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Abstract

A finite Blaschke product B(z) is a special kind of product of finitely
many automorphisms of the unit disc, with zeros in a finite set of points
on the unit disc. This thesis covers some basic properties regarding finite
Blaschke products. Solutions to the equation B(z) = ω for ω inside, on
and outside the unit circle are examined, as well as zeros of B(z) and
the derivative B′(z), and their location. In the last section, geometrical
properties of the solutions to B(z) = ω for ω on the unit circle are explored;
when the Blaschke product is of degree three, this involves ellipses.
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1 Introduction

Blaschke products are an important class of complex valued functions that are
bounded and analytic on the unit disc. They are constructed to have zeros
in a finite or infinite set of points {ak} (k = 1, 2, ...) on the unit disc. The
importance of these functions in the general theory of bounded functions was
first recognized by the Austrian mathematician Wilhelm Blaschke (1885-1962),
and hence, they are called Blaschke products [8]. Blaschke products are featured
in many different areas of mathematics. They are important in factorization
theorems and approximation theorems, among others. Finite Blaschke products
have some interesting geometrical properties, which will be the focus of this
thesis. The purpose of this thesis is to establish properties and prove different
theorems involving finite Blaschke products.

2 Definitions

This section is devoted to definitions related to Blaschke products. First, some
basic notation will be introduced; the open unit disc D = {z ∈ C : |z| < 1}, the

unit circle T = {z ∈ C : |z| = 1} and the extended complex plane Ĉ = C ∪ {∞}.
Throughout the whole thesis, 1

0 will be treated as ∞, where ∞ is the point at
infinity in the extended complex plane. Similarly, 1

∞ will be treated as 0.

2.1 Definitions of Blaschke products

This part is dedicated to defining Blaschke products and related topics that will
be used throughout this thesis. In words, a Blaschke product is a special kind
of bounded function that maps D onto D and is analytic on D. The product
is constructed to have zeros in a finite or infinite set of points aj ∈ D. If the
product is finite, the Blaschke product is also a rational function. Continuing to
the more formal definitions, we begin with the definition of a Blaschke factor.

Definition 2.1. For ak ∈ D a Blaschke factor is defined as

bak(z) =

{ |ak|
ak

ak−z
1−akz if ak 6= 0,

z if ak = 0.

Next, we need to define what a Blaschke product is. There are many different
but analogous definitions of Blaschke products, which will be briefly discussed
in Section 2.2. The definition used throughout this thesis is the following:

Definition 2.2. Let a1, ..., an be a finite set of points inside D. Then a finite
Blaschke product of degree n is defined as

B(z) =
n∏

k=1

|ak|
ak

ak − z
1− akz

. (1)
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If aj = 0, define
|aj |
aj

= −1 so that each factor in the product above corresponds

to the Blaschke factor in Definition (2.1).

The factors
|aj |
aj

(1 ≤ j ≤ n) normalize the Blaschke product so that it is

non-negative at the origin, since B(0) =
∏n
k=1

|ak|
ak

ak
1 =

∏n
k=1 |ak| ≥ 0.

An infinite Blaschke product is defined similarly:

Definition 2.3. Let a1, ..., an, ... be an infinite set of points inside D that satisfies
the Blaschke condition,

∞∑

k=1

(1− |ak|) <∞.

Then an infinite Blaschke product of degree n is defined as

B(z) =

∞∏

k=1

|ak|
ak

ak − z
1− akz

.

If aj = 0, let
|aj |
aj

= −1.

The Blaschke condition makes sure that the infinite Blaschke product converges
absolutely for |z| < 1, and uniformly on compact subsets of D (see for instance
[7]). For finite Blaschke products, the Blaschke condition will be satisfied for any
set of points a1, ..., an ∈ D. For infinite Blaschke products, consider an arbitrary

factor |ak|ak
ak−z
1−akz . Then we have

|ak|
ak

ak − z
1− akz

= |ak|
1− z

ak

1− akz

= |ak|+
|ak|

(
1− z

ak

)

1− akz
− |ak| (1− akz)

1− akz

= |ak|+
|ak| z

(
ak − 1

ak

)

1− akz

= |ak|+
|ak| z
ak

akak − ak
ak

1− akz

= |ak|+
|ak| z
ak

|ak|2 − 1

1− akz

= 1 + (|ak| − 1)

(
1 + z

|ak| (|ak|+ 1)

ak (1− akz)

)
.

(2)

An infinite product
∏∞
k=1 (1 + uk) of complex numbers converges absolutely if

and only if
∑∞
k=1 |uk| < ∞ (see for example Theorem 1 in [13]). Hence, (2)
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shows us that an infinite Blaschke product will converge absolutely for z = 0 if
and only if

∞∑

k=1

(1− |ak|) <∞.

For z ∈ D \ {0}, we have

∣∣∣∣1−
|ak|
ak

ak − z
1− akz

∣∣∣∣ =

∣∣∣∣∣
1− akz − |ak|+ |ak|z

ak

1− akz

∣∣∣∣∣

=

∣∣∣∣∣∣

(1− |ak|) + z
(
|ak|
ak
− ak

)

1− akz

∣∣∣∣∣∣

=

∣∣∣∣∣∣

(1− |ak|) + z
(
|ak|
ak
− |ak|

2

ak

)

1− akz

∣∣∣∣∣∣

= (1− |ak|)
∣∣∣∣∣
1 + |ak|z

ak

1− akz

∣∣∣∣∣

≤ (1− |ak|)
1 +

∣∣∣ |ak|zak

∣∣∣
1− |akz|

≤ (1− |ak|)
1 + |z|
1− |z| .

Hence, the infinite Blaschke product converges absolutely in D and uniformly
on compact subsets of D if and only if

∑∞
k=1 (1− |ak|) <∞. The Blaschke

condition is important because if we multiply infinitely many automorphisms of
the unit disc that do not approach 1 fast enough is that the product can be zero.

2.2 Other definitions of Blaschke products

As mentioned in the previous section, there are many different but analogous
definitions of Blaschke products. They are equivalent to each other up to rotation.
A few definitions from different sources will follow below. Only finite Blaschke
products will be covered here, since those are the main subject of this thesis.

Definition 2.4 (Daepp, Gorkin, Mortini [2]). Let β be a complex number with
|β| = 1, and let a1, ..., an be complex numbers with modulus less than one. Then

B(z) = β

n∏

k=1

z − ak
1− akz

(3)

is a Blaschke product of degree n.
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Definition 2.5 (Garcia, Mashreghi, Ross [5]). Let α ∈ R, K ∈ N ∪ {0} and
a1, ..., an be a set of complex numbers such that 0 < |aj | < 1 (1 ≤ j ≤ n). Then

B(z) = eiαzK
n∏

k=1

|ak|
ak

ak − z
1− akz

(4)

is a Blaschke product of degree K + n.

Definition 2.6 (Fischer [3]). Let a1, ..., an ∈ D. Then

B(z) =
n∏

k=1

(−ak
|ak|

)(
z − ak
1− akz

)
(5)

is a Blaschke product of degree n.

Regardless of which definition is used, the modulus will be the same. Let the
points a1, ..., an be fixed, and let the first 0 ≤ m ≤ n points be zero, and the
rest nonzero. Then the modulus of (1), (3) and (5) is

|z|m
n∏

k=m+1

|ak − z|
|1− akz|

,

and equivalently, the modulus of (4) is

|z|m
n−m∏

k=1

|ak − z|
|1− akz|

.

The following figure shows the image of the point z = 0.4 + 0.7i under the
Blaschke products described in definitions 2.2, 2.4, 2.5 and 2.6, with a1, ..., a4
fixed.
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√
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√

2/2

z5 Definition 2.5 with α=π

z6 Definition 2.5 with α=4

z7 Definition 2.6

Figure 1: The image of the point z = 0.4 + 0.7i under the Blaschke products
from the different definitions 2.2, 2.4, 2.5 and 2.6, using a1 = 0.2+0.1i, a2 = 0.5i,
a3 = 0.7 and a4 = 0.3− 0.6i in all of the definitions.

3 Properties

This section is dedicated to stating and proving some basic properties about
finite Blaschke products, mostly about their behaviour inside, on and outside
the unit circle.

3.1 Modulus of B(z) on the unit circle

The following proposition concerns the modulus of finite Blaschke products on
the unit circle T.

Proposition 3.1. Let B(z) be a finite Blaschke product of degree n. Then
|B(z)| = 1 for all z ∈ T.

Proof. Notice that if |z| = 1 then z = 1
z , since if z = eiθ, then

1

z
=

1

e−iθ
= eiθ = z.
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Let z0 ∈ T. Then

|B(z0)| =
∣∣∣∣∣
n∏

k=1

|ak|
ak

ak − z0
1− akz0

∣∣∣∣∣

=
n∏

k=1

∣∣∣∣
|ak|
ak

∣∣∣∣
∣∣∣∣
ak − z0
1− akz0

∣∣∣∣

=
n∏

k=1

∣∣∣∣∣
z0 − ak

1− ak 1
z0

∣∣∣∣∣

=

n∏

k=1

|z0 − ak|∣∣∣z0
(

1− ak 1
z0

)∣∣∣
(6)

=

n∏

k=1

|z0 − ak|
|z0 − ak|

= 1.

In step (6), the property |z0| = |z0| = 1 is used.

3.2 Modulus of B(z) inside the unit circle

The following proposition concerns the modulus of finite Blaschke products on
the open unit disc D.

Proposition 3.2. Let B(z) be a finite Blaschke product of degree n. Then
|B(z)| < 1 for all z ∈ D.

Proof. The proposition follows from the maximum modulus principle. The
theorem states that if a function f(z) analytic in a region E and continuous on
E, then |f(z)| attains its maximum value on the boundary of E and not at any
interior point (see for instance [12]). Since B(z) is analytic on D and continuous
on D, the maximum absolute value is attained on the boundary T, and not in
any interior point. Since we know that |B(z)| = 1 for all z ∈ T and B(z) is not
constant, we can conclude that |B(z)| < 1 for z ∈ D.

3.3 Relation between B(z) and B(1/z)

The following proposition concerns the relation between B(z) and B(1/z) on
the extended complex plane.

Proposition 3.3. Let B(z) be a finite Blaschke product of degree n. Then

B(z) =
1

B(1/z)
for all z ∈ Ĉ.

Proof. Let B(z) =
∏n
k=1

|ak|
ak

ak−z
1−akz be a finite Blaschke product. For z ∈ C with
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0 < |z| <∞, we have

1

B(1/z)
=

1
∏n
k=1

|ak|
ak

ak−(1/z)
1−ak(1/z)

=

n∏

k=1

ak

|ak|
1− ak(1/z)

ak − (1/z)

=
n∏

k=1

ak
|ak|

1− ak(1/z)

ak − (1/z)

=
n∏

k=1

ak
|ak|

1
z (z − ak)
1
z (akz − 1)

=
n∏

k=1

ak
|ak|

ak − z
1− akz

=

n∏

k=1

akak
|ak| ak

ak − z
1− akz

=
n∏

k=1

|ak|2
|ak| ak

ak − z
1− akz

=
n∏

k=1

|ak|
ak

ak − z
1− akz

= B(z).

For z =∞ we have

B(z) =
n∏

k=1

|ak|
ak

ak − z
1− akz

=

n∏

k=1

|ak|
ak

z(akz − 1)

z( 1
z − ak)

,

hence,

B(∞) =

n∏

k=1

|ak|
|ak|2

=
n∏

k=1

1

|ak|
.
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For the right-hand side of the identity, we have

1

B(1/z)
=

1
∏n
k=1

|ak|
ak

ak−(1/z)
1−ak(1/z)

.

Thus, by defining ∞ =∞, we get

1

B(1/∞)
=

1
∏n
k=1

|ak|
ak
ak

=
1

∏n
k=1 |ak|

=
n∏

k=1

1

|ak|
.

Thus, B(∞) =
1

B(1/∞)
. For z = 0 we have

B(0) =
n∏

k=1

|ak| ,

For the right-hand side of the identity we have

1

B(1/z)
=

1
n∏

k=1

|ak|
ak

ak − (1/z)

1− ak(1/z)

=
1

n∏

k=1

|ak|
ak

ak − 1/z

1− ak/z

=
1

n∏

k=1

|ak|
ak

1
z (akz − 1)
1
z (z − ak)

,

and thus,

1

B(1/0)
=

1
n∏

k=1

|ak|
|ak|2

=
n∏

k=1

|ak| .

Hence, B(0) =
1

B(1/0)
. To clarify, for z = 0 and z = ∞, the identity in the

proposition can be read as B(0) =
1

B(∞)
and B(∞) =

1

B(0)
respectively.
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3.4 Modulus of B(z) outside the unit circle

The following proposition concerns the modulus of finite Blaschke products
outside the unit circle, i.e. for z ∈ Ĉ \ D.

Proposition 3.4. Let B(z) be a finite Blaschke product of degree n. Then

|B(z)| > 0 for all z ∈ Ĉ \ D.

Proof. Let B(z) be a finite Blaschke product. From the previous section, we

know that B(z) = 1

B(1/z)
for all z ∈ Ĉ. Suppose z ∈ Ĉ\D. Then 1

z ∈ D, and thus,

we know that |B(1/z)| < 1 from Section 3.2. Hence, |B(z)| > 1 for z ∈ Ĉ \ D.
This holds for z =∞ as well, since we know that B(∞) =

∏n
k=1

1
|ak| > 1 from

the proof of Proposition 3.3.

4 Derivative of B(z)

This section is dedicated to the derivative of an arbitrary finite Blaschke product.
The zeros of B′(z) and their location will be studied in Section 6.2. Since certain
results regarding the derivative are very closely related to the solutions to the
equation B(z) = ω for ω ∈ T and the location of the zeros of both B(z) and
B′(z), they will be discussed in Section 5 and 6.

First, we need to compute the derivative of an arbitrary finite Blaschke product.
Let

B(z) =
n∏

k=1

|ak|
ak

ak − z
1− akz

,

and let Bk(z) denote the product of all factors of B(z) except the kth factor, i.e.

