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Abstract

This thesis explores Donsker’s theorem: a theorem in the subject of stochastic processes
that relates a Brownian motion to a limit of random walks. It states that a sequence of
random walks, appropriately rescaled in time and space, and linearly interpolated between
its values at integer times, converges weakly to a Brownian motion.

There are two quite di�erent approaches to proving the theorem that involve entirely
di�erent techniques. Both of them will be described and some of the theory involved will
be presented. As will be shown in this paper, one approach will prove to be a possible
construction of Brownian motion. The second approach assumes its prior existence, but
instead it provides, as a corollary, the Central limit theorem.

1 Introduction
This thesis explores Donsker’s theorem: a theorem in the subject of stochastic processes that
relates a Brownian motion to a limit of random walks. It states that a sequence X (n) of random
walks rescaled in time and space according to n and 1/

√
n respectively, and with paths linearly

interpolated between its values at integer times, converges weakly to a Brownian motion. This
can be viewed as a strengthening of the of the central limit theorem which gives weak convergence
of the random walk at a single point in time.

By observing that the rescaling continuously pushes each point of a path of a random walk to
the left one may see that the convergence (almost surely) cannot be pointwise for every path.
Instead, the convergence stated in the theorem is that of weak convergence of measures which
means that the probabilities for the two processes of having paths being in some speci�ed set of
functions will approach each other.

Interestingly the convergence is not dependent on the distribution of the random variables that
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generates the random walk, but it is dependent on the fact that they are non-degenerate, inde-
pendent, identically distributed with a zero mean and �nite variance.

There are two quite di�erent approaches to proving the theorem. There are two quite di�erent
approaches to proving the theorem that involve entirely di�erent techniques. Both of them will
be here described and some of the theory involved will be presented. The �rst approach is more
analytic in nature; it relies on the fact that one su�cient condition for a sequence of measures on
a metric space to have a limit point is that the measures may with arbitrary precision be guaran-
teed to be supported on a compact set. If we refer to Arzela-Ascoli’s representation of compact
sets in C[0, 1] one may then supply such a condition. Due to an argument involving the cen-
tral limit theorem one may then prove that the whole sequence converges to a distribution of a
Brownian motion. The second approach is more probabilistic in nature and relies on concepts
such as stopping times and the strong Markov property. It involves proving that any random
variable with zero mean and �nite variance is distributed as a Brownian motion at a random
time. Using the strong Markov property one may then argue that each step in the random walk
is distributed as as a Brownian motion at a random time, close to the corresponding point in
time for the random walk. This binds the paths of the random walk to more and more points of
corresponding paths of a Brownian motion and one may then argue that the limit is distributed
as a Brownian motion.

The two proofs make di�erent assumptions which leads to di�erent secondary consequences.
The �rst proof does not depend on the existence a Brownian motion. Indeed, the proof is one
way to derive its existence, perhaps not the easiest, and as such is an example of a construction
that is done with continuous sample paths from the outset. 1 The �rst proof, however, does
depend on the Central limit theorem.

The second proof, on the other hand, does require the prior existence of Brownian motion.
It does not utilize the central limit theorem but instead the central limit theorem follows as an
immediate consequence. It thus provides a method to prove the central limit theorem other than
via the common route of characteristic functions and Levy’s continuity theorem.

2 Interlude: convergence of scaled random walks
Through the central limit theorem one may derive some elementary connections between ran-
dom walks and Brownian motion (as well as between interpolated random walks and Brownian
motion). We will do this in the current section before we turn to the �rst proof of Donsker’s

1On the contrary, other constructions of Brownian motion may �rst provide a process that satis�es the axioms
other than having continuous sample paths. Having established this, one then shows that the process has a contin-
uous modi�cation.
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theorem in the next section. This will serve as an illustration on how much stronger Donsker’s
theorem is.

Convergence of the n:th term from the n:th scaled random walk to a normal distribution

Let (ξi)i∈N be a sequence of independent and identically distributed random variables with zero
mean and second moment equal to one. Consider the random walk we get from the partial
sums Sk =

∑k
i=1 ξi from the sequence. If we, for each n, scale the random walk with 1√

n
we get a

sequence of random walks

((
1√
n

k∑

i=1

ξi

)

k∈N

)

n∈N

.

From the central limit theorem (Theorem 15.37 in Klenke (2013)) we have that the the sequence

(
1√
n

n∑

i=1

ξi

)

n∈N

consisting of the n:th term from the n:th scaled random walk converges to a normal distribution
N (0, 1). In the current section one may consider convergence in distribution of Sn/

√
n to a
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normal distribution, to have the meaning that for any open interval (a, b), the probability that
Sn/
√
n is in (a, b) approaches the probability that a standard normal random variable is in (a, b).

Still using elementary means one may derive the more general statement that the interpolated
random walk

X (n)
t =

1√
n

bt·nc∑

i=1

ξi + (tn− btnc) 1√
n
ξbtnc+1

converges in distribution to N (0, t) for any t ∈ (0, 1).

Some paths of an interpolated random walk on [0, 1]

This is done with an application of the following theorem, Markov’s inequality, Slutsky’s theo-
rem and again the central limit theorem.

Theorem 1. Suppose thatXn, Yn, for n ∈ N, andX are random variables with values in a metric
space (S, ρ). If Xn → X in distribution and ρ(Xn, Yn) → 0 in probability, then Yn → X in
distribution.

Since
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∣∣∣∣X (n)
t −

1√
n
Sbtnc

∣∣∣∣ = (tn− btnc)|ξn+1|

and we have from Markov’s inequality that

P[(tn− btnc)|ξn+1| ≥ ε] ≤ (tn− btnc)E[ξn+1]
ε

it follows that ∣∣∣∣X (n)
t −

1√
n
Sbtnc

∣∣∣∣
in probability→ 0.

Referring to the theorem above, it would be su�cient to show that

1√
n
Sbtnc

in distribution→ N (0, t),

and this follows from Slutsky’s theorem and the central limit theorem, by noting that

1√
n
Sbtnc =

√
btnc√
n
· √
btnc

Sbtnc
in distribution→

√
t ·N (0, 1).

The point of Donsker’s theorem is that we get a much stronger result. Instead for getting a
convergence of at a single point we get convergence over the whole interval - or di�erently put,
convergence of the random functions instead for convergence of a random point.

3 An overview of the subject and statement of the theorem
Donsker’s theorem states the convergence of a random walk to a Brownian motion. To be able
to state the theorem precisely we will �rst discuss and de�ne the concepts and objects involved,
as well as the speci�c kind of convergence in the theorem.

3.1 Stochastic processes and Brownian motion
A stochastic process is a mathematical model of some phenomena that evolves randomly over
time. As model we consider a collection of random variables indexed by numbers in some index
set I ⊂ [0,∞) - where we let the indexing number signify the time of the occurrence of the
random variable.
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In what follows we will assume that a probabilty space (Ω,F , P) where Ω is the set of outcomes,
F is a σ -algebra of subsets of Ω andP is a probability measure onF (See e.g. Chapter 1 in Klenke
(2013) for a treatment of these objects). We make the following de�nitions.

De�nition. A random variable with values in (S,S) is a measurable functionX from (Ω,F , P)
to the measurable space (S,S). If the measurable space (S,S) is R with the Borel-σ algebra B(R)
we will call X a real random variable - or simply a random variable.

De�nition. A stochastic process is a family (Xs)s∈I of real random variables on (Ω,F , P) in-
dexed by some set I ⊂ [0,∞).

By considering a �xed outcome for the stochastic process for all indices, we get a so called path
that evolves (non-randomly) over time. That is, for each �xed outcome ω, (Xs(ω))s∈I is a map
from the index set I to R - the map given by s 7→ Xs(ω) . One may show that this map from
the probability space to the function space is measurable,2 and thus a stochastic process may
equivalently be seen as a random variable with values in the function space RI . Considering this
we will also sometimes write X (t) for this random function at the point t.

