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CYCLIC SIEVING ON CLOSED WALKS IN ABELIAN CAYLEY

GRAPHS

BENJAMIN KHADEMI

Abstract. In this paper we study cyclic sieving on the set of closed walks
of a particular length in abelian Cayley graphs. We interpret these walks as
words in the alphabet of the generating set. We enumerate the number of such
walks and their �xed point sets under the action of a cyclic group acting on the
walks by way of cyclically shifting the letters of their corresponding words. We
then show that this constitutes an instance of the cyclic sieving phenomenon.
We show this �rst for cyclic graphs, then for circulant graphs before turning
to the case of in�nite rectangular grids. Finally, we also show it for Cayley
graphs that are direct products of a �nite number of circulant graphs.
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1. Introduction

It is quite common for sets of combinatorial objects to exhibit some kind of cyclic
symmetry. More surprisingly, it turns out that generating functions enumerating
such sets, when evaluated at roots of unity, often count the �xed point sets under
the action of some cyclic group on the set. This is called the cyclic sieving phenom-
enon. Since �rst introduced by Reiner, Stanton and White in 2004 [RSW04] many
instances of cyclic sieving have been described.

In this paper we study the cyclic sieving phenomenon on closed walks in �nite
abelian Cayley graphs. That is, given a graph which is the Cayley graph of some
�nite abelian group we enumerate the number of walks of length m as a function of
m, then construct a polynomial which is a generating polynomial of this enumera-
tion and show that at roots of unity this polynomial counts the �xed point sets of
a particular cyclic action on the set of walks.

The restriction of our study to Cayley graphs is fundamental. Walks in Cayley
graphs can be naturally described as words in a generating set of the corresponding
group. This allows us both to de�ne a natural cyclic action on the set of walks and
to employ combinatorial methods pertaining to words to understand these walks.
Furthermore, many instances of cyclic sieving on sets of words are already known,
so that the analogy with words allows our present study to build on those. The
restriction to abelian groups on the other hand is done out of sheer necessity. We
have simply made no progress with Cayley graphs of non-abelian groups. The re-
striction to �nite graphs, �nally, is somewhat arbitrary and we do brie�y consider
a family of in�nite graphs. In the concluding remarks we state a few conjectures
concerning cyclic sieving on closed walks in in�nite Cayley graphs.

This paper is divided into two main parts.

In section 2 we cover some preliminaries. In section 2.1 we review some ba-
sic de�nitions from graph theory and discuss the relation between the number of
closed walks in a graph and powers of its adjacency matrix. In section 2.2 we re-
view some de�nitions from combinatorics, in particular the combinatorics of words.
Section 2.3 covers algebra, in particular the construction of Cayley graphs from
groups and we demonstrate some basic properties of such graphs. Section 2.4 intro-
duces q-analogues and shows some properties of a few of the classic combinatorial
q-analogues. All generating functions used to prove cyclic sieving in this paper are
such q-analogues. Section 2.5 �nally, gives a brief overview of the cyclic sieving
phenomenon and a �rst basic example.

Section 3 contains our main results, where we �nd some new instances of cyclic
sieving. Section 3.1 starts out softly by considering a small and simple family of
graphs, the cycle graphs. We prove cyclic sieving on closed walks in cycle graph
and �nd a combinatorial statistic for the generating polynomial. Section 3.2 largely
mirrors 3.1 but for a more general family of graphs: the circulant graphs, which
contains all Cayley graphs of �nite cyclic groups. We prove cyclic sieving on closed
walks in circulant graphs and again �nd a combinatorial statistic for the generating
polynomial. Section 3.3 takes a slight detour into the subject of in�nite graphs.



4 BENJAMIN KHADEMI

We prove cyclic sieving on closed walks in in�nite rectangular grids by way of an
"approximative" method, where we show that there is a circulant graph that has as
many closed walks of a particular length as the in�nite grid. In section 3.4 we show
cyclic sieving on closed walks in Cayley graphs that are direct products of circulant
graphs. This family of graphs contains Cayley graphs of any �nite, abelian group
but not every Cayley graph of a �nite, abelian group.

2. Preliminaries

2.1. Basic graph theory. We begin by establishing some basic facts of algebraic
graph theory.

De�nition 1. A graph is an ordered pair of sets G = (V,E) such that E ⊆ V 2,
that is the elements of E are two-element subsets of V . The elements of V are
called vertices and the elements of E edges.

Remark. A graph as de�ned above is sometimes called a simple, undirected graph.
This is to distinguish it from a multigraph or a directed graph. In a multigraph the
set E is a multiset and so may include multiple instances of the same two-element
set. Such graphs are often also allowed to include edges of the form {v, v}, v ∈ V,
so called loops. In a directed graph, the edge-set E is taken to consist of ordered
2 -tuples (vi, vj) 6= (vj , vi) In the context of this paper, however, an unquali�ed
reference to a graph will always refer to an undirected, loop-free, simple graph.

De�nition 2. If u, v ∈ V and {u, v} ∈ E then u and v are said to be adjacent or,
informally, to be neighbours. The number of vertices adjacent to particular vertex
v is the degree of v. If every vertex v ∈ V has the same degree, the graph G is said
to be a regular graph.

De�nition 3. The adjacency matrix A of a graph G = (V,E) on the vertex set
V = {v1, . . . , vn} is the n× n matrix whose entries are given by

aij =

{
1 {vi, vj} ∈ E
0 {vi, vj} /∈ E

Example 1. Figure 1 shows the graph G = (V,E) with V = {1, 2, 3, 4, 5, 6, 7, 8}
and E = {{8, 1}, {8, 4}, {8, 7}, {1, 2}, {1, 3}, {2, 3}, {2, 6}, {3, 4}, {4, 5}, {5, 6}, {5, 7},
{6, 7}}.The adjacency matrix A of G is given below.




0 1 1 0 0 0 0 1
1 0 1 0 0 1 0 0
1 1 0 1 0 0 0 0
0 0 1 0 1 0 0 1
0 0 0 1 0 1 1 0
0 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1
1 0 0 1 0 0 1 0




Notice how A is symmetric, has zeroes on the main diagonal and has every entry
in {0, 1}. These properties of A re�ect that G is an undirected, loop-free, simple
graph.

De�nition 4. A walk of length m in a graph G is a sequence of not necessarily
distinct vertices of G v0, v1, . . . , vm+1 such that {vi, vi+1} ∈ E for 0 ≤ i ≤ m. More
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Figure 1: An example of a graph

speci�cally, this is said to be a walk from v0 to vm+1. If v0 = vm+1 it is said to be
a closed walk.

De�nition 5. A graph G = (V,E) is said to be connected, if for every pair of
distinct vertices vi, vj ∈ V there is a walk beginning in vi and ending in vj .

Example 2. The graph G in Figure 1 is a connected graph. For such a small
graph, this can be veri�ed simply by looking at Figure 1. An example of a walk in
G is v = 8, 1, 2, 3, 1, 8, 7, 6, 2, 3, 4, 8, 7, 5. The existence of v also proves connectivity,
because it travels past every vertex in V .

We now prove our �rst important theorem, which will be critical in the following.

Theorem 1. The number of walks of length m in a graph G from vi to vj , is
the entry in position (i, j) of the matrix Am, where A is the adjacency matrix of
G. [Big74]

Proof. The result is true for m = 0 since then A0 = I and for m = 1 since then
A1 is simply the adjacency matrix. Now suppose that the theorem is true for some
m = n. By the de�nition av matrix multiplication we then have:

(
An+1

)
ij

=
n∑

k=1

(An)ik akj =
∑

k:(vk,vj)∈E
(An)ik ,

so that the (i, j)-th entry of An+1 is the sum of those entries (i, k) in the i :th row
of An for which vk is a neighbour of vj . By the induction hypothesis, this means
that the (i, j)-th entry of An+1 is the number of walks of length n from vi to any
neighbour of vj , that is precisely the number of walks of length n+ 1 from vi to vj .
So the theorem follows by induction. �
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Example 3. For the adjacency matrix A of the graph G in Figure 1, we have:

A3 =




2 5 6 1 4 2 1 6
5 2 5 3 2 5 2 3
6 5 2 6 1 2 4 1
1 3 6 0 6 3 1 7
4 2 1 6 2 5 6 1
2 5 2 3 5 2 5 3
1 2 4 1 6 5 2 6
6 3 1 7 1 3 6 0




.

The ij-th entry of this matrix gives the number of walks of length 3 in G beginning
in i and ending in j. For instance, A3

11 = 2 counts the walks 1, 2, 3, 1 and 1, 3, 2, 1.

De�nition 6. By the trace of a n× n matrix A we mean the sum of its diagonal
elements, that is

tr(A) =
n∑

k=1

(A)kk.

This de�nition allows us to formulate an important corollary to Theorem 2.1.

Corollary 1.1. The number of closed walks of length m in a graph G equals
tr (Am).

Corollary 1.1 will be crucial in enumerating the number of closed walks in di�er-
ent kinds of graphs, but the trace of a matrix can be expressed in another form as
well, namely through its eigenvalues. We now state without proof a few well-known
properties of eigenvectors and eigenvalues. For proof, consult probably any book
on linear algebra, for instance [HU14]

Theorem 2. Suppose that v ∈ Cn is a n × 1 vector and that A and B are n × n
matrices such that Av = λv and Bv = µv for some scalars λ, µ. Then:

• The matrices A+B,AB, cA,Ak, where c is a scalar and k ∈ N, also have
v as an eigenvector with eigenvalues λ+ µ, λµ, cλ and λk.

• If A is invertible then v is an eigenvector of A−1 with eigenvalue λ−1.
• If p(x) is a polynomial then the matrix p(A) has v as an eigenvector with
eigenvalue p(λ).

• Furthermore, the number λ is an eigenvalue of A if and only if it is a root
of the characteristic polynomial p(λ) = |λI −A|.

With these preliminaries, we are now ready to express the relation between the
eigenvalues of a matrix and its trace.

Theorem 3. If A is an n× n matrix and λ1, λ2, . . . , λn are the roots of the char-
acteristic polynomial p(λ) = |λI − A|, then tr(A) =

∑n
k=1 λk, that is: the trace

of a matrix equals the sum of its eigenvalues, if we account for the multiplicity of
eigenvalues. [RB00]
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Proof. The characteristic polynomial of A can be factorized p(λ) =
∏n
k=1 (λ− λk)

so the λn−1-coe�cient is −∑n
k=1 λk. On the other hand in the expansion of

|λI −A| =

∣∣∣∣∣∣∣∣∣

λ− a11 −a12 . . . −a1n

−a21 λ− a22 . . . −a2n

...
...

. . .
...

−an1 −an2 . . . λ− ann

∣∣∣∣∣∣∣∣∣

the only term containing λn−1 is the product of entries along the main diagonal∏n
k=1(λ− akk) , so that the λn−1 -coe�cient is −∑n

k=1(A)kk. �

The following corollary brings out what in Theorem 3 is essential in the study
of closed walks.

Corollary 3.1. If G is a graph with adjacency matrix A with eigenvalues λ1, . . . , λn
then the number of closed walks of length m in G is equal to

tr (Am) =
n∑

k=1

λmk .

