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Abstract

Trough Belyi maps we explore branching on maps between curves. Using
only the fundamentals of the theory of ramification we can prove Belyi’s
theorem. In an application of the Riemann-Hurwitz formula we find Belyi
maps on Hurwitz curves, in particular we look at a map on the Klein
quartic.
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1 Introduction

The first time I encountered the Riemann sphere I was captivated. I copied
the picture from the coursebook: two axes to form the complex plane, a third
axis and then a sphere with its center at the origin. I tried it out, drawing
lines from arbitrary points in the complex plane trough the point of infinity at
(0, 0, 1) and imagining their intersections with the sphere. Around this time
I also encountered the Riemann sphere in a different form, as the complex
projective line P1. While P1 is generally not introduced by the lovely picture
of the sphere it is no less intriguing. It leaves the door open to all the bigger
projective n-spaces Pn and the curves within them.

A map from a complex curve to the projective line below is called a Belyi map
if it branches at no more than three points

{0, 1,∞}.

Using some of the special properties of P1 we can construct Belyi maps and
prove Belyi’s theorem.

Theorem (Belyi). Let C be a connected, smooth, projective curve defined over
the field of algebraic numbers Q̄. Then there exists a morphism

φ : C → P1

with branch locus
B(φ) ⊂ {0, 1,∞}.
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2 A Note on the Logarithmic Derivative

Before diving into the matter of curves this chapter will serve as a refresher on
one of the more interesting properties of differentiation. The connection between
the derivative of a polynomial and its multiple zeros. This is a property we will
make frequent use of later in chapters and one that is highlighted by using an
algebraic definition.

Definition 2.1. We define differentiation by the map D on the function field
Q̄(x)

D : Q̄(x)→ Q̄(x)

x→ 1

satisfying the sum and product rule

D(f + g) = D(f) +D(g)

D(fg) = D(f)g + fD(g).

The derivative f ′ of a rational function f in Q̄(x) is given by

f ′ = D(f).

From this definition one can deduce the familiar derivative rules. For instance,
the power rule follows directly from the product rule

D(xn) = 1 · xn−1 + 1 · xn−1 + . . .+ 1 · xn−1 + 1 · xn−1

︸ ︷︷ ︸
n times

= nxn−1.

Similarly, the derivative of 1 and so for any constant c

D(1 · x) = D(x)

D(1)x+ 1 · 1 = 1

D(1) = 0⇒ D(c) = 0.

Of course, the connection to multiple zeros also follows from the sum and prod-
uct rule. Let f be a polynomial defined over the algebraic numbers. Then α is
a root of f with multiplicity n if n is the maximal number for which (x − α)n

divides f. In other words if α is a root of f we can write

f(x) = (x− α)g(x)

for some polynomial g defined over the algebraic numbers. From the product
rule we have that

f ′(x) = g(x) + (x− α)g′(x),

5



then α is a zero of the derivative f ′ if and only if it is also a zero of g. If (x−α)
divides g(x), then (x − α)2 divides (x − α)g(x) = f(x). It follows that α is a
multiple zero of f if and only if it is a zero of both f and its derivative f ′.

Even better, if β is a zero of f ′ then it must be a multiple zero of f(x)− f(β).
In other words the zeros of the derivative f ′ are precisely the multiple zeros of
the polynomials on the form f + c.

Further on we will often want to know total number of multiple zeros a certain
polynomial has. One tool to look at this is inspired by the logarithm function
ln(x) and its derivative,

ln(x)′ =
1

x
.

Say we have two positive differentiable functions f and g and we want to look
at fngm, if we were to simply differentiate the derivative would have a lot of
zeros with high multiplicity. If we use the logarithm function we have

ln(fngm)′ =
nf ′fn−1

fn
+
mg′gm−1

gn
=
nf ′

f
+
mg′

g

where we differentiate and get rid of some excess multiplicity in one step. To be
able to use this where functions are negative as well we define the logarithmic
derivative as a function on Q̄(x)

Definition 2.2. The logarithmic derivative L(f) of a polynomial f in the poly-
nomial ring Q̄(x) is given by the map

L : Q̄(x)→ Q̄(x)

f → f ′

f
.

