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Abstract

In this paper we study a generalized version of Nesterovs Accelerated
Gradient Method (NAG) that has three parameters instead of two, with one
additional parameter for the amount of gradient correction. This gives the
Generalized Nesterovs Accelerated Gradient Method (GNAG), of which
both NAG and Polyak’s heavy-ball method are special cases. We derive
a differential equation that approximates this method and show that it con-
verges with linear rate for functions of strong convexity and Lipschitz con-
tinuous gradients. We also consider GNAG as a dynamical system, and show
that this dynamical system converges with linear rate to a steady state which
is the optimal solution. We ask the question whether GNAG converges faster
than NAG for certain choices of the gradient correction parameter, and by
numerical examples arrive at the conclusion that a higher gradient correction
parameter can lead to faster convergence.

1 Introduction
Convex optimization algorithms are an important part of numerical methods as
they often offer fast and precise calculations. Since the rise of machine learning
algorithms, there is a new interest in first order methods. Machine learning is often
about solving large problems, where only the gradient of the objective function
can be calculated within reasonable time, and the Hessian is unknown [7]. For
this reason there has recently been a new-found interest in first order methods.
The simplest first order method is the classical gradient descent method in which
we always move in the direction opposite to the gradient of the objective function,
that is we have the update scheme

xk+1 = xk − α∇f(xk),

where α is called the step size. It can be shown that under the assumption that
f is convex and α is sufficiently small, gradient descent converges to the global
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minimum with rateO(1/k). The first improvement to gradient descent is Polyak’s
heavy-ball method, with the intuition that instead of only moving in the steepest
direction, we also have some momentum [5]. This gives us the update scheme

xk+1 = xk + β(xk − xk−1)− α∇f(xk),

where α is the step size and β is called the momentum coefficient. Unfortunately,
this method does not come with any guaranteed global convergence, and even
fails to converge on strongly convex objective functions with certain parameter
choices, as shown in [2]. The next improvement comes from Nesterov and is
often called Nesterovs Accelerated Gradient Method (NAG) [4]. It has the two
step upgrade scheme

xk+1 = yk − α∇f(yk)

yk = xk + β(xk − xk−1).

It can be shown that NAG achieves quadratic convergence for convex functions,
and converges with linear rate for strictly convex functions [2]. For further insight
NAG can be condensed into one line as

xk+1 = xk + β(xk − xk−1)− α∇f(xk + β(xk − xk−1)).

Written in this form, we can see that the only difference between the heavy-ball
method and NAG is the so called gradient correction term β(xk−xk−1) inside the
gradient term. One might ask whether it is crucial for this term to contain the same
parameter β as the momentum term. This question leads to the Generalized Nes-
terovs Accelerated Gradient Method (GNAG), which has an additional parameter
γ. Its update scheme is

xk+1 = xk + β(xk − xk−1)− α∇f(xk + γ(xk − xk−1)). (1)

Note that this method can be seen as a mix between the heavy-ball method and
NAG, since γ = 0 and γ = β corresponds to those two methods, respectively.
For ease of notation we introduce the gradient correction coefficient Γ = γ/β.
This generalized version of NAG has been proposed in both [7] and [6] but not
yet examined properly in the literature.

In this paper we will study the convergence properties of GNAG, and also ask
the question whether the choice γ = β (as in NAG) really is the most efficient
parameter choice, or whether we can get faster convergence through other choices
of γ.
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2 Preliminaries
Before we begin studying GNAG we discuss some useful theory that will be used
in the later sections.

2.1 Studying Convergence
When studying convergence of gradient based methods some assumptions are of-
ten necessary. For example it is unreasonable to expect convergence to global
optima when other local minima are present, as the method only has information
about the local gradients. Therefore the supposition that the objective function f is
convex is often made. Under this assumption it can be proved that simple gradient
descent achieves O(1/k) convergence and NAG achieves O(1/k2) convergence
to the global optimum. Another assumption often made is that the objective func-
tion is strongly convex and has Lipschitz continuous gradients, as described in
the next section. Under this assumption both gradient descent and NAG achieves
linear convergence rate. It is proved in [2] that for m-strongly convex objective
functions with L-Lipschitz continuous gradients NAG achieves fastest rate of con-
vergence using the parameter choices α = 1/L and β = (1−√mα)/(1 +

√
mα).

For this reason when studying convergence, these parameter choices are often
made. It is important to note that in practice we might not know the parameters
L and m, it is an interesting question how to set and update these parameters in
that case, but this is a much more difficult topic and will not be dealt with in this
paper.

2.2 Strong Convexity and Lipschitz Gradients
Throughout this paper we will mostly be interested in functions that are strongly
convex and have Lipschitz continuous gradients. These two properties imply sev-
eral useful inequalities about a function and its gradient. We first define strong
convexity.