Corollary 3.1, while important, su�ers from the fact that it is not always pos-
sible to �nd the eigenvalues of a matrix. Also it gives us very little combinatorial
information on the closed walks of a graph, except for enumerating them. However,
it should be noted that it can be used in the other direction. That is, since the
spectrum of a graph is in some way related to virtually every graph invariant and
since the eigenvalues are often di�cult to �nd or even approximate algebraically,
combinatorial methods counting closed walks can in fact be used to obtain knowl-
edge of the spectral properties of the graph. In fact much research on closed walks
in graphs is motivated by its value in approximating eigenvalues. For an article
developing this point of view, see for instance [DK13].

2.2. Basic combinatorics. The reader is assumed to be familiar with permu-
tations, the binomial and mulinomial coe�cients and their most common combi-
natorial interpretations. All these concepts are covered in depth in chapter one
of [Sta12]. There are many textbooks giving a lot more gentle introductions than
Stanley, for instance [Big02].

De�nition 7. A word w of length m in the alphabet S is a sequence a1, a2, . . . , am
with elements ai ∈ S, where S is some set. The set of all such words of length m
is Sm. The elements of such a sequence are called letters. A subword of a word
w = a1, a2, . . . , am is a word ak, ak+1, . . . , ak+n with 1 ≤ k ≤ k + n ≤ m. Two
words wa = a1, a2, . . . , am and wb = b1, b2, . . . , bn in the same alphabet can be
concatenated into a new word wawb = a1, a2, . . . , am, b1, b2, . . . , bn. If wa = wb
then this concatenation can be written w2

a and so on, if there are more than two
words concatenated.

A word w of length m in alphabet S = {s1, s2, . . . , sn} is said to have the
content α = (α1, α2, . . . , αn) if the letter si occurs αi times in w. The vector α is
obviously a weak composition of m into n non-negative components. In this paper
a composition will always refer to a weak composition. If α is some composition of
m, or some set of compositions of m, then Sα denotes the set of all words in Sm
with content α, or content in α. The set of all compositions of m into n components
is denoted αm,n. Finally, given two alphabet of the same size S = {s1, s2, . . . , sn}
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and T = {t1, t2, . . . , tn}, a translation is a function taking a word w in S into a
word w′ in T by exchanging the i:th symbol of A with the i:th symbol of B, so that
both words have the same content in their respective alphabets.

Example 4. Example: The word ababab can be written (ab)3. It has content
α = (3, 3) in the alphabet S = {a, b} but content β = (3, 3, 0) in the alphabet
S′ = {a, b, c}. The set Sα consists of all words composed out of 3 a:s and 3 b:s. If
we translate the word ababab into the alphabet {c, d} we obtain a new word (cd)3.

Of course, the number of words of length m from a particular alphabet S with
content α = (α1, α2, . . . , αn) is simply

(
m

α1, α2, . . . , αn

)
.

This follows immediately from the fact that the multinomial coe�cients counts
the number of permutations of a multi-set, since a word with content α can be seen
precisely as a permutation of the multi-set containing si αi times. In this manner
a word w = a1, a2, . . . , am can be seen as a function φ de�ned by φ(i) = ai. The
word is then the word form of the function. Understood in this way, the one-line
form of a permutation can be seen as its word form. For a given composition α, we
will write the multinomial coe�cient simply as

(
m

α

)
.

De�nition 8. Given a set X of combinatorial objects a combinatorial statistic is
a function σ : X → N. The generating polynomial F of σ is de�ned by

F (q) =
∑

s∈X
qσ(s).

Observe in particular that F (1) = |X| so that knowing the generating function
for a statistic on some set immediately gives an enumeration of that set. If the
statistic in question is combinatorially interesting, then the generating function of
that statistic can be seen as a re�nement of the enumeration: not only do we know
how many elements there are in X but also how many such that σ(x) = 0, how
many such that σ(x) = 1 and so on. To illustrate these ideas we might consider
one speci�c statistic although we must postpone for a little while the question of
its generating polynomial.

De�nition 9. Let φ be a function from M = {1, 2, . . . ,m} to some set of integers
S. For i ∈ M de�ne the number of inversions of i to be the number of elements
of M such that i > j and φ(i) < φ(j). Hence, the number of inversions of i is the
number of letters larger than φ(i) among the �rst i− 1 letters of the word form of
φ. Let ki be the number of inversions of i. The sum

m∑

i=1

ki

then de�nes a combinatorial statistic on the set of functions of M → S, and by
extension on Sm, the inversion statistic. For a word w ∈ Sm we denote this inv(w).
The vector (k1, k2, . . . , km) is called the inversion table of the function.
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Figure 2: A Cayley graph of S3

Example 5. The word w = 150721 is the word form of the function de�ned by
φ(1) = 1, φ(2) = 5, φ(3) = 0, φ(4) = 7, φ(5) = 2, φ(6) = 1. Its inversion table is
(0, 0, 2, 0, 2, 3) and inv(w) = 7.

Of course a word whose letters form a non-decreasing series has inversion statistic
0, so that the inversion statistic can be understood as how far the letters of a word
are from being ordered according to, increasing, size.

2.3. Basic algebra. It is assumed that the reader knows the basics of �nite group
theory, at least to the extent of being familiar with groups, generating sets of a
group, some properties of cyclic groups and direct products of groups, otherwise
chapter one and two of [DF04] covers this.

We begin by de�ning and describing some of the basic properties of Cayley
graphs.

De�nition 10. Let G be a �nite group with identity 1 and let S be a set generating
G such that x ∈ S =⇒ x−1 ∈ S and such that 1 /∈ S. Then the graph Γ = (V,E)
with V = G and E de�ned by {g, h} ∈ E ⇐⇒ g−1h ∈ S is called the Cayley
graph of G with respect to S.

Example 6. Let G = S3 and S = {(12), (23)}. Then the Cayley graph Γ of G
with respect to S is presented in Figure 2.

Theorem 4. A Cayley graph Γ = (G,S) is a loop-free, undirected, connected and
regular graph. [Löh17]

Proof. Suppose {g, g} ∈ E. Then it would follow that g−1g = 1 ∈ S, which is
false by the de�nition of S. So Γ is loop-free. Now suppose g−1h ∈ S. Then(
g−1h

)−1
= h−1g ∈ S. So there is an edge from vertex g to vertex h if and only if

there is an edge from h to g. So Γ is undirected. Furthermore, since S generates G,
given g, h ∈ G, g−1h can be written as the product of elements of S, as s1s2 . . . sk
for si ∈ S. Then starting at vertex g there is an edge to gs1 and then from gs1

to gs1s2 and so on, all the way to gs1s2 . . . sk = gg−1h = h. So, there is a walk
between arbitrary nodes g, h, so Γ is connected. Finally, for any g ∈ G, the equation
g−1x = s has precisely one solution, x = gs, for every s ∈ S, so every vertex in Γ
has as many edges as there are elements in S. Thus, Γ is regular. �
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Observe that the �niteness of the group G is not really necessary to ensure that
the Cayley graph has the desirable properties expressed in the theorem, however
an in�nite group will obviously occasion an in�nite graph. The following simple
observation will be quite useful in the following.

Theorem 5. The adjacency matrix of a Cayley graph can be expressed as the sum
of a number of permutation matrices.

Proof. Given a Cayley graph Γ = (G,S) with G = {g1, g2, . . . , gn} and S =
{s1, s2, . . . , sk} we de�ne k permutations πi : G → G by πi (gj) = gjsi. Now
let Pi be the permutation matrix corresponding to πi, that is, let Pi be the matrix
de�ned by:

(Pi)jk =

{
1 π(gj) = gjsi = gk

0 otherwise
.

Now consider the matrix

A =
k∑

i=1

Pi.

The j, k-th entry of A is then |si ∈ S : gjsi = gk|. But this is 1 if g−1
j gk ∈ S and 0

if not, so A is in fact the adjacency matrix of Γ. �
Example 7. Consider again the graph in Example 6. Its adjacency matrix, with
rows and columns 1 to 6 corresponding to (), (12), (23), (13), (123), (132), can be
written




0 1 1 0 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 0 0 0 1 1
0 1 0 1 0 0
0 0 1 1 0 0




=




0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0




+




0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0



,

where the two matrices on the right hand side are the permutation matrices corre-
sponding to the permutations G→ G given by π1 (g) = g◦(12) and π2 (g) = g◦(23).

As the proof of connectivity in Theorem 4 suggests there is a natural bijection
between walks starting in a particular vertex of a Cayley graph and words in the
alphabet {s1, s2, . . . , sk}.
Theorem 6. There are as many walks in the Cayley graph Γ = (G,S) of length
m beginning in a particular vertex g0 ∈ G as there are words of length m in the
alphabet S = {s1, s2, . . . , sk}. [Cio06]
Proof. Given a walk g0, g1, . . . , gm+1 in Γ, it follows that g−1

i gi+1 ∈ S for 0 ≤ i ≤ m,
so the sequence g−1

0 g1, g
−1
1 g2, . . . , g

−1
m gm+1 ∈ Sm. Now suppose g0, h1, . . . , hm+1

is another walk inducing a word w′ = g−1
0 h1, h

−1
1 h2, . . . , h

−1
m hm+1. Then w =

w′ if and only if gi = hi for every i, 1 ≤ i ≤ m + 1. On the other hand,
given a word a1, a2, . . . , am ∈ Sm we can de�ne a corresponding walk in Γ by
g0, g0a1, g0a1a2, . . . , g0a1a2 . . . am. Now, a second such word b1, b2, . . . , bm would
induce a walk g0, g0b1, g0b1b2, . . . , g0b1b2 . . . bm and these walks would be identical
if and only if if ai = bi for every i, 1 ≤ i ≤ m. So such a mapping from words to
walks is a bijection. �
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Example 8. Consider again the graph Γ in Figure 2. There are four words of length
two in the alphabet {(12), (23)}, namely (12)(12), (12)(23), (23)(12), (23)(23). These
four words correspond to four walks beginning in (), namely the walks (), (12), ()
and (), (12), (123) and (), (23), (132) and (), (23), () respectively.

The following corollary summarizes some properties of walks in Cayley graphs
that became evident in the proof of the Theorem 6.

Corollary 6.1. Given a Cayley graph Γ = (G,S) the number of closed walks of
length m beginning and ending in a particular vertex g0 ∈ G is equal to the number
of words in Sm such that the product of letters is the identity in G. From this,
it in turn follows that the number of closed walks of length m in Γ beginning and
ending in a particular vertex is the same for all vertices. Because of this second
fact, we will always restrict our attention to closed walks beginning and ending in
the identity element of G. Crucially, it also follows that if G is abelian, content
alone determines closedness, so that the order of letters in a word is irrelevant for
determining whether the corresponding walk is closed. The set of such closed walks
of length m is denoted CΓ,m. The corresponding set of words is denoted Scm. Since
if G is abelian, the product of the letters in a word w in the alphabet S is the same
for all words with the same content α, we refer to this product as Sα.

Finally we review the concept of a group action.

De�nition 11. If G is a group and X is a set, a group action of G on X is a
function G×X → X such that:

• 1× x = x for all x ∈ X,
• g × (h× x) = (gh)× x for all g, h ∈ G and all x ∈ X.

For every element x ∈ X we de�ne the stabilizer of x as the subgroup Gx ≤ G
such that g ∈ Gx ⇐⇒ g × x = x. If we de�ne a relation R on X ×X by xRy if
g×x = y for some g ∈ G, then the equivalence classes of R are said to be the orbits
of the group action, and the orbit of an element x ∈ X is the equivalence class to
which it belongs under R and is denoted Ox. The �xed point set of an element of
g ∈ G is the subset Xg of X such that x ∈ Xg ⇐⇒ g × x = x.