The desired property follows from the product rule

L(fngm) =
nf ′fn−1g +mfg′gm−1

fngm
=
nf ′

f
+
mg′

g
.
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3 Curves and ramification

First let us tackle some basic notation and definitions. We will be using Pn to
mean the projective n-space. We will also be using Q[x] and Q̄[x] for polynomial
rings in arbitrarily many variables, that is Q[x0, x1, . . . , xn] and Q̄[x0, x1, . . . , xn]
respectively.

An algebraic curve is a projective variety of dimension 1. Our primary focus
will be the curves defined over the algebraic and the rational numbers.

Definition 3.1. Let p be an irreducible homogeneous polynomial in the (n+1)-
variate polynomial ring over the algebraic numbers Q̄. The complex curve C
given by p is the zero set

C = {α ∈ Pn | p(α) = 0 }.
The homogeneous ideal of C is

I(C) = { p ∈ Q̄[x] | p is homogeneous and p(α) = 0 for every α ∈ C }
and the coordinate ring of C is Q̄[C]/I(C). Similarly the function field of C is
Q̄(x)/I(C)

We say that C is defined over the rational numbers Q if there is some homoge-
neous polynomial in Q[x] that generates the ideal I(C).

As Belyi’s theorem is a result on smooth complex curves we may also want to
recall what it means for a curve to be smooth.

Definition 3.2. A curve C defined by a polynomial p(x0, x1, . . . , xn) is singular
at a point α if each of the partial derivatives of p is zero at α

∂p

∂x0
(α) =

∂p

∂x1
(α) = · · · = ∂p

∂xn
(α) = 0.

If C is nowhere singular we say that C is a smooth curve.

We move on from this short review of definitions and notation regarding curves
to look at their maps. Specifically to the ramification and branching of maps
between curves.

Definition 3.3. Let φ : C1 → C2 be a non-constant map of smooth curves, and
let α a point in C1. The ramification index of φ at α, denoted eφ(α), is given
by

ordα(q ◦ φ),

where q is a generator of the maximal ideal Mφα in the coordinate ring of C.
We say that φ is unramified at α if the ramification index is 1; and that φ is
unramified if it is unramified at every point α in C1.
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The concept of ramification is similar to the concept of multiple zeros. One
might think of the ramification index of α as the number of times that α appears
in the preimage of φα, or as thickness in the fiber. If we envision the fiber as a
bundle of strings tying the points above to their common image, then an element
with high ramification is tethered with a rope.

Lemma 3.4 ([Sil09, Ch.2, Prop.2.6]). Let φ : C1 → C2 be a non-constant map
of smooth curves defined over an algebraically closed field of characteristic 0.

1. The sum of ramification above a point β is the degree of the map φ. That
is, for every β in C2,

∑

α∈φ−1β

eφ(α) = deg(φ)

2. There are finitely many branch points of φ. That is, for all but finitely
many β in C2 the cardinality of the preimage φ−1β is the degree of φ,

|φ−1β| = deg(φ).

3. Ramification indices are multiplicative. Let ψ : C2 → C3 be another non-
constant map of smooth curves, then for any point α in C1 the ramification
of the composition ψ ◦ φ : C1 → C3 at α is

eψ◦φ(α) = eφ(α)eψ(φα)

Continuing with the analogy of ramification to strings and ropes, this lemma
tells us that every fiber of a map has the same thickness. So for every rope in
a fiber fewer additional strings will fit.

We conclude this section with an example to show how one can find the branch-
ing of a rational map on P1.

Example 3.5. Consider the map

φ : P1 → P1

φ = x3(x− 1)2.

Since φ is defined by a separable polynomial a natural place to start looking
for ramification points is in the preimage of 0. The generator of M0 is x, so for
either root of x3(x− 1)2 we have the ramification index

eφ(α) = ordα
(
x3(x− 1)2

)
.

That gives us 0 with a ramification index 3, and 1 with a ramification index 2.
The sum of the ramification indices is 3 + 2 = 5, the degree of φ in accordance
with lemma (3.4).
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The only pole of x3(x−1)2 is infinity, so we would expect it to ramify completely.
Taking the generator 1/x of M∞ we have

eφ(∞) = ord∞

(
1

x3(x− 1)2

)
,

which is indeed 5.

To find any remaining ramification points we note that if β is a point in P1

distinct from infinity then x − β is the generator of Mβ . So the ramification
index of any α in the preimage of β is simply the order of the zero at α of
x3(x− 1)2 − β. Then any remaining ramification points of φ must be a root of
the derivative of x3(x− 1)2

3x2(x− 1)2 + 2x3(x− 1) = x2(x− 1)(5x− 3).

