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Abstract

This paper aims to discuss the connection between non-associative
composition algebra and geometry. It will first recall the notion of an
algebra, and investigate the properties of an algebra together with a com-
position norm. The composition norm will induce a law on the algebra,
which is stated as the composition law. This law is then used to derive
the multiplication and conjugation laws, where the last is also known as
convolution. These laws are then used to prove Hurwitz’s celebrated the-
orem concerning the different finite composition algebras.

More properties of composition algebras will be covered, in order to look
at the structure of the quaternions H and octonions O. The famous Fano
plane will be the finishing touch of the relationship between the standard
orthogonal vectors which construct the octonions.

Lastly, the notion of invertible maps in relation to invertible loops will be
covered, to later show the connection between 8−dimensional rotations
and multiplication of unit octonions.
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1 Algebra

We start with the definition of an algebra and a composition algebra.

Definition 1.1. An algebra, A, is a vector space over a field K, equipped with
a bilinear map m : A × A → A called multiplication, and a non-zero element,
1 ∈ A, that satisfy m(a, 1) = m(1, a) = a. The multiplication also satisfies the
left and right distributive law for all elements in A.

Remark 1.1. From now on we assume that the field K of an algebra A, does not
have characteristic 2. This implies 2 6= 0 in K, which is important in coming
definitions.

Remark 1.2. Some texts usually mean associative algebra when defining an
algebra. This text will use the more exotic definition of an algebra, that does
not require multiplication to be associative.

Remark 1.3. We will abbreviate m(a, b) = ab, where a, b are elements in A.

Example 1.1. The following are examples of algebras over the field of real
numbers R.

1. The real numbers R with multiplication as binary operation.

2. Matrices with entries in R, of dimensions n×n with matrix multiplication
as binary operation.

3. The complex numbers C with multiplication as binary operation.

Definition 1.2. Let Z be an algebra over a field K. A subalgebra, A, of Z is
a K-vectorsubspace A ⊆ Z, which is closed under multiplication and 1 ∈ A.

We continue with the components needed in order to define a composition
algebra. We start with the composition norm.

Definition 1.3. Let A be and algebra over a field K. A composition norm,
N , is a map N : A → K, that satisfies the following conditions for all a, b ∈ A
and k ∈ K

1. N(ka) = k2N(a),

2. N(a+ b)−N(a)−N(b) is a bilinear map A×A→ K,

3. N |A× : A× → K× is a group homomorphism.

Remark 1.4. The third condition of the composition norm implies that N(ab) =
N(a)N(b).

Definition 1.4. Let A be an algebra over a field K. We define the bracket of
a and b, where a, b ∈ A, to be given by

[a, b] :=
1

2
(N(a+ b)−N(a)−N(b)).
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Remark 1.5. Note that [a, a] = N(a), since [a, a] = 1
2 (N(a+a)−N(a)−N(a)) =

1
2 (4N(a)− 2N(a)) = N(a) by the quadratic property of the norm. Thus, [a, a]
will be abbreviated as [a]. Both [a] and N(a) will be used, and the reader should
be comfortable that they are equivalent.

Remark 1.6 (Properties of the bracket operation). Let A be an algebra over the
field K. Then the following are properties of the bracket operation.

1. The bracket is symmetric, i.e. [a, b] = [b, a] for all a, b ∈ A.

2. We have that [a, a] = 1/2(N(a + a) − N(a) − N(a)) = N(a) because of
the quadratic property.

3. For all a 6= 0 in A, [a, a] 6= 0 since N |A× is a homomorphism.

4. N(0) = 0 since N(0) = 0N(1) = 0 where 1 is the unit in A.

5. Combining 3 and 4 shows that [a, a] = 0 if and only if a = 0.

6. For 1 ∈ A, we have N(1) = N(1)N(1), which implies N(1) = 1 since
N(1) 6= 0.

Definition 1.5. Let A be an algebra over a field K. The conjugation of an
element a ∈ A, denoted a, is given by

a := 2[a, 1]− a,
where 1 is the unit in A.

We are now ready for the definition of a composition algebra.

Definition 1.6. An algebra A over a field K is said to be a composition algebra,
if there exists some composition norm on A.

Remark 1.7. A composition algebra is also a division algebra.

The geometric interpretation of the norm, when considering an algebra over
the field of real numbers R, is that each element in an algebra, A, has a length
associated with it. The length is determined by the norm N . In a composi-
tion algebra, for any elements a and b ∈ A, the length of the product of ab
should be the same as evaluating the length of each element a, b individually
and multiplying them together.

From a different perspective, the distributive law in the definition of an
algebra, says that the binary operator is repeated addition (this argument is
basically taking place in Q). To see this, we have ab = a(1 + r1) = a1 + ar1 =
a1+a(1+r2) = a1+a1+ar2 and so on, where r1 = b−1 and r2 = r1−1. Thus,
measuring the length of ab can be pronounced in the following way: Measure a
the number of times a unit fits in b, then add them all up. But if we assume that
the lenght of a unit is 1, this is the same as measuring a, then adding them up
the number of times a unit fits in b. But its the same thing. Thus, intuitively,
we are interested in the equation N(ab) = N(a)N(b).

We are interested in the number of composition algebras. To investigate this,
we need to understand the fundamental properties of compositions algebras.
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1.1 The multiplication laws

For a more concise writing, let [a] = [a, a] = N(a) for a ∈ A. We begin by
looking at the consequences of the homomorphism property of the composition
norm. We will call a consequence of this the composition law.