In this paper the group G acting on X will always be a cyclic group. In fact
mostly one particular group action will be studied.

De�nition 12. Given a word w ∈ Sm, we de�ne a cyclic shift of w by k steps, where
0 ≤ k < m, in the following manner. If the letters of w are w = a1, a2, . . . , am, then
de�ne the subword w1 = a1, a2, . . . , am−k and w2 = am−k+1, am−k+2, . . . , am, so
that w = w1w2. The cyclic shift of w by k steps is then w2w1. Alternatively, we can
de�ne the cyclic shift of a word by k steps as a function taking a word w of length
m in the alphabet A to another word w′ of length m in the same alphabet A, such
that the letter in position i in w is in position i + k mod m in w′. This second
de�nition is preferable, since it makes unnecessary the restriction that 0 ≤ k < m.
Also, the second de�nition makes it quite obvious that cyclic shift de�nes a group
action by Zm on the set Am.

It should be noted, that by the bijection between walks in the Cayley graph
Γ = (G,S) and words in the alphabet S, the cyclic shift action can be viewed as
an action on the set of walks in Γ as well as on words in S.
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Example 9. Consider words of length 4 in the alphabet {0, 1}. Under the action of
Z4 the 16 such words are divided into the following orbits {0000}, {1111}, {1010, 0101},
{0011, 1001, 1100, 0110}, {1110, 0111, 1011, 1101}, {0001, 1000, 0100, 0010}. The words
in the one-element orbits have all of Z4 as stabilizer, the words in the two-element
orbit have {0, 2} as stabilizer and the words in the four-element orbits have {0} as
stabilizer. Conversely, the �xed point set of 0 contains all 16 words, the �xed point
set of 1 and 3 contain only the two mono-syllabic words {0000, 1111} and the �xed
point set of 2 contains the four words {0000, 1111, 1010, 0101}. Observe how the
�xed point set of g ∈ Z4 contain all the words of length gcd(g, 4) in the alphabet
{0, 1}, repeated 4/ gcd(g, 4) times.

2.4. q-Analogues. A q-analogue is a mathematical theorem, identity or expression
parametrized by a quantity q that generalizes a known expression and reduces to the
known expression in the limit q → 1. Given an enumeration of a set of combinatorial
objects, a q -analogue of this enumeration evaluates to the cardinality of the set as
q → 1, so that the q-analogue is sometimes a generating function of some statistic
on the set. Later on, we will see that q-analogues play an essential role in the
cyclic sieving phenomenon. We de�ne some classic q-analogues that will serve as
generating polynomials in this paper.

De�nition 13. We de�ne the following polynomials:

• If n ∈ N, the q-analogue of n is de�ned by [0]q = 0 and [n]q = 1 + q + q2 +
. . .+ qn−1 for n > 0.
• If n ∈ N, the q-analogue of n! is de�ned by [0]!q = 1 and [n]!q =

∏n
k=1[k]q.

• If n, k ∈ N and k ≤ n then the q-analogue of
(
n
k

)
is

[
n

k

]

q

=
[n]!q

[n− k]!q[k]!q
.

• If n ∈ N and α ∈ αn,m then the q-analogue of
(
n
α

)
is

[
n

α

]

q

=
[n]!q∏m
i=1[αi]!q

.

Example 10. We have [1]q = 1, [2]q = 1+q, [3]q = 1+q+q2, [4]q = 1+q+q2 +q3.
It then follows [1]!q = 1, [2]!q = 1(1 + q), [3]!q = 1(1 + q)(1 + q + q2), [4]!q =
1(1 + q)(1 + q + q2)(1 + q + q2 + q3). In turn we then get for instance

[
4

2

]

q

=
[4]!q

[2]!q[2]!q
=

[1]q[2]q[3]q[4]q
[1]q[2]q[1]q[2]q

=
[3]q[4]q
[1]q[2]q

=

(1 + q + q2)(1 + q + q2 + q3)

1 + q
= (1 + q + q2)(1 + q2).

Now we have the means necessary for a discussion of the generating polynomial
for the inversion statistic on the set of n-element permutations.

Theorem 7. The q-factorial [n]!q is a generating polynomial for the inversion
statistic on the set of permutation Sn : {1, 2, . . . , n} → {1, 2, . . . , n}. [Sta12]
Proof. We show this by induction over n. For n = 1 there is only one element in
S1, the function taking 1 to itself, and it has inversion statistic 0, so the generating
polynomial for the inversion statistic on S1 is 1 = [1]!q. Suppose that the generating
polynomial for the inversion statistic on SN is [N ]!q. Now de�ne the N + 1 sets
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SN+1,i = {π ∈ SN+1 : π(N + 1) = i}. Obviously, each SN+1,i has N ! elements and
we de�ne a bijection π ∈ SN+1,i → ψ ∈ SN in the following manner: ψ(j) = π(j)
if π(j) < i and ψ(j) = π(j)− 1 if π(j) > i.

How does the inversion statistic of π, inv(π), relate to that of ψ, inv(ψ)? Suppose
that j 6= N + 1 and that k is an inversion of j in π, that is: suppose that j > k,
which implies k 6= N + 1, and that π(j) < π(k). Then it follows that ψ(j) < ψ(k)
as well, so that k is an inversion of j in ψ as well. Obviously the same is true in
the other direction. Thus, if the inversion table of π is (k1, k2, . . . , kN , kN+1), then
the inversion table of ψ is (k1, k2, . . . , kN ). It follows that inv(ψ) + kN+1 = inv(π).
But kN+1 is the number of elements k ∈ {1, 2, . . . , N} such that N + 1 > k and
π(N + 1) < π(k). But N + 1 > k is true for all k ∈ {1, 2, . . . , N}, so kN+1 is just
the number of elements k ∈ {1, 2, . . . , N} such that i = π(N + 1) < π(k), which is
N + 1− i. Now, we consider the generating polynomial of the inversion statistic on
SN+1 :

F (q) =
∑

π∈SN+1

qinv(π) =

N+1∑

i=1

∑

π∈SN+1,i

qinv(π) =

N+1∑

i=1

∑

ψ∈SN
qinv(ψ)+N+1−i =

N+1∑

i=1

qN+1−i ∑

ψ∈SN
qinv(ψ) =

N+1∑

i=1

qN+1−i[N ]!q = [N ]!q

N+1∑

i=1

qN+1−i = [N ]!q[N + 1]q = [N + 1]!q,

which �nishes the proof by induction. �

Example 11. Consider [3]!q = 1(1 + q)(1 + q + q2) = 1 + 2q + 2q2 + q3. On
the other hand consider the 6 permutation {1, 2, 3} → {1, 2, 3}. For these we
have inv(123) = 0, inv(132) = 1, inv(213) = 1, inv(231) = 2, inv(312) = 2 and
inv(321) = 3. From this we see that, indeed, [3]!q is the generating polynomial for
the inversion statistic on S3.

It's not immediately evident that the q-binomial and q-multinomial coe�cients
have natural coe�cients, in fact it is not even obvious that they are polynomials.
The following recurrence relations, q-analogues of Pascals identity, will help estab-
lish that they really are polynomials with natural coe�cients, and so are suitable
candidates for generating polynomials of combinatorial statistics.

Theorem 8 (q-Pascal identities). The q-binomial coe�cients, with k > 0 satisfy
the two following recursions:

(1)

[
n

k

]

q

= qk
[
n− 1

k

]

q

+

[
n− 1

k − 1

]

q

,

(2)

[
n

k

]

q

=

[
n− 1

k

]

q

+ qn−k
[
n− 1

k − 1

]

q

,

[Sta12]
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Proof. This is purely algebraic manipulation:

qk
[
n− 1

k

]

q

+

[
n− 1

k − 1

]

q

= qk
[n− 1]!q

[k]!q[n− k − 1]!q
+

[n− 1]!q
[k − 1]!q[n− k]!q

=

[n− 1]!q
[k − 1]!q[n− k − 1]!q

(
qk

[k]q
+

1

[n− k]q

)
=

[n− 1]!q
[k − 1]!q[n− k − 1]!q

(
qk[n− k]q + [k]q

[n− k]q[k]q

)
=

[n− 1]!q
[k]!q[n− k]!q

(
qk[n− k]q + [k]q

)
=

[n− 1]!q
[k]!q[n− k]!q

[n]q =
[n]!q

[k]!q[n− k]!q
=

[
n

k

]

q

,

which proves (1) . (2) is similar:

[
n− 1

k

]

q

+ qn−k
[
n− 1

k − 1

]

q

=
[n− 1]!q

[k]!q[n− k − 1]!q
+ qn−k

[n− 1]!q
[k − 1]!q[n− k]!q

=

[n− 1]!q
[k − 1]!q[n− k − 1]!q

(
1

[k]q
+

qn−k

[n− k]q

)
=

[n− 1]!q
[k − 1]!q[n− k − 1]!q

(
[n− k]q + qn−k[k]q

[n− k]q[k]q

)
=

[n− 1]!q
[k]!q[n− k]!q

(
[n− k]q + qn−k[k]q

)
=

[n− 1]!q
[k]!q[n− k]!q

[n]q =
[n]!q

[k]!q[n− k]!q
=

[
n

k

]

q

.

�

With the help of these recursions, we can now prove the following.

Theorem 9. The q-binomial and q-multinomial coe�cients are polynomials in
N[q]. [Sta12]

Proof. We �rst prove by induction over n that the q-binomial coe�cient is a poly-
nomial in N[q]. As induction base we have

[
0
0

]
q

= 1,
[
1
0

]
q

= 1,
[
1
1

]
q

= 1. Now

as induction hypothesis, suppose that for n = N , all q-binomial coe�cients
[
N
k

]
q

are polynomials in N[q]. Then for the q-binomial coe�cients
[
N+1
k

]
q
we have two

cases. If k = 0, then
[
N+1
k

]
q

= 1. If k > 0 then by either of the Pascal-analogue

recursions together with the induction hypothesis, it follows that
[
N+1
k

]
q
is a sum

of two polynomials in N[q], so is a polynomial in N[q]. Thus, it follows by induction
that the q-binomial coe�cients are polynomials in N[q].

Now, for the q-multinomial coe�cient
[

n
k1,k2,...,km

]
q
we use induction over m. For

m = 1 we have
[
n
k1

]
q

= 1 and for m = 2 the q-multinomial coe�cient is just a q-

binomial coe�cient. Now suppose that for m = M every q-multinomial coe�cient[
n

k1,k2,...,kM

]
q
is a polynomial in N[q]. Now for a q-multinomial coe�cient with

m = M + 1 we consider the following factorization:
[

n

k1, k2, . . . , kM+1

]

q

=
[n]!q∏M+1

i=1 [ki]!q
=

[n− kM+1]!q∏M
i=1[ki]!q

[n]!q
[n− kM+1]!q[kM+1]!q

=

[
n− kM+1

k1, k2, . . . , kM

]

q

[
n

kM+1

]

q

.
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From this factorization we see that a q-multinomial coe�cient with m = M + 1
is the product of a q-multinomial coe�cient with m = M , which by the induction
hypothesis is a polynomial in N[q] and a q-binomial coe�cient, which by what was
proven above is a polynomial in N[q], so it is a polynomial in N[q]. This completes
the proof. �

The following theorem is the most important in this paper, to a certain extent
all the results of this paper can be seen as applications of this theorem.

