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Abstract

The goal of this thesis is to provide an understanding of the basics of stochastic calculus, in

particular stochastic differential equations, and to briefly discuss the theory of path integrals, in

order to explore and give a basic outline of how they can be used to find a precursor to a rare event

in a dynamical system.
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1 Introduction

This thesis will explore how one can use Stochastic Differential Equations (SDE) to solve the problem

of predicting a rare event in a dynamical system. We will also briefly look at the formulation of path

integrals, and how they can be used to optimize the path taken from one steady state to another when

such an event occurs.

A dynamical system is here interpreted as the movement of a Brownian particle over time, realized by a

stochastic differential equation.

We will be discussing some parts of ordinary calculus such as Ordinary Differential Equations (ODE),

as well as basic probability theory to get a starting point for the discussion of the stochastic differential

equations.

After introducing the SDE’s, we will go on to look at the theory of the Itô calculus and see that Ito’s

lemma is the stochastic calculus’ version of the chain rule for differentiation in ordinary calculus.

We will then discuss the theory of path integrals in physics, and lastly perform some numerical simulations

of a dynamical system exhibiting rare events.

The underlying problem stems from the previous research of (Giorgini et al., 2019), presented in the

text Predicting Rare Events in Stochastic Resonance. This publication was updated after this thesis was

started, and the title was changed to Precursors to Rare Events in Stochastic Resonance, but the version

used for this thesis is the old one. This theory has a wide range of applications, for example the detection

of natural disasters such as earthquakes or floods.

2 Background

In stochastic calculus we encounter stochastic differential equations. To be able to discuss this subject, we

will begin by introducing some of the underlying theories behind the SDE’s, such as ordinary differential

equations and Brownian motion.

There are many fields in which stochastic differential equations are used. In finance and insurance they

play a vital role in the simulations needed to provide adequate predictions and realistic models, whereas

in physics they may be used to study for example stochastic resonance, which can be described as the

phenomena where one increases the strength of a weak signal by introducing white noise to it. In this

thesis we will briefly discuss the application of SDE to financial matters, while the main part will cover

some applications of the study of stochastic resonance, and see how we can use the SDE to model this

kind of phenomena.
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2.1 Ordinary Differential Equations

In ordinary calculus we encounter the Ordinary Differential Equations (ODEs) as a tool to study evolu-

tionary processes which possess certain properties. One of these properties is determinacy, which implies

that all the past and future states of the processes can be determined by their current states. As a sim-

ple example of such an evolutionary process, consider the steady increase of money deposited (one time

deposit) in a bank account with a certain set interest. Denote the initial amount deposited by X0, and

let the rate of change (i.e interest) of X be X ′ = a. To answer the question of how much money we will

have in our bank account after t years, we could, assuming we have a continuous interest rate, set up the

very simple ordinary differential equation dX
dt = aX which turns out to have the solution X(t) = A

a e
at,

where A
a = X0.

In general, a linear first order ordinary differential equation has the form

y′(t) + y(t)g(t) = h(t).

With the initial condition y(t0) = y0 this equation can be expressed

dy

dt
+ g(t)y = h(t), y(t0) = y0. (2.1.1)

One method to solve this equation is to realize that the left hand side of this equation contains the

derivative of y as a function of t, and also the function y itself, which points us in the direction of the

product rule of derivation. The product rule states that

d

dt
(f(t)g(t)) = f ′(t)g(t) + f(t)g′(t) =

df

dt
g(t) + f(t)

dg

dt
.

However, the left hand side of (2.1.1) is not precisely on this form yet, so we need to modify it somehow

to fit the description of the product rule if we want to use this method for solving the ODE.

So we multiply our equation (2.1.1) by some arbitrary function µ(t) and obtain the new equation

dy

dt
µ(t) + µ(t)g(t)y = µ(t)h(t). (2.1.2)

In order for this to be in the form of the product rule, we observe that µ(t)g(t) must be equal to µ′(t).

Realizing this, we calculate µ(t) in the following way

µ(t)g(t) = µ′(t)

⇔ g(t) =
µ′(t)
µ(t)

⇔
∫
g(t)dt =

∫
µ′(t)
µ(t)

dt

⇒
∫
g(t)dt = ln |µ(t)|

⇔ e
∫
g(t)dt = µ(t)

where we choose the positive µ(t), since it is an arbitrary function. We also note that µ′(t) = g(t)e
∫
g(t)dt =

g(t)µ(t).

Now if we let w(t) = µ(t)y(t), we see that w′(t) = y′(t)µ(t) + µ′(t)y(t) = dy
dt µ(t) + µ(t)g(t)y which is the

left hand side of (2.1.2). Thus we obtain the result

w′(t) = µ(t)h(t)

⇒ w(t) =

∫
µ(t)h(t)dt.
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This can now be rewritten, using the fundamental theorem of calculus

w(t) = w0 +

∫ t

t0

µ(s)h(s)ds

which leads us to the solution to the ODE

y(t) =
1

µ(t)

(
y(t0)µ(t0) +

∫ t

t0

µ(s)h(s)ds

)
. (2.1.3)

It is this form of the solution to the ordinary differential equation that we shall use in a later section

when we introduce the stochastic differential equation.

This method for solving an ODE is by integrating factor. Another example of this method follows.

Example 2.1. Let ∂y
∂x + y

x = ex

x . We introduce the integrating factor exp
{∫

1
xdx

}
= eln x = x, and

multiply the equation with this, leading to

x
∂y

∂x
+ x

y

x
= x

ex

x
.

Next we integrate both sides of the equation with respect to x, and find the general solution y to the

ordinary differential equation ∫
x
∂y

∂x
+ ydx =

∫
exdx

xy = ex ⇔ y =
ex

x
.

2.2 Probability theory

2.2.1 Sample spaces

The purpose of this subsection is to provide definitions of some important terms used in later sections.

This section will be quite dense with definitions, theorems and proofs (Alm and Britton, 2008), as we

are just laying down the basics for the further discussions later on. If the reader is familiar with basic

concepts of probability such as random variables, probability spaces and independence, this subsection

can be skipped altogether. In probability theory we deal with random experiments, where we know for

certain that something will happen but we cannot say exactly what will happen.

Definition 2.1 (Outcomes, events and sample spaces). The result of a random experiment is called an

outcome, and we will denote these by u1, u2, ... . The set of all possible outcomes is called a sample space,

and this we will denote by Ω. A specified set of outcomes is called an event, which we denote by A,B, ..,

and the set of all events is called an event space. Hence, every unique outcome is its own event, and so

is the whole sample space. A finite or countable infinite set of outcomes is called a discrete sample space,

and the rest are called continuous sample spaces.

Remark. Outcomes and events are not numbers but elements or sets of elements, thus we can not add

or subtract events, but instead we consider unions and intersections of events, which in turn are also

events. We denote the intersection of two events A and B by A ∩B and unions by A ∪B.

Definition 2.2 (Intersections). The intersection A ∩ B of two sets (events) is the set of all elements

(outcomes) that are in both sets A and B, A ∩B = {u : u ∈ A and u ∈ B}.



2.2 PROBABILITY THEORY 7

Figure 1: A Venn diagram depicting the two events A (area 1) and B (area 3), their intersection A ∩ B
(area 2), and their union A ∪B (areas 1, 2 and 3), all within the sample space Ω (areas 1, 2, 3 and 4).

Definition 2.3 (Unions). The union A∪B of two sets is the set of all elements that are in A, or in B,

or in A ∩B, A ∪B = {u : u ∈ A or u ∈ B}.

Figure 1 above depicts the union and intersection of events A and B. Note that A ∪ B = B ∪ A and

A ∩ B = B ∩ A. The union and intersection of multiple events A1, A2, ..., An is composed of the events

A1 ∪A2 ∪ ... ∪An := ∪ni=1Ai, and A1 ∩A2 ∩ ... ∩An := ∩ni=1Ai respectively.

The complement of the event A is denoted Ac, and is composed of all the outcomes within the sample

space that does not belong to A, Ac := {u ∈ Ω : u /∈ A}. The complement Ac in figure 1 is composed of

the areas marked 3 and 4. A special type of event is when there is no outcome. This event is called the

empty set and we denote it by ∅. The complement of the empty set is hence the entire sample space,

∅c = Ω. If two events do not share any outcomes, we say that they are disjoint, i.e the intersection of

two such events would be the empty set, A ∩B = ∅. If all the outcomes of the event A are also in B, we

say that A is a subset of B, denoted A ⊂ B.

2.2.2 Probabilities on sample spaces

Let us now define random experiments and probabilities over sample spaces. We can describe a random

experiment by defining the probabilities for all of the unique outcomes within the sample space. The

probability for the event A to happen is denoted P (A).

Definition 2.4 (Kolmogrovs axioms). In order for a real valued function P to be a probability function,

it must fulfil the following axioms:

1. 0 ≤ P (A) ≤ 1 for all events A ∈ Ω,

2. P (Ω) = 1

3. if A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

If the sample space is infinite, axiom 3 is replaced with

3. If A1, A2, ... is an infinite sequence of pairwise disjoint events, i.e Ai ∩ Aj = ∅ for all i, 6= j, then

P (∪∞i=1Ai) =
∑∞
i=1 P (Ai).

Given these axioms, we will interpret probabilities such as P (A) = c for any c ∈ R : 0 ≤ c ≤ 1, to mean

that if we repeat the same random experiment multiple times, then the proportion of experiments where
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A occurs will be close to c. An event A is said to occur almost surely (abbreviated a.s) if P (A) = 1. Next

we give a theorem defining the probabilities for complements and unions.

Theorem 2.1. Let A and B be arbitrary events in the sample space Ω. Then

1. P (Ac) = 1− P (A),

2. P (∅) = 0,

3. P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. The proof for the first result is quite intuitive and simple. We note that A∪AC = Ω, and A∩Ac = ∅,
which together with the definitions given in def. 2.4 gives us P (A) + P (Ac) = P (A ∪ Ac) = P (Ω) = 1.

The proof of the second result is also simple. Since ∅ = Ωc, we can once again use definition 2.4 and

result 1 above to see that P (∅) = P (Ωc) = 1− P (Ω) = 0. The third result will require a bit more work.

Consider the two sets A and B ∩ Ac. These sets are disjoint, since no outcome that is in A can be in

B ∩Ac by definition. So A ∪ (B ∩Ac) = ∅, which along with Kolomogrovs third axiom gives us

P (A ∪B) = P (A) + P (B ∩Ac). (2.2.1)

Using the same axiom, we note that if we divide the event B into two disjoint events B ∩A and B ∩Ac
we get P (B ∩ Ac) = P (B)− P (B ∩ A) = P (B)− P (A ∩ B). Substituting this into equation (2.2.1), we

obtain the third result of the theorem, P (A ∪B) = P (A) + P (B)− P (A ∩B).

When talking about probability for real life events such as coin tossing or drawing random cards from

a playing deck in a way that most people can grasp, we are talking about the uniform probability

distribution.

Definition 2.5 (Uniform distribution). A random experiment is said to have uniform probability distri-

bution if all the outcomes have the same probability, i.e if Ω has n outcomes u1, ..., un, then the probability

for each outcome is P (ui) = 1
n for i = 1, ..., n.

This definition leads us to the classical definition of probability.

Theorem 2.2 (Classical definition of probability). Given a discrete sample space Ω with uniform dis-

tribution, the probability of an event A occurring is equal to the amount of outcomes in A divided by the

total amount of outcomes in Ω, i.e if there are m outcomes in A and n outcomes in Ω, then

P (A) =
m

n
.

Before we give the proof of theorem 2.2, we will state and prove the following proposition.

Proposition 2.1. If A1, ..., A1n are disjoint events, then P (∪ni=1Ai) =
∑n
i=1 P (Ai) for any n ∈ N+.

The proof will be given by mathematical induction.

Proof. Let I(n) : P (∪ni=1Ai) =
∑n
i=1 P (Ai). We want to show that I(n) holds true for any n ∈ N+.

Base step.

Let n = 2. Then by Kolmogorov’s third axiom we get

P (∪2
i=1Ai) = P (A1 ∪A2) = P (A1) + P (A2) =

2∑

i=1

P (Ai),
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since the events are disjoint by assumption.

Inductive step.