Bk(z) =
n∏

j=1
j 6=k

|aj |
aj

aj − z
1− ajz

. (7)

Then, by using the product rule, we get

B′(z) =

n∑

k=1

( |ak|
ak

ak − z
1− akz

)′
Bk(z).
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By applying the quotient rule to
(
|ak|
ak

ak−z
1−akz

)′
, we get

( |ak|
ak

ak − z
1− akz

)′
=
|ak|
ak

(
(ak − z)′(1− akz)− (ak − z)(1− akz)′

(1− akz)2
)

=
|ak|
ak

(−1(1− akz)− (ak − z)(−ak)

(1− akz)2
)

=
|ak|
ak

akz − 1 + akak − akz
(1− akz)2

= −|ak|
ak

1− |ak|2
(1− akz)2

.

Hence, the derivative of B(z) is the following

B′(z) = −
n∑

k=1

(
|ak|
ak

1− |ak|2
(1− akz)2

Bk(z)

)
. (8)

In particular, for any of the points aj , the product Bk(aj) will be zero except

when k = j. This is because for any k 6= j, Bk(z) includes the factor
|aj |
aj

aj−z
1−ajz ,

which will be zero for z = aj . So, for any of the points aj , we have

B′(aj) = −|aj |
aj

1− |aj |2
(1− ajaj)2

Bj(aj)

= −|aj |
aj

1− |aj |2

(1− |aj |2)2
Bj(aj)

= −|aj |
aj

1

1− |aj |2
n∏

k=1
k 6=j

ak − aj
1− akaj

.

The logarithmic derivative of a function f is defined by the formula f ′

f . Thus,
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the logarithmic derivative of B(z) is

B′(z)
B(z)

=

−
n∑

k=1

(
|ak|
ak

1− |ak|2

(1− akz)2
Bk(z)

)

B(z)
(9)

= −
n∑

k=1



|ak|
ak

1−|ak|2
(1−akz)2

|ak|
ak

ak−z
1−akz


 (10)

= −
n∑

k=1

(
1− |ak|2

)
(1− akz)

(1− akz)2 (ak − z)
(11)

= −
n∑

k=1

1− |ak|2
(1− akz) (ak − z)

(12)

=
n∑

k=1

1− |ak|2
(1− akz) (z − ak)

, (13)

for z ∈ Ĉ \ {aj , 1/aj : 1 ≤ j ≤ n}. The logarithmic derivative
B′(z)
B(z)

is defined

at infinity since for all terms where aj 6= 0, we have

1− |aj |2
(1− ajz) (aj − z)

=
1− |aj |2

z2
(
1
z − aj

) (aj
z − 1

) ,

which, with z =∞, gives us

1− |aj |2
∞2

(
1
∞ − aj

) (aj
∞ − 1

) = 0,

and for all terms where aj = 0, we have

1− |aj |2
(1− ajz) (aj − z)

=
1

−z ,

which, with z =∞, gives us

1

−∞ = 0.

Thus,

B′(∞)

B(∞)
=

n∑

k=1

1− |ak|2
(1− ak∞) (ak −∞)

= 0.

In the next section, the solutions to the equation B(z) = ω will be examined.
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5 Solutions to B(z) = ω

This section is dedicated to the solutions to the equation

B(z) = ω,

for ω inside, on and outside the unit disc. First we examine the number of
solutions to said equation, and how the location of the solutions are affected
depending on the choice of ω.

Theorem 5.1 (Garcia, Mashreghi, Ross [6]). Let B(z) be a finite Blaschke

product of degree n. Then for each ω ∈ Ĉ the equation B(z) = ω has exactly n
solutions, counted according to multiplicity. If ω ∈ D, these solutions belong to
D. If ω ∈ Ĉ \D, these solutions belong to Ĉ \D. If ω ∈ T, these solutions belong
to T.

Proof. From Corollary 4.5 in [5] and the discussion above said corollary, we know
that we can write

B(z) =
P (z)

znP (1/z)
=

α0 + α1z + · · ·+ αnz
n

αn + αn−1z + · · ·+ α0zn
,

with α0, ..., αn−1 ∈ C and αn = 1. The zeros of the polynomial P (z) are the
zeros of B(z), and thus, lie in D. Let γ1, ..., γn denote the zeros of P (z). Then
we can rewrite P (z) as

P (z) = αn (z − γ1) · · · (z − γn) .

By expanding the above expression and considering the constant term obtained
from that expansion, we get that

α0 = (−1)nαnγ1γ2 · · · γn. (14)

Since |αn| = 1 and γ1, ..., γn ∈ D, the right-hand side in (14) belongs to D. We
can rewrite the equation B(z) = ω as

P (z) = ωznP (1/z),

or written out

α0 + α1z + · · ·+ αnz
n = ω (αn + αn−1z + · · ·+ α0z

n) . (15)

Then we see that the coefficient of zn is nonzero if αn 6= ωα0. If ω ∈ D, we have
that

|ωα0| < |αn| = 1 (16)

since both ω and α0 are in D. Thus, the coefficient of zn in (15) is nonzero, and
since a polynomial of degree n has exactly n roots, the equation in (15) must
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have exactly n solutions. Since we know that B(z) =
1

B(1/z)
from Proposition

3.3, we know that B(z) = ω has exactly n solutions if ω ∈ Ĉ \ D as well. For
ω =∞, first note that the equation B(z) = 0 have exactly n solutions (namely
a1, ..., an). From Proposition 3.3, we have that B(0) = 1

B(∞) . Thus, by the same

argument as above, the equation has exactly n solutions if ω =∞. If ω ∈ T, the
strict inequality in (16) still holds, since |α0| < 1. Hence, B(z) = ω has exactly

n solutions for all ω ∈ Ĉ. The location of the solutions follow directly from the
properties described in Section 3.1, 3.2 and 3.4.

In some cases, repeated solutions may occur. The most obvious case is when
ω = 0, since the solutions to the equation B(z) = 0 are z = aj (1 ≤ j ≤ n),
and all aj do not need to be distinct. In fact, repeated solutions may occur for

ω ∈ Ĉ \ T. However, for ω ∈ T, all solutions must be distinct. Prior to proving
that statement, we need the following lemma and proposition.

Lemma 5.2. Let f(z) be a complex polynomial with f(ξ) = 0. Then ξ is a
repeated solution if and only if f(ξ) = f ′(ξ) = 0.

Proof. Let f(z) be a complex polynomial and suppose ξ is a solution to f(z) = 0
with multiplicity m. Then we can write

f(z) = (z − ξ)mg(z)

for some polynomial g(z) with g(ξ) 6= 0. Then we have

f ′(z) = m(z − ξ)m−1g(z) + (z − ξ)mg′(z).

Hence, we get that f(ξ) = f ′(ξ) = 0 if m ≥ 2, and f ′(ξ) 6= 0 if m = 1.

Proposition 5.3 (Garcia, Mashreghi, Ross [5]). If B(z) is a finite Blaschke
product, then B′(z) 6= 0 for all z ∈ T.

Proof. Let B(z) =
∏n
k=1

|ak|
ak

ak−z
1−akz be a Blaschke product. From (13), recall

that

B′(z)
B(z)

=
n∑

k=1

1− |ak|2
(1− akz) (z − ak)

is the logarithmic derivative of B(z). For each eiθ ∈ T, we have

B′(eiθ)
e−iθB(eiθ)

=
n∑

k=1

1− |ak|2
e−iθ (1− akeiθ) (eiθ − ak)

(17)

=

n∑

k=1

1− |ak|2
(e−iθ − ak) (eiθ − ak)

(18)

=
n∑

k=1

1− |ak|2

|eiθ − ak|2
. (19)
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Since
∣∣e−iθB(eiθ)

∣∣ = 1, we have that

∣∣B′(eiθ)
∣∣ =

∣∣∣∣∣
n∑

k=1

1− |ak|2

|eiθ − ak|2

∣∣∣∣∣

=
n∑

k=1

1− |ak|2

|eiθ − ak|2

6= 0,

which completes the proof.

Corollary 5.4 (Garcia, Mashreghi, Ross [5]). If B(z) is a finite Blaschke product
of degree n, then for each ω ∈ T, the equation B(z) = ω has exactly n distinct
solutions on T.

Proof. Notice that we can write the equation as

h(z) = B(z)− ω.

Then, by Lemma 5.2, we get that ξ is a repeated solution if and only if
h(ξ) = h′(ξ) = 0. But h′(z0) = B′(z0) 6= 0 for z0 ∈ T, so h(z) = 0 cannot have
repeated solutions on T, which implies that the equation B(z) = ω cannot have
repeated solutions for ω ∈ T.

6 Location of zeros

This section is dedicated to the location of the zeros of both B(z) and B′(z).
First, we need a definition which will be used in both cases.

Definition 6.1 (Rockafellar [9]). Let S ⊂ C. The convex hull of S is the
intersection of all convex sets containing S. Equivalently, it is the smallest
convex set containing S.

From a corollary in [9], we have that the convex hull of a finite set of points
{z1, ..., zn} ⊂ C consists of all vectors of the form

λ1z1 + · · ·+ λnzn

with λj ≥ 0 (1 ≤ j ≤ n) and λ1 + · · · + λn = 1. In a two-dimensional
space, it might be easier to conceptualize the convex hull of a finite set of points
{z1, ..., zn} from a figure rather than straight from the definition. The figure below
shows the convex hull of the set S = {z1, z2, z3, z4, z5}, where z1 = (0.5, 0.5),
z2 = (−0.3, 0.1), z3 = (−0.25,−0.5), z4 = (0.1,−0.7) and z5 = (0.5,−0.45).
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Figure 2: The red region is the convex hull of {z1, z2, z3, z4, z5}.
Now, the location of the zeros of B(z) will be studied in more detail.

6.1 Location of the zeros of B(z)

In this section we will study the relation between the location of the zeros of B(z)
and the location of the solutions to the equation B(z) = ω for ω on the unit circle.

We begin by stating a theorem of Gauss and Lucas. The theorem will later be
used in the proof of the location of the zeros of finite Blaschke products.

Theorem 6.2 (Gauss, Lucas, as cited in Garcia, Mashreghi, Ross [5]). Let
z1, ..., zn ∈ C be distinct and let c1, ..., cn > 0. Then

f(z) =
c1

z − z1
+ · · ·+ cn

z − zn
(20)

has n− 1 zeros that lie in the convex hull of {z1, ..., zn}.

Proof. Let z1, ..., zn, c1, ..., cn and f(z) be defined as in the theorem. We can
see that f(z) has n− 1 zeros by multiplying (20) with (z− z1) · · · (z− zn). Then
we get

0 =
c1(z − z1) · · · (z − zn)

z − z1
+ · · ·+ cn(z − z1) · · · (z − zn)

z − zn
= c1(z − z2) · · · (z − zn) + · · ·+ cn(z − z1) · · · (z − zn−1).

This is clearly a polynomial of degree n− 1, and hence, has n− 1 zeros. Now we
have to prove that the zeros lie in the convex hull of {z1, ..., zn}. Now suppose
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that ξ is one of the solutions of f(z) = 0. Then we have

c1
ξ − z1

+ · · ·+ cn
ξ − zn

= 0. (21)

Multiplying each term
cj
ξ−zj in (21) with

(ξ−zj)
(ξ−zj)

, we get

c1
(
ξ − z1

)

|ξ − z1|2
+ · · ·+ cn

(
ξ − zn

)

|ξ − zn|2
= 0. (22)

The expression (22) can also be written as

(
c1

|ξ − z1|2
+ · · ·+ cn

|ξ − zn|2

)
ξ = z1

c1

|ξ − z1|2
+ · · ·+ zn

cn

|ξ − an|2
.

Since c1, ..., cn ∈ R, this is equivalent to

(
c1

|ξ − z1|2
+ · · ·+ cn

|ξ − zn|2

)
ξ = z1

c1

|ξ − z1|2
+ · · ·+ zn

cn

|ξ − zn|2
.

Hence,

ξ =
z1

c1
|ξ−z1|2 + · · ·+ zn

cn
|ξ−zn|2

c1
|ξ−z1|2 + · · ·+ cn

|ξ−zn|2

= λ1z1 + · · ·+ λnzn,

where

λj =

cj
|ξ−zj |2

c1
|ξ−z1|2 + · · ·+ cn

|ξ−zn|2

for 1 ≤ j ≤ n. Since c1, ..., cn > 0, we have that 0 < λ1, ..., λn < 1. We also have
that

λ1 + · · ·+ λn =

c1
|ξ−z1|2

c1
|ξ−z1|2 + · · ·+ cn

|ξ−zn|2
+ · · ·+

cn
|ξ−zn|2

c1
|ξ−z1|2 + · · ·+ cn

|ξ−zn|2

=

c1
|ξ−z1|2 + · · ·+ cn

|ξ−zn|2
c1

|ξ−z1|2 + · · ·+ cn
|ξ−zn|2

= 1.

Hence, ξ lies in the convex hull of {z1, ..., zn}, and the proof is complete.