So the final ramification point is 3
5 with ramification index 2. The set of all

ramification points, the ramification locus, is

{0, 1, 3

5
,∞}.

And the set of all branch points, the branch locus denoted B(φ), is

{0, 108

3125
,∞}.
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4 Belyi’s Theorem

Theorem 4.1 (Belyi’s Theorem). Let C be a connected, smooth, projective
curve defined over the field of algebraic numbers Q̄. Then there exists a morphism

φ : C → P1 (1)

with branch locus
B(φ) ⊂ {0, 1,∞}. (2)

A map φ that satisfies (1) and (2) is called a Belyi map for C. We will follow
the proof of [Gol14]. The idea is to take some arbitrary map φ0 : C → P1,
then use a composition of self-maps of P1 to reduce the branch locus B(φ0) to
{0, 1,∞}. Only relatively simple tools will be used to construct these maps. Yet
we will find that they have the required properties to reduce the branch locus
and construct a Belyi map.

4.1 Branching in Map Compositions

In order to reduce the branch locus we will make use of the following lemma:

Lemma 4.2. Let φ : C1 → C2 and ψ : C2 → C3 be two non-constant maps of
smooth curves. The branch locus of the composition ψ ◦ φ is

B(ψ ◦ φ) = B(ψ) ∪ ψB(φ)

Proof. This follows immediately from the multiplicativity of ramification in-
dices. Since the ramification index of an element α under ψ ◦ φ is eφ(α)eψ(φα)
it ramifies under the composition ψ ◦ φ if and only if α ramifies under φ, or φα
ramifies under ψ.

In the last chapter we saw that it is quite easy to find ramification and branching
for maps over P1. For other curves it is not necessarily as tidy, as the different
local rings might have maximal ideals with other generators than the simple
(x−α) and 1/x that we saw in the example (3.5). This provides some motivation
for our method of using compositions of maps over P1 to reduce the branch locus
by one at a time, rather than try for a construction directly from the curve C.
Another reason in favor of this method is the relative abundance of self-maps
over P1, a property we will expand upon in a later chapter.
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4.2 The Proof

Theorem 4.3. Suppose S is a finite subset of P1(Q̄). Then there exists a map
fS defined over Q satisfying the following two conditions,

1. B(fS) ⊂ {0, 1,∞}

2. fS(S) ⊂ {0, 1,∞}.

It is not hard to see that Belyi’s theorem follows from (4.3). Take φ0 : C → P1 to
be any map defined over Q, that is φ0 is some arbitrary element of the function
field Q(C). Let S be the branch locus B(φ0). If the map fS satisfies the two
conditions of theorem (4.3) then the composition of the two maps will have the
branch locus

B(fS ◦ φ0) = B(fS) ∪ fS(B(φ0)) ⊂ {0, 1,∞}.

Then fS ◦ φ0 is a Belyi map of C.

Note that if the curve C is defined over the rational numbers Q we can choose
some φ0 from Q[C]. Then the composition φ0 ◦ fS will also be defined over Q.

Proof. Since S is finite and every element of S is contained in a finite extension of
Q we can without loss of generality assume that S is Galois stable and contains
{0, 1,∞}. Then, by induction it suffices to construct a map hs : P1 → P1 such
that the image of S together with the branch locus of hS fulfills the following
three conditions

1. hS(S) ∪B(hS) is Galois stable,

2. hS(S) ∪B(hS) contains {0, 1,∞}, and

3. the cardinality of hS(S) ∪B(hS) is strictly less than that of S.

Let S′ be the set S \ {0, 1,∞} and let d be the cardinality of S′. We construct
a polynomial p that maps each element of S′ to zero,

p(x) =
∏

α∈S′
(x− α).

It is of degree d, and since S′ is Galois stable it has rational coefficients. Our
function hs will be on the form

hs(x) = xm(x− 1)np(x)k
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for some integers m, n, and k to be determined. To find hS(S) ∪ B(hS) we
consider the logarithmic derivative

h′S
hS

(x) =
m

x
+

n

x− 1
+
kp′(x)

p(x)
=

q(x)

x(x− 1)p(x)

with
q(x) = m(x− 1)p(x) + nxp(x) + kx(x− 1)p′(x).

