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Abstract

The set of invertible square matrices in the set of all square matrices is a group
under matrix multiplication, and it acts on the set of all square matrices through
conjugation. Invariant polynomial functions, or invariants, to this group action
are polynomials in the elements of the matrix that are constant on the orbits.
The main result of this thesis, is that all invariants can be expressed in terms
of a few special invariants. These special invariants are the coefficients in the
characteristic polynomial of the matrix that is subject to the group action. To
do this we will look at the properties of permutations and linear transformations,
their matrix representations as well as the characteristic polynomial of a matrix
and its connection to these special invariants. We will also look at properties of
polynomials, mainly symmetric polynomials and use the fundamental theorem
of symmetric polynomials to find the invariants for different types of matrices.
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1 Introduction and Summary of results

Let Mn be the set of all n×n-matrices over C, and let G be the set of all invert-
ible matrices in Mn. Then G is a group under matrix multiplication, called the
general linear group over C, GL(n,C).

A polynomial function
p : Mn → C

is a function that originates in a polynomial, that is a polynomial in the elements
of the matrix. As an example of such a polynomial function, we take the sum
of the matrix elements aij of a matrix A ∈ Mn, where i > j, that is

p(A) =
∑

1≤i<j≤n
aij

which is a polynomial in the elements of A. If we then let the variables of this
polynomial assume values in C, the polynomial will evaluate to an element in
C.

In this thesis we will investigate invariants to matrices, which are polynomial
functions that are constant on the orbits of the group action of the group
GL(n,C) on the set Mn.

Definition 1.1: Group Action
A group action f , of the group G on the set A, is a function from the Cartesian
product G× A to A

f : G× A→ A; G× A = {(G,A) : G ∈ G, A ∈ A}
f : (G,A) 7→ G.A; G ∈ G, A ∈ A

that obeys the two axioms of group actions:

Axiom 1.1.1: One element G1 ∈ G acting on an element G2.A ∈ A has to be
equal to the composition of the elements G1G2 ∈ A acting on the element A ∈ A

G1.(G2.A) = (G1G2).A ;∀ G1, G2 ∈ G, ∀A ∈ A.

Axiom 1.1.2: The identity element in G has to act on all elements A ∈ A to
give the same element of A

G1.A = A, ∀ A ∈ A

where G1 is the identity element of G. To avoid confusion with the number 1
and the basis elements ei, we will denote the identity by the subscript 1.

The group GL(n,C) acts on Mn through

G.A = GAG−1; ∀ G ∈ GL(n,C), A ∈ Mn, (1.0.1)
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this will be shown in section 2.2. The orbit OA of the element A in Mn, are all
the elements in Mn of the form G.A or GAG−1, where G is an element in the
group acting on an element A in the set subject to the group action. This is
expressed as

OA = {G.A : G ∈ GL(n,C)} (1.0.2)

and is called the orbit of the element A ∈ Mn, under the group action of the
group GL(n,C) on the set Mn.

Definition 1.2: Invariant
A function I : Mn → C is an invariant to GL(n,C) if

I(G.A) = I(A), ∀ G ∈ GL(n,C). (1.0.3)

Two well-known invariant polynomial functions of a matrix A, is the trace and
the determinant of A.

If A = (aij)1≤i<j≤n, we have that the trace of A

tr(A) =
n∑

i=1

aii (1.0.4)

and the determinant of A

det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n) (1.0.5)

are polynomial functions originated in a polynomial in the elements of A. As
they are invariants, this means that for the polynomial function p, it needs to
be the case that

p(G.A) = p(A); ∀ G ∈ GL(n,C), ∀ A ∈ Mn. (1.0.6)

From (1.0.1) and (1.0.2), along with (1.0.6) with p = det and p = tr respectively,
we have

det(GAG−1) = det(G(AG−1)) = det((AG−1)G) = det(A(G−1)G) = det(A)

tr(GAG−1) = tr(A)

thus (1.0.6) is fulfilled, and the polynomial functions det(A) and tr(A) are in-
variants to GL(n,C).

The set of polynomial functions on Mn forms a ring denoted P(Mn). The set
of invariant polynomial functions P(Mn)G is a subring of P(Mn), in which the
trace and the determinant are two elements. In this thesis we aim to describe
the ring P(Mn)G.

2



To do this we will look at the properties of permutations and linear trans-
formations associated with them, and how they act on vector spaces. The
characteristic polynomial of a matrix

pA(t) = tn − p1(A)tn−1 + p2(A)tn−2 + . . .+ (−1)n−1pn−1(A)t+ (−1)npn(A)

will be central to this investigation and its connection to these special invariants.
We will see that for all n the trace and the determinant are the coefficient of
tn−1 and the constant term in the characteristic polynomial

tr(A) = p1(A)

det(A) = pn(A).

The other polynomials p2(A), p3(A), . . . , pn−1(A) does not have any specific
names, but all polynomials functions pi(A) will have the property

pi(GAG
−1) = pi(A) (1.0.7)

in other words, they are invariants to GL(n,C).

We will also look at properties of polynomials, mainly symmetric polynomials
and use the fundamental theorem of symmetric polynomials to determine all pi
for diagonal matrices. We will then extend that into the diagonalizable matri-
ces, and finally arrive at the main result for all matrices.

We finish by showing that all elements in P(Mn)G can be written as polynomials
in the invariants pi (1.0.7).
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2 Permutations and Linear Transformations

Permutations and the linear transformations on vector spaces associated with
them, will be a core concept of this thesis. We will therefore begin with some def-
initions of these, and then proceed with some fundamental properties of them,
namely invertibility and group homomorphisms

Definition 2.1: Permutation
A permutation σ of a non-empty, finite set X, is a bijective map from X to
itself

σ : X → X.

