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Abstract

The SIR (Susceptible-Infected-Recovered) model is an epidemiological model
used to estimate the spread of infectious diseases. This paper aims to pro-
vide the reader with a description of the model and it’s applications, using
both mathematical theory and real world data. The first part gives some
contextual background and explains the mathematics behind the model. Nu-
merical solutions to the model are then discussed using the methods of Euler
and Runge-Kutta. This is followed by a qualitative analysis of the model,
where concepts such as epidemic threshold, equilibrium, and epidemic size
are investigated. We then study ways of analyzing the effects of vaccination
and explain how the World Health Organization (WHO) in 1980 managed to
eradicate smallpox. In the last part of this paper we use the newly collected
data on COVID-19 to estimate the disease’s basic reproduction number R0,
as well as to investigate the effects of public health measures.
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Chapter 1

Introduction

The SIR (Susceptible-Infected-Recovered) model is a mathematical model
consisting of three ordinary differential equations, used to estimate the spread
of infectious diseases. In this paper we will describe the mathematics behind
the model as well as use numerical methods find it’s solutions. In addi-
tion, we will discuss the model’s applications in global health strategies for
preventing and treating infectious diseases.

1.1 Epidemiology of infectious diseases

Throughout history, infectious diseases such as the plague, cholera and small-
pox have killed millions of people and wiped out entire populations. Infamous
outbreaks include the Black Death in Europe during the 14th century, killing
an estimated 25 million people in just five years, as well as the pandemic in-
fluenza of 1918-1919 killing around 40 million people globally. Still today,
diseases such as malaria, HIV/AIDS, measles and tuberculosis come at the
cost of millions of lives each year. According to UNAIDS, 34 million people
were infected with HIV worldwide at the end of 2010. [1] Furthermore, it
is estimated that infectious diseases account for up to 70% of all deaths in
countries needing humanitarian assistance.[2]

It is clear that forecasting as well as controlling these diseases is of the ut-
most importance when it comes to improving global health. Ways of doing
this include vaccination programs, antibiotics or antiviral medication, be-
havioural changes, and sanitary measures. However, in order to consider the
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right strategies for each specific situation it is essential to understand the
contagious dynamics of these diseases. [3]

Epidemiology is defined as the study of the distribution and determinants of
health-related states or events in specified populations, and the applications of
this study to the control of health problems [4]. In other words, it is the branch
of science that deals with the quantitative analysis of disease occurrence
in populations. When it comes to infectious diseases, epidemiologists use
mathematical and statistical models to study rates, risk factors, and the
effects of interventions.

1.2 Disease transmission

Infectious disease is defined as illness caused and transmitted by infectious
agents such as a viruses, bacteria, fungi or parasites. Depending on the type
of agent, transmission from host to host can occur through direct contact or
indirect contact. Examples of transmission through direct contact include
touch and exchange of bodily fluids, whereas examples of ways for indirect
transmission include the air, animals or animal waste, contaminated objects
and contaminated food or water. [5]

The rate at which transmission occurs is represented by the reproduction
number (R), which stands for the average number of new infections per
infected case. Varying across infectious agents, time and space, this number
depends on factors such as the rate of contacts in the host population, the
mode of transmission, the probability of infection being transmitted during
contact and the duration of infectiousness. [6]

Understanding R enables the development of mathematical models aiming
to predict and simulate disease outbreaks. An example of such a model is
called the SIR model.

1.3 History of the SIR model

The first known mathematician to analyze infectious diseases was Daniel
Bernoulli in 1766. [1] Using a model he developed, he estimated the total
mortality of smallpox to be 1 in fourteen. He also showed that inoculation
would add about three years to life expectancy at birth. In 1911, Ronald
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Ross published a paper in which he formulated a mathematical model on the
transmission dynamics of malaria. [7] He explored the relationship between
the number of mosquitoes and the incidence of malaria, as well as the effect of
intervention strategies. Based on his work, between 1927 and 1933 Kermack
and McKendrick founded the compartmental epidemic modeling. [1, 8] This
is a type of modeling where a population is divided into compartments,
assuming those in the same compartment share specific characteristics. Their
work suggested that the probability of infection of a susceptible individual
was related to the number of contacts with infected individuals.

One of the simplest and most fundamental compartmental models is the so-
called SIR model. [9] This model divides individuals of a populations into
compartments based on whether they are susceptible, infected or recovered,
and estimates rates of transmission between compartments. Using the SIR
model, estimates could be made about size and duration of specific outbreaks,
as well as the effectiveness of strategies such as vaccination and behavioural
changes.
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Chapter 2

The SIR Model

2.1 Parameters and variables

2.1.1 Susceptible - infected - recovered

The SIR model defines individuals as susceptible (S) if they are neither
infected nor recovered, and therefore at risk of catching the disease. The
ones infected (I) are those currently carrying the infection, which makes
them potentially contagious. Individuals that are recovered (R) are those
that were-, but no longer are, infected. This group is assumed to be immune
and noncontagious. [8] Figure 2.1 shows a flow chart of the SIR model.

2.1.2 Total population

The total population size (N) is considered constant and equal to the sum
of all three compartments at time t: N = S(t) + I(t) +R(t).

2.1.3 Transmission rate

The transmission rate (β) is the number of individuals that will be infected
by one infected individual per time unit, assuming that all contacts are
susceptible. This number is the product of the number of contacts κ and the
transmissibility τ of the disease, β = κτ . For an infectious disease, β will
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always be positive. Also, the higher β, the more infectious the disease. [8,
10]

2.1.4 Recovery rate

The recovery rate (γ) is the rate at which infected individuals will recover,
which is inversely proportionate to the average time period for infection ( 1

γ ).
For any disease, γ will be equal to- or greater than zero. [8, 10]

Figure 2.1: A flow chart of the SIR model.

2.2 Conditions and assumptions

The SIR model is based on a number of strong assumptions about the pop-
ulation and disease characteristics [11, 9, 10]:

• The population is large and closed.

