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Abstract

The authors V. Reiner, D. Stanton, and D.White introduced the Cyclic
Sieving Phenomenon in 2004. Since then the phenomenon has been shown
to be exhibited by numerous types of combinatorial objects. We show in
this thesis that the phenomenon is exhibited by colorings of cycle graphs
and one generalization of these.
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1 Introduction

In 1996 J. Stembridge introduced the q = −1 phenomenon [Ste96] and in 2004
the authors V. Reiner, D. Stanton, and D. White [RSW04] extended this to
the so called Cyclic Sieving Phenomenon or CSP for short. The idea is that
you have three ingredients, a set of combinatorial objects, a polynomial asso-
ciated with this set, and a finite cyclic group that is acting on the set. The
polynomial evaluated at roots of unity would count the number of fixed points
of the set when acted on by the cyclic group. Such polynomials are not hard to
produce forcefully but the surprising bit is that they sometimes occur naturally.
Instances of this phenomenon on many different types of objects has since been
found. For example non-crossing matchings [PPR08], standard Young tableaux
[Rho10], and words and multisets [RSW04]. A survey by Bruce E. Sagan is
given in [Sag11].

In this work we reveal the occurrence of this phenomenon on colorings of
cycle graphs. This work intends on being fairly self contained which is why
Chapter 2 is dedicated to recalling necessary preliminaries from combinatorics,
group theory, graph theory and q-analogs.

In Chapter 3 we give a starting example of the phenomenon before we define
it formally. We then show that CSP is exhibited by colorings of cycle graphs
before we move on to generalize this result to the rooted product of a cycle and
an arbitrary rooted tree.
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2 Preliminaries

2.1 Combinatorics

For any natural numbers n and k it is standard to let [n] denote the set

{1, 2, . . . , n}, and let
(
[n]
k

)
represent the set of subsets of [n] of size k. Then

let
(
n
k

)
denote the cardinality of

(
[n]
k

)
, which can be shown to equal

(
n

k

)
=
n(n− 1) · · · (n− k + 1)

k!
=

n!

(n− k)!k!
.

The following theorem is one of the most basic results in combinatorics.

Theorem 2.1. (The Binomial Theorem) For any natural numbers n and k we
have

(x+ y)n =

n∑

k=0

(
n

k

)
xkyn−k.

In particular we can plug in x = y = 1 to retrieve the formula 2n =
∑n
k=0

(
n
k

)
,

which can be made sense of without ever referring to the binomial theorem.
Recall simply that the number of subsets of [n] has size 2n. Now note that

(
n
0

)

counts the number of subsets of [n] of size 0, and
(
n
1

)
counts the subsets of size

1, and so on. Summing over all of these counts all the subsets. Then it comes
to no surprise that the two formulas that count the same thing should be equal.

Now let (
n

x1, · · · , xc

)
:=

n!

x1! · · ·xc!
.

This next theorem is a generalization of the binomial theorem.

Theorem 2.2. (The Multinomial Theorem) For n, c ∈ N we have

(x1 + x2 + · · ·+ xc)
n =

∑

k1+···+kc=n

(
n

k1, · · · , kc

)
xk11 · · · · · xkcc .

In particular by letting all the xi = 1 as before we retrieve the formula

cn =
∑

k1+···+kc=n

(
n

k1, · · · , kc

)
.

where ki ∈ N.

2.2 Graphs

By graph we always mean an undirected simple graph unless otherwise stated.
By V (G) and E(G) we mean the set of vertices and edges of G respectively. Two
vertices are said to be adjacent if they share an edge and the set of adjacent
vertices of any vertex is called its neighbours. Any graph which contains no
cycles is called a tree. For e ∈ E(G) we let G− e denote the graph G where the
edge e has been removed.
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Definition 2.3. Let e = {v1, v2} ∈ E(G). Let G/e be the resulting graph of
removing e, v1, v2, adding a new vertex v′ and letting all edges of v1, v2 be edges
of v′. We call G/e an e-contraction or contraction of G.

Definition 2.4. A proper coloring of a graph G is an assignment of colors to
the vertices of G such that no two adjacent vertices have the same color. Let k
be a natural number. A k-coloring of G is a proper coloring that uses at most
k colors.