Before stating the theorem about the location of the zeros of finite Blaschke
products, we need the following lemma:
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Lemma 6.3 (Garcia, Mashreghi, Ross [5]). Let a1, ..., an ∈ D,

B(z) = z
n−1∏

k=1

ak − z
1− akz

and ω ∈ T. Let ξ1, ..., ξn be the n distinct solutions to B(z) = ω. Define

λk =
1

1 +
n−1∑

j=1

1− |aj |2

|ξk − aj |2

for all 1 ≤ k ≤ n. Then λ1, ..., λn satisfy

0 < λ1, ..., λn < 1

and

λ1 + · · ·+ λn = 1. (23)

Moreover,

B(z)/z

B(z)− ω =
(z − a1) · · · (z − an−1)

(z − ξ1) · · · (z − ξn)
(24)

=
λ1

z − ξ1
+ · · ·+ λn

z − ξn
. (25)

Proof. First, observe that

B(z)/z

B(z)− ω =

∏n−1
k=1

ak−z
1−akz

z
∏n−1
k=1

ak−z
1−akz − ω

=

∏n−1
k=1(ak − z)

z
∏n−1
k=1 (ak − z)− ω

∏n−1
k=1 (1− akz)

=
P (z)

Q(z)
,

where P (z) is a polynomial of degree n− 1 with zeros in a1, ..., an−1 and Q(z)
is a polynomial of degree n with zeros in ξ1, ..., ξn. Thus, we have

B(z)/z

B(z)− ω = C
(z − a1) · · · (z − an−1)

(z − ξ1) · · · (z − ξn)

for some constant C ∈ C with C 6= 0. By multiplying both sides with z and
looking at the limit as z →∞, we get

lim
z→∞

B(z)

B(z)− ω = lim
z→∞

C
zn
(
1− a1

z

)
· · ·
(
1− an−1

z

)

zn
(

1− ξ1
z

)
· · ·
(

1− ξn
z

) ,
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which gives us that C = 1. Let

B(z)/z

B(z)− ω =
λ1

z − ξ1
+ · · ·+ λn

z − ξn
.

be a partial fraction decomposition. Let j (1 ≤ j ≤ n) be fixed. By multiplying
the preceding equation with z − ξj and letting z → ξj , we get that

λj = lim
z→ξj

(z − ξj)B(z)/z

B(z)− ω

= lim
z→ξj

B(z)

z

z − ξj
B(z)− ω .

(26)

Notice that

lim
z→ξj

z − ξj
B(z)− ω = lim

z→ξj

z − ξj
B(z)−B(ξj)

= lim
z→ξj

1
B(z)−B(ξj)

z−ξj

=
1

B′(z)
,

by the definition of derivative. Hence, we can rewrite (26) as

λj =
B(ξj)

ξjB′(ξj)

=
ξjB(ξj)

B′(ξj)

=
1

B′(ξj)
ξjB(ξj)

=
1

1 +
∑n−1
k=1

1−|ak|2
|ξj−ak|2

, (27)

where (19) is used in the last step. Thus, we have proven (25). Since the
denominator in (27) is greater than 1, we have that

0 < λ1, ..., λn < 1.

To prove (23), multiply the expression in (25) with z and let z →∞. Then we
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get

lim
z→∞

λ1z

z − ξ1
+ · · ·+ λnz

z − ξn
= lim
z→∞

z

z

(
λ1

1− ξ1/z
+ · · ·+ λn

1− ξn/z

)

= λ1 + · · ·+ λn

= lim
z→∞

B(z)

B(z)− ω

= lim
z→∞

z

z

B(z)/z

B(z)/z + ω/z

= 1,

which completes the proof.

Now we have enough knowledge to state the theorem about the location of zeros
of finite Blaschke products in relation to the solutions to the equation B(z) = ω
for ω on the unit circle.

Theorem 6.4 (Garcia, Mashreghi, Ross [5]). Let a1, ..., an−1 ∈ D,

B(z) = z
n−1∏

k=1

ak − z
1− akz

,

and ω ∈ T. Let ξ1, ..., ξn be the n distinct solutions to B(z) = ω. Then a1, ..., an−1
belong to the convex hull of ξ1, ..., ξn.

Proof. From the previous lemma, we have that

B(z)/z

B(z)− ω =
λ1

z − ξ1
+ · · ·+ λn

z − ξn
.

On the left-hand side, we can see that the zeros are exactly the points a1, ..., an−1.
From Theorem 6.2, we know that the right-hand side has exactly n− 1 zeros,
and that the zeros lie in the convex hull of {ξ1, ..., ξn}. Hence, a1, ..., an−1 lie in
the convex hull of {ξ1, ..., ξn}.

6.2 Location of the zeros of B′(z)

In this section, the location of the zeros of B′(z) will be examined. First, we
will look into the number of solutions and roughly where they are located. As
we saw in Proposition 5.3, the derivative is nonzero on the unit circle. Hence,
the zeros must lie either in D or in C \ D. Before stating the theorem which
concerns the number of solutions, how many of them are located in D and how
many are located in C \ D, we need a lemma.

Lemma 6.5 (Garcia, Mashreghi, Ross [5]). Let B(z) be a finite Blaschke product.

Then, for every z ∈ Ĉ \ {0} with B(z) 6= 0, it holds that B′(z) = 0 if and only if
B′(1/z) = 0.
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Proof. From Proposition 3.3, we know that

B(z)B(1/z) = 1

for all z ∈ Ĉ. If we take the derivative of both sides with respect to z, we get

B′(z)B(1/z) +B(z)
(
B(1/z)

)′
= 0. (28)

For the derivative of B(1/z), first notice that

B′(1/z) = −
n∑

k=1

(
|ak|
ak

1− |ak|2
1− ak

z

Bk(1/z)

)
,

where Bk(z) is defined as in (7). Now we continue calculating
(
B(1/z)

)′
. We

have

(
B(1/z)

)′
=

(
n∏

k=1

|ak|
ak

ak − 1
z

1− ak
z

)′

= −
n∑

k=1

( |ak|
ak

ak − 1
z

1− ak
z

)′
Bk(1/z)

= −
n∑

k=1

(
|ak|
ak

(
1
z2

(
1− ak

z

)
− ak

z2

(
ak − 1

z

)
(
1− ak

z

)2

))
Bk(1/z)

= −
n∑

k=1

(
|ak|
ak

(
1− ak

z − |ak|
2

+ ak
z

z2
(
1− ak

z

)2

))
Bk(1/z)

= − 1

z2

n∑

k=1

(
|ak|
ak

1− |ak|2(
1− ak

z

)2Bk(1/z)

)

= − 1

z2
B′(1/z).

Hence, (28) can be written as

B′(z)B(1/z)− 1

z2
B(z)B′(1/z) = 0.

Since we only consider points where B(z) 6= 0, we can see that B′(z) = 0 if and
only if B′(1/z) = 0.

Theorem 6.6 (Garcia, Mashreghi, Ross [5]). Let B(z) be a Blaschke product
of degree n, and rewrite it as

B(z) = zd0
m∏

k=1

(
ak − z
1− akz

)dk
, (29)
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such that a1, ..., am ∈ D \ {0} are distinct numbers and d0, ..., dm are positive
integers with

d0 + · · ·+ dm = n.

Then B′(z) has exactly n− 1 zeros in D. If d0 6= 0, the number of zeros of B′(z)

in Ĉ \ D is m. If d0 = 0, the number of zeros of B′(z) in Ĉ \ D is less or equal
to m− 1.

Proof. First, suppose that all zeros of B(z) are distinct and that neither B(z)
or B′(z) are zero at the origin, that is, d0 = 0 and m = n. From (13), we know
that B′(z) = 0 if and only if

n∑

k=1

1− |ak|2
(1− akz) (z − ak)

= 0.

Multiplying by
∏n
k=1 (1− akz) (z − ak), we get

0 =

n∑

k=1


 1− |ak|2

(1− akz) (z − ak)

n∏

j=0

(1− ajz) (z − aj)




=
n∑

k=1



(

1− |ak|2
) n∏

j=1
j 6=k

((1− ajz) (z − aj))


 ,

which is a polynomial of degree 2 (n− 1) that does not have any zeros in
{0, a1, ..., an, 1/a1, ..., 1/an}. By Lemma 6.5, we know that exactly n− 1 of the
zeros are in D and exactly n− 1 of the zeros are in C \ D. Theorem 5.6 in [5]
states that for any finite Blaschke product B(z) of degree n, there is a family
{Bε : 0 < ε < ε0} of Blaschke products with the following properties:

1. each Bε is of degree n,

2. each Bε has distinct zeros,

3. for all ε, Bε(0) 6= 0 and B′ε(0) 6= 0, and

4. as ε → 0, Bε converges uniformly to B(z) on compact subsets of C that
do not contain a pole of B(z).

In the general case, this allows us to approximate B(z) by a family Bε of Blaschke
products of degree n with distinct zeros and such that both Bε(0) 6= 0 and B′ε 6= 0.
Since D is a compact subset of C that does not contain any pole of B(z), Bε
converges uniformly to B(z) on D as ε→ 0. This, together with the first part of

the proof, gives us that B(z) have n− 1 zeros in D. In Ĉ \ D, this might not be

the case, since Ĉ \ D contains all poles of B(z). Thus, B′ε may have zeros at the

poles of B(z), which means that B(z) may have fewer than n− 1 zeros in Ĉ \D.
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Therefore, we need to look closer to the number of zeros of B′(z) in Ĉ \D. First,
suppose that d0 6= 0. Then, by calculating the derivative of (29), we get

B′(z) = zd0−1
∏m
k=1 (ak − z)dk−1∏m
k=1 (1− akz)dk+1

P (z),

where

P (z) = d0

m∏

k=1

((ak − z) (1− akz)) + z
n∑

k=1


dk

(
|ak|2 − 1

) m∏

j=1
j 6=k

((aj − z) (1− ajz))


 ,

which is a polynomial of degree 2m. The polynomial P (z) does not have any
zeros in {0, a1, ..., an} since

P (0) = d0

m∏

k=1

ak 6= 0

and

P (ap) = apdp

(
|ap|2 − a

) m∏

j=1
j 6=p

((aj − ap) (1− ajap)) 6= 0

for any ap ∈ {a1, ..., an}. Since j0 + · · ·+ jm = n, the number of zeros of B′(z) in
C is n−(m+1)+2m = n+m−1. From Lemma 6.5, we know that the 2m zeros of
P (z) have the form γ1, ..., γm, 1/γ1, ..., 1/γm, where γ1, ..., γm ∈ D\{0, a1, ..., an}.
Thus, the number of zeros in Ĉ \ D is exactly m if d0 6= 0. Now suppose that
d0 = 0. Then, by calculating the derivative of (29), we get

B′(z) =

∏m
k=1 (ak − z)dk−1∏m
k=1 (1− akz)dk+1

Q(z)

where

Q(z) =
m∑

k=1


dk

(
|ak|2 − 1

) m∏

j=1
j 6=k

((aj − z) (1− ajz))


 ,

which is a polynomial of degree at most 2 (m− 1). The polynomial Q(z) does
not have any zeros in {a1, ..., an} since

Q(ap) = dp

(
|ap|2 − 1

) m∏

j=1
j 6=p

((aj − ap) (1− ajap))
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for any ap ∈ {a1, ..., an}. Notice that Q(z) can have zeros at the origin here.
Thus, the number of zeros of B′(z) in C is at most n−m+ 2(m− 1) = n+m−2.
From Lemma 6.5, we know that the zeros of Q(z) that are not at the origin have
the form γ1, ..., γs, 1/γ1, ..., 1/γs for some s, where γ1, ..., γs ∈ D \ {0, a1, ..., an}.
If Q(z) have t zeros at the origin, we have that

2s+ t = degQ ≤ 2(m− 1),

which implies that s ≤ m− 1. Hence, B′(z) has at most m− 1 zeros in Ĉ \ D if
j0 = 0, which completes the proof.

For the rest of this section, the focus will be on the solutions that are located
on the unit disc. There is an old theorem by Gauss and Lucas that gives a
geometrical connection between the zeros of a complex polynomial P (z) and its
derivative P ′(z):

Theorem 6.7 (Gauss, Lucas, as cited in Garcia, Mashreghi, Ross [5]). Let P (z)
be a complex polynomial. Then the zeros of P ′(z) lie in the convex hull of the
zeros of P (z).

There is a similar theorem regarding finite Blaschke products:

Theorem 6.8 (Cassier, Chalendar [1]). Let B(z) be a finite Blaschke product.
Then the zeros of B′(z) that lie inside the unit disc are included in the convex
hull of {0} ∪ {a1, ..., an}.

Proof. Let B(z) =
∏n
k=1

|ak|
ak

ak−z
1−akz be a finite Blaschke product. Recall the

logarithmic derivative

B′(z)
B(z)

=
n∑

k=1

1− |ak|2
(1− akz) (z − ak)

from (13). With partial fraction decomposition we get

B′(z)
B(z)

=

n∑

k=1

(
A

1− akz
+

B

z − ak

)

=
n∑

k=1

(
A (z − ak) +B (1− akz)

(1− akz) (z − ak)

)
.

For an arbitrary term in the sum, we have that

1− |aj |2 = A (z − aj) +B (1− ajz) ,

which gives us that A = aj and B = 1 for each j (1 ≤ j ≤ n). Thus, we have

B′(z)
B(z)

=
n∑

k=1

(
ak

1− akz
− 1

ak − z

)
.
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Now let ξ ∈ {z : B′(z) = 0} ∩ D \ {a1, ..., an}. Then we know that ξ satisfies

n∑

k=1

(
ak

1− akξ
− 1

ak − ξ

)
= 0,

i.e.

0 =
n∑

k=1

(
ak
(
1− akξ

)

|1− akξ|2
− ak − ξ
|ak − ξ|2

)

=
n∑

k=1

(
ak (1− akξ)∣∣1− akξ

∣∣2 −
ak − ξ
|ak − ξ|2

)

=

n∑

k=1

(
ak∣∣1− akξ

∣∣2 −
|ak|2 ξ∣∣1− akξ

∣∣2 −
ak

|ak − ξ|2
+

ξ

|ak − ξ|2

)
.