The composition law: [ab] = [a][b] (1.1.1)

Theorem 1.1. Let A be a composition algebra over a field K and a, b ∈ A. If
[a, t] = [b, t] for all t ∈ A, then a = b.

Proof. If [a, t] = [b, t] then [a − b, t] = 0 due to the bilinear property of the
bracket. Since it is true for all t ∈ A, we can take t = a−b. Thus, [a−b, a−b] = 0,
hence N(a− b) = 0. From the properties of the bracket operation, N(a− b) = 0
is true if and only if a− b = 0 and the theorem follows.

Bracket identity: [a+ b] = [a] + [b] + 2[a, b] (1.1.2)

Proof. By the definition of the bracket, 2[a, b] = [a + b] − [a] − [b]. Hence,
[a+ b] = [a] + [b] + 2[a, b].

The scaling laws: [ab, ac] = [a][b, c] (and [ac, bc] = [a, b][c]) (1.1.3)

Proof. Using the definition of the bracket operator and the composition law
(1.2.6) , we have

[ab, ac] =
1

2
([ab+ ac]− [ab]− [ac])

=
1

2
[a]([b+ c]− [b]− [c])

= [a][b, c].

The second scaling law follows by similar argument on [ac, bc].

Composition law bracket: [ab, dc] + [db, ac] = 2[a, d][b, c] (1.1.4)

Proof. Using the bilinear property of the bracket on the left-hand side, and later
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the scaling law (1.1.3), we have

[ab, dc] + [db, ac] = [ab+ db, dc]− [db, dc] + [ab+ db, ac]− [ab, ac]

= [ab+ db, ac+ dc]− [d][b, c]− [a][b, c]

= [(a+ d)b, (a+ d)c]− [d][b, c]− [a][b, c]

= [a+ d][b, c]− [d][b, c]− [a][b, c]

= ([a+ d]− [a]− [d])[b, c]

= 2[a, d][b, c],

where we used the definition of the bracket in the last equality. The composition
law bracket follows.

The exchange law: [ab, dc] = 2[a, d][b, c]− [ac, bd] (1.1.5)

Proof. Expanding [(a+ d)b, (a+ d)c] with the bilinear property of the bracket,
then using the scaling law (1.1.3) and composition law bracket (1.1.4), gives

[(a+ d)b, (a+ d)c] = [ab, ac] + [ab, dc] + [db, ac] + [db, dc]

= [a][b, c] + [d][b, c] + 2[a, d][b, c]

= ([a] + 2[a, d] + [d])[b, c].

The right distributive law and the scaling law, after cancellation, gives the
desired equality.

1.2 The conjugation laws

We will now investigate the laws including conjugation.

The braid laws: [ab, c] = [b, ac] (and [ab, c] = [a, cb]) (1.2.6)

Proof. Letting d = 1 in (1.1.5)

[ab, c] = 2[a, 1][b, c]− [ac, b]

= [b, 2[a, 1]c]− [ac, b]

= [b, (2[a, 1]− a)c]

= [b, ac]
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and the first braid law follows. The second braid law is shown similarly, by
letting c = 1 in (1.1.5).

Biconjugation: a = a. (1.2.7)

Proof. Letting b = 1 and c = t in (1.2.6), this gives

[a, t] = [a1, t]

= [1, at]

= [a1, t]

= [a, t].

From Theorem 1.1, this is true for all t ∈ A. Hence, the equality is proven.

Product conjugation: ab = ba. (1.2.8)

Proof. Let t be an arbitrary element in A. Repeated use of (1.2.6) and (1.2.7)
gives

[ba, t] = [a, bt]

= [at, b]

= [t, ab]

= [tab, 1]

= [ab, t].

The result follows from Theorem 1.1, since t was arbitrarily chosen.

1.3 Dickson double

We are interested in the composition algebras of finite dimension. The idea to
approach this problem, is to construct these from a smallest algebra, and show
that a finite dimensional composition algebra has to be constructed from its
smallest subalgebra. We begin with defining what we mean with constructing
an algebra from another, the so called Dickson double.

Definition 1.7. Let A be a composition algebra over a field K. Then the
external product algebra, A×A, is defined to consist of elements (a, b) where
a, b ∈ A, i.e. ordered pairs of elements in A. The unit is given by (1, 0) where 1
is the unit in A, and multiplication is given by (a, b)(c, d) = (ac− db, cb+ ad).
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Definition 1.8 (External Dickson double). Let A be an algebra over a field
K. We define the external Dickson double of A, denoted De(A), to be given by
the external product algebra,

De(A) := A×A.

Definition 1.9. Let A be a composition algebra over a field K and let ι ∈ A.
We say that ι is a unit vector in A, if [ι] = 1 where 1 is the unit in K.

Definition 1.10 (Internal Dickson double). Let Z be a compositional al-
gebra over a field K, and let A be a proper subalgebra of Z. Let ι be a unit
vector in Z, that satisfies [ι, a] = 0 for all a ∈ A. We define the internal Dickson
double of A as

Di(A) := (Di(A), ι) := A+ ιA.

Remark 1.8. Recall from the properties of the bracket operation, that the choice
of ι implies that ι ∈ Z\A. The definition also assumes that such ι exists. We
will later prove that if A is a proper subalgebra of Z, this has to be the case.