Theorem 10 (q-Lucas). Let n = n1d+n0 and k = k1d+k0, where 0 ≤ n0, k0 < d,
where n, k are natural numbers and d is a positive integer. Furthermore, let ξ =
e2πi cd be a primitive d-th root of unity. Then

[
n

k

]

ξ

=

(
n1

k1

)[
n0

k0

]

ξ

,

where the (q-)binomial coe�cients are interpreted as 0 if the denominator is larger
than the numerator.

We give no proof of this theorem here. Originally this was proven in [Oli65]. A
nice proof based on cyclic sieving like methods was given in [Sag92]. These proofs
demonstrate a somewhat more general statement and would be a distraction if
given here. The weaker statement, which provides all that is needed in this paper,
can in fact be proven with elementary methods, using induction and the q-Pascal
analogues in a style similar to the previous proofs of this section but such a proof
would be quite long and very tedious and so is omitted.

Example 12. We consider again the q-binomial coe�cient
[
4

2

]

q

First let d = 3. Then n1 = 1, n0 = 1 and k1 = 0, k0 = 2.For ξ = ec
2πi
3 with

gcd(c, 3) = 1, q-Lucas gives us:

[
4

2

]

ξ

=

(
1

0

)[
0

2

]

ξ

= 0,

and indeed,
[
4
2

]
q

= (1 + q + q2)(1 + q2) has ξ = ec
2πi
3 with gcd(c, 3) = 1 for roots,

since for q 6= 1 we have (1 + q + q2) = q3−1
q−1 .

Now, let d = 2. Then n1 = 2, n0 = 0 and k1 = 1, k0 = 0.For odd integers c, we

then have ξ = ec
2πi
2 = −1, and q-Lucas gives us:

[
4

2

]

ξ

=

(
2

1

)[
0

0

]

ξ

= 2,

and again,
[
4
2

]
q

= (1 + q + q2)(1 + q2) evaluates to 2 when q = −1.

2.5. Cyclic sieving. Reiner, Stanton and White �rst introduced the cyclic sieving
phenomenon in their 2004 paper [RSW04]. It de�nes a relation between three
mathematical objects. The �rst of these is a �nite set, X. The second is a �nite
cyclic group, C = 〈g〉, which acts on X. The third is a polynomial in N[q], which
will often be a generating polynomial of X. We now state the formal de�nition.
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De�nition 14. Let X be a set of combinatorial objects, C = 〈g〉 be a �nite cyclic
group of size n acting on X, and f(q) ∈ N[q]. Then the triple (X,C, f(q)) is said
to exhibit the cyclic sieving phenomenon if for all d ∈ N, we have

∣∣{x ∈ X : gdx = x
}∣∣ = f

(
e(2πi dn )

)

In words, f(q) evaluated at certain roots of unity gives the number of elements in
X �xed by powers of g. Note that f(1) = |X|, so in many instances, f(q) is a
q-analogue of the set X.

At �rst sight this de�nition might seem quite strange. Why would one expect
such triples to appear "naturally" except in trivial cases? Of course, given X and
G, one could always �nd a polynomial satisfying the conditions of the de�nition,
but it doesn't seem obvious that this polynomial should have natural numbers for
coe�cients. And it seems even less obvious that the polynomial would have some
intuitive relation to X. Yet the growing literature on the cyclic sieving phenomenon
indicates that there a great many such triples. For an overview of many results
see [Ale20]. This might seem slightly less surprising if one considers that the roots

of unity form a cyclic group themselves, and that gd and e2πi dn are elements of
the same order in their respective groups, so that the cyclic sieving phenomenon
expresses a relation between two isomorphic groups. Of course nothing better
encourages understanding than an example.

Example 13. Let N = {1, 2, ..., n} and let K be the set of k-element subsets of
N . It is one of the most basic results of combinatorics that |K| =

(
n
k

)
, a natural

q-analogue for which is
[
n
k

]
q
. Now we consider the following action of Zn on K. For

any g ∈ Zn and any M = {a1, a2, . . . , ak} ∈ K, we de�ne

g +M = {a1 + g mod n, a2 + g mod n, . . . , ak + g mod n}.
Now suppose thatM ∈ K is �xed under the action of g ∈ G and that a ∈M . Then
M must also contain a+ g, a+ 2g, . . . , so it follows that is must contain the entire
congruence class of a modulo d = gcd(n, g). From this it in turn follows that if M
is �xed by the action of g then M must be the union of congruence classes modulo
d. Since every such class is of size n

d and M is a k-element set it follows that n
d |k.

So if, nd 6 |k, no elements in K are �xed by the action of g. On the other hand, if
n
d |k, M will be �xed by the action of g if and only if it is a union of congruence
classes modulo d. Since there are d such classes, the number of elements in K �xed
by the action g is equal to the number of ways of constructing a k-element set as a
union of kd/n congruence classes out of d di�erent choices, so we have

(
d

kd/n

)
= |Kg|.

Now, to show cycling sieving, we need to evaluate the polynomial
[
n
k

]
q
at roots

of unity. Thus, we let ξ = e(2πi gn ) and consider
[
n
k

]
ξ
. We have that ξ = e(2πi

g/d
n/d )

where gcd(g/d, n/d) = 1 so ξ is a primitive n/d-th root of unity. Setting n = dnd +0
and k = k1

n
d + k0 we get from q-Lucas theorem that

[
n

k

]

ξ

=

(
d

k1

)[
0

k0

]

ξ

.
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Now unless k0 = 0, that is : unless n
d |k, this evaluates to zero. On the other

hand, if k0 = 0 then it evaluates to
(
d

k1

)

where k1 = kd/n. In fact then, the cardinality of the �xed point set under the action

of g is equal to the value of q-analogue of the enumeration at ξ = e(2πi gn ). This
proves that the triple (K,Zn,

[
n
k

]
q
) is an instance of the cyclic sieving phenomenon.

The method used in Example 13 is typical of how cyclic sieving will be proved
in this paper. First, through some combinatorial argument determine the size of
the �xed point sets. Then through algebraic argument evaluate the q-analogue.
In this paper, the algebraic argument always involves q-Lucas theorem, although
there are many similar identities that can be exploited, see for instance [FH11].
In more advanced research, cyclic sieving is sometimes shown with the methods
of representation theory. For an introduction to this paradigm of proving cyclic
sieving, see [Sag11]. The reasons that such avenues are not explored in this paper
lie entirely in the ignorance of its author.

Finally, we state one particular instance of cyclic sieving, which was shown, in a
somewhat di�erent form, already in [RSW04].

Theorem 11. Let Wα be all words of length m with content α in some alphabet.
Suppose Zm act on Wα by cyclic shift. Then the triple

(
Wα,Zm,

[
m

α

]

q

)

exhibit the cyclic sieving phenomenon and the polynomial
[
m
α

]
q
is the generating

polynomial of the inversion statistic on Wα.

We do not prove this theorem here, nor will we ever immediately apply it, because
all of section 3.1 and section 3.2 can be seen as

• a proof of Theorem 11,
• a slight generalization of it to sets of compositions of m,
• most importantly, an application of it to walks in Cayley graphs interpreted
as words.

One could say that Theorem 11 is the key to why the interpretation of walks
as words is so fruitful for proving cyclic sieving on closed walks in abelian Cayley
graphs.

3. Results

3.1. Closed walks in cycle graphs. In this subsection we will be studying closed
walks in cycle graphs. We will show that they are a certain kind of Cayley graphs,
enumerate the number of closed walks of length m, describe and determine the
size of the �xed point sets under the cyclic shift action, prove cyclic sieving and
show that the q-analogue of the enumeration is the generating polynomial of the
inversion statistic.
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1

2

0 1 2

30

1

2

3

4

0

Figure 3: The cycle graphs C3, C4 and C5.

De�nition 15. The cycle graph of order n, Cn, is the graph G = (V,E) with V =
{0, 1, . . . , n − 1} and with edges {(0, 1), (1, 2), (2, 3), . . . (n − 2, n − 1), (n − 1, 0)},
that is: {i, j} ∈ E if and only if i− j ≡ ±1 mod n.

Example 14. Figure 3 shows a few example of cycle graphs.

We show that cycle graphs are Cayley graphs.

Proposition 12. Cn is the Cayley graph Γn = (Zn, S = {1,−1}) and its adjacency
matrix can be written A = P +P−1 where P is the permutation matrix of the cyclic
permutation (12 . . . n).

Proof. Obviously Cn and Γn have the same number of vertices, namely n. Fur-
thermore ij is an edge in Γn if and only if j − i ∈ {1,−1} which is exactly when
ij is an edge in Cn. Now that we have established that Cn is a Cayley graph it
follows from Theorem 5 that its adjacency matrix A can be expressed as the sum
P1 + P2 where P1, P2 are the permutation matrices corresponding to the permu-
tations π1(i) = i + 1 mod n and π2(i) = i − 1 mod n but these are precisely the
permutation (123 . . . n) and its inverse. �

Proposition 13. The number of closed walks of length m in Γ = (Zn, {1,−1})
beginning and ending in vertex 0 is

|CΓ,m| =
∑

α∈αm,2:

n|Sα

(
m

α

)
.

[DK13]

Proof. We prove this in two di�erent ways. First, we have |CΓ,m| = (Am)1,1 by
Theorem 1. Now, since the matrices P, P−1 commute we have

Am = (P + P−1)m =

m∑

k=0

(
m

k

)
P−kPm−k =

m∑

k=0

(
m

k

)
Pm−2k.

Now
(
P i
)

11
= 0 except if n|i when Pnk = I and I11 = 1. So we have

(Am)11 =

(
m∑

k=0

(
m

k

)
Pm−2k

)

11

=
∑

0≤k≤m:
n|m−2k

(
m

m− k, k

)
,
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and the proposition follows.
Now consider again CΓ,m. Let Scm be the set of corresponding words in the

alphabet S = {1,−1}. Geometrically a 1 can be interpreted as a step in clockwise
direction, while a −1 can be interpreted as a step in anti-clockwise direction. If a
word w ∈ Scm has content α = (m − k, k) then the condition that w corresponds
to a closed walk is equivalent to n|Sα and for each such k there are precisely

(
m
k

)

words with content (m− k, k) in Sm. �
Example 15. Consider closed walks of length 8 in C3. From Proposition 13 we
get that the number of such walks is

∑

0≤k≤8:
3|8−2k

(
8

k

)
.

The k-values satisfying these conditions are k ∈ {1, 4, 7}, corresponding to walks
that take one step in clockwise direction and seven in anti-clockwise, walks that
take four of each and walks that take seven steps in clockwise direction and one in
anti-clockwise. The total number of closed walks is thus(

8

1

)
+

(
8

4

)
+

(
8

7

)
= 8 + 70 + 8 = 86.

Now, let us describe the �xed point sets of the cyclic shift action on the set CΓ,m.

Proposition 14. For clarity, let W = Scm and let V = CΓ,m. Suppose that Zm
acts by cyclic shift on W , and thus by extension on V . Furthermore, for g ∈ Zm
let d = gcd(g,m). Then the cardinality of the �xed point set Vg is given by

|Vg| =
∑

α∈αd,2:

n|m
d
Sα

(
d

α

)
.