A random walk is a stochastic process (Sn)n∈N we get by adding n independent and identically
distributed random variables ξ1, · · · , ξn - that is for each natural number n we let

Sn =
n∑

i=1

ξi

As the name suggest, a random walk is a process which at each step imoves up or down according
to the value of ξi. The random walks we will consider in the theorem are those that are generated
by random variables ξi:s that have expectation equal to zero. As a consequence one would believe
that, on average, a path from such a process ought to evolve as much in a positive direction as in
a negative direction.

A Brownian motion is a stochastic process in continuous time; originally a model for how pollen
moves suspended in water (Brown 1827). As movement in space is continuous, the model has
continuous sample paths. Further it has homogeneous and independent increments. The so
called homogeneity of the increments means that how the process evolves between two times
t1 and t2 only depends on the distance between t1 and t2 - and not on their location on the real

2We may motivate that this map is indeed a random variable by showing that it is measurable as follows: The
product σ -algebra onRI is the smallest σ -algebra such that every coordinate projection πs : f 7→ f (s) is measurable
(that is, it is genterated by the maps πt , t ∈ I). Using the ”factorization lemma” [Corollary 1.82 in Klenke] we see
that X as a random function is measurable if for every t the map ω → πt(X (ω)) = Xt(ω) is measurable. Which is
true by the assumption that Xt is a measurable map.
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line; analogously the independence between the increments means that how the process evolves
between two times t2 and t3 is independent of how the process evolved earlier between the times
t1 and t2.

De�nition. A Brownian motion B = (Bt)t≥0 is a real-valued stochastic process such that

(B1) B0(ω) = 0

(B2) for any n ∈ N and any 0 = t0 < t1 < ... < tn
Btn − Btn−1 , ..., Bt1 − Bt0 are independent

(B3) Bt − Bs
D= N (0, t − s)

(B4) the map t 7→ Bt(ω) is continuous for every ω.3

Brownian motion has the Markov property (Lemma 2.10 in Partzsch & Schilling (2012)). That is
if we consider the process evolving from some time s and onwards (and subtracts the value of the
process at this time s so that it starts with value zero), that process is again a Brownian motion -
and independent of the original process from time 0 to time s.

3.2 Finite dimensional distributions of a stochastic process
As written in the the previous section, a stochastic process may be seen as a random variable with
values in a function space. We will discuss a property of these distributions in this section.

The distribution of a random variable is a function (namely a measure) on a collection of (mea-
surable) subsets of the sample space of the random variable. In an analogous way as a continuous
function on R is determined by its values on the rational numbers - meaning that any two con-
tinuous functions that are equal on the rational numbers indeed are equal on the whole real line
- a distribution may be seen to be determined on particular subsets of its domain.4 This will be
an aid when we prove the convergence of the distributions of the interpolated random walks as
one does not have to show that the limit distribution agrees with the distribution of a Brownian
motion for any measurable set, but may instead consider a more restricted subclass of sets.

As the paths of a Brownian motion are continuous, we will consider one method to introduce a
σ -algebra (the domain of a probability measure) on C[0, 1]. We will then show that any proba-
bility distribution on C[0, 1] is determined by its �nite dimensional distributions - that is deter-
mined on sets of the form

3Due to a Theorem by Kolmogorov and Chentsov [e.g. Theorem 21. 6 in Klenke] it may be derived that any
process that satis�es (B3) has a modi�cation with continuous sample path - but the property is of such importance
that we state it in the de�nition.

4That is on a subclass of the class of measurable set.
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{f ∈ C[0, 1] : f (t1) ∈ B1, · · · f (tn) ∈ Bn}.
5

First let πt : C[0, 1]→ R denote the projection that sends a continuous function on C[0, 1] to
its value at the point t

πt(f ) := f (t).

We may then let the σ -algebra on C[0, 1] be the smallest such that all those projections πt are
measurable; this is written as

σ(πt : t ∈ [0, 1]).

We will now consider something called a∩-stable generator of a σ -algebra.

De�nition. A collection of subset E is called a ∩-stable generator for the σ -algebra σ(E) if it is
closed under intersection, that is

A, B ∈ E =⇒ A ∩ B ∈ E.

One may show (e.g. Lemma 1.42 in Klenke (2013)) that any measure is determined by its values
on a ∩-stable generator E of its domain, the σ -algebra F := σ(E). The argument goes along
the following lines: assuming that two probability measures are equal on the∩-stable generator,
one considers the collections of all sets from the σ -algebra F for which the same holds. This
collection, is then shown to be a σ -algebra itself that does contain the original sigma algebra F .
The two measures are thus equal on F .

The sigma algebra generated by the∩-stable generator of sets of the form

{f ∈ C[0, 1] : f (t1) ∈ B1, · · · f (tn) ∈ Bn}
= {f ∈ C[0, 1] : πt1 (f ) ∈ B1, · · · , πtn(f ) ∈ Bn}

5This property for a distribution to be determined on its �nite-dimensional distribution is not particular for
distributions on C[0, 1] though, but holds for any distribution on a function space.
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certainly generates a σ -algebra that contains the σ -algebra generated by the projections πt.6 Thus
if two measures are equal on this collection - from the∩-stable generator property they are equal
on a σ -algebra that does contain the σ -algebra generated by the projections πt - thus they are
equal on the latter σ -algebra.

3.3 Weak convergence
The concept of convergence we will use is that of weak convergence of measures. The current
section will give a short introduction.

In mathematics we often considers if a sequence xn of objects approaches some other object x
of the same type as n increases; and if so say that the sequence xn converges to x. This of course
requires some speci�cation of what ”approaches” means. There are di�erent ways to specify this
under di�erent generalities and depending on the structure on the collection of objects. The
most straight forward one is when one has a ”metric” on the space that gives a distance between
any two objects. One may then say that the sequence converges if we may make the sequence
become arbitrarily close to x from some n onwards. Below we de�ne a concept of convergence
for sequences of measures. This de�nition does not involve a metric - but it might be noted that
it is possible to �rst introduce such, then de�ning the convergence via this metric and that this
leads to exactly the same limits.

The concept ofweak convergence comes from the subject of functional analysis.7 Theweakmodi-
�er in the name denotes that one weakens the condition for convergence8 and thus may get limits
that would not have satis�ed the original stronger convergence condition. For a characterization
of this weakening of the condition of convergence, consider the condition on the measure of the
boundary δA of A in 2. in Theorem 3 below.

De�nition. We say that a sequence of probability measures (Pn)n∈N on a metric space (S,S)
converges weakly to P if for every bounded and continuous function f : S → R,

lim
n

∫
f dPn →

∫
f dP

The motivation behind the de�nition is the following which tells us a measure is characterized
by the collection of continuous and bounded functions, and gives us that each weak limit is
unique.

6In fact they are equal as can be seen from that the ∩-stable generator of �nite dimensional distributions is
contained in the σ(πt : t ∈ [0, 1]). The reverse inclusion of the σ -algebras is immediate.

7Where to be precise the convergence under consideration in this section would be called weak-* convergence.
8namely by considering convergence in a weaker topology
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Theorem 2. Given two probability measures P andQ on (S,S) , if
∫

f dP =
∫

f dQ

for every bounded and continuous function f : S → R, then P = Q

The theorem above says if two measures are equal on all (measurable) sets that may be approxi-
mated by continuous and bounded functions, then in fact they are equal.

To every random variable X there corresponds the image measure PX := P ◦ X−1. We make the
following de�nition

De�nition. We will say that a sequence Xn of random variables converges weakly to X if the
corresponding measures PXn converges weakly to PX

As the name suggest, a sequence Xn of random variables thus converges in distribution to X if
their distributions PXn behaves more and more as the distribution PX of X . One may wonder if
this could have been formulated as that the distributions PXn , as functions on the collections of
events A of the random variables, converges pointwise to PX? An answer to this is given by the
Portmanteau theorem.

Theorem 3 (Portmanteau theorem). For ametric space E and probability measures µ, µ1, µ2, . . .
on E the following three statements are equivalent.

