∂) and the chain complex NF(∆n)
from the Dold-Kan chapter. As mentioned in example 3.4, NF(∆n) is naturally isomor-
phic to the chain complex where the k:th component in the chain is the free abelian
group generated by the non-degenerate k-simplices of ∆n. Further d∆ coincide exactly
with the differential of NF(∆n). Thus these constructions are equivalent if we restrict
ourselves to elements of length one in (L̂(∆n), ∂).

Definition 4.5. A sequence {(L̂(∆n), ∂)}n≥0 of compatible models is inductive if

∂a0a0...n ∈ L̂(∆̇n).

for n ≥ 2.
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Example 4.6. The model of a point (L0, ∂) is the complete DGL from example 2.10.
That is

(L0, ∂) = (L̂(a0), ∂)

where a0 is a Maurer-Cartan element. Note that the linear part of ∂ satisfies the second
condition. That is ∂1a0 = d∆a0 = 0.
A model of the interval (L1, ∂) is given by the LS-interval from example 2.11 with a = a0,
b = a1 and x = a01. That is

(L1, ∂) = (L̂(a0, a1, a01), ∂).

We directly verify that ∂1 = d∆.

Remark 4.7. Note that these models are vacuously inductive, since the condition stated
in the definition only applies for models Ln with n ≥ 2.

Example 4.8. The model of the triangle (L2, ∂) = (L̂(∆2), ∂) is given by

L2 = L̂(∆2) = L̂(a0, a1, a2, a01, a12, a02, a012).

Let the coface maps di : (L1, ∂)→ (L2, ∂) define how the differential acts on all genera-
tors except a012. That is ∂ is defined on 0 and 1-simplices when they are seen as elements
in the LS-interval structure as seen below.

d0(L1) = d0(L̂(a0, a1, a01)) = L̂(a1, a2, a12)

d1(L1) = d1(L̂(a0, a1, a01)) = L̂(a0, a2, a02)

d2(L1) = d2(L̂(a0, a1, a01)) = L̂(a0, a1, a01)

Taking L̂(a1, a2, a12) as an example, we see that a1 and a2 are Maurer Cartan elements
and that

∂a12 = ada12(a2) +
∞∑

i=0

Bi

i!
adix(a2 − a1).

Using the BCH-formula, define the differential of a012 as

∂a0a012 = a01 ∗ a12 ∗ a−1
02 .

Remark 4.9. The differential is implicitly defined since

∂a012 = a01 ∗ a12 ∗ a−1
02 − [a0, a012].

Further we directly verify that ∂1 = d∆ expanding the first terms of the BCH-formula.

Proposition 4.10. The Lie algebra (L2, ∂) as defined in example 4.8 is a DGL algebra.
Furthermore, it is an inductive model of the triangle.
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Proof. We only need to verify that ∂2a012 = 0 in order to show that (L2, ∂) is a DGL.
First define the DGL morphism

ψ : (L̂(a, b, x), ∂)→ (L̂(α, β, γ, x1, x2), ∂)

following the construction in proposition 2.14 with

L = (L̂(a, b, x), ∂) A general LS-interval

L1 = (L̂(a0, a2, (a01 ∗ a12)), ∂)

L2 = (L̂(a2, a0,−a02), ∂).

We note that L1 and L2 are LS-intervals by proposition 2.14 and remark 2.12 respectively.
Hence ψ becomes

ψ : (L̂(a, b, x), ∂)→ (L̂(a0, a2, a0, (a01 ∗ a12),−a02), ∂)

where ψ(a) = ψ(b) = a0 and ψ(x) = a01 ∗ a12 ∗ a−1
02 . Using that ψ is a DGL-morphism

gives that

∂(a01 ∗ a12 ∗ a−1
02 ) = ∂(ψx) = ψ(∂x)

= ψ
(
adx(b) +

∞∑

i=0

Bi

i!
adix(b− a)

)

=
(
adψ(x)(ψ(b)) +

∞∑

i=0

Bi

i!
adiψ(x)(ψ(b)− ψ(a))

)

= adψ(x)(ψ(b)) = ada01∗a12∗a−1
02

(a0).

In particular ada01∗a12∗a−1
02

(a0) = −[a0, (a01 ∗ a12 ∗ a−1
02 )] implying that ∂2

a0
a012 = 0. Equiv-

alently ∂2a012 = 0. Lastly note that the model is inductive since ∂a0a012 ∈ L̂(∆̇2) by
direct verification of the definition.