• No natural births or deaths occur, as well as no immigration or emi-
gration. The population size (N) is constant.

• The infection has no latency period, which means that infection im-
mediately leads to an individual being infectious.

• Recovery occurs at a constant rate and gives an individual life-long
immunity. The only way of requiring immunity is through infection,
there is no inherited immunity.

• Individuals from all three compartments are homogeneously distributed
across the entire population. This is called mass action mixing and
means that each individual is as likely to encounter every other indi-
vidual.

Comparison with similar but more elaborate models has shown that predic-
tions made by the SIR model are strikingly reliable, despite the fact that
many of it’s assumptions are highly unrealistic. [10]
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2.3 Differential equations

The SIR model consists of three ordinary differential equations (ODE) mea-
suring how the size of each of the three compartments changes over time.

2.3.1 The susceptible equation

The number of susceptible individuals getting infected per time unit (∆t)
is equal to the product of the transmission rate (β), the number of infected
individuals (I(t)) and the fraction of susceptible individuals (S(t)

N ). Thus,
the change in the number of of susceptible individuals per time unit is given
by

dS

dt
= −β · I(t) · S(t)

N
(2.1)

2.3.2 The infected equation

The change in the number of infected individuals is given by the sum of
the number of susceptible individuals getting infected minus the number of
infected individuals recovering. The latter is given by the product of the
recovery rate (γ) and the number of infected individuals (I(t)). Thus, the
change in size of the compartment of infected individuals per time unit is
given by

dI

dt
= β · I(t) · S(t)

N
− γ · I(t) (2.2)

2.3.3 The recovered equation

The number of individuals recovering is given by the product of the recovery
rate (γ) and the number of infected individuals (I(t)). Thus, the change in
the number of recovered individuals per time unit is given by

dR

dt
= γ · I(t) (2.3)
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2.4 Variations on the SIR model

Figure 2.2 shows four possible variations on the SIR model. The SIRS model
allows for the possibility of recovered individuals turning susceptible again
at a rate of ξ. That is, infection leads to immunity but the immunity is
not necessarily permanent. In the SIS model, infection does not lead to
immunity. Therefore, there is no recovered class and all infected individuals
return to the susceptible class at a rate of ξ. The SEIR model contains
an exposed class, for those that have been exposed to the infection but are
not yet infectious themselves. This means the model can take into account
a potential incubation period. In the SVIR model, individuals from the
susceptible class have the possibility to be vaccinated. This would give them
immunity without needing to go through an infection.

(a) SIRS (b) SIS

(c) SEIR

(d) SVIR

Figure 2.2: Variations on the SIR model.
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Chapter 3

Numerical solutions

Since the SIR model consists of nonlinear equations, it is difficult to find
analytical solutions. However, using numerical methods we can find approx-
imate these solutions. [12] The numerical methods discussed in this paper
are called the Euler method and the Runge-Kutta method. These meth-
ods divide time into intervals of length ∆t and approximates the solutions
at those times using the given differential equations. In order to improve
readability, we will refer to the differential equations of the SIR model using
f(S, I) = dS

dt , g(S, I) = dI
dt and h(I) = dR

dt .

3.1 The Euler method

The Euler method is one of the most basic numerical methods and is ge-
ometrically very easy to understand. Using a given initial value yn, the
method approximates yn+1 by multiplying the length of the time interval
∆t = tn+1 − tn with an estimated value for the rate of change dy

dt . [13] The
way different Euler methods estimate this value is what distinguishes them.
Forward Euler is an explicit method, since it uses the slope at the current
state (tn, yn) to calculate the rate of change. Backward Euler is an implicit
method which uses the slope at the later state (tn+1, yn+1) and Improved
Euler, also known as Heun’s method, uses the average of the slopes at the
current- and later state. Figure 3.1 displays these three methods in one
graph.
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Figure 3.1: Illustration of different Euler methods.

3.2 Forward Euler and the SIR model

Applying Forward Euler to the SIR model gives us the following system of
equations, where ∆t stands for the step size measured in days:




Sn+1 = Sn + ∆t · f(Sn, In) = Sn · (1−∆t · β·InN )

In+1 = In + ∆t · g(Sn, In) = In · (1 + ∆t · β·Sn−γ·N
N )

Rn+1 = Rn + ∆t · h(In) = Rn + ∆t · γ · In

From this system it is easily verified that tomorrow’s number of susceptible
individuals (Sn+1) always will be equal to-, or lesser than, today’s number
of susceptible individuals (Sn). In other words, for any t we have S(0) ≥
S(t). Likewise can we see that tomorrow’s number of recovered individuals
(Rn+1) always will be equal to-, or greater than, today’s number of recovered
individuals (Rn). In other words, for any t we have R(t) ≥ R(0). More
specifically, if and only if there are no infected individuals (In = 0), we have
Sn = Sn+1 and Rn = Rn+1. Figure 3.2 shows numerical estimates of the
variables of the SIR model for different step sizes (∆t). The figures look
almost identical.
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(a) ∆t = 1 (b) ∆t = 0.5

(c) ∆t = 0.1 (d) ∆t = 0.01

Figure 3.2: Forward Euler for different step sizes, showing S (blue), I (red),
and R (green).

3.3 Runge-Kutta 4 and the SIR model

Just as the different Euler methods, Runge-Kutta 4 (RK4) is an iterative
method aiming to approximate the next value using the present value, the
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step size, and the rate of change. However, instead of using the rate of change
at one point, RK4 uses the weighted average of the rate of change at four
points along the step. [13] The rate of change at such a point is called an
increment. Applying RK4 to the SIR model gives us the following system of
equations and increments:





Sn+1 = Sn + ∆t
6 (k1 + 2k2 + 2k3 + k4)

In+1 = In + ∆t
6 (j1 + 2j2 + 2j3 + j4)

k1 = f(tn, Sn, In)

k2 = f(tn +
∆t

2
, Sn +

∆t

2
k1, In +

∆t

2
j1)

k3 = f(tn +
∆t

2
, Sn +

∆t

2
k2, In +

∆t

2
j2)

k4 = f(tn + ∆t, Sn + ∆tk3, In + ∆tj3)

j1 = g(tn, Sn, In)

j2 = g(tn +
∆t

2
, Sn +

∆t

2
k1, In +

∆t

2
j1)

j3 = g(tn +
∆t

2
, Sn +

∆t

2
k2, In +

∆t

2
j2)

j4 = g(tn + ∆t, Sn + ∆tk3, In + ∆tj3)

Figure 3.3 shows numerical estimates of the variables of the SIR model for
different step sizes (∆t). Again, the figures almost look identical.