Definition 2.5. For any natural number k let χG : N→ N where χG(k) is the
number of k-colorings of G. We call χG(k) the chromatic polynomial of G.

We will simply write χ(k) when the graph is understood from context. We
should hastily mention that the chromatic polynomial of a graph really is a
polynomial. In order to work out the chromatic polynomial we will need a fact
that relates the chromatic polynomial of G with that of graphs that are smaller
than G. It is called the deletion contraction formula and will be an indispensable
tool when we wish to compute the chromatic polynomial.

Theorem 2.6. (The Deletion-Contraction Formula) Let e ∈ E(G). The chro-
matic polynomial of G satisfies χG(k) = χG−e(k)− χG/e(k).

A rooted graph is one in which one vertex has been distinguished as the root
and the notion of rooted products will be useful when we define the Mistletoe-
Graphs later on. If G is a graph and H is a rooted graph with root h1 then we
glue one copy of H to each vertex of G by equating one h1 with each g ∈ V (G).
The resulting graph is called the rooted product of G and H. More formally we
say the following.

Definition 2.7. (Rooted product of graphs) Let G be a graph and let H be a
rooted graph with V (G) = {v1, . . . , vn} and V (H) = {h1, . . . , hm}, and assume
that h1 is the root of H. We define the rooted product of G and H to be

G�H := (V,E)

where
V = {(gi, hj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

and

E = {{(gi, h1), (gk, h1)} : {gi, gk} ∈ E(G)}∪
n⋃

i=1

{{(gi, hj), (gi, hk)} : {hj , hk} ∈ E(H)}.

Example 2.8. Let

G = and H = r
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where the vertex labeled r is the root of H. Then

G�H =

2.3 Groups

In this section we recall some things from group theory that will be needed later
on.

The order of a finite group G is its cardinality and is typically written as |G|.
The order of an element g ∈ G is the least n ∈ N such that gn = 1, we write
this as |g|. The following is a basic result in group theory.

Theorem 2.9. (Lagrange’s Theorem) The order of any element g ∈ G divides
|G|.
Recall now that a group is called cyclic if it is generated by one element. We
write Sn to mean the symmetric group on n elements. We typically use cycle
notation when refering to the elements of Sn. For example, the element π =
(1, 2, 3)(4, 5, 6) ∈ S7 refers to the permutation sending 1 to 2, 2 to 3, 3 to 1, 4
to 5, 5 to 6 to 6 to 4 and 7 to 7.

Definition 2.10. An n:th root of unity is a solution to the equation xn−1 = 0.

One can show that n:th roots of unity have the form e
2πik
n where k ∈ [n].

Theorem 2.11. The n:th roots of unity form a cyclic group under multiplica-
tion.

This last theorem now allows us to start talking about the orders of the roots
of unity.

Definition 2.12. A primitive n:th root of unity is a root of unity with order n.

One more concept we would like to define which will be central later on is group
actions on finite sets.

Definition 2.13. (Group Action) If G is a group with identity e, and X is a
set then a group action is a function ϕ : G×X → X such that for all g, h ∈ G
and all x ∈ X the following two axioms hold.

• ϕ(e, x) = x

• ϕ(gh, x) = ϕ(g, ϕ(h, x))

When we say cyclic group action we mean a group action where the acting
group is cyclic.
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2.4 q-analogs

A q-analog of an expression is another expression in terms of q such that the
original expression is obtained when q → 1, an example would be to let the
q-analog of 1 to be q. Although this satisfies the definition of being a q-analog,
it might not be particularly useful or interesting. Typically one is interested
in q-analogs that arise naturally in some sense but what exactly constitutes
“natural” is not very well defined, however it has been established that the
following definition certainly fits the criteria.

Definition 2.14. The q-analog of any n ∈ N is defined to be

[n]q :=
1− qn
1− q .

The identity 1−qn
1−q = 1 + q + q2 + · · ·+ qn−1 shows that limq→1[n]q = n. From

this definition we can go on to define the q-factorial.

Definition 2.15. The q-factorial is defined as

[n]q! := [1]q[2]q · · · [n]q.