Definition 1. A function f(x) is strongly convex with parameter m if the function

f(x)− m

2
‖x‖2

is convex.

Strong convexity implies multiple useful properties which we will use through-
out.

Lemma 1. The following statements are all equivalent
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(a) f(x) is strongly convex with parameter m.

(b) ∇2f(x)−mI is positive semidefinite for all x.

(c) f(y) ≥ f(x) +∇f(x)T (y − x) + m
2
‖x− y‖2 for all x and y.

(d) (∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖2 for all x and y.

Proof Statements (b), (c) and (d) are the well known (see [1]) second order
condition of convexity, the first order condition of convexity, and the monotone
gradient condition of convexity on the function f(x)− m

2
‖x‖2.

Having Lipschitz continuous gradients is defined similarly to strong convexity.

Definition 2. A differentiable function f(x) has Lipschitz continuous gradients
with parameter L if the function

L

2
‖x‖2 − f(x)

is convex.

Lipschitz gradients also imply multiple useful properties.

Lemma 2. If f is convex the following statements are all equivalent

(a) f(x) has Lipschitz continuous gradients with parameter L,

(b) LI −∇2f(x) is positive semidefinite for all x.

(c) f(y) ≤ f(x) +∇f(x)T (y − x) + L
2
‖x− y‖2 for all x and y.

(d) (∇f(x)−∇f(y))T (x− y) ≤ L‖x− y‖2 for all x and y.

(e) f(y) ≥ f(x) +∇f(x)T (y − x) + 1
2L
‖∇f(y)−∇f(x)‖ for all x and y.

(f) (∇f(x)−∇f(y))T (x− y) ≥ 1
L
‖∇f(x)−∇f(y)‖2 for all x and y.

(g) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x and y.

Proof Once again statements (b), (c) and (d) are the second order condition
of convexity, the first order condition of convexity, and the monotone gradient
condition of convexity on the function L

2
‖x‖2 − f(x). To get from (a) from to

(e) note that if f is convex and has Lipschitz continuous gradients with parameter
L then the same can be said about the function g(y) = f(y) − ∇f(x)Ty. So
statement (c) on g is

f(z)−∇f(x)T z ≤ f(y)−∇f(x)Ty + (∇f(y)−∇f(x))T (z − y) +
L

2
‖z − y‖2.
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Minimizing by z on both sides gives statement (e). To get from (e) to (f) formulate
(e) for the pair (x, y) and for the pair (y, x), adding these two inequalities gives
(f). We go from (f) to (g) to (d) using the Cauchy-Schwartz inequality. Thus we
have (a) ⇔ (b) ⇔ (c) ⇔ (d) and (a) ⇒ (e) ⇒ (f) ⇒ (g) ⇒ (d) and so all the
statements are equivalent.

We denote by S2
m,L(Rn) the set of twice differentiable function Rn → R that

are both strongly convex with parameter m and have Lipschitz continuous gradi-
ents with parameter L.

2.3 Lyapunov Stability
We will study the convergence of GNAG using an Ordinary Differential Equation
(ODE). One very useful tool when working with these is Lyapunov’s second
method of stability [3]. The idea of the method is that given an ODE Ẋ = f(X)
we define a scalar function V (X) that will act as an energy potential function. By
showing that this function V decreases with time we can show that the differential
equation converges, that is as t → ∞, X(t) → x? where x? is an equilibrium
point. More formally we make the following definition.

Definition 3. Let the ODE Ẋ = f(X) have equilibrium point x?. The function
V : Rn → R is a Lyapunov function of the ODE if

• V (x) ≥ 0 for all x

• V (x) = 0⇔ x = x?

• All sublevel sets Vα = {x : V (x) ≤ α} are bounded

• dV (X(t))
dt

≤ 0 for all t and all trajectories of X .

• dV (X(t))
dt

= 0⇔ X(t) = x?

Lemma 3. Let Ẋ = f(X) have equilibrium point x? and let V (x) be a smooth
Lyapunov function of the ODE. Then for any starting point X(0) = x0 we have
X(t)→ x? as t→∞.

Proof Suppose X(t) does not converge to x?. Since V (X(t)) is decreasing
and is non-negative it converges to some ε < V (X(0)). Let C be the closed and
bounded, hence compact set

C = {x : ε ≤ V (x) ≤ V (X(0))}.
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Since C is compact and V (x) is smooth we have

max
X(t)∈C

dV (X(t))

dt
= a < 0.

Then for all T

V (X(T )) = V (X(0)) +

∫ T

0

dV (X(t))

dt
dt ≤ V (X(0)) +

∫ T

0

adt = V (X(0)) + aT.

However as a < 0 this gives V (X(T )) < 0 for sufficiently large T , a contradic-
tion. Hence our supposition is false and we have X(t)→ x? as t→∞.