Assume n = m for some m ∈ N+. Then

P (∪mi=1Ai) + P (Am+1) =

m∑

i=1

P (Ai) + P (Am+1) =

m+1∑

i=1

P (Ai).

From Kolmogorov’s third axiom, we get that

P (Am ∪Am+1) = P (Am) + P (Am+1),

thus

P (∪mi=1Ai) + P (Am+1) = P (∪m+1
i=1 Ai),

which leads us to

P (∪m+1
i=1 Ai) =

m+1∑

i=1

P (Ai).

Since both the base step and the inductive step has been shown to hold true, the statement I(n) holds

true for any n ∈ N+ by mathematical induction.

Proof of Theorem 2.2. Assume the sample space Ω contains n outcomes u1, ..., un. By Kolmogorov’s

axioms we have that P (Ω) = 1, and P (Ω) =
∑n
i=1 P (Ui) by proposition 2.1. Since the outcomes in Ω are

uniformly distributed, we have that P (ui) = P (uj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ n, which implies that

P (ui) = 1
n for all 1 ≤ i ≤ n. Thus for an event A consisting of m events, we get

P (A) =
∑

{i:ui∈A}
P (ui) =

∑

{i:ui∈A}

1

n
=
m

n
.

2.2.3 Conditional probability

As we will see in later sections of this thesis, we are sometimes interested in the probability of an event

B occurring, given that event A has already occurred. This kind of probability is called conditional

probability and we denote it by P (B|A).

Definition 2.6 (Conditional probability). Let A be an arbitrary event such that P (A) > 0. The con-

ditional probability that the event B will occur, given that the event A has already occurred is defined

as

P (B|A) :=
P (B ∩A)

P (A)
.

This definition will be important when we define the path integral, since we will be looking at the

conditional probabilities of particles passing through successive points to form a path.

Another important property events can have is independence. If two events A and B are independent,

then the probability of event B occurring will not be affected by whether or not event A has already

occurred.

Definition 2.7 (Independent event). Two events A and B are independent if P (A|B) = P (A) given

that P (B) > 0, and P (B|A) = P (B) given that P (A) > 0. Another way to express this is that the events

are independent if P (A ∩B) = P (A)P (B).
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A set of events {A1, A2, ...} is pairwise independent if P (Ai ∩ Aj) = P (Ai)P (Aj) for all (i, j) : i 6= j.

If all the subsets of the set are also pairwise independent, i.e for all k ≥ 2 and subsets {Ai1, .., Aik}
where i1 < · · · < ik we have P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) · · ·P (Aik), then the set is said to be mutually

independent.

For some random experiments the probability of an event can be intuitive. Take for example the tossing

of a coin, where the possible outcomes are heads and tails. Since there are only two possible outcomes,

and they are clearly disjoint, we will have that P (A ∪ B) = P (Ω) = 1 = P (A) + P (B). Furthermore

the two events are uniformly distributed, leading us to the conclusion that P (A) = P (B) = 1
2 . This is

however a very trivial example, and there are many scenarios in which we can not intuitively say anything

about the probability of an event without some additional information. In these scenarios, the following

theorem can be useful.

Theorem 2.3 (Law of total probability). For a sample space Ω consisting of disjoint events Ai with

P (Ai) > 0 for i = 1, ..n such that ∪ni=1Ai = Ω, the probability of any event B = ∪ni=1(B ∩ Ai) occurring

is given by

P (B) =
n∑

i=1

P (B|Ai)P (Ai).

Proof. Since the events Ai are disjoint, the events B∩Ai are also disjoint and we can apply Kolmogorov’s

third axiom

P (B) = P (∪ni=1(B ∩Ai)) =
n∑

i=1

P (B ∩Ai).

The definition of conditional probability gives us P (B|Ai)P (Ai) = P (B ∩Ai), completing the proof.

The final theorem we will prove before moving on to defining random variables, is Bayes’ theorem.

Theorem 2.4 (Bayes’ theorem). For a sample space Ω consisting of disjoint events Ai with P (Ai) > 0

for i = 1, ..n such that ∪ni=1Ai = Ω, the probability of any event B = ∪ni=1(B ∩Ai) occurring is given by

P (Ai|B) =
P (Ai)P (B|Ai)∑n
j=1 P (Aj)P (B|Aj)

Proof. From the definition of conditional probability we have

P (Ai|B) =
P (Ai ∩B)

P (B)
(2.2.2)

and

P (B|Ai) =
P (B ∩Ai)
P (Ai)

⇔ P (B|Ai)P (Ai) = P (B ∩Ai)

which matches the numerator in 2.2.2 with the numerator of the theorem. Furthermore, by theorem 2.3

we get

P (B) =
n∑

j=1

P (Aj)P (B|Aj)

⇒ P (Ai|B) =
P (Ai)P (B|Ai)∑n
j=1 P (Aj)P (B|Aj)

=
P (Ai ∩B)

P (B)
.
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2.2.4 Probability spaces

In order to make sense of statements like ”the probability of event x occurring is y”, we need to define a

probability space.

Definition 2.8 (Probability space). A probability space is made up of three components, a non-empty

sample space Ω, a σ-algebra (event space) F, and a probability function P such that P : F → [0, 1].

Remark. A σ algebra is a collection F of subsets of a set Ω such that

• ∅ ∈ F

• if A ∈ F, then Ac ∈ F

• if A1, A2, .. is a countable collection of sets in F, then their union ∪nAn ∈ F.

2.2.5 Random variables

A random variable, or stochastic variable as they are also called, is a variable for which the values depend

on the outcome of a random experiment.

Definition 2.9 (Random variable). A random variable X(u) is a function defined on a sample space,

X : Ω 7→ E for some measurable set E. Here we will be treating the most common case which is that

X(u) is a real valued function and hence E = R. When the random experiment has been performed and

an outcome has been observed, the value of the function X(u) is called an observation of the random

variable. The argument u is often omitted, and we simply write X instead of X(u) for random variables,

and x for the observations of X.

Since the sample space can be either a discrete or a continuous one, we will need definitions for both

kinds of random variables. We will start by defining the discrete kind, and a few of its properties.

Definition 2.10 (Discrete random variables and their probability functions). A random variable X

is discrete if it can assume a finite or countably infinite amount of values, x1, x2, .... The probability

distribution function pX for a discrete random variable is defined

pX(x) := P (X = x), x = x1, x2, ....

Theorem 2.5 (Properties of probability functions). For a discrete random variable, the following is true

(treating the most common integer-valued random variable)

1. 0 ≤ pX(x) ≤ 1, ∀k ∈ Z,

2.
∑
k pX(k) = 1,

3. P (a ≤ X ≤ b) =
∑
{k:a≤k≤b} pX(k),

4. P (X ≤ a) =
∑
{k:k≤a} pX(k),

5. P (X > a) =
∑
{k:k>a} pX(k) = 1−∑{k:k≤a} pX(k) = 1− P (X ≤ a).

Remark. We treat the integer-valued discrete random variables since these are the most common kind

of discrete random variables, although the same properties can be verified for real-valued discrete random

variables.
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Proof. 1. Consider the subset Ak of Ω consisting of all the outcomes u such that X(u) = k. For this

subset or event Ak, we get by Kolmogorov’s axioms that 0 ≤ P (Ak) ≤ 1, which proves the first

statement since pX(k) = P (X = k) = P (Ak).

2. Since X(u) only assumes one value for each individual u, the events A0, A1, ... will all be disjoint,

and so we can once again use Kolmogorov’s axioms to prove statement 2 in the theorem,

∑

k

pX(k) =
∑

k

P (Ak) = P (Ω) = 1

.

3. The event ∪{k:a≤k≤b}Ak is the same as the event a ≤ X ≤ b. Thus, again using Kolmogorov’s

axioms and the fact that the events Ak are disjoint, we obtain

P (a ≤ X ≤ b) = P (∪{k:a≤k≤b}Ak) =
∑

{k:a≤k≤b}
pX(k).

4. The event {X ≤ a} is identical to the event ∪{k:k≤a}Ak. Hence, by disjoint events and Kolmogorov’s

axioms, we obtain

P (X ≤ a) = P (∪{k:k≤a}Ak) =
∑

{k:k≤a}
pX(k).

5. The event X > a is identical to the event ∪{k:a<k}Ak. Again by disjoint events and Kolmogorov’s

axioms, we obtain

P (X > a) = P (∪{k:a<k}Ak =
∑

{k:a<k}
pX(k).

Since we know from statement 2 that
∑
k pX(k) = 1, we observe that

∑

{k:a<k}
pX(k) +

∑

{k:k≤a}
pX(k) = 1

⇔
∑

{k:a<k}
pX(k) = 1−

∑

{k:k≤a}
pX(k)

⇔ P (X > a) = 1− P (X ≤ a).

To calculate probabilities such as P (a ≤ X ≤ b), for a random variable X, we can also use what is called

a probability distribution function.

Definition 2.11 (Probability distribution function). For a random variable X, the probability distribu-

tion function FX(t) is defined as

FX(t) := P (X ≤ t), −∞ < t <∞.

So, for example, for a discrete random variable X, by property number 4 of theorem 2.5, the value of the

distribution function in the point t is FX(t) = P (X ≤ t) =
∑
{k:k≤t} p(k). Next we will give a theorem

concerning some properties of the distribution function.

Theorem 2.6. Let FX(t) be the distribution function of a random variable X. Then the following

statements are true

1. 0 ≤ FX(t) ≤ 1, ∀ t,
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2. t 7→ FX(t) is monotonically increasing and right-continuous,

3. limt→−∞ FX(t) = 0,

4. limt→∞ FX(t) = 1,

5. P (a < X ≤ b) = F (b)− F (a),

6. P (X > a) = 1− F (a),

Proof. 1. Let At := {u : X(u) ≤ t}. Then P (At) = P (X ≤ t) = FX(t), and by Kolmogorov’s axioms

0 ≤ FX(t) ≤ 1.

2. i) t 7→ FX(t) is monotonically increasing. Consider the observations x and y where x < y.

From the definitions of the distribution function and probability events, we have that Ax ⊆ Ay.

We divide Ay in two disjoint subsets Ay = Ax ∪ A(x,y] = {u : x < X(u) ≤ y}. We now obtain

the following, once again using Kolmogorov’s axioms

FX(x) = P (Ax) ≤ P (Ax) + P (A(x,y]) = P (Ay) = FX(y),

which proves that FX is monotonically increasing.

ii) FX is right-continuous will be proven only for the case where X is discrete and integer-

valued. We fix t and let btc be the integer part of t. Then we have bt + hc = btc for h > 0

small enough. Then we obtain FX(t+ h) = FX(bt+ hc) = FX(btc) = FX(t), proving that FX

is right continuous.

3. As t→ −∞, the cardinality1 of the set Ak := {k : k ≤ t} will tend to zero

lim
t→−∞

| {k : k ≤ t} | = 0.

Thus P (Ak)→ P (∅) = 0 as t→ −∞.

4. Similarly as in the proof for statement 3, as t → ∞ the subset Ak := {k : k ≤ t} will tend to the

whole sample space Ω, leading to limt→∞ P (Ak) = P (Ω) = 1.

5. We have that

P (a < X ≤ b) =
∑

{k:a≤k≤b}
pX(k) =

∑

{k:k≤b}
pX(k)−

∑

{k:k≤a}
pX(k) = F (b)− F (a).

6. P (X > a) = 1− F (a) follows directly from statement 5 in theorem 2.5 and the definition of F (a).

We now move on to define the continuous random variable.

Definition 2.12 (Continuous random variables and density functions). A random variable X is contin-

uous if there exists a function fX(x) such that for all events or subsets A

P (X ∈ A) =

∫

A

fX(t) dt.

The function fX(x) is known as the density function of the continuous random variable X.

1The cardinality of a set is a measure of the number of elements in the set.
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The relation between the distribution functions FX(t) for continuous random variables, and the density

functions fX(t) will be given by the following theorem.

Theorem 2.7. Given a continuous random variable X with density function fX(·) and distribution

function FX(·), the following is true for all points where fX(·) is continuous

FX(x) =

∫ x

−∞
fX(t) dt.

and conversely

fX(x) = F ′X(x) = lim
h→0

FX(x+ h)− FX(x)

h

It is also true that
∫∞
−∞ fX(t) dt = 1.