A permutation is a mapping that interchanges the positions of the elements in
the set being subject to it, we use the standard notation σ to denote an arbi-
trary permutation.

The group of permutations of the set of natural numbers N = {1, 2, ..., n} is
denoted Sn, and is called the symmetric group of degree n.

Let σ ∈ Sn be an arbitrary permutation, and let e = {e1, e2, ..., en} be a basis in
an n-dimensional vector space over C, denoted V. We now define a linear trans-
formation fσ on V, associated with the permutation σ as a linear transformation
that permutes the basis elements of e by

fσ(ei) = eσ(i) (2.0.1)

For an arbitrary vector ~v, we then have

fσ(a1e1 + a2e2 + ...+ anen) = a1eσ(1) + a2eσ(2) + ...+ aneσ(n). (2.0.2)

If we in (2.0.2) let σ be the identity permutation, σ1, that maps each element
onto itself σ1(1) = 1, σ1(2) = 2, . . . , σ1(n) = n, we see that the transformation
associated with it, fσ1 , will map ~v onto itself, since we in (2.0.1) would have
σ1(e1) = e1, σ1(e2) = e2, . . . , σ1(en) = en. We have

fσ1(a1e1 + a2e2 + ...+ anen) = a1eσ1(1) + a2eσ1(2) + ...+ aneσ1(n) =

= (a1e1 + a2e2 + ...+ anen).
(2.0.3)

This is the identity transformation associated with the identity permutation,
that will map every element of V onto itself.

With the basis e = {e1, e2, ..., en} for the vector space V, we can express the
linear transformation associated with a permutation as a n× n–matrix in that
basis, where n is the dimension of the vector space. A permutation matrix is a
square matrix of dimension n composed of ones and zeros, it has one 1–entry
per row and column and 0–entries everywhere else, we will show this in the next
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section.

If we then take the identity permutation σ1, and express it as a permutation
matrix in the basis e, it will be the identity matrix of dimension n, denoted
En, since it has to map every element of the permuted object onto itself. The
transformation associated with it fσ1 , expressed as a matrix in the basis e, will
then also be the identity matrix.

The matrix representation of (2.0.3) is




1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1



e




a1
a2
a3
...

an−1
an



e

=




a1
a2
a3
...

an−1
an



e .

We now look at a non-trivial example of a permutation in Sn. Let for example
β = (1 2 3 ... n) be a cyclic permutation of length n, which maps the first
element in N onto the second, the second onto the third and so on. Then

fβ(a1e1 + a2e2 + ...+ anen) = a1eβ(1) + a2eβ(2) + ...+ aneβ(n) =

= (a1e2 + a2e3 + ...+ an−1en + ane1)
(2.0.4)

and hence the corresponding matrix Aβ for this permutation in the basis e is

Aβ =




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0



e

which gives the matrix representation of (2.0.4) as




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
1 0 0 0 · · · 0 0



e




a1
a2
a3
...

an−2
an−1
an



e

=




a2
a3
a4
...

an−1
an
a1



e .
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2.1 Properties of the Linear Transformation fσ

A very fundamental property of fσ is that if we have two arbitrary permutations
τ and π, and let the linear transformations associated with them act on an
arbitrary vector ~v ∈ V, it does not matter if we let them act on ~v separately, or
combining the transformations and then act with the combined transformation
on ~v.

Theorem 2.1. The composed image of the separate transformations will be the
same as the image of the composed transformation

fπfτ (~v) = fπτ (~v). (2.1.1)

Proof. First we show that (2.1.1) holds for a basis element ei ∈ V

(fπfτ )(ei) = fπτ (ei).

The left hand-side of the equation can be rewritten as

(fπfτ )(ei) = (fπ)(fτ (ei)) = (fπ)(eτ(i)) = (fπ)(ej) = eπ(j) = eπτ(i) = fπτ (ei)

since fσ is a linear transformation, we can generalize to an arbitrary vector
~v ∈ V

(fπfτ )(~v) = fπτ (~v)

and the proof is complete. �

Invertibility of fσ:

We will now prove that fσ is invertible as a linear transformation, i.e. that there
for all linear transformations fσ, there exists a linear transformation f−1σ that
is the inverse transformation of fσ. We state this as a theorem.

Theorem 2.2. For all linear transformations fσ, there exists a linear transfor-
mation f−1σ that is the inverse transformation of fσ.

Proof. The fact that fσ has the property (2.1.1), then gives us

fσfσ−1 = fσσ−1 = fσ1

and we have shown that the linear transformation of the inverse permutation
σ−1, is in fact the inverse of the linear transformation of the permutation σ

fσ−1 = f−1σ

which concludes the proof. �
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2.2 Group Homomorphisms

The property (2.1.1) of fσ tells us that it is a transformation that preserves
matrix multiplication. To explain what this means we look at the concept of a
group homomorphism.

The permutations σ are elements of the symmetric group of degree n, Sn, and
the matrix representations of the linear transformations associated with the per-
mutations fσ are invertible square matrices of dimension n.

Let
g : GL(n,C)× Mn → Mn (2.2.1)

be the function

g(G,A) = G.A = GAG−1; ∀ G ∈ GL(n,C), A ∈ Mn. (2.2.2)

Theorem 2.3. The function g, from the Cartesian product of GL(n,C) and Mn
to Mn, defines a group action by the group GL(n,C) on the set Mn.

Proof. If we look at the definition of a group action, Definition 1.1, we see that
for (2.2.2) to be a group action the element GMG−1 has to be an element of Mn,
that is a n×n–matrix. Since the elements G and G−1 in GL(n,C) are invertible
n×n–matrices, and the product of any number of n×n–matrices is also a n×n–
matrix, we know that the first part of the definition of a group action is satisfied.