From this we can further go on to define the q-multinomial.

Definition 2.16. For natural numbers α1, · · · , αc we define the q-multinomial
as [

n

α1, α2, · · · , αc

]

q

:=
[n]q!

[α1]q![α2]q! · · · [αc]q!
.

As a special case we retrieve the q-binomial by letting c = 2 and putting
α2 = n−α1, though one typically writes this as

[
n
α

]
q
. This expression turns out

to be a polynomial in q with natural numbers as coefficients, the proof of which
can be read in [Sta11].

These next two theorems will be our main tools when we evaluate some of
the q-analogs that are of interest to us. The first theorem proves quite useful
when we wish to evaluate q-binomials at roots of unity, the second theorem lets
us rewrite q-multinomials as products of q-binomials.

Theorem 2.17. (q-Lucas Theorem) [Dés82] Let ξd be a primitive d:th root
of unity over the complex numbers. Let n = n0d + n1, k = k0d + k1 where
0 ≤ n0, k0 ≤ d. Then [

n

k

]

ξd

=

(
n0
k0

)[
n1
k1

]

ξd

Theorem 2.18. Let k1, · · · , kc be natural numbers. Then the following equality
holds. [

n

k1, · · · , kc

]

q

=

[
n

k1

]

q

[
n− k1
k2

]

q

· · ·
[
n− k1 − · · · − kc−1

kc

]

q

.

The q-Lucas theorem was first proved in [Oli65]. For readers interested in
further reading on the topic of q-analogs we recommend [Sta11].
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3 Cyclic Sieving Phenomenon

3.1 Introduction by example

The cyclic sieving phenomenon has its roots, pun intended, in Stembridge’s
q = −1 phenomenon [Ste96] and was first introduced in a paper published in
2004 by V. Reiner, D. Stanton, and D. White [RSW04] as a generalization of
that. In short words one could say that cyclic sieving occurs when evaluating a
polynomial which has natural number coefficients and is associated with a fam-
ily of combinatorial objects at roots of unity gives the number of fixed points of
that family under a cyclic group action. Perhaps it is best to start off with an
example.

Example 3.1. Consider the set X =
(
[6]
2

)
. Recall from Chapter 2.1 that

(
[6]
2

)

has
(
6
2

)
elements and recall from Definition 2.16 that one naturally occuring q-

analog we can associate is
[
6
2

]
q
. In order to evaluate this term we first write it

out more explicitly and obtain

f(q) =

[
6

2

]

q

=
[6]q!

[2]q![4]q!
=

(1 + q + q2 + q3 + q4 + q5)(1 + q + q2 + q3 + q4)

1 + q

= 1 + q + 2q2 + 2q3 + 4q4 + 2q5 + 2q6 + q7 + q8.

Let ξ = exp( 2πi
6 ), then we get

f(ξ) = 0

f(ξ2) = 0

f(ξ3) = 3

f(ξ4) = 0

f(ξ5) = 0

f(ξ6) = 15

Now consider the element π = (1, 2, 3, 4, 5, 6) ∈ Sn which generates the cyclic
group 〈π〉 = C6. We let π act on X by cyclic shift, meaning that for any element
t = {a, b} ∈ X we have π · t = {π(a), π(b)}. Then letting π act on X fixes no
elements. Likewise with π2, π4 and π5, whereas π6 on the other hand fixes all
15 elements. Lastly the three elements {1, 3}, {2, 4} and {3, 6} are fixed by π3.
Where have we seen this enumeration before? When we let πd act on X the
number of fixed points are given by f(ξd).

This motivates the following formal definiton.

Definition 3.2. (Cyclic Sieving Phenomenon) [RSW04] Let X be a set of
combinatorial objects. Let Cn = 〈g〉 be a finite cyclic group of order n, and
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f(q) ∈ N[q]. Then we say that the triple (X,Cn, f(q)) exhibits the cyclic sieving
phenomenon if for all d ∈ N we have

|{x ∈ X : gd ◦ x = x}| = f

(
exp

(
2πi

d

n

))
.