Remark 1.9. The elements in A+ιA will be represented as a+ιb where a, b ∈ A.
The construction of ι will be clarified in Corollary 1.6.1.

It is clear that Di(A) in Definition 1.10 is a sub-vectorspace of Z, and it will
be shown now that it is a subring of Z, hence a subalgebra.

Lemma 1.2. Let A be a subalgebra of a composition algebra Z over a field K,
and let Di(A) be an internal Dickson double. Then for all a, b, c, d ∈ A, we have
[a+ ιb, c+ ιd] = [a, c] + [b, d].

Proof. We have [a+ ιb, c+ ιd] = [a, c] + [a, ιd] + [ιb, c] + [ιb, ιd]. From the braids
law (1.2.6), [a, ιd] = [ad, ι] = 0 and [ιb, c] = [ι, cb] = 0. From the scaling law
(1.1.3), we have [ιb, ιd] = [ι][b, d] = [b, d]. Thus, the Lemma follows.

Lemma 1.3. Let A be a subalgebra of a composition algebra Z over a field K,
and let Di(A) be an internal Dickson double. Then for all a, b ∈ A, a+ ιb =
a− ιb. Also, ιb = −ιb = −bι = bι.

Proof. From the definition of conjugation and braid laws 1.2.6,

ιb = 2[ιb, 1]− ιb

= 2[ι, 1b]− ιb

= −ιb

Thus, a+ ιb = a− ιb since the bracket is bilinear. To see that ιb = bι, note that

a+ ιb = a− ιb, and a+ bι = a− ιb, which follows from product conjugation. If
the conjugates of two elements are equal, the elements have to be equal, which
follows from biconjugation (1.2.7).
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Lemma 1.4. Let A be a subalgebra of a composition algebra Z over a field
K, and let Di(A) be an internal Dickson double. Then for all a, b, c, d ∈ A,
(a+ ιb)(c+ ιd) = (ac− db) + ι(cb+ ad). In other words, Di(A) is closed under
multiplication.

Proof. From the distributive law, we have (a+ιb)(c+ιd) = ac+a.ιd+ιb.c+ιb.ιd.
Now, starting with the exchange law (1.1.5), and using the braids law (1.2.6)
repeatedly, for any element t in the algebra Di(A) we have

[a.ιd, t] = [ιd, at]

= 2[ι, a][t, d]− [ιt, ad]

= 0− [ιt, ad]

= [t, ι.ad]

= [ι.ad, t],

in which the equality a.ιd = ι.ad follows from Theorem 1.1 . Remember from
Lemma 1.3, ιb = bι. Using this, and the exchange law, we also have

[ιb.c, t] = [ιb, tc]

= [bι, tc]

= 0− [bc, tι]

= [bc.ι, t]

= [ι.cb, t],

and thus ιb.c = ι.cb. Lastly, we have

[ιb.ιd, t] = −[ιb, t.ιd]

= 0 + [ι.ιd, tb]

= −[ι.ιd, tb]

= −[ι][d, tb]

= [−db, t],

and it follows that ιb.ιd = −db. In total, (a+ιb)(c+ιd) = ac+a.ιd+ιb.c+ιb.ιd =
ac + ι.ad + ι.cb − db = (ac − db) + ι(cb + ad) because addition is commutative
in a vector space. Thus, Di(A) is closed under multiplication.
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Remark 1.10. Note that this is also consistent with an abstract Dickson dou-
ble, De(A) = A × A, of an algebra A over K, defined to consist of ordered
pairs of elements in A. In other words, multiplication in De(A) is defined via
(a, b)(c, d) = (ac− db, cb+ ad) for a, b, c, d in A.

Theorem 1.5. Given an algebra Z and a proper subalgebra A of Z over K,
and assume that there exists a ι in Z with properties mentioned in Definition
1.10. Then the internal Dickson double Di(A) = A+ ιA is a subalgebra of Z.

Proof. Since D(A) is a vector space, and thus a subspace of Z, it is clear that
it is closed under addition and scalar multiplication (not to be confused by
multiplication in an algebra). Lemma 1.4 shows that Di(A) is closed under
multiplication, and therefore Di(A) is a subalgebra of Z.

Theorem 1.6. Let Z be an algebra over a field K, and let A be a proper
subalgebra of Z. Assume that there exists a ι in Z with the properties mentioned
in Definition 1.10. Then the external Dickson double of A is isomorphic to the
internal Dickson double of A.

Proof. It is sufficient to prove that the internal sum of the definition of the
internal Dickson double is a direct sum. Hence, we need to prove that the
intersection of A and ιA is trivial and equal to {0}. Let a be an element in the
intersection of A and ιA. Then for a = ιb, we have [a] = [a, a] = [a, ιb] = 0 by
the braid law (1.2.6). Hence, a = 0 and thus the intersection is trivial. This
shows that De(A) is isomorphic to Di(A).

Corollary 1.6.1. Let Z be an algebra over a field K, let A be a proper subal-
gebra of Z and assume there exist two different unit vectors ι, ι′ in Z such that
(Di(A), ι) and (Di(A), ι′) exist. Then (Di(A), ι) is isomorphic to (Di(A), ι′).

Proof. From Theorem 1.6, De(A) is isomorphic to (Di(A), ι) and (Di(A), ι′),
hence (Di(A), ι) is isomorphic to (Di(A), ι′).