Proof. A word w ∈ W can be subdivided into m/d subwords each of length d,
as w = w1w2 . . . wm/d. Now the action of g takes the letter of w in position i to
position i+ g mod m, so a subword wj is taken to a subword wk where k = i+ g/d
mod m/d. Suppose w1 is mapped onto wi1 which in turn is mapped onto wi2 and
so on. Because gcd(g/d,m/d) = 1, such a series doesn't return to w1 before having
traversed all other subwords. So if w is �xed under the action of g then all subwords

wi must be identical, that is w = w
m/d
1 . Now suppose w1 has content α. Then

w has content m
d α and, since w ∈ W , it follows that n|md Sα. On the other hand

these criteria are su�cient, that is if w1 is a word of length d with content α such

that n|md Sα, then the word w = w
m/d
1 is �xed by the action of g and belongs to

W . But for a particular α the number of such words is
(
d
α

)
so we have

|Vg| = |Wg| =
∑

α∈αd,2:

n|m
d
Sα

(
d

α

)
.

�
Example 16. We consider again the closed walks of length 8 in C3, this time as
words and under the action of Z8 by cyclic shift. Every such word is obviously �xed
by the action of 0 so the �xed point set of 0 contains all 86 closed walks. Words
that are �xed by the action of 4 consist of two identical sub-words of length 4, and
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so must contain an even number of 1:s and an even number of −1:s. Hence, among
words representing closed walks, only those with content (4, 4) could be �xed. Each
subword would then have content (2, 2) and there are

(
4
2

)
= 6 such words, namely

(1, 1,−1,−1)2, (1,−1, 1,−1)2, (−1, 1, 1,−1)2, (1,−1,−1, 1)2, (−1, 1,−1, 1)2 and
(−1,−1, 1, 1)2. Words that are �xed by the action of 2 and 6 consist of four identical
sub-words of length 2, and so the number of 1:s and −1:s must be divisible by four.
Again, among words representing closed walks, only those with content (4, 4) could
be �xed by the action of 2 or 6. Each subword would then have content (1, 1) and
there are

(
2
1

)
= 2 such words, namely (1,−1)4, (−1, 1)4. Finally words that are

�xed by the action of 1, 3, 5, 7 consist of 8 identical subwords each of length 1, that
is: they are monosyllabic. However no such word represents a closed walk in C3 so
the �xed point sets of 1, 3, 5, 7 are empty.

Now, we return to the enumeration of CΓ,m,

∑

α∈αm,2:

n|Sα

(
m

α

)
.

A natural q-analogue for this is

fn,m(q) =
∑

α∈αm,2:

n|Sα

[
m

α

]

q

.

We are now ready to prove our �rst instance of the cyclic sieving phenomenon.

Theorem 15. The triple (CΓ,m,Zm, fn,m) exhibits the cyclic sieving phenomenon.

Proof. To see this we need to evaluate

fn,m

(
e2πi gm

)

for g ∈ Zm. Now let d = gcd(g,m). Then ξ = e2πi gm = e2πi
g/d
m/d with gcd(g/d,m/d) =

1, so ξ is a primitive m/d-th root of unity. We have m = dmd and for each α ∈ αm,2
such that α = (α1,m−α1) we let α1 = k1

m
d + k0, 0 ≤ k0 < m/d. Now we get from

q-Lucas that:

fn,m(ξ) =
∑

α∈αm,2:

n|Sα

[
m

α

]

q

=
∑

0≤α1≤m:

n|2k1md +2k0−m

(
d

k1

)
×
[

0

k0

]

ξ

=
∑

0≤α1≤m:

n|2k1md −m

(
d

k1

)

where the last equality uses the fact that
[

0

k0

]

ξ

= 0

unless k0 = 0, when it is 1. So in fact we have that the only relevant compositions α
are those such that α1 = k1

m
d , and there is precisely one such α for each 0 ≤ k1 ≤ d,

so we can sum over compositions of d instead of over compositions of m:

fn,m(ξ) =
∑

0≤α1≤m:

n|2k1md −m

(
d

k1

)
=

∑

α∈αd,2:

n|m
d
Sα

(
d

α

)

That is, the q-analogue
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fn,m(q) =
∑

α∈αm,2:

n|Sα

[
m

α

]

q

,

evaluated at ξ = e
2πi
m g is equal to the cardinality of the �xed point set of g when

Zm acts on CΓ,m by cyclic shift, so that we here have an instance of the cyclic
sieving phenomenon. �

Example 17. We consider again the closed walks of length 8 on C3. We have
already in Example 16 calculated the size of the �xed point sets and in Example
15 we found the enumeration (

8

1

)
+

(
8

4

)
+

(
8

7

)
,

so our q-analogue is

f3,8(q) =

[
8

1

]

q

+

[
8

4

]

q

+

[
8

7

]

q

=

2
q8 − 1

q − 1
+
q7 − 1

q − 1

q5 − 1

q − 1
(1− q + q2)(1 + q4).

Evaluating this at ξ = e2πi gm we get the following results. For g = 0 we of course
have f3,8(1) = 86. For odd g, ξ4 = −1 and f3,8(ξ) = 0. For g = 2 we have ξ = i
and f3,8(i) = 2 and for g = 6 we have ξ = −i and f3,8(−i) = 2. Finally for g = 4
we have ξ = −1 and f3,8(−1) = 6. This agrees with our conclusions in Example 16.

Now, it would be interesting if the polynomial

fn,m(q) =
∑

α∈αm,2:

n|Sα

[
m

α

]

q

turned out to be the generating polynomial of some statistic on the set CΓ,m or its
associated set of words Acm. In fact, the inversion statistic works again. We �rst
prove the following lemma.

Lemma 16. Let S = {1,−1} and α ∈ αm,2. Then the generating polynomial of
the inversion statistic on Sα is

[
m
α

]
q
. [Sta12]

Proof. We prove this with induction over m. If m = 1 then for each α there is only
one word in Sα, the words 1 and −1 respectively, each having inversion statistic 0, so
in both cases the generating polynomial of the inversion statistic is F (q) = 1 =

[
1
α

]
q
.

Now suppose that for m = M the generating polynomial of the inversion statistic
on Sα is

[
M
α

]
q
for every α. Consider now Sα for α ∈ αM+1,2 If α = (0,M + 1) or

α = (M + 1, 0) we again have that Sα consists of only one monosyllabic word with

inversions statistic 0 and so F (q) = 1 =
[
M+1
α

]
q
. Now, for any other α we divide

Sα into two subsets S1 and S−1 where Si consists of those words in Sα whose last
letter is i. Given such a division, we have

F (q) =
∑

w∈Sα
qinv(w) =

∑

w∈S1

qinv(w) +
∑

w∈S−1

qinv(w).
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Now, consider an operation on the word w of length at least 2 and content α =
(k,M + 1 − k) whereby we obtain a new word w′ by deleting the last letter of w.
Suppose that i 6= M + 1 and that j is an inversion of i in w, that is, suppose that
i > j, which implies j 6= M + 1, and that φ(i) < φ(j). Then j is an inversion
of i in w′ as well. Obviously the same is true in the other direction too. So if
the inversion table of w is (k1, k2, . . . , kM , kM+1), then the inversion table of w′ is
(k1, k2, . . . , kM ). So we have inv(w′) + kM+1 = inv(w). Now for words in S1 the
function w → w′ de�nes a bijection from S1 to S(k−1,M+1−k). Furthermore for
words in S1, kM+1 = 0 since φ(M + 1) = 1, and so inv(w′) = inv(w). On the
other hand, for words in S−1 the function w → w′ de�nes a bijection from S−1 to
S(k,M−k). Finally, for words in S−1, kM+1 = k since φ(M + 1) = −1 and there are
k ones in w, and so inv(w′) + k = inv(w). So we have

F (q) =
∑

w∈S(k,M+1−k)

qinv(w) =
∑

w∈S1

qinv(w) +
∑

w∈S−1

qinv(w) =

∑

w′∈S(k−1,M+1−k)

qinv(w′) +
∑

w′∈S(k,M−k)

qinv(w′)+k =

∑

w′∈S(k−1,M+1−k)

qinv(w′) + qk
∑

w′∈S(k,M−k)

qinv(w′) =

[
M

k − 1

]

q

+ qk
[
M

k

]

q

=

[
M + 1

k

]

q

=

[
M + 1

α

]

q

which concludes the proof. Observe that we could just as well have made the
division of Sα based on the �rst letter. Then the proof would instead have followed
from the second q-Pascal recursion. �

With the help of this lemma it is quite straightforward to prove the following
proposition.

Proposition 17. The function

fn,m(q) =
∑

α∈αm,2:

n|Sα

[
m

α

]

q

is the generating polynomial of the inversion statistic on the set CΓ,m in the sense
that it is the generating polynomial of the inversion statistic on the corresponding
set of words Scm.

Proof. This follows immediately from Lemma 16 by simply adding the generating
polynomials for the inversion statistic on Sα for every composition α in the index
set. �

3.2. Closed walks in circulant graphs. This subsection largely mirrors the last.
We prove the very same propositions but for a more general family of graphs. We
�rst de�ne a certain kind of matrix.

De�nition 16. A n × n matrix M is said to be a circulant matrix if its entries
satisfy

mi,j = m1,j−i+1
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where the subscripts are reduced modulo n. In other words row i ofM is obtained
from the �rst row of M by cyclic shift of i − 1 steps and so any circulant matrix
is determined by its �rst row. Observe that the circulant matrix whose �rst row is
[0, 1, 0, . . . , 0] is the permutation matrix P generating a n-element cyclic sub-group
of Sn.

Now we use circulant matrices to de�ne a family of graphs.

De�nition 17. A graph G is said to be a circulant graph if its adjacency matrix
A is circulant. Important sub-classes of circulant graphs include cycle graphs,
complete graphs and the cocktail party graphs K2,2,...,2. More generally, it follows
from the fact that the adjacency matrix is a symmetric matrix with zeroes on
the main diagonal that the adjacency matrix of a circulant graph has a �rst row
[0, a2, . . . , an] where ai = an−i+2 since a1,i = ai,1 = a1,2−i = a1,n−2+i. In a simple
graph we will also have ai ∈ {0, 1}. Such a graph can be described in the following
manner: we take k ≤ n− 1 indices such that 0 < s1 < s2 < ..sk ≤ n− 1 and ai = 1
i� i ∈ {s1 + 1, s2 + 1, . . . , sk + 1}. The set {s1, s2, . . . , sk} is called the index set of
the circulant graph.

We prove that circulant matrices are Cayley graphs of cyclic groups.

Proposition 18. The circulant graph G with n vertices and index set {s1, s2, . . . , sk}
is the Cayley graph Γ = (Zn, {s1, s2, . . . , sk}) and for its adjacency matrix A the
following identity holds

A =
k∑

i=1

P si

Proof. Obviously both graphs have the same number of vertices. Given two vertices
u, v in Γ we have that uv is an edge of Γ if and only if u− v = si mod n for some
i. On the other hand, uv is an edge in G if and only if the (v + 1, u + 1)-th
entry of its adjacency matrix A is 1. But since A is a circulant matrix, we have
av+1,u+1 = a1,v−u+1 which is 1 if and only v−u = si for some i. Now that we have
established that G is a Cayley graph it follows from Theorem 5, that its adjacency
matrix A can be expressed as a sum P1 + P2 + . . . Pk where P1, P2, . . . , Pk are the
permutation matrices corresponding to the permutations πi(a) = a + si mod n.
But then πi is just p

si where p is the permutation de�ned by p(a) = a+ 1 mod n.
So the permutation matrix corresponding to πi is P

si which proves the second part
of the theorem. �

Example 18. Figure 4 shows the circulant graph Γ = (Z6, {1, 3, 5}). Its adjacency
matrix is given by A = P + P 3 + P 5.