3.4 Experimental error analysis

In this section we will compare Forward Euler and RK4 to each other for dif-
ferent step sizes. We choose our parameters and initial values to approximate
those at the start of the Ebola outbreak in Liberia 2014. That is, β = 0.32,
γ = 0.2, N = 4000000, S(0) = (N − 1)/N , and I(0) = 1/N . Figure 3.4
shows the numerical simulation using RK4 with ∆t = 1. Note that this is
not a realistic simulation, since in real life the sizes of β and γ change as
time progresses and society adapts to the epidemic. However, if that would
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(a) ∆t = 1 (b) ∆t = 0.5

(c) ∆t = 0.1 (d) ∆t = 0.01

Figure 3.3: Runge-Kutta 4 for different step sizes, showing S (blue), I (red),
and R (green).

not have been the case we see that by the end of the epidemic more than
60% of the total Liberian population would have been infected. Since Ebola
is a very deadly virus with an approximated fatality rate of 50% [14], this
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would have equaled a death toll of 0.6 ·0.5 ·N = 1200000 individuals. Again,
this is by far not a correct representation of reality. The actual number of
cases and fatalities in Libera were 10678 and 4810 respectively [15].

Figure 3.4: Numerical simulation of an (unrealistic) Ebola outbreak with
β = 0.32 and γ = 0.2. The figure shows S (blue), I (red), and R (green).

Figure 3.5 shows the proportion of recovered individuals (R(t)) for different
step sizes (∆t), where ∆t = 1 corresponds to the discrete SIR model. It
is clear that the results obtained by the Forward Euler method vary more
depending on step size than those obtained by RK4. The same data is
presented in table 3.1. The error values in this table show how much the
results deviate from the result for ∆t = 0.001. For RK4, the results were
not affected by the change in step size. In the next section we will discuss
this difference in accuracy from a theoretical point of view.
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(a) (b)

Figure 3.5: The proportion of recovered individuals after 400 days for dif-
ferent step sizes (∆t) and different numerical methods (a=Euler, b=RK4),
with β = 0.32 and γ = 0.2.

∆t RK4 RK4 error (%) Euler Euler error (%)

0.001 0.6419834 0.0 0.6419909 0.0
0.01 0.6419834 0.0 0.6420578 0.01
0.1 0.6419834 0.0 0.6427298 0.12
0.5 0.6419834 0.0 0.6457640 0.59
1 0.6419834 0.0 0.6496703 1.20

Table 3.1: The proportion of recovered individuals after 400 days for differ-
ent step sizes (∆t), with β = 0.32 and γ = 0.2.
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3.5 Theoretical error analysis

One of the main types of errors in numerical analysis are so called round-off
errors, which occur when a finite number of digits is used to represent real
numbers. Another common type of errors is called truncation errors, which
are caused by simple methods to approximate more complex functions. Error
propagation is the term used to describe the combined error of a function,
as a result of each variable’s individual error.

The error propagation in numerical methods can be estimated using the
Taylor series. The exact expression for the point yn+1 can be derived by
doing a Taylor series expansion around the point:

yn+1 = yn + y′nh+ y′′n
h2

2
+ y′′′n

h3

3!
+ . . .+ y(i)

n

hi

i!
+ . . .

Now we want to compare this exact expression to the expressions given by
Euler’s- and Runge-Kutta’s methods. This will give us their estimated errors.

Using Forward Euler we get

ỹn+1 = yn + y′nh,

so the difference between the exact solution and Euler’s solution is

yn+1 − ỹn+1 = y′′n
h2

2
+ y′′′n

h3

3!
+ . . .+ y(i)

n

hi

i!
+ . . .

Since for really small h this error is mostly going to be determined by the
value of y′′n

h2

2 , we can say that the local error el for the Forward Euler method
has order O(h2). We then get the global error eg by multiplying the local
error with the total number of steps. Because we know that the number of
steps is inversely proportional to the step size h, we get a global error of
eg = el · 1

h . Hence, the global error for the Forward Euler method has order
O(h2) · 1

h = O(h). In other words, the global error is proportional to the
step size.

This conclusion agrees with table 3.1 from the previous section.

For Runge-Kutta’s method we say dy
dx = f(x, y). In a neighbourhood of

(x, y) = (a, b), the Taylor series expansion becomes

f(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)+

19



+
1

2
(fxx(a, b)(x− a)2 + fxy(a, b)(x− a)(y − b) + fyy(a, b)(y − b)2) + . . .

Using RK4 we get the following expression for ỹn+1:

ỹn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4)

where
k1 = hf(x, y)

k2 = hf(x+
h

2
, y +

k1

2
)

k3 = hf(x+
h

2
, y +

k2

2
)

k4 = hf(x+ h, y + k3)

Using the Taylor series to rewrite the expression for ỹn+1 (not shown here)
reveals that the local error el for RK4 has order O(h5). Hence, the global
error eg has order O(h4).