Next up we will compute the homology group of each model (L̂(∆n), ∂), but we
first need a proposition. Let V and W be graded vector spaces of finite dimension and
(L̂(V ⊕W ), ∂) a free complete DGL generated by V ⊕W . Let J ⊂ (L̂(V ⊕W ), ∂) be
the ideal generated by W . That is

J = {x ∈ L̂(V ⊕W ) |x ∈ W or x ∈ [W, L̂(V ⊕W )]}.

The quotient L̂(V ⊕W )/J is a complete graded Lie algebra which is isomorphic to L̂(V ).
Note that J is only an ideal of the underlying graded Lie algebra, and need thus not be
closed under the differential. However if J is closed under the differential, i.e ∂(J) ⊂ J ,
then ∂ induces a differential on L̂(V ). Further the projection map

p : (L̂(V ⊕W ), ∂)→ (L̂(V ), ∂)
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becomes a DGL morphism. Trivially (J, ∂) also becomes a DGL when ∂(J) ⊂ J . In
particular the graded vector space W becomes a chain complex with the linear part ∂1

of ∂ acting as the differential since ∂1W ⊂ W . Lastly it is seen that the linear subspace
W of J becomes a chain complex (W,∂1). To summarize, if ∂(J) ⊂ J , then

• (W,∂1) is a chain complex

• (J, ∂) ⊂ (L̂(V ⊕W ), ∂) is a free and complete DGL.

• (L̂(V ), ∂) := (L̂(V ⊕W )/J, ∂) is a free and complete DGL.

Proposition 4.11. If ∂(J) ⊂ J and Hk(W,∂1) = 0 for all k, then

• Hk(J, ∂) = 0 for all k

• The projection p : (L̂(V ⊕W ), ∂) → (L̂(V ), ∂) is a quasi-isomorphism. That is,
Hk(L̂(V ⊕W ), ∂) ∼= Hk(L̂(V ), ∂) for all k.

Proof. We proceed in two steps. Consider the projection

p : (L(V ⊕W ), ∂1)→ (L(V ), ∂1)

of the free but not complete DGLs and let K be its kernel. That is K = J ∩ (L(V ⊕W ).
We have that H(K, ∂1) = 0 according to [1].
Next following [1] we show that H(J, ∂) = 0. Let x ∈ J be a cycle. Decomposing x by
length, we have that x = xn + yn+1 where xn is homogeneous of length n and yn+1 is
composed of homogeneous terms of length greater than n. Note that xn ∈ K and thus
∂1xn = 0. Hence Hk(K, ∂1) = 0 gives that there is some zn ∈ K such that ∂1zn = xn.
Next consider x − ∂z, which now has length strictly larger than n. Again we find the
term of lowest length in x−∂z, note that it is in K and find its boundary. By continuing
this process we gather a sequence {zn}n≥0 so that zn ∈ K and x = ∂(

∑
n≥0 zn). Hence

H(J, ∂) = 0 follows.
We finally show that p is a quasi-isomorphism. Note that we have the short exact
sequence

0 (J, ∂) (L̂(V ⊕W ), ∂) (L̂(V ), ∂) 0
p

of chain maps. By the zig-zag lemma we get the induced long exact sequence of homology
groups

· · · Hk(J, ∂) Hk(L̂(V ⊕W ), ∂) Hk(L̂(V ), ∂) Hk−1(J, ∂) · · ·p∗

But since H(J, ∂) = 0 exactness implies that Hk(L̂(V ⊕W ), ∂) ∼= Hk(L̂(V ), ∂). This
isomorphism is induced by the projection p, which is what we wanted to show.

Corollary 4.12. If (L̂(∆n), ∂) is an inductive model, then
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• H(L̂(∆n), ∂a0) = 0

• H(L̂(Λn
i ), ∂a0) = 0 for all i = 0, ..., n.

Proof. Using the notation of proposition 4.11, set

V = {a0} and W = {ai − a0 |1 ≤ i ≤ n} ∪ {ai0...ip ∈ ∆n | 1 ≤ p ≤ n}.

Then clearly L̂(V ⊕W ) = L̂(∆n). The proof then boils down to show that V and W
satisfies the hypotheses of proposition 4.11, namely

• H(V, ∂a0) = 0

• ∂a0(J) ⊂ J

• H(W,∂1) = 0.

The first condition is easily verified by inspecting example 2.10.
Next we show that ∂a0(J) ⊂ J , by first proving that ∂a0(W ) ⊂ J . We decompose ∂a0 by
length by

∂a0 = ∂1 + ∂2 + ∂3 + ...