For the first Axiom, Axiom 1.1.1, we see that the composition of the elements
G and G−1 in the group GL(n,C) acting on an element A ∈ Mn, has to be the
same as the elements G and G−1 in the group GL(n,C) acting on an element
A ∈ Mn, and then composed in the set element Mn. So we want to show that

(G1G2).A = G1.(G2.A); ∀ G ∈ GL(n,C), A ∈ Mn.

We begin with applying the definition of the group action (2.2.2) to the left
hand side

(G1G2).A = (G1G2)A(G1G2)−1

the properties of inverses gives

(G1G2)A(G1G2)−1 = (G1G2)A(G−12 G−11 )

and by the law of associativity

(G1G2)A(G−12 G−11 ) = G1(G2AG
−1
2 )G−11 .

We can now see that the expression in the parenthesis is exactly the action of
the element G2 on the element A

G1(G2AG
−1
2 )G−11 = G1(G2.A)G−11
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and then the right hand side is the action of the element G1 on the element
G2.A, so we have

G1(G2.A)G−11 = G1.(G2.A)

thus we have concluded that

(G1G2).A = G1.(G2.A)

and the first Axiom is fulfilled.

The second Axiom, Axiom 1.1.2, states that the identity element in the group
GL(n,C) acting on an element A ∈ Mn, has to yield the same element A ∈ Mn
back again. Since the identity element in GL(n,C) is the identity matrix, and
since any matrix A multiplied by the identity matrix E is equal to A, this Axiom
is fulfilled.

Then, since the first part of the definition and the two Axioms of a group action
is fulfilled by the group action g, the proof of (2.2.2) is complete. �

which in other words means that the group action g is conjugation of the ele-
ment A ∈ Mn by the element G ∈ GL(n,C).

Definition 2.3: Group Homomorphism ϕ
A group homomorphism is a function/mapping ϕ from a group G to another
group G′ that preserves the algebraic structure of the groups, the property can
be expressed as

ϕ : G→ G′

ϕ(a ◦ b) = ϕ(a) � ϕ(b) ;∀ a, b ∈ G (2.2.3)

where the notation ◦ is for composition in the group G, and � is for compo-
sition in the group G′. In words this would mean that it does not matter if
you compose the elements a and b in the group G and then act with ϕ on the
combined element a ◦ b, left hand side of (2.2.3), or if you act with ϕ on each el-
ement a, b ∈ G first and then compose the result in G′, right hand side of (2.2.3).

The notation for composition is very often omitted, and since we will be dealing
with compositions of permutations and compositions of the linear transforma-
tions associated with them from now on, we will not be using it.

Now we look at the specific groups we are interested in, the symmetric group of
degree n, Sn and the general linear group of degree n over C, GL(n,C).

Theorem 2.4. Let g be the function from Sn to GL(n,C)

g : Sn → GL(n,C)

g : σ 7→ fσ

}
σ ∈ Sn, fσ ∈ GL(n,C) (2.2.4)

The function g is a group homomorphism from Sn to GL(n,C).
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Proof. To prove (2.2.4), we need to show that it obeys the criteria of a group
homomorphism (2.2.3). With our groups being Sn and GL(n,C), we want to
show that

g(πτ) = g(π)g(τ) ;∀ π, τ ∈ Sn.
The function g maps an arbitrary permutation onto the linear transformation
associated with it g(σ) = fσ, we have

g(πτ) = fπτ

g(π)g(τ) = fπfτ

and (2.1.1) gives us that composition in Sn is the same as composition in
GL(n,C)

fπτ = fπfτ

i.e. that g is a group homomorphism, so

g(πτ) = g(π)g(τ) ;∀ π, τ ∈ Sn

and the proof is complete. �
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3 The Permutation Matrix Properties

In this section we will investigate some of the permutation matrices properties,
which are the nature of the permutation matrix elements, and the inverse and
the transpose of the matrix. These properties will be important when we look
at the group action of GL(n,C) on Mn.

The Permutation Matrix elements:

In the previous section it was stated that the matrix Aσ that represents the
linear transformation fσ in the basis e, has exactly one 1-entry per row and
column and 0-entries everywhere else. We are now going to prove that, and we
begin with the general form of the matrix-entries. To describe the elements of
Aσ we are going to use the Kronecker delta function, which is defined as

δij =

{
1 if i = j

0 else.

Theorem 3.1. The element in position (i, j) in Aσ is

aij = δiσ(j), δiσ(j) =

{
1 if i = σ(j)

0 else.
(3.0.1)

Proof. If we have a basis e for the vector space V, and a linear transformation
T on V, the matrix for the linear transformation in the basis e will have the
images of the basis vectors as columns

[T ]e =



| | |

T (e1) T (e2) . . . T (en)
| | |



e .

All linear transformations on the vector space V in the basis e, associated with
permutations σ, will then have images of the basis vectors that are also basis
vectors. It will simply permute the order of the columns. This means that the
matrix of a permutation transformation is a permutation of the columns in the
identity matrix, in said basis e

[En]e =



| | |
e1 e2 . . . en
| | |



e

; [Aσ]e =



| | |

σ(e1) σ(e2) . . . σ(en)
| | |



e .

The column j in Aσ is the image of the basis vector ej , which is eσ(j). It has
an 1-entry in position σ(j) and 0-entries everywhere else.