In the case where we also want to prove that X(t) converges with linear rate,
we can construct a Lyapunov function which satisfies dV (X(t))/dt < −cV (X(t)).
This method will be used later in the paper.

3 Convergence using ODEs
In order to study the convergence properties of GNAG we estimate the trajectory
of the xk with a continuous function and study the convergence of this estimate.
Recall that the update is given by

xk+1 = xk + β(xk − xk−1)− α∇f(xk + γ(xk − xk−1)). (2)

Throughout this section we will be using the standard tuning of

β =
1−√mα
1 +
√
mα

.

Let Y (t) be a continuous smooth function such that it follows the trajectory of the
points given by GNAG. Hence we set tk = k

√
α and let Y (tk) = xk. Note now

that xk+1 = Y (tk+1) = Y ((k + 1)
√
α) = Y (tk +

√
α). Taylor expansions give

xk+1 = Y (tk) + Ẏ (tk)
√
α +

1

2
Ÿ (tk)α +

1

6

...
Y (tk)α

3
2 +O(α2), (3)

xk−1 = Y (tk)− Ẏ (tk)
√
α +

1

2
Ÿ (tk)α−

1

6

...
Y (tk)α

3
2 +O(α2), (4)

(5)

We will use these to find a differential equation describing Y (t).
Divide both sides of (2) by αβ and rearrange to get

xk+1 − 2xk + xk−1

α
+

(
1

β
− 1

)
xk+1 − xk

α

+
1

β
∇f(xk + γ(xk − xk−1)) = 0.

6



Substitute (3) and (4) to arrive at the ODE

Ÿ +O(α) +

(
1

β
− 1

)(
Ẏ√
α

+
Ÿ

2
+O(

√
α)

)

+
1

β
∇f(Y + γ

√
αẎ +O(α)) = 0.

Note that due to our use of the standard tuning of β the term (1/β− 1) is O(
√
α).

Together with a Taylor expansion of∇f this gives

Ÿ +

(
1

β
− 1

)(
Ẏ√
α

+
Ÿ

2

)

+
1

β
(∇f(Y ) +∇2f(Y )Ẏ γ

√
α) +O(α) = 0.

Rearrange and substitute the standard tuning for β to end up with the ODE

Ÿ + 2
√
mẎ + Γ

√
α∇2f(Y )Ẏ + (1 +

√
mα)∇f(Y ) +O(α) = 0.

While Y (t) follows the trajectory of xk it is difficult to prove convergence due
to the O(α) term. By removing this term we instead get an approximation of the
trajectory of xk.

Definition 4. The high resolution ODE of GNAG is given by

Ẍ + 2
√
mẊ + Γ

√
α∇2f(X)Ẋ + (1 +

√
mα)∇f(X) = 0. (6)

With X(0) = x0 and Ẋ(0) =
√
α∇f(x0). Recall Γ = γ/β.

3.1 Convergence of Smooth Approximation
We begin this section by proving a Lemma that will be useful later.

Lemma 4. Let a smooth function Z(t) satisfy Ż ≤ −cZ. Then Z(t) ≤ Z(0)e−ct.

Proof Since the exponential function is positive we have from the assumption
that 0 ≥

(
Ż + cZ

)
ect = d

dt
(Zect). And hence Z(0) = Z(0)ec0 ≥ Z(t)ect, and

the Lemma follows.
For proving the convergence of the high resolution ODE we will use a Lya-

punov function. There is no standard method to find Lyapunov functions for most
ODEs, and there are usually several different Lyapunov functions that might work.
We will be using a modified version of the Lyapunov function used in [6].
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Lemma 5. The function

E(t) =(1 +
√
mα)(f(X)− f(x∗)) +

1

4
‖Ẋ‖2

+
1

4
‖Ẋ + 2

√
m(X − x∗) + Γ

√
α∇f(X)‖2.

is a Lyapunov function of the ODE (6).

Proof Every term in the function is non-negative and only 0 when X = x∗.
We will prove that the time derivative of E is negative in the proof of Theorem
6.

The initial value of the Lyapunov function is

E(0) =(1 +
√
mα)(f(x0)− f(x∗)) +

1

4
‖√α∇f(x0)‖2

+
1

4
‖√α∇f(x0) + 2

√
m(x0 − x∗) + Γ

√
α∇f(x0)‖2.