Proof. Consider the event Ax := {u : −∞ < X(u) ≤ x}. The definition of the density function gives

us P (X ∈ Ax) =
∫ x
−∞ fX(t) dt. The next statement is obtained using the first statement and the

fundamental theorem of calculus.

The last statement
∫∞
−∞ fX(t)dt = 1 follows from the observation that

∫∞
−∞ fX(t)dt = limx→∞ FX(x),

and from statement 4 in theorem 2.6 we know that limx→∞ FX(x) = 1 for any distribution function.

Given the nature of random variables, it can be difficult to make intuitive predictions about their be-

haviour. But if we know the probability function or the density function for the random variable, we can

define its expected value.

Definition 2.13 (Expected value (mean)). The expected value of a random variable X, or mean as it is

also called, is a real number denoted by E(X). For discrete random variables it is defined as

E(X) :=
∑

k

kpX(k) (2.2.3)

and for continuous random variables

E(X) :=

∫ ∞

−∞
xfX(x) dx. (2.2.4)

If the sum or the integral is infinite however, then X does not have an expected value.

In the next section we will be studying functions of random variables, and so we need to define the

expected value of these types of functions as well.

Theorem 2.8 (Expected value of a function of a random variable). Let the random variable Y be defined

by Y := g(X), where X is a random variable and g(·) is a real valued function. Then

E(Y ) = E(g(X)) =





∑
k g(k)pX(k) if X is discrete,

∫∞
−∞ g(x)fX(x) dx if X is continuous.

Proof. We will prove the discrete case. We note that P (g(X) = j) =
∑
{k:g(k)=j} P (X = k). This leads

us to

E(Y ) =
∑

j

jP (Y = j) =
∑

j

jP (g(X) = j)
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=
∑

j

∑

{k:g(k)=j}
jP (X = k) =

∑

j

∑

{k:g(k)=j}
g(k)P (X = k)

=
∑

k

g(k)P (X = k).

Two other useful measurements of random variables are their variances and standard deviations. These

can give us a perception of how much the values deviate from the mean value.

Definition 2.14 (Variance). For a random variable X with mean value E(X) = µ, the variance σ2 is

defined as σ2 = V (X) := E((X − µ)2), if µ is finite. Using theorem 2.8, this can also be expressed as

V (X) =





∑
k(k − µ)2pX(k), if X is discrete,

∫∞
−∞(x− µ)2fX(x) dx, if X is continuous.

Definition 2.15 (Standard deviation). The standard deviation of a random variable X is defined as

D(X) =
√
V (X) =

√
σ2 = σ.

Theorem 2.9. For a random variable X with mean value E(X) and variance V (X), and constants a

and b we have

E(aX + b) = aE(x) + b

V (aX + b) = a2V (x)

D(aX + b) = |a|D(x).

Proof. Proof of the continuous case. Let X be a continuous random variable and a, b constants. then we

have

E(aX + b) =

∫ ∞

−∞
(ax+ b)fX(x) dx

= a

∫ ∞

−∞
xfX(x) + b

∫
X(x) dx=aE(X)+b.

−∞

For the variance we use the definition of variance to obtain

V (aX + b) = E((aX + b− (aE(X) + b))2)

= E(a2(X − E(X))2) = a2E((X − E(X))2) = a2V (X).

Lastly, for the standard deviation we get

D(aX + b) =
√
V (aX + b) =

√
a2V (X) = |a|D(X).

Theorem 2.10 (Calculating variance). The variance for a random variable X with mean µ is given by

V (X) = E(X2)− µ2 =





∫∞
−∞ x2fX(x) dx− µ2, if X is continuous,
∑
k k

2pX(k)− µ2, if X is discrete.
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Proof. We will show the continuous case. We have from the definition of variance that

V (X) =

∫ ∞

−∞
(x− µ)2fX(x) dx =

∫ ∞

−∞
(x2 − 2µx+ µ2) dx

=

∫ ∞

−∞
x2fX(x) dx− 2µ

∫ ∞

−∞
xfX(x) dx

︸ ︷︷ ︸
=µ

+µ2

∫ ∞

−∞
fX(x) dx

︸ ︷︷ ︸
=1

=

∫ ∞

−∞
x2fX(x) dx− µ2.

Random variables can have a number of different probability distributions. In this the main focus will

be on normally distributed random variables, for which we now give the definition.

Definition 2.16. A continuous random variable X is said to be normally distributed with mean µ and

variance σ2 > 0, denoted X ∼ N(µ, σ2), if its density function is given by

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , −∞ < x <∞.

We verify that fX(x) is a density function, i.e that
∫∞
−∞ fX(x) dx = 1 in the following way.

We perform the variable substitution [z = (x− µ)/σ, σdz = dx], and obtain the integral 1√
2π

∫∞
−∞ e

−z2
2 dz.

So we need to show that
∫∞
−∞ e

−z2
2 dz =

√
2π or that

∫∞
−∞

∫∞
−∞ e

−(z2+y2)
2 dzdy = 2π. We calculate this

double integral using polar coordinates z = r cos (u), y = r sin (v), yielding the integral

∫ 2π

0

∫ ∞

0

re−
r2

2 drdu =

∫ 2π

0

du = 2π

⇒
∫ ∞

−∞
e
−z2

2 dz =
√

2π ⇒ 1√
2π

∫ ∞

−∞
e
−z2

2 dz == 1,

showing that fX(x) is indeed a density function.

Theorem 2.11 (Calculating mean and variance for normally distributed random variables). For a nor-

mally distributed random variable X ∼ N(µ, σ2), the mean, variance and standard deviation is given

by

E(X) = µ, V (X) = σ2, D(X) =
√
σ2 = σ.

Proof. From the definition of mean value of a random variable and the density function of the normally

distributed random variable, we get, using the same variable substitution [z = (x− µ)/σ, σdz = dx] as

above

E(X) =

∫ ∞

−∞
x

1

σ
√

2π
e−

(x−µ)2

2σ2 dx =

∫ ∞

−∞
(σz + µ)

1√
2π
e
−z2

2 dz.

Since f(z) = ze−z
2/2 is an odd function, its contribution to the integral will be zero, and we need only

concern ourselves with the term µ
∫∞
−∞

1√
2π
e−z

2/2 dz, which, by the verification of the density function

above is equal to µ, showing that E(X) = µ.

For the variance we start by calculating E(X2) using the same variable substitution as before and partial

integration.

E(X2) =

∫ ∞

−∞
(σz + µ)2 1√

2π
e−

z2

2 dz =

∫ ∞

−∞
σ2z2 + 2σµz + µ2 dz
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= µ2 + σ2

∫ ∞

−∞
z2e−

z2

2 dz = σ2 = µ2 + σ2

[
z
−e− z

2

2√
2π

]∞

−∞
+ σ2

∫ ∞

−∞

e−
z2

2√
2π

dz

= µ2 + 0 + σ2 ⇒ V (X) = E(X2)− E(X)2 = µ2 + σ2 − µ2 = σ2

Lastly we need to define the concept of covariance. This can be used to see how the two variables influence

each other, if at all. The covariance measures the linear dependence or the joint variability of the two

random variables. First we introduce multivariate random variables.

Definition 2.17 (Two dimensional random variable). A two dimensional function (X,Y ) = (X(u), Y (u)) :

Ω → R × R defined on a sample space Ω is called a two dimensional random variable X,Y . The distri-

bution function of the two dimensional random variable is defined as

FX,Y (x, y) := P (X ≤ x, Y ≤ y).

Just as in the case of single random variables, we need to consider the two cases of continuous and discrete

multivariate random variables.

Definition 2.18 (Continuous and discrete two dimensional random variables). If a two dimensional

random variable X,Y only can assume a finite or a countably infinite amount of values, we say that X,Y

is discrete and define its probability function as

pX,Y (j, k) := P (X = j, Y = k)

We say that X,Y ) is continuous if there exists a function fX,Y (x, y) > 0, such that for all sets A we have

P ((X,Y ) ∈ A) =

∫ ∫

A

fX,Y (x, y) dxdy.

If fX,Y exists, we say that it is the density function of X,Y .

Theorem 2.12 (Mean value of a function of two random variables). Let X,Y be a two dimensional

random variable and g be a real-valued function. Then

E(g(X,Y )) =





∑
j

∑
k g(j, k)pX,Y (j, k), if (X,Y) is discrete,

∫∞
−∞

∫∞
−∞ g(X,Y )fX,Y (x, y) dxdy, if (X,Y) is continuous.

Proof. The proof of this theorem is analogous to the proof of theorem 2.8 and will hence be omitted.

Corollary 2.12.1 (Mean value of a sum). Let X and Y be arbitrary random variables. Then

E(X + Y ) = E(X) + E(Y ).

Proof. Proof of the continuous case. Let g(X,Y ) = X + Y . Then, by theorem 2.12 we have

E(g(X,Y )) = E(X + Y ) =

∫ ∞

−∞

∫ ∞

−∞
x+ yfX,Y (x, y) dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y) dxdy +

∫ ∞

−∞

∫ ∞

−∞
yfX,Y (x, y) dxdy

= E(X) + E(Y ).
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Theorem 2.13 (Variance of sum). Let X and Y be arbitrary random variables. Then

V (X + Y ) = V (X) + V (Y ) + 2C(X,Y ).

Proof. We have that

V (X + Y ) = C(X + Y,X + Y )

= C(X,X) + C(X,Y ) + C(Y,X) + C(Y, Y )

= V (X) + V (Y ) + 2C(X,Y ).

Definition 2.19 (Covariance and correlation coefficient). Let X and Y be random variables with the

same distribution and finite mean values µX and µY , and standard deviations σX and σY . The covariance

between X and Y is defined as

C(X,Y ) := E((X − σX)(Y − σY )),

and their correlation coefficient as

ρ(X,Y ) :=
C(X,Y )

σXσY
.

Theorem 2.14 (Rules for covariance calculations). Consider the random variables X,Y, Z and the con-

stants a, b, c, d. The following rules applies for calculating covariance for X,Y, Z

C(X,X) = V (X)

C(Y,X) = C(X,Y )

C(aX + b, cY + d) = acC(X,Y )

C(X + Y,Z) = C(X,Z) + C(Y, Z)

Proof. The proof of the first two equations are given by the definition of variance and covariance. For

the third equation we get

C(aX + b, cY + d)

= E((aX + b− (aµX + b))(cY + d− (cµY + d))

= E(a(X − µX)c(Y − µY ))

= acE((X − µX)(Y − µY )) = acC(X,Y ).

For the last equation, we have

C(X + Y,Z) = E((X + Y − (µX + µY ))(Z − µZ))

= E(((X − µX) + (Y − µY )))(Z − µZ))

= C(X,Z) + C(Y,Z).

Theorem 2.15 (Calculating covariance). Let X,Y ) be a two dimensional random variable with mean

values E(X) = µX and E(Y )µY . Then

C(X,Y ) = E(XY )− µXµY .
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Proof. By using the property of mean values E(aX) = aE(X) and corollary 2.12.1, we obtain

E((X − µx)(Y − µY )) = E(XY −XµY − Y µX + µXµY )

= E(XY )− µY E(X)− µXE(Y ) + µXµY

= E(XY )− µXµY .

The final part of this section will be defining independent random variables and see how we calculate the

expected value and variance for them.

Definition 2.20 (Independent and uncorrelated random variables). Let X and Y be random variables.

We say that X and Y are independent if for all (x, y)

pX,Y (x, y) = pX(x)pY (y) if X and Y are discrete,

fX,Y (x, y) = fX(x)fY (y) if X and Y are continuous.

If C(X,Y ) = 0, X and Y are uncorrelated.

Theorem 2.16. If X and Y are independent then they are also uncorrelated.

Proof. Proof of the continuous case. Let X and Y be independent random variables. Then

E(XY ) =

∫ ∫
xyfX,Y (x, y) dxdy =

∫ ∫
xyfX(x)fY (y) dxdy

=

∫
xfX(x) dx

∫
yfY (y) dy = E(X)E(Y )

⇔2.15 C(X,Y ) = 0.