So f(q) encodes the number of fixed points of Cn acting on X. More specif-
ically we let ξ = exp 2πi

n and we look at f(ξd). Then we take g which generates
Cn and look at the number of fixed points of gd acting on every x ∈ X. If the
number of fixed points is given by f(ξd) for every d ∈ N then we say that this
triple exhibits the cyclic sieving phenomenon. We will sometimes say CSP for
short. Typically the polynomial f(q) is a generating function and in our case
we strictly look at q-analogs of counting functions of our sets.

Lastly before we move on we would like to mention a special type of CSP
on a family of combinatorial objects. The idea is that sometimes fixed points
of this family will be in bijection with smaller members of that family, then we
say that the CSP is Lyndon-like. Formally we say the following.

Definition 3.3. (Lyndon-like CSP) [ALP19] Let {(Xn, Cn, fn(q))}∞n=1 be a
family of instances of CSP. The family is Lyndon-like if for all n ≥ 1,

fn/m(1) = fn

(
e
2πi
m

)
, whenever m|n.

The name Lyndon-like stems from the Lyndon words which can be thought
of as building blocks for all other words. They are lexicographically smaller
than all their rotations and can be rotated and concatenated to produce any
other word.

3.2 Cycle Graphs

Now that we have an idea of what the cyclic sieving phenomenon is we start
to wonder where this might appear. Typically there are two ways of attacking
these kinds of problems. One is that you are looking at a family of combinatorial
objects which has a natural q-analog associated to it and you try to find a cyclic
group action acting on it. The other is that you instead have a natural cyclic
group action and try to find a nice q-analog. The latter is the approach we are
taking with the family of colourings of cycle graphs. The motivation behind
this is that cycle graphs have the natural cyclic group action of rotation. This
leads us to look at colourings on cycle graphs and rotations of these. What are
the fixed points of these colorings under the cyclic action of rotation?

Consider a small example when n = 6, we number the vertices in clockwise
order starting with 1 and suppose we intend on rotating by 3 steps clockwise,
meaning that 1 takes the place of 4 and vice versa. Then for any particular
coloring the vertex pair (1, 4) would need to be the same color, in order for that
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particular coloring to be fixed under rotation by three steps. Same with the
pairs (2, 5) and (3, 6). So in order for a coloring of C6 to be a fixed point under
three-step rotation we would need the graph to consist of two identically colored
pieces of size three in the manner just described. Furthermore since vertex 3
is connected to vertex 4 we also require that 1 and 3 have different colors, this
amounts to the same as if 1 and 3 had an edge between them. Altogether this
leads us to the idea that the amount of fixed points of Cn under rotation by
d steps are the same as the amount of colorings of a graph of size d whenever
d divides n. If d does not divide n then there can be no fixed points, because
then Cn could not possibly be colored into n/d identically colored copies. This
is the motivation behind Theorem 3.5, but we first need to state a crucial piece
of information about the cycle graphs.

Theorem 3.4. The chromatic polynomial of the cycle graph Cn on n vertices
is (k − 1)n + (−1)n(k − 1).

Proof. Let n = 3. Then the first vertex can be colored using k colors. The
second one can use (k − 1) and the third one uses (k − 2) colors. Altogether
k(k − 1)(k − 2) which is equal to (k − 1)3 + (−1)3(k − 1). Now assume this
holds by induction on the number of vertices. We claim that the chromatic
polynomial of Cn with any one edge removed is k(k− 1)n−1. To see this notice
that such a graph is just a path. For any path of length n we can color the
starting vertex using k colors, and the remaining n − 1 vertices will only have
k − 1 colors available which in total gives k(k − 1)n−1. By Theorem 2.6 and by
induction we have

χ(k) = k(k − 1)n−1 − (k − 1)n−1 − (−1)n−1(k − 1)

= (k − 1)n−1(k − 1) + (−1)n(k − 1)

= (k − 1)n + (−1)n(k − 1).

Theorem 3.5. The number of fixed points of the colorings with k colors on Cn
under rotation by n/d steps is given by

(k − 1)n/d + (k − 1)(−1)n/d. (1)

Note that this expression is the same as the chromatic polynomial of the cycle
graph of size n/d.