Thus, we have

ξ

n∑

k=1

(
1

|ak − ξ|2
− |ak|2∣∣1− akξ

∣∣2

)
=

n∑

k=1

ak

(
1

|ak − ξ|2
− 1
∣∣1− akξ

∣∣2

)
. (30)

The left-hand side in (30) can be rewritten as

ξ

n∑

k=1

(
1

|ak − ξ|
− |ak|2∣∣1− akξ

∣∣2

)
= ξ

n∑

k=1

∣∣1− akξ
∣∣2 − |ak|2 |ak − ξ|2

|ak − ξ|2
∣∣1− akξ

∣∣2

= ξ
n∑

k=1

(
1− akξ

)
(1− akξ)− |ak|2 (ak − ξ)

(
ak − ξ

)

|ak − ξ|2
∣∣1− akξ

∣∣2

= ξ
n∑

k=1

1− |ak|4 + akξ
(
|ak|2 − 1

)
+ akξ

(
|ak|2 − 1

)

|ak − ξ|2
∣∣1− akξ

∣∣2

= ξ
n∑

k=1

(
|ak|2 − 1

)(
akξ + akξ − 1− |ak|2

)

|ak − ξ|2
∣∣1− akξ

∣∣2

= ξ
n∑

k=1

(
1− |ak|2

)(
1 + |ak|2 − akξ − akξ

)

|ak − ξ|2
∣∣1− akξ

∣∣2

= ξ
n∑

k=1

(
1− |ak|2

)(
|1− akξ|2 + |ak|2 − |ak|2 |ξ|2

)

|ak − ξ|2
∣∣1− akξ

∣∣2

= ξ
n∑

k=1

(
1− |ak|2

)(
|1− akξ|2 + |ak|2

(
1− |ξ|2

))

|ak − ξ|2
∣∣1− akξ

∣∣2 .
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The right-hand side in (30) can be rewritten as

n∑

k=1

ak

(
1

|ak − ξ|2
− 1
∣∣1− akξ

∣∣2

)
=

n∑

k=1

ak

∣∣1− akξ
∣∣2 − |ak − ξ|2∣∣1− akξ
∣∣2 |ak − ξ|2

=
n∑

k=1

ak
(1− akξ)

(
1− akξ

)
− (ak − ξ)

(
ak − ξ

)
∣∣1− akξ

∣∣2 |ak − ξ|2

=
n∑

k=1

ak
1 + |ak|2 |ξ|2 − |ak|2 − |ξ|2∣∣1− akξ

∣∣2 |ak − ξ|2

=

n∑

k=1

ak

(
1− |ak|2

)(
1− |ξ|2

)

∣∣1− akξ
∣∣2 |ak − ξ|2

.

Hence, we have

ξ

n∑

k=1

(
1− |ak|2

)(
|1− akξ|2 + |ak|2

(
1− |ξ|2

))

|ak − ξ|2
∣∣1− akξ

∣∣2 =

n∑

k=1

ak

(
1− |ak|2

)(
1− |ξ|2

)

∣∣1− akξ
∣∣2 |ak − ξ|2

.

Since ξ ∈ {z : B′(z) = 0} ∩ D \ {a1, ..., an}, we have that |ξ| ≤ 1. Suppose that
|ξ| = 1. Then the right-hand side is 0, and we would get

n∑

k=1

(
1− |ak|2

)
|1− akξ|2

|ak − ξ|2
∣∣1− akξ

∣∣2 = 0.

But each term on the left-hand side is positive, so we must have that |ξ| < 1 if
ξ ∈ {z : B′(z) = 0} ∩ D \ {a1, ..., an}. Now let

ρk =

(1−|ak|2)(1−|ξ|2)
|1−akξ|2|ak−ξ|2

n∑

j=1

(
1− |aj |2

)(
|1− ajξ|2 + |aj |2

(
1− |ξ|2

))

|aj − ξ|2
∣∣1− ajξ

∣∣2

.

Then we have that ξ =
∑n
k=1 akρk. Notice that

|1− ajξ|2 + |aj |2
(

1− |ξ|2
)

= (1− ajξ)
(
1− ajξ

)
+ |aj |2 − |aj |2 |ξ|2

= 1− ajξ − ajξ + |aj |2

=
(
|aj |2 − ajξ − ajξ + |ξ|2

)
+ 1− |ξ|2

= |aj − ξ|2 + 1− |ξ|2 .
Since we have

|1− ajξ|2 + |aj |2
(

1− |ξ|2
)

= |aj − ξ|2 + 1− |ξ|2 ,
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we must have

1− |ξ|2 ≤ |1− ajξ|2 + |aj |2
(

1− |ξ|2
)
, (31)

since

|1− ajξ|2 + |aj |2
(

1− |ξ|2
)
− |aj − ξ|2 ≯ |1− ajξ|2 + |aj |2

(
1− |ξ|2

)
.

Thus, given the inequality in (31), we get

n∑

k=1

ρk =

n∑

k=1




(
1− |ak|2

)(
1− |ξ|2

)

|ak − ξ|2
∣∣1− akξ

∣∣2




n∑

j=1




(
1− |aj |2

)(
|1− ajξ|2 + |aj |2

(
1− |ξ|2

))

|aj − ξ|2
∣∣1− ajξ

∣∣2




=

n∑

k=1



(

1− |ak|2
)(

1− |ξ|2
) n∏

j=1
j 6=k

(
|aj − ξ|2

∣∣1− ajξ
∣∣2
)



n∑

k=1



(

1− |ak|2
)(
|1− akξ|2 + |ak|2

(
1− |ξ|2

)) n∏

j=1
j 6=k

(
|aj − ξ|2

∣∣1− ajξ
∣∣2
)



≤ 1.

Hence, we can conclude that the zeros of B′(z) inside D lie inside the convex
hull of {0} ∪ {a1, ..., an}.

For finite Blaschke products, there is a refinement to Theorem 6.8 which involves
hyperbolic geometry. This thesis will not go into depth about hyperbolic
geometry, but here is a brief introduction. Hyperbolic geometry is a non-Euclidean
geometry, that is, the contrary to the parallel postulate in Euclid’s Elements is
assumed. The parallel postulate states that given a line l and a point p that
is not on the line, there is one and only one line that is parallel to l that goes
through the point p. In hyperbolic geometry, that statement is replaced with
”given a line l and a point p not on the line, there is more than one line that is
parallel to l and goes through the point p”. A hyperbolic line between z1 and z2
is given by

t→
z1 − z1−z2

1−z1z2 t

1− z1 z1−z2
1−z1z2 t

,

and can be written as the parametrization

γ
α− z
1− αz = t,
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where t ∈ [−1, 1], γ ∈ T and α ∈ D (see for instance [4]). The figure below shows
an example of a hyperbolic line segment between two points:

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

z1

z2

Figure 3: A hyperbolic line segment between the points z1 and z2.

Now we can define what a hyperbolically convex set is.

Definition 6.9. A set A ⊂ D is hyperbolically convex if

z1, z2 ∈ A and t ∈ [0, 1] =⇒
z1 − z1−z2

1−z1z2 t

1− z1 z1−z2
1−z1z2 t

∈ A.

We also have the following definition of a hyperbolic convex hull:

Definition 6.10 (Garcia, Mashreghi, Ross [5]). The hyperbolic convex hull of
a finite set of points {z1, ..., zn} ⊂ D is the smallest hyperbolic convex set that
contains {z1, ..., zn}.

The definitions can be difficult to visualize at first glance. Let S be the same
set as in Figure 4 in Section 6, i.e. S = {z1, z2, z3, z4, z5} where z1 = (0.5, 0.5),
z2 = (−0.3, 0.1), z3 = (−0.25,−0.5), z4 = (0.1,−0.7) and z5 = (0.5,−0.45). If
we plot the segment

zi − zi−zj
1−zizj t

1− zi zi−zj1−zizj t

with 0 ≤ t ≤ 1 and (i, j) = (1, 2), (2, 3), (3, 4), (4, 5), (5, 1), we get the following
figure:
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1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

z1

z2

z3

z4

z5

Figure 4: The black is the outline of the convex hull of S. The red is the outline
of the hyperbolic convex hull of S.

Theorem 6.11 (Garcia, Mashreghi, Ross [5]). Let B(z) be a finite Blaschke
product. Then the zeros of B′(z) inside D belong to the hyperbolic convex hull of
the zeros of B(z).

Proof. Let B(z) be a finite Blaschke product with zeros in a1, ..., an ∈ D. First,
we need to introduce some notation that will be used throughout this proof.
First, we have the lower half of the unit disc,

D− = D ∩ {z : Im(z) < 0},

and the upper half of the unit disc,

D+ = D ∩ {z : Im(z) > 0}.

Suppose that all zeros of B(z) are in D+ ∪ (−1, 1). With (13), we get that

Im

(
B′(z)
B(z)

)
=

n∑

k=1

Im

(
1− |ak|2

(1− akz) (z − ak)

)
. (32)

Let α ∈ D+ be fixed, and consider the function

ϕ(z) =
1− |α|2

(1− αz) (z − α)
.

Now we will study the image of D− under ϕ. Since ϕ is analytic on D−, we only
need to study the simple closed curve that constitutes the boundary of D−, that
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is T− ∪ [−1, 1], where

T− = {eiθ : −π ≤ θ ≤ 0}
= T ∩ {z : Im(z) ≤ 0}.

For T−, we have

ϕ(eiθ) =
1− |α|2

(1− αeiθ) (eiθ − α)

=
1− |α|2

eiθ (e−iθ − α) (eiθ − α)

=
1− |α|2

|eiθ − α|2
e−iθ.

Hence, the image of T− under ϕ is in C+ ∪R = C \C−. For t ∈ [−1, 1] we have

ϕ(t) =
1− |α|2

(1− αt) (t− α)

=

(
1− |α|2

)
(1− αt) (t− α)

(1− αt) (1− αt) (t− α) (t− α)

=
1− |α|2

|(1− αt) (t− α)|2
(1− αt) (t− α) .

For the calculation of the imaginary part of ϕ in [−1, 1], recall that

Im(z) =
z − z

2i

Thus, we get

Im(ϕ(t)) =
ϕ(t)− ϕ(t)

2i

=

1−|α|2
|(1−αt)(t−α)|2 ((1− αt) (t− α)− (1− αt) (t− α))

2i

=

1−|α|2
|(1−αt)(t−α)|2

(
α− α− t2 (α− α)

)

2i

=
1− |α|2

|(1− αt) (t− α)|2
(
1− t2

) α− α
2i

=
1− |α|2

|(1− αt) (t− α)|2
(
1− t2

)
Im(α).
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Hence, the image of [−1, 1] under ϕ is also in C+ ∪ R. Thus, ϕ maps D− to a
simple closed curve in C+. Since ϕ is analytic on D−, we can conclude that ϕ
maps D− into C+. Since we have assumed that all zeros of B(z) are in D+, (32)
and the conclusions we have done about the function ϕ gives us

z ∈ D− =⇒ Im

(
B′(z)
B(z)

)
> 0.

Thus, B′(z) do not have any zeros in D−. By continuity, since all of the zeros of
B(z) are assumed to be in D+ ∪ (−1, 1), all zeros of B′(z) that are inside the
unit disc must also be in D+ ∪ (−1, 1). Now, consider the automorphism

τα =
α− z
1− αz ∈ Aut(D).

According to Lemma 3.11 in [5], for a finite Blaschke product B(z) of degree n,
both τα ◦B and B ◦ τα are finite Blaschke products of degree n. Let f = B ◦ τα.
Then f is a finite Blaschke product. We have that

τ2α(z) =
α−

(
α−z
1−αz

)

1− α
(
α−z
1−αz

)

=

α (1− αz)− (α− z)
1− αz

(1− αz)− α (α− z)
1− αz

=
α− |α|2 z − α+ z

1− αz − |α|2 + αz

=
z
(

1− |α|2
)

1− |α|2

= id,

where id is the identity mapping id(z) = z. Thus, the function f has zeros in
τα(a1), ..., τα(an) ∈ D. Let d1, ..., dn−1 denote the zeros of B′(z) inside D. Then
the zeros of f ′ are in τα(d1), ..., τα(dn−1) (by the same argument as above). Since
we have assumed that a1, ..., an lie in D+ ∪ (−1, 1), we can choose α ∈ D such
that

Im(τα(a1)), ..., Im(τα(an)) ≤ 0,

then the conclusions drawn from the function ϕ previously in the proof gives us
that

Im(τα(d1)), ..., Im(τα(dn−1)) ≤ 0.
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From this, we can conclude that if the zeros of B(z) are on one side of the
hyperbolic line

α− z
1− αz = t, t ∈ [−1, 1],

then the zeros of B′(z) that are inside D are on the same side of said line. The
same holds if we replace τα by a rotation, and since the intersection of all such
hyperbolic lines forms the hyperbolic convex hull, we can conclude that all zeros
of B′(z) that lie in D lie in the hyperbolic convex hull of a1, ..., an.

7 Blaschke products and ellipses

This section is dedicated to the connection between finite Blaschke products
and ellipses, which is obtained by exploring the geometrical properties of the
solutions to the equation B(z) = ω for different ω ∈ T. First, we need to define
what a Möbius transformation is, which will be used in both Section 7.1 and 7.2.

Definition 7.1 (Saff, Snider [10]). A Möbius transformation is a function of
the form

f(z) =
az + b

cz + d

with ad 6= bc.

A Möbius transformation that maps D to D has the form

β
z − α
1− αz , (33)

where |β| = 1 and α ∈ D. From [11], we know that there exists a Möbius
transformation z = M(ω), which is of the form described in (33), such that
B(z) = B(M(ω)) = C(z), where C(z) is another Blaschke product. Then the
points ω1, ..., ωn for which ak = M(ωk) are the zeros of C(z). Therefore, by
composing a Blaschke product with an appropriate Möbius transformation, we
can assume that the Blaschke product has a zero at the origin. Now we have
enough information to study the results obtained by Blaschke products of various
degrees.

7.1 Blaschke products of degree two

In this section, we only consider Blaschke products of degree two, i.e.

B2(z) =
|a1|
a1

a1 − z
1− a1z

|a2|
a2

a2 − z
1− a2z

.

By composing B2(z) with a Möbius transformation, we can assume our Blaschke
product of degree two has the form

B(z) = z
a− z
1− az ,
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where a 6= 0. The main goal in this section is to examine what will happen if we
draw a line connecting the two solutions of the equation

B(z) = ω

for different values of ω ∈ T. First, we start off by examining an example. Let

B(z) = z (0.3−0.7i)−z
1−(0.3+0.7i)z . If we solve the equation B(z) = 1 and draw a line between

the two solutions ξ1 and ξ2, we achieve the following figure:

Figure 5: Lines connecting the two solutions to the equation

B(z) = z (0.3−0.7i)−z
1−(0.3+0.7i)z = 1. The red dots are the zeros of B(z).