Let w ∈ W , then ∂1w ∈ J since ∂1w ∈ W . It remains to show that the non-linear parts
of ∂ maps w to J , that is ∂≥2w ⊂ J . This reduces to three cases. First if w is of degree
−1, that is w = ai − a0, then ∂a0(ai − a0) ∈ J since

∂a0(ai − a0) = ∂(ai − a0) + [ai − a0, a0]

= −1

2
[ai, ai] +

1

2
[a0, a0] + [ai, a0]− [ai, ai]

=
1

2
([ai, a0]− [ai, ai] + [ai, a0]− [a0, a0])

=
1

2
([ai, ai − a0] + [ai − a0, a0]).

If |w| = 0, then w = ai0i1 . In particular there is an explicit formula for ∂a0w by definition
2.11. Inspection gives that ∂a0ai0i1 ∈ J .
Lastly if |w| ≥ 1 then without loss of generality we may assume that w = a01...k with
k ≥ 2. Since L̂(∆n) an inductive model, it follows that ∂≥2a01...k ∈ L̂(∆̇k). Let i ≥ 2
and suppose that a term of length i in ∂ia01...k contain the factors b1, ..., bi ∈ ∆̇n. Then
counting degrees we gather

k − 2 = |∂ia0a01...k| = |b1|+ ...+ |bi|,where − 1 ≤ |bj| ≤ k − 2.

It is not possible that all |bj| = −1 since k − 2 ≥ 0, and so at least one element is
of degree 0 or higher. Hence the term will be in W , showing that ∂a0W ∈ J . Now
proving ∂a0x ∈ J for any x ∈ J is done by using induction over the length of x. The
inclusion ∂a0W ⊂ J acts as the base case, while the induction step is easy to work out
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and therefore left out. The result ∂a0J ⊂ J then follows.
Lastly we show that H(W,∂1) = 0. Let Wi ⊂ W denote the subspace of W of degree i
and |U | denote the dimension of a vector space U . Further let ∂k1 : Wk → Wk−1 denote
∂1 from Wk to Wk−1. The following is a chain complex

0 W−1 W0 W1 · · · Wn−2 Wn−1 0
∂01 ∂11 ∂n−1

1

Note that |W−1| = n and |Wk| =

(
n+ 1
k + 2

)
for k ≥ 0. The maps ∂k1 : Wk → Wk−1 are

linear, so
| im ∂k1 |+ | ker ∂k1 | = |Wk|. (4.0.2)

Claim: | im ∂k1 | =
(

n
k + 1

)
for k ≥ 0.

Given the claim, we can solve for | ker ∂k1 | in (4.0.2). Thus

| im ∂k1 |+ | ker ∂k1 | = |Wk|(
n

k + 1

)
+ | ker ∂k1 | =

(
n+ 1
k + 2

)

| ker ∂k1 | =
(
n+ 1
k + 2

)
−
(

n
k + 1

)
=

(
n

k + 2

)
.

where the last step is only valid for k < n− 1. However k = n− 1 gives

| ker ∂n−1
1 | =

(
n+ 1
n+ 1

)
−
(
n
n

)
= 0.

Now we see that | im ∂k1 | = | ker ∂k−1
1 | and so H(W,∂1) = 0 follows.

Proof of claim: Let k ≥ 0 and consider all elements in Wk on the form a0i1...ik+1
for

increasing sequences 0 < i1 < i2 < ... < ik. There are
(

n
k + 1

)
such elements and

the claim follows if the collection ∂k1a0i1...ik+1
is a basis of im ∂k1 . We note that these

elements are linearly independent since the term ai1...ik is unique in the sum ∂k1a0i1...ik .
Now suppose that ai0...ik+1

∈ Wk so that i0 6= 0. We will show that

∂1ai0...ik+1
=

k+1∑

p=0

(−1)p∂1a0i0...îp...ik+1
. (4.0.3)

Note that ∂1a0i0...îp...ik+1
are elements from the basis-set. Set Ap = a0i0...îp...ik+1

for 0 ≤
p ≤ k + 1. Then

∂1Ap =
k+1∑

q=0

(−1)qB(p,q)
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where we set

B(p,q) =





ai0...îp...ik+1
if q = 0

a0i0...îq−1...îp...ik+1
if 0 < q ≤ p

a0i0...îp...îq ...ik+1
if q > p

.