When going through the rows i = 1, 2, . . . , n in Aσ, the 1-entry in that row will
be in the column σ−1(i), since if an element in Aσ is 1 we have

i = σ(j)⇔ j = σ−1(i)

10



then we can, for every row i find a column with an 1-entry, when i = σ(j).
And every other column in that row will have 0-entries, when i 6= σ(j). Which
means that we can write the elements in column j as

δiσ(j).

This gives that
aij = δiσ(j)

where aij is the element of Aσ in position i, j, and we have proved (3.0.1) �

Inverse and Transpose of Aσ

From this follows directly that the permutation matrix is an orthogonal matrix,
which means that all the columns are orthonormal vectors, they are all unit vec-
tors that are perpendicular to each other. All orthogonal matrices are invertible
and their inverse is equal to the transpose, thus for permutation matrices, the
inverse is equal to the transpose

A−1σ = Atσ.

The elements of A−1σ = Atσ will look similar to the elements of Aσ, but with the
difference that it is the row-index that is being permuted by σ

A−1σ = Atσ, a
t
ij = aji = δjσ(i) (3.0.2)

where atij is the element in position ij in the matrix Atσ, and they are the
position-transposed elements aji of the elements aij in the matrix Aσ. Also,
since the transpose of a permutation matrix is also a permutation matrix, the
inverse will be a permutation matrix as well.

3.1 Group Actions of Permutation Matrices

As we saw in the preceding section, all permutation matrices Aσ are invertible
with inverse A−1σ equal to the transpose Atσ. Since the set of all invertible
matrices in Mn is G, and G is a group under matrix multiplication, GL(n,C),
the set of all permutation matrices Aσ for σ ∈ Sn, denoted A, is a subset of
GL(n,C)

A ⊂ GL(n,C).

Thus we have from (2.2.1), that A acts on Mn through

Aσ.B = AσBA
−1
σ ; ∀ Aσ ∈ A, B ∈ Mn (3.1.1)

as well as

Aσ.B = AσB (3.1.2)

Aσ.B = BA−1σ . (3.1.3)
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We will now investigate this group action, and look at what happens in the
three cases. The first one (3.1.1) is exactly conjugation of B by Aσ, we will
look at a basic example of this when B is a diagonal 3 × 3–matrix, to get the
structure apparent.

A common notation for diagonal matrices we will use, to avoid writing it out, is
to just write the diagonal elements diag(d1, d2, . . . , dn). Since all other elements
are, by definition of a diagonal matrix, zero, we do not lose any information by
doing so

D =




d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn




= diag(d1, d2, d3, . . . , dn).

Example 3.1:

Let:

Aσ =




0 1 0
0 0 1
1 0 0


 , A−1σ =




0 0 1
1 0 0
0 1 0


 , D = diag(d1, d2, d3).

If we conjugate D with Aσ, we get

AσDA
−1
σ =




0 1 0
0 0 1
1 0 0





d1 0 0
0 d2 0
0 0 d3






0 0 1
1 0 0
0 1 0


 =



d2 0 0
0 d3 0
0 0 d1


 =

= diag(d2, d3, d1)

and

A−1σ DAσ =




0 0 1
1 0 0
0 1 0





d1 0 0
0 d2 0
0 0 d3






0 1 0
0 0 1
1 0 0


 =



d3 0 0
0 d1 0
0 0 d2


 =

= diag(d3, d1, d2).

We see that conjugation by a permutation matrix will interchange the elements
of D. In the first case, AσDA

−1
σ , we have two row-interchanges and two column-

interchanges: rows 1 and 3, followed by rows 1 and 2 and then columns 1 and
3, followed by rows 1 and 2. In the second case, A−1σ DAσ, we have the same
two row-interchanges, and for the columns we have columns 1 and 2, same as
in the first case, but also columns 2 and 3 which is different from the first case.

Now we will proceed with the group actions in equations (3.1.1), (3.1.2) and
(3.1.3), acting on arbitrary square matrices B and determine the properties of
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the matrices AσB, BA−1σ and AσBA
−1
σ . But before we get into those in detail,

we will formulate a more compact notation for matrix multiplication.

If we then start with the base case of a multiplication of two square matrices A
and B, both with dimension n, we have

AB =




a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann







b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn


 =

=




n∑
k=1

a1kbk1
n∑
k=1

a1kbk2 · · ·
n∑
k=1

a1kbkn

n∑
k=1

a2kbk1
n∑
k=1

a2kbk2 · · ·
n∑
k=1

a2kbkn

...
...

. . .
...

n∑
k=1

ankbk1
n∑
k=1

ankbk2 · · ·
n∑
k=1

ankbkn




=⇒ (AB)ij =

n∑

k=1

aikbkj

where (AB)ij refers to the element in position ij in the matrix AB. This
notation, with a sum, is the more compact notation we are going to use. The case
of three matrices multiplied together is calculated analogous to the two-matrix
case, the only difference is that we get a double sum since we are performing
another matrix multiplication. So the compact notation for the general cases of
two matrices A and B and three matrices A, B and C, multiplied together, will
have the structure

(AB)ij =
∑

k

aikbkj (3.1.4)

(ABC)ij =
∑

k,l

aikbklclj (3.1.5)

where (AB)ij refers to the element in position ij in the matrix AB, and (ABC)ij
refers to the element in position ij in the matrix ABC.

Now we will proceed with the group actions above, and see what effect the dif-
ferent cases have on B. Let B be an arbitrary n× n–matrix, and let Aσ be an
arbitrary permutation matrix.

AσB:

For the matrix in (3.1.2), we have a permutation matrix in place of the more
general matrix A in (3.1.4), and since the element aik is determined by equation
(3.0.2), we get (3.1.4) as

(AσB)ij =

n∑

k=1

aikbkj =

n∑

k=1

δiσ(k)bkj .

