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1 Introduction
To a smooth projective algebraic scheme X one can associate on the one hand its Betti and `-adic cohomology,
and on the other hand its algebraic cycles. These objects are connected through the cycle class maps, going
from the algebraic cycles into the respective cohomologies. The cycle class maps land in a special class
of elements in the cohomologies, called the Hodge (respectively Tate) classes. These are elements that
are invariant under certain groups, groups which through Tannakian formalism determine the categories
generated by the respective cohomologies. The Hodge (respectively Tate) conjecture states that all Hodge
classes are algebraic, i.e. comes from the cycle class map, and the Mumford-Tate conjecture asserts that the
comparison isomorphism between Betti and `-adic cohomology induces an isomorphism between the group
that control the Hodge classes on the one hand, and the group that control the Tate classes on the other.

The aim of this text is to give a rigorous explanation of what the previous paragraph means, and we
hope that in doing so provide an introduction to some relevant concepts concerning these conjectures. The
text will mainly be focused on introducing the objects in question, taking many of their properties as a black
box.

1.1 Outline

In Section 2 we will introduce the notion of a neutral Tannakian category. This is not necessary in order
to understand the statement of the three conjectures, but, as we will see, neutral Tannakian categories
are present throughout the whole text (in particular, both the Betti cohomology and `-adic cohomology
lands in such a category). In this section we introduce the concepts needed to give the notion of a neutral
Tannakian category a precise definition, we give a proof of a theorem relating the category of representations
of an algebraic group to the group itself, and we state a deep theorem relating any neutral Tannakian
category to the category of representations of a certain algebraic group. We also state a useful criterion
for determining when an abelian tensor category is neutral Tannakian. After then briefly defining and
exemplifying algebraic cycles (Section 3), we will define the two cohomology theories and the more general
notion of a Weil cohomology theory (Section 4). In Section 5 we go on to discuss the notion of a Hodge
structure. This is fundamental since the Betti cohomology carries such a structure. In this section we also
introduce and prove some important results on the Mumford-Tate group. We state without much discussion
the notion of a Galois representation and how we obtain such an action on the `-adic cohomology. In Section
6 we thereafter state the three conjectures; the Hodge, Tate and the Mumford-Tate conjecture. After doing
so we discuss some examples and sketch some proofs. Although we will not go into much details in the
examples, one of the main hopes with presenting them is to indicate how the Mumford-Tate group can be
used to study the Hodge conjecture. We also state and prove a short statement on how the three conjectures
are related. The final section (Section 7) is then devoted to the concept of motives. This is again mainly
a sketch where we mostly define concepts without any proofs. We end that section by stating the so-called
motivic Mumford-Tate conjecture(s), and briefly mention how they are related to the three main conjectures
of this text. The main hope of the last section on motives is to introduce the concept, and to indicate that
it does unify some ideas and objects involved in the Hodge, Tate and the Mumford-Tate conjectures, and
that it can serve as a useful tool for the study of them.
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2 Tannakian categories
The purpose of this part is to give a brief introduction to the concept of a neutral Tannakian category.
We will present the fundamental notions of a tensor, rigid, and neutral Tannakian category, and state the
main theorem on neutral Tannakian categories. Namely, given such a category, the automorphism group
of the fibre functor is an affine group scheme, and it determines an equivalence between its category of
representations and the given category. This result will help us realise groups arising from Hodge structures
and Galois representations as Tannakian automorphism groups. We also sketch a proof of a useful theorem
giving a characterisation of Tannakian categories in terms of the trace map. This theorem will then tell us
whether the category of pure motives is Tannakian or not, which we will come back to in section (7). All
that is written in this section (except Theorem (2.10)) can be found in [3].

2.1 Tensor categories

A tensor category is a category T together with a functor ⊗ : T × T → T , an identity object 1 ∈ T with
respect to ⊗, and two families of functorial isomorphisms

φX,Y,Z : X ⊗ (Y ⊗ Z) ∼−→ (X ⊗ Y )⊗ Z, X, Y, Z ∈ T (2.1)

respectively
ψX,Y : X ⊗ Y ∼−→ Y ⊗X, X, Y ∈ T , (2.2)

that form a compatible associativity and commutative constraint. To explain further, the family φ above is
an associativity constraint for (T ,⊗) if

X ⊗
(
Y ⊗ (Z ⊗W )

)
X ⊗

(
(Y ⊗ Z)⊗W

) (
X ⊗ (Y ⊗ Z)

)
⊗W

(X ⊗ Y )⊗ (Z ⊗W )
(
(X ⊗ Y )⊗ Z

)
⊗W

idX ⊗φY,Z,W

φX,Y,Z⊗W

φX,Y ⊗Z,W

φX,Y,Z⊗idW

φX⊗Y,Z,W

(2.3)

is commutative for all X,Y, Z,W . The family ψ is a commutativity constraint for (T ,⊗) if

ψX,Y ◦ ψY,X = idX⊗Y , (2.4)

for all X,Y . One then says that the two constraints are compatible if

X ⊗ (Y ⊗ Z) (X ⊗ Y )⊗ Z Z ⊗ (X ⊗ Y )

X ⊗ (Z ⊗ Y ) (X ⊗ Z)⊗ Y (Z ⊗X)⊗ Y

φX,Y,Z

idX ⊗ψY,Z

ψX⊗Y,Z

φZ,X,Y

φX,Z,Y ψX,Z⊗idY

(2.5)

is commutative for all X,Y, Z. Also, an identity with respect to ⊗ is an object U together with an
isomorphism u : U → U ⊗ U such that the functor T → T X 7→ U ⊗X is an equivalence of categories. An
identity object is unique up to unique isomorphism, and we will always denote the identity object, as well
as the morphism by 1.

The most prototypical example of a tensor category is the category ModR of finitely generated modules
over a ring R with the usual tensor product. Here the identity is R. A simple non-example is to take ModR
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but change the associativity constraint to φX,Y,Z : x ⊗ (y ⊗ z) 7→ −(x ⊗ y) ⊗ z, in which case (2.3) is not
commutative.

One can extend the tensor product ⊗ : T × T → T to ⊗I : T I → T for any finite set I in an essentially
unique way.

Remark 2.1. By requiring that the tensor operation behaves well with respect to the respective extra
structures, one can define an additive and abelian tensor category analogously. In this case End(1) is a ring
which acts on each object X in T . In fact, in all cases we will consider, T will be a tensor category over a
field k, and we will have End(1) ∼= k.

Finally, if T and T ′ are tensor categories with defining functorial families of ismorphisms φ, φ′ and ψ,ψ′,
then we say that a functor F : T → T ′ is a tensor functor if F (1) = 1′ and there is a functorial isomorphism
tX,Y : F (X)⊗ F (Y )

∼−→ F (X ⊗ Y ) such that the following diagrams are commutative:

FX ⊗ (FY ⊗ FZ) FX ⊗ F (Y ⊗ Z) F
(
X ⊗ (Y ⊗ Z)

)

(FX ⊗ FY )⊗ FZ F (X ⊗ Y )⊗ FZ F
(
(X ⊗ Y )⊗ Z

)

idFX ⊗tY,Z

φ′
FX,FY,FZ

tX,Y ⊗Z

F (φX,Y,Z)

tX⊗Y,Z⊗idFZ tX⊗Y,Z

(2.6)

FX ⊗ FY F (X ⊗ Y )

FY ⊗ FX F (Y ⊗X)

tX,Y

ψ′
FX,FY F (ψX,Y )

tY,X

(2.7)

for all X,Y, Z ∈ T .

2.2 Rigid tensor categories

The next step is to introduce duals. For this, we first introduce invertible objects, and then define internal
Hom. We say that an object L in T is invertible if there exists an object, which we denote by L−1 when
it exists, and an isomorphism 1 ∼= L⊗ L−1. Such a pair, (L−1, δ : L⊗ L−1 ∼−→ 1), is called an inverse to L.
The internal Hom of X,Y ∈ T is, if it exists, the representable object of the functor

T 7→ Hom(T ⊗X,Y ). (2.1)

We then denote it by Hom(X,Y ). For example, in T = ModR, Hom(X,Y ) = HomR(X,Y ) as R-modules.
If Hom(X,Y ) exists, then by definition we have a functorial bijection

Hom(T ⊗X,Y )
ηT−−→ Hom(T,Hom(X,Y )), (2.2)

and after plugging in T = Hom(X,Y ) we denote by evX,Y the inverse image of idHom(X,Y ) under this
bijection. By construction

evX,Y : Hom(X,Y )⊗X → Y. (2.3)

Finally we define the dual of X ∈ T to be X∨ := Hom(X, 1), and the map evX := evX,1 : X∨ ⊗X → 1 is
called the evaluation map. The name is justified by looking again at ModR, where evX(f ⊗ x) = f(x) for
all modules X and elements f ∈ X∨ and x ∈ X.

Suppose now that Hom(X,Y ) exists for all X,Y . We want to make the map X 7→ X∨ a contravariant
functor. For this, note first that the definition of internal Hom tells us that for any T in T and any morphism
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g : T ⊗X → Y , there exists a unique h : T → Hom(X,Y ) such that g = evX,Y ◦(h⊗ idX). Indeed, for each
a : T → T ′ we have a commutative diagram

Hom(T ⊗X,Y ) Hom(T,Hom(X,Y ))

Hom(T ′ ⊗X,Y ) Hom(T ′,Hom(X,Y ))

ηT

ηT ′

◦(a⊗id) ◦a . (2.4)

With h := ηT (g), and T ′ = Hom(X,Y ), a = h, the commutativity of (2.4) shows us that

evX,Y ◦ (h⊗ idX) = η−1
Hom(X,Y )(idHom(X,Y )) ◦ (ηT (g)⊗ idX) = η−1

T

(
idHom(X,Y ) ◦ ηT (g)

)
= g. (2.5)

In particular, to an arbitrary f : X → Y we let the role of g be played by the morphism evY ◦(idY ∨ ⊗f) :
Y ∨ ⊗X → 1, to give us a unique morphism

tf : Y ∨ = Hom(Y, 1)→ Hom(X, 1) = X∨ (2.6)

such that evX ◦(tf ⊗ idX) = evY ◦(idY ∨ ⊗f). This is called the transpose of f . Following up on the
prototypical example ModR, upon using the usual notation 〈 , 〉X := evX , we see that X∨ = HomR(X,R) and
for a morphism f : X → Y , the transpose tf : Y ∨ → X∨ is the unique morphism such that 〈 tf(y) , x 〉X =

〈 y , f(x) 〉Y , for all x ∈ X, y ∈ Y ∨, as usual.
Now, if f is an isomorphism, we define the dual of f to be tf−1 : X∨ → Y ∨. By construction

evX = evX ◦(tf ⊗ idX) ◦ (f∨ ⊗ idX) = evY ◦(idY ∨ ⊗f) ◦ (f∨ ⊗ idX) = evY ◦(f∨ ⊗ idX). (2.7)

Note also that, while apologising for the notation, if we in the top row of (2.4) replace X by X∨, replace T
by X, and replace Y by 1, then the morphism evX ◦ ψX,X : X ⊗X∨ → 1 is taken by η−1 to a morphism

X → X∨∨. (2.8)

If this is an isomorphism, then X is said to be reflexive.

Example 2.2. If we set T = ⊗i∈IHom(Xi, Yi), X = ⊗i∈IXi, Y = ⊗i∈IYi, and g is the map ⊗i∈I evXi , we
obtain a morphism

⊗i∈I Hom(Xi, Yi)→ Hom(⊗i∈IXi,⊗i∈IYi) (2.9)

Two immediate examples following from this are the following:
(a): If we take Yi = 1 for all i, then we get a morphism

⊗i∈I X∨
i → (⊗i∈IXi)

∨ (2.10)

(b): If we take I = {1, 2}, and X1 = X, Y1 = 1 = X2, and Y2 = Y , then we obtain

X∨ ⊗ Y → Hom(X,Y ), (2.11)

after using Hom(1, Y ) ∼= Y .

We can now introduce the notion of a rigid tensor category.

Definition 2.3. A tensor category is called rigid if Hom(X,Y ) exists for all pairs (X,Y ), all objects are
reflexive, and if the morphism (2.9) is an isomorphism for all finite sets I.