Theorem 2.17 (Variance and mean value for linear combinations). Let X1, ..., Xn be arbitrary random

variables and a1, ..., an arbitrary constants. Then

E(a1X1 + ...+ anXn) = a1E(X1) + ...+ anE(Xn)

V (a1X1, ..., anXn) =
n∑

i=1

a2
iV (Xi) + 2

∑

i<j

aiajC(Xi, Xj).

If X and Y are uncorrelated we have

V (a1X1 + ...+ anXn) =

n∑

i=1

a2
iV (Xi).

Proof. For the mean value the proof is directly obtained from theorem 2.9 and corollary 2.12.1. For the

variance we get

V

(
n∑

k=1

akXk

)
= C

(
n∑

i=1

aiXi,

n∑

i=1

aiXi

)

n∑

i=1

n∑

j=1

aiajC(Xi, Xj)

=
n∑

i=1

a2
iC(Xi, Xi) +

∑

j 6=i
aiajC(Xi, Xj)

=
n∑

i=1

a2
iV (Xi) + 2

∑

i<j

aiajC(Xi, Xj).
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3 Stochastic calculus

3.1 Stochastic processes

If we are interested in studying a sequence of observations of random variables, we can make use of the

stochastic process, which is an assembly of random variables, each associated with an index from an index

set. Such an assembly is known as a family.

Definition 3.1 (Stochastic process). A family of random variables with index t in the index set I is

called a stochastic process, {X(t), t ∈ I}. The stochastic process assumes values in the codomain V , and

the outcome observed from the stochastic process is called a realization of the process.

Hence, for every fixed t the stochastic process X(t) is a random variable. As in the case of random

variables, we need to make distinctions between continuous and discrete stochastic processes.

Definition 3.2 (Continuous- and discrete-time stochastic processes). A stochastic process with the index

set I is called a continuous-time process if I is a continuous set, commonly an interval of the sort

I = [0,∞). If I is a discrete set, for example I = {0, 1, 2, ...}, the stochastic process is called a discrete-

time process.

Definition 3.3 (Continuous and discrete stochastic processes). A stochastic process with codomain V is

called continuous if V is a continuous set, commonly an interval V = [0,∞), and conversely if V is a

discrete set V = {0, 1, 2, ..} the process is called a discrete stochastic process.

An important tool needed to study stochastic processes is the conditional expectation. This can be

thought of as similar to the conditional probability for events described in section 2.2, but for random

variables.

Definition 3.4 (Conditioning on an event). Let X be an integrable random variable, and A be an event

in the event space F with positive probability P (A) > 0. The conditional expectation of X given that A

has occurred is given by

P (X|A) =
1

P (A)

∫

A

X dP.

We will see in section 3.4 what the meaning of integrating with respect to a function is. Next we define

conditioning on a discrete random variable.

Definition 3.5 (Conditioning on a discrete random variable). Let X be an integrable random variable

and let Y be a discrete random variable with possible values y1, y2, ..., yn such that P (Y = yi) > 0 for all

i ∈ [0, n]. Instead of conditioning on just one event, we want to find the conditional expectation of X given

that all the events in Y has occurred, i.e a sequence of conditional expectations E(X|Y = y1), E(X|Y =

y2), .... To do so we construct the random variable E(X|Y )(·) on each of the sets {Y = yn}, and we

define the conditional expectation of X given Y to be the random variable

E(X|Y )(u) = E(X|Y = yn), if Y (u) = yn.

We demonstrate this with the following example.

Example 3.1. Consider an experiment where we are flipping 3 coins 1kr, 2kr and 10kr. We let the

amount X be the sum of the value of the coins which land heads up. We now pose the question, what is
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the conditional expectation E(X|Y ) given the total amount Y for the flips of only the 1kr and 2kr coins?

Here, Y is a discrete random variable with possible values 0, 1, 2, 3. From the definition of conditioning

on a discrete random variable, we obtain the following

E(X| {Y = 0}) = 5, E(X| {Y = 1}) = 6

E(X| {Y = 2}) = 7, E(X| {Y = 3}) = 8.

So our expression for the conditional expectation becomes

E(X|Y )(u) =





5 if Y (u) = 0

6 if Y (u) = 1

7 if Y (u) = 2

8 if Y (u) = 3.

3.2 Random Walk

A random walk is a stochastic process, portraying random steps in a mathematical space.

Definition 3.6. A random walk is a sequence of random variables {Sn, n = 0, 1, 2, ...} with S0 = 0 which

is defined by

Sn :=

n∑

k=1

Xk

where the random variables Xk are independent and from the same distribution. A random walk is said

to be simple if the random variables only assume values 1 or −1, and it is symmetric and simple if

P (Xk = 1) = P (Xk = −1) = 1
2 .

In figure 2 we can see four realizations of simple symmetric random walks where the random variable

Xk represents the movement of a particle along the x-axis with steps of 1, moving between the integer

points.

Figure 2: Random walks with 10, 100, 1000 and 10000 steps



3.3 WIENER PROCESS 22

3.3 Wiener process

In the natural sciences we come across a concept called Brownian motion, which is a type of random walk.

It represents the random motion of particles suspended in a fluid, and was first described by Robert Brown

when observing small particles of pollen immersed in a liquid through his microscope. The mathematical

properties of a one-dimensional Brownian motion was first described by Norbert Wiener as a way to

study continuous time martingales2, and so the way to describe a Brownian motion mathematically is by

defining the Wiener process. For simplicity purposes we will only consider one dimensional Brownian

motion in this thesis, but the theory is applicable to spaces of arbitrary dimensions.

Definition 3.7 (Wiener process). A stochastic process {W (t), t ≥ 0} is a Brownian motion or a Wiener

process if

1. W (0) = 0,

2. W (t) has stationary independent increments,

3. W (t) ∼ N(0, σ2t) for all t > 0.

If σ = 1, the Wiener process is said to be standard, which is the type of Wiener processes we will be

working with in this thesis.

Remark. A stochastic process W (t), t ∈ T has independent increments if W (t2) −W (t1), ...,W (tn) −
W (tn−1) are all independent for all t1 < t2 < ... < tn in T . It has stationary increments if the distribution

of the random variable W (t)−W (s) has the same distribution as W (t− s) for any s < t. In the case of

the Wiener process, we have that W (t)−W (s) ∼ N(0, (t− s)σ2).

Example 3.2. Consider a Wiener process Wt with t0 = 0,W (t0) = W0 = 0 and 0 ≤ t ≤ T .

While the time in theory flows continuously, we will discretize it for the sake of examining the properties

of the Wiener process. Let Wt+∆t −Wt = ∆Wt, meaning ∆Wt denotes the change in W (·) over a time

period beginning at time t with length ∆t. The change in the Wiener process is random, so we define ∆Wt

to depend on a random component εt where {ε0, ε∆t, ..., εT−∆t} are all ∼ N(0, 1) and all uncorrelated.

∆Wt = εt
√

∆t.

∆W0 = ε0

√
∆t⇔W∆t = ε0

√
∆t

∆W∆t = ε∆t

√
∆t⇔W2∆t = W∆t + ε∆t

√
∆t = (ε0 + ε∆t)

√
∆t

...

∆WT−∆t = εT−∆t

√
∆t⇔WT = (ε0 + ε∆t + · · ·+ εT−∆t)

√
∆t

Since we want the time flow to be continuous, we scale the change εt in W (·) by
√

∆t instead of ∆t. This

choice ensures that the Wiener process will not freeze as ∆t → 0, since
√

∆t goes to zero much slower

than ∆t.

2A continuous-time martingale with respect to the stochastic process Xt is a stochastic process Yt such that for all t

E (|Yt|) <∞
E (Yt| {Xτ , τ ≤ s}) = Ys ∀s ≤ t
This expresses the property that the conditional expectation of an observation at time t, given all the observations up to

time s, is equal to the observation at time s.
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In Figure 3 below, we can see example graphs of two such Wiener processes with identical initial conditions

t0 = 0, n = 500, W (t0) = 0, ∆t = 0.02, T = n∆t = 10. When we go on to define the stochastic

differential equation and the stochastic integral, we will think of the white noise ξ as the time derivative

of a wiener process, ξ(t) = dW
dt , even though the wiener process is nowhere differentiable, meaning it does

not exist in the ordinary sense.

Figure 3: One-dimensional Wiener process example graph
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3.4 Stochastic Integrals

Another part of the theory of stochastic differential equations is the stochastic integral. Recall that we

have an integral in the the solution from (2.1.3) in section (2.1)

y(t) =
1

µ(t)

(
y(t0)µ(t0) +

∫ t

t0

µ(s)h(s)ds

)
. (2.1.3)

We are going to want to find a solution on a similar form for the stochastic differential equation, but in

order to do that we must first specify what a stochastic integral is. We want to be able to say something

about integrals of the form (Dobrow, 2016)
∫ t

0

Bsds and

∫ t

0

BsdBs.

The first of the above integrals can be seen as representing the area restricted by the curve of the

Brownian motion on the time interval [0, t] and the horizontal axis, as the Brownian motion is integrated

with respect to time. Due to the fact that the integrand is random, the integral itself is also random, a

random variable. Viewed as a function of t, we can say that the integral is a stochastic process.

In the second integral however, Brownian motion is integrated with respect to Brownian motion.

Before we have a look at integration with respect to Brownian motion, let us first define integration of

Brownian motion itself.

Let Bt be a Brownian motion process with 0 ≤ t ≤ 1. Since we know that Bt is continuous for all t, it is

by definition Riemann integrable. But, we still need to define what the Riemann integral of the Brownian

motion actually is.

Let us first consider, for 0 ≤ a < b, the integral
∫ b

a

Bs(ω)ds.

Since we know that B(ω) is a continuous function for each ω in the probability space, we can define this

integral in the ordinary sense as the limit when n tends to infinity of a Riemann sum,

I(n)(ω) =

n∑

k=1

Bt∗k(tk − tk−1)

for a partition a = t0 < t1 < · · · < tn−1 < tn = b of [a, b] where t∗k ∈ [tk−1, tk] is an arbitrary point in the

subinterval [tk−1, tk]. This sum will be a random variable for every n ≥ 1, and since Brownian motion is

a Gaussian process, they will all be normally distributed. So if we let n → ∞, we can expect the limit

lim
n→∞

I(n) to also be normally distributed. Now if we let It =
∫ t

0
Bsds for t ≥ 0, the mean for the random

variable It is given by

E (It) = E

(∫ t

0

Bsds

)
=

∫ t

0

E (Bs) ds = 0,

and so for s ≤ t, the covariance of (Is, It)

C (Is, It) = E ((Is − E(Is) ∗ (It − E(It))) = E (IsIt) = E

(∫ s

0

Bxdx

∫ t

0

Bydy

)

=

∫ s

0

∫ t

0

E (BxBy) dydx =

∫ s

0

∫ t

0

min{x, y}dydx

=

∫ s

0

∫ x

0

ydydx+

∫ s

0

∫ t

x

xdydx

=
s3

6
+

(
ts2

2
− s3

3

)
=

3ts2 − s3

6
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To find the variance of It, we let s = t and thus we aquire C(It, It) = V (It) = t3

3 , leading to the conclusion

that
∫ t

0
Bsds is a normally distributed random variable with mean 0 and variance t3

3 ,
∫ t

0
Bsds ∼ N(0, t

3

3 ).

In figure 4 we see examples of a few realizations of integrated Brownian motion.

Figure 4: Plots of nine different realizations of area under a Brownian motion curve. Generated from

time 0 to time 1, with 500 steps of size 1
500 .

Now that we have clarified what integrated Brownian motion is, we will look into what it means to

integrate with respect to Brownian motion. To do this we introduce the Riemann-Stieltjes integral.

Before we do this however, we will define some necessary properties of sets.

Definition 3.8 (Refinement). Consider an closed interval I = [a, b] and let P[a, b] be the set of partitions

of I. Let P = {a = x0 < x1 < · · · < xn = b} ∈ P[a, b]. Then a partition P ′ ∈ P[a, b] such that P ⊆ P ′ is

called a refinement of P , or we say that P ′ is finer than P .

Example 3.3. Let I be the closed interval I = [0, 10], and P a partition P = {1, 2, 4} ∈ P[0, 10]. Then

P ′ = {1, 2, 3, 4} ∈ P[0, 10] is a refinement of P and we say that P ′ is finer than P .