The set of distinct roots of q, Z(q), contains all ramification points of hS that
are not contained in S. So we can write hS(S) ∪B(hS) as hS(S) ∪ hS(Z(q)). It
follows that hS fulfills the first of our conditions.

1. Both S and Z(q) are Galois stable, S by assumption and Z(q) since q is a
polynomial with rational coefficients. Then their respective images under
the rational function hS will again be Galois stable, as will the union
hS(S) ∪ hS(Z(q)).

Next we want to determine m, n, and k such that the size of Z(q) is as small
as possible. Write

p(x) = xd + ad−1x
d−1 + · · ·+ a1x+ a0

and
q(x) = bd+1x

d+1 + bdx
d + · · ·+ b1x+ b0,

the degree of q is at most d+ 1, so we have

{
bd+1 = m+ n+ dk,

bd = (ad−1 − 1)m+ ad−1n+ ((d− 1)ad−1 − d)k.
(3)

Setting bd−1 = bd = 0 yields two linear equations in three variables, then we
have some solution with not all of m, n, and k zero. If we take m, n, k to be
such a solution, then hS fulfills the remaining two conditions.

2. It follows from m + n + dk = 0, the first equation of (3), that under hS
at least one of 0, 1, and S′ will have the image 0 and at least one will
have the image∞. The image of∞ will be 1, the leading coefficient of hS .
Then {0, 1,∞} is contained in hS(S).

3. We note that k is nonzero, as putting k = 0 and solving for m and n
results in m = n = k = 0. From this and m+n+dk = 0 we see that there
are three possible cases,

i. both m and n are also nonzero,

ii. m is zero and n is nonzero,
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iii. m is nonzero and n is zero.

i. If m and n are also nonzero the image of S under hS is precisely
{0, 1,∞}. Since bd+1 = bd = 0 the degree of q is at most d−1, then q
has at most d−1 distinct roots. So the cardinality of hS(S)∪hS(Z(q))
is at most

3 + (d− 1) = d+ 2,

one less than that of S.

ii. Now consider a solution where m is zero. Then q(x) is divisible by x,
so the number of distinct roots of q that are not in S is at most d−2.
The image of S \ {0} is precisely {0, 1,∞}. Then the cardinality of
hS(S) ∪ hS(Z(q)) is at most

|hS(S \ {0})|+ |hS(Z(q) \ {0})|+ |{hS(0)}| = 3 + (d− 2) + 1 = d+ 2,

again one less than the cardinality of S.

iii. The remaining case, a solution where n is zero, is handled by an
analogous argument as that of ii.

Then hS fulfills all three conditions which concludes our proof.
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5 Hurwitz Curves

In this chapter we will explore a very different way of constructing a Belyi map.
Rather than composing maps and reducing the branch locus step by step we
will look at the map induced by the quotient of a Hurwitz curve C with its
automorphism group AutC,

Π : C → C/AutC.

Both stating the definition of a Hurwitz curve and showing that the map above
is indeed a Belyi map requires some further knowledge on curves than what we
have used so far. Specifically we will need to know the genera of curves. One
way to give an idea of what the genus of a curve is to say that it is the number
of holes in the curve. So for instance the Riemann-sphere P1 has genus 0, and
a doughnut-shaped curve would have genus 1.

5.1 The Riemann-Hurwitz Formula

While a more detailed background on the genus of curves lies beyond the scope
of this text, just stating the following theorem is enough to convey some of how
fundamental the genus is to the ways curves behave.

Theorem 5.1 (Riemann-Hurwitz Formula, [Sil09, Ch.2 Thm 5.9]). Let φ :
C1 → C2 be a non-constant map of smooth curves defined over an algebraically
closed field of characteristic 0. Let g1 and g2 be the respective genera. Then

2g1 − 2 = (deg φ)(2g2 − 2) +
∑

α∈C1

(eφ(α)− 1).

The formula tells us that the total ramification of a map of curves is controlled
by the degree of a map and the genera of the curves. There are quite a few
interesting properties of maps of curves that follows directly from this. For one,
it is immediately apparent that maps of curves of genus 1 have no ramification
at all. And that this in fact is true in general if g1 is equal to g2 and greater
than 0.