Thus (4.0.3) is equivalent to

∂1ai0...ik+1
=

∑

0≤p,q≤k+1

(−1)p+qB(p,q).

By a simple observation we note that

∂1ai0...ik+1
=

k+1∑

p=0

(−1)pai0...îp...ik+1
=

∑

0≤p≤k+1

(−1)pB(p,0).

Hence it remains to show that
∑

0≤p≤k+1
1≤q≤k+1

(−1)p+qB(p,q) = 0. (4.0.4)

Note that B(p,q) satisfies the relation

B(p,q) =

{
B(q,p+1) if q > p

B(q−1,p) if q ≤ p
.

Using this relation, one easily shows that (4.0.4) holds. Hence we have shown that the

elements ∂1a0i1...ik+1
is a basis of im ∂k−1

1 , and so | im ∂k1 | =
(

n
k + 1

)
for k ≥ 0.

The proof of H(Λn
k , ∂a0) = 0 follows using the same proof as above with some slight

modifications. At first let V and W be as before, only removing a0...n and a0...̂i...n from
W . Then note that ∂k−2

1 : Wk−2 → Wk−3 is injective. The result then follows.

Theorem 4.13. There exists an inductive sequence of compatible models {Ln, ∂}n≥0 of
∆ as in definition 4.2.

Proof. Define the first three models as in the examples 2.10, 2.11 and 4.8 respectively.
That is

(L0, ∂) = (L̂(a0), ∂)

(L1, ∂) = (L̂(a01, a0, a1), ∂)

(L2, ∂) = (L̂(a0, a1, a2, a01, a12, a02, a012), ∂).

We have already seen that these are inductive. Next suppose that there are inductive
models (L̂(∆k), ∂) for 2 ≤ k < n. Following [1] , define (Ln, ∂) by letting Ln = L̂(∆n)
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and where the differential is defined on simplices ai0...ip for p < n using the coface maps
di : L̂(∆n−1) → L̂(∆n). Thus it remains to define ∂a0...n. If we consider the element
a01...n−1, then ∂a0a01...n−1 ∈ L̂(Λn

n) by inductivity of the model. Since ∂2
a0
a01...n−1 = 0 and

H(L(Λn
n), ∂a0) = 0, there is some Γ ∈ L(Λn

n) so that |Γ| = n− 2 and ∂a0a01...n−1 = ∂a0Γ.
We set

∂a0a01...n = (−1)n(a01...n−1 − Γ).

Clearly ∂2
a0
a01...n = 0 and so ∂ is a differential. Furthermore the model is clearly inductive

and satisfies condition i) and iii) from Definition 4.2. It remains to show that condition
ii) is satisfied, that is

∂1a0...n =
n∑

i=0

(−1)ia0...̂i...n. (4.0.5)

Let Γ1 and ∂1a0...n be the linear part of Γ and ∂a0a0...n respectively. Hence

∂1a0...n = (−1)n(a0...n−1 − Γ1).

Now ∂2
1a0...n = 0 and so

∂1Γ1 = ∂1a0...n−1.

If we set ω = (−1)n−1Γ1 −
∑n−1

i=0 (−1)ia0...̂i...n, then |ω| = n − 2 and ω ∈ L̂(Λn
n). In

particular

∂1ω = (−1)n−1∂1Γ1 −
n−1∑

i=0

∂1a0...̂i...n

= (−1)n−1∂1a0...n−1 + (−1)n∂1a0...n−1 = 0.

By H(L̂(Λn
n)) = 0, there is some γ ∈ L̂(Λn

n) so that ω = ∂1γ where |γ| = n − 1. But
there is no generator of degree n−1 in L̂(Λn

n), so γ = 0. And in particular ω = 0 implies
that

Γ1 =
n−1∑

i=0

(−1)ia0...̂i...n.

Hence equation 4.0.5 is satisfied. This completes the proof.

Note that the we so far only have defined the coface maps di : Ln → Ln+1 and so
it remains to define the codegeneracy maps si : Ln → Ln−1 for us to have the finalized
cosimplicial DGL L•. However we do here only satisfy to state that such maps can be
defined on the inductive sequence {Ln}n≥0.

Theorem 4.14. Any inductive sequence {Ln}n≥0 of ∆ admits a cosimplicial DGL L•.
The n-simplices of L• is (Ln, ∂) and the coface maps are induced from the model of ∆.