13



The sum over k will only have non-zero terms when i = σ(k), and since σ is a
permutation with an inverse, the k that gives non-zero terms is

i = σ(k)⇔ k = σ−1(i).

Putting this into the sum we get

n∑

k=1

δiσ(k)bkj = bσ−1(i)j

since all other terms in the sum where k 6= σ−1(i) have an δiσ(k) = 0, we have
only the term left where k = σ−1(i) which yields δiσ(k) = 1 times the b with
k = σ−1(i).

BA−1
σ :

With equation (3.1.4) the matrix in (3.1.3) will be

(
BA−1σ

)
ij

=
n∑

k=1

bikajk (3.1.6)

which will be calculated with (3.0.2) as we did before

n∑

k=1

bikajk =
n∑

k=1

bikδjσ(k)

j = σ(k)⇔ k = σ−1(j)

that gives us
n∑

k=1

bikδjσ(k) = biσ−1(j).

AσBA
−1
σ :

For the matrix in (3.1.1), we use (3.1.5). But since C is a another permutation
matrix in this case, A−1σ , we have two a-factors in each term of the sum

(
AσBA

−1
σ

)
ij

=
∑

k,l

aikbkla
t
lj (3.1.7)

using (3.0.2) for aik and (3.0.3) for atlj , we get

∑

k,l

aikbkla
t
lj =

∑

k,l

aikbklajl =
∑

k,l

δiσ(k)bklδjσ(l).
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We use the same approach as previously, only this time we will do it twice, once
for the sum over k and once for the sum over l. The sum over k,

∑

k

δiσ(k)bklδjσ(l),

will only have a non-zero term when

i = σ(k)⇔ k = σ−1(i).

This give us ∑

k,l

δiσ(k)bklδjσ(l) =
∑

l

bσ−1(i)lδjσ(l),

and then the sum over l, in the same way, will only have a non-zero term when

j = σ(l)⇔ l = σ−1(j),

so we get ∑

l

bσ−1(i)lδjσ(l) = bσ−1(i)σ−1(j).

We then have the important expression for the elements in an arbitrary matrix
B, conjugated by a permutation matrix Aσ

(
AσBA

−1
σ

)
ij

= bσ−1(i)σ−1(j). (3.1.8)

Comparing the order of the indices in (3.1.4) and (3.1.6) as well as in (3.1.5)
and (3.1.7), with (3.0.2), we can see that multiplying a square matrix B with a
permutation matrix Aσ will interchange rows if we multiply B with Aσ from the
left. This is because the indices of the second matrix has swapped places k 
 j.
We will have interchange of columns if multiplied from the right. Consequently,
multiplying from both sides will yield both an interchange of rows and columns.

As we saw previously the sum (3.1.7) will reduce to just one number when
we apply equations (3.0.1) and (3.0.2). We will now let the arbitrary matrix
conjugated by the permutation matrix be a diagonal matrix D, and show that
this will give us a permutation of the non-zero elements in D, that is the diagonal
elements.

Theorem 3.2. Let D be an arbitrary diagonal matrix. The conjugation of D
by the permutation matrix Aσ permutes the diagonal elements in D as

AσDA
−1
σ = diag(dσ−1(1), dσ−1(2), . . . , dσ−1(n)). (3.1.9)

Proof. The only difference between the case with a diagonal matrix and an
arbitrary square matrix B is that we only have non-zero entries on the diagonal,
we can simply apply (3.1.8) to the matrix in (3.1.9). But with the difference
that we will only have non-zero entries when j = i, so we can simplify the
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notation and drop one of the subscripts, as we did earlier for diagonal matrices
since they are always the same

dσ−1(i)σ−1(j) = dσ−1(i)σ−1(i) = dσ−1(i)

we get (
AσDA

−1
σ

)
i

= dσ−1(i).

We have then that for each element in the diagonal matrix D, the conjugation
by the permutation matrix Aσ will permute the element by σ−1. Indeed

AσDA
−1
σ = diag(dσ−1(1), dσ−1(2), . . . , dσ−1(n))

which concludes the proof. �

We then have concluded that the group actions of A on Mn, will result in

Aσ.B = AσBA
−1
σ gives

(
AσBA

−1
σ

)
ij

= bσ−1(i)σ−1(j)

Aσ.B = AσB gives (AσB)ij = bσ−1(i) j

Aσ.B = BA−1σ gives
(
BA−1σ

)
ij

= bi σ−1(j)

i.e. a permutation of rows and columns in the first case, and permutations
of rows and columns in the second and third case respectively. For the sub-
sequent sections however, we will mainly be interested in the first one. The
other two were mainly calculated to show the connection of left- and right-side
multiplication with conjugation.
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4 The Characteristic Polynomial

The characteristic polynomial to a n× n–matrix is given by

pA(t) = det(tEn −A) (4.0.1)

where En is the n× n–identity matrix.

pA(t) has the form

pA(t) = tn − p1(A)tn−1 + p2(A)tn−2 + . . .+ (−1)n−1pn−1(A)t+ (−1)npn(A)
(4.0.2)

where pi(A) is a polynomial of degree i in the elements of A. The polynomials
p1(A) and pn(A) are the invariants (1.0.4) and (1.0.5) we looked at in section 1,
the trace and the determinant of A respectively. We are now going to prove the
expressions (1.0.4) and (1.0.5), and we formalize by stating this as a theorem.

Theorem 4.1. Let A be an arbitrary n × n-matrix over C, the trace and the
determinant of A are given by

p1(A) = tr(A) =
n∑

i=1

aii (4.0.3)

pn(A) = det(A) =
∑

σ∈Sn

sgn(σ)a1σ(1)a2σ(2) . . . anσ(n) (4.0.4)

respectively.