Here our reference to ModR ends, because there exists finitely generated modules that are not reflexive.
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2.3 Neutral Tannakian categories

Now let T be a rigid, abelian tensor category over k. By that we mean that ⊗ is a k-biadditive functor. We
say that a tensor functor ω : T → Veck is a fibre functor if it is exact, faithful and k-linear. Then

Definition 2.4. A neutral Tannakian category over k is a rigid, abelian tensor category that admits a
fibre functor.

In such a category, a Tannakian subcategory is a strictly full subcategory that is closed under tensor
products, duals, and quotients.

We stated in the beginning that the main theorem on neutral Tannakian categories relates such categories
to representations of affine group schemes. So let us now turn to such representations, and then state the
main theorem as promised.

2.3.1 Representations of affine group schemes

An affine group scheme over k is an affine scheme, G, over k together with regular k-maps m : G×G→ G,
e : 1 → G, inv : G → G (called multiplication, identity respectively inverse) that turns the underlying set
of G into a group. Another, sometimes more useful, way to define an affine group scheme is through the
language of functors. Then an affine group scheme over k is a contravariant functor G : AffSchk → Ab from
the category of affine k-schemes to the category of abelian groups such that composing with the forgetful
functor Ab→ Set gives a representable functor. Obtaining this latter description from the former is done by
looking at the functor G : T 7→ HomSpec k(T,G). We will interchange between the two notions.

Example 2.5. (a): The multiplicative group over k is defined either as the functor that takes a k-algebra
R to its multiplicatively group R×, or as the affine scheme Spec k[t, t−1]. It is denoted Gm,k, or simply Gm
if k is implicitly understood.

(b): More generally, the general linear group GLn is defined as Spec k[tij ,det(tij)
−1]1≤i,j≤n. As a

functor it takes each k-algebra R to the group GLn(R) = AutR(k
n ⊗k R).

(b): Generalising further, if V is a vector space of over k, then the general linear group of V , denoted
GL(V ), is defined as the functor taking a k-algebra R to AutR(V ⊗k R). For a description in terms of an
affine scheme see [1].

Just as affine schemes corresponds to rings, affine groups also correspond to a purely algebraic object.
Namely, a bialgebra over k is a k-algebra A together with maps ∆ : A → A ⊗ A, ε : A → k, S : A → A

satisfying the so-called coassociativity axiom, the coidentity axiom, respectively the coinverse axiom:

(idA⊗∆) ◦∆ = (∆⊗ idA) ◦∆ : A→ A⊗A⇒ A⊗A⊗A
(ε⊗ idA) ◦∆ = (idA⊗ε) ◦∆ = id : A→ A⊗A→ k ⊗A ∼= A⊗ k ∼= A

(
A

∆−→ A⊗A (S,idA)−−−−→ A
)
=

(
A

ε−→ k → A
)

(2.1)

The Spec functor then gives an equivalence of categories between the category of affine group schemes over
k and the category of k-bialgebras.

With the (bi)algebra structure in mind, we will relate representations of G to so-called comodules. To
define these, we say that a coalgebra over k is a k-vector spaceK together with k-linear maps ∆ : K → K⊗K
and ε : K → k satisfying the first axioms listed above (coassociativity and coidentity). In particular, each
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bialgebra is also a coalgebra. Then a comodule over K is defined to be a k-vector space V together with
k-linear maps ρ : V → V ⊗K such that idV = (idV ⊗ε) ◦ ρ and (idV ⊗∆) ◦ ρ = (ρ⊗ idK) ◦ ρ. In pictures

V V ∼= V ⊗ k

V ⊗K

idV

ρ
idV ⊗ε

,

V V ⊗K

V ⊗K V ⊗K ⊗K

ρ

ρ ρ⊗idK

idV ⊗∆

. (2.2)

For example, each coalgebra A gives a comodule (A,∆).
Our interest in comodules comes from the fact that for a given affine group scheme G = Spec(A) over

k, and a given k-vector space V , we have a canonical one-to-one correspondence between A-comodules on V

and linear representations of G on V . Indeed, if h : G→ GL(V ) is such a representation, then consider the
image of idA under h(A) : G(A)→ GL(V )(A) = GL(V ⊗A). We then get a k-linear map

ρh : V
∼−→ V ⊗ k ↪→ V ⊗A h(A)(idA)−−−−−−→ V ⊗A (2.3)

that actually determines an A-comodule structure on V . Conversely, a comodule structure ρ : V → V ⊗ A
gives a representation h : G→ GL(V ) by taking a k-algebra R, to the morphism h(R) : G(R)→ GL(V ⊗R)
given by taking g in G(R) ∼= Homk(A,R) to the automorphism

(idV ⊗(g, idR)) ◦ (ρ⊗ idR) : V ⊗R→ V ⊗R. (2.4)

Under this correspondence, the regular representation of G is defined to be that representation corre-
sponding to the A-comodule (A,∆).

An interesting feature of linear representations of affine group schemes is that they in a nice way come from
finite representations. Precisely, note first that if (V, ρ) is a K-comodule, and v ∈ V , then ρ(v) =

∑n
i=1 vi⊗xi,

for some vi ∈ V, xi ∈ K, and the comodule generated by v, v1, ..., vn is a finite-dimensional sub-comodule
of V containing v. Thus, each finite subset of V is contained in a finite-dimensional sub-comodule. This
translates to representations; every linear representation V of G is a directed union of finite-dimensional
sub-representations. Indeed, by the correspondence in the previous paragraph, V is an A-comodule, and the
collection of all finite-dimensional sub-comodules is partially ordered by inclusion, directed and has union
V , by what was just explained about finite subsets.

So far we have talked about the relation between representations and comodules, one by one. Let us
now turn to the whole category of representations of G, and see how we can recover G from it. Denote
the just mentioned category by Repk(G). This is a rigid, abelian tensor category, with a fibre functor
ω : Repk(G)→ Veck being the forgetful functor. This gives us a tensor automorphism group, Aut⊗(ω).
For each k-algebra R, it is given by

Aut⊗(ω)(R) =
{ ∏

X∈Repk(G)

(λX) : λX ∈ AutR(X ⊗R) satisfying (2.6) below
}

(2.5)

λ1 = idR

λX1 ⊗ λX2 = λX1⊗X2

λY ◦ (α⊗ 1) = (α⊗ 1) ◦ λX : X ⊗R→ Y ⊗R
(2.6)

for all X1, X2, X, Y ∈ Repk(G) and all G-equivariant maps α : X → Y . We wish to recover G from its
category of representations, and we will do so by relating it to this automorphism group.
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Proposition 2.6. Let G be an affine group scheme over k, let Repk(G) be its category of representations
over k, with forgetful functor ω. Then G ∼= Aut⊗(ω).

Proof. We will prove this over the course of a few pages, where we also introduce new concepts and prove
a few results that we will state as lemmas. The main idea is to write G as a limit of “smaller”, “finite”
subgroups, and prove a corresponding statement on these subgroups, and then pass through the limit to all
of G.

The finiteness notion on affine groups that we mentioned is that of an algebraic group. Precisely, an
algebraic group is an affine group scheme that is finitely generated as an affine scheme. That is, if the
group is G = Spec(A), then A is a finitely generated k-algebra. We then have the following result.

Lemma 2.7. An affine group scheme G over k is algebraic if and only if it has a finite dimensional faithful
representation over k.

Proof of Lemma (2.7): The forward comes directly since a finite-dimensional, faithful representation ρ :

G ↪→ GL(V ) embeds G as an algebraic subgroup of GL(V ). Now suppose the converse and let V be the
regular representation. By our previous discussion, we can write V =

⋃
i Vi as a directed union of finite-

dimensional representations. The fact that G is algebraic implies that it is noetherian as a topological space,
whence any decreasing sequence of closed subsets stabilises. In particular, V being faithful implies that⋂
i ker

(
G → GL(Vi)

)
= {1}, and since each ker

(
G → GL(Vi)

)
is closed, the fact that G is noetherian

implies that ker
(
G→ GL(Vi)

)
= {1} for some i. This finishes the proof of Lemma (2.7).

Now, just as we can write any representation as a direct limit of finite-dimensional sub-representations,
we want some similar “finiteness-relation” for G. This is obtained in the following.

Lemma 2.8. Every affine group scheme G over k is the directed inverse limit of algebraic subgroups Gi,
G = lim←−Gi.

Proof of Lemma (2.8): Since the equivalence functor Spec is contravariant, it turns direct limits of k-
bialgebras into inverse limits of k-groups. Thus, we are done if we can show that A = lim−→Ai, for a k-bialgebra
A, and finitely generated sub-bialgebras Ai. But just as each finite subset of an A-comodule is contained in
a finite-dimensional sub-comodule, one sees that each finite subset of A is contained in a finitely generated
sub-bialgebra (meaning sub-bialgebra that is finitely generated as a k-algebra). Thus, we can write A as a
directed union, i.e. A = lim−→Ai, as wanted. This finishes the proof of Lemma (2.8).

Now we turn to the proof of the proposition.
Proof of Proposition (2.6): Note first that we have a natural map

G→ Aut⊗(ω) (2.7)

given by taking g in G(R) to (ρX(R)(g))X , where ρX : G → GL(X) is the morphism corresponding to
X ∈ Repk(G). It is this map we wish to show is an isomorphism. The idea is to use the finiteness relations
discussed earlier to show that it restricts to an isomorphism between the algebraic subgroups Gi which G is
the limit of, and certain restrictions of ω.

To this end, let 〈X〉 denote the full subcategory of Repk(G) consisting of those objects isomorphic to a
subquotient of some tensor construction of X, (i.e. isomorphic to a subquotient of some object of the form
⊕ni=1X

ai ⊗ (X∨)bi for some n, ai, bi ∈ N). This is indeed a tensor subcategory since the tensor product
commutes with colimits, in particular quotients, and since we can take n = 0 to get 1 ∈ 〈X〉. Let ωX denote

9



the restriction of ω to 〈X〉. Each family (λ) ∈ Aut⊗(ωX)(R) is determined by the representation λX , by
definition of 〈X〉 and ωX as the restriction to this subcategory. Thus, (λ) 7→ λX gives an injection

Aut⊗(ωX)(R) ↪→ GL(X ⊗R). (2.8)

If we let GX ↪→ GL(X) be the image of G under the representation X, then the same reasoning as above
gives GX(R) ↪→ Aut⊗(ωX)(R). To obtain the reversed inclusion, Remark 3.2(a) in [2] tells us that it is
enough to show that Aut⊗(ωX) is the subgroup of GL(X) that fixes all tensors in V ’s in 〈X〉 that are fixed
by GX (equivalently, by definition of GX , fixed by G). Thus, take an object V in 〈X〉, λV : G → GL(V ),
and an element v in V fixed by G. Then α : k → V , a 7→ av is G-equivariant as G acts k-linearly, and hence

λV (v ⊗ 1) = λV ◦ (α⊗ 1)(1⊗ 1) = (α⊗ 1) ◦ λ1(1⊗ 1) = (α⊗ 1)(1⊗ 1) = v ⊗ 1. (2.9)

Thus, GX = Aut⊗(ωX). For each Y ∈ Repk(G), as 〈X〉 ↪→ 〈X ⊕ Y 〉 (recall that we allow subquotients), we
therefore have commutative diagrams

GX⊕Y Aut⊗(ωX⊕Y )

GX Aut⊗(ωX)

∼=

∼=

(2.10)

where the vertical maps are the “restrictions”. From Lemmas (2.7), (2.8) we get G = lim←−GX and then the
diagram gives, after taking limits, G ∼= Aut⊗(ω).

Finally, we state the main theorem on neutral Tannakian categories.

Theorem 2.9. Let T be a neutral Tannakian category over k, with End(1) ∼= k, and fibre functor ω : T →
Veck. Then Aut⊗(ω) =: G is an affine group scheme, and ω gives an isomorphism T ∼= Repk(G).

Proof. See Theorem 2.11. in [3].

Although the theorem begins with a neutral Tannakian category and produces an affine group and a
category of representations over this group, it can also be used the other way around; we might have a group
G and a tensor equivalence Repk(G) → T , from which we can then obtain information of G as the tensor
automorphism group of T .

2.4 A criterion to be neutral Tannakian

In this section we wish to present a criterion for when an abelian, rigid tensor category is neutral Tannakian.
This is done through the trace map and the rank, which are defined as follows.