Remark 1.11. From now on, both the internal or external Dickson double will
be called the Dickson double, and abbreviated D(A). Elements in D(A) will
be represented by a+ ιb, where a, b ∈ A and ι is a fixed orthogonal vector to A.

1.4 Hurwitz’s theorem

We now come to the main idea of our construction of the composition algebras;
there exist only four (of finite dimension) over the field of real numbers R. Thus,
in this subsection we restrict our scope by studying algebras over the field of
real numbers.

Theorem 1.7 (Hurwitz). The only composition algebras with finite dimension
over the field of real numbers R, are the real numbers R, the complex numbers
C, the quaternions H, and the octonions O, up to isomorphism.

Remark 1.12. We will later give a construction of the quaternions and the
octonions.
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We will prove this theorem with a sequence of lemmas. First, a definition.

Definition 1.11. Let A be a composition algebra, n a natural number and Alg
be the category of algebras. We define the map Dn : Alg→ Alg by

Dn(A) =

{
A if n = 0

D(Dn−1(A)) otherwise.

Lemma 1.8. Let A be a composition algebra over the field of real numbers R.
Then there exist an n ∈ N such that Dn(R) ' A. In other words, A can be
constructed from repeated use of Dickson double on R, up to isomorphism.

Proof. If A = R, then we are done by letting n = 0. Otherwise, assume there
exist enough orthogonal unit elements in A such that for k, Dk(R) exists. If
Dk(R) = A, we are done. Otherwise, according to Theorem 1.5, Dk(R) is a
subalgebra of A, and hence a proper subalgebra. Note that Dk(R) is a vector
space, thus there exist orthogonal vectors that spans Dk(R). By Gram-Schmidt,
we can expand this set and construct a set of orthogonal vectors that expands
A, and thus we can continue with Dickson doubling. This shows that whenever
Dk(R) is of lower dimension that A, then we can continue to perform Dickson
doubling. Thus, the iterative process will end when Dn(R) is of same dimension
as A, and thus consists of all orthogonal unit vectors that construct A. Hence,
Dn(R) = A.

Lemma 1.9. Let Z be an algebra over the field of real numbers R. Then the
smallest nontrivial subalgebra A of Z, is the real numbers R.

Proof. Let A be the smallest subalgebra of Z. Then 1 ∈ A and for all r ∈ R,
r1 ∈ A. Hence, R ⊆ A. Since R is an algebra, it has to be the smallest
subalgebra.

To give the reader a better understanding of Lemma 1.8 and 1.9. If Z is an
algebra over the field of real numbers R, and A is a proper subalgebra of Z, then
D(A) is also a subalgebra of Z by Theorem 1.5. We can repeat this process until
it does not exist a unit vector in Z in order to construct a Dickson double. When
does this happen? It happens when D(Y ) = Z for some subalgebra Y . Since
Z is finite dimensional, this means that Z can be constructed by an iterative
process of Dickson doubles from the smallest subalgebra, which is according to
Lemma 1.9 the real numbers R. Thus, all the composition algebras of finite
order over R can be constructed by repeated use of the Dickson double from R.

Lemma 1.10. Let Y be a composition algebra. Then Z = D(Y ) is a composi-
tion algebra if and only if Y is associative.

Proof. Let ι = (0, 1) ∈ Z, then for all a, b, c, d ∈ Y , we have from Lemma 1.4
and the composition law, [a+ ιb][c+ ιd] = [(ac− db) + ι(cb+ ad)]. The bilinear
property can be used to expand the above equality, hence

[a][c] + [a][d] + [b][c] + [b][d] = [ac]− 2[ac, db] + [db] + [cb] + 2[cb, ad] + [ad]
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. After cancellation of terms, we have [ac, db] = [cb, ad], using the braid law
and biconjugation, we have [ac.b, d] = [a.cb, d]. Since d is arbitrary, Theorem
1.1 shows Y is associative. Thus, if Z is a composition algebra, then Y is
associative.

If Y is associative, then the last equality holds and hence Z is a composition
algebra. This shows the equivalence.

Lemma 1.11. Let X be a composition algebra. Then Y = D(X) is a associative
composition algebra if and only if X is and associative, commutative composition
algebra.

Proof. Let ι ∈ Y . By Lemma 1.10, X is associative. Let a, b, c, d, e, f ∈ X, we
have

(a+ ιb)(c+ ιd).(e+ ιf) = ((ac− db) + ι(cb+ ad))(e+ ιf)

= (ac− db)e− f(bc+ da)

+ ι(e(cb− fd) + (ca− bd)f)

= (ac.e− db.e− f.bc− f.da)

+ ι(e.cb+ e.ad+ ca.f − bd.f)

and

(a+ ιb).(c+ ιd)(e+ ιf) = (a+ ιb)(ce− fd) + ι(ed+ cf)

= a(ce− fd)− (ed+ cf)b

+ ι((ce− fd)b+ a(ed+ cf))

= (a.ce− ed.b− cf.b− a.fd)

+ ι(ce.b+ a.ed+ a.cf − fd.b).

If X is commutative, both expressions are equal, hence Y is associative. If Y is
associative, then X has to be commutative. This shows the equivalence.

Lemma 1.12. Let W be a composition algebra. Then X = D(W ) is an as-
sociative, commutative composition algebra if and only if W is an associative,
commutative composition algebra with trivial conjugation (a = a for a ∈W ).