We now enumerate CΓ,m.

Proposition 19. For a circulant Cayley graph Γ = (Zn, S) with |S| = k, we have

|CΓ,m| =
∑

α∈αm,k:

n|Sα

(
m

α

)
.

Proof. Again we prove this in two di�erent ways. First, we have CΓ,m = (Am)11

by Theorem 1. Now, all the matrices P si commute, so the multinomial theorem
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1

2

3

4

5

0

Figure 4: The circulant graph Γ = (Z6, {1, 3, 5})

applies and we have

(Am)11 = ((
k∑

i=1

P ji1 )m)11 =
∑

α∈αm,k

(
m

α

)
(PSα)11.

Now since

(PSα)11 = 0

unless n|Sα, in which case it is 1, we get

(Am)11 =
∑

α∈αm,k:

n|Sα

(
m

α

)
,

as desired. For the second proof, we consider instead the corresponding set of
words Scm in the alphabet S = {s1, s2, . . . , sk}. A word w ∈ Sm with content α
corresponds to a closed walk if and only if n|Sα, and for each such composition α
there are precisely

(
m
α

)
words with content α in Sm, which proves the result. �

Example 19. We consider a walk of length 4 in Γ = (Z6, {1, 3, 5}). Suppose the
corresponding word w has content α. Then w is closed if and only if 6|α1+3α2+5α3,
which is satis�ed by the compositions (3, 1, 0), (0, 1, 3), (1, 2, 1), (0, 4, 0), (2, 0, 2). So
the number of closed walks of length 4 is

(
4

3, 1, 0

)
+

(
4

0, 1, 3

)
+

(
4

1, 2, 1

)
+

(
4

0, 4, 0

)
+

(
4

2, 0, 2

)
=

4 + 4 + 12 + 1 + 6 = 27.

Now we describe and enumerate the �xed point-sets when Zm acts on CΓ,m.

Proposition 20. Let Γ = (Zn, S = {s1, s2, . . . , sk}) and for clarity let V = CΓ,m

and let W = Scm be the corresponding set of words. Suppose now that g ∈ Zm acts
by cyclic shift on W and thus by extension on V . Then the cardinality of the �xed
point set Vg is given by

|Vg| =
∑

α∈αd,k:

n|m
d
Sα

(
d

α

)

where d = gcd(m, g).



CYCLIC SIEVING ON CLOSED WALKS IN ABELIAN CAYLEY GRAPHS 25

Proof. A word w ∈ W can be subdivided into m/d subwords each of length d, as
w = w1w2 . . . wm/d. In the exact same way as was argued in Theorem 14 it follows
that if w is �xed under the action of g, then all subwords wi must be identical, that

is w = w
m/d
1 . Now suppose w1 has content α. Then w has content (m/d)α and

it follows that w corresponds to a closed walk if and only if n|md Sα. On the other
hand these criteria are su�cient, that is: if w1 is a word in the alphabet S with

content α such that n|md Sα, then the word w = w
m/d
1 is �xed by the action of g

and corresponds to a closed walk. But for a particular composition α ∈ αd,k the

number of such words is
(
d
α

)
, so we have

|Vg| = |Wg| =
∑

α∈αd,k:

n|m
d
Sα

(
d

α

)
.

�

Example 20. We consider again the closed walks of length 4 in Γ = (Z6, {1, 3, 5}),
this time under the action of Z4. We consider them again as words. Any such
word is �xed under the action of 0, so V0 = 27. Now, if such a word is �xed under
the action of 2 then it is composed of two identical sub-words, so if it has content
α then all αi are even. By Example 19 it follows then that α is either (0, 4, 0) or
(2, 0, 2) and so the two-letter subword has either content (0, 2, 0) or (1, 0, 1). The
number of possible subwords is then

(
2

0, 2, 0

)
+

(
2

1, 0, 1

)
= 1 + 2 = 3,

namely the words 33, 15 and 51, giving the four-letter words 3333, 1515, 5151. Fi-
nally, words that are �xed by the action of 1 or 3 are composed of 4 identical
sub-words of length 1 so among closed walks, only those with content (0, 4, 0) apply
and there is only 1 such word, namely 3333.

To prove that we here have another instance of the cyclic sieving phenomenon
we need the following lemma.

Lemma 21. Suppose that ξ = e
2πi
m g, that d = gcd(m, g), that α ∈ αm,k and let

m = dmd , αi = βi
m
d + ρi. The multinomial coe�cient

[
m

α

]

q

evaluated at ξ is 0 unless (m/d)|αi for every i, in which case it is
(
d

β

)
.

Proof. We prove this by induction over k. First, for k = 1 this is trivial. Suppose
k = 2. Then the multinomial coe�cient is really a binomial coe�cient and we have:

[
m

α

]

q

=

[
m

α1

]

q

.
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Now ξ = e2πi gm = e2πi
g/d
m/d with gcd(g/d,m/d) = 1, so ξ is a primitive m/d-th root

of unity. We get from q-Lucas that[
m

α

]

ξ

=

[
m

α1

]

ξ

=

(
d

β1

)
×
[

0

ρ1

]

ξ

.

Now, if α1 is not divisible by m/d then ρ1 > 0 and so this is 0. On the other
hand if α1 is divisible by m/d then ρ1 = 0 so then this is

(
d

β1

)
× 1 =

(
d

β

)
.

Now as induction hypothesis, we assume that for k = K the statement is true for
every multinomial coe�cient. Now, assuming k = K + 1, we factorize

[
m

α

]

q

=

[
m− αK+1

α1, . . . , αK

]

q

[
m

αK+1

]

q

so that for ξ = e
2πi
m g q-Lucas gives

[
m

α

]

ξ

=

[
m− αK+1

α1, . . . , αK

]

ξ

(
d

βK+1

)[
0

ρK+1

]

ξ

.

Now if αK+1 is not divisible by m/d then this is 0 because of the last factor.
But αK+1 is just an arbitrary part of the composition, so by symmetry ρi = 0 for
all i or else the multinomial coe�cient is zero. But if they all are divisible by m/d
then β ∈ αd,K+1 and the induction hypothesis gives

[
m

α

]

ξ

=

[
m− αK+1

α1, . . . , αK

]

ξ

[
m

αK+1

]

ξ

=

(
d− βK+1

β1, . . . , βK

)(
d

βK+1

)
=

(
d

β

)
,

and we are done. �
Now we return to the enumeration of CΓ,m

|CΓ,m| =
∑

α∈αm,k:

n|Sα

(
m

α

)
.

A natural q-analogue for this enumeration is given by

fΓ,m(q) =
∑

α∈αm,k:

n|Sα

[
m

α

]

q

.

With the help of the previous lemma it is now simple to prove our second, more
general instance of the cyclic sieving phenomenon.

Theorem 22. The triple (CΓ,m,Zm, fΓ,m), where Zm acts on CΓ,m by cyclic shift,
exhibit the cyclic sieving phenomenon.

Proof. For ξ = e
2πi
m g with d = gcd(g,m) it follows immediately from the previous

lemma that

fΓ,m(ξ) =
∑

α∈αm,k:

n|Sα

[
m

α

]

ξ

=
∑

β∈αd,k:

n|m
d
Sβ

(
d

β

)
,
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since a composition α ∈ αm,k where all αi are divisible by m/d uniquely deter-
mines a composition β ∈ αd,k and vice versa. But from the Proposition 20, we
know that this is precisely the number of elements that are �xed by the action of
g when Zm acts on CΓ,m by cyclic shift, so that we here have an instance of the
cyclic sieving phenomenon. �

Example 21. We return once again to closed walks of length 4 in Γ = (Z6, {1, 3, 5}).
In Example 19 we found the enumeration

(
4

3, 1, 0

)
+

(
4

0, 1, 3

)
+

(
4

1, 2, 1

)
+

(
4

0, 4, 0

)
+

(
4

2, 0, 2

)
,

with q-analogue

fΓ,4(q) =

[
4

3, 1, 0

]

q

+

[
4

0, 1, 3

]

q

+

[
4

1, 2, 1

]

q

+

[
4

0, 4, 0

]

q

+

[
4

2, 0, 2

]

q

=

2(1 + q + q2 + q3) + (1 + q + q2 + q3)(1 + q + q2) + 1 + (1 + q2)(1 + q + q2).

Evaluating this at ξ = e
2πi
4 g, we get the following results. When g = 0 we have

ξ = 1 and fΓ,4(1) = 27. When g = 1 we have ξ = i and fΓ,4(i) = 1. When g = 3
we have ξ = −i and fΓ,4(−i) = 1 again. Finally, when g = 2 we have ξ = −1 and
fΓ,4(−1) = 3. This agrees with our enumeration of the �xed point sets in Example
20.

Finally, we in this case too show that the q-analogue

fΓ,m(q) =
∑

α∈αm,k:

n|Sα

[
m

α

]

q

.

is in fact the generating polynomial of the inversion statistic on the set CΓ,m. To
do this, we �rst need a lemma.

Lemma 23. For every composition α ∈ αm,k the generating polynomial of the
inversion statistic on Sα is

[
m
α

]
q
[Sta12].

Proof. For the sake of clarity we think of Sα as words in the alphabet {1, 2, . . . , k}
instead of the alphabet {s1, s2, . . . , sk}. We now prove the lemma by induction over
k. If k = 1 this is trivial, there is only one word in Sα and it has no inversions, so
the generating polynomial is 1, which is equal to the multinomial coe�cient. For
k = 2 this is equivalent to Lemma 16. Now, suppose that for k = N we have that,
for every composition α the generating polynomial of the inversion statistic on Sα
is
[
m
α

]
q
.

Now consider a composition α ∈ αm,N+1. For a word w with content α, we de�ne
two operations. The �rst takes w to a word w′, obtained by removing all the 1:s in
w, so that w′ has content α′ = (α2, . . . , αN+1) in the alphabet {2, . . . , N,N + 1}.
The second takes w to a word w′′ obtained by changing every letter except 1 into
the letter 2, so that w′′ has content α′′ = (α1,m− α1) in the alphabet {1, 2}. Recall
that an inversion in w is a pair i, j with i > j but φ(i) < φ(j), that is the i:th letter
of w is smaller than the j:th letter. Since every inversion of w can be of two kinds,
those were φ(i) = 1 and those were φ(i) 6= 1, every inversion in w corresponds
to an inversion in exactly one of w′ and w′′, so that inv(w) = inv(w′) + inv(w′′).
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Furthermore, the function taking w to the pair (w′, w′′) is clearly a bijection Sα →
Sα′ × Sα′′ . So we have for the generating function of the inversion statistic on Sα

F (q) =
∑

w∈Sα
qinv(w) =

∑

(w′,w′′)∈Sα′×Sα′′
qinv(w′)+inv(w′′) =

∑

w′∈Sα′
qinv(w′) ×

∑

w′′∈Sα′′
qinv(w′′) =

[
m− α1

α′

]

q

×
[
m

α1

]

q

=

[
m

α

]

q

,

which proves the lemma by induction. �

Example 22. Once again, we consider closed walks in Γ = (Z6, {1, 3, 5}), this time
focusing on those with content (2, 0, 2). There are six such walks, corresponding
to the words 1155, 1515, 5115, 1551, 5151, 5511 with inversion statistics 0, 1, 2, 2, 3, 4.
On the other hand we have[

4

2, 0, 2

]
= (1 + q2)(1 + q + q2) = 1 + q + 2q2 + q3 + q4,

verifying Lemma 23.