Now let

Γ =
{
±1,±i,

√
2
2 ±

√
2
2 i,−

√
2
2 ±

√
2
2 i,

√
2
4 ±

√
14
4 i,−

√
2
4 ±

√
14
4 i,

√
14
4 ±

√
2
4 i,−

√
14
4 ±

√
2
4 i
}
.

Plotting a figure in the same way as in Figure 5, but for all ω ∈ Γ, we get the
following figure:
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Figure 6: Lines connecting the two solutions to the equation

B(z) = z (0.3−0.7i)−z
1−(0.3+0.7i)z = ω, for ω ∈ Γ. The red dots are the zeros of the

Blaschke product B(z).

By removing the zero at the origin, we can see that all lines pass through
the non-origin zero of B(z), which we can see in the following two figures:

Figure 7: Lines connecting the two solutions to the equation

B(z) = z (0.3−0.7i)−z
1−(0.3+0.7i)z = ω, for ω ∈ Γ. The red dot is the non-origin zero

of B(z).
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Figure 8: Lines connecting the two solutions to the equation B(z) = ω, where

ω ∈ Γ and B(z) = z (−0.6+0.2i)−z
1−(−0.6−0.2i)z . The red dot is the non-origin zero of B(z).

From the figures above, it seems like the line connecting the two solutions of
B(z) = z a−z

1−az = ω with ω ∈ T and a 6= 0 passes through the point a. This is
actually the case for all such Blaschke products, as shown in the theorem below.

Theorem 7.2 (Daepp, Gorkin, Mortini [2]). Let B(z) = z a−z
1−az with a 6= 0. For

ω ∈ T, let ξ1 and ξ2 be the two distinct solutions to the equation B(z) = ω.
Then the line joining ξ1 and ξ2 passes through a. Conversely, for any line L that
passes through a, the two points ξ1 and ξ2 where the line L intersects T satisfy
B(ξ1) = B(ξ2).

Proof. Let ω = eiθ and consider the equation

z
a− z
1− az = eiθ.

From Section 3.1 we know that |z| = 1, so we have that z = 1/z. Hence,

eiθ = z
a− z
1− az

=
1

z

a− z
1− az

=
a− z

z − a |z|2

=
a− z
z − a.

(34)
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Now let ξj = a + rje
iθj (j ∈ {1, 2}), where rj , θj are positive real numbers.

Substituting ξj (j ∈ {1, 2}) into the equation a−z
z−a = eiθ, we get the equation

eiθ =
a−

(
a+ rje

iθj
)

(a+ rje−iθj )− a

=
−rjeiθj
rje−iθj

= −e2iθj .

This yields the two solutions ξ1 = a+ iei
θ
2 and ξ2 = a− iei θ2 . Recall that the

three points a, ξ1 and ξ2 will be on the same line if and only if

a− ξ2 = c(ξ2 − ξ1) (35)

for some c ∈ R (see for instance [10]). Substituting with ξ1 = a + iei
θ
2 and

ξ2 = a− iei θ2 in (35), we get

a−
(
a− r2ei

θ
2

)
= c

((
a− r2ei

θ
2

)
−
(
a+ r1e

i θ2

))
,

r2e
i θ2 = −c (r2 + r1) ei

θ
2 .

So, with c = − r2
r1+r2

, we have a − ξ2 = c (ξ2 − ξ1). Since r1, r2 ∈ R, we have
that c ∈ R. Hence, a, ξ1 and ξ2 lie on the same line. Thus, the first part of the
theorem is proven.

For the second part of the proof, suppose that ξ1 and ξ2 are points on the unit
circle such that

a− ξ2 = c (ξ2 − ξ1) (36)

for some c ∈ R. Recall that we know that B(z) = a−z
z−a on the unit circle from

(34). From (36) we can derive that ξ2 − a = −c
(
ξ2 − ξ1

)
= c

(
ξ1 − ξ2

)
. Hence,

B(ξ2) =
a− ξ2
ξ2 − a

=
c (ξ2 − ξ1)

c
(
ξ1 − ξ2

)

=
ξ2 − ξ1
ξ1 − ξ2

.

(37)

From (36), we can derive that

a− ξ1 = (c+ 1) (ξ2 − ξ1)

and

ξ1 − a = − (c+ 1)
(
ξ2 − ξ1

)

= (c+ 1)
(
ξ1 − ξ2

)
.
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Thus,

B(ξ1) =
a− ξ1
ξ1 − a

=
(c+ 1) (ξ2 − ξ1)

(c+ 1)
(
ξ1 − ξ2

)

=
ξ2 − ξ1
ξ1 − ξ2

.

(38)

From (37) and (38), we can see that B(ξ1) = B(ξ2).

In the next section, we will look into the somewhat more interesting geometrical
result which appears with Blaschke products of degree 3.

7.2 Blaschke products of degree three

In this section, we only consider Blaschke products of degree three, i.e.

B3(z) =
|a1|
a1

a1 − z
1− a1z

|a2|
a2

a2 − z
1− a2z

|a3|
a3

a3 − z
1− a3z

.

By composing B3(z) with a Möbius transformation, we can assume our Blaschke
product of degree three has the form

B(z) = z
a− z
1− az

b− z
1− bz

.

The main goal of this section is to examine what will happen if we draw lines
connecting the three solutions of the equation

B(z) = ω

for many different values of ω ∈ T. First, we begin with an example. Let

B(z) = z 0.5−z
1−0.5z

(−0.4−0.5i)−z
1−(−0.4+0.5i)z . If we solve the equation B(z) = 1 and draw lines

that connects the solutions, we get the following figure:
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Figure 9: Lines connecting the three solutions to the equation

B(z) = z 0.5−z
1−0.5z

(−0.4−0.5i)−z
1−(−0.4+0.5i)z = 1. The red dots are the zeros of B(z).

Now let

Γ =
{
±1,±i,

√
2
2 ±

√
2
2 i,−

√
2
2 ±

√
2
2 i,

√
2
4 ±

√
14
4 i,−

√
2
4 ±

√
14
4 i,

√
14
4 ±

√
2
4 i,−

√
14
4 ±

√
2
4 i
}
.

Plotting a figure in the same way as in Figure 9, but for all ω ∈ Γ, we get the
following figure:
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Figure 10: Lines connecting the three solutions to the equation

B(z) = z 0.5−z
1−0.5z

(−0.4−0.5i)−z
1−(−0.4+0.5i)z = ω, where ω ∈ Γ. The red dots are the zeros

of B(z).

The lines connecting the solutions to the equation B(z) = ω seem to be tangents
of an ellipse, and if we remove the zero at the origin, it seems like the non-origin
zeros of B(z) are the foci of the ellipse:

Figure 11: Same as Figure 10, but with the zero at the origin removed.
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This seems to be a consistent finding. Two more examples follow in the figures
below.

Figure 12: Lines drawn between the solutions to the equation B(z) = ω for

ω ∈ Γ with B(z) = z (0.3+0.7i)−z
1−(0.3−0.7i)z

(0.5i)−z
1−(−0.5i)z .

Figure 13: Lines drawn between the solutions to the equation B(z) = ω for

ω ∈ Γ with B(z) = z (0.2−0.6i)−z
1−(0.2+0.6i)z

(0.1+0.2i)−z
1−(0.1−0.2i)z .

Before stating the relevant theorems, recall the definition of an ellipse.
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Definition 7.3. Let a and b be complex numbers and c be a positive, real number.
Then

|z − a|+ |z − b| = c

is the equation of an ellipse in the complex plane, and the points a and b are its
foci.

Before we continue, we need to mention the notation of angles that will be used
for the upcoming theorem. An angle ∠ (p1, p2, p3) will be defined using three
points, with the vertex in the middle. One thing that is worth mentioning is
that ∠ (a, b, c) = −∠ (c, b, a), since one of the angles is viewed clockwise and the
other one is counter clockwise. If we consider a point p on the ellipse E and
draw a line from each focus to the point p. Then the angles that arise when said
lines intersect the tangent of E at the point p are congruent. That is, for any
point p on an ellipse E and two arbitrary points ξ1 and ξ2 on the tangent of E
at the point p, the angles ∠ (a, p, ξ1) and ∠ (b, p, ξ2) are congruent. Since one
of the angles has to be clockwise and the other counter-clockwise (with respect
to this notation of angles), we have that ∠ (a, p, ξ1) = −∠ (b, p, ξ2) for all such
points.

Now we can formally state and prove the main result of this section.

Theorem 7.4 (Daepp, Gorkin, Mortini [2]). Let B(z) = z
(
a1−z
1−a1z

)(
a2−z
1−a2z

)

with a1 6= a2 and a2 6= 0. For any ω ∈ T, let ξ1, ξ2 and ξ3 be the three distinct
solutions to the equation B(z) = ω. Let

F (z) =
B(z)/z

B(z)− ω =
λ1

z − ξ1
+

λ2
z − ξ2

+
λ3

z − ξ3
.

Then the line L joining ξ1 and ξ2 is the tangent to the ellipse E given by

|z − a1|+ |z − a2| = |1− a1a2|

at the point p = λ1ξ2+λ2ξ1
λ1+λ2

. Conversely, for each point p on the ellipse E, the
tangent of E at p intersects T at two distinct points ξ1 and ξ2 with B(ξ1) = B(ξ2).
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Proof. First, notice that F (aj) = 0 for j = 1, 2, since B(aj) = 0. Thus, we have

0 = F (aj)

=
λ1

aj − ξ1
+

λ2
aj − ξ2

+
λ3

aj − ξ3

=
λ3

aj − ξ3
+
λ1 (aj − ξ2) + λ (aj − ξ1)

(aj − ξ1) (aj − ξ2)

=
λ3

aj − ξ3
+
aj (λ1 + λ2)− (λ1ξ2+λ2ξ1)

(λ1+λ2)
(λ1 + λ2)

(aj − ξ1) (aj − ξ2)

=
λ3

aj − ξ3
+

(aj − p) (λ1 + λ2)

(aj − ξ1) (aj − ξ2)
.

Therefore, we have

−λ3
aj − ξ3

= (λ1 + λ2)
(aj − p)

(aj − ξ1) (aj − ξ2)

From Lemma 6.3, we know that 0 < λ1, λ2, λ3 < 1 and λ1 + λ2 + λ3 = 1, thus

λ3

∣∣∣∣
1

aj − ξ3

∣∣∣∣ = (1− λ3)

∣∣∣∣
(aj − p)

(aj − ξ1) (aj − ξ2)

∣∣∣∣ ,

which we can rewrite as

|p− aj | =
λ3

1− λ3

∣∣∣∣
(aj − ξ1) (aj − ξ2)

(aj − ξ3)

∣∣∣∣ . (39)

If we use (39) in the expression 1
|1−a1a2| |p− a1|+

1
|1−a1a2| |p− a2| we get

|p− a1|
|1− a1a2|

+
|p− a2|
|1− a1a2|

=
λ3

1− λ3

∣∣∣∣
(a1 − ξ1) (a1 − ξ2)

(1− a1a2) (a1 − ξ3)

∣∣∣∣+
λ3

1− λ3

∣∣∣∣
(a2 − ξ1) (a2 − ξ2)

(1− a1a2) (a2 − ξ3)

∣∣∣∣
(40)

=
λ3

1− λ3

(∣∣∣∣
(a1 − ξ1) (a1 − ξ2)

(1− a1a2) (a1 − ξ3)

∣∣∣∣+

∣∣∣∣
(a2 − ξ1) (a2 − ξ2)

(1− a1a2) (a2 − ξ3)

∣∣∣∣
)
.

(41)

Since B(z) = z a1−z
1−a1z

a2−z
1−a2z and ξ1,ξ2 and ξ3 are the three distinct solutions to

B(z) = ω for some ω ∈ T, we have

B(z)− ω =
(z − ξ1) (z − ξ2) (z − ξ3)

(1− a1z) (1− a2z)
.

Since B(aj) = 0 for i = 1, 2, we get

|B(aj)− ω| = 1

=

∣∣∣∣
(aj − ξ1) (aj − ξ2) (aj − ξ3)

(1− a1aj) (1− a2aj)

∣∣∣∣ .
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Using the above expression in respective term in (41), together with the fact
that |1− a1a2| = |1− a1a2|, we get

1

|1− a1a2|
|p− a1|+

1

|1− a1a2|
|p− a2| =

λ3
1− λ3



∣∣∣∣∣∣

(
1− |a1|2

)

(a1 − ξ3)
2

∣∣∣∣∣∣
+

∣∣∣∣∣∣

(
1− |a2|2

)

(a2 − ξ3)
2

∣∣∣∣∣∣




(42)

=
λ3

1− λ3

(
1− |a1|2

|a1 − ξ3|2
+

1− |a2|2

|a2 − ξ3|2

)

(43)

From Lemma 6.3, we have that

λj =
1

1 +
2∑

k=1

1− |ak|2

|ξj − ak|2

for j = 1, 2, which implies

1

λj
= 1 +

2∑

k=1

1− |ak|2

|ξj − ak|2

= 1 +

2∑

k=1

1− |ak|2

|ak − ξj |2
.

Hence, we can write (43) as

1

|1− a1a2|
|p− a1|+

1

|1− a1a2|
|p− a2| =

λ3
1− λ3

(
1− |a1|2

|a1 − ξ3|2
+

1− |a2|2

|a2 − ξ3|2

)

=
λ3

1− λ3

(
1 +

2∑

k=1

1− |ak|2

|ak − ξ3|2
− 1

)

=
λ3

1− λ3

(
1

λ3
− 1

)

=
λ3

1− λ3
1− λ3
λ3

= 1.