1. µn
weakly→ µ

2. For all (measurable) A with9 µ(δA) = 0 : limn µn(A) = µ(A)

3. For all closed F ⊂ E : lim supn µn(F ) ≤ µ(F )

We will use the equivalence between 1. and 3. in the second proof. One may also note that 2. gives
rise to the equivalence between convergence in distribution of a sequence of random variables
Xn to X and the pointwise convergence of their distribution functions Fn to F at all points of
continuity of F - when the sequence is real valued.

3.4 Statement of the theorem
We are now almost ready to state the theorem that is the main object of the thesis.

9The boundary δA of a set A is de�ned as the set di�erence between the closure and A and the interior of A.
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We �rst de�ne an interpolated random walk (X (n)
t )t∈[0,1] where, for each path, we connect the

values of the random walk onNwith straight lines, and scale the index, to get a stochastic process
in continuous time on [0, 1].

This interpolated random walk (X (n)
t )t∈[0,1] is de�ned for every natural number n as follows: 10

X (n)
t :=

1√
n

bt·nc∑

i=1

ξi + (tn− btnc) 1√
n
ξbtnc+1

Theorem 4 (Donsker’s theorem). If ξ1, ξ2, · · · are independent and identically distributed ran-
dom variables with mean zero, variance equal to one and if X (n) is the interpolated random walk
constructed from themas above, and (Bt)t≥0 is a Brownianmotion, then (X (n))t≥0 converges weakly
to (Bt)t≥0.

4 Prokhorov’s proof
We now turn to the �rst proof that was initially supplied by Prokhorov.11 It relies on a theorem
by Prokhorov himself, and will not just prove the convergence of the scaled random walk but
also prove the existence of a Brownian motion. Prokhorov’s theorem gives necessary and su�-
cient conditions for a sequence of probability measures to have the property that every subse-
quence has a further subsequence that converges to some probability measure. We will combine
the su�ciency part in this theorem together with a condition on the convergence of the �nite-
dimensional distributions to get a su�cient condition for a sequence of probability measures on
C[0, 1] to converge to a limit - and where we also are able to specify the limit.

First some de�nitions; we assume that the the probability measures are measures on some com-
plete and separable metric space (S, ρ).

De�nition. We say that a sequence {Pn} of probability measures is relatively compact if ev-
ery subsequence {Pnk} contains a further subsequence {Pnk(m)} that converges weakly to some
probability measure Q.

De�nition. A sequence {Pn} of probability measures is tight if for every ε > 0 there exists a
compact set K such that for every n: Pn[K] > 1− ε.

10We assume that every walk starts at zero, that is X (n)
0 = 0.

11Prokhorov, Y. V. (1956) Convergence of Random Processes and Limit Theorems in Probability Theory Theory of
probability & its applications
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Theorem 5 (Prokhorov’s theorem). A necessary and sufficient condition for the sequence {Pn} to
be relatively compact is that it is tight.

A proof of Prokhorov’s theorem is beyond the scope of this thesis but an outline is as follows:
The proof that a sequence µn in F , of probability measures on a metric space (E, d), has a sub-
sequence µnk that converges to a limit µ - and that that limit is a probability measure is done in
the following steps.

1. One collects a countable number of compact subsetsC fromE (that in particular contains
a sequence of compact sets Kn such that for all µ ∈ F , µ(KC

n ) < 1/n). Via a diagonal
argument one shows that there exists a subsequence nk for which µnk(C) converges for
every C in the countable collection C.

2. One then de�nes a set function α on the countable collection C that for each C takes the
value of the limit of the convergent subsequence µnk(C).

3. The goal is then to �nd a measure µ that on any open set is determined by the value of α
on the compact sets in C - that is µ is ”inner regular on the open sets with respect to the
class C”; meaning that for any open A

µ(A) = sup {α(C) : C ∈ C and C ⊂ A}

This will make it possible to show - using The Portmanteau theorem - that the subse-
quence µnk converges weakly to µ, since then for any open A ⊃ C

α(C) = lim
k
µnk(C) = lim inf

k
µnk(C) ≤ lim inf

k
µnk(A),

which implies

µ(A) ≤ lim inf
k

µnk(A).

4. To �nd such a measure µ one �rst de�nes a set function µ∗ from α that is de�ned for every
subset of E. µ∗ is then shown to be an outer measure and to satisfy ”inner regular on the
open sets with respect to the class C”.

5. As a last step one shows that the closed sets of E are µ∗-measurable; thus in particular the
Borel-sets are µ∗-measurable - and we get the desired measure µ.
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A detailed proof may be found in Klenke (2013), Theorem 13.29.

It is worth to note that Prokhorov’s theorem only guarantees the existence of a limit (for a subse-
quence of each subsequence) of a tight sequence of probability measures - but it does not specify
the limit (nor does it guarantee that the limit is the same for di�erent subsequences). As we in-
tend to prove the convergence to a speci�c distribution an additional argument is required. That
extra argument may be obtained from the fact that distributions on a function space are deter-
mined by their �nite dimensional distributions. For the �nite dimensional distributions on may
namely prove convergence directly by an application of the Central limit theorem. The next
section gives an outline for how the knowledge of convergence of the �nite dimensional distri-
butions may be used to prove both convergence to a speci�ed distribution and show existence
of a speci�ed distribution.

4.1 An outline of the argument in the proof
In the argument below and further on we employ useful consequence of the de�nition of of weak
convergence: namely that if Pn converges weakly to P on a metric space (S,S), and if h : S → S ′

is a measurable mapping from S to some metric space S ′, then the image measures Ph−1 on S ′

converges weakly to Ph−1. We will refer to this as the continuous mapping theorem (Theorem
13.25 in Klenke (2013)).

The following property is motivated in an analogous way as for a sequence of real numbers. A
sequence {Pn} of probability measures converges weakly to some measure P if and only if for every
subsequence there exists a further subsequence that converges weakly to P

Consider the following situation. We know that {Pn} is tight and that for any k and any t1, ..., tk
Pn ◦ π−1

t1,...,tk
converges weakly to P ◦ π−1

t1,...,tk
. From Prokhorov’s theorem, and the preceding para-

graph, we know that for any subsequencePnk there exists a further subsequencePnk(m) converging
to some probability measure Q. By the continuous mapping theorem for any k and any t1, ..., tk
Pnk(m) ◦ π−1

t1,...,tk
converges weakly to Q ◦ π−1

t1,...,tk
. Thus since the �nite dimensional distributions

determines a measure, Q in fact equals P. Thus we have that for any subsequence there exists a
further subsequence converging weakly to P and, again by the preceding paragraph, this means
that Pn converges weakly to P.

With a similar argument is also possible to prove the existence of of a probability measure on
a function space S with speci�ed �nite dimensional distributions. Say we want to prove the
existence of a probability measure P on S with some speci�ed �nite dimensional distributions
µt1,....,tk . It would then be su�cient to exhibit a tight sequence {Pn}whose �nite dimensional dis-
tributions converge to µt1,....,tk for: by Prokhorov’s theorem there exists a subsequence {Pnk} that
converges weakly to some probability measure Q and from the continuous mapping theorem,
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for any given t1, ...., tk, the �nite dimensional distributions ofQ equals µt1,....,tk and since the �nite
dimensional distributions determine the measure, Q in fact is the desired measure P.

This is the argument we will use to prove not just the convergence of the scaled random walk to
Brownian motion but also the existence of the process12.

4.2 Convergence of the �nite-dimensional distributions
As a �rst step of the proof as outlined above, we show in this section that the �nite-dimensional
distributions converge to the �nite dimensional distributions of a Brownian motion -that is a
joint normal distribution.

The proof of the convergence of the �nite dimensional distributions utilizes the same methods
as in the interlude where we proved that the scaled and interpolated random walks at a point t
converges weakly to a normal distribution with mean zero and variance equal to t; and that for a
vector of random variables we get weak convergence from that of the individual components. 13

Theorem 6. For any n, 0 ≤ t1 ≤ · · · ≤ tn and any Brownian motion (Bt)t≥0

(X (n)
t1
, · · · , X (n)

tn )
weakly→ (Bt1 , · · · , Btn)

To simplify notation one may prove this for n = 2 and write t1 = s and t2 = t.