The following proposition now comes easy.

Proposition 24. The function

fΓ,m(q) =
∑

α∈αm,k:

n|Sα

[
m

α

]

q

.

is the generating polynomial of the inversion statistic on the set CΓ,m in the sense
that it is the generating polynomial of the inversion statistic on the corresponding
set of words Scm.

Proof. As in Proposition 17, this follows immediately from Lemma 23 by simply
adding the generating polynomials for the inversion statistic on Sα for every com-
position α in the index set. �

3.3. Closed walks in n-dimensional in�nite grids. We now make a slight di-
gression and consider a family of in�nite Cayley graphs, the in�nite rectangular
grids. As before, we start by enumerating closed walks of length m but then take
a quite di�erent approach.

De�nition 18. Let ei be the i :th unit vector. The Cayley graph Γ = (Zn, {e1,−e1,
e2,−e2 . . . en,−en}) is then the n-dimensional in�nite rectangular grid or just the
n-grid for short.

We will show another instance of the cyclic sieving phenomenon on CΓ,m. Be-
cause the graph is in�nite, our method of considering the adjacency matrix as a
sum of permutation matrices will not work, so enumeration has to be done with a
combinatoric argument.

Proposition 25. The number of closed walks of length m beginning and ending in
the origin of Γ is

|CΓ,m| =
∑

α∈αm/2,n

(
m

α1, α1, α2, α2, . . . , αn, αn

)
.
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Proof. Consider a walk in Γ of length m beginning at the origin and let w be the
corresponding word in the alphabet S. Suppose w has content α. Then at the end
of our walk we will �nd ourselves at point (α1 − α2, α3 − α4, . . . , α2n−1 − α2n). It
follows that w is closed if and only if α1 = α2, α3 = α4, . . . α2n−1 = α2n. Hence,
if w is closed then m is even, that is: Γ is bipartite. On the other hand, if n is
even then the number of words with content (α1, α1, α3, α3 . . . , α2n−1, α2n−1) where
α1 + α3 + . . . α2k−1 = n is

(
m

α1, α1, α3, α3, . . . , α2n−1, α2n−1

)
,

so the total number of closed walks is

|CΓ,m| =
∑

α∈αm/2,n

(
m

α1, α1, α2, α2, . . . , αn, αn

)
.

Observe that this is 0 when m is odd because then the index set is empty. �

Example 23. Consider walks of length 6 in the 3-grid. Such a walk is closed if
and only if there as many moves up as down, as many left as right and as many
forward as backward. So we can think of a closed walk of length 6 as consisting of 3
pairs of the form up-down, left-right, forward-backward. So a closed walk induces
a composition of 3 into 3 components, signifying how many instances of each pair
occur in the walk. There are 10 di�erent compositions of 3 into 3 components,
ordered by type there are 3 of the type (3, 0, 0), 6 of the type (2, 1, 0) and one of the
type (1, 1, 1). To each composition of 3 there is then a corresponding composition
of 6, signifying how many steps are taken in each of the six directions, so for
instance (0, 3, 0) corresponds to (0, 0, 3, 3, 0, 0). Finally for each such composition
of 6 the multinomial coe�cient counts the number of walks with this composition
as content. So the total number of closed walks of length 6 is

3

(
6

3, 3, 0, 0, 0, 0

)
+6

(
6

2, 2, 1, 1, 0, 0

)
+1

(
6

1, 1, 1, 1, 1, 1

)
= 3·20+6·180+1·720 = 1860.

Given this enumeration, a natural q-analogue presents itself immediately

fn,m(q) =
∑

α∈αm/2,n

[
m

α1, α1, α2, α2, . . . , αn, αn

]

q

.

Of course we could again show cyclic sieving by enumerating the �xed point
sets and then evaluating f(n,m)(q) at roots of unity, as we have done before.
However this time we will take another approach, namely constructing a circulant
graph Gm and present a bijection between CΓ,m and CGm,m. Essentially this graph
approximates the behaviour of walks in Γ starting at a particular point by exploiting
the fact that for the purpose of studying walks of length at most m we might as well
regard Γ as a �nite graph, since only �nitely many of its vertices can be reached in
m steps. We �rst de�ne Gm.

De�nition 19. A m-th circulant approximation of the n-grid Γ is a circulant
Cayley graph G = (ZN , T = {s1, s2 . . . , s2n} where N should be thought of as some
very large number, N = (m+ 1)n is su�cient, and s2i+1 = (m+ 1)i for odd indices
and s2i+2 = −(m+ 1)i for even indices.
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Observe that there as many elements in the generating set of Γ as there are in the
generating set of Gm. This immediately gives a bijection between walks of length
m in Γ and walks of length m in Gm, by way of their words, by translating the
word form of a walk in Γ into the word form of a walk in Gm. Also, this translation
preserves the �xed point sets under the action of Zm by cyclic shift. More formally
stated, the translation function commutes with the cyclic shift action. However, it
might not be immediately obvious that this translation preserves closedness.

Proposition 26. The translation of walks in Γ into walks in Gm preserves closed-
ness, that is, a walk in Γ is closed if and only the corresponding walk in Gm is
closed. From this it also follows that CΓ,m = CGm,m.

Proof. Consider a word w of length m corresponding to a closed walk in Gm and
suppose it has content α. N |Tα. For su�ciently large N this implies that Tα =
α1s1+. . .+α2ns2n = 0. Essentially, for su�ciently largeN no closed walk can travel
around the entire graph, so that we always return to 0 from the same direction as we
last left it. Hence, for su�ciently large N we have, when considering si explicitly,
that

(α1−α2)+(α3−α4)(m+1)+(α5−α6)(m+1)2 + . . .+(α2n−1−α2n)(m+1)n−1 = 0.

Since the left hand side of this equation is divisible by m + 1 and since −m ≤
αi − αi+1 ≤ m, we must have α1 = α2. The condition now becomes

(α3 − α4)(m+ 1) + (α5 − α6)(m+ 1)2 + . . .+ (α2n−1 − α2n)(m+ 1)n−1 = 0,

and then it follows that since the left hand side is also divisible by (m + 1)2,
we must have α3 = α4. Continuing in this manner, it becomes evident that α1 =
α2, α3 = α4, . . . , α2n−1 = α2n. But translation preserves content, so it preserves
closedness, so a word in Tm corresponds to a closed walk if and only if its translation
to Sm does. This gives us

|CGm,m| = |CΓ,m| =
∑

α∈αm/2,n

(
m

α1, α1, α2, α2 . . . , αn, αn

)
.

�

Example 24. A sixth circulant approximation of the 3-grid is given by G =
(Z1000, {1,−1, 7,−7, 49,−49}). For m ∈ {1, 2, 3, 4, 5, 6} there are as many closed
walks of length m in G beginning and ending in some particular vertex as there are
in the 3-grid.

Now cyclic sieving follows.

Theorem 27. The triple (CΓ,m,Zm, fn,m(q)), where Zm acts on CΓ,m by cyclic
shift, exhibit the cyclic sieving phenomenon.

Proof. This follows immediately from cyclic sieving on closed walks in circulant
graphs. The translation function from Γ to Gm preserves the �xed point sets under
the action of Zm by cyclic shift and the polynomial fn,m(q) is the q-analogue of the
enumeration of the circulant graph Gm. �
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3.4. Closed walks in general Cayley graphs. Since everything has been go-
ing quite well so far, one might consider how far our results may be generalized.
Perhaps we could show cyclic sieving on closed walks in a general Cayley graph?
Unfortunately, this turns out to decidedly more di�cult than anything we have
dared so far. To realize why, we might stop to re�ect on our methods so far. First,
we have enumerated our sets. This we have done in two di�erent ways, on the one
hand by expressing the adjacency matrix A as a sum of permutation matrices and
using the bi-/multi-nomial theorem to evaluate the diagonal elements of Am. On
the other hand we have used combinatorial arguments, based on an interpretation
of walks as words. These two approaches largely mirror each other, the symme-
tries used in the combinatorial arguments are the same symmetries that allow easy
evaluation of the multinomial expression of Am. However, in the absence of such
symmetries our methods fail. If the group on which the Cayley graph is built is
non-abelian, the permutation matrices do not commute and the multinomial theo-
rem is not even applicable. In this case too, two words abc and bca might represent
walks with di�erent destinations, one being closed the other not, so that content
does not determine closedness. Even when G is abelian we will encounter di�cul-
ties. In the cases we have considered the adjacency matrix A could be expressed
as a sum of permutation matrices that were all part of the same cyclic subgroup of
the symmetric group. Absent this we cannot easily evaluate the expression of Am

even though the multinomial theorem is applicable.

In fact, no enumeration for the number of closed walks in a general Cayley
graph is known, not even in a general �nite abelian Cayley graph, so any hope
of generalizing our results that far stumbles at the �rst step. More than a little
research on the subject has been published. As a single example [Cio06] proves
the following lower bound for the number of closed walks of length 2r, W2r, in an
abelian Cayley graph with k vertices:

W2r >
k2r

2k(2r + 1)
(
k+r−1
k−1

) .

Bounds unfortunately do not su�ce for our aims, so we must renounce any
ambition to prove cyclic sieving on general Cayley graphs, even on general �nite
abelian Cayley graphs. But what if we were to restrict not G but S, the generating
set? So far we have only restricted S to guarantee that the resulting Cayley graph is
indeed a simple, undirected, loop free graph. It turns out that we can signi�cantly
generalize our results with regard to G by restricting them in regard to S. So far,
we have considered Cayley graphs where the underlying group is cyclic, that is
circulant graphs and in fact any Cayley graph of a �nite cyclic group is circulant.
But any non-cyclic �nite abelian group is isomorphic to a direct product of cyclic
groups. Choosing S in a particular manner allows us to use our already established
results concerning circulant graphs on the Cayley graphs of such direct products.

De�nition 20. Given a number of Cayley graphs Γi = (Gi, Si), 1 ≤ i ≤ n, the
direct product

∏n
i=1 Γi is de�ned as the Cayley graph Γ = (G,S), where G =

G1 ×G2 · · · ×Gn and S is determined by the following criteria:

• for every s ∈ Si for every i, the vector sei, with s in position i and zero in
every other position, is in S,
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0,1

0,2

0,3

0,4

0,5

0,0

1,1

1,2

1,3

1,4

1,5

1,0

Figure 5: The graph Γ = (Z2 × Z6, {(1, 0), (0, 1), (0, 5)})

• every s ∈ S has zero in every position except for one, say the i:th, and the
i:th entry is a letter in Si.

Furthermore, for sj ∈ Si we say that the letter sjei ∈ S projects onto sj . A word w
in S projects onto (w1, w2, . . . , wn), where wi is a word in the alphabet Si consisting
of the projection of the letters in w that project onto letters in Si and the letters
in wi appear in the same order as their preimages in w.

Example 25. Figure 5 shows the Cayley graph Γ = (Z2×Z6, {(1, 0), (0, 1), (0, 5)})
with Γ1 = (Z2, {1}) and Γ2 = (Z2, {1, 5}). The walk represented by the word
(1, 0)(0, 1)(1, 0)(0, 5) is closed. It projects onto the pair of words 11 ∈ Z2 and
15 ∈ Z6, both of which represent closed walks.