Thus, we can conclude that

|p− a1|+ |p− a2| = |1− a1a2| ,
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which means that p lies on the ellipse E. Since

p− ξ1
ξ1 − ξ2

=

λ1ξ2+λ2ξ1
λ1+λ2

− ξ1
ξ1 − ξ2

=
λ1ξ2 + λ2ξ1 − λ1ξ1 − λ2ξ1

(ξ1 − ξ2) (λ1 + λ2)

=
λ1 (ξ2 − ξ1)

(ξ1 − ξ2) (λ1 + λ2)

=
−λ1

λ1 + λ2
∈ R,

we know that p lies on the line L that goes through ξ1 and ξ2. So now we have
to prove that the line L is the tangent to the ellipse E at the point p. To do
that, we have to prove that

∠ (a1, p, ξ1) = −∠ (a2, p, ξ2) (44)

where the minus sign is because one of the angles is viewed clockwise and the
other counter-clockwise, as mentioned before the theorem. The angles can be
expressed as the argument of complex numbers, and that is how we will prove
the equality in (44). Recall that for two arbitrary complex numbers z1 and z2,

arg (z1z2) = arg (z1) + arg (z2) ,

and

arg

(
z1
z2

)
= arg (z1)− arg (z2) .

Thus, we can express the angles in (44) can be expressed as

∠ (a1, p, ξ1) = arg

(
a1 − p
ξ1 − p

)
,

and

−∠ (a2, p, ξ2) = −arg

(
a2 − p
ξ2 − p

)
.

Before we prove (44), consider the function λ1

z−ξ1 + λ2

z−ξ2 . Then p is a zero of
that function, since

λ1
p− ξ1

+
λ2

p− ξ2
=

λ1
λ1ξ2+λ2ξ1
λ1+λ2

− ξ1
+

λ2
λ1ξ2+λ2ξ1
λ1+λ2

− ξ2

=
λ1 (λ1 + λ2)

λ (ξ2 − ξ1)
+
λ2 (λ1 + λ2)

λ2 (ξ1 − ξ2)

=
λ1 + λ2
ξ2 − ξ1

− λ1 + λ2
ξ2 − ξ1

= 0.
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Also, recall from (25) that

B(z)/z

B(z)− ω =
(z − a1) (z − a2)

(z − ξ1) (z − ξ2) (z − ξ3)
.

Hence, we have that

λ3
p− ξ3

=
λ1

p− ξ1
+

λ2
p− ξ2

+
λ3

p− ξ3
= F (p)

=
(p− a1) (p− a2)

(p− ξ1) (p− ξ2) (p− ξ3)
.

Finally, we can prove (44):

∠ (a1, p, ξ1) + ∠ (a2, p, ξ2) = arg

(
a1 − p
ξ1 − p

)
+ arg

(
a2 − p
ξ2 − p

)

= arg

(
(a1 − p) (a2 − p)
(ξ1 − p) (ξ2 − p)

)

= arg

(
(p− a1) (p− a2)

(p− ξ1) (p− ξ2)

)

= arg ((p− ξ3)F (p))

= arg

(
(p− ξ3)

λ3
(p− ξ3)

)

= arg (λ3)

= 0,

since λ3 is a positive real number.

Since the only two lines that go through the point p and make congruent angles
to the lines from the foci and through p are the tangent and the normal, we know
that the line L must be either the tangent or the normal. However, the normal
would not satisfy the equation (44). Hence, L is the tangent of the ellipse E at
the point p.

Now we can continue to the proof of the second part of the theorem. Let
p be a point on E, and let L be the tangent of E at p. Then L intersects T at
exactly two distinct points ξ1 and ξ2. Recall that there are exactly two points
ζ1, ζ2 ∈ T with ξ1 6= ζ1 6= ζ2 and B(ξ1) = B(ζ1) = B(ζ2). From the first part of
the proof, we know that the two lines that go through ξ1 and ζj (for j = 1, 2
respectively) are tangents to the ellipse E. We also know that there are exactly
two tangents to E that goes through ξ1. Hence, we know that L must be one of
the two tangents, and thus we have that ξ2 = ζ1 or ξ2 = ζ2, which completes the
proof.
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7.3 Blaschke products of higher degree

The previous sections may give rise to the question of what happens for Blaschke
products of higher degree than three. Before the theorem concerning Blaschke
products of higher degree, a simple lemma will be stated.

Lemma 7.5. Let ω ∈ T. Then the mapping

υ =
ωz

z − 1
(45)

has an inverse

z =
υ

υ − ω . (46)

We also have that |υ| = 1 if and only if Re(z) = 1
2 .

Proof. We begin with the inverse. By multiplying with the denominator in (45),
we get

υz − υ = ωz.

by moving all terms with z to the left-hand side and factoring out z, we get

z (υ − ω) = υ,

which gives us (46). Now we will continue to prove that the mapping in (45)
satisfies |υ| = 1 if and only if Re(z) = 1

2 . We have

1 = |υ| =
∣∣∣∣
ωz

z − 1

∣∣∣∣

= |ω|
∣∣∣∣

z

z − 1

∣∣∣∣

=

∣∣∣∣
z

z − 1

∣∣∣∣ .

Hence, we have

|z − 1| = |z| .

By squaring both sides and simplifying the expression, we get

z + z = 1.

If we let z = x+ yi, we get that

1 = x+ yi+ x− yi,

which implies that Re(z) = 1
2 .
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Theorem 7.6 (Daepp, Gorkin, Mortini [2]). Let B(z) = z
∏n−1
k=1

ak−z
1−akz be a

Blaschke product with n distinct zeros. For ω ∈ T, let ξr be any of the n points
that satisfies B(ξr) = ω. Then there exists λr with 0 < λr < 1 and another
Blaschke product

C(z) = z
n−2∏

k=1

cj − z
1− cjz

such that

B(z)/z

B(z)− ω =
λr
z − ξ + (1− λr)

C(z)/z

C(z)− ω (47)

and

n−1∑

k=1

1∏
j 6=k |1− akaj |

|(ak − c1) · · · (ak − cn−2)| = 1. (48)

Proof. We begin with the statement in (47). Let ξ1, ..., ξn be the n solutions to
B(z) = ω. Then we have the partial fraction expansion

B(z)/z

B(z)− ω =
n∑

k=1

λk
z − ξk

.

From Lemma 6.3, we know that 0 < λ1, ..., λn < 1 and
∑n
k=1 λk = 1. Now, for

some ξr ∈ {ξ1, ..., ξn}, let

R(z) =
1

1− λr

(
B(z)

B(z)− ω −
λrz

z − ξr

)

=
1

1− λr

(
n∑

k=1

(
λkz

z − ξk

)
− λrz

z − ξr

)

=
1

1− λr

n∑

k=1
k 6=r

(
λkz

z − ξr

)
.

The function R(z) is analytic everywhere except at the points ξj for j 6= r, where
it has simple poles. Now recall that |B(z)| = 1 if z ∈ T, and for any z ∈ C, we
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have that Re(z) = z+z
2 . Thus, for z ∈ T, we have

Re

(
B(z)

B(z)− ω

)
=

B(z)
B(z)−ω + B(z)

B(z)−ω
2

=

B(z)(B(z)−ω)+B(z)(B(z)−ω)
(B(z)−ω)(B(z)−ω)

2

=

2−B(z)ω−B(z)ω

2−B(z)ω−B(z)ω

2

=
1

2
,

and

Re

(
z

z − ξr

)
=

z
z−ξr + z

z−ξr
2

=

z(z−ξr)+z(z−ξr)
(z−ξr)(z−ξr)

2

=

2−zξr−zξr
2−zξr−zξr

2

=
1

2
.

Hence, for z ∈ T, we have

Re (R(z)) = Re

(
1

1− λr

(
B(z)

B(z)− ω −
λrz

z − ξr

))

=
1

1− λr

(
Re

(
B(z)

B(z)− ω

)
− λr Re

(
z

z − ξr

))

=
1

1− λr

(
1

2
− λr

2

)

=
1

1− λr
1

2
(1− λr)

=
1

2
.

Now let

C(z) =
ωR(z)

R(z)− 1
. (49)
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From Lemma 7.5, we know that the function C(z) has modulus one on the unit
circle. Now suppose that z ∈ D. Then, for every j, we have

Re

(
z

z − ξj

)
=

z
z−ξj + z

z−ξj
2

=
1

2

(
z
(
z − ξj

)
+ z (z − ξj)

(z − ξj)
(
z − ξj

)
)

=
1

2

(
|z|2 − zξj − zξj + |z|2

|z|2 − zξj − zξj + 1

)

≤ 1

2
.

Thus, we have that Re (R(z)) ≤ 1
2 for z ∈ D, since

Re (R(z)) = Re


 1

1− λr

n∑

k=1
k 6=r

λkz

z − ξk




=
1

1− λr

n∑

k=1
k 6=r

(
λk Re

(
z

z − ξk

))

≤ 1

2

1

1− λk

n∑

k=1
k 6=r

λk

=
1

2

1

1− λr
(1− λr)

=
1

2
.

Since R(z) is analytic everywhere except at its poles, which are at the n − 1
points ξj for j 6= r, this implies that C(z) is analytic on D. Since Re (R(z)) = 1

2
on T, |C(z)| = 1 for z ∈ T. Corollary 4.2 in [5] states that if a function is
analytic on D, extends continuously on D and is has modulus one on T, then
the function is a finite Blaschke product. Thus, we have that C(z) is a finite
Blaschke product. Since R(z) has n− 1 poles, C(z) must have degree n− 1. If
we rewrite (49) as the inverse described in Lemma 7.5, we get

R(z) =
C(z)

C(z)− ω .

Hence, we have that

C(z)

C(z)− ω =
1

1− λr

(
B(z)

B(z)− ω −
λrz

z − ξr

)
,
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and thus

B(z)/z

B(z)− ω =
λr

z − ξr
+ (1− λr)

C(z)/z

C(z)− ω ,

which completes the proof for the statement in (47). Now we will continue to
the statement in (48). First note that the zeros of C(z) are the zeros of R(z).
Since we have

1

1− λr




n∑

k=1
k 6=r

λkz

z − ξk


 =

z

1− λ

(∑
k=1
k 6=r

n λk
z − ξk

)
,

we know that the zeros of C(z) that are not at the origin are exactly the zeros

of

n∑

k=1
k 6=r

λk
z − ξk

. Hence,

C(z)/z

C(z)− ω =
1

1− λr

(
B(z)/z

B(z)− ω −
λr

z − ξr

)

=
1

1− λr

(
n∑

k=1

λk
z − ξk

− λr
z − ξr

)

=
1

1− λr




n∑

k=1
k 6=r

λk
z − ξk




=

∏n−2
k=1 (z − ck)∏n
k=1
k 6=r

(z − ξk)
.

The rest of the proof will mostly follow the proof of Theorem 7.4, but letting
C(aj)/aj
C(aj)−ω having the role that

aj−p
(aj−ξ1)(aj−ξ2) had in that proof. For any aj , we

have

0 =
B(aj)/aj
B(aj)− ω

=
λr

aj − ξr
+ (1− λr)

C(aj)/aj
C(aj)− ω

.

Hence, we have

λr

∣∣∣∣
1

aj − ξr

∣∣∣∣ = (1− λr)
∣∣∣∣
C(aj)/aj
C(aj)− ω

∣∣∣∣

= (1− λr)

∣∣∣∣∣∣

∏n−2
k=1 (aj − ck)∏n
k=1
k 6=r

(aj − ξk)

∣∣∣∣∣∣
.

51



Thus,

∣∣∣∣∣
n−2∏

k=1

(aj − ck)

∣∣∣∣∣ =
λr

1− λr

∣∣∣∣∣∣

∏n
k=1
k 6=r

(aj − ξk)

(aj − ξr)

∣∣∣∣∣∣
. (50)

Recall that

|B(aj)− ω| = |ω| = 1

and that we can write

B(z)− ω =

∏n
k=1 (z − ξk)

∏n−1
k=1 (1− akz)

.

Putting (50) into the expression (48), we get

n−1∑

k=1




1
n−1∏

j=1
j 6=k

|1− akaj |

∣∣∣∣∣∣

n−2∏

j=1

(ak − cj)

∣∣∣∣∣∣




=

n−1∑

k=1


 1∏n−1

j=1
j 6=k
|1− akaj |

λr
1− λr

∣∣∣∣∣∣

∏n
j=1
j 6=r

(ak − ξj)

(ak − ξr)

∣∣∣∣∣∣




=
λr

1− λr

n−1∑

k=1


 1

|ak − ξr|

∏n
j=1
j 6=r
|ak − ξj |

∏n−1
j=1
j 6=k
|1− akaj |




=
λr

1− λr

n−1∑

k=1

(
1− |ak|2

|ak − ξr|2
∏n
j=1 |ak − ξj |∏n−1
j=1 |1− akaj |

)

=
λr

1− λr

n−1∑

k=1

(
1− |ak|2

|ak − ξr|2
|B(ak)− ω|

)

=
λr

1− λr

n−1∑

k=1

(
1− |ak|2

|ak − ξr|2

)

=
λr

1− λr

(
1

λr
− 1

)

=
λr

1− λr
1− λr
λr

= 1,

which completes the proof.
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A Appendix 1

The following code was used to make Figure 1.