Proof. By the Lemmas 1.10 and 1.11, that W is an associative commutative
composition algebra is equivalent with X being an associative composition al-
gebra. We need to show that trivial conjugation is equivalent with the commu-
tative law for the Dickson double.

If X is commutative, we have from Lemma 1.3 ιe = eι for all e ∈ W and
ι ∈ X. Hence, e = e.

13



If W has trivial conjugation, for all a, b, c, d ∈W , we have

(a+ ιb)(c+ ιd) = (ac− db) + ι(cb+ ad)

and
(c+ ιd)(a+ ιb) = (ca− bd) + ι(ad+ cb),

and thus, X is also commutative because W is commutative with trivial conju-
gation.

Proof of Hurwitz’s Theorem. The smallest composition algebra over the field of
real numbers, is according to Lemma 1.9 the real numbers R. The real num-
bers are commutative, associative and have trivial conjugation. According to
Lemma 1.12, the complex numbers C is an associative, commutative composi-
tion algebra but they to not posess trivial conjugation. Thus, the quaternions
H is a associative composition algebra from Lemma 1.11. That they are not
commutative will be shown later in this paper. Lastly, the octonions O is a
composition algebra from Lemma 1.10. That they are not associative will again
be shows later in this paper. Since they are not associative, there exist no other
composition algebra according to Lemma 1.10.

2 Properties of composition algebras

We will now deduce some more properties of the composition algebras, before
looking deeper into the octonions, O.

Definition 2.1. Let A be a composition algebra over the real numbers R, and
let a be an element in A such that that N(a) 6= 0. We define the inverse of a to
be

a−1 := a/N(a).

Remark 2.1. If N(a) 6= 0 for a ∈ A, we say a is invertible in A. That this is
indeed an inverse is given by the next Theorem.

Theorem 2.1. Let A be a composition algebra over R. For all invertible a ∈ A,
then

a−1.ab = b = ba.a−1

is satisfied for all b ∈ A.

Proof. Let t be an arbitrary element in A, and simplifying the following expres-
sion,

[a.ab, t] = [ab, at]

= [a][b, t]

= [[a]b, t],
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which follows from the braid laws and scaling laws. According to Theorem
1.1, a.ab = [a]b. Thus, a−1.ab = b. The other equality, b = ba.a−1, is shown
analogously.

We will now investigate the alternate laws.

Definition 2.2. Let A be an algebra over R. We say that A is alternative, if
for all elements a, b in A, they satisfy the so called alternate laws [1],

1. a.ab = a2b

2. ba.a = ba2.

Theorem 2.2. Let a, b be elements in a composition algebra A. Then a.ab = a2b
and ba.a = ba2.

Proof. We begin by looking at a.ab = aa.b which follows from Theorem 2.1.
Using the defintion of conjugation, we have a = 2[a, 1]− a, hence,

(2[a, 1]− a).ab = (2[a, 1]− a)a.b

= (2[a, 1]a− a2)b.

This simplifies to a.ab = a2b. Similarly we have ba.a = ba2.

Corollary 2.2.1. A composition algebra is an alternative algebra.

We will prove the so called third alternate law ab.a = a.ba with a help from
the Moufang law.

Theorem 2.3 (Moufang law). Let A be a composition algebra. Then for all
a, b, c ∈ A, we have ab.ca = a(bc).a = a.(bc)a.

Proof. For any t ∈ A, we have

[ab.ca, t] = [ab, t.ac]

= 2[a, t][b, ac]− [a.ac, bt]

= 2[a, t][bc, a]− [ac, a.bt]

= 2[bc, a][a, t]− [a][cb, t]

= 2[a, bc][a, t]− [a][bc, t].

Hence, ab.ca is a function of bc and a only. This allows us to replace b and
c by any elements with the same product. Let b = bc and c = 1, this gives
ab.ca = a(bc).1a = a(bc).a. Similarly, we get ab.ca = a.(bc)a.

Theorem 2.4. Let A be a composition algebra. Then for all a, b ∈ A, ab.a =
a.ba.

Proof. This is simply a consequence of the Moufang law. Let c = 1, we have
a(b1).a = ab.a = a.(b1)a = a.ba.
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2.1 The left-, right- and bi-multiplication maps

The fact that the Octonions O are non-associative makes it interesting to in-
vestigate the maps so called left-multiplication, right-multiplication and bi-
multiplication,

La : b→ ab, Ra : b→ ba, Ba : b→ aba.

Remark 2.2. In the following text, the notation bRa will be used, and is de-
fined as bRa := Ra(b) = ba, as Conway does in the book On quaternions and
Octonions [2]. Moreover, bRaLa := (bRa)La .

The defintion of Bi-multilication in a composition algebra is well-defined,
because bLaRa = ab.a = a.ba = bRaLa by Theorem 2.4. This also shows that
Ba = LaRa = RaLa.

Definition 2.3. Let A be a composition algebra and let a, t ∈ A. The reflection
of t relative to a, is a map given by

ref(a) : t→ 2[a, t]

[a]
a− t.

Theorem 2.5. Let A be a composition algebra and ι be an unit element in A.
Then Bι = ref(1)ref(ι).