We may prove that

(
X (n)
s , X (n)

t − X (n)
s

) weakly→ (Ns, Nt−s)

WhereNs andNt−s are independent normally distributed random variables with mean zero and
variance s and t− s respectively, since then from the continuous mapping theorem it will follow
that

(
X (n)
s , X (n)

t

) weakly→ (Bs, Bt).14

12One may note that as a proof of the existence of a Brownian motion, the existence of a limit will guarantee a
process with distributions that satis�es B1 - B3; that it also satis�es B4 follows from the fact that the distributions
are de�ned directly on C[0, 1].

13This and the related converse statement are often referred to as the Cramér-Wold theorem (Theorem 15.56 in
Klenke (2013)).

14ThatNt−s+Ns is distributed as a Brownian motion at the time t follows from that the sum of two independent
normal random variables is normally distributed (e.g. Example 20.6 in Billingsley (2012)).
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But in the interlude we proved that

X (n)
s

weakly→ Ns

and similarly one may show that

X (n)
t − X (n)

s

weakly→ Nt−s.

The independence of Ns and Nt−s follows from the fact that the ξi:s are independent, and that
independence is preserved under weak limits. The convergence of the vector now follows the
Cramér-Wold theorem (Theorem 15.56 in Klenke (2013)).

4.3 Compactness in C[0, 1]
As Prokhorov’s theorem states that a sequence of probability measures is tight if their masses are
uniformly concentrated to compact sets we would like to know how compact sets are character-
ized in C[0, 1].

De�nition. The modulus of continuity of a function x ∈ C[0, 1] is the function 15

mx(δ) = sup
|s−t|≤δ

|x(s)− x(t)|

We have the following characterization that is a form of the Arzela-Ascoli theorem.

Theorem 7. The set A ⊂ C[0, 1] is relatively compact16 if and only if

sup
x∈A
|x(0)| <∞

and
lim
δ→0

sup
x∈A

mx(δ) = 0

The �rst condition in the theorem above states that the functions in A are pointwise bounded
at zero, and the second that the functions in A are equicontinuous over [0, 1] - moreover they
are so in an uniform manner.

From this theorem we get the following necessary and su�cient condition for tightness of a
sequence of probability measures on C[0, 1]

15We will sometimes write m(x, δ) instead for mx(δ) when that is more readable.
16A set A is relatively compact if the closure of A is compact
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Theorem 8. The sequencePn of probabilitymeasures onC[0, 1] is tight if and only if the following
two conditions hold

For each positive η there exists an a and an n0 such that

Pn[x : x(0) ≥ a] ≤ η, n ≥ n0

and for each positive ε

lim
δ→0

lim sup
n→∞

Pn[x : mx(δ) ≥ ε] = 0

4.4 Proof of tightness of the sequence

We now have to solve the following: we know the distribution for X (n)
t for each t but to charac-

terize the sequence PX (n) as tight we have to put an upper bound on the sequence

PX (n) [x : mx(δ) ≥ ε], n ≥ k

for every k.

Trying to calculate the probability of some event involving an uncountable number of t:s in
[0, 1] from that of the individual events for each t is not possible. This is so since the probability
measure PX (n) only handles countable operations - for a union of a countable number of disjoint
events the probability equals the probability of the sum of their individual probabilities, and if
the union is not disjoint then at least this event is bounded by the sum of the individual events.

Thus to prove tightness of the sequence we need to solve two problems: �rst we need to reduce
the event

{
m(X (n), δ) ≥ ε

}
(1)

to be contained in an event that depends on at most a countable number of coordinates; secondly
we need to put a su�ciently strong bound (the bound depending on δ) on this latter event in
terms of the individual distributions P

X
(n)
t

.

The theorem that follows will let us solve the �rst problem: due to the piece-wise linearity of the
interpolated random walk, it will let us �x a �nite number of points ti for which we check if

16



max
ti−1≤k≤ti

|x(k)− x(ti−1)| ≥ ε, k ∈ N

instead for the uncountable number of |s− t| ≤ δ for which

sup
|s−t|≤δ

|x(s)− x(t)| ≥ ε.

Theorem 9. Suppose that 0 = t0 < t1 < ... < tv = 1 and

min
1<i<v

(ti − ti−1) ≥ δ

Then for arbitrary x and any probability measure P on C[0, 1]

P[x : mx(δ) ≥ 3ε] ≤
v∑

i=1

P

[
x : sup

ti−1≤s≤t1
|x(s)− x(ti−1)| ≥ ε

]

The proof goes along the following lines: one considers

m := max
1<i<v

sup
ti−1≤s≤ti

|x(s)− x(ti−1)|.

For s, t in the same interval [ti−1, ti], from the triangle inequality one has

|x(s)− x(t)| ≤ |x(s)− x(ti−1)| + |x(t)− x(ti−1)| ≤ 2m

and simarily if s, t are in adjacent intervals [ti−1, ti] and [ti, ti+1] respectively, then

|x(s)− x(t)| ≤ |x(s)− x(ti−1)| + |x(ti−1)− x(ti)| + |x(t)− x(ti)| ≤ 3m.

Now given |s− t| ≤ δ, from the fact that min1<i<v(ti − ti−1) ≥ δ it must be the case that either
s and t lies in the same interval [ti−1, ti] or in adjacent intervals [ti−1, ti] and [ti, ti+1], for some i.
Thus for any |s− t| ≤ δ, we have that 3m is an upper bound of |x(s)− x(t)|, and thus

mx(δ) ≤ 3 max
1<i<v

sup
ti−1≤s≤ti

|x(s)− x(ti−1)|.

17



Thus, given that mx(δ) ≥ 3ε we must have that at least for some 1 ≤ i ≤ v it is the case that
supti−1≤s≤ti |x(s)− x(ti−1)| ≥ ε and so

{x : mx(δ) ≥ 3ε} ⊂
v⋃

i=1

{
x : sup

ti−1≤s≤ti
|x(s)− x(ti−1)|

}
,

From this the claim follows by subadditivity.

We will now turn to the second problem. We will �rst give an upper bound on

v∑

i=1

P

[
sup

ti−1≤s≤ti
|X (n)

s − X (n)
ti−1
| ≥ ε

]

in terms of probabilities of partial sums of the random walk. The key to this will be that for every
ω, X (n)

t is a piece-wise linear function and thus will take its supremum, on any interval [ k−1
n
, k
n

],
on either of the endpoints.

We will �rst assume that the sequence {ξi}, from which we get the random walk, is normally
distributed with mean and variance equal to zero and one respectively. Later we will then extend
the proof. Precisely we will derive:

P[m(X (n), δ) ≥ 3ε] ≤ 4(λ(δ))2

ε2 P

[
max
k≤m
|Sk| ≥ λ(δ)

√
m

]
(2)

where λ(δ) is such that δ → 0 ⇐⇒ λ(δ)→∞, and m→∞ ⇐⇒ n→∞.

This is done by noting that for the ti:s in Theorem 9 of the form mi/n for integers m0 < m1 <

· · · < mv = n - the integers not necessarily consecutive - the supremum of |X (n)
s − X (n)

ti | will be
taken for s at any of the nodes k/n for k between mi−1 and mi. But at every such node X (n)

k/n =
Sk/
√
n and thus we have

P

[
sup

ti−1≤s≤t1

∣∣X (n)
s − X (n)

ti−1

∣∣ ≥ ε

]
= P

[
max

mi−1≤k≤mi

∣∣∣∣
Sk − Smi−1√

n

∣∣∣∣ ≥ ε

]

= P

[
max

k≤mi−mi−1
|Sk| ≥ ε

√
n

]
,

18



where the last equality follows from thatSk is the sum of identically distributed random variables,
which means that each |Sk − Smi−1 | is distributed as |Sk| for 0 ≤ k ≤ mi −mi−1.