The Lipschitz gradient of f , together with a step size of α ≤ 1/L gives

f(x0)− f(x∗) ≤ L

2
‖x0 − x∗‖2 ≤ 1

2α
‖x0 − x∗‖2, (7)

‖∇f(x0)‖2 ≤ L2‖x0 − x∗‖2 ≤ 1

α2
‖x0 − x∗‖2. (8)

And hence the initial value of the Lyapunov function can be bounded as

E(0) =(1 +
√
mα)(f(x0)− f(x∗)) +

1

4
‖√α∇f(x0)‖2

+
1

4
‖√α∇f(x0) + 2

√
m(x0 − x∗) + Γ

√
α∇f(x0)‖2

≤(1 +
√
mα)(f(x0)− f(x∗)) +

α(2Γ2 + 4Γ + 3)

4
‖∇f(x0)‖2 + 2m‖x0 − x∗‖2

≤
(

1 +
√
mα

2
+

2Γ2 + 4Γ + 3

4
+ 2mα

) ‖x0 − x∗‖2

α
.

And since mα ≤ Lα ≤ 1 we get

E(0) ≤ 2Γ2 + 4Γ + 15

4

‖x0 − x∗‖2

α
. (9)

We are now ready to prove the convergence of (6).
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Theorem 6. For any α ≥ 0 and step size 0 < α < 1/L the solution to the ODE
(6) satisfies

f(X(t))− f(x∗) ≤ C(Γ)‖x0 − x∗‖2

α
e−

√
m

4(Γ+1)
t.

Where C(Γ) = (2Γ2 + 4Γ + 15)/4. Recall that Γ = γ/β.

Proof. Consider the Lyapunov function (7). The time derivative of this func-
tion is

dE
dt

=(1 +
√
mα)∇f(X)T Ẋ +

1

2
ẊT Ẍ

+
1

2

(
Ẋ + 2

√
m(X − x∗) + Γ

√
α∇f(X)

)T (
Ẍ + 2

√
mẊ + Γ

√
α∇2f(X)Ẋ

)
.

Utilizing (6) we can rewrite the Lyapunov function as

dE
dt

=(1 +
√
mα)∇f(X)T Ẋ +

1

2
ẊT

(
−2
√
mẊ − Γ

√
α∇2f(X)Ẋ − (1 +

√
mα)∇f(X)

)

+
1

2

(
Ẋ + 2

√
m(X − x∗) + Γ

√
α∇f(X)

)T (
−(1 +

√
mα)∇f(X)

)

=−√m
(
‖Ẋ‖2 + (1 +

√
mα)∇f(X)T (X − x∗) + Γ

α

2
‖∇f(X)‖2

)

− Γ

√
α

2

(
‖∇f(X)‖2 + ẊT∇2f(X)Ẋ

)

≤−√m
(
‖Ẋ‖2 + (1 +

√
mα)∇f(X)T (X − x∗) + Γ

α

2
‖∇f(X)‖2

)
.

Due to the strong convexity of f we have the two inequalities

∇f(X)T (X − x∗) ≥ f(X)− f(x∗) +
m

2
‖X − x∗‖2,

∇f(X)T (X − x∗) ≥ m‖X − x∗‖2.

Which together give the upper bound on the term

(1 +
√
mα)∇f(X)T (X − x∗) ≥1 +

√
mα

2
∇f(X)T (X − x∗) +

1

2
∇f(X)T (X − x∗)

≥1 +
√
mα

2
(f(X)− f(x∗)) +

3m

4
‖X − x∗‖2.

So the derivative of the Lyapunov function can be further bounded as

dE
dt
≤ −√m

(
1 +
√
mα

2
(f(X)− f(x∗)) + ‖Ẋ‖2 +

3m

4
‖X − x∗‖2 + Γ

α

2
‖∇f(X)‖2

)
.
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Rearranging and using the triangle inequality then yields

−4(Γ + 1)√
m

dE
dt
≥4(Γ + 1)

(
1 +
√
mα

2
(f(X)− f(x∗)) + ‖Ẋ‖2

+
3m

4
‖X − x∗‖2 + Γ

α

2
‖∇f(X)‖2

)

≥2(1 +
√
mα)(f(X)− f(x∗)) + ‖Ẋ‖2

+ 2m‖X − x∗‖2 + Γ2α

2
‖∇f(X)‖2

≥(1 +
√
mα)(f(X)− f(x∗)) +

1

4
‖Ẋ‖2

+
1

4
‖Ẋ + 2

√
m(X − x∗) + Γ

√
α∇f(X)‖2 = E .

And so we have derived the inequality

−4(Γ + 1)√
m

dE
dt
≥ E ⇒ dE

dt
≤ −

√
m

4(Γ + 1)
E .

Which due to Lemma 4 proves the linear convergence of E :

E(t) ≤ E(0)e−
√
m

4(Γ+1)
t. (10)

And due to the lower bound (9) on E(0) we further have

E(t) ≤ C(Γ)‖x0 − x∗‖2

α
e−

√
m

4(Γ+1)
t.

Together with the fact that f(X(t))− f(x∗) ≤ E(t) we get convergence of X(t):

f(X(t))− f(x∗) ≤ C(Γ)‖x0 − x∗‖2

α
e−

√
m

4(Γ+1)
t.