This conclusion also agrees with table 3.1 from the previous section.
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Chapter 4

Qualitative analysis of the SIR
model

4.1 Basic- and effective reproduction numbers

The basic reproduction number (R0) is the average number of new in-
fections per infectious individual surrounded by a completely susceptible
population. In other words, it is the product of the transmission rate (β)
and the time period of infection ( 1

γ ). This means we can write R0 = β
γ . [8]

Since it is rarely the case that a population entirely consists of suscepti-
ble individuals, the actual number of new infections per infected individual
will be lower than R0. To account for this, the effective reproduction
number (Re) multiplies R0 with the fraction of the population consisting of
susceptible individuals (S). Hence we have Re = S

N ·
β
γ . Note that since the

fraction of susceptible individuals (S) changes over time, Re will also change
over time. [11]

Figure 4.1 shows how the variables of the SIR model change over time for
different reproduction numbers (R0). Chosen parameters were N = 106,
I(0) = 1, S(0) = N − 1, γ = 1

10 and β = R0 · γ = R0
10 . It can be seen that

increasing R0 resulted in an earlier and increased peak for I(t) as well as the
system returning to a state of equilibrium sooner. It can also be seen that
the size of R0 affected the final size of S(t). That is, the larger R0, the larger
the epidemic.
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(a) R0 = 1.5 (b) R0 = 2 (c) R0 = 4.5

Figure 4.1: SIR for different sizes of R0

4.2 Epidemic threshold

In this section we will investigate the factors that determine whether a disease
fades out or develops into an epidemic. We will start by examining how Re
affects the change in the number of infected individuals (I). Combining
equation (2.2) from section 2.3.2 with the previously discussed fact that
S(0) ≥ S(t), we derive

∆I

∆t
= β · I(t) · S(t)

N
− γ · I(t) ≤ β · I(t) · S(0)

N
− γ · I(t) = γ · (Re − 1) · I

This gives us that ∆I
∆t < 0 for Re < 1, as well as ∆I

∆t > 0 for Re > 1. In
other words, the number of infected individuals (I) will decrease only when
Re < 1 as well as increase only when Re > 1.

Figure 4.2 shows how the variables of the SIR model change over time for
different values of S(0). Chosen parameters were N = 106, I(0) = 1, γ =
1
10 and β = 1

5 . It can be seen that decreasing S(0) resulted in a delayed
and decreased peak for I(t) as well as the system returning to a state of
equilibrium later. It can also be seen that the size of S(0) affected the final
size of S(t). That is, the smaller S(0), the smaller the epidemic.

Figure 4.3 displays the epidemic threshold. This is the critical number
of susceptible individuals (S) required for an epidemic to occur. Using our
previously derived understanding of Re, we see that an epidemic will occur
only when Re = S

N ·
β
γ > 1. Rewriting this equation gives us S > N · γβ = N

R0
.

22



(a) S(0) = N − 1 (b) S(0) = 0.9N (c) S(0) = 0.75N

Figure 4.2: SIR for different sizes of S(0)

Hence, the epidemic threshold can be expressed as S = N
R0

. For an entirely
susceptible population (S = N), an epidemic will occur only when 1 > 1

R0
.

In other words, a disease will cause an epidemic only when it’s transmission
rate is greater than it’s recovery rate (β > γ).

4.3 Equilibrium

A population is at equilibrium when the number of infected individuals is
constant. That is, when we have dI

dt = 0. Using the formula for dI
dt derived

in section 2.3.2, we can find out for which situations a population is at
equilibrium by solving the following equation:

β · I · S
N
− γ · I = 0

I = 0 ∨ S =
γN

β

The population is at equilibrium when there are no infected individuals
(I = 0). This is called the Disease Free Equilibrium (DFE), denoted
by DFE = (N, 0, 0). For I > 0, the population is at equilibrium when
S = γN

β . This is called the Endemic Equilibrium (EE), denoted by
EE = (γNβ , I∗, R∗).
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Figure 4.3: The epidemic threshold for different sizes of S0 and R0.

Theorem 4.3.1. For all values of R0, there is a unique disease free equilib-
rium (DFE).

Proof. All populations are at equilibrium when there are no infected indi-
viduals, no matter the value of R0. Therefore, both when R0 ≤ 1 and when
R0 > 1 there is a unique DFE with I = 0.

4.4 The size of an epidemic

In this section we are interested in the size of an epidemic. That is, we
want to know the value of S(t) as t goes to infinity. We can find this value
by dividing the infected equation (2.3.2) by the susceptible equation (2.3.1),
and then integrating the resulting equation:

dI
dt
dS
dt

=
dI

dS
=
βIS − γI
−βIS =

γ

βS
− 1

I(t) =
γ

β
· lnS(t)− S(t) + C
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Through substituting S(0) = S0 and I(0) = I0, we can find an expression
for C:

I0 =
γ

β
· lnS0 − S0 + C

C = S0 + I0 −
γ

β
· lnS0

I(t) = −S(t) + S0 + I0 +
γ

β
· ln S(t)

S0

In section 4.3 we showed that I reaches it’s peak for S = 1
R0

= γ
β . Hence,

by substituting this into our equation we can find an expression for Imax:

Imax =
γ

β
· ln γ

β
− γ

β
+ S0 + I0 −

γ

β
· lnS0

Imax = S0 + I0 +
γ

β
·
(

ln
γ

β
− lnS0 − 1

)

Figure 4.4 shows that as R0 increases, Imax also increases. It also shows that
as S0 decreases, Imax decreases as well.

Figure 4.4: Imax for different sizes of S0 and R0.

The expression for S(∞) can be found by substituting I(∞) = 0 into our

25



equation for I(t):

0 = −S(∞) + S0 + 0 +
γ

β
· ln S(∞)

S0

S(∞) = S0 +
γ

β
· ln S(∞)

S0

We call the proportion of all individuals getting infected during an epidemic
for Itotal:

Itotal = S0 − S(∞) = −γ
β
· ln S(∞)

S0

From these expressions for S(∞) and Itotal, it can be seen that both depend
on β, γ and S0. In other words, the size of an epidemic depends on β, γ
and S0. Figure 4.5 shows that as R0 increases, Itotal increases and S(∞)
decreases. As S0 decreases, Itotal decreases and S(∞) increases.