Proof. See theorem 3.4 in [1].
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Chapter 5

Homotopy Theory

In this section we present the adjoint functors 〈·〉 : DGL → sSet and L : sSet →
DGL developed in [1], where DGL here denotes the category of complete DGLs. The
construction of 〈·〉 follows the methods of example 1.10 and the Dold-Kan functor in
definition 3.5. Our main interest will be in the functor 〈·〉. We show that 〈L〉 is a Kan
complex when L is a complete DGL, and further that

πn(〈L〉, 0) ∼= Hn−1(L, ∂), n ≥ 0

for L concentrated in positive degrees. Lastly as an application we calculate πk(Sn)⊗Q
using L. The main contribution of this section is showing that 〈L〉 is a Kan complex,
which was not shown in [1]. The construction of the isomorphism above follows the ideas
of [1], but is carried out in greater detail.

The realization functor 〈·〉
Definition 5.1. Let DGL be the category of complete DGLs. Let L ∈ DGL and define
the simplicial set 〈L〉 = DGL(L•, L). We call 〈L〉 the realization of L. Note that 〈L〉 is
a simplicial set according to example 1.10, with 〈L〉n = DGL(Ln, L). If ϕ : [m]→ [n] is
a simplicial map and

f ∈ 〈L〉n, f : Ln → L

then ϕ∗f = f ◦ ϕ∗ where ϕ∗ : Lm → Ln. Thus we have a functor

〈·〉 : DGL→ sSet.

Remark 5.2. The construction of 〈·〉 is a generalization of the Dold-Kan functor K• :
Ch+ → sAb. A DGL is abelian if the Lie bracket is trivial, i.e [x, y] = 0 for all x, y.
So when L is an abelian DGL, then it is a chain complex. We also noted in remark 4.4
that NF(∆n) is naturally included in L̂(∆n). Now if f ∈ Kn(L), i.e f : NF(∆n) → L,
then this map naturally extends to a DGL morphism f : L̂(∆n)→ L, and vice verca. In
particular 〈L〉 becomes a simplicial abelain group, with the addition defined pointwise
on the functions.
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The homotopy of 〈L〉
With the newly defined simplicial set 〈L〉 for a complete DGL L, we want show that

πn(〈L〉, 0) ∼= Hn−1(L, ∂). But for the homotopy group πn(〈L〉, 0) to be well defined we
first need to verify that 〈L〉 is a Kan complex. Now 〈L〉 is a Kan complex if every
simplicial map f : Λn

k → 〈L〉 can be lifted to a simplicial map g : ∆n → 〈L〉. In other
words the diagram

Λn
k 〈L〉

∆n

f

g

commutes. Note that f defines a DGL morphism f : L̂(Λn
k) → L, and similarly g

defines g : L̂(∆n)→ L so that g restricted to L̂(Λn
k) equals f . Thus the Kan condition is

equivalent of finding a DGL morphism g for each f so that the diagram below commutes.

L̂(Λn
k) 〈L〉

L̂(∆n)

f

g

We proceed finding g in a similar fashion as in example 1.21. There we showed that
the singular simplicial set S•(T ) is a Kan complex by finding a continuous map H :
|∆n| → |Λn

k | which mapped the inlcuded k-horn |Λn
k | ⊂ |∆n|to itself. And so any map

h : |Λn
k | → T could be lifted to |∆n| by the composition with H, i.e h ◦H : |∆n| → T .

Proposition 5.3. Let n ≥ 1 and set ι : L̂(Λn
k)→ L̂(∆n) to be the inclusion. Then there

is a DGL-morphism
ψ : (L̂(∆n), ∂)→ (L̂(Λn

k), ∂)

so that ψ ◦ ι = id.

Proof. We only need to define where ψ maps a0...n and a0...k̂...n since ψ is already deter-
mined on the generators of L̂(Λn

k). In particular ψ needs to satisfy

∂ψ(a0...n) = ψ(∂a0...n) (5.0.1)
∂ψ(a0...k̂...n) = ψ(∂a0...k̂...n). (5.0.2)

Without loss of generality we assume fixed values for k. We deal with this in cases. If
n = 1, then

ψ : (L̂(a0, a1, a01), ∂)→ (L̂(a0), ∂),

where (L̂(a0, a1, a01), ∂) is the LS-interval. In particular we have a formula for ∂a01.
Defining ψ by ψ(a1) = a0 and ψ(a01) = 0, then (5.0.1) is satisfied since ψ(a1) is a
Maurer-Cartan element and (5.0.2) is satisfied since

ψ(∂a01) = ψ
(
ada01(a1) +

∞∑

i=0

Bi

i!
adia01(a1 − a0)

)
= 0 = ∂ψ(a01).
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If n = 2, then consider the 1-horn L̂(Λ2
1). Hence we want to define a DGL morphism

ψ : (L̂(a0, a1, a2, a01, a02, a12, a012), ∂)→ (L̂(a0, a1, a2, a01, a12), ∂).