Proof. (4.0.4) To prove this, we start with the cases of a 2 × 2–matrix and a
3× 3–matrix
2× 2–matrix, n = 2

A =

(
a11 a12
a21 a22

)
, pA(t) = det(tEn −A) =

∣∣∣∣
t− a11 a12
a21 t− a22

∣∣∣∣ =

= (t− a11)(t− a22)− (a12a21) = a11a22 − a11t− a22t+ t2 − a12a21 =

= t2 − t(a11 + a22) + a11a22 − a12a21
We can identify that p1(A) = tr(A) and p2(A) = det(A).

3× 3–matrix, 3 = 2

A =



a11 a12 a13
a21 a22 a23
a31 a32 a33


 , pA(t) = det(tEn −A) =

∣∣∣∣∣∣

t− a11 a12 a13
a21 t− a22 a23
a31 a32 t− a33

∣∣∣∣∣∣
=

= (t− a11)

∣∣∣∣
t− a22 a23
a32 t− a33

∣∣∣∣− a12
∣∣∣∣
a21 a23
a31 t− a33

∣∣∣∣+ a13

∣∣∣∣
a21 t− a22
a31 a32

∣∣∣∣ =

= t3 − t2(a11 + a22 + a33) + t(−a11a22 − a11a33 + a23a32 − a22a33 + a12a21 + a13a31)

+ a11a22a33 − a11a23a32 − a12a21a33 + a12a31a23 + a13a21a32 − a13a31a22
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Also in this we have that p1(A) = tr(A) and p3(A) = det(A)

n× n–matrix, n = n:

The final step then, is to show that p1(A) = tr(A) and pn(A) = det(A) for any
sized square matrix. The proof for the latter, is very straight forward.

Let

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


 , det(tEn−A) =

∣∣∣∣∣∣∣∣∣

t− a11 a12 . . . a1n
a21 t− a22 . . . a2n
...

...
. . .

...
an1 an2 . . . t− ann

∣∣∣∣∣∣∣∣∣
.

Expanding the determinant gives us the characteristic polynomial

pA(t) = tn − p1(A)tn−1 + p2(A)tn−2 + . . .+ (−1)n−1pn−1(A)t+ (−1)npn(A)

and since what we are interested in here is the final term pn(A), which does not
have any t-factor, we can just set t = 0

pA(0) = 0n − p1(A)0n−1 + p2(A)0n−2 + . . .+ (−1)n−1pn−1(A)0 + (−1)npn(A) =

= (−1)npn(A)

then det(tEn − A) with t = 0 gives us det(0En − A) = det(−A), and we can
factor out n number of (−1)-factors from the determinant, this proves that

pn(A) = det(A)

and the proof is complete. �

Proof. (4.0.3) Next, we are going to prove that p1(A) = tr(A) for any sized
square matrix. To do this, we will start with expanding the determinant along
the first row, and then do a proof by induction.

det(tEn −A) =

∣∣∣∣∣∣∣∣∣∣∣

t− a11 a12 a13 . . . a1n
a21 t− a22 a23 . . . a2n
a31 a32 t− a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . t− ann

∣∣∣∣∣∣∣∣∣∣∣

=
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= (t− a11)

∣∣∣∣∣∣∣∣∣

t− a22 0− a23 . . . 0− a2n
0− a32 t− a33 . . . 0− a3n

..

.
. . .

. . .
...

0− an2 0− an3 . . . t− ann

∣∣∣∣∣∣∣∣∣
− a12

∣∣∣∣∣∣∣∣∣

0− a21 0− a23 . . . 0− a2n
0− a31 t− a33 . . . 0− a3n

..

.
. . .

. . .
...

0− an1 0− an3 . . . t− ann

∣∣∣∣∣∣∣∣∣

+ a13

∣∣∣∣∣∣∣∣∣

0− a21 t− a22 . . . 0− a2n
0− a31 0− a32 . . . 0− a3n

...
. . .

. . .
...

0− an1 0− an2 . . . t− ann

∣∣∣∣∣∣∣∣∣
+ . . .

. . .+ (−1)na1n

∣∣∣∣∣∣∣∣∣

0− a21 t− a22 . . . 0− a2(n−1)

0− a31 0− a32 . . . 0− a3(n−1)

..

.
. . .

. . .
..
.

0− an1 0− an2 . . . t− an(n−1)

∣∣∣∣∣∣∣∣∣
.

We can see that the determinant with the factor t − a11 has n − 1 number of
t-factors and that all the ones following that one, the ones with factors a12,
−a13 . . . (−1)na1n, has n− 2 number of t-factors. So the only term in the sum
that will contribute to the polynomial p1(A), is the first one

(t− a11)

∣∣∣∣∣∣∣∣∣

t− a22 0− a23 . . . 0− a2n
0− a32 t− a33 . . . 0− a3n

...
. . .

. . .
...

0− an2 0− an3 . . . t− ann

∣∣∣∣∣∣∣∣∣
= (t− a11) det(tEn −A′).

We denote this determinant by det(tEn −A′), since we will need a name for it
in the polynomial to follow. The matrix A′ is the reduction of A by one row
and one column

A′ =




a22 a23 . . . a2n
a32 a33 . . . a3n
...

. . .
. . .

...
an2 an3 . . . ann


 , where a′ij = aij .

We will now proceed with the proof by induction and the basis-case is already
proven earlier, be it the 2×2–case or the 3×3–case. We now assume that for
the n-1× n-1–case, the determinant is

∣∣∣∣∣∣∣∣∣

t− a22 0− a23 . . . 0− a2n
0− a32 t− a33 . . . 0− a3n

...
. . .