Proof. Let a, b, c ∈ A. In the proof of the Moufang law, we deduced that
ab.ca = 2[a, bc]a − [a]bc. Using the defintion of reflection, we have ab.ca =

[a](bc)ref(a). Moreover, note that bc = 2[bc, 1] − bc = 2[bc,1]1
[1] − bc = (bc)ref(1),

hence, [a](bc)ref(a) = [a](bc)ref(1)ref(a). By letting a = ι be a unit element in A,
thus [a] = 1, we deduce that Bι = ref(1)ref(ι).

We can now continue investigating the octonions.

2.2 Basic properties of quaternions and octonions

We will now construct the quaternions and octonions based of the maps given
in the previous section and the Dickson double.

We start with the quaternions. Let i be the fixed orthogonal unit of the
Dickson double of R, in other words we have C = D(R) = a+ ib where a, b ∈ R.
Let j be the element of the extension of C. Because Bi = ref(1)ref(i), we have
that jBi = iji = j since ref(1)ref(i) fixes j. The fourth orthonormal element in
H is given by k := ij. That this is orthonormal follows from the braid law. We
thus have ij = k which implies ki = j. We also have jk = i. Also, i2 = −1,
since i−1 = −i by the definition of inverse. Similarly, j2 = −1 and we have
k2 = ijij = j2 = −1. We can conclude our results with the relations

i2 = j2 = k2 = ijk = −1

and figure 1.
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Figure 1: The figure displays the relation between multiplication of two elements
from i, j, k. Taking two elements and multiplying them going clockwise, gives
the next element by clockwise again. Multiplying two elements by following the
arrow counterclockwise, gives the element by going counterclockwise again, but
negative. For example, ij = k and ji = −k.

For the octonions, we rename the units in the quaternions via

i1 := i, i2 := j, i4 := k.

Let i0 be the unit element using in construction of the Octonions, i.e. O =
D(H) = H + i0H. The other orthogonal units of O are given by i0in := i3n,
where the subscript n is taken module 7. [2] This results in

i0i1 = i3, i0i2 = i6, i0i4 = i5.

That these are orthonormal to i0, i1, i2 and i4 follows once again from the
braid law. Recall that the quaternions H satisfy i0a.b = i0.ba for all a, b ∈ H,
thus

i6i1 = i0i2.i1 = i0.i1i2 = i0i4 = i5,

i5i2 = i0i4.i2 = i0.i2i4 = i3,

and
i3i4 = i0i1.i4 = i0.i4i1 = i0i2 = i6.

We can conclude our results with the relations

i2n = −1, n ∈ Z/7Z

and figure 2.
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Figure 2: This is the Fano plane [3]. It contains 7 nodes and 7 edges. Each
pair of nodes lies on a unique line. Multiplication between to elements in where
n ∈ Z/7Z, is given by the uniqueness of the line. If we want to multiply imin,
we look at the line of im and in. We start in the node im, and if we go one
edge in the positive direction to in, the answer is the last node on the line and
positive. If we go in the negative direction of one edge, the answer is the last
node on the line but negative. If we go two edges in the positive direction it is
negative, otherwise positive. For example, i2i0 = −i6 and i6i0 = i2.

3 Geometric interpretation of the Octonions O
We will now investigate the geometric properties of the octonions O.

Definition 3.1. The special orthogonal group SOn(F ), is the group of orthog-
onal matrices with entries in a field F , of size n× n such that det(A) = 1 when
A ∈ SOn(F ).

Remark 3.1. When n = 2, SOn(R) is the group consisting of rotations in the
two dimensional euclidean plane.

Remark 3.2. Note that if A is an element of SOn, then [Aa] = [a] where a is an
element in a composition algebra. To see this, note that [Aa,Ab] = [ATAa, b] =
[a, b], why [Aa] = [Aa,Aa] = [a, a] = [a]. Hence, elements in A preserve length in
a composition algebra. Thus, every element in SOn can be viewed as a rotation,
which itself can be viewed as an even number of reflections. This result will be
used when looking at the connection between geometry and the Octonions O.
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It turns out that the special orthogonal group of dimension 8 over the field of
real numbers R, SO8(R), can be represented by multiplication of unit elements
in O. Before we look at the connection, we need to establish a notion of isotopy
and inverse loops.

3.1 Isotopy and inverse loops

Definition 3.2 (Inverse loop). An inverse loop L is a set of elements, together
with a binary operation, that satisfy the following conditions for all x, y ∈ L.

1. There exist a unit 1 ∈ L, such that 1x = x1 = x.

2. There exist an element xa ∈ L such that xa(xy) = y = (yx)xa.

3. (xa)a = x. [2]

Remark 3.3. To make the reader more comfortable with the notion of an inverse
loop, note that informally we can say an inverse loop is a group that is not
necessarily associative.

Remark 3.4. Note that the existence of a left and right inverse of an element
x in an inverse loop, together with a unit 1, is enough to prove that these are
equal. To see this, let xa be its left inverse and ya be its right inverse. This
gives xa = xa1 = xa.xya = ya.

We can know define an isotopy.

Definition 3.3 (Isotopy). An isotopy Σ of an inverse loop, is a tuple of three
invertible maps Σ = (α, β|γ), such that if xy = z for x, y, z ∈ L, then xαyβ = zγ .
[2]

Remark 3.5. The set of all isotopies of an inverse loop forms a group under
function composition, i.e. (α, β|γ) ◦ (α′, β′|γ′) = (α ◦ α′, β ◦ β′|γ ◦ γ′) for two
isotopies (α, β|γ) and (α′, β′|γ′).
Remark 3.6. For an isotopy, we will use the notation (α, β|γ) to represent the
dublex form. There is an analogous definition of an isotopy, that of the triplex
form. For if (α, β|γ) is an isotopy, we have that xαyβ = zγ which implies
xαyβzγa = 1. The last notation is called the triplex form, and the notation
(α, β, γ a) will be used to represent an isotopy satisfying xαyβzγa = 1. Hence,
{α, β, γ} will be written as (α, β|γ) or (α, β, γ), which represents the isotopy in
the dublex form and triplex form respectively.