We may further chose mi, i = 0, · · · , v of the form mi = im so that mi −mi−1 is equal to m;
then

v∑

i=1

P

[
max

k≤mi−mi−1
|Sk| ≥ ε

√
n

]
= v · P

[
max
k≤m
|Sk| ≥ ε

√
n

]

What is left now to arrive at (2) is to put a bound on v in terms of n and δ. This may be done
by investigating the relationships between m, n and δ. We won’t do that here, but one takes
m = dnδe and v = dn/me to arrive at

P[m(X (n), δ) ≥ 3ε] ≤ 4
2δ
P

[
max
k≤m
|SK | ≥

ε√
2δ
√
m

]
,

which is precisely (2) if we write λ(δ) for ε/
√

2δ.

Now turning back to Theorem 8, we have that to get the second condition it will be su�cient
to show that

lim
λ→∞

lim sup
n→∞

(λ(δ))2P

[
max
k≤m
|Sk| ≥ λ(δ)

√
m

]
= 0. (3)

To put a bound on

P[max
k≤m
|Sk| ≥ λ(δ)

√
m]

we will use Etemadi’s inequality.

Lemma 1 (Etemadi’s inequality). If S1 · · · Sn are partial sums of independent random variables,
then

P

[
max
k≤n

Sk ≥ 3α
]
≤ 3 max

k≤n
P [Sk ≥ α]

Now applying Etemadi’s inequality it will be su�cient to show that
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lim
λ→∞

lim sup
n→∞

(λ(δ))2 max
k≤m

P[|Sk| ≥ λ(δ)
√
m] = 0

For the particular case when ξi are independent standard normal random variables then from
the inequality17 P[|N | ≥ λ] ≤ E[N 4]λ−4 ≤ 3λ−4 we get that

P[|Sk| ≥ λ
√
m] = P[

√
k|N | ≥ λ

√
m] ≤ 3λ−4, for k ≤ n

and thus of course

lim
λ→∞

lim sup
n→∞

(λ(δ))2 max
k≤m

P[|Sk| ≥ λ
√
m] ≤ lim

λ→∞
lim sup
n→∞

(λ(δ))23λ−4 = 0,

which proves (3).

We have thus shown that Xn
t is tight - under the assumption that ξi are independent and dis-

tributed according to N (0, 1).

To extend the result to the case when ξi is not normally distributed one may use the central limit
theorem. First one breaks the maximums of |Sk| into two cases: one for k is su�ciently large so
that Sk/

√
kmay be approximated su�ciently close with aN (0, 1) distribution, and two for k less

than this one may get a bound from Chebyshev’s inequality.

As we now have shown that the �nite dimensional distributions of Xn
t converges to the �nite

dimensional distributions of a Brownian motion. Per Prokhorov’s theorem and the argument
outlined in section 4.1 this then proves the weak convergence to - and the existence of - a Brow-
nian motion.

5 A second proof due to Skorokhod
For the second proof we introduce an additional concept in the theory of stochastic process -
this is the concept of a stopping time. A stopping time associated with a stochastic process is a
random variable taking values in the index set of the stochastic process.

17The �rst inequality here follows from Markov’s inequality and the second from that the forth moment of a
standard normal random variable equals 3. This latter fact may be attained by integrating x2 with respect to the
standard normal density.
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The only requirement for a random variable, with values in the index set, to be a stopping time
is the following: if at any time t, one asks which outcomes has led the stopping time to take a
value before t - we should be able to do so from the outcomes of the process up to that time t.

With a stopping time and a stochastic process one may de�ne a random variable that for each
outcome takes the value of the path of the stochastic process, for this same outcome, at the time
of the stopping time.

For example one could de�ne a stopping time τ such that it takes the value t for which the Brow-
nian motion for the �rst time equals some number a. With the knowledge that almost surely
Brownian motion hits every point, should one considers the Brownian motion at this stopping
time one would get a random variable that almost surely takes the constant value a.

This random variable de�ned through a stopping time and a Brownian motion we will say is
embedded into the Brownian motion. In the proof that follows we will ”embed” the random
walk into the Brownian motion. This means that for every k we construct a stopping time τ(k)

such that B(τ(k)) is distributed as the k : th step Sk of the random walk and such that τ(k) is close
to k.

A path of a random walk on [0, 1] is read from a path of a Brownian motion and follows the path
of the Brownian motion more closely as the number of steps increases.

Changing the perspective to that of paths we will then show that this means that, with a probabil-
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ity that may be controlled, a path of the random walk up to time n is such that there corresponds
a path of the Brownian motion to it, and the value at each step of the path of the random walk
is close to the value of Brownian path at the random point τ(k) ( where the random point is close
to k). Rescaling the time of both the Random walk and the Brownian motion so that they are
indexed in [0, 1] and letting the number of steps n in the random walk increase, we have that the
paths of the processes gets bounded at more and more points in time. Thus also the paths of the
linear interpolations X (n) of the random walks must be closer and closer to the Brownian paths
over the whole interval. [See the next �gure.]

As the proof hinges on having a stopping time τ(k) such that the stopped Brownian motion
B(τ(k)) is distributed as the k:th step in a random walk and such that τk is close to k, we will
�rst give one solution to the problem of representing a centered random variable (with �nite
expectation) as a stopped Brownian motion. Then we will use this to prove that the interpolated
random walk converges to the Brownian motion. But �rst we de�ne what a stopping time is and
state the Strong Markov property.

De�nition. Given a �ltration18 (Ft)t≥0, a map τ : Ω→ [0,∞] is called a stopping time if

for all t ≥ 0: {τ ≤ t} ∈ Ft

De�nition. Given a σ({Bs : s ≤ t})t≥0- stopping time τ we de�ne the stopped Brownian
motion Bτ as

Bτ(ω) =

{
Bτ(ω)(ω) if τ(ω) <∞
0 if τ(ω) =∞

and the Brownian motion Bτ+t − Bτ starting at the random time τ as

(Bτ+t(ω)− Bτ(ω))t≥0

A key ingredient in the current approach to Donsker’s theorem will be a strengthening of the
Markov property (as introduced in the introduction) to what is called the strong Markov prop-
erty. The time s from which the new process evolves from may be picked randomly. That is one
considers what is called a stopping time - a random variable τ with values in the the index set of
Brownian motion. Then the process starting at the random time τ is again a Brownian motion
and independent of the original process up to the random time τ.

18Recall that a �ltration is an increasing sequence of σ -algebras.
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Theorem 10 (Strong Markov property of Brownian motion19). For a Brownian motion (Bt)t≥0
with filtration (σ({Bs : s ≤ t}))t≥0, and any almost surely finite stopping time τ,

(Bτ+t − Bτ)t≥0

is again a Brownian motion - and independent of the stopped sigma algebra

Fτ+ :=

{
A ∈ σ(

⋃

s≥0

σ(Bs) : ∀t, A ∩ {τ ≤ t} ∈ σ({Bs : s ≤ t})+

}
20

5.1 Skorokhod stopping problem
The problem of �nding a stopping time τ such that the stopped Brownian motion at the time
τ follows some speci�ed distribution µ is called the Skorokhod stopping problem. The problem
has a trivial solution if one de�nes τ = inf{t ≥ 0 : Bt = X}, where X follows the distri-
bution µ.21 This solution won’t be su�cient for us though since we later will apply the law of
large numbers to the sequence of stopping times τ1, τ2, . . . - which requires them to have �nite
expectation, which is not the case for τ as de�ned here. To show that τ has in�nite expectation,
one may �ll out the details in the sketch below.

The idea is to use the fact that for any real number a 6= 0 the expectation of

inf{t ≥ 0 : Bt = a}

is in�nite, 22 and to do so one proceeds as follows: Since Wt := Bt+1 − B1
D= Bt it follows that

inf{t ≥ 0 : Bt = Z} − 1 D= inf{t ≥ 0 : Wt = Z − B1}.