. . .
...

0− an2 0− an3 . . . t− ann

∣∣∣∣∣∣∣∣∣
=

= tn−1 − (a22 + a33 + . . .+ ann)tn−2 + . . .+ (−1)n−2t+ (−1)n−1 det(A′)

and by multiplying the polynomial by the factor we had in the original expres-
sion, t− a11, we get

(t− a11)
(
tn−1 − (a11 + a22 + . . .+ ann)tn−2 + . . .+ (−1)n−2t+ (−1)n−1 det(A′)

)
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only the terms t
(
−(a22 + a33 + . . .+ ann)tn−2

)
and (−a11)(tn−1) have degree

n − 1 of t, and therefore will contribute to the polynomial p1(A), thus we can
discard all the other factors. The expanded form of the contributing factors
then is

t
(
−(a22 + a33 + . . .+ ann)tn−2

)
+(−a11)(tn−1) = −(a11+a22+a33+. . .+ann)tn−1

comparing this coefficient with the coefficient for p1(A) in the characteristic
polynomial,

pA(t) = tn − p1(A)tn−1 + p2(A)tn−2 + . . .+ (−1)n−1pn−1(A)t+ (−1)npn(A)

shows that
p1(A) = tr(A)

then, by the induction hypothesis, the proof is complete. �

The roots of pA(t) are the eigenvalues to A, denoted λi, so we can express pA(t)
in terms of the variable t and the eigenvalues λi as

pA(t) = (t− λ1)(t− λ2) . . . (t− λn). (4.0.5)

From the facts that tr(A) = p1(A) and det(A) = pn(A) for pA(t) expressed in
terms of pi(A) and t. It follows that with (4.0.2) expressed in terms of λi and
t, the expansion of (4.0.5), we can express the trace and the determinant of A
in terms of the eigenvalues.

From the characteristic polynomial (4.0.2) expressed as (4.0.5), and the method
used to prove (4.0.4) where we set t = 0 and by factoring out n number of
(−1)-terms, we have

det(A) = pA(0) = (0− λ1)(0− λ2) . . . (0− λn) = (−1)n(λ1)(λ2) . . . (λn)

which give us

pn(A) = det(A) =
n∏

i=1

λi . (4.0.6)

To get a term of degree n−1 in t, we have to factor out t from n−1 parenthesis in
(4.0.5), and factor out λ from the n:th parenthesis. We can do this in n different
ways, depending on what parenthesis we factor out λ from, and consequently
do not factor out t from. The end result however, will be the same in that the
coefficient will be the the sum of all λi

p1(A) = (λ1 + λ2 + . . .+ λn)

which is the sum of the eigenvalues to A

p1(A) = tr(A) =
n∑

i=1

λi . (4.0.7)

This is exactly the relationship between roots and coefficients of a polynomial,
sometimes referred to as Vieta’s Formulas, and we will look more closely at this
relationship in the next section.
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5 Polynomials and Matrices

In this section we are going to investigate polynomials and the polynomial func-
tions originated in them more closely.

5.1 The Elementary Symmetric Polynomials

Definition 5.1: Symmetric Polynomials
A polynomial f(x1, x2, . . . , xn) is said to be symmetric if a permutation of the
variables does not change the polynomial, i.e. if

f(xσ(1), xσ(2), . . . , xσ(n)) = f(x1, x2, . . . , xn), ∀σ ∈ Sn (5.1.1)

The relationship between roots of a polynomial and the coefficients of the poly-
nomial is as follows. The roots of a polynomial and their multiplicity are un-
ambiguously determined if the coefficients of the polynomial are known. And
vice versa, the coefficients of the polynomial are unambiguously determined if
the roots of a polynomial and their multiplicity are known. If the coefficient of
the leading term, the one with the highest exponent, is set to 1, the polynomial
with roots: α1, α2, . . . , αn is

p(t) = (t− α1)(t− α2) . . . (t− αn). (5.1.2)

If we execute the multiplication of the parentheses in (5.1.2) we get

p(t) = tn− e1(α)tn−1 + e2(α)tn−2− . . .+ (−1)n−1en−1(α)t+ (−1)nen. (5.1.3)

To get a term of degree n we factor out t from n parenthesis, to get a term of
degree n − 1 we factor out t from n − 1 parenthesis, and so on. We get the
following relationship between roots and coefficients

e1(α) =
∑

αi

e2(α) =
∑

αiαj

e3(α) =
∑

αiαjαk

...

ev(α) =
∑

1≤i1<i2<...<iv≤n
αi1αi2 . . . αiv

...

en(α) = α1α2 . . . αn

where the coefficients ei(α) = ei(α1, α2, . . . , αn) are the elementary symmetric
polynomials in α1, α2, . . . , αn.
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Definition 5.2: Elementary Symmetric Polynomials
The elementary symmetric polynomials ei(x) = ei(x1, x2, . . . , xn), are defined
by

(t− x1)(t− x2) . . . (t− xn) = tn − e1(x)tn−1 + e2(x)tn−2 − . . .+ (−1)nen(x).
(5.1.4)

In the case of two variables and three variables the elementary symmetric poly-
nomials are given by

n = 2 :

{
e1(x) = x1 + x2

e2(x) = x1x2
n = 3 :





e1(x) = x1 + x2 + x3

e2(x) = x1x2 + x1x3 + x2x3

e3(x) = x1x2x3

in general, ek has degree k, and we can write it as

ek(x) =
∑

1≤i1<i2<...<ik≤n
xi1xi2 . . . xik (5.1.5)

where all polynomials (5.1.5) obeys (5.1.1).