Remark 3.7. The expression xyz = 1 is well defined. To see this, note that
the Moufang law can be written as x.yz = xyx.xaz. Now, if x.yz = 1, then
za = xyx.xa which implies za = xy, hence xy.z = 1.

The notion of an isotopy makes the relation xy = z interesting. Because if
xy = z, then figure 3 shows six ways equivalent ways the relation can be written,
based of the definition of an inverse loop.
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za = yaxa

zax = ya

x = zya

xy = z

yza = xa

y = xaz

Figure 3: This is the hexad of the relation xy = z. It shows the different ways
the equation xy = z can be written.

Definition 3.4 (Monotopy). Given an isotopy (α, β|γ), any of these three maps
is called a monotopy.

Theorem 3.1. Given an inverse loop L. An invertible map γ : L → L is a
monotopy of L if and only if there exist two elements a, b ∈ L such that if xy = z
for x, y, z ∈ L, then xγb.ayγ = zγ .

Proof. If γ is a monotopy, then there exist two maps α and β such that xαyβ =
zγ . If we let y be the unit, and x = xy, then (xy)α1β = (xy)γ . Hence (xy)α =
(xy)γ1βa = (xy)γb where β a takes 1 to b ∈ L. Now, let x be the unit and let
y = xy. Similarly, we have (xy)β = 1αa(xy)γ = a(xy)γ where α a takes 1 to
a ∈ L. This shows that there exist elements a, b such that (xy)γ = xγb.ayγ .

If there exist two elements a, b ∈ L such that xγb.ayγ = zγ , then (α, β|γ) is
an isotopy with α = γRb and β = γLa showing that γ is an monotopy of L.

We call a and b a pair of companions to the monotopy γ. What we see is
that if γ is a monotopy, then the other monotopies that fulfil the triad (α, β|γ)
are given by α = γRb and β = γLa, where Rb and La are the right- and
left-multiplication maps defined in section 3.1. It turns out that even more is
true.

Theorem 3.2 (The different monotopies). Let L be an inverse loop and let
a ∈ L be the image of 1 under some monotopy. Then the monotopy is either Ra
or La. Even more, the only monotopies that exist in this inverse loop are given
by La, Laa , Ra, Raa , Ba and Baa .

To prove this, we need to establish the hexad of isotopies. If we apply the
isotopy (α, β|γ) to the hexad in figure 3, we get the following hexad in figure 4.
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yaαxaβ = zaγ

zaαxβ = yaγ

zαyaβ = xγ

xαyβ = zγ

yαzaβ = xaγ

xaαzβ = yγ

Figure 4: This is the hexad of the relation xy = z. It shows the different ways
the equation xy = z can be written.

Undoing the hexad in figure 4, results in the following hexad in figure 5,
showing the isotopies in the dublex from.

(a β a,a α a | a γ a)

(β,a γ a | a α a)

(γ,a β a |α)

(α, β|γ)

(a γ a, α| a β a)

(a α a, γ|β)

Figure 5: This is the hexad of isotopies. If (α, β|γ) is an isotopy, then the other
elements in this hexad are also isotopies.

Proof of the different monotopies. If (α, β|γ) is an isotopy, then (α, β|γ)−1 =
(α−1, β−1|γ−1) and (a α a, β|γ) are also isotopies by the hexad of isotopies
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figure 5. Hence, (α, β|γ)−1 · (a α a, β|γ) := (α−1 a α a, β−1γ)|γ−1β) is also
an isotopy. Recall that β = γLa, hence, γ−1β = La which also results in
β−1γ = L−1a . Now, L−1a : x → aax, and thus L−1a = Laa . Therefore, the
isotopy (α−1 a α a, β−1γ)|γ−1β) can be rewritten as (α−1 a α a, Laa |La). We
let this isotopy act on xa, which yields

a(xa) = xα
−1aαa.aaa = xα

−1aαa.

Hence, α−1 a α a takes an element x to a(xa). Using the isotopy on arbitrary
elements x, y in the inverse loop L, we have a(xa).aay = a(xy), and therefore
a(xa).aa = ax which implies that a(xa) = (ax)a. This relation allows us to use
the bi-multiplication map Ba instead of α−1 a α a. This shows the equivalence
between an arbitrary isotopy (α, β|γ) and (Ba, Laa |La).

To finish the proof, we need to show that the different ways the isotopy
(α, β|γ) can be written as. In figure 3, we saw that the isotopy can be represented
in six different ways. Each monotopy, say σ, occurred in the form σ or a σ a.
Thus, we need to investigate the transformation of

1. a La a,

2. a Ra a,

3. and a Ba a.

Given an element x in the inverse loop L, xaLaa = (axa)a = xaa = xRaa .
Similarly we show that a Ra a= Laa and a Ba a= Baa .