As inf{t ≥ 0 : Wt = Z − B1} is a nonnegative function, its expectation is greater than its
expectation restricted to the two regions

{Z − B1 < −1} and {Z − B1 > 1}.
19Theorem 6.5 in Partzsch & Schilling (2012)
20Here σ({Bs : s ≤ t})+ denotes∩v>tσ(Bv).
21Here one uses the fact that almost surely a one-dimensional Brownian motion is recurrent - meaning it hits

any value.
22This follows from an application of Wald’s identities (Theorem 5.10 in Partzsch & Schilling (2012)).
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Further

inf{t ≥ 0 : Wt > 1} ≥ inf{t ≥ 0 : Wt = 1}.

Combining the above one arrives at

E[τ] ≥ E[inf{t ≥ 0 : Wt = 1}]P[|Z − B1| > 1],

and as one may verify that P[|Z − B1| > 1] > 0,23 it follows that the expectation of τ is in�nite.

As the name suggest, the stopping problem was �rst solved by A. V. Skorokhod in 1961.24 One
may also note that from Wald’s identities 25, for a stopping time with �nite expectation, we get
the equation

E[Bτ] = 0

which implies that a necessary condition for a random variable to be embedded is that it is cen-
tered about zero.

5.2 Dubins embedding
The intuition for Dubin’s embedding is as follows: consider the problem of trying to represent a
random variableX with uniform distribution on {−4,−2, 2, 4} as a stopped Brownian motion
B(τ) for some stopping time τ. We may de�ne a sequence of stopped Brownian motions such
that the last is distributed as X . This is done as follows:

Let τ−a,a denote the stopping time inf t{Bt ∈ {−a, a}}. From Wald’s identities it follows that
B(τ−a,a) has distribution δ−a/2 + δa/2.26 Then applying the strong Markov property, which says
that

B
(
τ−3,3 + t)− B(τ−3,3)

)
t≥0

23This may be seen from that P[|Z − B1| > a] = E[P(|Z − B1| > a|Z)] = E[g(Z)] by the law of iterated
expectations and where g(z) = P[|z− B1| > a]. As g is minimized at zero the claim follows.

24An English translation may be found in A. V. Skorokhod. (1965). Studies in the theory of random processes.
25Theorem 5.10 in Partzsch & Schilling (2012)
26Especially see Corollary 5.11 in Partzsch & Schilling (2012)
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is a Brownian motion and independent of B(τ−3,3) , and writing τ−1,1 for the stopping time of
this Brownian motion27, we get that

B(τ−3,3 + τ−1,1)

Is uniformly distributed on {−4,−2, 2, 4}, since e.g.

P[(B(τ−3,3 + τ−1,1) = 2] = P[B(τ−3,3 = 3, B(τ−3,3 + τ−1,1) − B(τ−3,3) = −1] =
1
2
× 1

2

The structure of the preceding example is that the �nite sequence B(τ−3,3), B(τ−3,3 + τ−1,1) is
a martingale28 that converges to X ; B(τ−3,3 + τ−1,1) restricted to one of the two atoms of the
distribution of B(τ−3,3) is supported on two values and may be written as

f2(B(τ−3,3), D2)

Where D2 is measurable w.r.t. B(τ−3,3 + τ−1,1) and takes values in {−1, 1}. 29

The next lemma show that this type of structure is more generally possible: given any centered
random variable X with a �nite second moment, there exists a martingale - with the properties
described above - that converges almost surely and in L2 to X . Knowing of the existence of that
type of martingale, we may then use it to construct a sequence of stopping times τn → τ such
that B(τn) D= Xn and B(τ) D= X . But �rst we recall a convergence theorem from the theory of
martingales.30

Theorem 11. Let (Xn)n∈N be aL2-bounded31 martingale. Then there exists an σ(∪nFn)-measurable
random variable X∞, with E[X2

∞] <∞, such that Xn converges to X∞ almost surely and in L2.

De�nition. A stochastic process (Xn)n≥0 is called a binary splitting if X0 = x0, and for every n
there exists a random variableDn : Ω→ {−1, 1} and and a function fn : Rn−1×{−1, 1} → R
such that

27Here τ−1,1 is de�ned as the �rst time B(τ−3,3 + t)− B(τ−3,3))t≥0 Brownian motion hits−1 or 1.
28We recall that a martingale is stochastic process of integrable random variables (Xn)n≥0 and a �ltration (Fn)n≥0

such that for every n: we have that E[Xn+1|Fn] = Xn.
29Explicitly we may here take f2(x, y) = x + y andD2 the random variable that equals one on {B(τ−3,3 + τ−1,1) >

B(τ−3,3)} and minus one otherwise.
30Theorem 11.10 in Klenke (2013).
31A sequence (Xn)n≥0 is said to be L2-bounded if supn E[X2

n ] <∞.
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Xn = fn(X1, . . . , Xn−1, Dn)

Lemma 2. For a square integrable centered random variable X there exists a binary splitting
martingale (Xn)n≥0 such that X0 = 0 and Xn → X almost surely and in L2.

We will only sketch the proof of the lemma. We follow the proof of Theorem 22.10 in Klenke
(2013).

The idea is to inductively de�ne the the sequences (Dn)n≥1, (Fn)n≥1 and (Xn)n≥0 as: X0 = E[X ] =
0, then

Dn :=

{
1, if X ≥ Xn−1

−1, if X < Xn−1
,

Fn := σ(D1, . . . , Dn)

and

Xn := E[X |Fn].

Through measurability and the structure ofDn one may show that for each n there exists a func-
tion fn from Rn−1 × {−1, 1} to R such that

fn(X1, . . . , Xn−1, Dn) = Xn.

From the so called tower property of conditional expectation and the de�nition ofXn+1 it follows
that

E[Xn+1|Fn] = Xn

so that (Xn)n≥0 is a martingale.32 From Jensen’s inequality for conditional expectation33 we have
that

32To see the integrability of each Xn we note that E[Xn] = E[E[X |Fn|] = E[X ] = 0.
33Theorem 8.20 in Klenke (2013).
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E
[
X2
n

]
= E

[
(E[X |Fn])2] ≤ E

[
E[X2|Fn]

]
= E

[
X2] <∞,

so that from the martingale convergence theorem above,Xn converges to some square integrable
random variable X∞ almost surely and in L2. What remains then is to show that this random
variable equals X almost surely.

This is done by showing that

lim
n
Dn(X − Xn) a.s.= |X − X∞|,

and then noting that since Dn is Fn-measurable

E[Dn(X − Xn)] = E[E[Dn(X − Xn)|Fn]] = E[DnE[X − Xn|Fn]] = 0.

Since from this we may apply the bounded convergence theorem to the sequence Dn(X − Xn)
to conclude that

E[|X − X∞|] = lim
n
E[Dn(X − X∞)] = 0,

and thus X = X∞ almost surely.

Theorem 12. For a binary splitting martingale (Xn)n≥0 with X0 = 0, bounded in L2, and a
Brownian motion B there exists stopping times τ1 ≤ τ2 ≤ · · · such that

(Xn)n≥0
D=
(
B(τn)n≥0

)

and such that for every n : E[τn] = E[X 2
n ]. Further if

τ := lim
n
τn

then E[τ] = Var[limXn] and

lim
n
Xn

D= B(τ)
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Again we follow Klenke (2013), Theorem 22.9.