By proposition 4.11 the map ϕ : (L̂(a0, a2, a02), ∂)→ (L̂(a0, a1, a2, a01, a12), ∂) defined by
ϕ(a0) = a0, ϕ(a2) = a2 and ϕ(a02) = a01 ∗ a12 is a DGL-morphism. Hence the definition
ψ(a02) = ϕ(a02) is compatible with 5.0.2. So far we have defined ψ on L̂(∆̇2), and it
remains to define ψ(a012). By inductivity we have that ∂a0a012 ∈ L̂(∆̇2) and so ψ(∂a0a012)

is defined. Further ψ(∂a0a012) is a ∂a0-cycle in L̂(Λ2
1). Now H(Λ2

1, ∂a0) = 0 by corollary
4.12, and so ψ(∂a0a012) = ∂a0β for some α ∈ L̂(Λ2

1). If we define ψ(a012) = α, then 5.0.1
is satisfied since

∂a0ψ(a012) = ∂a0α = ψ(∂a0a012).

Hence ψ is a DGL morphism. For the case n ≥ 3 we proceed in a similar way. We first
define ψ : L̂(∆̇n) → L̂(Λn

k) by defining ψ(a0...k̂...n). Now ∂a0a0...k̂...n ∈ L̂(∆̇n−1) ⊂ L̂(Λn
k)

by inductivity and so ψ(∂a0a0...k̂...n) is well defined and a ∂a0-cycle. Again by corollary
4.12 H(L̂(Λn

k), ∂a0) = 0, and so ψ(∂a0a0...k̂...n) = ∂a0β for some β ∈ L̂(Λn
k). Defining

ψ(a0...k̂...n) = β makes ψ a well defined DGL morphism on the boundary L̂(∆̇n). Finally
we define ψ on L̂(∆n). Again ∂a0a0...n ∈ L̂(∆̇n) by inductivity. Thus ψ(∂a0a0...n) is
defined and it is a ∂a0-cycle. Thus ψ(∂a0a0...n) = ∂a0γ for some γ ∈ L̂(Λn

k). Defining
ψ(a0...n) = γ completes the definition of ψ and makes it into a DGL morphism.

Corollary 5.4. Let L be a complete DGL. Then the simplicial set 〈L〉• is a Kan complex.

Proof. As mentioned above, 〈L〉 is a Kan complex if each DGL morphism f : L̂(Λn
k)→ L

has a lift g : L̂(∆n) → L. In the case n = 0, then L̂(Λ0
0) = ∅, and so g only needs to

map to some Maurer-Cartan element of L. This is always possible, since the identity
is a Maurer-Cartan element. If n ≥ 1, then we use ψ from proposition 5.3 and define
g = f ◦ ψ. Now g is naturally a DGL morphism with the desired properties, completing
the proof.

Let (L, ∂) be a complete and non negatively graded DGL. Recall that the n:th ho-
motopy group πn(〈L〉, 0) is described by

πn(〈L〉, 0) = {f : Ln → L | δf = (0, ..., 0)}/ ∼

where f ∼ g if there is some h ∈ 〈L〉n+1 so that

δ(h) = (f, g, 0, ..., 0).

Alternatively πn(〈L〉, 0) = ∩ni=0 ker di/ ∼ where ker di = {f : Ln → L | dif = 0}. We
define a map ϕ : πn(〈L〉, 0) → Hn−1(L, ∂) by evaluating f at a0...n. That is ϕ(f) =
[f(a0...n)].We show that ϕ is well defined and a homomorphism for n ≥ 2.

Remark 5.5. We let πn〈L〉 denote the n:th homotopy group πn(〈L〉, 0).

40



Remark 5.6. It also holds that π1〈L〉 ∼= H0(L) when H0(L) is considered with the
group structure induced by the BCH-formula. We do not however cover this case here.

Theorem 5.7. Let n ≥ 2 and L a complete and non negatively graded DGL. The map
ϕ : πn〈L〉 → Hn−1(L, ∂) is well defined and a group homomorphism.