If T is a rigid tensor category, then for each X ∈ T , by definition of a rigid tensor category (see (2.11)
with Y = X) we have an isomorphism Hom(X,X)→ X∨ ⊗X. Composing with evX gives

Hom(X,X)→ 1. (2.1)

If we apply Hom(1,−) to this, we get

TrX : Hom(X,X) ∼= Hom(1⊗X,X) ∼= Hom(1,Hom(X,X))→ Hom(1, 1) = End(1). (2.2)

This is how we define the trace morphism of X, or simply the trace of X. The rank of X is defined to be

rk(X) := TrX(idX) ∈ End(1), (2.3)

10



and it is also sometimes called the dimension of X. Finally, we define the exterior power of X, denoted
∧nX, to be the image of the map a :

∑
(−1)sgn(σ)σ : X⊗n → X⊗n, σ ∈ Sn.

Using these notions, we now have the following result.

Theorem 2.10. Let T be an abelian, rigid tensor category over a field k of characteristic zero, such that
End(1) ∼= k. Then the following are equivalent

1. T is neutral Tannakian;

2. For all X ∈ T , rk(X) ∈ Z≥0;

3. For all X ∈ T there exists n ∈ Z≥0 such that ∧nX = 0.

Proof. See [25] 7.
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3 Algebraic cycles
This section aims at giving a very brief introduction to the concept of algebraic cycles; we will just state the
definition, give two short examples and explain a common way to construct an algebraic cycle from a given
scheme (for an in-depth treatment of what we present here, we refer to [4]). This latter aim is important,
because both the Hodge and Tate conjecture are existent statements about algebraic cycles.

Let P(k) be the category of smooth projective algebraic schemes over a field k, and let X be an object in
P(k). Let a subvariety denote a reduced and irreducible subscheme Z ⊂ X. The set of algebraic cycles
on X of codimension r is the free abelian group generated by subvarieties of codimension r, denoted
Zr(X). The set of algebraic cycles on X is then defined as

Z∗(X) :=
⊕

r≥0

Zr(X). (3.1)

Denote by [Z] the element corresponding to Z ⊂ X in Z∗(X). If we at some point extend scalars to Q, then
define Z∗(X)Q := Z∗(X) ⊗ Q. In order to get a well-defined intersection product and certain functoriality
properties, one usually considers Z∗(X)Q modulo some “nice” equivalence relation. The exact notion of
“nice” is adequate, which we will define in Section (7) on motives. Now, we just introduce one adequate
equivalence relation.

We say that α ∈ Zr(X) is rationally equivalent to 0, denoted α ∼rat 0, if there exists subvarieties
Z1, ..., Zk ⊂ X × P1 of codimension r such that the projections Zi → P1 are dominant, and α =

∑
[Zi(0)]−

[Zi(∞)]. Here the notation Z(0) means the following. If f : Z → P1 denotes the restriction of the projection
X × P1, and if P ∈ P1 is a closed point, then Z(P ) := f−1(P ) = Z × Specκ(P ) ⊂ X × {P}. An algebraic
class of codimension r is an element of Zrrat(X) := Zr(X)/ ∼rat. The algebraic classes is

Z∗
rat(X) :=

⊕

r≥0

Zrrat(X). (3.2)

With addition coming from the underlying free group, and multiplication as intersection product (see [4] for
the definition), this is a ring, which is often called the Chow ring of X. In fact, the “obvious” grading
coming from the definition makes Z∗

rat(X) a graded Z≥0-algebra. When we extend scalars to Z∗
rat(X)Q :=

Z∗(X)⊗Q/ ∼rat we get a graded Q-algebra.

Example 3.1. Let X = P2
k. Every subvariety of codimension 1 is determined by an irreducible, homogeneous

polynomial f ∈ k[x0, x1, x2]. If two such polynomials, f and g, have the same degree, d, then we can consider
h(x, y) ∈ k[x0, x1, x2, y0, y1] defined by

h(x, y) := y0f + y1g. (3.3)

This is bihomogeneous of bidegree (d, 1). With the notation 0 = (1 : 0) and ∞ = (0 : 1), we obtain
h(x, 0) = f and h(x,∞) = g. Let V (−) denote the zero loci operation. Then Z := V (h) ⊂ X × P1 is such
that Z(0) = V (f), and Z(∞) = V (g), and hence [V (f)]− [V (g)] ∼rat 0.

This example indicates that one is perhaps not completely wrong to think of rational equivalence as a
sort of homotopy relation. Another useful example is the following.

Example 3.2. A cycle of codimension 1 of P1×P1 is given by a bihomogeneous polynomial f(x0, x1, y0, y1)
of bidegree (degx f, degy f) and two such are rationally equivalent if and only if they have the same bidegree.
From this we get that Z1

rat(P1 × P1) ∼= Z× Z. Since P1 × {0} = V (y1) and {0} × P1 = V (x1), where x1 has

12



bidegree (1, 0), and y1 has bidegree (0, 1), we see that a basis for Z1
rat(P1 × P1) is {[{0} × P1], [P1 × {0}]} ∼=

{(1, 0), (0, 1)}. We have ∆P1 ∼rat {0}×P1+P1×{0}. This decomposition of the diagonal will be important
in the construction of pure motives in Section (7).

The construction of the Chow ring, and more generally that of algebraic cycles modulo any adequate
equivalence relation, is actually functorial. We omit the details, but roughly one gets a contravariant functor
(−)∗ by taking a morphism f : X → Y to the map f∗ that takes a subvariety of Y , pulls it back to the
product Y × X, intersects it with the transpose of the graph of f and then pushes it forward to X. For
the covariant functor one does a similar procedure but replacing the transpose of the graph of f with just
the graph. As a small remark, however, it is only the pullback (the contravariant functor) that respects the
intersection product.

Finally, let us introduce a common way to construct algebraic cycles.

Example 3.3. Suppose L is a locally free sheaf on X of rank r, with a global, non-trivial, section s ∈ Γ(X,L).
The zero subscheme of s, L(s), is the scheme with underlying set consisting of those points x ∈ X such that
s(x) = 0 in Lx/mxLx, where mx is the maximal ideal of OX,x. Since L is locally free of rank r, locally around
each x in X there is an affine neighbourhood, U , of x, with L|U ∼= OX |rU , so s|U corresponds to r functions
f1, ..., fr ∈ OX |U , and the zero scheme of s can be seen as the set of zeros of the fi’s. In good situations, the
codimension of L(s) is exactly r, i.e. each fi cuts down the dimension by one. In particular, if X is smooth,
projective and algebraic over k, and L is an ample line bundle, then L(s) is a reduced, irreducible subscheme.
In this case, the element corresponding to L(s) in Z∗

rat(X) is called the ample divisor (corresponding to
L).
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4 Cohomology theories
The other “objects” constructed from a scheme X ∈ P(k) that we consider are certain cohomology theories.
We assume that the reader have seen some (co)homology, in particular singular (co)homology of a topological
space. But if not, to put it shortly: (co)homology is a way of “linearising” a space to create algebraic
invariants which helps us understand the space in question. Singular (co)homology essentially looks at
subpieces of the space in question carved out by continuous functions from a point, a line, a “filled in” triangle,
a tetrahedon etc. The idea is, roughly, that this construction at the very least should take into account holes of
various dimensions in the space in question, and one important consequence is that homotopically equivalent
spaces have isomorphic singular (co)homology.

Just as for the algebraic cycles, we will mainly stick to the definitions, and the cohomology theories we
will define are Betti cohomology, `-adic cohomology, and the more general notion of a Weil cohomology. The
later is not a cohomology theory per se, but rather a definition of a certain class of such theories, a class
both the Betti and the `-adic cohomology theory belongs to. We include its definition partly because it tells
us some features of the Betti and the `-adic cohomology, and partly because we want it for the discussion
on motives.

4.1 Betti cohomology

A complex analytic space is a locally ringed space (Xan,OXan) such that Xan locally embeds into Cn,
for some n. As such it is endowed with an Euclidean topology and one can therefore consider the singular
cohomology on it. The importance of this in the setting of algebraic schemes comes from the following.

Theorem 4.1. If X is a locally finite type scheme over C, then the functor

Y 7→ HomLocally ringed spaces(Y,X) (4.1)

from the category of analytic spaces into Set is representable by an analytic space, Xan. Furthermore, the
underlying set of Xan is X(C), the complex points of X.

In particular, if X is a smooth, projective scheme over a field k, embeddable into C, then X ×k C is a
locally finite type scheme over C, so to it there corresponds an analytic space, Xan. The singular cohomology
on this space, which we denote by HB(X,Z), is called the Betti cohomology of X.

Furthermore, with Xan comes also a natural morphism ιan : Xan → X of locally ringed spaces. We then
have the following important theorem.

Theorem 4.2. ([part of] Serre’s GAGA)
For any coherent sheaf F on X, and for any n, the natural morphism ιan : Xan → X induces an isomorphism

Hn(X,F) ∼−→ Hn(Xan, (ιan)∗F) (4.2)

Here Hn(X,F) refers to sheaf cohomology (for the definition of this cohomology theory replace “étale”
by “Zariski” in the discussion in the next section, or see [5] Chapter III for a more in-depth treatment). In
particular, we have an isomorphism between Hq(X ×k C,ΩpX×kC/C) and Hq(Xan,Ωp), where Ω1 is the sheaf
of relative differentials, and Ωp =

∧p
Ω1.
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4.2 `-adic cohomology

The other cohomology theory that we will need is the `-adic cohomology. The underlying idea is that we want
a cohomology theory for schemes that shares similar properties to the singular cohomology for topological
spaces, but such that we can use it also for schemes over fields of positive characteristic. A main problem is
that the Zariski topology is too coarse, and we therefore need to enlarge (and slightly change the definition
of) our underlying topology. This leads us to the notion of a site.

Definition 4.3. A site is a (small) category C together with the following information. For each U ∈ C,
there exists a family, {ϕi : Ui → U}i∈I , of morphisms in C (called a covering of U). The set of all coverings
of U is required to satisfy the following conditions:

1. Each isomorphism ϕ : V → U gives a covering {ϕ : V → U}.

2. If {ϕi : Ui → U}i∈I is a cover of U and {ϕij : Uij → Ui}j∈J is a cover of Ui for all i then {ϕi ◦ ϕij :
Uij → U}i,j is also a cover of U .

3. If {ϕi : Ui → U}i∈I is a cover of U , and U ′ → U is a morphism in C, then the projection morphisms
of the respective base changes ϕ′

i : U
′
i := U ′ ×U Ui → U ′ form a cover of U ′, {ϕ′

i : U
′
i → U ′}i∈I .

Remark 4.4. Note that we implicitly require that the base change U ′×U Ui exists in C. This can intuitively
be thought of as a generalisation of the requirement that topologies are stable under intersections.

The Zariski site of a scheme X is the “usual” Zariski topology on X. In the language of sites, it is
the category XZar of open immersions U ↪→ X together with all the usual coverings; {ϕi : Ui → U}i∈I is
a cover of U if

⋃
i ϕi(Ui) = U . The étale site of X is the category Xet of finite, étale morphisms U → X

together with all the coverings {ϕi : Ui → U}i∈I such that
⋃
i ϕi(Ui) = U . One then says that a sheaf on

Xet is a contravariant functor F : Xet → Ab such that, for each U → X and each covering {Ui → U}i∈I , the
sequence

F(U)→
∏

i

F(Ui)⇒
∏

i,j

F(Ui ×U Uj) (4.1)

is exact (sheaves on an arbitrary site is defined similarly). We denote the category of sheaves on Xet by
S(Xet).

Recall that in an abelian category, A, an object I is called injective if the functor HomA(−, I) is exact,
and the category is said to have enough injectives if for each object A in A there is a monomorphism
A → I, for some injective object I. In particular, the category S(Xet) has enough injectives (for a short
proof, see [6] III.1). Furthermore, if A has enough injectives, B is another abelian category, and F : A → B
is an exact functor, then there exists a family of functors RiF : A → B with the property that

1. R0F = F ,

2. RiF (I) = 0 for I injective and i > 0,

3. there are boundary maps; each short exact sequence 0 → A′ → A → A′′ → 0 induces a long exact
sequence · · ·RiF (A)→ RiF (A′′)

δi−→ Ri+1F (A′)→ Ri+1F (A)→ · · · , and this is functorial.