We have thus shown that the smooth approximation of the trajectory of GNAG
converges to the local minimum with linear rate, which is a new result. As this
approximation is accurate for small step sizes α, we have reason to believe that
for small α GNAG also converges with linear rate. Looking at Theorem 6 the
exponent is −

√
m

4(Γ+1)
t, this suggests that smaller choices of Γ yield faster conver-

gence. However the rate in Theorem 6 is most likely not the best possible rate,
throughout the proof we used multiple soft inequalities that can be made tighter.
Furthermore the rate of convergence in Theorem 6 for Γ = 1 is worse than the
rate of convergence of NAG proven in [6]. However as the aim of this section is
purely to prove linear convergence of the approximation we do not investigate this
rate further. In the next section we will however prove some rates of convergence
of GNAG for different choices of Γ.
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4 Convergence using Dynamical Systems
One can formulate certain numerical methods as linear dynamical systems. We
will state GNAG as such a system and also define an auxiliary system alongside
it. By proving certain constraints on this auxiliary system we can then conclude
convergence of GNAG. This procedure is similar to the one in [2].

4.1 Dynamical Systems
A linear dynamical system G with a nonlinear feedback g is a recursion of the
form

ξk+1 = AGξk +BGuk (11a)
yk = CGξk +DGuk (11b)
uk = g(yk). (11c)

Here ξk is called the state of the system at time k. The ui constitute the inputs
and the yi constitute the outputs. The system can be expressed by the block matrix

[
AG BG

CG DG

]

It can also be represented with a diagram.

G

ξ

g

y

u

11



4.2 GNAG as a Dynamical System
Recall that NAG can be written as the recursion

xk+1 = yk − α∇f(yk)

yk = (1 + β)xk − βxk−1.

To express it as a linear dynamical system with a nonlinear feedback we write it
as

ξ
(1)
k+1 = (1 + β)ξ

(1)
k − βξ

(2)
k − αuk

ξ
(2)
k+1 = ξ

(1)
k

yk = (1 + β)ξ
(1)
k − βξ

(2)
k

uk = ∇f(yk).

Here ξ(1)
k plays the role of xk, and ξ(2)

k plays the role of xk−1. Note that these
two variables together make up the state of the system. We now see that NAG is
represented by the matrix

[
AG BG

CG DG

]
=




(1 + β)I −βI −αI
I 0 0

(1 + β)I −βI 0




We find a similar representation of GNAG with recursion

xk+1 = xk + β(xk − xk−1)− α∇f(xk + γ(xk − xk−1)).

Using the same idea of letting the state include both xk and xk−1 we get the dy-
namical system

ξ
(1)
k+1 = (1 + β)ξ

(1)
k − βξ

(2)
k − αuk (12a)

ξ
(2)
k+1 = ξ

(1)
k (12b)

yk = (1 + γ)ξ
(1)
k − γξ

(2)
k (12c)

uk = ∇f(yk). (12d)

With matrix representation

[
AG BG

CG DG

]
=




(1 + β)I −βI −αI
I 0 0

(1 + γ)I −γI 0




12



4.3 Auxiliary System
In order to prove that the system G converges we wish to use some properties of
the nonlinearity g. By extending the system (11) with an auxiliary system Ψ we
can formulate some constraints of g. Consider the following system:

ξk+1 = AGξk +BGuk (13a)
yk = CGξk +DGuk (13b)
uk = g(yk) (13c)

ζk+1 = AΨζk +BΨyk + CΨuk (13d)
zk = DΨζk + EΨyk + FΨuk. (13e)

Here ζk is the state of the auxiliary system Ψ at time k. The auxiliary system is
expressed by the block matrix

[
AΨ BΨ CΨ

DΨ EΨ FΨ

]

The linear dynamical system G together with the auxiliary system Ψ is the de-
picted by the diagram

G

ξ

g

y

u
Ψ

ζ

z

Given a reference point (u?, y?) = (g(y?), y?), and for a choice of AΨ such that 1
is not an eigenvalue ofAΨ. there is a unique fixed point (ζ?, z?) of (13) that satisfy

ζ? = AΨζ? +BΨy? + CΨu?

z? = DΨζ? + EΨy? + FΨu?.

By rearranging the above equations we find this fixed point to be

ζ? = (I − AΨ)−1(BΨy? + CΨu?)

z? = DΨζ? + EΨy? + FΨu?.
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4.4 Integral Quadratic Constraint (IQC)
We can now state some constraints on this auxiliary system, which mostly depend
on the non-linearity g.