Definition 3.9 (Mesh). Let I = [a, b] be a closed interval and P = {a = x0 < x1 < · · · < xn = b} ∈
P[a, b]. We denote the mesh (or norm) of the partition P as ||P || and define it as

||P || := max
k∈{1,2,..,n}

{|xk − xk−1|} .

Definition 3.10 (Upper and lower Riemann-Stieltjes sums). Let the functions f and g be defined on

[a, b], and let g be increasing on [a, b], i.e for all x, y ∈ [a, b] : x < y we have g(x) < g(y) ⇔ g(y) −
g(x) > 0. Let P = {a = x0 < x1 < · · · < xn = b}, Mk(f) = sup {f(x) : x ∈ [xk−1, xk]}, and mk(f) =

inf {f(x) : x ∈ [xk−1, xk]}. We then define the upper and lower Riemann-Stieltjes sums with respect to
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the partition P as

U(S(P, f, g)) =

n∑

k=1

Mk(f)∆gk

and

L(S(P, f, g)) =

n∑

k=1

mk(f)∆gk

respectively. If these sums are equal, then we say that the Riemann-Stieltjes sum on the interval [a, b] is

their common value.

Definition 3.11 (Upper and lower Riemann-Stieltjes integrals). Let f and g be functions defined on

the interval I = [a, b], where g is an increasing function. Then the upper and lower Riemann-Stieltjes

integrals are defined ∫ b

a

f(x) dg(x) := inf {U(P, f, g) : P ∈ P[a, b]} ,

and ∫ b

a

f(x) dg(x) := sup {L(P, f, g) : P ∈ P[a, b]}

respectively. If these integrals are equal, then we say that the Riemann-Stieltjes integral on the interval

[a, b] is their common value.

Definition 3.12 (Riemann-Stieltjes sum and integral). Consider the interval I = [a, b] and the partition

P = {a = x0 < x1 < · · · < xn = b}. For each k ∈ {1, 2, . . . , n} let tk ∈ [xk−1, xk] and let ∆gk = g (xk)−
g (xk−1). Furthermore, let f and g be functions defined on I. We denote the Riemann-Stieltjes sum with

respect to P, f and g by

S(P, f, g) =
n∑

k=1

f(tk)∆ak.

If there exists an A ∈ R such that for every ε > 0 there exists a partition Pε of [a, b] such that for all

partitions P such that (Pε ⊆ P ) and for any choice of tk ∈ [xk−1, xk] we have that |S(P, f, α) − A| < ε,

then f is said to be a Riemann-Stieltjes integrable function, and we write

∫ b

a

f(x) dg(x) = A.

For our definition of the integral with respect to Brownian motion however, both the integrand and

the integrating function are now stochastic processes, and we consider the stochastic integral to be a

generalization of the Riemann-Stieltjes integral.

For a continuous random variable X with f differentiable, the mean value can be expressed as

E(g(X)) =

∫ ∞

−∞
g(x)f(x)dx =

∫ ∞

−∞
g(x)F ′(x)dx =

∫ ∞

−∞
g(x)dF (x), (3.4.1)

where f(x) is the density function, and F (x) is the distribution function of X. The r.h.s of equation 3.4.1

is the Riemann-Stieltjes integral of g(x) with respect to the distribution function F (x). The integral with

respect to Brownian motion will be defined as a result of this, namely

It =

∫ t

0

g(s)dBs (3.4.2)

where g is a bounded continuous function. With the same partition 0 = t0 < t1 < t2 < · · · < tn−1 < tn = t

and t∗k ∈ [tk−1, tk] this leads us to the approximating sum

I
(n)
t =

n∑

k=1

g (t∗k)
(
Btk −Btk−1

)
. (3.4.3)
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From the definition of Wiener process, we have that Btk − Btk−1 is normally distributed with mean

0 and variance tk − tk−1, and so I(n) is also normally distributed for all n. As n approaches infinity,

equation 3.4.3 converges to the integral in equation 3.4.2, which can be shown (Dobrow, 2016) to be a

normally distributed random variable. We now calculate the mean and variance for that variable, using

the definitions from section 2.2. We start with the mean

E(It) = lim
n→∞

E

(
n∑

k=1

g(t∗k
(
Btk −Btk−1

)
)

= lim
n→∞

n∑

k=1

g(t∗k)E
(
Btk −Btk−1

)
= 0.

And given the independent increments of the Wiener process we get for the variance

V
(
I

(n)
t

)
=

n∑

k=1

g2 (t∗k)V
(
Btk −Btk−1

)
=

n∑

k=1

g2 (t∗k) (tk − tk−1)

Letting n → ∞, we will get that V (I
(n)
t converges to the integral

∫ t
0
g2(s) ds, and so our stochastic

integral is normally distributed with mean 0 and variance
∫ t

0
g2(s) ds,

∫ t
0
g(s)dBs ∼ N

(
0,
∫ t

0
g2(s)ds

)
.
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3.5 Itô’s Lemma

One of the most important results of stochastic calculus is the stochastic version of the chain rule of

derivation, known as Itô’s Lemma (Brzezniak and Zastawniak, 2000).

In order to define and prove this lemma, we start with another definition.

Definition 3.13 (M2
T and M2 stochastic processes). Denote M2

T to be the class of stochastic processes

f(t), t ≥ 0, such that

E

(∫ T

0

|f(t)|2dt
)
<∞,

and let M2 be the class of stochastic processes f(t) such that f(t) ∈M2
T for any T > 0.

Lemma 3.1 (Itô’s lemma). Suppose that f(t, x) is a real valued function with continuous partial deriva-

tives Ft(t, x), Fx(t, x) and Fxx(t, x) for all t ≥ 0 and x ∈ R. Assume also that the process Fx (t,Wt)

belongs to M2, and Fx, Ft, Fxx ∈ L2. Then F (t,Wt) satisfies

F (T,WT )− F (0,W0)

=

∫ T

0

[
Ft (t,Wt) +

1

2
Fxx (t,Wt)

]
dt+

∫ T

0

Fx (t,Wt) dWt, a.s.
(3.5.1)

In shorter differential notation, (3.5.1) can be written as

dF (t,Wt) =

[
Ft (t,Wt) +

1

2
Fxx (t,Wt)

]
dt+ Fx (t,Wt) dWt (3.5.2)

Remark

a) Compare equation (3.5.2) with the usual chain rule

dF (t, xt) = Ft (t, xt) dt+ Fx (t, xt) dxt

for a differentiable function xt. The additional term 1
2Fxx (t,Wt) dt in (3.5.2) is called the Ito correction.

b) Equation (3.5.2) is often written in its shorter derivative form

dF =

(
Ft +

1

2
Fxx

)
dt+ FxdWt.

Proof. We will prove the case where Ft, Fx, Fxx are all bounded by some C > 0. Consider a partition

0 = tn0 < tn1 < · · · < tnn = T of [0, T ], where tni = iT
n . Denote Wtni

by Wn
i ; the increments Wn

i+1 −Wn
i by

∆n
iW ; and tni+1 − tni by ∆n

i t. Using Taylor expansion, there is a point W̃n
i in each interval

[
Wn
i ,W

n
i+1

]

and a point t̃ni in each interval
[
tni , t

n
i+1

]
such that
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F (T,WT )− F (0,W0) =
n−1∑

i=0

[
F (tni+1,W

n
i+1)− F (tni ,W

n
i )
]

=
n−1∑

i=0

[
F (tni+1,W

n
i+1)− F (tni ,W

n
i+1)

]
+
n−1∑

i=0

[
F (tni ,W

n
i+1)− F (tni ,W

n
i )
]

=

n−1∑

i=0

Ft(t̃
n
i ,W

n
i+1)∆n

i t+

n−1∑

i=0

Fx(tni ,W
n
i )∆n

iW +
1

2

n−1∑

i=0

Fxx(tni , W̃
n
i )(∆n

iW )2

=
n−1∑

i=0

Ft(t̃
n
i ,W

n
i+1)∆n

i t+
1

2

n−1∑

i=0

Fxx(tni ,W
n
i )∆n

i +
n−1∑

i=0

Fx(tni ,W
n
i )∆n

iW+

+
1

2

n−1∑

i=0

Fxx(tni ,W
n
i )
[
(∆n

iW )2 −∆n
i t
]

+
1

2

n−1∑

i=0

[
Fxx(tni , W̃

n
i )− Fxx(tni ,W

n
i )
]

(∆n
iW )2

= Sn1 + Sn2 + Sn3 + Sn4 + Sn5 .

Note that as Ft, Fx, and Fxx are continuous bounded functions, we have

lim
n→∞

sup
i=1,...,n

sup
t∈[tni ,tni+1]

∣∣Ft
(
t̃ni ,W

n
i+1

)
− Ft (t,Wt)

∣∣→ 0 a.s. (3.5.3)

lim
n→∞

sup
i=1,...,n

sup
t∈[tni ,tni+1]

|Fxx (tni ,W
n
i )− Fxx (t,Wt)| → 0, a.s. (3.5.4)

lim
n→∞

sup
i=1,...n

∣∣∣Fxx
(
tni , W̃

n
i

)
− Fxx (tni ,W

n
i )
∣∣∣→ 0 a.s.. (3.5.5)

Next we will deal with each sum Sn1 to Sn5 separately.

i) From the continuity of Ft and Fxx in equations (3.5.3) and (3.5.5) we have the convergence of the

Riemann integral

lim
n→∞

Sn1 = lim
n→∞

n−1∑

i=0

Ft
(
t̃ni ,W

n
i+1

)
∆n
i t =

∫ T

0

Ft (t,Wt) dt a.s., and

lim
n→∞

Sn2 = lim
n→∞

n−1∑

i=0

Fxx (tni ,W
n
i ) ∆n

i t =

∫ T

0

Fxx (t,Wt) dt a.s.

ii) From the assumption Fx ∈M2, we have

lim
n→∞

Sn3 = lim
n→∞

n−1∑

i=0

Fx (tni ,W
n
i ) ∆n

iW =

∫ T

0

Fx (t,Wt) dWt

in L2.

iii) We show the L2 convergence E
(
(Sn4 )2

)
→ 0. To be specific,

E
(
(Sn4 )2

)
= E

(
n−1∑

i=0

Fxx (tni ,W
n
i )
[
(∆n

iW )
2 −∆n

i t
])2

=
n−1∑

i=0

E
∣∣∣Fxx (tni ,W

n
i )
[
(∆n

iW )
2 −∆n

i t
]∣∣∣

2

(cross terms have expectation 0)

=

n−1∑

i=0

E |Fxx (tni ,W
n
i )|2 E

∣∣∣(∆n
iW )

2 −∆n
i t
∣∣∣
2

(independent increments)
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≤ C2
∑n−1
i=0 E

∣∣∣(∆n
iW )

2 −∆n
i t
∣∣∣
2

(boundedness of Fxx)

= 2C2
∑n−1
i=0 (∆n

i t)
2

= 2C2
∑n−1
i=0

T 2

n2 = 2C2 T 2

n → 0 as n→∞

iv) Note that
∑n−1
i=0 (∆n

iW )
2 → t in L2 and thus in probability since the left quantity is the quadratic

variation of Brownian motion. Together with the continuity result 3.5.4, we have the following convergence

in probability

|Sn5 | =
∣∣∣∣∣
n−1∑

i=0

[
Fxx

(
tni , W̃

n
i

)
− Fxx (tni ,W

n
i )
]

(∆n
iW )

2

∣∣∣∣∣

sup
i=1,2,...,n

∣∣∣Fxx
(
tni , W̃

n
i+1

)
− Fxx

(
tni ,W

n
i+1

)∣∣∣
n−1∑

i=0

(∆n
iW )

2 P→ 0

Note that the convergence of Sni , i = 1, . . . , 5 involve different modes: Sn1 and Sn2 converge almost

surely, Sn3 , S
n
4 converge in L2, and Sn5 converges in probability. To combine the results, we note that

convergence in L2 implies convergence in probability (Brzezniak and Zastawniak, 2000). Thus all Sn3 , S
n
4

and Sn5 converge in probability. Note also that there is a subsequence {nk}k=1,2,... such that {Snk3 }k=1,2,...

converge a.s (Brzezniak and Zastawniak, 2000). Along this subsequence, we can find a further subsequence

nkl such that Snkl4 converges a.s., and so forth. Therefore, all Snj j = 1, . . . , 5 converge a.s. with respect

to some subsequence m1 < m2 < · · · , say. Then

F (T,WT )− F (0,W0)

= lim
k→∞

{
mk−1∑

i=0

Ft
(
tmki ,Wmk

i+1

)
∆mk
i t+

1

2

mk−1∑

i=0

Fxx (tmki ,Wmk
i ) ∆mk

i t+

mk−1∑

i=0

Fx (tmki ,Wmk
i ) ∆mk

i W

+
1

2

mk−1∑

i=0

Fxx (tmki ,Wmk
i )

[
(∆mk

i W )
2 −∆mk

i t
]

+
1

2

mk−1∑

i=0

[
Fxx

(
tmki , W̃mk

i

)
− Fxx (tmki ,Wmk

i )
]

(∆mk
i W )

2

}

=

∫ T

0

[
Ft (t,Wt) +

1

2
Fxx (t,Wt)

]
dt+

∫ T

0

Fx (t,Wt) dWt, a.s.