These are called the right derived functors of F .
Using this, we define the étale cohomology of X to be the right-derived functors of the global sections

functor Γ(X,−) : S(Xet)→ Ab. Denoted

Hi
et(X,−) := RiΓ(X,−). (4.2)
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We can in fact give a more explicit description of this. If F is in S(Xet), then we apply Γ(X,−) to an
injective resolution 0→ F → I•. Removing the term Γ(X,F), we have a sequence

0→ Γ(X, I0) d0−→ Γ(X, I1) d1−→ · · · (4.3)

and the étale cohomology of X is the cohomology of this sequence

Hi
et(X,F) := RiΓ(X,F) = ker di+1/ im di. (4.4)

We now define the `-adic cohomology of X (with coefficients in Q`) to be

Hi
`(X,Q`) :=

(
lim←−
n

Hi
et(X,Z/`nZ)

)
⊗Q`. (4.5)

Here too we have a notion of twisting. If we fix some n 6= char(k) then the operation µ : (U → X) 7→ {x ∈
Γ(U,OU ) : xn = 1} on Xet gives a sheaf. If F is another sheaf on Xet then F(r) := F ⊗ µ⊗r, and we define

Hi
`(X,Q`(r)) :=

(
lim←−
n

Hi
et(X,Z/`nZ(r))

)
⊗Q`. (4.6)

For more on the étale cohomology, we refer to [6].

Remark 4.5. One can also define singular cohomology as a right-derived functor. In particular, it too takes
short exact sequences to long exact sequences in a functorial manner.

4.3 Weil cohomology

(In this section we follow the definition in [15]).
The two cohomology theories introduced above are examples of so-called Weil cohomologies. In general,

a Weil cohomology theory with coefficients in Q is a contravariant functor

H : P(k)→ GrVec
Z≥0

Q (4.1)

from the category P(k) of smooth projective schemes over k, to the category of Z≥0-graded vector spaces
over Q, respecting the monoidal structures of the two categories, and satisfying the following conditions.

1. We have dimQH
2(P1) = 1.

Remark 4.6. We define the Tate twist (with respect toH) on GrVecQ to be V (r) := V⊗H2(P1)⊗(−r),
for r ∈ Z, and − refer to the tensor of the dual.

2. For each X ∈ P(k) of pure dimension d, there exists a Q-linear map TrX : H2d(X)(d)→ Q, such that
the composition

Hi(X)×H2d−i(X)(d)→ H2d(X)(d)
TrX−−→ Q (4.2)

is a perfect pairing. We require TrX to be an isomorphism if X is geometrically connected, and in all
cases we require that it satisfies TrX×Y = TrX TrY .

3. For each X ∈ P(X) and all r ≥ 0, we have maps clrX : Zrrat(X)→ H2r(X)(r), that are

(a) contravariant in X,

(b) satisfies clr+sX×Y (α× β) = clrX(α)⊗ clsY (β), and
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(c) when X is pure of dimension d, TrX ◦ cldX gives the degree map (for closed points Pi ∈ X,
deg

∑
i ni[Pi] :=

∑
i[κ(Pi) : k], where κ(Pi) is the field corresponding to Pi).

Remark 4.7. Since H respects the monoidal structures there is indeed an isomorphism H(X × Y ) ∼=
H(X)⊗H(Y ).

The second condition is often called Poincaré duality, the isomorphism H(X × Y ) ∼= H(X) ⊗ H(Y )

is referred to as the Künneth isomorphism and the map clX is called the cycle class map. These
have the important consequence that elements in Zrat(X × X) give functions H(X) → H(X). Indeed, if
e ∈ ZdXrat (X ×X), then the cycle class map gives an element e′ ∈ H2dX (X ×X). The Kunneth isomorphism
gives an element e′′ ∈ ⊕i+j=2dXH

2dX−i(X)⊗Hi(X). By Poincaré duality, H2dX−i(X) = Hi(X)∨, whence
we get an element e′′′ ∈ ⊕iHi(X)∨ ⊗Hi(X) ∼= ⊕iHom(Hi(X),Hi(X)) ∼= Hom(H(X),H(X)). In short:

ZdimX
rat (X ×X)→ H2dX (X ×X) (cycle class map)

∼=
⊕

i

H2dX−i(X)⊗Hi(X) (Kunneth isomorphism)

∼=
⊕

i

Hi(X)∨ ⊗Hi(X) (Poincaré)

∼= Hom(H(X),H(X)).

(4.3)

4.4 Cycle class map

We will take all of the properties of a Weil cohomology for granted for the Betti and the `-adic cohomology,
but let us at least sketch how the cycle class map is constructed for divisors, that is, for elements in Z1

rat(X).
Let X ∈ P(k) as before and let Z denote the constant sheaf on X with values in Z. On the analytic space
corresponding to X we have an exact sequence

0→ Z→ OX exp−−→ O×
X → 0 (4.1)

so if we apply HB(X,−) on this we get

· · · → H1
B(X,O×

X)
δ−→ H2

B(X,Z)→ · · · (4.2)

Now, using Cech cohomology one can show that H1(X,O×
X) is isomorphic to the Picard group of X, which,

since X is smooth, is isomorphic to Z1
rat(X). We then extend scalars H2

B(X,Z)→ H2
B(X,Q). Combining δ

with this extension of scalars gives the cycle class map in degree 1.

Remark 4.8. The Picard group of a scheme X, denoted Pic(X) is the group of isomorphism classes of line
bundles on X. For a brief introduction to Cech cohomology see [16] 18, and to get a map from the Cech
cohomology group to Pic(X) use that locally free sheaves are determined by their transition functions, and
use the relations defining the Cech cohomology to define transition functions.

For the `-adic cohomology, we have the so-called Kummer sequence

1→ µn → Gm
(−)n−−−→ Gm → 1. (4.3)

Here n is a positive integer that is invertible in OX , Gm ∈ S(Xet) is the sheaf U 7→ Γ(U,OX |U )× and µn

is thus the sheaf ker
(
Gm

(−)n−−−→ Gm
)

. While the left-exactness of this sequence follows from definition, the
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exactness to the right is not as obvious (see [6] II.2). If Z ↪→ X is a smooth1 subvariety, then one can
define a notion of étale cohomology with support on Z, denoted HZ(X,−) (see [6] III.1), and for each sheaf
F ∈ S(Xet), there is a long exact sequence

· · ·Hr
Z(X,F)→ Hr(X,F)→ Hr(X − Z,F|X−Z)

δrZ,F−−−→ Hr+1
Z (X,G)→ · · · (4.4)

Now, H0(X − Z,Gm) ∼= Γ(X − Z,OX−Z)× by definition of cohomology as a right-derived functor, and
again we have H1(X,Gm) ∼= Pic(X). Similarly H1(X − Z,Gm) ∼= Pic(X − Z). We then have the following
commutative diagram (see [6] VI.6)

H0(X − Z,Gm) H1
Z(X,Gm) H1(X,Gm) H1(X − Z,Gm)

Γ(X − Z,OX−Z)× Z Pic(X) Pic(X − Z)

∼= ∼= ∼= ∼=
ordZ

(4.5)

where H1
Z(X,Gm) ∼= Z follows from the 5-Lemma. Now, apply H1

Z(X,−) to the Kummer sequence and
compose with H2

Z(X,µn)→ H2(X,µn) (putting in F = µn in (4.4)) to get a map

Z ∼= H1
Z(X,Gm)→ H2

Z(X,µn)→ H2(X,µn). (4.6)

The image of the cycle class map of Z is defined to be the image of 1 under this map (to get the cycle class
map to `-adic cohomology rather than étale we do this for all n and take the corresponding object in the
limit).

Given the cycle class map in degree 1 one can define it for all r ≥ 0 by using the notion of Chern classes.
For a thorough treatment of this we refer to [17] and for a sketch on how one goes from what we have to the
general cycle class map see [3] 1. (or, for the étale cohomology, [6] VI.9).

1We add this requirement here already for simplicity.
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5 Hodge structures and Galois representations
A particularly interesting feature of the two cohomology theories (Betti and `-adic) is that they come with
some extra structure. The Betti cohomology carries a Hodge structure and the `-adic cohomology comes
with a Galois representation. In this section we will give a general introduction to the notion of a Hodge
structure, and in particular introduce a group called the Mumford-Tate group and show some important
results regarding it. This will relate back to Section (2). In the end of this section we will also explain how
we get a Galois structure on the `-adic cohomology, and define groups coming form this Galois structure
that play analogous roles to the Mumford-Tate group.

For a more in-depth treatment on Hodge structures we refer to [18] and [19], from where we got most of
the material.

5.1 Hodge structures

A real Hodge structure is a real vector space V together with a decomposition of its complexification

VC = V ⊗ C =
⊕

p,q∈Z
V p,q, (5.1)

such that V p,q = V q,p. A rational Hodge structure is defined similarly. If V p,q = 0 for all p, q such that
p+ q 6= n, then the Hodge structure is said to be (pure) of weight n. It is worth pointing out the “obvious”
fact that a Hodge structure V can be written as V =

⊕
n V

(n), where V (n) is pure of weight n. Let
RHS and QHS denote the category of real respectively rational Hodge structures. The morphisms in these
categories are linear maps between the underlying vector spaces such that their complexification respects the
grading. For example, for rational Hodge structures V and W , HomQHS(V,W ) consists of those linear maps
f : V → W such that fC(V p,q) ⊂ W p,q for all p, q. Hence, if V ∈ QHS is pure of weight n, and W ∈ QHS

is pure of weight m, then HomQHS(V,W ) = 0 whenever n 6= m. This definition of morphisms makes it clear
that cokernels exists; with f as before, coker f is the cokernel of f as a linear map together with the grading
(W/ im f) ⊗ C =

⊕
p,qW

p,q/fC(V p,q). All other axioms for an abelian category follow similarly from the
category of finite dimensional vector spaces, thus RHS and QHS are abelian categories. In fact, they are
rigid tensor categories; if V and W are Hodge structures of weight n respectively m, then define V ⊗W to
be V ⊗W as vector spaces, with the decomposition

(V ⊗W )C =
⊕

a+b=m+n

(V ⊗W )a,b, (V ⊗W )a,b :=
⊕

p+p′=a
q+q′=b

V p,q ⊗W p′,q′ . (5.2)

An important example is that of twists; Q(n) is the Hodge structure with underlying vector space (2πi)nQ
and complexification C = Q(n)−n,−n of weight −2n, and then the Tate twist of a Hodge structure V is
V (n) := V ⊗ Q(n). We see also that the identity with respect to this tensor product is 1 := Q(0). For the
dual Hodge stucture, we simply let V ∨ be the dual as a vector space together with the decomposition

(V ∨)C =
⊕

p+q=−n
(V ∨)p,q, (V ∨)p,q = (V −p,−q)∨. (5.3)

We see that taking duals negates the weight of the Hodge structure, and taking tensor products adds up the
two weights. One can also check that Hom(V,W ) = V ∨ ⊗W .

The forgetful functor to VecQ (respectively VecR) is a fibre functor, thus the category of Hodge structures
is in fact neutral Tannakian. However, the category is not semisimple, and we therefore want to introduce
a way of taking “orthogonal complements”.
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To this end, let V be a rational Hodge structure of weight n. Consider the endomorphism CC : VC → VC

given by
∑
p+q=n xp,q 7→

∑
p+q=n i

p−qxp,q, where xp,q ∈ V p,q. Since V p,q = V q,p, CC restricts to C := CR ∈
GL(VR). This is called the Weil operator. We use it to define a polarisation of a rational Hodge structure
of weight n to be a morphism of Hodge structures

ϕ : V ⊗ V → Q(−n) (5.4)

such that the bilinear map
ϕR : VR × VR → R (5.5)

given by ϕR(x, y) := (2πi)nϕ(Cx ⊗ y) is symmetric and positive-definite. As mentioned before, the main
point of such a polarization is that the complement V ⊥ = {v ∈ V : ϕR(v, w) = 0 for all w } is again a Hodge
structure. Hence, the category of polarizable Hodge structures, denoted QHSpol, is a semisimple, neutral
Tannakian category.

We end this section with the most relevant example for this text.