Definition 5 (ρ-Hard IQC). Suppose G is a linear dynamical system with the
nonlinear feedback g and auxiliary system as given by (13). Let (u?, y?) be a given
reference point and let (ζ?, z?) be a fixed point of the system. The nonlinearity
satisfies the ρ-Hard IQC defined by (Ψ,M, y?, u?) if for all sequences of yi and
for all K ≤ 0,

K∑

k=0

ρ−2k(zk − z?)TM(zk − z?) ≥ 0. (14)

In our case we want to prove convergence of GNAG for strictly convex func-
tions with Lipschitz continuous Gradients. Hence we are interested in IQCs for
the nonlinearity∇f . We will be using the weighted off-by-one IQC.

Lemma 7. Suppose f ∈ S2
m,L(Rn) with minimum at y?. Let

[
AΨ BΨ CΨ

DΨ EΨ FΨ

]
=




0 −LI I

ρ̄2I LI −I
0 −mI I




and

M =

[
0 I
I 0

]

Then for all 0 ≤ ρ̄ ≤ ρ ≤ 1 the nonlinearity ∇f satisfies the ρ-hard IQC defined
by (Ψ,M, y?, 0).

Proof. We prove ρ̄-hardness, as this will imply ρ-hardness. The auxiliary
system for this Ψ is given by

ζk+1 = −Lyk + uk

zk =

(
ρ̄2I
0

)
ζk +

(
LI
−mI

)
yk +

(
−I
I

)
uk.

And so for k ≥ 1.

zk =

(
L(yk − ρ̄2yk−1)− (uk − ρ̄2uk−1)

uk −myk

)

14



Also since u? = 0 we have

z? =

(
L(y? − ρ̄2y?)
−my?

)

And so for k ≥ 1

zk − z? =

(
L((yk − y?)− ρ̄2(yk−1 − y?))− (uk − ρ̄2uk−1)

uk −m(yk − y?)

)

And for k = 0 we have

z0 − z? =

(
L(y0 − y?)− u0

u0 −m(y0 − y?)

)

And so the inequality (14) at hand is

(u0 −m(y0 − y?))T (L(y0 − y?)− u0) (15)

+
K∑

k=1

ρ̄−2k(uk −m(yk − y?))T (L((yk − y?)− ρ̄2(yk−1 − y?))− (uk − ρ̄2uk−1)) ≥ 0.

Define

sk = (uk −m(yk − y?))T (L(yk − y?)− uk)
pk = (uk −m(yk − y?))T (L(yk − yk−1)− (uk − uk−1)).

We can hence write the left hand side of (15) as

s0 +
K∑

k=1

ρ̄−2k((1− ρ̄2)sk + ρ̄2pk). (16)

Define

h(x) = f(x)− f(y?)−
m

2
‖x− y?‖2 (17)

qk = (L−m)h(yk)−
1

2
‖∇h(yk)‖2. (18)

It is clear that h(x) ∈ S2
0,L−m(Rn) and that h(x) has minimum at y? where it

equals 0. Due to this Lipschitz continuous gradients of h(x) we see that qk ≥ 0.
Also note that∇h(yk) = uk −m(yk − y?), and so

sk = ∇h(yk)
T ((L−m)(yk − y?)−∇h(yk))

= (L−m)∇h(yk)
T (yk − y?)− ‖∇h(yk)‖2

≥ (L−m)h(yk)−
1

2
‖∇h(yk)‖2

= qk.
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Similarly

pk = (L−m)∇h(yk)
T (yk − yk−1)−∇h(yk)

T (∇h(yk)−∇h(yk−1))

≥ (L−m)(h(yk)− h(yk−1))− 1

2
‖∇h(yk)‖2 +

1

2
‖∇h(yk−1)‖2

= qk − qk−1.

We can bound (16) as

s0 +
K∑

k=1

ρ̄−2k((1− ρ̄2)sk + ρ̄2pk)

≥ q0 +
K∑

k=1

ρ̄−2k((1− ρ̄2)qk + ρ̄2(qk − qk−1))

= q0 +
K∑

k=1

ρ̄−2kqk − ρ̄−2k+2qk−1 = ρ̄−2KqK ≥ 0.

And hence we have proven inequality (15).

4.5 Proving Convergence Through IQCs
We will now see how we can use IQCs to prove the convergence of a dynamical
system. Suppose we have a linear dynamical system G with DG = 0. In this case
(13) can be written as

ξk+1 = AGξk +BGuk (19a)
yk = CGξk (19b)
uk = g(yk) (19c)

ζk+1 = AΨζk +BΨyk + CΨuk (19d)
zk = DΨζk + EΨyk + FΨuk. (19e)

Substituting y with CGξ in all equations gives



ξk+1

ζk+1

zk


 =




AG 0 BG

BΨCG AΨ CΨ

EΨCG DΨ FΨ





ξk
ζk
uk


 (20a)

uk = g(CGξk). (20b)
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By partitioning up the matrix of (20a) into

A =

(
AG 0 BG

BΨCG AΨ CΨ

)
(21a)

B =
(
EΨCG DΨ FΨ

)
(21b)

We can formulate a theorem regarding the convergence of the linear dynamical
system using a Linear Matrix Inequality (LMI).