The general case where Ft, Fx and Fxx are not bounded is treated in (Brzezniak and Zastawniak, 2000).

Example 3.4. For F (t, x) = x3 we have Ft(t, x) = 0, Fx(t, x) = 3x2 and Fxx(t, x) = 6x. By Itô’s formula

we obtain

d
(
W (t)3

)
= 3W (t)dt+ 3W (t)2dW (t)
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4 Stochastic Differential Equation

We are now ready to introduce the Stochastic Differential Equation (SDE).

In stochastic calculus we want to allow the differential equation to be influenced by a random process, or

a ”white noise” at any given point in time. Recall the example from 2.1 where we wanted to model the

increase of money deposited in a bank account. For this simple problem, we used the ODE dX
dt = aX

which had the solution X(t) = X0e
at with initial condition X(t0 = 0) = X0. Consider now instead the

scenario where we want to ”save” or invest money on the stock market. Since the evolutionary processes

of stock market prices are not deterministic, we need to include some element of randomness in our

equation.

We can do so by rewriting the equation to dX(t) = aX(t)dt, and then instead of the constant a, we

introduce a stochastic process R such that R = a+ σ dBdt (Evans, 2014).




dX(t) = aX(t)dt+ σX(t)dB(t)

X(t0 = 0) = X0

(4.0.1)

Equation (4.0.1) can of course also be written on the form dX(t)
dt = aX(t)+σX(t)dB(t)

dt , but from this point

of view, the addition of this white noise term dB(t)
dt is not trivial, since this denotes the time derivative of

Brownian motion, which is nowhere differentiable. Despite this, Brownian motion is often referred to as

integrated white noise, implying that white noise is the derivative of Brownian motion. We will instead

consider Brownian motion to be integrated white noise.

The development of the price of stocks is not linear but depends on the current price, so we will use a

logarithmic scale to model the price. We let z = logX, and then we apply Itô’s lemma.

Since the terms dt2 and dtdB(t) tend to zero faster than dt, we set them to zero in the taylor expansion,

and substitute dB(t)2 with dt, which leads to

dX2 = a2X2(t)dt2 + 2aX(t)2σdtdB(t) + σ2X2(t)dB2(t) = σ2X2(t)dt.

We now get

dz = d log(X) =
1

X
+

1

2

−1

X2
(dX)2 = adt+ σdB − 1

2X2
σ2X2dt =

(
a− 1

2
σ2

)
dt+ σdB

This SDE can be solved by stochastic integration since σ is constant, which leads us to

z(t) = t

(
a− σ2

2

)
+ σ(B(t)−B(0)) + z(0) = t

(
a− σ2

2

)
+ σB(t) + log(X0).

Having solved z(t), we can now calculate the solution to our SDE (4.0.1) by exponentiation

X(t) = ez(t) = e

(
a−σ2

2

)
t+σB(t)+log(X0)

= X0e

(
a−σ2

2

)
t+σB(t)

The graphs in figure (5) visualize the examples of ODE from section (2.1) and SDE (4.0.1). We can see

the effect of the Brownian motion quite clearly since the two graphs for the stock prices are very different

from each other. The graph on the left was influenced by a negatively trending BM, resulting in a weak

development of the stock price, while the graph on the right was influenced by a strong positive BM

yielding a much higher return on investment. Both graphs are based on the same ODE, which is shown

below, and the same BM, yet they produce significantly different results.
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Figure 5: SDE’s with their underlying Brownian motion and ODE

4.1 Solving SDE

There are many types of SDEs, hence there is also quite a few different approaches to solving them. For

instance, if the functions b(X(t)),B(X(t)) are linear, we could use a technique called coefficient matching.

To demonstrate how this is done, we consider the SDE



dXt = b(t,Xt)dt+B(t,Xt)dWt, (t > 0)

X(0) = x0

to which, as we have previously seen, the solution can be written on the form

Xt = x0 +

∫ t

0

b (s,Xs) ds+

∫ t

0

B (s,Xs) dWs. (4.1.1)

If we want to find the strong solution to this SDE, that is equivalent to finding a function f : [0,∞)×R→
R such that Xt = f(t,Wt). To find this f , we start by applying Itô’s formula

f (t,Wt) = f(0, 0) +

∫ t

0

{
1

2

∂2f

∂x2
(s,Ws) +

∂f

∂s
(s,Ws)

}
ds

+

∫ t

0

∂f

∂x
(s,Ws) dWs

(4.1.2)

Now if we compare the terms in (4.1.1) and (4.1.2), we see that

1

2

∂2f

∂x2
(s, x) +

∂f

∂s
(s, x) = b(s, f(s, x))

∂f

∂x
(s, x) = B(s, f(s, x))

f(0, 0) = x0

As an example, consider the most basic example of an SDE



dXt = dt+ dBt

X0 = x0.

The solution to this SDE is Xt = x0 +
∫ t

0
dt+

∫ t
0
dBt = x0 + t+ Bt, as we know from (4.1.1). So let us

check that coefficient matching will bring us the same result. Applying Itô’s formula to f(t,Wt) = Xt

we get the following system of equations

1

2

∂2f

∂x2
(s, x) +

∂f

∂s
(s, x) = 1

∂f

∂x
(s, x) = 1

f(0, 0) = x0.
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Solving this system, we obtain the following

∂f

∂x
(s, x) = 1⇒ f(s, x) = x+ g(s)

1

2

∂2f

∂x2
(s, x) +

∂f

∂s
(s, x) = 1⇒ g′(s) = 1⇒ g(s) = s+ c0

f(0, 0) = x0 ⇒ c0 = x0.

Next we will see how the same method can be used to solve a slightly more complex non-linear SDE





Xt = (Xt −X3
t + cos (2πt))dt+

√
2σdWt

X(0) = 1.

We set a(x) = x− x3 + cos(2πt), b(x) =
√

2σ and define the stochastic process

Yt =

∫ Xt

X0

ds

b(s)
=

∫ Xt

X0

ds√
2σ

=

[
s√
2σ

]s=Xt

s=0

=
Xt√
2σ
−
(
X0√
2σ

)
=
Xt − 1√

2σ
. (4.1.3)

Now, we know from Itô’s lemma that

f(Xt)− f(X0) =

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs)b
2(Xs) ds,

where ∫ t

0

f ′(Xs) dXs =

∫ t

0

f ′(Xs)a(Xs) ds+

∫ t

0

f ′(Xs)b(Xs) dWs. (4.1.4)

For f(x) = x√
2σ

we get

Yt =
Xt − 1√

2σ
= f(Xt)− f(X0) =

∫ t

0

1√
2σ

dXs +
1

2

∫ t

0

0 · b2 ds

=

∫ t

0

1√
2σ

dXs =

∫ t

0

f ′(Xs) dXs
(4.1.4)

=

∫ t

0

f ′(Xs)a(Xs) ds+

∫ t

0

f ′(Xs)b(Xs) dWs

=

∫ t

0

1√
2σ

(Xs −X3
s + cos (2πs) ds+

∫ t

0

1√
2σ

√
2σ dWs =

1√
2σ

(
X2
t

2
− X4

t

4
+

sin (2πt)

2π
− 1

4

)
+Wt

Combining (4.1.3) and (4.1.4) we obtain the result

Xt =
3

4
+
X2
t

2
− X4

t

4
+

sin (2πt)

2π
+
√

2σWt.

We will see later on in the numerical section of this thesis that this type of non-linear SDE can be used

for simulating rare events.
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5 Path integral

5.1 Background

In ordinary calculus, we come across the multi dimensional integral when posed with problems such as

determining the volume of a sphere or other more abstract concepts like hypervolumes of n dimensions.

The key point here being that an n-dimensional integral integrates over n variables x1, ..., xn, whereas

the path integral integrates over an infinite amount of functions f(x) of a variable x, which may be a

vector or a real number. This type of integral was first introduced by Norbert Wiener who used in the

fields of Brownian motion and diffusion theory. It is therefore sometimes also referred to as a Wiener

integral. The reason why this type of integral is important for the study of rare events is that we can use

the path integral to find the most probable path to the rare event. When a rare event occurs, the state

of the system in question jumps from one steady state to another, and it can do so in an infinite number

of ways, i.e take any of an infinite number of paths. Being a rare event, all of these paths are extremely

unlikely to occur, however there is one path which is much more probable than all the rest of them, and

that is the path we want to find.

5.2 Probability distributions and definitions

Consider again equation (??), and let this random walk represent the movement of a particle which

moving randomly along the x-axis by steps of size ` and time ε. The particle can move from point x0 = 0

to point xε = ±` during the first step in the time ε. As mentioned earlier, this is a discretized example of

a Brownian motion or a Wiener process with equal probability for the particle to move in either direction.

Seeing as the particle can only move a distance of ` in each step, we write the probability for the particle

to travel from point x = i` to the point x = j` during one time step ε as

W (i`− j`, ε) =

{
1
2 if |i− j| = 1

0 otherwise
(i, j ∈ Z) . (5.2.1)

This discrete step random walk represents a basic example of a Markov chain, which can be characterized

by a pair (W (tn),w(0)) with W (tn) as the transition matrix, and w(0) = wi(0) as the initial probability

distribution, i.e the probability of event i happening at the starting time t = 0 is given by wi(0), and the

probability distribution wi(tn) at the time tn is given by Wij(tn)(Chaichian and Demichev, 2001):

wi (tn) =
∑

j

Wij (tn)wj(0), n = 1, 2, 3...

and when the time nε has passed as

wi(nε) =
∑

j

(Wn(ε))ijwj(0). (5.2.2)

If we know the position x = 0 of the particle at the starting time t0 = 0, we have wi(0) = 0 for i 6= 0 and

w0(0) = 1, or, using the Kronecker delta3,

δi0 = wi(0). (5.2.3)

3The Kronecker delta is a function of two variables, usually just non-negative integers. The function evaluates to 1 if

the variables are equal, and 0 otherwise: δij =

{
0 if i 6= j

1 if i = j
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Additionally, since wi and Wij are both probabilistic, we will always have

0 ≤ wi(0) ≤ 1,
∑

i

wi(0) = 1

0 ≤Wij ≤ 1,
∑

i

Wij = 1.

For our example with the discrete step random walk (Brownian motion), the components of the infinite

matrix W (ε) are given by Wij(ε) = W (i`− j`, ε), and so after n time steps of duration ε the transition

probabilities will be given by the product of the n matrices W (i`− j`, nε) = Wn(ε)ij .

Similarly, the probability distribution wi(nε) after the time nε ≥ 0 will be given by

wi(nε) =
∑

j

(Wn(ε))ij wj(0).

The matrix notation of this is w(nε) = Wnw(0), and so viewing Wn as a function of the time variable n,

this describes the time evolution of our system. So how do we define the transition matrix W? We start

by introducing the two infinite operator matrices L and R which serves to change the particles position

by an amount ` to the left and to the right respectively. The components of these matrices will be given

by

Lij = δ(i+1)j , Rij = δi(j+1)

and thus we write L and R as

L =




. . .
. . . · · · · · · 0

... 0 1
...

...
. . .

. . . 0
... 0 1

0 · · · · · · · · · . . .




, R =




. . . 0 · · · · · · 0

1 0
...

0
. . .

. . .
...