Example 5.1. (Remark: In this example we omit for simplicity all twists.)
Suppose X is a smooth, projective, algebraic scheme over k ↪→ C of dimension dX , and let 0 ≤ n ≤ dX . Then
the Betti cohomology Hn

B(X,Q) is a polarizable Q-Hodge structure of weight n. The Hodge decomposition
is given by

Hn
B(X,C) =

⊕

p+q=n

Hq(X,Ωp). (5.6)

The polarisation is defined as follows. First, if L is an ample divisor on X, let η denote its image in
H2
B(X,Q) under the cycle class map. By taking the cup-product with η this gives a morphism H(X) →

H(X), called the Lefschetz morphism corresponding to η, also denoted L, which can be shown gives
an isomorphism Li : HdX−i(X) → HdX+i(X). This decomposes Hn

B(X,Q) into two parts, the primitive
cohomology and the non-primitive. Intuitively, the non-primitive consists of all those x ∈ Hn

B(X,Q) that
can be obtained from L, and the primitive part is those that cannot be obtained from L. More precisely,
the non-primitive cohomology (in degree n− k) is

Hn−k
B,non-prim := im

(
L : Hn−k−2

B (X)→ Hn−k
B

)
(5.7)

and the primitive cohomology (in degree n− k) is

Pn−k = Hn−k
B,prim := ker

(
Lk+1 : Hn−k(X)→ Hn+k+2(X)

)
. (5.8)

We then have Hn−k
B (X) ∼= Hn−k

B,prim(X)⊕Hn−k
B,non-prim(X) which gives the Lefschetz decomposition

Hn
B(X) =

⊕

i

LiHn−2i
B,prim(X). (5.9)

We define the polarisation ϕprim : Hn
B,prim(X) ×Hn

B,prim(X) → Q(−n) as (x, y) 7→ (−1)nLdX−nx ∪ y, and
then extend it through (5.9) to Hn

B(X).

5.1.1 Hodge structures as representations

Firstly, recall that the character group of an algebraic group G over k is the group of homomorphisms
X∗(G) := Hom(G,Gm,k), and the cocharacter group is X∗(G) := Hom(Gm,ks , G). Further, a torus over
k is an algebraic group T over k such that T × ks is isomorphic to (Gm,ks)r for some r ∈ N, called the rank
of the torus. Thus, if T is a torus of rank r, then X∗(T ) ∼= Zr. A useful fact of representations of a torus
is the following:
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Proposition 5.2. Suppose T is a torus over k. Then any representation ρ of T ⊗ ks on a ks vector space
Vks splits the vector space into a direct sum of its character spaces Vks(λ) = {v ∈ Vks : ρ(t) · v = λ(t)v},
λ ∈ X∗(T ). In short (

ρ : T ⊗ ks → GL(Vks)
)
 Vks =

⊕

λ∈X∗(T )

Vks(λ). (5.10)

This can be reversed: any such decomposition gives a representation: ρ(t) ·∑ vλ :=
∑
λ(t)vλ, vλ ∈ Vks(λ).

In our case, we are interested in the Deligne torus, defined as follows. If X is a scheme over S′, which is
a scheme over S, then the Weil restriction of X from S′ to S is defined as the scheme that represents the
functor

ResS′/S(X) : Y/S 7→ HomS′(Y ×S S′, X). (5.11)

The Weil restriction of Gm,C from C to R is called the Deligne torus, and we denote it by S. Since
C⊗ C ∼= C[x]/(x2 + 1) ∼= C[x]/(x+ i)× C[x]/(x− i) ∼= C× C we see that

S(C) = HomSpecC(SpecC⊗R C,SpecC[t, t−1]) ∼= HomC(C[t, t−1],C⊗R C) ∼= (C⊗ C)× ∼= C× × C× (5.12)

whence the name Deligne torus is justified. Furthermore, this computation shows that X∗(S) ∼= Z2 is
generated by two elements, z and z. On points, z is defined as projection onto the first coordinate, and z as
the projection on the second. The reason for the notation comes from the following composition

C× ∼= S(R) ↪→ S(C) z,z−−→ Gm,C(C) ∼= C×. (5.13)

Since this fixes R, both z and z lies in Gal(C/R). That is, one is identity and the other acts by conjugation.
Let also µ denote the cocharacter given on points by z 7→ (z, 1), Gm,C(C) → S(C). Thus, z ◦ µ = idC and
z ◦ µ = 1. As a remark, a similar computation as in (5.12) shows that S(A) = (A⊗R C)× for any R-algebra
A. In particular, S(R) ∼= C×.

Now suppose V is a real vector space. Since z and z generates X∗(S), each λ ∈ X∗(S) can be written
as z−pz−q for some p, q ∈ Z. Thus Proposition (5.2) tells us that giving a real Hodge structure on V is the
same as giving a representation ρ : S→ GL(V ) of the Deligne torus, with the correspondence

v ∈ V p,q ⇐⇒ ρ(z) · v = z−pz−qv for all z ∈ C× ∼= S(R), (5.14)

where the minus sign is just a convention. Under this correspondence, a sub-Hodge structure corresponds
to a sub-representation.

Note that if V is of weight n, and w : Gm,R → S denotes the cocharacter that corresponds to the
inclusion on real points, R× ∼= Gm,R(R)→ S(R) ∼= C×, then ρ ◦w : Gm,R → GL(V )R is given on R-points by
a 7→ a−n id. Also, since a rational Hodge structure V is just a Q-vector space with a real Hodge structure
on VR, we obtain a representation ρ : S→ GL(VR) defined over Q.

5.1.2 Hodge classes

We define a Hodge class (of a Q-Hodge structure V of weight 0) to be an element v ∈ V such that v lies
in V 0,0 in the Hodge decomposition.

Example 5.3. Suppose V and W are two Hodge structures of weight n. By the definition of tensor products
and duals, we see that

(V ∨ ⊗W )C =
⊕

a+b=0

(V ∨ ⊗W )a,b, (5.15)
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and the Hodge classes are the elements in V ∨ ⊗W belonging to

(V ∨ ⊗W )0,0 =
⊕

p+p′=0
q+q′=0

(V ∨)p,q ⊗W p′,q′ =
⊕

p=−p′
q=−q′

(V −p,−q)∨ ⊗W p,q =
⊕

p+q=n

(V p,q)∨ ⊗W p,q. (5.16)

Hence, for each Hodge class α ⊗ β ∈ V ∨ ⊗W purely of type (p, q) in the previous computation, and for
each x ∈ VC, α is non-trivial only on the part of x in V p,q. Hence, α(x)β ∈ W p,q, and thus the morphism
fα⊗β : V → W given by fα(v) = α(v)β does indeed respect the Hodge decomposition. We can (make this
rigorous and) reverse this process, and thus obtain

HomQHS(V,W ) =
{

Hodge classes in V ∨ ⊗W
}
. (5.17)

Sometimes Hodge classes are defined on Hodge structures of weight 2p as the elements in the underlying
vector space purely of type (p, p) in the Hodge decomposition. Given such a Hodge structure V , we can
twist it to V (2p), obtaining a Hodge structure of weight 0, and then the Hodge classes (in our sense) are
exactly those v ∈ V (2p) of form v = (2πi)2pv′, for v′ ∈ V a Hodge class in the other sense. We will actually
use both notions, but a main reason for adopting the definition for Hodge structures of weight 0 is to make
Hodge classes invariant under the Mumford-Tate group, which we turn to now.

5.1.3 Mumford-Tate groups

This section introduces one of the main objects used to study the Hodge conjecture. The idea is that
since the category of Hodge structures is neutral Tannakian, so is each tensor subcategory generated by an
object. Hence, all information about the Hodge structure is contained in the automorphism group of the
(restriction of the) fibre functor, and in the case of Q-Hodge structures, this group is easily described using
the representation of the Deligne torus. We proceed to the definition.

If V is a Q-Hodge structure, and ρ : S → GL(V )R is the corresponding representation of the Deligne
torus, then the Mumford-Tate group (of V ) is defined to be the smallest Q-algebraic subgroup G ⊂ GL(V )

such that ρ factors through GR. We denote it by MT (V ). This group is connected (else we replace it by
the connected component of identity) and if V is polarisable, then it is also reductive. From the Tannakian
viewpoint, the key property of this group is that it determines the invariants of tensor constructions of V .
More precisely

Proposition 5.4. Let V be a Q-Hodge structure with Mumford-Tate group, MT (V ). Let T := V ⊗a1 ⊗
(V ∨)⊗b1 ⊕ · · · ⊕ V ⊗as ⊗ (V ∨)⊗bs be a tensor construction of V . Then a subspace W ⊂ T is a sub-Hodge
structure if and only if W is invariant under the action of MT (V ).

Proof. Let ρ : S → GL(V ) be the representation corresponding to the Hodge structure V , let ρT be the
representation corresponding to T and let StabGL(V )(W ) ⊂ GL(V ) be the subgroup that stabilises W

StabGL(V )(W ) := {g ∈ GL(V ) : g ·W ⊂W}. (5.18)

If W is a sub-Hodge structure, then it is a sub-representation of ρT , so in particular it is stable under the
action of ρ. Indeed, ρ acts on W through ρT as ρT is obtained from ρ (through the tensor construction).
Hence, ρR factors through StabGL(V )(W )R so the definition of a Mumford-Tate group implies that MT (V ) ⊂
StabGL(V )(W ).

Conversely, suppose MT (V ) ⊂ StabGL(V )(W ). Then ρR factors through StabGL(V )(W )R so W is a
sub-representation, and thus sub-Hodge structure.
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Corollary 5.5. Let V and T be as above. An element t ∈ T is a Hodge class if and only if it is stable under
the action of MT (V ).

Proof. Consider T ⊕ Q(0) and the subspace L := Q · (t, 1). Since the Hodge decomposition of a di-
rect sum of Hodge structures is just the direct sum of the respective decompositions, we see that LC =(⊕

p+q=n
(p,q)6=(0,0)

T p,q
)
⊕ (T 0,0 ⊕ C). Thus, if L is a sub-Hodge structure, the line LC must lie in one of these

components, and since (tC, 1) is in L we see that it must be in T 0,0 ⊕ C. That is, t must be a Hodge
class. Conversely, if t is a Hodge class, then LC ⊂ T 0,0 ⊕ C and thus L is a sub-Hodge structure. In short,
L is a sub-Hodge structure if and only if t is a Hodge class. Now, suppose MT (V ) fixes t. Then L is
invariant under the action of MT (V ) (as it acts by identity on 1 = Q(0)), so L is a sub-Hodge structure
by Proposition (5.4) and thus t is a Hodge class. Conversely, suppose t is a Hodge class. Then L is a
sub-Hodge structure, and hence again we refer to Proposition (5.4) to see that L is stable under the ac-
tion of MT (V ). But MT (V ) acting as identity on Q(0) shows that t must be fixed by MT (V ) (else, if
MT (V ) · t = αt, then MT (V ) · (t, 1) = (αt, 1) /∈ Q · (t, 1), contradicting L being a sub-Hodge structure, and
thus a sub-representation of MT (V )).

Remark 5.6. When one defines Hodge classes as elements of type (p, p) (in a Hodge structure of weight 2p),
the previous result does not hold. This is because for z ∈ C×, the Mumford-Tate group acts on the (p, p) part
of the Hodge decomposition by z−2p, i.e. non-trivially. The rational subgroup of GL(V ) (for such a Hodge
structure V ) that fixes the elements of type (p, p) is called the special Mumford-Tate group, denoted
SMT (V ). From this definition it is immedate that SMT (V ) =MT (V ) when p = 0, and one can show that
MT (V ) = (Gm · idV )SMT (V ) otherwise. For example, if MT (V ) = GL(V ), then SMT (V ) = SL(V ).

Remark 5.7. Note that, by using Hom(V,W ) = V ∨ ⊗W and (5.17), the previous Corollary implies that
HomQHS(V,W ) = Hom(V,W )MT (V⊕W ). In particular, one can show that MT (V ⊕ V ) ∼= MT (V ) (acting
diagonally on V ⊕ V ), so we get

EndQHS(V ) = End(V )MT (V ). (5.19)

Using this identity together with Proposition (5.4) and a result on representations of reductive algebraic
groups, we can obtain the important corollary below.