Proof. Recall that Ln is inductive, that is

∂a0a0...n ∈ L̂(∆̇n) for n ≥ 2. (5.0.3)

Also note that if f ∈ πn〈L〉, then

f(α) = 0 for any α ∈ L̂(∆̇n). (5.0.4)

At first we need to verify ϕ(f) ∈ ker ∂n−1. Since n ≥ 2 we note that ∂f(a0)f(a0...n) =
∂f(a0...n) since f vanishes on a0 and so f [a0, a0...n] = 0. Now f being a DGL morphism
together with (5.0.3) and (5.0.4) gives

∂f(a0...n) = ∂f(a0)f(a0...n) = f(∂a0a0...n) = 0.

Well defined: Suppose that f ∼ g and h ∈ 〈L〉n+1 so that δh = (f, g, 0, ..., 0). We want
to show that [f(a0..n)] = [g(a0..n)], that is f(a0..n)− g(a0..n) ∈ im ∂n. Now

f(a0...n) = d0h(a0...n) = h(a1...n+1)

g(a0...n) = d1h(a0...n) = h(a02...n+1)

since d0h = f and d1h = g. In particular we have that h is zero on all generators except
a0...n, a1...n and a02...n. Now gather

∂h(a0..n+1) = h(∂1a0..n+1) + h(∂>1a0..n+1)

=
n+1∑

i=0

(−1)idih(a0..n) + h(∂>1a0..n+1)

= f(a0..n)− g(a0..n) + h(∂>1a0..n+1).

The element ∂>1a0..n+1 have degree n − 1, and all terms are of length greater than
one. So any term must have a factor which is not a0...n, a1...n or a02...n. But since h
is zero on any such factor, we gather h(∂>1a0..n+1) = 0. The result then follows since
∂h(a0...n+1) = f(a0...n)− g(a0...n).
Homomorphism: Suppose f, g ∈ πn〈L〉 with fg represented by d1h for some h ∈
〈L〉n+1. That is δh = (g, fg, f, 0, ..., 0). We want to show that [ϕ(f)] + [ϕ(g)] = [ϕ(fg)]
in Hn−1(L, ∂). Equivalently, f(a0...n) + g(a0...n)− fg(a0...n) ∈ im ∂n. Now note that

g(a0...n) = d0h(a0...n) = h ◦ d0(a0...n)

= h(d0a0...n) = h(a12...n+1)
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and similarly

fg(a0...n) = h(d1a0...n) = h(a02...n+1)

f(a0...n) = h(d2a0...n) = h(a013...n+1).

Hence

h∂(a0...n+1) = h∂1(a0...n+1) + h∂>1(a0...n+1) = (f − fg + g) + h∂>1(a0...n).

The inductiveness of Ln+1 together with (5.0.4) gives ∂>1(a0...n+1) = 0, proving the
claim.

Theorem 5.8. The map ϕ : πn〈L〉 → Hn−1(L) is an isomorphism of groups.

Proof. We have already shown that ϕ is well defined and a homomorphism. Thus it
suffices to show that it is a bijection. First consider the case when n = 1. Let [f ] ∈ π1〈L〉
with a representative f : L1 → L so that ϕ[f ] = [0]. Equivalently f(a01) = x for some
x ∈ im ∂1. Suppose y ∈ L so that x = ∂y. Define h : L2 → L by h(a012) = y and
δh = (f, 0, ..., 0). If we verify that h is a DGL-morphism, then f ∼ 0 by h. Thus we
want to show ∂h = h∂. Now L2 is inductive, i.e ∂a0a012 ∈ L̂(∆̇2). Further h is zero on
all generators except a012 and a12. Clearly

∂h(a0)h(a012) = [h(a0), h(a012)] + ∂y = 0 + x = x.

Further
h(∂a0a012) = h(a12 − a02 + a01) + h(∂≥2

a0
a012) = x+ h(∂≥2a012).

Now let z be any term of ∂≥2a012. Either z contains a factor which is not a12, or all
factors are a12. In the first case h(z) = 0 since z ∈ L̂(∆̇2) and h is zero on the factor
which is not a12. In the other case z contains the factor [a12, a12], but this is equal to zero
by the properties of the Lie bracket since |a12| = 0. Hence h(∂≥2

g(a0)) = 0. Similarly we can
see directly from the definitions of ∂ai0i1 and ∂ai0 that h commutes with the differential,
and so it is a DGL morphism. Surjectivity follows from the fact that f : L1 → L defined
as f(a01) = x and zero on all other generators is a DGL morphism. This follows easily
from the explicit formula of ∂a01.