Theorem 8. Suppose thatG and Ψ is given by (19) with a fixed point (ξ?, ζ?, y?, u?, z?)
and that (A,B) is given by (21). If g satisfies the ρ-hard IQC defined by (Ψ,M, y?, u?)
and there exists P � 0 such that

ATPA− ρ2

(
P 0
0 0

)
+BTMB � 0 (22)

we have

‖ξK − ξ?‖ ≤ ρK
√
λmax/λmin‖ξ0 − ξ?‖

for all K, where λmax and λmin are the largest and smallest eigenvalues of P .

Proof. Multiply (22) with



ξk − ξ?
ζk − ζ?
uk − u?


 from the right and by its transpose from

the left. This gives
(
ξk+1 − ξ?
ζk+1 − ζ?

)T
P

(
ξk+1 − ξ?
ζk+1 − ζ?

)
− ρ2

(
ξk − ξ?
ζk − ζ?

)T
P

(
ξk − ξ?
ζk − ζ?

)
+ zTkMzk ≤ 0.

(23)

Multiply with ρ−2k and sum over k, which gives

ρ−2K+2

(
ξK − ξ?
ζK − ζ?

)T
P

(
ξK − ξ?
ζK − ζ?

)
− ρ2

(
ξ0 − ξ?
ζ0 − ζ?

)T
P

(
ξ0 − ξ?
ζ0 − ζ?

)

+
K−1∑

k=0

ρ−2k(zk − z?)M(zk − z?) ≤ 0.

Since the IQC is satisfied by assumption and since ζ0 = ζ? we have
(
ξK − ξ?
ζK − ζ?

)T
P

(
ξK − ξ?
ζK − ζ?

)
≤ ρ2K

(
ξ0 − ξ?

0

)T
P

(
ξ0 − ξ?

0

)

∥∥∥∥
(
ξK − ξ?
ζK − ζ?

)∥∥∥∥ ≤ ρK
√
λmax/λmin

∥∥∥∥
(
ξ0 − ξ?

0

)∥∥∥∥
‖ξK − ξ?‖ ≤ ρK

√
λmax/λmin‖ξ0 − ξ?‖.
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4.6 GNAG with IQCs
Now let us consider the case where the dynamical system is (12) with matrix

[
AG BG

CG DG

]
=




(1 + β)I −βI −αI
I 0 0

(1 + γ)I −γI 0




and nonlinearity∇f where f ∈ S2
m,L(Rn). We then know from Lemma 7 that the

nonlinearity satisfies the ρ-hard IQC defined by

[
AΨ BΨ CΨ

DΨ EΨ FΨ

]
=




0 −LI I

ρ̄2I LI −I
0 −mI I




and

M =

[
0 I
I 0

]

The matrices A and B from Theorem 8 then are

A =

(
AG 0 BG

BΨCG AΨ CΨ

)
=




(1 + β)I −βI 0 −αI
I 0 0 0

−L(1 + γ)I LγI 0 I




B =
(
EΨCG DΨ FΨ

)
=

(
L(1 + γ)I −LγI ρ̄2I −I
−m(1 + γ)I mγI 0 I

)

And so by Theorem 8 GNAG converges with some rate ρ if there is a matrix P � 0
and a constant 0 ≤ ρ̄ ≤ ρ ≤ 1 such that

ATPA− ρ2

(
P 0
0 0

)
+BT

(
0 I
I 0

)
B � 0. (24)

We note a few things about (24). First, a few calculations reveal that it is
linear in both P and ρ̄, meaning that it is an LMI feasibility problem that for
given m,L, α, β and γ can be solved by well known methods. Second, note that
if (24) is feasible for some (m,L, α, β, γ) it is also feasible for (cm, cL, α, β, γ),
hence the feasibility depends on m and L only through the ratio L/m. Third,
due to the block-wise diagonal structure of A and B, it can be shown that if the
LMI holds for some ρ̄ and P it also holds for some ρ̄ and P with P = P̃ ⊗ I
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where P̃ ∈ S3
++. Hence, no matter the dimension of the original system, we can

determine convergence by studying the LMI (24) with

A =




(1 + β) −β 0 −α
1 0 0 0

−L(1 + γ) Lγ 0 1




B =

(
L(1 + γ) −Lγ ρ̄2 −1
−m(1 + γ) mγ 0 1

)

5 Numerical Results

5.1 Convergence rate by IQCs
Using the results from the previous section we can now study the convergence
rate of GNAG. As noted in the previous section, it suffices to study the case
when f ∈ S2

1,L/m(Rn). We chose to use the standard values for the step size and
the momentum coefficient, α = 1/(L/m) and β = (

√
L/m − 1)/(

√
L/m +

1). For a given L/m, γ and ρ, we can then determine the feasibility of (24) and
hence determine whether GNAG with gradient correction coefficient γ achieves
convergence rate of at least ρ for f ∈ S2

1,L/m(Rn). We can then use bisection
search to find the lowest ρ for which (24) is feasible, and hence determine the best
guaranteed convergence rate of GNAG for given L/m and γ.