We also see that the genus of C1 has to be greater or equal to that of C2. If we
understand genus as holes or handles on a curve this means that a rational map
can preserve or collapse holes when applied to a curve, but it cannot create any
new ones.

Example 5.2. To get an idea of how the formula is used we recall an example
from p.8, the map

φ : P1 → P1

φ = x3(x− 1)2.
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The genus of P1 is 0 and the degree of the map φ is 5. When first looking
at this map we found four ramification points 0, 1, 3

5 , and ∞ with respective
ramification indices 3, 2, 2, and 5. Plugging our result into the Riemann-Hurwitz
formula yields

2 · 0− 2 = 5(2 · 0− 2) +
∑

α∈C1

(eφ(α)− 1)

−2 = −10 + (3− 1) + (2− 1) + (2− 1) + (5− 1)

−2 = −2.

So we can be certain that we did indeed find all ramification points of φ.

Before we move on to the application of the formula on to Hurwitz curves we
will state two results from the exercises of [Sil09] to better understand how we
might use it.

Proposition 5.3 ([Sil09, Exercise 2.5]). Let C be a smooth curve defined over
the algebraic numbers Q̄. If the genus of C is 0 then C is isomorphic to P1.

In conjunction with Riemann-Hurwitz this shows the great wealth of maps on
P1 compared other smooth curves. It is the only one with self-maps of any
degree other than 1.

Finally, a method for calculating the genus of curves will be necessary for later
examples.

Proposition 5.4 (Genus-degree formula [Sil09, Exercise 2.7]). Let C be some
curve in P2 given by a homogeneous polynomial of degree d, then the genus of
C is given by

g =
(d− 1)(d− 2)

2
.

Both of these results are consequences of the Riemann-Roch theorem.

5.2 Belyi maps of Hurwitz curves

The motivation for this chapter lies in a theorem that places an upper bound
on the number of automorphisms of a curve.

Theorem 5.5 (Hurwitz’s Automorphisms Theorem). Let C be a smooth pro-
jective curve defined over an algebraically closed field of characteristic 0. If the
genus of C is greater than 1 then the automorphism group AutC is a finite
group. Specifically

|AutC| ≤ 84(g − 1)

where g is the genus of C.
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Naturally, this bound engender curiosity towards curves with maximal auto-
morphism groups. Which is why we introduce the following definition.

Definition 5.6. Let C be a smooth projective curve of genus g, with g ≥ 2. If

|AutC| = 84(g − 1)

we say that C is a Hurwitz curve.

We will show that for a Hurwitz curve C the quotient map

Π : C → C/AutC

is a Belyi map. So we claim that

1. C/AutC is isomorphic to P1, and

2. the cardinality of the branch locus B(Π) is 3.

We will show this by balancing the Rieamnn-Hurwitz formula, eliminating op-
tions that have to much or to little ramification until the only one left is that
Π a Belyi map.

The map Π is separable, so the degree is the maximal cardinality of the fiber (see
(3.4)). Then the degree of Π is 84(g−1). So for the map Π the Riemann-Hurwitz
formula yields

2(g − 1) = 2 · 84(g − 1) · (g2 − 1) + S (4)

in which g2 is the genus of the image C/AutC and S is the sum

∑

α∈C
(eΠ(α)− 1).

The most a single branch point β can contribute to S is if there is only one
point above it that ramifies completely, in which case

∑

α∈Π−1β

(eΠ(α)− 1) = 84(g − 1)− 1.

The smallest contribution is if each point above β has ramification index 2, in
which case

∑

α∈Π−1β

(eΠ(α)− 1) =
84(g − 1)

2
(2− 1) = 42(g − 1).

From this we have both an upper and a lower bound on S, let b be the number
of branch points of Π,

b42(g − 1) ≤ S ≤ b(84(g − 1)− 1). (5)
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Even before going into more detail we can show some important things about
the map Π, staring with our first claim.

By (4) we have that g2− 1 at most 0, as S is positive and 2 · 84(g− 1) is greater
than 2(g − 1). So the genus of C/AutC is at most 1. Suppose g2 is 1, then the
right hand side of (4) is

2 · 0 + S.

The smallest possible nonzero value of S is 42(g − 1). We have that

0 < 2(g − 1) < 42(g − 1)

so the formula can not be balanced if g2 is 1. Then the genus of C/AutC is
zero, so it is isomorphic to P1.