First one lets (fn)n≥1 and (Dn)n≥0 denote the functions associated with the binary splitting mar-
tingale. Without loss of generality one may assume that each fn is such that for any numbers
a1, . . . , an−1 : f (a1, . . . , an−1,−1) < fn(a1, . . . , an−1, 1). Inductively one de�nes the sequences
(τn)n≥0, (Bτn)n≥1 and (D̃n)n≥1 as

τn := inf
{
t ≥ τn−1 : Bt ∈ {fn(Bτ1 , . . . , Bτn−1 ,−1) , fn(Bτ1 , . . . , Bτn−1 , 1)}

}
,

Bτn

and

D̃n :=

{
1, if X̃n ≥ X̃n−1

−1, if X̃n < X̃n−1

The �rst step is to show that (Bτn)n≥0
D= (Xn)n≥0. To do so we �rst we claim that

P[D̃n = 1|Bτ1 , . . . , Bτn−1 ] =
Bτn−1 − fn(Bτ1 , . . . , Bτn−1 ,−1)

fn(Bτ1 , . . . , Bτn−1 , 1)− fn(Bτ1 , . . . , Bτn−1 ,−1)
(4)

To see this, consider that for n = 2 we may consider the set

A(y) = {x ∈ C([0,∞)) | ∃t > 0 : x(t) = f2(y, 1)− y, ∀s ∈ [0, t], x(s) > f2(y,−1)− y}

Then using the strong Markov property and the formula, that for X, Y independent and ϕ
bounded and measurable: E[ϕ(X, Y )|Y ] = E[ϕ(X, y)]|

y=Y
34, we have that

P[Bτ2 − Bτ1 > 0 | Bτ1 ] = P
[

(Bt+τ1 − Bt)t≥0 ∈ A(y)
]
|
y=Bτ1

= P[B ∈ A(y)]|
y=Bτ1

.

From the fact that P[Bτ−a,b
= b] = a/ (a + b)35 we conclude that

34Lemma A.3 in Partzsch & Schilling (2012)
35Where as previously τ−a,b := inf{t ≥ 0 : Bt ∈ {−a, b}} and the distribution of Bτ−a,b

may be derived from
Wald’s identities (See Corollary 5.11 in Partzsch & Schilling (2012)).
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P[Bτ2 − Bτ1 > 0 | Bτ1 ] =
Bτ1 − f2(Bτ1 ,−1)

f2(Bτ1 , 1)− f2(Bτ1 ,−1)
,

Continuing, since Xn is a martingale we have that

Xn−1 = E[Xn|X1, . . . , Xn−1] = E[fn(X1, . . . , Xn−2, Dn)|X1, . . . , Xn−1]
= E[fn(X1, . . . , Xn−1,−1)1Dn=−1 + fn(X1, . . . , Xn−1, 1)1Dn=1|X1, . . . , Xn−1]

= fn(X1, . . . , Xn−1,−1)E[1Dn=−1|X1, . . . , Xn−1] + f2(X1, . . . , Xn−1, 1)E[1Dn=1|X1, . . . , Xn−1]

From which we get36

X1 − fn(X1, . . . , Xn−1,−1)
fn(X1, . . . , Xn−1, 1)− fn(X1, . . . , Xn−1,−1)

= P[Dn = 1|X1, . . . , Xn−1] (5)

From (4) and (5) one derives that (Bτn)n≥0
D= (Xn)n≥0 using induction as follows:

For n = 1, (4) and (5) says that

P[D1 = 1] = P[D1 = 1|X0] =
−f1(−1)

f1(1)− f1(−1)

and

P[D̃1 = 1] = P[D̃1 = 1|X0] =
−f1(−1)

f1(1)− f1(−1)
,

which says that D1
D= D̃1.

Now 37

Bτ1 = f1(1) ⇐⇒ D̃1 = 1

and
36Noting that P[Dn = −1|X1, . . . , Xn−1] = 1− P[Dn = 1|X1, . . . , Xn−1]
37Remember that Bτ = f (1) ⇐⇒ Bτ ≥ Bτ0 = 0
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X1 = f1(1) ⇐⇒ D1 = 1

implying that

P[Bτ1 = f1(1)] = P[D̃1 = 1] = P[D1 = 1] = P[X1 = 1]

so that Bτ1
D= X1.

In the inductive step we assume that (Bτi )0≤i≤n−1
D= (Xi)0≤i≤n−1. Then equations (4) and (5)

implies that

P[D̃n|Bτ1 , . . . , Bτn−1 ]
D= P[Dn|X1, . . . , Xn−1].

In particular this means that for any a1, . . . , an−1 such that P[Bτ1 = a1, . . . , Bτn−1 = an−1] =
P[X1 = a1, . . . , Xn−1 = an−1] > 0

P[D̃n = 1, Bτ1 = a1, . . . , Bτn−1 = an−1]

= P[D̃n = 1|Bτ1 = a1, . . . , Bτn−1 = an−1]P[Bτ1 = a1, . . . , Bτn−1 = an−1]
= P[Dn = 1|X1 = a1, . . . , Xn−1 = an−1]P[X1 = a1, . . . , Xn−1 = an−1]

= P[Dn = 1, X1 = a1, . . . , Xn−1 = an−1]

so that

(D̃n, Bτ1 , . . . , Bτn−1 )
D= (Dn, X1, . . . , Xn−1). (6)

Now

Bτn = f (a1, . . . , an−1, 1) ⇐⇒ D̃n = 1 ∧ Bτ1 = a1 ∧ · · · ∧ Bτn−1 = an−1

and

Xn = f (a1, . . . , an−1, 1) ⇐⇒ Dn = 1 ∧ X1 = a1 ∧ · · · ∧ Xn−1 = an−1.
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Thus (6) implies (Bτn)n≥0
D= (Xn)n≥0.

We now proceed to show that Bτ = limn Xn. From the strong Markov property applied to the
Brownian motion Bτn−1+t − Bτn−1 we note that

τn − τn−1 = inf
{
t ≥ 0 : Bt+τn−1 − Bτn−1 ∈ {f1(−1), f1(1)}

}

D= inf {t ≥ 0 : Bt ∈ {f1(−1), f1(1)}} ,

and conclude that

E[τn − τn−1] = E[(Bτn − Bτn−1 )2].

And since a martingale has uncorrelated increments implying that E[(Xn − Xn−1)2] = E[X2
n ]−

E[X2
n−1] , one may with induction conclude that

E[X2
n ] = E[τn].

We may now apply Theorem 11 to conclude that there exists some square integrable random
variable X∞ such that

Xn → X∞ almost surely and in L2 .

Since |E[X 2
n ]−E[X2

∞]| ≤ E[|X2
n −X2

∞|]→ 0 we also haveE[X2
n ]→ E[X2

∞], and applying the
monotone convergence theorem38 to the nonnegative increasing sequence (τn)n≥0 we conclude

E[τ] = lim
n
E[τn] = lim

n
E[X2

n ] = E[X2
∞].

As a last step we conclude that since Brownian motion has continuous sample paths,

Bτ = limBτn = lim
n
Xn

D= X∞.

The last theorem says that from a binary splitting martingale we may construct a sequence of
stopping times; for the stopping time τ that is the limit of these stopping times, the Brownian

38Theorem 4.20 in Klenke (2013)
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motion stopped at τ is distributed as the limit of the binary splitting martingale. Further the
expectation of the stopping time τ equals the variance of the limit of the binary splitting martin-
gale. Thus given a centered random variableX with �nite second moment, Lemma 2 guarantees
a binary splitting martingale converging to it; and Theorem 12 let us construct stopping time τ
such that B(τ) is distributed as X . This concludes Dubins solution to the Skorokhod stopping
problem.

5.3 From an embedding to Donsker’s invariance principle
Now that we may embed a centered random variable into a Brownian motion the idea is to use
the strong Markov property of Brownian motion:39 �rst we embed ξ1 into Bt, then we embed ξ2
into the new Brownian motion B2(t) := B(τ1 + t)− B(τ1) starting at τ1, then we embed ξ3 into
B3(t) := B2(τ2 + t) − B(τ2) starting at τ2 etc. The important thing here is of course the strong
Markov property that says that B(τ1 + t)−B(τ1) is a Brownian motion and independent ofFτ1+,
which allows us to de�ne a new stopping time τ2 that is measurable w.r.t.

F (2)
τ2+ := {A ∈ F (2)

∞ : ∀t, A ∩ {τ2 ≤ t} ∈ F (2)
t+ },

whereF (2) denotes the �ltration generated byB2. SinceF (2)
τ2+ per de�nition is a sub-sigma algebra

ofF (2) which is independent ofFτ1+, andB2(τ2) is measurable w.r.t. F (2)
τ2+, B2(τ2) is independent

of Fτ1+ - and thus of B(τ1). Thus the embedded random variables are independent.