3.2 Isotopies and SO8

In this section we will look at isotopies over the inverse loop O×. From the
previous section we saw the connection of an isotopy to the left-, right- and
bi-multiplication maps, and that they had a connection to the octonions O.
Thus, this section will look deeper into the connection between SO8(R) and the
octonions. We begin by showing that the octonions are strongly non-associative.

Theorem 3.3. If a.rb = ar.b for all a, b in O, then r is real.

Proof. From section 3.2, we have in+1in.in+2 = −in+1.inin+2 where the sub-
script n is run over modulo 7. Thus, if a.rb = a.rb, then the coefficient of in for
all n must be 0. Hence, r is real.

Theorem 3.4. If a, b ∈ O is any pair of companions for the monotopy γ over
the inverse loop O× (meaning if xy = z, then zγ = xγa.byγ), then any other
pair has the form ar, r−1b where r is real.

Proof. Let c, d be another pair of companions for γ, then

xγa.byγ = xγc.dyγ for allx, y.
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Let c = ar and choose xγ = a−1 and yγ = 1. Thus, b = rd and therefore
d = r−1b. This results in

xγa.byγ = xγ(ar).(r−1b)yγ for allx, y.

By choosing yγ = (r−1b)−1 = b−1r results in xγa.r = xγ .ar. Similarly,
choosing xγ = (ar)−1 = r−1a−1 results in r−1.byγ = r−1b.yγ , showing the
associative law of the companions and r. We therefore have

xγa.byγ = (xγa)r.r−1(byγ) for allx, y.

Lastly, letting xγa = p and byγ = rq results in

p.rq = pr.q for all p, q.

From Theorem 3.3, r has to be real.

Before we look at the connection between elements in SO8 and the octonions
O, we need this Lemma.

Lemma 3.5. Let a be an octonion. The maps ref(a)ref(1) and ref(1)ref(a) are
bimultiplications by unit octonions.

Proof. We saw in Theorem 2.5 that if a is a unit, then the expression ref(1)ref(a)
can be represented by a bimultiplication. That this is also true for ref(a)ref(1)
follows from the fact that tref(1) = t, hence ab.ca = [a](bc)ref(a)ref(1). Further-
more, from the proof of the Moufang law, we had ab.ca

[a] = (bc)ref(1)ref(a). It is

clear that the result is unaffected if we scale a to be a unit, since the norm is
quadratic. Hence, the result follows.

Theorem 3.6. Let γ be an element in SO8(R). Then γ is a monotopy over
O×. Even more, there are precisely two isotopies that contains the monotopy γ.
If one is given by (α, β|γ), then the other isotopy is given by (−α,−β|γ).

Proof. Since γ is an element of SO8, then it can be written as an even number
of reflections, say ref(a1)ref(b1)...ref(an)ref(bn). The equality ref(a1)ref(b1) =
ref(a1)ref(1)ref(1)ref(b1) follows from the fact that ref(1)ref(1) is the identity
reflection. Furthermore, from Lemma 3.5, we know that ref(ak)ref(1) and
ref(1)ref(bk) can be represented as bimultiplications by unit octonions, say
Bc2k−1

and Bc2k . Then (Lc1 ...Lc2n , Rc1 ...Rc2n |Bc1 ...Bc2n) is an isotopy, showing
that γ is a monotopy. That α = Lc1 ...Lc2n and β = Rc1 ...Rc2n are elements in
SO8 is true since c1...c2n are unit octionions.

From Theorem 3.3, α and β are unique up to scalar multiplication. Thus,
the only scalar that keeps them in SO8 is −1, showing that (−α,−β|γ) is the
only other isotopy.

Remark 3.8. For the rest of this paper, it is convenient to change to the triplex
form of an isotopy, namely (α, β, γ). What we found in Theorem 3.6, is that if
γ is an monotopy in SO8, then it takes the form

(Lc1Lc2 ..., Rc1Rc2 ..., Bc1Bc2 ...).
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We call the isotopy (α, β, γ) an orthogonal isotopy if the three monotopies
α, β, γ are elements of SO8. Theorem 3.6 shows that there exist a group
homomorphism from the group of orthogonal isotopies to SO8, namely the ho-
momorphism taking (α, β, γ) → γ. Even more, the same Theorem shows that
the group of orhogonal isotopies is a two-to-one cover of SO8. We will call the
group of orthogonal isotopies of the dublex form Iso1(O), and the group of or-
thogonal isotopies of the triplex form Iso2(O). In fact, Iso1(O) ' Iso2(O) which
is discussed in remark 3.6.

3.3 Triality

Theorem 3.7. The group Iso2(O) has a triality automorphism, and is given by
(α, β, γ)→ (β, γ, α).

Proof. If (α, β, γ) is an isotopy, then for all octonions x, y, z that satisfy xyz = 1,
we have xαyβzγ = 1. Thus, we have yβzγ = xαa. Multiplying with the inverse
again, but now on the right side, yields yβzγxα = 1, showing that (β, γ, α) is
an isotopy. Thus, the map is well-defined.

We now come to the final theorem of this paper. That is that every element
is SO8 can be represented as left multiplication by unit octonions (or equally
by right ones).

Theorem 3.8. Every element in SO8 can be represented as left multiplication
by unit octonions (or by right multiplication by unit octonions).

Proof. We showed earlier that every element can be represented as a bimulti-
plication of unit octonions. Applying Theorem 3.7, that of triality, shows that
every element in SO8 can be represented by either left- or right-multiplication
of unit octonions.
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