With the genus determined we can write the right hand side of (4)

−2 · 84(g − 1) + S. (6)

It follows from the upper bound from (5) that (6) is at most

−2 · 84(g − 1) + b(84(g − 1)− 1),

which is less than 2(g − 1) for b less than 3. It also follows that (6) is at least

−2 · 84(g − 1) + b42(g − 1)

which is greater than 2(g − 1) for b greater than 4. So the number of branch
points is at least 3 and at most 4.

In order to narrow this down further we need to take a closer look at what
values S can take on given a certain number of branch points. Given a branch
point β in C/AutC, its contribution to the sum S is

∑

α∈Π−1β

(eΠ(α)− 1).

Action by any element g in the automorphism group commutes with Π

C C

P1

g

φ
φ

So for a point α in C and a group element g in C/AutC we have that eΠ(α)
must be the same as eΠ(gα). Then the ramification index must be the same
across the orbit. The orbits of AutC are the same as the fibers of the map

17



C → C/AutC. So if e is the ramification index of one point in the fiber of β
then every point in the fiber has ramification index e and cardinality of the fiber
is

|Π−1| = 84(g − 1)

e
.

Then the contribution of β to S is

∑

α∈Π−1β

(eΠ(α)− 1) =
84(g − 1)

e
(e− 1). (7)

A more intuitive approach might be to say that if the fiber is the orbit, then
the number of times that an element appears in the fiber will be the same as
the cardinality of the stabilizer. So the ramification index eΠ(α) is the same as
the cardinality of the stabilizer for α. Of course the cardinality of the stabilizer
is the same for all elements in the orbit.

With this result in place we can finally eliminate the possibility of 4 branch
points. The second smallest contribution a branch point can make to S is if
each point above has ramification index 3. In which case its contribution is

84(g − 1)

3
(3− 1) = 2 · 28(g − 1).

Evaluating the right hand side (6) for 4 branch points each contributing the
least possible to S, we have

−2 · 84(g − 1) + 4 · 42(g − 1) = 0.

Any other valuation with 4 branch points will be at least

−2 · 84(g − 1) + 3 · 42(g − 1) + 2 · 28(g − 1) = 14(g − 1).

As 2(g− 1) lies between 0 and 14(g− 1) neither valuation satisfies the formula.
Then there are 3 branch points of Π. So Π is a Belyi map, up to some linear
fractional transformation.

Example 5.7. Let e1, e2, e3 denote the ramification to each branch point, we
obtain the following equation for the sum of ramification

∑

α∈C1

(eφ(α)− 1) =
84(g − 1)

e1
(e1 − 1) +

84(g − 1)

e2
(e2 − 1) +

84(g − 1)

e3
(e3 − 1).

To find a solution that could correspond to a quotient map of a Hurwitz curve
we need to solve

2(g − 1) = −2 · 84(g − 1) + 84(g − 1)(
e1 − 1

e1
+
e2 − 1

e2
+
e3 − 1

e3
)

85

42
=
e1 − 1

e1
+
e2 − 1

e2
+
e3 − 1

e3
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with the restriction that each ramification index ei is greater than 1 and divides
84(g − 1). What we want to take away from this is that each prime divisor of
42 must divide at least one of the ramification indices. This limits the possible
solutions we may think to try out.

Say g is 3. We try the combination with the least possible total ramification,
having each prime divisor of 42 occur only once

e1 = 2, e2 = 3, e3 = 7.

For these values the Riemann-Hurwitz formula yields

2(3− 1) = −2 · 84(3− 1) +
84(3− 1)

2
+

2 · 84(3− 1)

3
+

6 · 84(3− 1)

7
4 = −4 · 84 + 84 + 4 · 28 + 12 · 12

4 = −4 · 84 + 84 + (84 + 28) + (84 + 60)

4 = 4

so this is a solution. And since any other combination we might try will have
more ramification it is the only solution.

One question remains. Does this solution correspond to an actual Hurwitz
curve? The answer is yes! There is in fact a Hurwitz curve of genus 3, the Klein
quartic defined by the polynomial

x3y + y3z + z3x.

It has the the automorphism group PSL(2, 7), a projective special linear group
with 168 elements. Using the genus-degree formula

(4− 1)(4− 2)

2
= 3

we see that the Klein quartic is indeed of genus 3.
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