Now suppose that n ≥ 2.
Injectivity: Let [f ] ∈ πn〈L〉 and f : Ln → L some representative of [f ]. Suppose that
ϕ([f ]) = [f(a0...n)] = [0], that is f(a0...n) ∈ im ∂n. To conclude injectivity we want to
show that f ∼ 0. Set f(a0...n) = x. We have that ∂ny = x for some y ∈ Ln. Define a
map h : Ln+1 → L by h(a0...n+1) = y, h(a1...n+1) = x and zero elsewhere. We note that

δh = (f, 0, 0, ..., 0)

and so f ∼ 0 follows if we show that h is a DGL morphism. Hence we need to verify
that ∂h = h∂. By definition we have that h vanishes on n-simplicies of length greater
than one. Since Ln+1 is inductive we have

h(∂a0...n+1) = h(a1...n+1) + h(∂>1a0...n+1) = x+ 0 = ∂y = ∂h(a0...n+1).
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Similar arguments apply when showing h(∂a1...n+1) = ∂h(a1...n+1), and so it follows that
h is a DGL-morphism.

Surjectivity: Let x ∈ ker ∂n and define f : Ln → L by f(a0...n) = x and zero
elsewhere. This f is a DGL-morphism due to the inductivity of Ln. Further f satisfies
f ∈ πn〈L〉 and ϕ(f) = [x], which finishes the proof.

The adjoint functor L and examples

Using the cosimplicial DGL L•, they define in [1] a functor

L : sSet→ DGL

which is adjoint to the realization functor 〈·〉. This functor is homotopy equivalent to
the Quillen functor λ described in the introduction on finite simplicial complexes. We
will not study the construction of L here, but use some of its properties to calculate
some homotopy groups. Recall that a finite simplicial complex K is a topological space
consisting of a finite collection of topological simplices such that

• Each face of σ ∈ K is also in K.

• The intersection of two simplices σ, τ ∈ K is a face to both σ and τ .

These propositions are due to [1].

Proposition 5.9. If K is a finite simplicial complex, then K ⊂ ∆n for some n, and
L(K) is trivially isomorphic to the complete sub DGL (L̂(V ), ∂) ⊂ Ln.

Proposition 5.10. If K is a simply connected finite simplicial complex, then for every
vertex a ∈ K we have that

Hn(L(K), ∂a) ∼= πn+1(K)⊗Q, for n ≥ 1.

Example 5.11. The n-dimensional disc Dn ⊂ Rn is homeomorphic to the topolog-
ical n-simplex ∆n. We have that L(|∆n|) = (L̂(∆n), ∂) by proposition 5.9. Now
Hk(L̂(∆n), ∂a0) = 0 due to corollary 4.12. Thus we gather

πk(D
n)⊗Q ∼= πk(|∆n|)⊗Q ∼= Hk−1(∆n) = 0

by proposition 5.10.

Example 5.12. Calculation of πk(Sn) ⊗ Q for k ≥ 2. We have that |∆̇n| is a finite
simplicial subcomplex of |∆n|, so L(|∆̇n|) ∼= (L̂(∆̇n), ∂) by proposition 5.9. Further we
have that H(∆̇n+1, ∂a0) = L̂(∂a0a0...n+1) from corollary 2.5 ii) [1]. For simplicity we may
write L̂(∂a0a0...n+1) = L̂(u) for some generator u of degree n − 1 and ∂u = 0. The
components of the graded Lie algebra are only Vn−1 = Qu and V2n−2 = Q[u, u] when n
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is even, since otherwise [u, u] = 0 due to the identities of the graded Lie bracket. Thus
it is an easy calculation gives that

Hk(L̂(∆̇n+1), ∂a0) =

{
Q for k = n− 1 and k = 2n− 2 when n eben
0 else.

Now it is well known that the n-dimensional sphere Sn is homeomorphic to the boundary
of the n+ 1 topological simplex |∆n+1|. By proposition 5.10 the k:th rational homology
of |∆̇n+1| for k ≥ 2 is given by

πk(|∆̇n+1|)⊗Q ∼= Hk−1(L̂(∆̇n+1), ∂a0) =

{
Q for k = n and k = 2n− 1 when n even
0 else.

Thus we gather πk(Sn) ⊗ Q ∼= Hk−1(L̂(∆̇n+1)). In particular we gather that the non-
torsion part of πk(Sn) is Z for k = n, Z when k = 2n−1 and n even, and zero otherwise.
This is the expected outcome and is confirmed in the literature.
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