Figure 4.5: S(∞) (left) and Itotal (right) for different sizes of S0 and R0.
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Chapter 5

Vaccination

In previous chapters we investigated ways of determining the epidemic thresh-
old as well as the size of an epidemic. We saw that an epidemic will occur
only when S(0)

N > 1
R0

and that the size of an epidemic depends on β, γ and
S0. In this chapter we will see how this knowledge is used in the develop-
ment of public health interventions aiming to prevent and control infectious
disease.

5.1 Immunization

The immune system consists of many different components and mechanisms
[16]. There are the skin and mucous membranes, body temperature, gastric
acidity, proteins and antibodies able to kill pathogenic microorganisms, and
inflammation. All these general mechanisms are part of the innate immune
response, which is the response that is not specific to particular pathogenic
agents and has no memory.

In contrast to this part of our immune system, there is the adaptive im-
mune response which does have memory and is able to recognize specific
pathogenic agents [16]. This memory enables a more rapid and effective re-
sponse the next time the body exposed to the same pathogen. This process
is called immunization, and can occur either naturally or artificially. Expo-
sure to influenza is an example of natural immunization, whereas artificial
immunization is achieved through vaccination.

Vaccination reduces or removes the risk for an individual to get infected.
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An analysis on a hypothetical birth cohort of 4,2 million infants showed
that the routine US childhood immunization schedule will prevent around
42 thousand early deaths and 20 million cases of disease, as well as save $13.5
billion in direct costs and $68.8 billion in total societal costs [17, 18].

5.2 Vaccination and the SIR model

Since vaccination reduces or removes the risk for an individual to get infected,
we can say it removes the individual from the susceptible class. In other
words, it causes S(0) to decrease. In section 4.4 we saw that both S(∞)
and Itotal depend on S(0), and in section 4.2 on the epidemic threshold we
saw that an epidemic will occur only when S(0)

N > 1
R0

(or when Re > 1).
Therefore, using vaccination we can decrease the sizes of S(∞) and Itotal, as
well as raise the epidemic threshold.

Say we call the fraction of vaccinated individuals p, and we introduce the
variables b, d and ω representing birth rate, natural death rate, and infection
death rate respectively. Assuming all newborns are born into the susceptible
class, we get the following system of ODE’s:





dS
dt = b− (1− p)βSI − dS
dI
dt = ((1− p)βS − (γ + d+ ω)) · I
dR
dt = γI − dR

β transmission rate
γ recovery rate
d natural death rate
ω infection death rate
b birth rate
p fraction of vaccinated individuals

Table 5.1: The variables of the SIR model.

In section 4.1 we defined R0 as the average number of new infections per
infectious individual surrounded by a completely susceptible population. In-
cluding our newly defined variables d and ω, we get R0 = β

γ+d+ω . In the same
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section, we defined Re as the actual number of new infections per infected
individual. Therefore, we get Re = (1− p) · SN ·R0.

5.3 Herd immunity and Smallpox

As defined in section 4.2, the epidemic threshold is the critical number of
susceptible individuals (S) required for an epidemic to occur. We saw that
dI
dt < 0 for Re < 1, as well as dI

dt > 0 for Re > 1. In other words, the number
of infected individuals (I) will increase only when (1− p) · SN ·R0 > 1.

Assuming that before vaccination all individuals are susceptible, we have
S = N and hence (1 − p) · R0 > 1. That is, I will increase only when
p < 1− 1

R0
. So, in order to prevent an infection from spreading, the fraction

of individuals needed to be vaccinated is p > 1− 1
R0

.

This leads to the crucial insight that not all individuals of a population need
to be vaccinated, in order to still be able to protect all individuals from
getting infected. This phenomenon is called herd immunity and p is called
the herd immunity threshold. Table 5.2 shows the herd immunity threshold
for several different infectious diseases.

Disease R0 p

Smallpox 5 .80
Polio 5 .80

Rubella 7 .86
Chicken pox 11 .91

Mumps 12 .92
Measles 16 .94

Table 5.2: Several diseases and their values for R0 and p. [19]

Smallpox, caused by the variola virus, was one of the worlds deadliest dis-
eases. It killed approximately 30% of those infected, and left others blind,
sterile, and with deep scars. Following the European colonization of Amer-
ica, 90 percent of all indigenous casualties are thought to have been caused
by smallpox as well as the deaths of around 3 million Aztecs. During the
18th century in Europe, an estimated 60 million people died as the result
of smallpox. In the 20th century, it is estimated to have killed 300 million
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people globally. Figure 5.1 shows the number of smallpox cases globally per
million individuals for the period 1920 - 2016.

For smallpox, R0 is approximated to be around 5 and therefore p has to be
around .80. This means that at least 80 percent of the susceptible popu-
lation needs to be vaccinated in order to achieve herd immunity. In 1967,
using the understanding of the herd immunity threshold, the World Health
Organization launched a program aiming to do exactly this [19]. Over the
following decade, they vaccinated millions of people and because of this, in
1980 smallpox was officially declared eradicated. As of today, smallpox is
the only disease that has been eradicated.

Figure 5.1: The number of smallpox cases per million individuals. [20]

5.4 Stability of the equilibrium points

As showed in section 4.3, we calculate the system’s equilibrium points by
solving dS

dt = dI
dt = dR

dt = 0. This gives us I = 0 and S = b
d for the disease

free equilibrium (DFE), as well as S = γ+d+ω
β(1−p) for the endemic equilibrium

(EE). Substituting R0 into this last equation gives EE = (S∗, I∗, R∗), with

S∗ =
1

(1− p)R0
and I∗ =

d

β
(R0 −

1

1− p)
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An equilibrium point is stable if the system returns to it after a small dis-
turbance, whereas an equilibrium point is unstable if the system moves away
from it after a small disturbance. Theorem 5.4.1 states the mathematical
definition of stability. [21]

Theorem 5.4.1. An equilibrium point x̂ is

1. stable, if for any ε > 0, there exists δ > 0 such that
|x(0)− x̂| < δ −→ |x(t)− x̂| < ε for t ≥ 0

2. asymptotically stable, if it is stable and if there exists δ > 0 such that
|x(0)− x̂| < δ −→ limt→∞ x(t) = x̂

3. unstable, if it is not stable.