import matp lo t l i b . pyplot as p l t
import numpy as np
from math import sqrt , p i
from cmath import exp
import os

def p l o t u n i t c i r c l e ( ) :
’ ’ ’
P lo t s the un i t c i r c l e and s e t s the axes in
the r i g h t po s i t i on .
’ ’ ’
f i g = p l t . f i g u r e ( )
ax = f i g . add subplot ( 1 , 1 , 1 )

ax . sp in e s [ ’ l e f t ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )
ax . sp in e s [ ’ bottom ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )

ax . sp in e s [ ’ r i g h t ’ ] . s e t c o l o r ( ’ none ’ )
ax . sp in e s [ ’ top ’ ] . s e t c o l o r ( ’ none ’ )

ax . xax i s . s e t t i c k s p o s i t i o n ( ’ bottom ’ )
ax . yax i s . s e t t i c k s p o s i t i o n ( ’ l e f t ’ )

p l t . l ocator params ( ax i s = ’ x ’ , nbins=7)
p l t . l ocator params ( ax i s = ’ y ’ , nbins=7)

t1 = np . l i n s p a c e (0 , np . p i ∗2 ,100)
p l t . p l o t (np . cos ( t1 ) , np . s i n ( t1 ) , l i n ew id th=1)
p l t . xl im (−1.1 , 1 . 1 )
p l t . yl im (−1.1 , 1 . 1 )
p l t . gca ( ) . s e t a s p e c t ( ’ equal ’ , ad ju s t ab l e=’ box ’ )

def p l o t c i r c l e ( r ) :
’ ’ ’
P lo t s a c i r c l e with rad ius r .
’ ’ ’
t = np . l i n s p a c e (0 , np . p i ∗2 ,100)
p l t . p l o t ( r ∗np . cos ( t ) , r ∗np . s i n ( t ) ,

l i n ew id th=1, c o l o r=’ r ’ )

def b t h e s i s ( z , a l i s t ) :
’ ’ ’
The d e f i n i t i o n used in the t h e s i s .
’ ’ ’
prod = 1
for a k in a l i s t :

i f a k == 0 :
prod ∗= −1 ∗ ( a k−z )/(1− a k . conjugate ( )∗ z )

else :
prod ∗= abs ( a k )/ a k ∗ ( a k−z )/(1− a k . conjugate ( )∗ z )

return prod
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def b daepp ( z , beta , a l i s t ) :
’ ’ ’
The d e f i n i t i o n o f f i n i t e Blaschke products used in [ 2 ] .
’ ’ ’
prod = beta
for a k in a l i s t :

prod ∗= ( z−a k )/(1− a k . conjugate ( )∗ z )
return prod

def b ga r c i a ( z , alpha , a l i s t ) :
’ ’ ’
The d e f i n i t i o n o f f i n i t e Blaschke products used in [ 5 ] .
’ ’ ’
prod = exp (1 j ∗ alpha )
for a k in a l i s t :

i f a k == 0 :
prod ∗= z

else :
prod ∗= abs ( a k )/ a k ∗ ( a k−z )/(1− a k . conjugate ( )∗ z )

return prod

def b f i s h e r ( z , a l i s t ) :
’ ’ ’
The d e f i n i t i o n o f f i n i t e Blaschke products used in [ 3 ] .
’ ’ ’
prod = 1
try :

for a k in a l i s t :
prod ∗= (−a k . conjugate ( )/abs ( a k ) )
prod ∗= ( z−a k )/(1− a k . conjugate ( )∗ z )

except ZeroDiv i s i onErro r :
print ( ’ This d e f i n i t i o n i s not de f ined at the o r i g i n . ’ )

return prod

def p l o t b l a s chk e ( points , l ab e l s , c o l o r s ) :
’ ’ ’
P lo t s B( z ) f o r the d i f f e r e n t d e f i n i t i o n s o f Blaschke
products and saves the p l o t in a pdf f i l e .
’ ’ ’
def name f i l e ( f i l ename ) :

’ ’ ’
Returns a f i l ename tha t doesent a l ready e x i s t .
’ ’ ’
i = 0
while True :

i f os . path . i s f i l e ( f i l ename+str ( i )+ ’ . pdf ’ ) :
i += 1

else :
break

return f i l ename+str ( i )+ ’ . pdf ’
p l t . c l f ( )

#Plot the un i t c i r c l e and s e t axes to the de s i r ed po s i t i on .
p l o t u n i t c i r c l e ( )
x va lue s = [ i . r e a l for i in po in t s ]
y va lue s = [ i . imag for i in po in t s ]
v i s i t e d = [ ]
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for i in range ( len ( po in t s ) ) :
p l t . p l o t ( x va lue s [ i ] , y va lue s [ i ] , c o l o r s [ i ]+ ’ o ’ ,

l a b e l=r ’ $z {}$ ’ . format ( i+1)+ l a b e l s [ i ] )
i f x va lue s [ i ] >= 0 and (round( x va lue s [ i ] , 2 ) , round( y va lue s [ i ] , 2 ) ) not in v i s i t e d :

h o r i z on t a l = ’ l e f t ’
else :

h o r i z on t a l = ’ r i g h t ’
i f y va lue s [ i ] >= 0 and (round( x va lue s [ i ] , 2 ) , round( y va lue s [ i ] , 2 ) ) not in v i s i t e d :

v e r t i c a l = ’ bottom ’
else :

v e r t i c a l = ’ top ’
p l t . annotate ( r ’ $z {}$ ’ . format ( i +1) , ( x va lue s [ i ] , y va lue s [ i ] ) ,

ho r i zonta l a l i gnment=hor i zon ta l , v e r t i c a l a l i g nmen t=v e r t i c a l ,
f o n t s i z e=’ l a r g e ’ )

v i s i t e d . append ( ( round( x va lue s [ i ] , 2 ) , round( y va lue s [ i ] , 2 ) ) )
p l o t c i r c l e (abs ( po in t s [ 0 ] ) )
p l t . l egend ( bbox to anchor = [ 0 . 6 5 , 0 . 6 5 ] , l o c=’ lower l e f t ’ , prop={ ’ s i z e ’ : 1 0} )
try :

f i l ename = name f i l e ( ’ b l a s c h k e d e f i n i t i o n s ’ )
p l t . s a v e f i g ( f i l ename )
print ( ’The f i g u r e i s saves as ’ , f i l ename )

except :
print ( ’ Something went wrong . ’ )

i f name ==’ ma in ’ :
z = 0.4+0.7 j
c o l o r s = [ ’b ’ , ’ c ’ , ’ y ’ , ’m’ , ’ r ’ , ’ g ’ , ’ k ’ ]
a l i s t = [0 . 2+0 .1 j , 0 . 5 j , 0 . 7 , 0.3−0.6 j ]
po in t s = [ b t h e s i s ( z , a l i s t ) ,

b daepp ( z , 1 , a l i s t ) ,
b daepp ( z , 1 j , a l i s t ) ,
b daepp ( z , s q r t (2)/2+ sq r t (2)/2∗1 j , a l i s t ) ,
b ga r c i a ( z , pi , a l i s t ) ,
b ga r c i a ( z , 4 , a l i s t ) ,
b f i s h e r ( z , a l i s t ) ]

l a b e l s = [ ’ D e f i n i t i o n 3 .2 ’ ,
’ D e f i n i t i o n 3 .4 with ’ r ’ $\beta=1$ ’ ,
’ D e f i n i t i o n 3 .4 with ’ r ’ $\beta=i$ ’ ,
’ D e f i n i t i o n 3 .4 with ’ r ’ $\beta=\s q r t {2}/2+ i \ s q r t {2}/2$ ’ ,
’ D e f i n i t i o n 3 .5 with ’ r ’ $\ alpha=\pi$ ’ ,
’ D e f i n i t i o n 3 .5 with ’ r ’ $\ alpha=4$ ’ ,
’ D e f i n i t i o n 3 .6 ’ ]

p l o t b l a s chk e ( points , l ab e l s , c o l o r s )
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A Appendix 2

The following code was used to make Figure 4.

import matp lo t l i b . pyplot as p l t
import numpy as np
import os

def p lo t ( x va lues , y va lues , convex hu l l=False ) :
def name f i l e ( f i l ename ) :

’ ’ ’
Returns a f i l ename tha t doesent a l ready e x i s t .
’ ’ ’
i = 0
while True :

i f os . path . i s f i l e ( f i l ename+str ( i )+ ’ . pdf ’ ) :
i += 1

else :
break

return f i l ename+str ( i )+ ’ . pdf ’
p l t . c l f ( )
f i g = p l t . f i g u r e ( )
ax = f i g . add subplot ( 1 , 1 , 1 )

ax . sp in e s [ ’ l e f t ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )
ax . sp in e s [ ’ bottom ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )

ax . sp in e s [ ’ r i g h t ’ ] . s e t c o l o r ( ’ none ’ )
ax . sp in e s [ ’ top ’ ] . s e t c o l o r ( ’ none ’ )

ax . xax i s . s e t t i c k s p o s i t i o n ( ’ bottom ’ )
ax . yax i s . s e t t i c k s p o s i t i o n ( ’ l e f t ’ )

t = np . l i n s p a c e (0 , np . p i ∗2 ,100)
p l t . p l o t (np . cos ( t ) , np . s i n ( t ) , l i n ew id th=1)
p l t . xl im (−1.1 , 1 . 1 )
p l t . yl im (−1.1 , 1 . 1 )
p l t . gca ( ) . s e t a s p e c t ( ’ equal ’ , ad ju s t ab l e=’ box ’ )

p l t . s c a t t e r ( x va lues , y va lue s )

for i in range ( len ( x va lue s ) ) :
h o r i z on t a l = ’ l e f t ’ i f x va lue s [ i ] >= 0 else ’ r i g h t ’
v e r t i c a l = ’ bottom ’ i f y va lue s [ i ] >= 0 else ’ top ’
p l t . annotate ( r ’ $z {}$ ’ . format ( i +1) ,
( x va lue s [ i ] , y va lue s [ i ] ) , ho r i zonta l a l i gnment=hor i zonta l ,
v e r t i c a l a l i g nmen t=v e r t i c a l , f o n t s i z e=’x−l a r g e ’ )

i f convex hu l l :
ax . f i l l ( x va lues , y va lues , ’ r ’ )

try :
f i l ename = name f i l e ( ’ convex hu l l ’ )
p l t . s a v e f i g ( f i l ename )
print ( ’The f i g u r e was saves as ’ , f i l ename )

except :
print ( ’ Something went wrong . ’ )
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i f name ==’ ma in ’ :
p l o t ( [ 0 . 5 , −0.3 , −0.25 , 0 . 1 , 0 . 5 ] ,

[ 0 . 5 , 0 . 1 , −0.5 , −0.7 , −0.45] ,
convex hu l l=True )
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A Appendix 3

The following code was used to make Figure 5-13.

import matp lo t l i b . pyplot as p l t
import numpy as np
from sympy . s o l v e r s import s o l v e
from sympy import Symbol
from math import s q r t
import os

def p l o t u n i t c i r c l e ( ) :
’ ’ ’
P lo t s the un i t c i r c l e and s e t s the axes in the r i g h t po s i t i on .
’ ’ ’
f i g = p l t . f i g u r e ( )
ax = f i g . add subplot ( 1 , 1 , 1 )

ax . sp in e s [ ’ l e f t ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )
ax . sp in e s [ ’ bottom ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )

ax . sp in e s [ ’ r i g h t ’ ] . s e t c o l o r ( ’ none ’ )
ax . sp in e s [ ’ l e f t ’ ] . s e t c o l o r ( ’ none ’ )
ax . sp in e s [ ’ top ’ ] . s e t c o l o r ( ’ none ’ )
ax . sp in e s [ ’ bottom ’ ] . s e t c o l o r ( ’ none ’ )

ax . s e t x t i c k s ( [ ] , [ ] )
ax . s e t y t i c k s ( [ ] , [ ] )

p l t . l ocator params ( ax i s = ’ x ’ , nbins=7)
p l t . l ocator params ( ax i s = ’ y ’ , nbins=7)

t1 = np . l i n s p a c e (0 , np . p i ∗2 ,100)
p l t . p l o t (np . cos ( t1 ) , np . s i n ( t1 ) , l i n ew id th=1)
p l t . xl im (−1.1 , 1 . 1 )
p l t . yl im (−1.1 , 1 . 1 )
p l t . gca ( ) . s e t a s p e c t ( ’ equal ’ , ad ju s t ab l e=’ box ’ )

def name f i l e ( f i l ename ) :
’ ’ ’
Returns a f i l ename tha t doesent a l ready e x i s t .
’ ’ ’
i = 0
while True :

i f os . path . i s f i l e ( f i l ename+str ( i )+ ’ . pdf ’ ) :
i += 1

else :
break

return f i l ename+str ( i )+ ’ . pdf ’

def s o l v e equa t i on ( equat ion ) :
’ ’ ’
Finds the zeros o f the g iven equat ion .
’ ’ ’
z = Symbol ( ’ z ’ )
return s o l v e ( equation , z )
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def u n i t c i r c l e s o l u t i o n s ( b laschke product , modulus one ) :
’ ’ ’
So l ve s the equat ion b l a s chke p roduc t ( z)=lambda fo r
lambda in modulus one .
’ ’ ’
s o l u t i o n l i s t = [ ]
for one in modulus one :

s = so l v e equa t i on ( b la schke product+’− ’+one )
s o l u t i o n s = [ i . a s r e a l imag ( ) for i in s ]
s o l u t i o n l i s t . append ( s o l u t i o n s )

return s o l u t i o n l i s t

def p l o t e l l i p s e ( b laschke product , modulus one , remove or igo ) :
’ ’ ’
P lo t s a f i g u r e with l i n e s between the s o l u t i o n s to
b l a s chke p roduc t ( z)=w for
w in modulus one .
’ ’ ’
p l t . c l f ( )
p l o t u n i t c i r c l e ( ) # Plo t s the un i t c i r c l e and removes the axes

#Find the s o l u t i o n s to the equat ion B( z)=lambda
p o i n t l i s t = u n i t c i r c l e s o l u t i o n s ( b laschke product , modulus one )
#Plot the l i n e s between the s o l u t i o n s
for l ambda so lut ion in p o i n t l i s t :

x l i s t = [ i [ 0 ] for i in l ambda so lut ion ]
y l i s t = [ i [ 1 ] for i in l ambda so lut ion ]
x l i s t . append ( x l i s t [ 0 ] )
y l i s t . append ( y l i s t [ 0 ] )
p l t . p l o t ( x l i s t , y l i s t , ’ k− ’ )