1

2

3

1

2

3

−−−−−−−−→

1

2

3

1

2

3
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Proof. The proof of the general case is the same as the above example except
for a difference in notation. We omit writing it out.

Thus we also have a nice formula for counting the number of fixed points. The
question is, can we find a q-analog associated to the chromatic polynomial which
also happens to count these fixed points when evaluated at the appropriate roots
of unity?

This is a rhetorical question, the answer is yes in this case. To produce a
q-analog we look at the terms of the chromatic polynomial individually. Recall
from Theorem 2.2 that we can write kn as a sum of multinomial terms and
recall from Definition 2.16 that we defined the q-multinomial. This suggests the
following definition.

Definition 3.6. Let [k : n] denote the expression kn where k and n are natural
numbers and let c1, · · · , ck ∈ N. Then we define the q-analog of [k : n] to be

[k : n]q :=
∑

c1+···+ck=n

[
n

c1, · · · , ck

]

q

.

When we let q → 1 this becomes a sum of regular multinomials which from
Theorem 2.2 can be seen to equal kn. We mentioned in Chapter 2.4 that the
q-multinomials turn out to be polynomials with natural coefficients and this
property is retained when we sum over several such polynomials. Now we are
ready to state the q-analog we will be working with.

Definition 3.7. Let n ∈ N, k ∈ N, let χCn(x) be the chromatic polynomial of
the cycle graph of size n, and let

σ(n) =

{
n
2 n is even

0 n is odd
.

Then we define the q-analog of χ(x) to be

Cycn(k : q) := [k − 1 : n]q + qσ(n)(k − 1)(−1)n (2)

We now have all three ingredients that we require for a CSP with X being the
set of colorings of cycle graphs of size n and Cn being the cyclic group acting
by rotation on X. We begin by showing a very useful lemma.

Lemma 3.8. Let ξ be an n:th root of unity of order d where d divides n. Then

[k − 1 : n]ξ = (k − 1)n/d.

Proof. Recall from Theorem 2.18 that we can write

[k − 1 : n]q =
∑

c1+···+ck−1=n

[
n

c1

]

q

[
n− c1
c2

]

q

· · ·
[
n− · · · − ck−2

ck−1

]

q

. (3)
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Let ξ be an n:th root of unity of order d. By Theorem 2.9 we know that d divides
n so we can write n = dn0 and ci = dbi + ri for some n0, bi, ri ∈ N. Then by the
q-Lucas Theorem 2.17 we can write the first factor of the right hand side of (3)
evaluated at ξ as [

n

c1

]

ξ

=

(
n0
b1

)[
0

r1

]

ξ

.

We see then that for r1 6= 0 the whole term becomes 0, so we may assume that
r1 = 0. Then we may write n0 = n/d and b1 = c1/d. The next factor we may
express in the same fashion as

[
n− c1
c2

]

ξ

=

(
n0 − b1
b2

)[
0

r2

]

ξ

.

Again we see that we must have r2 = 0 if we want there to be a factor left,
and we can continue onward in the same fashion with all the remaining factors.
This allows us to write

∑

c1+···+ck−1=n

[
n

c1

]

ξ

[
n− c1
c2

]

ξ

· · ·
[
n− · · · − ck−2

ck−1

]

ξ

=

∑

c1+···+ck−1=n

(
n0
b1

)(
n0 − b1
b2

)
· · ·
(
n0 − · · · − ck−2

bk−1

)
=

∑

c1+···+ck−1=n

(
n0

b1, b2, · · · , bk−1

)
=

∑

c1+···+ck−1=n

(
n/d

c1/d, c2/d, · · · , ck−1/d

)
. (4)

Now we can use the multinomial Theorem 2.2 to obtain

∑

c1+···+ck−1=n

(
n/d

c1/d, c2/d, · · · , ck−1/d

)
= (k − 1)n/d.

Theorem 3.9. (Main result) The triple (X,Cn, Cycn(k : q)) exhibits the cyclic
sieving phenomenon.