... 1 0
...

0 · · · · · · . . .
. . .




.

A transition of the particle given by the action of L is therefore defined by

wi → w′i =
∑

j

Lijwi = wi+1

meaning that the distribution has been shifted to the left. If we consider the distribution for the particle

located at position k, wi(k) = δik, we further notice that after letting L act on wi(k) we get wi+1(k) =

δ(i+1)k = δi(k−1), which tells us that the new position for the particle is at k − 1.

Moving forward, we will require of the matrices L and R that they are invertible. If one were to take

trivial examples of L and R using 4x4 matrices, one would find them to be singular and hence not

invertible. Multiplying the 4x4 L and R, we get the results

L =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0



, R =




0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0




LR =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0



, RL =




0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



.
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Seeing as the real matrices are of infinite size, meaning that our particle will never reach the edge of the

system, we consider them to be invertible, resulting in L = R−1 and so RL = LR = I. Connecting this

with equation 5.2.1, we can write W as

W =
1

2
(R+ L)

and find an expression for the transition matrix Wn after n transitions using the binomial formula

Wn =
1

2n

n∑

k=0

(
n

k

)
RkLn−k =

1

2n

n∑

k=0

(
n

k

)
R2k−n =

1

2n

n∑

k=0

(
n

k

)
Ln−2k.

For L and R, we can derive the components just by using ordinary matrix multiplication, leading to

Lnij = δ(i+n)j

Rnij = δi(j+n)

Now we can expand our expression 5.2.1 for the probability of the particle to from point i to point j

within one unit of time ε to define the probability of the particle moving from point i to point j during

the time nε

W (i`− j`, nε) =





0 if |i− j| > n

or (i− j)|+ n is odd

1
2n

(
n

1
2 (n+i−j)

) if |i− j| ≤ n
and (i− j) + n is even.

Similarly, we formulate the expression for the evolution of the probability distribution

wi(n) =

{
0 if |i| > n or (i+ n) is odd
1

2n

(
n

1
2 (n+i)

)
if |i| ≤ n and (i+ n) is even

(5.2.4)

In order for us to be able to define a difference equation and the time derivative of w, we write the

location index i of wi(n) as an argument of w, w(i`, nε)
def≡ wi(n), and make use of a known recursion

formula for binomial coefficients

(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
.

If we let x = i`, t = nε, we can write eq 5.2.4 as

w(x, t+ ε) =
1

2
w(x+ `, t) +

1

2
w(x− `, t).

and, using some algebraic manipulation as

w(x, t+ ε)− w(x, t)

ε
=
`2

2ε

w(x+ `, t)− 2w(x, t) + w(x− `, t)
`2

. (5.2.5)

Since we are dealing with a discretized example of the continuous system, we now let ` → 0, ε → 0 and

thus fix the ratio D = `2

2ε letting the time and location variables x and t be continuous to better reflect
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reality. Using D as the diffusion constant, we see that eq 5.2.5 is the diffusion equation4

∂w(x, t)

∂t
= D

∂2w(x, t)

∂x2
. (5.2.6)

Seeing as we now have moved to continuous variables, we will naturally be dealing with integrals instead

of summations and hence will be using the Dirac delta function5 instead of the Kronecker delta leading

to the continuous time version of the initial condition 5.2.3

w(x, t) −→
t→0

δ(x).

We want to find a solution to the diffusion equation (5.2.6), and the way we do this is via a Fourier

transform. We start by collecting the information we have

∂w(x, t)

∂t
= D

∂2w(x, t)

∂x2

w(x, 0) = δ(x) =





w0 if x = 0

0 otherwise.
(5.2.7)

To solve this ordinary differential equation, we will use Fourier transforms. The first thing we do is write

down w(x, t) in terms of its Fourier transform

w(x, t) =

∫ ∞

−∞
eikxw̃(k, t) dk. (5.2.8)

Next we take the Fourier transform of equation (5.2.6)

F
[
∂w

∂t

]
= F

[
D
∂2w

∂x2

]

which, by the rules of derivation and convolution for Fourier transforms expands to

F
[
∂w

∂t

]
=
∂w̃

∂t

F
[
D
∂2w

∂x2

]
= D · F

[
∂

∂x

]
F
[
∂w

∂x

]
= D(−ik)(−ikw̃(k, t)) = −Dk2w̃(k, t)

Our diffusion equation (5.2.6) is now reduced to the ODE

∂w̃(k, t)

∂t
= −Dk2w̃(k, t). (5.2.9)

4The diffusion equation is a parabolic partial differential equation. It describes the macroscopic behavior of many micro-

particles in Brownian motion, resulting from the random movements and collisions of the particles, and is related to Markov

processes, such as random walks. The equation is usually written (with D constant) as the linear differential equation:

∂φ(r, t)

∂t
= D∇2φ(r, t)

where φ(r, t) is the density of the diffusing material at location r and time t and D(φ, r) is the collective diffusion coefficient

for density φ at location r; and ∇ represents the vector differential operator del.

5The Dirac delta function δ(x) is a function on the real line which has the value zero everywhere except at the origin,

where its value is infinite (which also satisfies
∫∞
−∞ δ(x)dx = 1)

δ(x) =

{
+∞, x = 0

0, x 6= 0
.
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We solve this ODE using the integrating factor method, where the integrating factor I for this equation

is I = e
∫
Dk2 dt = eDk

2t

∂w̃(k, t)

∂t
= −Dk2w̃(k, t)

⇔ ∂w̃(k, t)

∂t
+Dk2w̃(k, t) = 0

Multiplying this with the integrating factor and taking the integral of both sides yields

∫
eDk

2t ∂w̃(k, t)

∂t
+ eDk

2tDk2w̃(k, t) dt = 0

⇔ eDk
2tw̃(k, t) + c̃2(k) = 0

⇔ w̃(k, t) = c̃1(k)e−Dk
2t

The function c̃1(k) is the Fourier transform of our initial condition (5.2.7), so we now need to find the

Fourier image of w(x, 0) = δ(x). The Dirac delta function is, as familiar defined as

δε(x− a) =





1
ε if a < x < a+ ε

0 otherwise.

Using this together with the mean value theorem for integral calculus

∫ b

a

f(x) dx = (b− a)f(ξ), a < ξ < b,

and the properties of the integral of the Dirac delta function we obtain

∫ ∞

−∞
δε(x− a)f(x) dx =

1

ε

∫ a+ε

a

f(x) dx =
1

ε
(a+ ε− a)f(η) = f(η), a < η < a+ ε.

If we now let ε→ 0, we find that

∫ ∞

−∞
δε(x− a)f(x) dx = f(a),

and so, the Fourier image of δ(x− a)

δ̃(x− a) =
1

2π

∫ ∞

−∞
eiαtδ(x− a) dx =

1

2π
eiαa,

which gives us for a = 0

δ̃(x) =
1

2π
= w̃(k, 0).

This leads us to the solution of our ODE (5.2.9)

w̃(k, t) = w̃(k, 0)e−Dk
2t =

1

2π
e−Dk

2t,

which gives us the solution to equation (5.2.8)

w(x, t) =

∫ ∞

−∞

1

2π
eikxe−Dk

2t dk (5.2.10)

If we use the well known value of the Gaussian integral

∫ ∞

−∞
e−αx

2

dx =

√
π

α
(5.2.11)
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and write the integrand of equation 5.2.10 on a common exponent

e−Dk
2teikx = e−Dk

2t+ikx,

then, completing the square of the common exponent

−Dk2t+ ikt = −Dt
(
k2 − ikx

Dt

)
= −Dt

((
k − ix

2Dt

)2

+

(
− x2

4D2t2

))
= −Dt

(
k − ix

2Dt

)2

− x2

4Dt
,

leads us to

∫ ∞

−∞

1

2π
e−Dk

2teikxdk = exp

{
− x2

4Dt

}
1

2π

∫ ∞

−∞
exp

{
−Dt

(
k − ix

2Dt

)2
}
dk.

If we now perform a variable substitution





y = k − ix
2Dt

dy = dk,

we will obtain an expression for the probability distribution w(x, t) (which is also the solution to the

diffusion equation 5.2.6 with initial condition 5.2)

w(x, t) = exp

{
− x2

4Dt

}
1

2π

∫ ∞

−∞
exp

{
−Dty2

}
dy = exp

{
− x2

4Dt

}
1√

4πDt
.

Now, once again using the result from equation 5.2.11, we can see that

∫ ∞

−∞
w(x, t)dx =

∫ ∞

−∞

1√
4πDt

exp

{
− x2

4Dt

}
dx =

1√
4πDt

√
4πDt = 1.

We are now working with continuous variables, so we will also need a new expression for our transitional

probability W (i` − j`, nε). Instead of using the notations x = i`, x = j`, we write the infinitesimal

transition probability with start and end points (x0, t0), (xt, t), corresponding to the discrete one as

WN
ij = W (xt, t|x0, t0).

This leads us to the expression for the probability density w(xt, t), which is the continuous version of

equation 5.2.2

w(xt, t) =

∫ ∞

−∞
W (xt, t|x0, t0)w(x0, t0)dx0.

The transition probability now satisfies the diffusion equation

∂W (xt, t|x0, t0)

∂t
= D

∂2W (xt, t|x0, t0)

∂x2
t

, t > 0

which, with initial condition W (xt, t|x0, t0) −→
t→t0

δ (xt − x0) has the solution

W (xt, t|x0, t0) =
1√

4πD(t− t0)
exp

{
− (xt − x0)2

4D(t− t0)

}

attained by using the same methods for solving diffusion equations as above.
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5.3 The path integral

Let us now consider the probability of a particle being within a certain section of the plane or within a

certain ”gate” consisting of endpoints A and B at the time t.

Figure 6: Trajectories of a Brownian particle starting from the origin and ending anywhere in the gate

AB at the moment t.

We will denote the probability of the particle being anywhere within the section [AB] as

P{x(t) ∈ [AB]} =

∫ B

A

w(x, t)dx

which we now know can also be expressed as

∫ B

A

exp

{
− x2

4Dt

}
1√

4πDt
dx.

To integrate along an entire path though, we will need to increase the amount of gates. We now consider

a particle starting at (x0, t0), ending up somewhere in the gate [AnBn], and passing through all the gates

[A1B1], [A2B2], . . . , [An−1Bn−1] along the way

Given the independent probabilistic nature of the Brownian motion, we get the expression for the proba-

bility of the particle following this particular path, passing through these particular gates as the product

of the individual probabilities

P {x (t1) ∈ [A1B1] , x (t2) ∈ [A2B2] , . . . , x (tN ) ∈ [ANBN ]}

=

∫ B1

A1

exp
{
− x2

1

4Dt1

}

√
4πDt1

dx1

∫ B2

A2

exp
{
− (x2−x1)2

4D(t2−t1)

}

√
4πD (t2 − t1)

dx2

×
∫ B3

A3

exp
{
− (x3−x2)2

4D(t3−t2)

}

√
4πD (t3 − t2)

dx3 · · ·
∫ BN

AN

exp
{
− (xN−xN−1)2

4D(tN−tN−1)

}

√
4πD (tN − tN−1)

dxN .

(5.3.1)

Once again, since we are dealing with continuous time we will let ti − ti−1 = ∆ti → 0, 1 ≤ i ≤ N , and

thus increase the amount of gates infinitely, while letting the size of each gate go to zero Bi − Ai → 0.

In doing so, we will naturally consider the limit as ∆ti → 0 of equation 5.3.1 to be the probability of the

particle following the path x(τ). Consider now the term
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Figure 7: A trajectory of a Brownian particle starting from origin and passing through the gates AiBi

at the times ti(i = 1, . . . , N)

∫ Bi+1

Ai+1

exp
{
− (xi+1−xi)2

4D(ti+1−ti)

}

√
4πD (ti+1 − ti)

dxi+1,

which can equivalently be expressed as

1√
4πD (ti+1 − ti)

∫ Bi+1

Ai+1

exp

{
− (xi+1 − xi)2

4D (ti+1 − ti)

}
dxi+1.