In order to analyze the stability of the equilibrium points, we study the
eigenvalues of the Jacobian matrix of the system of equations from section
5.2. We write dS

dt = f(S, I) and dI
dt = g(S, I), and get:

J(S, I) =

( δf
δS

δf
δI

δg
δS

δg
δI

)
=

(
−(1− p)βI − d −(1− p)βS

(1− p)βI (1− p)βS − (γ + d+ ω)

)

Theorem 5.4.2. An equilibrium point x̂ of ẋ = f(x), with λ being the
eigenvalues of J = Df(x̂), is

1. asymptotically stable, if Re λ < 0 for all λ

2. unstable, if Re λ > 0 for at least one λ

Theorem 5.4.3. If R0 <
1

1−p , the DFE is asymptotically stable. Otherwise
it is unstable.

Proof. When it comes to the DFE, we have S = b
d and I = 0. For the sake

of simplicity we say b ≈ d. This transforms our Jacobian matrix into

J(S, I) =

(
−d −(1− p)β
0 (1− p)β − (γ + d+ ω)

)
=

(
−d −(1− p)β
0 (γ + d+ ω)((1− p)R0 − 1)

)
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Obviously, the eigenvalues of this matrix are −d and (γ+d+ω)((1−p)R0−1).
As stated by theorem 5.4.2, if the real parts of all eigenvalues are negative,
then the equilibrium is asymptotically stable. If one or more of the eigenval-
ues have positive real parts, then the equilibrium is unstable. For R0 <

1
1−p

both eigenvalues are negative, which means that the DFE is asymptotically
stable. However, for R0 >

1
1−p the second eigenvalue is positive which means

that in that case the DFE is unstable.

Theorem 5.4.4. If J is a 2× 2 matrix, then the sum of the eigenvalues of
J is equal to the trace of J and the product of the eigenvalues is equal to the
determinant of J .

Proof. See appendix.

Theorem 5.4.5. If R0 >
1

1−p , the endemic equilibrium (EE) is asymptoti-
cally stable.

Proof. When it comes to the EE, we have S∗ = 1
(1−p)R0

and I∗ = d
β (R0 −

1
1−p). Again, we say b ≈ d. This transforms our Jacobian matrix into

J(S∗, I∗) =

(
−(1− p)βI∗ − d −(1− p)βS∗

(1− p)βI∗ (1− p)βS∗ − (γ + d+ ω)

)
=

=

(
−(1− p)dR0 −(γ + d+ ω)

d((1− p)R0 − 1) 0

)

We have trace(J) = −(1− p)dR0 and det(J) = d((1− p)R0− 1)(γ + d+ ω).
From theorem 5.4.2 we know that an equilibrium is asymptotically stable if
the real parts of all eigenvalues are negative. From theorem 5.4.4 we know
that the sum of the eigenvalues of J is equal to the trace of J , and that the
product of the eigenvalues of J is equal to the determinant of J .

Since our Jacobian has two eigenvalues, a positive determinant either means
that both eigenvalues are negative or that both eigenvalues are positive. A
positive determinant combined with a negative trace therefore means that
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both eigenvalues are negative, and that the equilibrium is asymptotically
stable.

Hence our EE is asymptotically stable for trace(J) < 0 and det(J) > 0,
which is true for R0 >

1
1−p .

In reality, this means that a disease free population will return to being
disease free as long as R0 <

1
1−p . This confirms our findings from section

5.3, where we saw that the occurrence of an epidemic can be prevented by
making sure p > 1− 1

R0
.

5.5 Vaccination and the size of an epidemic

Just as in section 4.4, we will derive an expression for the size of an epidemic.
Only this time we will be focusing the relationship between the vaccination
coverage (p) and the epidemic size (Itotal). Again, we start by dividing
the infected equation by the susceptible equation and then integrating the
resulting equation:

dI
dt
dS
dt

=
dI

dS
=

(1− p)βIS − γI
−(1− p)βIS =

γ

(1− p)βS − 1

I(t) =
γ

(1− p)β · lnS(t)− S(t) + C

Through substituting S(0) = (1 − p)S0 and I(0) = I0, we find C = (1 −
p)S0 + I0 − γ

(1−p)β · ln (1− p)S0. Hence we get:

I(t) = −S(t) + (1− p)S0 + I0 +
γ

(1− p)β · ln
S(t)

(1− p)S0

We derive the expression for S(∞) by substituting I(∞) = 0, S0 +I0 = 1−p
and R0 = β

γ into our equation for I(t):

S(∞) = 1− pS0 +
1

(1− p)R0
· ln S(∞)

(1− p)S0
(5.1)
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The last step is to find the total number of individuals infected during the
epidemic:

Itotal = 1− pS0 − S(∞) = − 1

(1− p)R0
· ln S(∞)

S0
(5.2)

At the beginning of this section we mentioned that we would be investigating
the relationship between vaccination coverage and epidemic size. We will do
this using the example of measles. Measles is an extremely contagious virus
with R0 = 16 approximately. Despite the existence of an effective vaccine,
during 2018 alone it caused the death of more than 140 000 individuals
globally. During the period 2000-2018, vaccination against measles prevented
an estimated 23.2 million deaths. (WHO, 2020)

Figure 5.2 shows a numerical estimate of the size of a measles epidemic (left)
for different vaccination rates, as well as actual WHO data on reported cases
of measles for different vaccination rates (right). For the numerical estimate,
we used Matlab to numerically solve and plot equation 5.1. The data from
WHO contained an annual report on global vaccination coverage as well as
the total number of reported cases globally (1980-2018). We used R to con-
vert the total number of cases to the number of cases per million individuals,
and and then plotted this number against the reported vaccination cover-
age. Even though both plots have very different y-values, their curves are
strikingly similar.