#Finding the zeros o f the Blaschke product
b l a s chk e z e r o s = so l v e equa t i on ( b la schke product )
b l a s chk e z e r o s = [ i . a s r e a l imag ( ) for i in b l a s chk e z e r o s ]
for zero in b l a s chk e z e r o s : #Plot the zeros

i f zero != (0 , 0 ) or remove or igo i s False :
p l t . p l o t ( ze ro [ 0 ] , z e ro [ 1 ] , ’ ro ’ )

try :
f i l ename=name f i l e ( ’ e l l i p s e ’ )
p l t . s a v e f i g ( f i l ename )
print ( ’The f i g u r e i s saved as ’ , f i l ename )

except :
print ( ’ Something went wrong . ’ )

i f name ==’ ma in ’ :
#Blaschke products
B1 = ’ z ∗((0 .3−0.7∗ I )−z )/(1−(0.3+0.7∗ I )∗ z ) ’
B2 = ’ z ∗((−0.6+0.2∗ I )−z )/(1−(−0.6−0.2∗ I )∗ z ) ’
B3 = ’ z ∗((0.5− z )/(1−0.5∗ z ) ) ∗ ( ( z−(−0.4−0.5∗ I ))/(1−(−0.4+0.5∗ I )∗ z ) ) ’
B4 = ’ z ∗ ( ( (0 . 3+0 .7∗ I )−z )/(1−(0.3−0.7∗ I )∗ z ) ∗ ( ( 0 . 5 ∗ I )−z ))/(1−(−0.5∗ I )∗ z ) ’
B5 = ’ z ∗((0 .2−0.6∗ I )−z )/(1−(0.2+0.6∗ I )∗ z )∗ ( (0 . 1+0 .2∗ I )−z )/(1−(0.1−0.2∗ I )∗ z ) ’

modulus one = [ ’ (1 ) ’ , ’ (1∗ I ) ’ , ’ (−1) ’ , ’ (−1∗ I ) ’ ]
modulus one += [ ’ ( s q r t (2)/2+ sq r t (2)/2∗ I ) ’ , ’ ( s q r t (2)/2− s q r t (2)/2∗ I ) ’ ,

’ (− s q r t (2)/2+ sq r t (2)/2∗ I ) ’ , ’ (− s q r t (2)/2− s q r t (2)/2∗ I ) ’ ]
modulus one += [ ’ ( s q r t (2)/4+ sq r t (14)/4∗ I ) ’ , ’ ( s q r t (2)/4− s q r t (14)/4∗ I ) ’ ,

’ (− s q r t (2)/4+ sq r t (14)/4∗ I ) ’ , ’ (− s q r t (2)/4− s q r t (14)/4∗ I ) ’ ]
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modulus one += [ ’ ( s q r t (14)/4+ sq r t (2)/4∗ I ) ’ , ’ ( s q r t (14)/4− s q r t (2)/4∗ I ) ’ ,
’ (− s q r t (14)/4+ sq r t (2)/4∗ I ) ’ , ’ (− s q r t (14)/4− s q r t (2)/4∗ I ) ’ ]

p l o t e l l i p s e (B1 , [ ’ ( 1 ) ’ ] , Fa l se ) #Figure 4
p l o t e l l i p s e (B1 , modulus one , Fa l se ) # Figure 5
p l o t e l l i p s e (B1 , modulus one , True ) # Figure 6
p l o t e l l i p s e (B2 , modulus one , True ) # Figure 7

p l o t e l l i p s e (B3 , [ ’ ( 1 ) ’ ] , Fa l se ) # Figure 8
p l o t e l l i p s e (B3 , modulus one , Fa l se ) # Figure 9
p l o t e l l i p s e (B3 , modulus one , True ) # Figure 10
p l o t e l l i p s e (B4 , modulus one , True ) # Figure 11
p l o t e l l i p s e (B5 , modulus one , True ) # Figure 12
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A Appendix 4

Appendix 4

The following code was used to make Figure 6.2.

import matp lo t l i b . pyplot as p l t
import numpy as np
import os

def p l o t u n i t c i r c l e ( ) :
’ ’ ’
P lo t s the un i t c i r c l e and s e t s the axes in
the r i g h t po s i t i on .
’ ’ ’
f i g = p l t . f i g u r e ( )
ax = f i g . add subplot ( 1 , 1 , 1 )

ax . sp in e s [ ’ l e f t ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )
ax . sp in e s [ ’ bottom ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )

ax . sp in e s [ ’ r i g h t ’ ] . s e t c o l o r ( ’ none ’ )
ax . sp in e s [ ’ top ’ ] . s e t c o l o r ( ’ none ’ )

ax . xax i s . s e t t i c k s p o s i t i o n ( ’ bottom ’ )
ax . yax i s . s e t t i c k s p o s i t i o n ( ’ l e f t ’ )

p l t . l ocator params ( ax i s = ’ x ’ , nbins=7)
p l t . l ocator params ( ax i s = ’ y ’ , nbins=7)

t1 = np . l i n s p a c e (0 , np . p i ∗2 ,100)
p l t . p l o t (np . cos ( t1 ) , np . s i n ( t1 ) , l i n ew id th=1)
p l t . xl im (−1.1 , 1 . 1 )
p l t . yl im (−1.1 , 1 . 1 )
p l t . gca ( ) . s e t a s p e c t ( ’ equal ’ , ad ju s t ab l e=’ box ’ )

def p l o t p o i n t s ( p o i n t l i s t ) :
’ ’ ’
P lo t s the po in t s . The argument p l o t l i s t i s a
l i s t o f t u p l e s with the complex numbers r e a l
and imaginary par t .
’ ’ ’
for point in p o i n t l i s t :

p l t . p l o t ( po int [ 0 ] , po int [ 1 ] , ’ ko ’ )

for i in range ( len ( p o i n t l i s t ) ) :
h o r i z on t a l = ’ l e f t ’ i f p o i n t l i s t [ i ] [ 0 ] >= 0 else ’ r i g h t ’
v e r t i c a l = ’ bottom ’ i f p o i n t l i s t [ i ] [ 1 ] >= 0 else ’ top ’
p l t . annotate ( r ’ $z {}$ ’ . format ( i +1) ,

( p o i n t l i s t [ i ] [ 0 ] , p o i n t l i s t [ i ] [ 1 ] ) ,
ho r i zonta l a l i gnment=hor i zon ta l ,
v e r t i c a l a l i g nmen t=v e r t i c a l , f o n t s i z e=’x−l a r g e ’ )
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def p l o t c o n v e x hu l l o u t l i n e ( p o i n t l i s t ) :
’ ’ ’
P lo t s the ou t l i n e o f the convex h u l l o f the po in t s
in p o i n t l i s t . The argument p l o t l i s t i s a l i s t o f
t u p l e s with the complex numbers r e a l and imaginary par t .
’ ’ ’
p o i n t l i s t . append ( p o i n t l i s t [ 0 ] )
x l i s t = [ i [ 0 ] for i in p o i n t l i s t ]
y l i s t = [ i [ 1 ] for i in p o i n t l i s t ]
p l t . p l o t ( x l i s t , y l i s t , ’ k− ’ )

def hyperbo l i c convex ( t , z1 , z2 ) :
h1 = ( z1−(( z1−z2 )/(1−np . conjugate ( z1 )∗ z2 ) )∗ t )
h2 = (1−np . conjugate ( z1 )∗ ( ( z1−z2 )/(1−np . conjugate ( z1 )∗ z2 ) )∗ t )
return h1/h2

def p l o t hyp e rb o l i c ( p o i n t l i s t ) :
’ ’ ’
P lo t s the ou t l i n e o f the hype r bo l i c convex h u l l
o f the po in t s in p o i n t l i s t .
’ ’ ’
def name f i l e ( f i l ename ) :

’ ’ ’
Returns a f i l ename tha t doesent a l ready e x i s t .
’ ’ ’
i = 0
while True :

i f os . path . i s f i l e ( f i l ename+str ( i )+ ’ . pdf ’ ) :
i += 1

else :
break

return f i l ename+str ( i )+ ’ . pdf ’
p l t . c l f ( )
#Plot the un i t c i r c l e and s e t the axes in the de s i r ed po s i t i o n s
p l o t u n i t c i r c l e ( )
s e p a r a t e d l i s t = [ ( i . r ea l , i . imag ) for i in p o i n t l i s t ]
p l o t p o i n t s ( s e p a r a t e d l i s t ) #Plo t s the po in t s in p o i n t l i s t
#Plo t s the ou t l i n e o f the convex h u l l
p l o t c o n v e x hu l l o u t l i n e ( s e p a r a t e d l i s t )

#Plot the ou t l i n e o f the convex h u l l
p o i n t l i s t . append ( p o i n t l i s t [ 0 ] )

# Plot convex h u l l o u t l i n e
t2 = np . l i n s p a c e (0 ,1 , 100 )
for i in range ( len ( p o i n t l i s t )−1):

p l t . p l o t ( hyperbo l i c convex ( t2 , p o i n t l i s t [ i ] ,
p o i n t l i s t [ i +1 ] ) . r ea l ,
hyperbo l i c convex ( t2 , p o i n t l i s t [ i ] ,
p o i n t l i s t [ i +1 ] ) . imag , ’ r− ’ , l i n ew id th=1)

try :
f i l ename=name f i l e ( ’ hype rbo l i c c onvex hu l l ’ )
p l t . s a v e f i g ( f i l ename )
print ( ’The f i g u r e was saved as ’ , f i l ename )

except :
print ( ’ Something went wrong . ’ )
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i f name ==’ ma in ’ :
p l o t hyp e rb o l i c ( [ 0 . 5+0 . 5 j ,−0.3+0.1 j ,−0.25−0.5 j ,

0.1−0.7 j , 0.5−0.45 j ] )
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A Appendix 5

The following code was used to make Figure 6.2.

import matp lo t l i b . pyplot as p l t
import numpy as np
import os

def p l o t u n i t c i r c l e ( ) :
’ ’ ’
P lo t s the un i t c i r c l e and s e t s the axes in the r i g h t po s i t i on .
’ ’ ’
f i g = p l t . f i g u r e ( )
ax = f i g . add subplot ( 1 , 1 , 1 )

ax . sp in e s [ ’ l e f t ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )
ax . sp in e s [ ’ bottom ’ ] . s e t p o s i t i o n ( ’ c en t e r ’ )

ax . sp in e s [ ’ r i g h t ’ ] . s e t c o l o r ( ’ none ’ )
ax . sp in e s [ ’ top ’ ] . s e t c o l o r ( ’ none ’ )

ax . xax i s . s e t t i c k s p o s i t i o n ( ’ bottom ’ )
ax . yax i s . s e t t i c k s p o s i t i o n ( ’ l e f t ’ )

p l t . l ocator params ( ax i s = ’ x ’ , nbins=7)
p l t . l ocator params ( ax i s = ’ y ’ , nbins=7)

t1 = np . l i n s p a c e (0 , np . p i ∗2 ,100)
p l t . p l o t (np . cos ( t1 ) , np . s i n ( t1 ) , l i n ew id th=1)
p l t . xl im (−1.1 , 1 . 1 )
p l t . yl im (−1.1 , 1 . 1 )
p l t . gca ( ) . s e t a s p e c t ( ’ equal ’ , ad ju s t ab l e=’ box ’ )

def p l o t p o i n t s ( p o i n t l i s t ) :
’ ’ ’
P lo t s the po in t s . The argument p l o t l i s t i s a l i s t o f t u p l e s
with the complex numbers r e a l and imaginary par t .
’ ’ ’
for point in p o i n t l i s t :

p l t . p l o t ( po int [ 0 ] , po int [ 1 ] , ’ ko ’ )

for i in range ( len ( p o i n t l i s t ) ) :
h o r i z on t a l = ’ l e f t ’ i f p o i n t l i s t [ i ] [ 0 ] >= 0 else ’ r i g h t ’
v e r t i c a l = ’ bottom ’ i f p o i n t l i s t [ i ] [ 1 ] >= 0 else ’ top ’
p l t . annotate ( r ’ $z {}$ ’ . format ( i +1) ,

( p o i n t l i s t [ i ] [ 0 ] , p o i n t l i s t [ i ] [ 1 ] ) ,
ho r i zonta l a l i gnment=hor i zon ta l ,
v e r t i c a l a l i g nmen t=v e r t i c a l ,
f o n t s i z e=’x−l a r g e ’ )

def hyperbo l i c convex ( t , z1 , z2 ) :
h1 = ( z1−(( z1−z2 )/(1−np . conjugate ( z1 )∗ z2 ) )∗ t )
h2 = (1−np . conjugate ( z1 )∗ ( ( z1−z2 )/(1−np . conjugate ( z1 )∗ z2 ) )∗ t )
return h1/h2
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def p l o t h y p e r b o l i c l i n e ( z 1 , z 2 ) :
’ ’ ’
P lo t s a hype r bo l i c l i n e segment .
’ ’ ’
def name f i l e ( f i l ename ) :

’ ’ ’
Returns a f i l ename tha t doesent a l ready e x i s t .
’ ’ ’
i = 0
while True :

i f os . path . i s f i l e ( f i l ename+str ( i )+ ’ . pdf ’ ) :
i += 1

else :
break

return f i l ename+str ( i )+ ’ . pdf ’
p l t . c l f ( )
p l o t u n i t c i r c l e ( ) #Plo t s the un i t c i r c l e and s e t s the
axes in the d e s i r ed p o s i t i o n s

t2 = np . l i n s p a c e (0 ,1 , 100 )
p l o t p o i n t s ( [ ( z 1 . r ea l , z 1 . imag ) , ( z 2 . r ea l , z 2 . imag ) ] )
p l t . p l o t ( hyperbo l i c convex ( t2 , z 1 , z 2 ) . r ea l ,

hyperbo l i c convex ( t2 , z 1 , z 2 ) . imag ,
’ r− ’ , l i n ew id th=1)

try :
f i l ename=name f i l e ( ’ hype rbo l i c l i n e s e gmen t ’ )
p l t . s a v e f i g ( f i l ename )
print ( ’The f i g u r e was saved as ’ , f i l ename )

except :
print ( ’ Something went wrong . ’ )

i f name ==’ ma in ’ :
p l o t h y p e r b o l i c l i n e (0 .3+0.5 j , 0.7−0.25 j )
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