Proof. Let d be any natural number which divides n. Our goal is to show that
Cycn(k : q) evaluated at primitive d:th roots of unity equals

(k − 1)n/d + (−1)n/d(k − 1). (5)

We first want to evaluate Cycn(k : q) at roots of unity. To start consider
[k − 1 : n]q which is the first term of (2). By Lemma 3.8 this evaluates to
(k − 1)n/d which equals the first term of (5).
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Now we turn our attention to the term

qσ(n)(k − 1)(−1)n

from (2). Assume that n is even. By putting q → exp( 2πi
d ), a primitive d:th

root of unity, we obtain

eπi·n/d · (k − 1)(−1)n = (k − 1)(−1)n+n/d

We claim that the expression n+ n/d will always have the same parity as n/d.
To see this write (−1)n = 1 which in turn means that (−1)n = (−1)n+n/d. Now
assume instead that n were odd. Then we would get the expression (k−1)(−1)n.
Likewise we claim that n and n/d have the same parity. Write n = kd where
both k and d are odd. Then n/d = kd/d = k is also odd. Thus we can write

(k − 1)(−1)n+n/d = (k − 1)(−1)n/d.

which equals the second term of (5). Altogether this gives us

Cycn(k : ξ) = (k − 1)n/d + (k − 1)(−1)n/d.

Note that the CSP in Theorem 3.9 is Lyndon-like. Let us consider a digestible
example.

Example 3.10. Let n = 4 and k = 3. Then the set of colorings of the graph
C4 are the following

1

3

1

3

1

2

1

2

3

2

3

2

3

1

3

1

2

1

2

1

2

3

2

3

1

3

2

3

1

3

1

2

1

2

1

3

1

2

3

2

3

2

1

2

3

2

3

1
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3

1

3

2

3

1

2

1

2

1

3

1

2

1

2

3

2

3

2

1

2

3

1

3

We see that the first 6 of these are the ones that have any non-trivial ro-
tational symmetry with rotation by 2 steps, and the rest do not. Altogether we
have the following.

Rotations Fixed points

1 0
2 6
3 0
4 18

Table 1

Now we look at Cyc4(k : q) with k = 3. We get that

Cyc4(3 : q) = [2 : 4]q + qσ(4)(2)(−1)4

=
∑

c1+c2=4

[
4

c1, c2

]

q

+ 2q2

=
4∑

c=0

[
4

c

]

q

+ 2q2 (6)

where the first equality is by definition and the second one is due to what we
mentioned in Definition 2.16. Now we are left with a sum that we want to
unwind, for c = 0 and c = 4 the terms become 1. We see also that

[
4

1

]

q

=

[
4

3

]

q

=
[4]q!

[1]q![3]q!
= [4]q = 1 + q + q2 + q3.

Lastly we have
[
4

2

]

q

=
[4]q!

[2]q![2]q!
=

[4]q[3]q
[2]q

=
(1 + q + q2 + q3)(1 + q + q2)

1 + q

= 1 + q + 2q2 + q3 + q4.

Putting all this together we get that (6) is equal to

2q2 + (2) + (2 + 2q + 2q2 + 2q3) + (1 + q + 2q2 + q3 + q4)
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= 5 + 3q + 6q2 + 3q3 + q4.

The only thing left to do is to evaluate at roots of unity. Let ξ = exp(2πi/4).
We get

Cyc4(3 : ξ1) = 0

Cyc4(3 : ξ2) = 6

Cyc4(3 : ξ3) = 0

Cyc4(3 : ξ4) = 18

which matches what we had in Table 1 and is exactly what Theorem 3.9 tells us
it should be.

3.3 Mistletoe-Graphs

We have now studied the cyclic sieving phenomenon on cycle graphs and have
discovered and proved an instance of this relating to colorings and rotations.
We might then ask ourselves, can we generalize this result somehow? This leads
us to look at the Mistletoe-Graph. Recall how we defined rooted products of
graphs in Definition 2.7.

Definition 3.11. (Mistletoe-Graph) Let T be any rooted tree of size j and let
Cn be the cycle graph of size n. The rooted product Cn � T we call Mistletoe-
graph or M(T, n).

An example of a mistletoe-graph

Note that the graph M(T, n) has size (j − 1)n and that the cycle graph is an
instance of a Mistletoe-Graph with (j, n) = (1, n). Now we would like to inspect
the number of colorings of these graphs. We will see in Theorem 3.13 that the
problem requires the following lemma.