Corollary 5.8. Let V be a Q-Hodge structure, and let 〈V 〉 ⊂ QHS be the full tensor subcategory generated
by V . Then 〈V 〉 ∼= RepQ(MT (V )).

Proof. See [19], Corollary (4.5).

5.2 Galois representations

Now let k be a finitely generated field of arbitrary characteristic. Let ` be a prime different from char(k).
A Galois representation (on a Q`-vector space V ) is simply a homomorphism Γk := Gal(ks/k)→ GL(V )

that is continuous with respect to the Krull topology on Γk and the `-adic topology on GL(V ). The category
of such representations is denoted Rep(Γk)Q`

and is a neutral Tannakian category.
Let ρ : Γk → GL(V ) be such a representation. A somewhat analogous group to the Mumford-Tate group

is the Zariski closure of the image of ρ, which we denote by

G`,ρ(V ) := im ρ. (5.1)
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Just as the Mumford-Tate group of a Hodge structure V determines sub-Hodge structures of all tensor
constructions of V , the group G`,ρ determines all sub-representations of all tensor constructions ρ (reference
[7]). In the Tannakian formalism, this gives 〈V 〉 ∼= RepQ`

(G`,ρ).
The case of interest for us is the following. Let X be a smooth, projective algebraic scheme over ks,

and let X(K) be a model of X, i.e. a scheme X(K) over a finitely generated field k ⊂ K ⊂ ks such that
X(K) × ks ∼= X. By applying the functors Spec, base change, and H2r

` (−,Q`(r)) on each element g ∈ Γk,
we obtain a representation

ρ`,r : Γk → GL(H2r
` (X(K) × ks,Q`(r))) ∼= GL(H2r

` (X,Q`(r)). (5.2)

We denote G`,ρ`,r (H2r
` (Xks ,Q`(r))) simply by G`, and its connected component of identity by G0

` . À priori
these groups depend on the choice of model X(K), but [7] Remark 2.2.2(i) explains why G0

` is independent
of these choices. Corollary (5.5) then motivates a Tate class to be defined as an element x ∈ H` that is
stable under the action of G0

` .
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6 The Hodge, Tate, and Mumford-Tate conjectures
We are now in a position to state the conjectures.

Conjecture 6.1. (Hodge conjecture)
Let k ↪→ C a field, and let X ∈ P(k). The cycle class map

clB : Zr∼rat(X)⊗Q −→
{

Hodge classes in H2r
B (X,Q(r))

}
(6.1)

is surjective for all r.

Conjecture 6.2. (Tate conjecture)
Let k be a finitely generated field, and let X ∈ P(ks). The cycle class map

cl` : Zr∼rat(X)⊗Q` −→
{

Tate classes in H2r
` (X,Q`(r))

}
(6.2)

is surjective and the group G0
` is reductive, for all r.

Remark 6.3. If we ignore the twisting, e.g. if we look at H2r
B (X,Q) instead of H2r

B (X,Q(r)), then the
statements of the respective conjectures are the same, we just need to recall the other definition of Hodge
classes (mentioned in the end of Section (5.1.1)). In the examples we sketch below, we will ignore all twists.

Finally, if again k is finitely generated and embeddable into C, we then have a comparison isomorphism
HB ⊗Q` → H` which gives an isomorphism γr : GL(H

2r
B (XC,Q(r))⊗Q` → GL(H2r

` (XC,Q`(r)).

Conjecture 6.4. (Mumford-Tate conjecture)
The map γr restricts to an isomorphism

γr|MT :MT (H2r
B (XC,Q(r))⊗Q` → G0

`(H
2r
` (XC,Q`(r)) (6.3)

for all r ≥ 0.

Remark 6.5. There are some serious technical and important details that we have omitted here. To put it
shortly, when X is defined over k, we do not à priori have a Galois action on XC, but rather on Xk. It is then
a deep result on étale cohomology (see [6] VI.2) that for a fixed embedding k ↪→ C we have an isomorphism
between then étale cohomology on XC and the étale cohomology on Xk which induces the Galois action on
H`(XC,Q`).

Let us sketch or state a few cases that are known.

6.1 Examples

Firstly, if r = 0 or r = dimX then the two conjectures are true immediately as HB
∼= Q(0) and H`

∼= Q`(0)
are generated by the class of X and the class of a closed point, respectively.

6.1.1 Lefschetz theorem on divisor classes

When r = 1, the Hodge conjecture is known to be true. This result is called the Lefschetz theorem on
divisor classes. Let us write a sketch of the proof.

From Section (4.4) we see that the cycle class map is obtained from the exact sequence

· · ·H1(X,O×
X)

δ−→ H2(X,Z) α−→ H2(X,OX)→ · · · . (6.1)
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obtained from the exponential sequence. Now, the Hodge decomposition of H2(X,Q) is (upon extending
scalars to C) H0(X,Ω2)⊕H1(X,Ω1)⊕H2(X,Ω0). We have C ↪→ OX ∼= Ω0, and the map α is exactly the
projection map H2

B(X,C) � H2(X,Ω0). Thus, the Hodge classes, H1(X,Ω1), lie in the kernel of α. Since
the sequence (6.1) is exact, the proof is completed.

Using that the Hard Lefschetz theorem holds for Betti cohomology, the Lefschetz theorem on divisor
classes implies that the Hodge conjecture is true also for r = dimX − 1, and thus we know it to be true for
all smooth, projective, algebraic schemes X over k ↪→ C of dimension smaller than 4.

6.1.2 Powers of elliptic curves

The point of this section is mainly to indicate how the Mumford-Tate group can be used to prove the Hodge
conjecture in some cases. This approach is particularly useful in the case when the scheme is an abelian
variety, that is, a projective algebraic variety that is also an algebraic group.

Remark 6.6. (a) : The category of complex abelian varieties is equivalent to the category of polarisable
integral Hodge structures of type {(−1, 0), (0,−1)}, i.e. integral Hodge structures H such that HC =

H−1,0 ⊕H0,−1 (an integral Hodge structure is defined analogously to real and rational Hodge structures).
(b): The category of complex abelian varieties up to isogeny is equivalent to the category of polarisable

rational Hodge structures of type {(−1, 0), (0,−1)}.
The equivalence comes from taking an abelian variety A to H1(A,Q) = H1(A,Q)∨.

Given an abelian variety A, one says that the Mumford-Tate group of A is the Mumford-Tate group of
H1(A,Q), denoted MT (A). By the remark, this is the Mumford-Tate group of a polarisable Hodge structure,
and as such it is reductive. We know also that it is connected, and that it contains the homotheties (indeed,
we noticed in Section (5.1.1) that if ρ : S → GL(H1(A,Q)) is the representation corresponding to MT (A),
then each z ∈ C× maps through the composition Gm(R) ↪→ S(R) → GL(H1(A,Q)) to z−n · id, and by
definition of the Mumford-Tate group this lies in MT (A)). Using this information one can sometimes get
an explicit description of what MT (A) is.

Let us sketch an example (which can be found in [7] 2.1.13 and further explained in [9] section 3).
Let A = Ek be a fixed product of an elliptic curve (i.e. a smooth, projective algebraic curve of genus
one). There are finitely many possible types for the endomorphism algebra End(E) ⊗ Q, one of which is
Q. Suppose we are in this situation. Since H1(E,Q) has dimension 2, GL(H1(E,Q)) ∼= GL2(Q). It is
known that the only connected, reductive subgroup G ⊂ GL2(Q) that contains the homotheties and satisfies
End(Q2)G ∼= {Q · id } is GL2(Q). Thus, if we can show that End(H1(E,Q))MT (E) ∼= Q · id, then we know
that MT (E) = GL(H1(E,Q)). To this end, note that the equivalence of categories gives an isomorphism

Q · id ∼= Q ∼= End(E)⊗Q ∼= HomQHS

(
H1(E,Q),H1(E,Q)

)
. (6.2)

Furthermore, from the identity in (5.19) we see that

End(H1(E,Q))MT (E) ∼= HomQHS

(
H1(E,Q),H1(E,Q)

)
. (6.3)

Combining the two equations we conclude from the previous discussion that MT (E) = GL(H1(E,Q)).
Now let us throw in two more black boxes; (i) the whole cohomology ring, H(A,Q), of A is generated by

H1(E,Q) through the exterior power, i.e. H∗(A,Q) =
∧∗

(H1(E,Q)⊕k), (ii) for any rational vector space
V , the ring of SL2(Q)-invariants in

∧•
V ⊗k is generated by the invariant elements of degree 2 (a proof of (i)

can be found in [21], and an explanation for (ii) can be found in [8]).
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Why do we want (i) and (ii)? Since H∗(A,Q) =
∧∗

(H1(E,Q)⊕k), the elements of degree two are exactly
H2(A,Q), and we know that the elements in H2(A,Q) that are stable under SMT (E) are exactly the Hodge
classes in degree two. From the Lefschetz theorem on divisor classes, we also know that they are algebraic.
Thus, since MT (E) = GL2(Q) implies that SMT (E) = SL2(Q), (ii) implies that the Hodge classes in degree
2 generate all elements invariant under the action of SMT (E), namely, all Hodge classes. Hence, the Hodge
conjecture is true for A.

In fact, the Hodge conjecture is true for arbitrary (finite) products of elliptic curves, and in [9] there is
a more detailed discussion on both this example and others, using a similar approach.

6.1.3 Discussion on the Tate conjecture

Here we just state a few known cases of the Tate conjecture, which we abbreviate by (TC). For a more
in-depth and complete discussion of the results stated here, please see [10].

The (TC) is true for divisor classes (i.e. r = 1) of abelian varieties over finite fields (proven by Tate in
[11]) and for divisor classes of abelian varieties over number fields (proven by Faltings in [12]). The proof
of the Lefschetz theorem on divisor classes indicates that the dimensions of the Hp,q-terms for p 6= q can
give a lot of information. There is a notion called Kuga-Saka correspondence which tells us that if a Hodge
structure H with a decomposition HC = Hp,q ⊕Hp+q,p+q ⊕Hq,p, satisfies dimHp,q = dimHq,p = 1, then
it is the direct sum of the Hodge structure corresponding to an abelian variety. The knowledge of abelian
varieties can therefore help in other cases as well. For instance, (TC) is true for K3 surfaces over number
fields (proved by Tankeev in [23] using this technique). Moonen also shows that for varieties over C which
satisfy dimH2,0 = 1, upon making some restrictions on their moduli, the Tate conjecture for divisor classes
is true (see [22]). The (TC) is also true for divisors on irreducible hyperkähler varieties (definition omitted)
over number fields (see [24]). There has also been significant progress in proofs of certain K3 surfaces over
finite fields, but we leave that discussion to [10].

6.1.4 Relations between the conjectures

A particularly interesting feature of the Mumford-Tate conjecture is that it connects the other two conjec-
tures.

Proposition 6.7. If the Mumford-Tate conjecture is true for all r ≥ 0, then the Hodge conjecture is equiv-
alent to the Tate conjecture.

Proof. Suppose the Mumford-Tate conjecture is true. Let r ≥ 0 be fixed, let HB := H2r
B (X,Q(r)), H` :=

H2r
` (X,Q`(r)), and let α : HB ⊗Q`

∼−→ H` be the isomorphism giving γr : MT (HB)⊗Q`
∼−→ G0

` . Then γr

acts by f 7→ α ◦ f ◦ α−1, and hence each Hodge class x maps under α to a Tate class. Indeed, each g in G0
`

is of the form γr(f) for some f ∈MT (HB)⊗Q`, and thus

g · α(x) = α ◦ f ◦ α−1α(x) = α(x) (6.4)

as f fixes the Hodge class x. Since α commutes with the cycle class maps, this shows the proposition.

In particular, by the Lefschetz theorem on divisor classes, we see that the Mumford-Tate conjecture
would imply the Tate conjecture for r = 1.
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7 Motives
Up to this point we have, with respect to some X in P(k), had a parallel discussion on Hodge structures
and Betti cohomology on the one hand, and Galois actions and `-adic cohomology on the other. These two
sides we have seen share certain features. On both sides it is conjectured (Hodge respectively Tate) that
certain classes in the cohomology are algebraic, and on both of these sides we have seen that these classes are
controlled by certain groups. Furthermore, on both sides we are working with neutral Tannakian categories
and the groups that control the classes just mentioned are in fact the tensor automorphism groups of the
fibre functors.