Figure 5.3 also shows a numerical estimate of the size of a measles epidemic
(left) for different vaccination rates, as well as actual WHO data on reported
cases of measles for different vaccination rates (right). The aim of this plot is
to have a closer look at higher vaccination rates. The numerical estimate is
the same one as displayed in figure 5.2, except now only showing vaccination
rates of 75% and above. The plot on the right displays annual data from all
countries in the WHO regions of America and Europe (1980-2018). Numbers
of cases per million individuals and year are plotted against vaccination rates.
Again even though both plots have very different y-values, their curves are
strikingly similar.
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Figure 5.2: The size of a measles epidemic for different vaccination rates.
Numerical estimate (left) compared to actual WHO data (right).

Figure 5.3: The size of a measles epidemic for different vaccination rates.
Numerical estimate (left) compared to actual WHO data (right).
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Chapter 6

Model fitting: COVID-19

In this chapter we will attempt to fit the SIR-model to data on the current
COVID-19 pandemic. COVID-19 is a disease caused by a novel Coronavirus,
discovered in December of 2019. The Coronaviruses are a group of viruses,
of which seven are known to cause disease in humans. Four of these result
in the relatively harmless symptoms of the common cold, whereas the other
three cause potentially severe respiratory diseases known as the Middle East
Respiratory Syndrom (MERS), the Severe Acute Respiratory Syndromthe
(SARS), and Corona Virus Disease 19 (COVID-19). For MERS and SARS
R0 has been estimated to be 0.3-0.8 and 2-5 respectively. Since COVID-19
is a new virus, R0 is not yet known. In the first section of this chapter we
will use COVID-19 data to estimate a range for R0. In the other sections we
simulate the COVID-19 outbreak in Sweden for various scenarious.

6.1 Estimating R0 for COVID-19

Table 6.1 summarizes the parameters we need to estimate in order to model
the COVID-19 outbreak. The time period for infection has been approxi-
mated to be around three to eight days [22]. Therefore, we investigate the
scenarios where γ = 1

3 , γ = 1
4 , γ = 1

5 , γ = 1
6 , γ = 1

7 , and γ = 1
8 . The

basic reproduction number (R0) is the transmission rate (β) divided by the
recovery rate (γ), so we have R0 = β

γ .

Theoretically, R0 and β are estimated using S(t) and I(t) for different val-
ues of t. In the case of COVID-19 this is tricky since these exact numbers
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R0 basic reproduction number
β transmission rate
κ contacts
τ transmissibility
γ probability of recovery or death
1
γ time period for infection

Table 6.1: Parameters to be estimated.

are not yet known. Only certain patients have been tested for the virus,
and we can assume that the confirmed cases are only the tip of the iceberg.
However, we might also be able to assume that the rate at which this tip of
the iceberg (the number of confirmed cases) changes is roughly equal to the
rate at which the entire iceberg (the total number of infected individuals)
changes. So, despite the lack of data, we will try to roughly estimate values
for R0 and β.

Early in an outbreak, we still have S ≈ N , which enables us to simplify the
expression for the infected equation as follows:

dI

dt
= β · I(t) · S(t)

N
− γ · I(t) ≈ β · I(t)− γ · I(t) = I(t) · (β − γ)

β ≈ dI

dt
· 1

I(t)
+ γ

Here dI
dt is the new number of confirmed cases each day and I(t) can be

approximated by I(t) ≈ dI
dt + (1− γ)I(t− 1) ≈ dI

dt + 4
5I(t− 1).

For our analysis we selected fourteen countries with a substantial number of
reported cases. Data on new cases per day as well as the total number of cases
was retrieved from the European Center for Disease Prevention and Control
ECDC, spanning the period between December 31st (2019) and March 21st
(2020). A simple script in R was used to estimate values for β and R0 for
each country and each day. Hence, a total of 1148 different values for β and
R0 were estimated. However, since the epidemic started at different dates
for each country, many of the values were completely off. This was solved
by removing all values where either R0 < 1 or R0 > 5. This resulted in
348 different values. Since we assumed S ≈ N , we decided to limit our
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analysis to the first 20 days of each country’s outbreak. Note that for some
countries the total number of days since the outbreak was less than 20. The
final number of values for β and R0 was 208. Figures 6.1 and 6.2 show the
average values of R0 for each value of γ and for the number of days since the
start of the outbreak. Table 6.3 shows the average R0 for each value of γ. As
the time period of infection increases with one day, R0 appears to increase
with 0.1. Overall, we approximate the R0 of COVID-19 to lie within the
range 2.8-3.3.

Figure 6.1: The average reproductive number R0 for different γ.
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Figure 6.2: The distribution of the estimates of R0 for different values of γ.

Figure 6.3: The average reproductive number R0 for different γ.
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6.2 Simulating a COVID-19 epidemic in Sweden

In this section we will use the previously derived values of R0 to simulate
an outbreak of COVID-19 in Sweden. Sweden has a population of approx-
imately 10 million people and we say the outbreak starts with one infected
individual. Therefore, we have S(0) = 10000000, I(0) = 1, and R(0) = 0.

6.2.1 Without social distancing

Figure 6.4 shows the number of infected and recovered (including deceased)
individuals respectively, for the scenario where R0 is constant throughout
the entire outbreak. That is, without social distancing or quarantine. The
figure shows that, depending on R0 and γ, the outbreak would reach it’s peak
after approximately 30-60 days. Around this peak, roughly 2.7-3.3 million
individuals would be infected simultaneously. We also see that an estimated
90-95% of the total population would become infected at some point during
the outbreak.