Then we claim that for every n there are stopping times τ1 ≤ τ2 ≤ · · · such that

B(τ1 + · · · τn) D= ξ1 + · · · + ξn
40

This may be derived as follows: Find τ1 such that

ξ1
D= B(τ1);

then (to see the pattern) �nd τ2 such that

ξ2
D= B2(τ2) := B(τ1 + τ2)− B(τ1) =⇒ B(τ1 + τ2) = B(τ1) + B2(τ2) D= ξ1 + ξ2

39This approach to Donsker’s theorem is due to D. Freedman. (1971). Brownian motion and di�usion Springer
New York.

40Note that a sum of stopping times is a stopping time.
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And by induction, if

B(τ1 + · · · + τn−1) D= ξ1 + · · · + ξn−1

and Bn−1(τn−1 + τn) = B(τ1 + · · · + τn−1 + τn)− B(τ1 · · · τn−2)
and Bn−1(τn−1) = B(τ1 + τ2 + · · · τn−1)− B(τ1 + · · · + τn−2)

then

ξn
D= Bn(τn) := Bn−1(τn−1 + τn)− Bn−1(τn−1)

= B(τ1 + · · · + τn)− B(τ1 + · · · + τn−1)

which implies

B(τ1 + · · · + τn) = B(τ1 + · · · + τn−1) + Bn(τn)
D= (ξ1 + · · · + ξn−1) + ξn.

Now, as in the �rst proof, we use the fact that the interpolated random walks are monotone
between the points k/n, k = 0, · · · n and that Sn may be written as a stopped Brownian motion,
to derive that the random functions ω 7→ Bω(nt)/

√
n and ω 7→ X (n)(ω) converge in probability.

Lemma 3. For a Brownianmotion (Bt)t≥0 and a random variable ξ withmean zero and variance

one, the interpolated random walk X (n)
t with increments from the law of ξ satisfies

lim
n→∞

P

(
sup

0≤t≤1

∣∣∣∣
B(nt)√

n
− X (n)

t

∣∣∣∣ > ε

)
= 0

for any ε > 0.

The proof of the Lemma proceeds as follows: From the preceding construction we may write
the random walk Sn - from which X (n)

t is de�ned - as

Sn = B(τ1 + · · · + τn)

One then considers the set
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An :=

{
sup

0≤t≤1

∣∣∣∣
B(nt)√

n
− X (n)

t

∣∣∣∣ > ε

}

which per the de�nition of the supremum equals the set

{
∃t ∈ [0, 1) :

∣∣∣∣
B(nt)√

n
− X (n)

t

∣∣∣∣ > ε

}
41

De�ne k(t) to be the unique integer k such that

k− 1
n
≤ t <

k

n

then using the fact that X (n)
t is monotone between the ”nodes” (k(t)− 1)/n and k(t)/n we get

An ⊂
{
∃t ∈ [0, 1) :

∣∣∣∣∣
X (n)
k(t)−1√
n
− B(nt)√

n

∣∣∣∣∣ > ε

}⋃{
∃t ∈ [0, 1) :

∣∣∣∣∣
X (n)
k(t)√
n
− B(nt)√

n

∣∣∣∣∣ > ε

}
=: A∗n

Now we rewrite X (n)
k(t) as a stopped Brownian motion B(τk(t)),

A∗n =
{
∃t ∈ [0, 1) :

∣∣∣∣
B(τk(t)−1)√

n
− B(nt)√

n

∣∣∣∣ > ε

}⋃{
∃t ∈ [0, 1) :

∣∣∣∣
B(τk(t))√

n
− B(nt)√

n

∣∣∣∣ > ε

}

For any 0 < δ < 1 we may write this as

{
∃s, t ∈ [0, 1) : |t − s| ≤ δ and

∣∣∣∣
B(s)√
n
− B(nt)√

n

∣∣∣∣ > ε

}

⋃{
∃t ∈ [0, 1) : max{

∣∣∣τk(t)

n
− t
∣∣∣ ,
∣∣∣τk(t)−1

n
− t
∣∣∣} ≥ δ

}

41Note that by continuity of the paths, |B(n·1√
n
− X (n)

1 | > ε i� there exists t < 1 such that |B(n·t√
n
− X (n)

t | > ε. Thus
we need not include the right endpoint of [0, 1].
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As a consequence of the Kolmogorov-Chentsov42 theorem one may derive that Brownian mo-
tion is Hölder-continuous with probability one and thus the �rst set in the union above has
probability one for δ su�ciently small.

From our construction of stopping times above one see that for every n

τn+1 − τn
D= τ1

and the increments are independent. Thus since

E[τn+1 − τn] = E[τ1] = E[ξ1] = 1

we may apply the law of large numbers to conclude that

lim
n→∞

τn
n

= lim
1
n

n∑

k=1

(τn+1 − τn) = 1. a.s.

Now as k(t) is such that (k(t)− 1)/n ≤ t < k(t),

{
∃t ∈ [0, 1) : max{

∣∣∣τk(t)

n
− t
∣∣∣ ,
∣∣∣τk(t)−1

n
− t
∣∣∣} ≥ δ

}

⊂
{
∃t ∈ [0, 1) : max{

∣∣∣∣
τk(t) − (k(t)− 1)

n

∣∣∣∣ ,
∣∣∣∣
τk(t)−1 − k(t)

n

∣∣∣∣} ≥ δ

}

⊂
{

max
0≤k≤n

∣∣∣∣
τk − (k− 1)

n

∣∣∣∣ ≥ δ

}⋃{
max

0≤k≤n

∣∣∣∣
τk−1 − k

n

∣∣∣∣ ≥ δ

}

For any sequnce of real numbers {an} one may derive

lim
n→∞

an
n

= 1 =⇒ lim
n→∞

max
0≤k≤n

|ak − (k− 1)|
n

= 0 and lim
n→∞

max
1≤k≤n

|ak−1 − k|
n

= 0

From which it follows that the probability of the last union goes to zero. We have thus shown
what we set out to prove.

42Theorem 21.6 in Klenke (2013)
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5.4 Proof of Donsker’s theorem
We may now apply the part of the Portmanteau theorem that states the equivalence of 1. and 3.
to prove weak convergence by proving that

lim sup
n

PX (n) (F ) ≤ PB(F )

for every closed set F of C[0, 1].

Given any closed set F of C[0, 1] and ρ(f, F ) := inf g∈F sup0≤t≤1 |f (t)− g(t)|, we de�ne

F [k] :=
{
f ∈ C[0, 1] : ρ(f, F ) ≤ 1

k

}
, k ∈ N

it is known that f 7→ ρ(x, F ) is a continuous map and thus F [k] is a closed set. Then

P[X (n) ∈ F ] ≤ P

[
B(nt)√

n
∈ F [k]

]
+ P

[
sup

0≤t≤1

∣∣∣∣
B(nt)√

n
− X (n)

t

∣∣∣∣ > ε

]

where we proved in the preceding lemma that the second term on the right hand side goes to
zero as n→∞. Since F [k] is closed we have that

F =
∞⋂

k=1

F [k]

and from the continuity of measure we get

P[F ] = lim
k→∞

P[F [k]]

We may thus conclude

lim sup
n

P[X (n)
n ∈ F ] ≤ P

[
B(nt)√

n
∈ F
]
.

Since B(nt)√
n

is again a Brownian motion on [0, 1], the proof is complete.
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6 Concluding remark
It is hard to directly compare the two proofs apart from stating, as in the introduction, that they
make di�erent assumptions and that di�erent consequences thus may be derived from them. As
mentioned in the introduction, and as the reader might now be aware of, the �rst theorem is a
possible construction of a Brownian motion. From the second proof, however, one may derive
the central limit theorem without having to deal with characteristic functions.

One may want to note that Prokhorov’s proof may be extended to where X (n)
t is an element of

the space D[0, 1] of right-continuous functions with left-sided limits. A similar proof will do
except for the characterization we have from Arzela-Ascoli for compact sets in C[0, 1] which is
di�erent, and not as easy, in D[0, 1].
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