Since the size of the gates → 0,

lim
∆ti→0
N→∞

exp

{
−

N∑

i=1

(xi − xi−1)
2

4D (ti − ti−1)

}
N∏

i=1

dxi√
4πD (ti − ti−1)

= lim
∆ti→0
N→∞

exp

{
− 1

4D

N∑

i=1

(
xi − xi−1

ti − ti−1

)2

∆ti

}
N∏

i=1

dxi√
4πD∆ti

≡ exp

{
− 1

4D

∫ t

0

ẋ2(τ)dτ

} t∏

τ=0

dx(τ)√
4πDdτ

.

(5.3.2)

When analyzing the jumps caused by rare events in dynamical systems, we know the starting point

(x0, t0), and the endpoint xn, tn, and in retrospect we can see the exact path the particle has taken. But

if we were to try and predict which path it would take beforehand, we would have to consider all the

possible paths from the starting point to the end point and then find the most probable one of them.

To do so, let us define the set C of paths with certain starting and end points as the following:

• C {x1, t1;x2, t2} denotes the set of trajectories starting at the point (x1, t1) and having the endpoint

(x2, t2)

• C {x1, t1; [AB], t2} denotes, in the one-dimensional case, the set of trajectories with the starting

point x1 = x (t1) and ending in the gate [AB] at the time t2.

So in order to get an expression for the probability of the particle ending up somewhere within the gate

[AB], we have to sum up all the probabilities from equation 5.3.2 for all the possible paths that end up

in the gate [AB] over the set C {0, 0; [AB], t}
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P{x(t) ∈ [AB]} =

∫

C{0,0;[AB],t}

t∏

τ=0

exp

{
− 1

4D

∫ t

0

dτẋ2(τ)

}
dx(τ)√
4πDdτ

=

∫ B

A

1√
4πDt

exp

{
− x2

4Dt

}
dx

where
∫
C{0,0;[AB],t} represents the summation over the set of paths. This kind of summation over a set

of paths is what is known as a Wiener path integral.
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6 Rare events

The type of rare event studied in this thesis is one of a Brownian particle moving in a double-well potential.

Figure 8 shows on the left hand side an illustration of a Brownian particle resting at the minima of one

of the wells in the double well potential, and the right hand side shows the trajectory of the Brownian

particle as a function of time. The motion of the particle here is restricted within one well, moving up

the sides and back down to the minima. The trajectory produced by the movement of the Brownian

particle will follow a stable periodic orbit around the local minima specified by its initial condition, while

being influenced by the noise term
√

2σξ(t) and hence exhibit fluctuations of order σ. When a rare event

occurs however, the particle will escape the current well and transcend the barrier leading to the other

well. These wells represent the steady states of the particle’s movement. To simulate a rare event in this

thesis, we will run a numerical simulation for a long time until we observe a jump. The specifics of this

simulation is discussed in the next section.

Figure 8: Brownian particle moving in a double well potential, along with visualization of the system

before, during and after a rare event (jump) occurs.

The trajectory x(t) here was produced by simulating the following SDE known as a Langevin equa-

tion6(Giorgini et al., 2019)
dx

dt
= ẋ = F (x(t), t) +

√
2σξ(t) (6.0.1)

where σ = 0.12√
dt

and

F (x, t) = −U ′(x) + 0.7 cos(2πt),

where U(x) is a double-well potential, U(x) = −x2

2 + x4

4 , 0.7 cos(2πt) is an external periodic force and

ξ(t) is zero mean Gaussian white noise with correlation function

〈ξ(t)ξ(s)〉 = δ(t− s)

with δ being the Dirac delta function. The only non-deterministic part of equation 6.0.1 is ξ(t), and so

if we set σ = 0 the particle will just stay at the local minima specified in the initial condition. As we

increase the value of σ, the particle will begin to oscillate around the minima within a radius proportional

to σ.

6In physics, the Langevin equation is a stochastic differential equation describing the time evolution of a subset of the

degrees of freedom. The original Langevin equation describes Brownian motion.
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In order for the particle to escape the potential well it is contained in, one of two things need to happen:

1. The base oscillation is large, i.e σ needs to be large

2. The noise ξ(t) deviates significantly from zero.

If we have a large base oscillation, then the event of the particle escaping the potential well is not rare

and therefore this scenario is not interesting for us.

For the purpose of finding some indication that a rare event is about to occur, we will run the simulations

with σ as small as possible, thus making sure that our rare event is in fact rare.

In order to find a precursor that will warn us that a rare event is about to occur, we will focus on the

behaviour of the system within a short time period leading up to the jump. We want to find the most

probable path between the point (xi, ti) which lies within one potential well, and (xf , tf ) which lies at the

maximum of the barrier separating the two wells. Once the particle reaches this point, all the possible

paths it can take from there leads down into the other well. Since the system is influenced by the non-

deterministic noise, we know from section 5 that there exists an infinite number of paths the particle can

take between the two points, but also that there is one which is much more probable than all the others.

In fact, since we are dealing with an oscillating system which progresses for a long time, there are going

to be one such optimal path for each period of the system that passes between the time ti and tf .

The actual derivation of the construction of the optimal path is explained in further detail in (Giorgini

et al., 2019) and (Lehmann et al., 2000), however this is beyond the scope and indeed level of this thesis,

but we will discuss the outlines of the prediction scheme.

To find the most probable path, one uses path integrals in order to find the path of least action(Sussman

et al., 2001). In physics, the path that is actually followed within a dynamical system is the path for

which the action is minimized. Action can be described as a measurement for the overall motion of each

path, and hence the most probable or most direct path will be the path with the least action.

The optimal path in each period we denote by xk(t) and the noise for the same path, i.e the optimal noise

behaviour, is denoted pk(t). These paths and momenta are shown to satisfy the system of differential

equations

ẋk(t) = 2pk(t) + F (xk(t), t)

ṗk(t) = −pk(t)F ′(xk(t), t). (6.0.2)

where the momenta is defined as pk(t) := 1
2 (ẋk(t)−F (xk(t), t)). Comparing equation (6.0.1) and (6), we

can extract the noise ξ(t)

ξ(t) =
1√
2σ

(ẋ(t)− F (x(t), t)) (6.0.3)

and see that the optimal conditions for the jump is when ξ(t)→
√

2p(t)
σ . When the system approaches a

rare event, the momentum of the optimal path is expected to exhibit an exponential growth according to

p(t) = p0e
−λs(t−t0)(Giorgini et al., 2019). If we extract the noise of x(t) using equation (6.0.3), we can

monitor its behaviour, so that if and when it starts to show increasing irregularities we can compare its

behaviour to that of the optimal condition ξ(t) =
√

2p(t)
σ , we can make a prediction about the jump.

When we study the system retroactively, we know within which period the event will occur and so we

only need to consider one of these optimal paths. Using this path, we extract the noise then we analyze it

and use its characteristics for our prediction. One way we can analyze the noise is to construct a moving
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average of varying window sizes, and try to find some sort of unique deviation. This can in turn act as

a kind of indicator that a rare event is imminent. In figure (9) below we have constructed such moving

averages of window size 10 for the same noise during varying stretches of the time from 0 to the time of

the jump at approximately 800.

(a) (b)

(c) (d)

Figure 9: Moving averages of the same p(t) plotted over times: (a) 0 to 8000, (b) 5000 to 8000, (c) 7500

to 8000, (d) 7900 to 8000. This to clarify that this spike in moving averages only occurs once, in close

proximity to the jump.

7 Numerical methods

The method of integration used for the simulations in this thesis is one called Leapfrog integration. This

is a second order method that uses the recurrence relation

vi+ 1
2

= v

(
xi +

dt

2
, ti +

dt

2

)
,

xi+1 = xi + vi+ 1
2
dt, i = 0, 1, 2, ....

In this case we will specify the initial conditions v 1
2

and x0, but one can also use some sort of self starting

scheme like for example the Euler method to acquire these values. As we can see from the recurrence

relation, it progresses the velocity v at half step indices while the position x progresses at integer indices.

This causes the process of progression for the two variables to ”leapfrog” over each other, which is why

the scheme is so named.
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The leapfrog integration method is implemented using the SDE 6.0.1 as velocity

vi = v(xi, ti) =
dxi
dti

= F (x(ti), ti) +
√

2σξ(ti) = xi − x3
i + 0.7 cos(2πti) +

√
2σξ(ti)

with initial conditions
t0 = 0,

dt = 0.1,

σ =
0.12√
dt
,

x(t0) = x0 = −1,

v 1
2

= F (x0, t0) +
√

2σξ(ti)

with ξ(ti) taken from a Box-Muller transform7 (Box and Muller, 1958). We let the simulation run for

a long time until we encounter a jump from one potential well to the other, at which point we plot the

behaviour of the system along with the underlying noise before, during and after this jump occurs. As

stated, how we choose the value of σ determines the rareness of the event, so a larger value of σ would

yield a less rare event and thus would need less deviation of the noise, whereas a smaller value of σ makes

the event more rare and the analysis of the noise easier.

After obtaining data from a simulation that resulted in a rare event, we can plot the noise and the system

to see how they have behaved in relation to each other. We can also analyze the noise in different ways,

to see if some criterion have been fulfilled for its behaviour, such as accumulation of its moving average

or a spike in the data.

7The Box-Muller transform is a method for generating pseudo-random pairs of independent, standard, zero mean, unit

variance normally distributed random numbers, given a source of uniformly distributed random numbers.
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7.1 Numerical Results

Our simulations have yielded various results showing a varying amount of jumps within the same period

of time, 200 periods. Values of σ between 0.38 and 0.80 have been used in numerous simulations, of which

a selection of visualizations is included below in figure 10.

(a) (b)

(c) (d)

Figure 10: Visualizations of simulations of the Langevin equation (6.0.1) with various values of σ, demon-

strating that larger values of σ increase the probability of the particle transitioning from one potential

well to another. (a) σ ≈ 0.38, (b) σ ≈ 0.60, (c) σ ≈ 0.70, (d) σ ≈ 0.80.

In all of these cases, we can see the same kind of spike in the moving average in close proximity to the

jumps. However, as we can see in figure 9, the base oscillation of the system increases as the value of σ

increases. This makes the jump less likely and thus less relevant to our studies, since they concern rare

events. If we look closely at figures 11-14 below, we can see that the moving average of the noise exhibits

a positive spike shortly before a jump from the potential well around −1 to the well around 1, and it

exhibits a negative spike shortly before a jump from the well around 1 to the well around −1. This can

be expected since intuitively, if we look again at figure 8, clearly in order for the particle to leave the left

well and transition to the right well, the direction of the noise impacting it would have to be positive,

moving the particle to the right, and it would have to be negative to shift the particle to the left.
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Figure 11: Plot of a system with one jump along with the moving average of the noise

Figure 12: Plot of a system with two jumps along with the moving average of the noise
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Figure 13: Plot of a system with five jumps along with the moving average of the noise

Figure 14: Plot of a system with eleven jumps along with the moving average of the noise
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The above examples are made with a moving average of the noise, but one can also identify a spike in

the data looking only at the behaviour of the noise itself. This is demonstrated in figure (15), where we

have plotted the same system as figure (10(a)). Here we have plotted the system along with the noise

scaled down by a factor of 1
5 in order to make visual assessment easier.

Figure 15: Visualization of the system x(t) and the underlying noise p(t) over 2000 time steps.

As we can see in figure 15, the scaled down noise p(t) oscillates steadily around zero until it exhibits a

spike shortly before the system jumps. It can seem that there are more spikes in the noise, and indeed

there is, but there is only one spike here where the noise increases exponentially in accordance with the

exponential growth discussed in section 6, and that is the spike immediately before the jump.
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8 Conclusion

We have studied methods of finding an early warning indicator of an upcoming rare event, given a

dynamic system governed by a stochastic differential equation. The methods studied have shown that

there exists a way to find such an early warning indicator using stochastic calculus and path integrals.

In our trials we have used varying values of σ to see how it affects the system and the derivation of the

early warning indicator, where we have found that a smaller value of σ yields a lower probability for the

system to experience a rare event causing the particle to travel from one potential well to another. This

in turn makes the early warning indicator easier to find since it means that the deviation of the noise

needs to be larger for the jump to occur.

There is certainly more to be studied within the field of path integrals, and though we have briefly

discussed definitions and their part in the prediction scheme, the main theory of path integrals lies

beyond the level of this thesis and we will leave it to the reader to further pursue this theory within other

materials, such as (Chaichian and Demichev, 2001).
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