The point here is that a word w in S describes a closed walk in the direct product
Γ if and only if for each i, the letters in w that project onto Si describe a closed
walk in Γi. This allows us to calculate the number of closed walks in Γ in terms of
the number of closed walks in Γi. If all Γi are circulant we can then calculate the
number of closed walks in Γ, based on our results on circulant graphs.

Proposition 28. Suppose that Γ = (G,S) is the direct product product
∏n
i=1 Γi,

where each Γi = (Zni , Si) is circulant. Then the number of closed walks of length
m beginning and ending in 0 of Γ is given by

|CΓ,m| =
∑

α∈αm,n

((
m

α

) n∏

i=1

|CΓi,αi |
)
.

Proof. For a word w ∈ Sm the projection onto (w1, . . . wn) induces a composition
α ∈ αm,n in the sense that each wi has length αi. For each such α we have w ∈ Scm
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if and only if wi ∈ Sci,αi for every i. The number of ways to choose such words wi
is
∏n
i=1 |CΓi,αi | and the number of ways of arranging the letters sei into a word in

S while preserving the order of letters derived from each word wi is(
m

α

)
.

The proposition follows by summing over all the possible compositions of m and
then considering the bijection between words and walks. �

Example 26. Let us look at closed walks of length 4 in Γ = (Z2×Z6, {(1, 0), (0, 1)
, (0, 5)}). There are 5 possibilities as to how many letters project onto Z2 and how
many onto Z6. For α = (4, 0) we have 1 word in CΓ1,4 and 1 "word" in CΓ2,0,
the words 1111 and the empty "word". For α = (3, 1) there are no words in CΓ1,4

and also none in CΓ2,0, they are both bipartite. For α = (2, 2) we have 1 word in
CΓ1,2, 11, and 2 words in CΓ2,2, the words 15 and 51. The case α = (1, 3) is just
like the case α = (3, 1). Finally, for α = (0, 4) we have 1 word in CΓ1,0, the empty
word, and 6 words in CΓ2,4, the words 1155, 1515, 5115, 1551, 5151, 5511. The total
number of closed walks in Γ is then given by

(
4

4, 0

)
1× 1 +

(
4

3, 1

)
0× 0 +

(
4

2, 2

)
1× 2 +

(
4

1, 3

)
0× 0 +

(
4

0, 4

)
1× 6 =

1 + 0 + 12 + 0 + 6 = 19.

Now, let us determine the size of the �xed point sets when Zm acts on Scm, and
thus by extension on CΓ,m.

Proposition 29. Let Γ = (G,S) be the direct product
∏n
i=1 Γi, where each Γi =

(Zni , Si) is circulant. Then the size of the �xed point set under the action of g ∈ Zm
on CΓ,m is given by

∑

α∈αd,n

((
d

α

) n∏

i=1

Wi,αi

)
.

where d = gcd(g,m) and Wi,αi is the number of words in Sci,αi md
which are �xed by

the action of αi
g
d ∈ Zαi md .

Proof. A word w in Sm is �xed under the action of g if and only if, just as in the
proofs of Proposition 14 and Proposition 20, it is a concatenation of m/d identical

subwords, that is w = w
m/d
0 for some word w0 of length d. As in Proposition 28,

the projection of w0 onto (w1, . . . , wn) induces a composition α ∈ αd,n, such that

wi has length αi. Then w ∈ Scm if and only if each w
m/d
i ∈ Sci,αi md . Observe now

how in w the action of g maps the �rst copy of w0 onto the g
d + 1:th and how in

w
m/d
i it is the action of αi

g
d which maps the �rst copy of wi onto the g

d + 1:th,
so that w being �xed by the action of g ∈ Zm is equivalent to wi being �xed by
the action of αi

g
d ∈ Zαi md , for each i. Thus, the number of ways in which w0 can

be constructed so that w = w
m/d
0 represents a closed walk in Γ can be calculated

as follows. First we choose a composition α ∈ αd,n representing how many of the
letters in w0 project onto each Si. Then for each i, we pick a word wi of length αi
in Si such that w

m/d
i ∈ Sci,αi md and this can be done in as many ways as there are

words in Sci,αi md
which are �xed by the action of αi

g
d . Finally we pick which of the



34 BENJAMIN KHADEMI

d letters in w0 project onto which Si. This we can do in
(
d
α

)
ways. In total then,

the number of ways in which w0 can be constructed is given by summing over all
compositions α:

∑

α∈αd,n

((
d

α

) n∏

i=1

Wi,αi

)
,

and the result follows as usual from the bijection between words and walks. �

Example 27. We consider again closed walks of length 4 in Γ = (Z2 × Z6, {(1, 0),
(0, 1), (0, 5)}) now under the action of Z4. Of course all 19 words are closed under
the action of 0. Words that are �xed under the action of 1 and 3 are those that
consist of four identical one-letter words. The number of letters in such a word
that project onto each Si is then of the form 4α where α is a composition of 1 into
two components. If α = (1, 0) we then need to pick a word in Sc1,4 that is �xed
by the action of 1 and 3 respectively. In both cases, there is only one such word,
namely 1111. Finally, we need to pick a word in Sc2,0 that is �xed by the action of
0 and there is only one such word, the empty word. Hence the �xed point sets of
1 and 3 contain only one word (1, 0)(1, 0)(1, 0)(1, 0). Words that are �xed by the
action of 2 consist of 2 identical two-letter words and the number of letters in such
a word that project onto each Si is then of the form 2α where α is a composition
of 2 into two components. For α = (2, 0) we then need to pick two words, one in
Sc1,4 that is �xed by the action of 2 and one in Sc2,0 that is �xed by the action of
0. There is only one such pair: 1111 and the empty word. For α = (1, 1) we again
need to pick two words, one in Sc1,2 that is �xed by the action of 1 and one in Sc2,2
that is �xed by the action of 1. There is no such word in Sc2,2, so there is no such
pair of words. Finally, for α = (0, 2) we need to pick two words, one in Sc1,0 that
is �xed by the action of 0 and one in Sc2,4 that is �xed by the action of 2. There is
only one such word in Sc1,0, the empty word, but there are two in Sc2,4: 1515 and
5151. In total then there are three words that are �xed by the action of 2, namely
(1, 0)(1, 0), (1, 0), (1, 0) and (0, 1)(0, 5)(0, 1)(0, 5) and (0, 5)(0, 1)(0, 5)(0, 1).

Now given our enumeration of |CΓ,m| in Proposition 28 a natural q-analogue is
given by using the q-analogue for |CΓi,mi | as de�ned in Theorem 19. Hence we
de�ne for the direct product Γ =

∏n
i=1 Γi, where each Γi = (Zni , Si) is circulant

fΓ,m(q) =
∑

α∈αm,n

([
m

α

]

q

n∏

i=1

fΓi,mi(q)

)
.

Now cycling sieving follows from Theorem 22 and Lemma 21.

Theorem 30. For the direct product Γ =
∏n
i=1 Γi, where each Γi = (Zni , Si) is

circulant, the triple (CΓ,m,Zm, fΓ,m) is an instance of the cyclic sieving phenome-
non.

Proof. Since ξ = e
2πi
m g is a primitive m/d:th root of unity with d = gcd(g,m) it

follows from Lemma 21 that [
m

α

]

ξ

=

(
d
d
mα

)

if all αi are divisible by m/d and zero otherwise. But there is a bijection between
compositions α ∈ αm,n such that m/d|αifor all i and compositions β ∈ αd,n, given
by αi = m

d βi, so we get
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fΓ,m(ξ) =
∑

β∈αd,n

((
d

β

) n∏

i=1

fΓi,
m
d βi

(ξ)

)
.

But because ξ = e
2πi
m g = e2πi dm

g
d = e

2πi
gβi
d

1
βi
m
d it follows from Theorem 22, that

fΓi,βi
m
d

(ξ) is precisely the number of elements that are �xed by the action of gβi
d

when Zβi md acts on CΓi,βi
m
d
by cyclic shift, which is equal to the number of words

in Sci,βi md
which are �xed by the action of βi

g
d , that is

fΓi,βi
m
d

(ξ) = Wi,βi ,

so that

fΓ,m(ξ) =
∑

β∈αd,n

((
d

β

) n∏

i=1

fΓi,βi
m
d

(ξ)

)
=

∑

β∈αd,n

((
d

β

) n∏

i=1

Wi,βi

)
.

Hence by Proposition 29, fΓ,m(q) evaluated at ξ = e
2πi
m g is equal to the size of the

�xed point set of CΓ,m under the action of g ∈ Zm, so that we here have our �nal
instance of the cyclic sieving phenomenon �

Example 28. We consider again walks of length 4 in Γ = (Z2 × Z6, {(1, 0), (0, 1)
, (0, 5)}). We then have

fΓ,m(q) =

[
4

4, 0

]

q

fΓ1,4(q)fΓ2,0(q) +

[
4

3, 1

]

q

fΓ1,3(q)fΓ2,1(q)+

[
4

2, 2

]

q

fΓ1,2(q)fΓ2,2(q) +

[
4

1, 3

]

q

fΓ1,1(q)fΓ2,3(q) +

[
4

0, 4

]

q

fΓ1,0(q)fΓ2,4(q).

Explicating each term we get

fΓ,m(q) = 1 + 0 + (1 + q2)(1 + q + q2)(1 + q) + 0 + (1 + q2)(1 + q + q2) =

1 + (1 + q2)(1 + q + q2)(1 + q) + (1 + q2)(1 + q + q2).

Evaluating this at ξ = e
2πi
4 g, we get the following results. For g = 0 we have ξ = 1

and fΓ,m(1) = 19. For g = 1 we have ξ = i and fΓ,m(i) = 1. For g = 3 we have
ξ = −i and fΓ,m(−i) = 1. For g = 2 we have ξ = −1 and fΓ,m(−1) = 3. So we see
that this agrees with the size of the �xed point sets as calculated in Example 27.

4. Concluding remarks

In the end then, we have proved cyclic sieving on closed walks in a quite large
family of Cayley graphs. We set out with the trivial case of cycle graphs. The
methods used there to prove cyclic sieving could straightforwardly be generalized
to prove cyclic sieving on circulant graphs, that is all the Cayley graphs of cyclic
groups. A small detour allowed us to consider a kind of approximative approach
to in�nte graphs and we proved cyclic sieving on in�nite rectangular grids. Finally
we proved cyclic sieving on direct products of circulant graphs.
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We mentioned in the introduction, that the restriction to �nite graphs is rather
arbitrary. In fact, if it were not for lack of time we might have been able to generalize
some of our results to include in�nite cyclic graphs. It seems quite evident that on
any Cayley graph Γ = (Z, S), we could have used the same approximative method
as in section 3.3. A very large circle locally looks like a line, after all. We state this
as a conjecture.

Conjecture 1. For any positive integer m and any Cayley graph Γ = (Z, S), there
is some circulant graph G such that there are as many closed walks of length k < m
in Γ as in G.

It would then seem quite straightforward to generalize Theorem 30 to include
direct products including in�nite cyclic graphs as factors, since for any m we could
substitute such a factor with a circulant graph. We state this too as a conjecture.

Conjecture 2. For the direct product Γ =
∏n
i=1 Γi, where each Γi = (Zni , Si) is

circulant or of the form Γi = (Z, Si), the triple (CΓ,m,Zm, fΓ,m) is an instance of
the cyclic sieving phenomenon.
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