The idea of motives (partly) comes from this connection and further deepens it. It was Grothendieck
that envisioned, upon noting the many similarities between different Weil cohomologies, that there should
exist some “universal cohomology theory” through which they all factor. This envisioned category can also
be explained as sort of a “universal Tannakian category”.

In the context of the three conjectures presented in this text, a category of motives would serve two
particularly important functions. Firstly, the hope is that in this “universal” category called motives, we have
a notion of “motivated classes”, analogous to the Hodge respectively Tate classes, capturing the information
of both. One would then hope that it would be possible to break down the Hodge and Tate conjectures into
two steps; show first that Hodge (respectively Tate) classes are motivated classes, then show that motivated
classes are algebraic. The second important function such a category would serve in the context of these
conjectures is to give a unified “universal”, “motivic” Galois theory. This Galois theory would then serve
as a tool to understand the different groups (the Mumford-Tate group and what we denoted G` and G0

`)
coming from the different cohomology theories.

This last section hopes to introduce the concept of motives in three steps. First, we will define the notion
of pure motives (as we mentioned was originally constructed by Grothendieck). Connecting to Theorem
(2.10) we will see that this category is not (unconditionally) a neutral Tannakian cateogory. We will thus
turn to another approach of constructing such a category, which was done by Yves André (see [13]). We
sketch the construction of the category referred to as “André’s category of motives”. Then we use this to
define the notion of a motivic Galois group, and state a motivic version(s) of the Mumford-Tate conjecture.
This section will mostly be a collection of definitions and propositions without proofs, but we hope that the
reader will find it useful as a final connection of the conjectures presented, as well as a brief look into one of
the tools people use to try and solve these conjectures.

For further reference, we particularly promote [15] for a thorough treatment of the concept. The short
text [20] is a good first read, [7] explains the motivic Mumford-Tate conjectures great and [13] treats in
detail the construction of André’s category of motives.

For all that follows, let P(k) denote the category of smooth projective schemes over a field k.

7.1 Adequate equivalence relations

Firstly, let us introduce the notion of an adequate equivalence relation. Recall that Z∗(X) is the group of
algebraic cycles. An equivalence relation ∼ on Z∗(X) is said to be an adequate equivalence relation
if it satisfies three properties. Firstly, it should respect the linear structure of Z∗(X). If we are looking
at Z∗(X) ⊗ Q for some scalars Q, then this also means that ∼ should respect the Q-linearity. Secondly,
we want to be able to intersect cycles. Precisely, for each α, β in Z∗(X) there must be some α′ in Z∗(X)

with α ∼ α′ such that α′ and β intersects properly (i.e. for each subvariety Z occuring as a term in α′
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and each subvariety W occuring as a term in β, we have dimZ ∩W = dimZ + dimW − dimX). Finally,
the third requirement is a kind of functoriality condition. It says that for any Y in P(k), and any γ in
Z∗(X × Y ) and α in Z∗(X) such that γ and (pXYX )∗α intersects properly, we have that α = 0 implies that
γ∗(α) := (pXYY )∗(γ · (pXYX )∗α) = 0. Here pXYX : X × Y → X is the projection map, and similarly for all such
notations (to come).

We will not discuss in depth any class of algebraic cycles, but we mention four common examples of
adequate equivalence relations.

Example 7.1. (a): Rational equivalence was defined above. If one replaces P1 by any smooth projective
curve, and proceeds verbatim, one gets algebraic equivalence.

(b): One says that α is homologically equivalent to 0, denoted α ∼hom 0, if cl(α) = 0.
(c). One says that α ∈ Zrrat(X) is numerically equivalent to 0, if, for each β ∈ ZdimX−r

rat (X), one has
degα · β = 0. To explain this, note first that by definition, we can choose α, β such that α and β intersects
properly, e.g. if α = [Z], β = [V ], then α · β = [Z ∩ V ] = [P ] is a closed point. In general, this gives us
α · β =

∑
ni[Pi], for finitely many closed points Pi ∈ X. The degree of such a sum is defined to be

deg
(∑

ni[Pi]
)
:=

∑
ni[κ(Pi) : k], (7.1)

where κ(Pi) is the field corresponding to the closed point Pi.

One says that an equivalence relation ∼1 is finer than another such relation ∼2 if α ∼1 β implies α ∼2 β,
for all cycles α, β. In this case one also says that ∼2 is coarser than ∼1. If we denote by ∼1�∼2 the
statement that ∼1 is finer than ∼2, then we have

∼rat � ∼alg � ∼hom � ∼num . (7.2)

Now fix an X ∈ P(k), fix a Weil cohomology theory H with coefficients in Q, fix an adequate equivalence
relation ∼ and denote Z∗(X)Q/ ∼ by Z∗

∼(X)Q. We proceed to define the categor(ies) of motives.

7.2 Pure motives

The idea is to tweak the category P(k) by enlarging the set of morphisms through the notion of algebraic
cycles and through categorical procedures force it to be (pseudo-)abelian with duals. This is expressed in
the following three steps.

STEP 1. Recall from (4.3) that an element in ZdimX
∼ (X×Y )Q induces an element in Hom(H(X),H(Y )).

With this in mind, the category of correspondences modulo ∼ with coefficients in Q is defined to be the
category, denoted C∼(k)Q, which has the same objects as P(k), and morphisms

HomC∼(k)Q(X,Y ) := ZdimX
∼ (X × Y )Q. (7.1)

The composition law is given by

HomC∼(k)Q(X,Y )×HomC∼(k)Q(Y, Z)→ HomC∼(k)Q(X,Z)

(α, β) 7→ β ◦ α := (pXY ZXZ )∗
(
(pXY ZXY )∗α · (pXY ZY Z )∗β

) (7.2)

which is well-defined for all adequate equivalence relations coarser than (or equal to) rational equivalence
(see [4] 16). Through the group structure of the algebraic cycles, this is an additive category, with direct sum
X⊕Y := X

∐
Y , and by defining X⊗Y := X×k Y it is also a tensor category. We also have a contravariant
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embedding P(k)→ C∼(k)Q given by sending X to X and f : Y → X to the transpose of its graph, tΓf (the
tranpose is just the composition Y

Γf−−→ Y ×X → X × Y ).
However, this category is not abelian, and to (try and) change that, we pass to the pseudo-abelian

envelope. In short, we formally add the images of idempotents.
STEP 2. LetMeff

∼ (k)Q denote the category with objects (X, e) where X is in P(k) and e is an idempotent
in HomC∼(k)Q(X,X), i.e. e2 = e. If (X, e), (X ′, e′) are two objects in Meff

∼ (k)Q, then the set of morphisms
between (X, e) and (X ′, e′) is

HomMeff
∼ (k)Q

(
(X, e), (X ′, e′)

)
:= e′ ◦ ZdimX

∼ (X ×X ′) ◦ e, (7.3)

where composition is the one previously defined in C∼(k)Q. We embed C∼(k)Q into Meff
∼ (k)Q by taking X

to (X,∆X) and f : X → Y to ∆Y ◦ f ◦∆X , where ∆X denotes the diagonal morphism ∆X : X → X ×X.
Composing with P(k)→ Crat(k)Q this gives a contravariant embedding h : P(k)→Meff

∼ (k)Q. The category
Meff

rat(k)Q is called the category of pure effective motives modulo ∼ with coefficients in k.

Remark 7.2. Oen can use the above construction to show that to any additive category A (the role of which
was played by C∼(k)Q above) there exists a pesudo-abelian category A# and a covariant additive functor
A → A# that is universal for all such functors from A to pseudo-abelian categories.

But we want our final category of motives to be Tannakian, so in particular we must have a concept of
duals.

STEP 3. The embedding h : P(k)→Meff
∼ (k)Q takes P1 to (P1,∆P1), and as can be seen from Example

(3.2) we have a decomposition
h(P1) = h0(P1) + h2(P1). (7.4)

The object h2(P1) is the so-called Lefschetz motive, also denoted L. The procedure of formally inverting
L gives us the category of pure motives modulo ∼ with coefficients in Q, which we denote by M∼(k)Q.
The objects are now triples, (X, e, r), where X and e are as inMeff

∼ (k)Q, and r is an integer (this is thought
of as the degree of twisting). The morphisms between two objects (X, e, r) and (X ′, e′, r′) are defined to be

HomM∼(k)Q

(
(X, e, r), (X ′, e′, r′)

)
:= e′ ◦ Zr′−r∼ (X ×X ′) ◦ e. (7.5)

We also have an embedding Meff
∼ (k)Q →M∼(k)Q, which gives an embedding (still denoted h) h : P(k) →

M∼(k)Q. One usually denotes the object (X, e, r) by eh(X)(r), and we will use both notations. The tensor
and direct sum of pure motives is the same as for pure effective motives (and we add up the degrees of
twisting), and the dual of (X, e, r) is (X, te, dimX − r).

7.3 Bridge

What can be said about the category of pure motives? Firstly, by sending (X, e, r) to eH(X)(r) where e
denotes the induced morphism on cohomology, we do get that Weil cohomologies factor through Mrat(k).
By definition, this also holds for all adequate equivalence relations finer than (or equal to) homological
equivalence. However, it is not certain that Weil cohomologies factor through Mnum(k) since we do not
know if numerical equivalence implies homological equivalence. This (partly) motivates the so-called

Conjecture 7.3. (Standard Conjecture D)
Numerical equivalence implies homological equivalence.
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This was phrased by Grothendieck and is still unknown in general. It is however known that the Hodge
conjecture would imply the Standard Conjecture D.

What more? For all adequate equivalence relations we do get thatM∼(k) is an additive, pseudo-abelian
rigid tensor category. We could then ask if M∼(k) semisimple abelian, and in [14] Theorem 1 it is shown
that this is true if and only if the equivalence relation is numerical equivalence.

The category of pure numerical motives Mnum(k) is not neutral Tannakian either. This is because the
rank of an object M = (X,∆X , 0) is

rk(M) =
2 dimX∑

i=0

(−1)i dimHi(X), (7.1)

which can be negative (e.g. take X to be an elliptic curve of genus g ≥ 2).
In VecQ the cohomology H(X) has a decomposition, a grading,

H(X) = H0(X)⊕ · · · ⊕H2 dimX(X), (7.2)

and to this corresponds the so-called Künneth projectors

πi : H(X)� Hi(X). (7.3)

(Even though we do not know if H factors throughMnum(k)) we would like to think that this grading comes
from within Mnum(k). Thus, we want that

(X,∆X , 0) =
⊕

i

(X,πi, 0) (7.4)

for some idempotent correspondences (also denoted) πi that are pair-wise orthogonal, i.e. πi ◦ πj = 0 for
i 6= j. For example, we saw in Example (3.2) that we indeed have this decomposition for X = P1. If this
was true in general, then (following the procedure sketched in the proof of Theorem 7.6) one could “easily”
alter Mnum(k) to become a neutral Tannakian category. However, such a decomposition is not known to
exist in general, which motivates the Standard Conjecture C.

Conjecture 7.4. (Standard Conjecture C)
The Künneth projectors are algebraic.

There is also another important Standard Conjecture, which says

Conjecture 7.5. (Standard Conjecture B)
The Lefschetz involution (see (7.5) below) is algebraic.

The Lefschetz involution is defined as follows. LetX in P(k) be irreducible of dimension d, let η denote the
image of an ample divisor in H2(X), let L denote the Lefschetz morphism corresponding to the ample divisor
(recall Example (5.1)) and assume the strong Lefschetz theorem holds for H. That is, Li : HdimX−i(X)→
HdimX+i(X) is an isomorphism. Recall the Lefschetz decomposition Hn(X) =

⊕
i L

iHn−2i
prim (X). The

Lefschetz involution corresponding to L, denoted ∗L, is defined as the morphism that on x =
∑
i L

ixn−2i

in Hn(Z), acts as
∗L x := LdimX−nx =

∑

i

LdimX+i−nxn−2i. (7.5)

It is known that Conjecture B implies the other two in characteristic zero (of k), and when k is arbitrary
it does so when combined with a similar conjecture for the Hodge involution (definition omitted). Since the
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Hodge conjecture is known to imply Conjecture B in characteristic zero, the Hodge conjecture implies all
the Standard conjectures. For the étale cohomology the Tate conjecture implies Conjecture B for all k, and
thus it implies all Standard conjectures for k of characteristic zero. For more on the relations between the
Hodge and Tate conjectures and the Standard conjectures, see [15].