Lemma 3.12. Any tree T of size j has chromatic polynomial

χT (k) = k(k − 1)j−1.

Proof. Consider any tree T of size j and let any v1 ∈ V (T ) be the starting
point for our coloring. This vertex can be colored in k ways. The neighbours
v2, . . . , vi of v1 can each be colored using k − 1 colors. Their neighbours can in
turn also be colored using k − 1 colors each. Since there are no cycles in trees
this process goes on in the same manner until we have colored the entire tree.
Altogether we get k(k − 1)j−1
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Theorem 3.13. Let T be a rooted tree with j vertices. Then the Mistletoe-graph
M(T, n) has chromatic polynomial

(k − 1)(j−1)n[(k − 1)n + (k − 1)(−1)n]

Proof. Firstly we color the cycle part which by Theorem 3.4 can be done in
(k − 1)n + (k − 1)(−1)n ways. For each vertex of the cycle we can apply the
same argument as in the proof of Lemma 3.12. We color the neighbours in k−1
ways each and color their neighbours in k−1 ways each as well, and so on, until
all the tree parts of M(T, n) have been colored. Since there are n tree parts we
get in total

(k − 1)(j−1)n[(k − 1)n + (k − 1)(−1)n].

Then how many of these are fixed under rotation by n/d steps?

Theorem 3.14. Let T be a rooted tree with j vertices. Then the number of
fixed points of the k-colorings of M(T, n) under rotation by n/d steps is given
by

(k − 1)(j−1)n/d[(k − 1)n/d + (k − 1)(−1)n/d]. (7)

Proof. We can apply essentially the same argument as in 3.5.

Next we want to consider a natural q-analog associated to this. One that comes
to mind is

Misj,n(k; q) = [k − 1 : (j − 1)n]q · ([k − 1 : n]q + qσ(n)(−1)n(k − 1)). (8)

With this q-analog and Cn acting as before by rotation we are ready to state
our next theorem.

Theorem 3.15. Let X be the set of k-colorings of M(T,n) where T is any
rooted tree on j vertices. Then the triple (X,Cn,Misj,n(k; q)) exhibits the cyclic
sieving phenomenon.

Proof. Let ξ be a root of unity of order d. Our goal is to evaluate Misj,n(k; q)
at ξ and if it happens to equate to the same as (7) then we are happy. First
note that Misj,n(k; q) consists of two factors. The factor

[k − 1 : n]q + qσ(n)(−1)n(k − 1)

is the same one we had in Theorem 3.9 and we already know that it becomes

(k − 1)n/d + (k − 1)(−1)n/d

when evaluated at ξ.

Next consider the other factor

[k − 1 : (j − 1)n]ξ.
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We can apply Lemma 3.8 and get that this is equal to

(k − 1)(j−1)n/d.

Altogether we now have

(k − 1)(j−1)n/d[(k − 1)n/d + (k − 1)(−1)n/d].

Note that the CSP in Theorem 3.15 is Lyndon-like.
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4 Future work

During Chapter 3.3 we took an interesting leap from working with cycle-graphs
to the more generalized mistletoe-graphs. This was one out of many possible
leaps we could have taken. When we look back we realize that there was nothing
about trees which we used other than their chromatic polynomial. So one ques-
tion we might ask ourselves is whether this CSP could have been generalized to
colorings of rooted products of cycle graphs with something other than rooted
trees. One that comes to mind for example is the rooted product of a cycle
graph with another cycle graph.

One might also consider graphs different from cycles altogether but which
still have some type of structure that preserves the legality of colorings when
acted on by rotation. In any such case where there is a clear action of rotation
the more difficult task seems to be in finding a desired q-analog associated with
the set.

Lastly we would like to mention something about statistics. Given a set X
of combinatorial objects, a combinatorial statistic is a function st : X → N.
The generating polynomial f of st is defined as

∑
x∈X q

st(x). Some of the most
common ones are the major index and the inversion number which can both be
read about in [Sta11]. So the question we would like to ask is whether there is
some statistic on our sets which generate the polynomials we have been working
with. This is a typical question when working with CSP polynomials.
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