We first let L/m vary and study the convergence rate for some choices of the
gradient correction coefficient Γ = γ/β. See Figure 1 for the results. As we can
see the IQC approach proves a faster convergence rate for Γ = 1.2 than for Γ = 1,
that is, than for the standard NAG. However, if we chose Γ to be a lot larger than
1 we cannot prove convergence for high values of L/m using IQCs. We also see
that choices of Γ that are less than 1 do lead to convergence, but to a slower one
than NAG. This is as expected, since these parameter choices give an algorithm
that in terms of gradient correction lies between NAG and the heavy-ball method,
which converges slower than NAG.

We also look at convergence rate depending on Γ for various values of L/m
in order to see which choice of Γ gives the fastest convergence. See Figure 2 for
the results. Here we can see Γ = 1 is most often not the parameter choice that
guarantees the fastest convergence, and that the larger the condition ratio L/m of
the function f is, the larger is the optimal choice of Γ. However we also see that
as the choice of Γ becomes larger than its optimal value, the convergence rapidly
becomes a lot slower.
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5.2 GNAG on Some Classical Problems
In order to study the efficiency of GNAG and compare it to NAG and the heavy-
ball method, we solve two classical convex optimization problems numerically
using different choices of Γ. The two problems of choice are LASSO and logistic
regression as these problems appear often in different machine learning environ-
ments and can only be solved numerically.

The results as presented in Figure 3 and Figure 4 show a similar picture. As
expected NAG converges faster than the heavy-ball method, and the choice of
Γ = 0.5 lies somewhere between the two. We also see that setting Γ = 2 and even
Γ = 4 gives faster convergence in both cases. While larger choices of Γ eliminate
most of the fluctuation of the standard NAG it does not lead to slower acceleration
during the first few iterations. Setting Γ to be very large does however lead to
divergence, which is consistent with the results of the previous subsection. In
Figure 4 the parameter choice Γ = 4 gives faster convergence to the optimal point
during the first couple of iterations but then fails to reach it. Instead, it oscillates
due to repeated overshoot.

6 Discussion
In the paper we have studied the GNAG to solve strictly convex optimization prob-
lems min f(x). This new method is a generalized version of NAG, but instead has
3 parameters and update scheme (1). We derived an ODE that approximates the
trajectory of GNAG well for small step sizes, and showed that this ODE converges
with linear rate to the local minimum of f for all positive choices of the gradient
correction coefficient Γ. We also formulated GNAG as a linear dynamical system
with nonlinear feedback, and proved using IQCs that it achieves convergence with
linear rate for some choices of Γ. We also saw through numerical examples that
setting Γ > 1 can lead to faster convergence than setting Γ = 1, however very
large choices of Γ lead to divergence.

A series of interesting questions are left to be researched. The IQC we used to
prove convergence is only one version of the more general Zames-Falb IQC [2],
and maybe using some other version of this more general constraint, convergence
can be proven for more choices of Γ. Throughout the paper we mostly used the
standard tuning of α = 1/L and β = (

√
L − √m)/(

√
L +

√
m). Looking at

the update scheme (1) of GNAG it seems that there is a close interplay between
α and γ, it could be interesting to look at convergence when α � 1/L and γ
is increased. We also saw that for some large choice of Γ we get accelerated
convergence to the optimal point, but oscillation around the optimal point. As
this does not occur for small choices of Γ one might suggest a method where Γ
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is, according to some scheme, sequentially decreased with every iteration. This
might also be useful in the case where the L and m of f are not known, as is often
the case in practice. Finally, it can be interesting to look at a stochastic version of
GNAG, as in many machine learning settings it is too expensive to calculate the
gradient of the objective function at every iteration.
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A Figures

Figure 1: The convergence rate of GNAG for various values of the gradient cor-
rection coefficient Γ depending on the ratio of the objective functions Lipschitz
Gradients and strict convexity.

Figure 2: The convergence rate of GNAG for various condition ratios depending
on the gradient correction coefficient Γ.
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Figure 3: The convergence of GNAG for f(x) = ‖Ax − b‖2 + λ‖x‖1 with A of
size 100× 200 with random entries and λ = 4.

Figure 4: The convergence of GNAG for f(x) =
∑n

i=1−yiaTi x+ log(1 + ea
T
i x) +

λ‖x‖1 with A of size 50× 100 with random entries, y with random 0 or 1 entries,
and λ = 5.

23