Next we turn to a sketch of André’s construction of pure motives. To put it simply, the idea is to force
the Lefschetz involution to be algebraic.

7.4 Andrés category of motives

Now let X in P(k) be irreducible. Since a reoccurring problem has been the lack of (ways to construct)
algebraic cycles, the idea is to formally add the Lefschetz involution of (the image under the cycle class map
of) algebraic cycles. Precisely, for each other Y in P(k) irreducible, if LX and LY are ample divisors, let L
be the ample divisor on X × Y corresponding to (pXYX )∗LX + (pXYY )∗LY , and let ∗ = ∗L. Then we define a
motivated cycle to be an element of the form

(pXYX )∗
(
cl(α) ∪ ∗ cl(β)

)
(7.1)

where α, β are algebraic cycles on X × Y . Let A∗
mot(X) denote the set of all motivated cycles (if we look at

algebraic cycles with coefficients in E, then we denote by A∗
mot(X)E the corresponding motivated cycles).

By definition of the pushforward this is a subalgebra of H2∗(X) relative to the cup-product, and it is stable
under both push-forward and pullbacks, i.e. (pXYX )∗(A∗

mot(X)) ⊂ A∗
mot(X×Y ) and (pXYX )∗(A∗

mot(X×Y )) ⊂
A∗

mot(X) (see [13] Proposition 2.1). Thus, the composition

A∗
mot(X × Y )×A∗

mot(Y × Z)→ A∗
mot(X × Z)

(f, g) 7→ (pXY ZXZ )∗
(
(pXY ZXY )∗f ∪ (pXY ZY Z )∗g

) (7.2)

is well-defined.
Now let X =

∐
Xi and Y =

∐
Yj in P(k) be arbitrary, where each Xi and each Yj is irreducible, and

let r = (rij), rij ∈ Z. Then the motivated correspondences of degree r between X and Y is

Corrrmot(X,Y ) :=
⊕

i,j

A
dimXi+rij
mot (Xi × Yj), (7.3)

and the algebra of motivated correspondences is

Corr∗mot(X,Y ) :=
⊕

r

Corrrmot(X,Y ). (7.4)

When we look at algebraic cycles with coefficients in E the correspondences are denoted Corr∗mot(X,Y )E .
As noted, we have a composition law on this (by composing on each irreducible component at a time).

Finally, the André category of (pure) motives over k with coefficients in E is the category Mot(k)E

with objects being triples M = (X, e, r), where X ∈ P(k), e ∈ Corr0mot(X ×X)E an idempotent, and r an
integer, and with morphisms

HomMot(k)Q

(
eh(X)(r), e′h(X ′)(r′)

)
= e′ ◦ Corrr′−rmot (X,X

′)E ◦ e. (7.5)

The embedding h : P(k) → Mot(k) is given by X 7→ (X,∆X , 0) as before, and we also denote (X, e, r) by
eh(X)(r).

From now on, fix k to be of characteristic zero, fix H to be one of the classical Weil cohomologies (i.e.
Betti, de Rham or étale), and let the coefficients of the algebraic cycles above be Q. For simplicity let
Mot(k) = Mot(k)Q. We then have the following.
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Theorem 7.6. André’s category of pure motives with coefficients in Q is an abelian, semisimple neutral
Tannakian category.

Proof. We only state the relevant objects.
For M = (X, e, r) and N = (Y, f, s), the tensor product and internal Hom are

M⊗ N := (X, e, r)⊗ (Y, f, s) := (X × Y, e× f, r + s)

Hom(M,N) := (X × Y, te× f, dimX − r + s).
(7.6)

Since 1 := (Spec k,∆Spec k, 0) the dual of M is thus seen to be

M∨ = Hom(eh(X)(r), 1) = (X, te, dimX − r) = teh(X)(dimX − r). (7.7)

There is also a notion of twisting, defined as

M(n) := M⊗Q(n), (7.8)

where Q(n) := (Spec k,∆Spec k, n). There is an “obvious” commutativity constraint, namely (X × Y, e ×
f, r + s) ∼= (Y ×X, f × e, r + s), coming from the isomorphism X × Y ∼= Y ×X. However, using this would
give the same problem regarding the rank as with the pure motives defined earlier. To solve this, André
(see [13] Proposition 2.2) proved that the motivic correspondences contains the Künneth components of the
diagonal, so for each M = eH(X)(r) one can define a Z-grading by

M =
⊕

n

Mn, Mn = (X, e, r)n := (X, eπn+2r, n), (7.9)

where the πi’s are the Künneth components of the diagonal. Then the “obvious” commutativity constraint
ψM,N : M⊗ N→ N⊗ N can be written as

⊕

i,j

ψMi,Nj :
⊕

i,j

Mi ⊗ Nj →
⊕

i,j

Nj ⊗Mi, (7.10)

and to force this to give a non-negative rank one changes ψMi,Nj to ψ′
Mi,Nj

:= (−1)ijψMi,Nj and

ψ′
M,N :=

⊕

i,j

ψ′
Mi,Nj

. (7.11)

This produces
rk(M) =

∑

i≥0

dim eHi(X) ≥ 0. (7.12)

For a more detailed explanation and computations, please see [14] Lemma 1 and Corollary 2. In [13]
Proposition 3.3 (combined with [14] Lemma 2) it is also shown that the category is semisimple abelian, so
by Theorem (2.10) this shows that Mot(k) is neutral Tannakian.

Finally, the motivic cohomology of X in P(k) is defined as the image of X under the functor h :

X 7→ (X,∆X , 0) and f : X → Y 7→ ∆X ◦ tΓf ◦ ∆Y . Further, we define Hmot : Mot(k)Q → VecQ by
Hmot(eh(X)(r)) := eH(X)(r), where e is the endomorphism H(X) → H(X) obtained from the Künnet
formula and Poincaré duality. This lets us finally state that through this procedure, each classical Weil
cohomology H with coefficients in Q factors through Mot(k),

P(k) VecQ

Mot(k)Q

h

H

Hmot

. (7.13)
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The functor Hmot is often referred to as the realisation functor of the cohomology theory H (the term
“realisation functor” is not specific to André’s category of motives). For example, when H is the Betti
cohomology, then Hmot(eh(X)(r)) = eHB(X,Q(r)).

7.5 Motivic Galois groups and motivic Mumford-Tate conjecture(s)

Let H be a Weil cohomology theory. Because we have a fibre functor Hmot : Mot(k)Q → VecQ we can
consider its automorphism group, which is called the motivic Galois group, denoted Gmot,H,k =: GH . For
each M in Mot(k)Q we can also restrict Hmot to the tensor category 〈M〉 generated by M, and this gives us
the motivic Galois group of M, denoted GH(M). By the main theorem on Tannakian categories, Theorem
(2.9), we see that

Mot(k)Q ∼= RepQ(GH) (7.1)

and similarly
〈M〉 ∼= RepQ(GH(M)). (7.2)

Remark 7.7. Under this correspondence, GH(M) can also be viewed as the image of the representation
GH → GL(Hmot(M)). In particular, a motive M is on the one hand a “purely” geometric object, being a
triple (X, e, r) consisting of a scheme and a (generalised version of an) endomorphism of the scheme, and
on the other hand it is a “purely” algebraic object, i.e. from the above equivalence the motive M is the
representation GH → GL(Hmot(M)) corresponding to it.

Remark 7.8. Another important remark is that, if H and H ′ are two classical Weil cohomology theories,
with coefficients in Q respectively Q′ and with a comparison isomorphism H ⊗Q′′ ∼= H ′ ⊗Q′′ for a common
extension Q ⊂ Q′′ ⊃ Q′, then, for each M ∈ Mot(k), the motivic Galois groups GH(M) and GH′(M) are
isomorphic upon tensoring with Q′′. The isomorphism is the restriction of the map GL(Hmot(M))⊗ Q′′ ∼−→
GL(H ′

mot(M))⊗ Q′′ coming from the comparison theorem.

For a motive M = (X, e, r), a motivated cycle or a motivated class is defined to be an element x in
Hmot(M) = eH(X)(r) that is of the form x = e(ψ) for some ψ ∈ Armot(X)Q ⊂ H2r(X)(r), and these are
exactly the elements fixed by the action of GH(M). By the definition of motivated cycles through cycle class
maps, and since pushforwards are morphisms of Hodge structures, it is immediate that when Hmot is the
Betti realisation functor, motivated classes are Hodge classes (and similarly for Tate classes). The main issue
is to show the converse. We state an instance of this after defining the motivic Mumford-Tate conjecture(s)
now.

7.5.1 Motivic Mumford-Tate conjecture(s)

Now we fix our attention to the Betti and `-adic realisation functors, denoted HB and H` respectively. Fix
an embedding σ : k ↪→ C, fix an algebraic closure k ↪→ k, and fix an embedding σ : k ↪→ C such that σ|k = σ.
Upon base changing along these maps, we thus obtain functors

Mot(k)→ Mot(k)→ Mot(C), (7.3)

which, for each M in Mot(k), give group homomorphisms in the other direction

GHB
(MC)

∼−→ GHB
(Mk) ↪→ GHB

(M). (7.4)
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See [3] Proposition 6.22(b) and Proposition 6.23(b) for a proof of the isomorphism and inclusion. Because
motivated classes under the Betti realisation functor are Hodge classes this gives us an inclusion

MT (HB(M)) ⊂ GHB
(MC) ⊂ GL(HB(M)). (7.5)

Similarly, for a fixed prime `, we have an inclusion

GH`
(Mk) ↪→ GH`

(M) (7.6)

that is an isomorphism on identity components. Using again that motivated classes under the `-adic reali-
sation are Tate classes, we get an inclusion

G0
`(H`(M)) ⊂ GH`

(Mk) ⊂ GL(H`(M)). (7.7)

There are three so-called motivic Mumford-Tate conjectures, two of them are isomorphism statements about
the groups above, and the third is an isomorphism statement of the groups occuring in the Mumford-Tate
conjecture but in the motivic setting.

Conjecture 7.9. (Hodge classes are motivated)
With notations as above, we have an equality in (7.5)

MT (HB(M)) = GHB
(MC) (7.8)

Conjecture 7.10. (Tate classes are motivated)
With notations as above, we have an equality in (7.7)

G0
`(M) = GH`

(Mk). (7.9)

Conjecture 7.11. (Motivic Mumford-Tate conjecture)
With notations as above, the isomorphism GL(HB(M)) ⊗ Q`

∼−→ GL(H`(M)) coming from the comparison
isomorphism HB(X,Q)⊗Q`

∼−→ H`(XC) restricts to an isomorphism

MT (HB(M))⊗Q`
∼−→ G0

`(M). (7.10)

7.5.2 Discussion on the motivic conjectures

The Hodge (respectively Tate) conjecture imply that Hodge (respectively Tate) classes are motivated, and it
is clear that if two of Conjecture 7.9, 7.10 or 7.11 are true, then so is the third (this follows essentially from
Remark (7.8)). Since P(k) embeds into Mot(k), we note also that the motivic Mumford-Tate conjecture
implies the Mumford-Tate conjecture. A much more deep result is proved by Deligne (see [2]), which states
the following.

Theorem 7.12. If M in Mot(C) is an abelian motive, then its Hodge classes (under the Betti realisation
functor) are motivated, i.e. Conjecture (7.9) is true for M, i.e.

MT (HB(M)) = GHB
(M). (7.11)

Here an abelian motive is a motive in the full Tannakian subcategory of Mot(C) generated by objects
of the form (X,∆X , 0) where X is an abelian variety or equal to SpecL for a finite separable field extension
L/C. For the record, if M is in the full Tannakian subcategory generated by (SpecL,∆SpecL, 0) as above,
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then it is called an Artin motive. Similar definitions of these notions apply for all k for which Mot(k) is
defined.

An immediate consequence of this theorem (upon plugging in M = (X,∆X , 0)) is that, if we take the
isomorphism HB⊗Q` → H` as an identification, then the combination of (7.11) and (7.10) gives an inclusion

G0
` ⊂MT (HB). (7.12)

Thus, for abelian varieties, the Mumford-Tate conjecture is equivalent to the weaker statement thatMT (HB) ⊂
G0
` .
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