6.2.2 With social distancing

Figure 6.5 shows the number of infected and recovered (including deceased)
individuals respectively, for the scenario where R0 varies throughout the out-
break. As explained in chapter 2.1.3, the transmission rate (β) is equal to
the product of the number of contacts (κ) a person has per time unit and the
transmissibility (τ) of the disease. Hence, R0 can be reduced both by reduc-
ing κ as well as by reducing τ . In practice, this can be done through personal
hygiene, social distancing and/or (self-)quarantine. For this scenario, we as-
sumed individuals would start doing this from day 20 and onward, and that
on average they would reduce their social exposure/risk of transmission by
50%. Figure 6.5 shows that the curve of infected individuals has been flat-
tened substantially. Depending on R0 and γ, the outbreak would reach it’s
peak after approximately 60-160 days. Around this peak, roughly 45 000 -
90 000 individuals would be infected simultaneously. We also see that an
estimated 50-70% of the total population would become infected at some
point during the outbreak. Thus, both the size of the peak as well as the
total size of the epidemic will be much smaller when the individuals of the
population practice social distance.

40



Figure 6.4: The number of infected individuals (top) and recovered individ-
uals (bottom) for different values of R0 and γ. See figure 6.5 for a legend
specifying the different colors.
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Figure 6.5: The number of infected individuals (top) and recovered individ-
uals (bottom) for different values of R0 and γ, where after 20 days measures
such as personal hygiene and social distance reduce β by 50%.
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6.3 The effects of quarantine

In this final section on COVID-19 we investigate the effects of quarantine
as well as the effects of the timing of quarantine. For each of these simula-
tions we assume that from day ten of the outbreak the transmission rate will
be reduced by 25% due to increased personal hygiene and social distancing.
While under quarantine, we chose the transmission rate to be 20% of the
original transmission rate (β/5). The aim of these simulations is to deter-
mine the effects of quarantine and the timing of quarantine on the height of
the peak of infected individuals as well as on the size of the epidemic.

Figure 6.6 shows that for our specific scenario, a month long quarantine after
four or six weeks merely delays the epidemic. It decreases neither the height
of the peak of infected individuals nor the size of the epidemic.

Figure 6.6: A COVID-19 epidemic without quarantine measures (left), and with a month long quarantine starting
after four weeks (middle) and after six weeks (right).
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Figure 6.7 shows that in this specific case, a month long quarantine after
seven, eight, nine, or ten weeks could decrease the height of the peak of
infected individuals as well as decrease the size of the epidemic. If the most
important goal is to reduce the number of individuals that are infected at the
same time, quarantine after eight weeks seems to be most effective. However,
if the main goal is to reduce the size of the epidemic, quarantine after nine
weeks seems to be the best strategy.

Figure 6.7: A COVID-19 epidemic with a month long quarantine starting
after seven, eight, nine, and ten weeks.
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Chapter 7

Discussion

7.1 Summary

In this paper we investigated the SIR model and found that it is a com-
partmental model consisting of three ordinary differential equations. Even
though the model is based on a number of strong assumptions about popu-
lation size and distribution, it’s predictions are strikingly reliable.

We performed numerical analyses using the methods of Euler and Runge-
Kutta, and we saw that Runge-Kutta 4 is significantly better at making
accurate estimates for larger step sizes than Forward Euler. Qualitative
analysis of the SIR model revealed the epidemic threshold to be S

N = 1
R0

.
That is, an epidemic will occur only when the proportion of susceptible
individuals is greater than the multiplicative inverse of the basic reproduction
number. The size of an epidemic, expressed as Itotal or S(∞), was found to
depend on both R0 and S(0).

In chapter 5 we derived the herd immunity threshold, the fraction of indi-
viduals needed to be vaccinated in order to prevent an epidemic, to be equal
to 1 − 1

R0
. Following this, we analyzed the stability of the system’s equi-

librium points and saw that the disease free equilibrium is stable as long as
R0 >

1
1−p . Finally, we studied the relationship between the vaccination rate

and the epidemic size.

In the last chapter of this thesis we investigated the current COVID-19 pan-
demic. We approximated R0 to be in the range of 2.8-3.3 and we illustrated
how crucial the timing of quarantine measures is to it’s effects.
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7.2 Topics for future study

When searching for literature on the SIR model and it’s variations, one
comes across an overwhelmingly large amount of published articles, many of
which are relatively similar. To illustrate, a PubMed search using the MeSH
terms (((((((sir) OR svir) OR seir) OR sirs) AND model) AND susceptible))
AND infected, resulted in 4203 hits, of which 3244 were published during
this decade. Frankly, this made it quite difficult to determine how much
the model actually has progressed since it was first developed. Therefore, in
my opinion the field would benefit from a systematic literature review that
summarizes current knowledge and identifies topics for future study.

When it comes to COVID-19, a lot of research is needed. Experiments such
as the ones in this thesis provide a sneak peek and are a first step. But
in order to really understand the disease, obviously many more studies are
needed.
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Appendix A

Mathematical proofs

A.1 Proof to theorem 5.4

Theorem 5.4. If J is a 2× 2 matrix, then the sum of the eigenvalues of J
is equal to the trace of J and the product of the eigenvalues is equal to the
determinant of J .

Proof. Say J =

(
a11 a12

a21 a22

)
and |λI − J | =

∣∣∣∣
λ1 − a11 −a12

−a21 λ2 − a22

∣∣∣∣ = 0.

(λ1 − a11)(λ2 − a22)− a12a21 = 0

λ1λ2 − a22λ1 − a11λ2 + a11a22 − a12a21 = 0

λ2 − (a22 + a11)λ+ a11a22 − a12a21 = 0 λ = λ1 ∨ λ = λ2

λ1 =
(a22 + a11) +

√
(a22 + a11)2 − 4(a11a22 − a12a21)

2

λ2 =
(a22 + a11)−

√
(a22 + a11)2 − 4(a11a22 − a12a21)

2

From this we find the sum of the eigenvalues to be λ1 +λ2 = a11 +a22, which
indeed equals the trace of J . The product of the eigenvalues becomes

λ1λ2 =
(a22 + a11)2

22
− (a22 + a11)2 − 4(a11a22 − a12a21)

22
= a11a22 − a12a21
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which indeed equals the determinant of J .
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