Another property that a polynomial can possess is that of being homogeneous,
which means that all terms in the polynomial is of the same degree. For exam-
ple, the polynomial 3x4 is homogeneous of degree 4 in the variable x, and the
polynomial 3x2y2 +x4−3xy3 is homogeneous of degree 4 in the variables x and
y. The general property can be written as

Definition 5.3: Homogeneous Polynomial
The polynomial f(x1, x2, . . . , xn) is homogeneous of degree k if

f(tx1, tx2, . . . , txn) = tk(x1, x2, . . . , xn).

5.2 Polynomial Functions

The characteristic polynomial to A

pA(t) = det(tEn −A) =

tn − p1(A)tn−1 + p2(A)tn−2 + . . .+ (−1)n−1pn−1(A)t+ (−1)npn(A)

consists of the variable t and the polynomials pi(A). The polynomials pi(A) are
homogeneous polynomials of degree i in the elements of A.

If B is invertible, we can write the characteristic polynomial to BAB−1 as

pBAB−1(t) = det(tEn −BAB−1) = det(BB−1tEn −BAB−1) =

= det(BtEnB
−1 −BAB−1) = det(B(tEn −A)B−1).
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We then have that the properties of the determinant makes

det(B(tEn −A)B−1) = det(B) det(tEn −A) det(B−1) =

= det(B) det(B−1) det(tEn −A) = det(tEn −A)

and we get that
pA(t) = pBAB−1(t).

Expressing this for the polynomials pi(A), we have

pi(A) = pi(BAB
−1). (5.2.1)

Now we have concluded that the polynomials pi(A), the coefficients in the char-
acteristic polynomial, are invariant under conjugation by matrices in GL(n,C).

Before we extend our investigation to all polynomials p(A) that are invariant un-
der conjugation by matrices in GL(n,C), we are going to need some fundamental
facts about polynomials in general. A polynomial in the variables x1, x2, . . . , xn
is an expression of the form

f(x1, x2, . . . , xn) =
∑

k1,k2,...,kn

ck1,k2,...,knx
k1
1 x

k2
2 x

kn
n

where the sum is finite, it only has an finite amount of non-zero coefficients
ck1,k2,...,kn . The summation is taken over k1 = 0, 1, . . . , n1; k2 = 0, 1, . . . , n2 and
so forth to kn = 0, 1, . . . , nn.

A polynomial function, f(a1, a2, . . . , an) : Cn → C, originated in a polynomial
f(x1, x2, . . . , xn), takes scalars as input in place of the variables of the polyno-
mial, with the same structure. With the expression of a polynomial above, we
can express a polynomial function in the same notation, with a sum.

The polynomial

f(x1, x2, . . . , xn) =
∑

k1,k2,...,kn

ck1,k2,...,knx
k1
1 x

k2
2 . . . xknn

will generate a polynomial function Cn → C by

f(a1, a2, . . . , an) =
∑

k1,k2,...,kn

ck1,k2,...,kna
k1
1 a

k2
2 . . . aknn




f : Cn → C

f : (a1, a2, . . . , an) 7→ ∑
k1,k2,...,kn

ck1,k2,...,kna
k1
1 a

k2
2 . . . aknn

where xi are variables in the polynomial and ai are scalars. If all the coefficients
are zero, we call the polynomial the zero polynomial.
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The following properties of polynomials are going to be necessary later.

Property 5.1: If f is a polynomial in n variables such that f(a1, a2, . . . , an) = 0
for all (a1, a2, . . . , an) ∈ Cn, then f is the zero polynomial.

Property 5.2: If the product of two polynomials are the zero polynomial, then
at least one of the polynomials is the zero polynomial.

I state them here to have them in context with the definitions of polynomials
and polynomial functions, but we are not going to use them until we get to the
proof for all matrices Mn in section 6.3.

5.3 The Fundamental Theorem of Symmetric Polynomials

A very important theorem for symmetric polynomials is The Fundamental The-
orem of Symmetric Polynomials, which states that any symmetric polynomial
can be written in terms of the elementary symmetric polynomials.

Theorem 5.1 (The Fundamental Theorem of Symmetric Polynomials).
[3]: n:o 56
All symmetric polynomials

f(x1, x2, . . . , xn) =
∑

ck1,k2,...,knx
k1
1 x

k2
2 . . . xknn

can be unambiguously be expressed as a polynomial of the elementary symmetric
polynomials e1, e2, . . . , en in the variables x = x1, x2, . . . , xn

F (e1(x), e2(x), . . . , en(x)) =
∑

γk1,k2,...,kne
v1
1 (x)ev22 (x) . . . evnn (x)

where the coefficients γ are homogeneous linear integer polynomials of the coef-
ficients c.

To prove the theorem we will do a proof by induction, originally given by Cauchy,
and we will begin with the base case of n = 2. But first we are going to need a
lemma

Lemma 5.1. [3]: n:o 54
If a symmetric polynomial in the variables x1, x2, . . . , xn can be expressed as a
polynomial in the elementary symmetric polynomials e1, e2, . . . , en of the same
variables, that is, if

p(x1, x2, . . . , xn) = p(e1(x1, x2, . . . , xn), e2(x1, x2, . . . , xn), . . . , en(x1, x2, . . . , xn))

the expression is unambiguous.

An alternate formulation of the lemma is: the elementary symmetric polynomi-
als of n variables are independent of each other.
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Proof: Theorem 5.1 We follow the proof in [3] n:o 56

n = 2:

For two variables, we then have

e1 = x1 + x2

e2 = x1x2

If f is an arbitrary symmetric polynomial of x1 and x2, we will have

f(x1, x2) = f(x1, e1 − x1) = A0x
m
1 + a1x

m−1
1 + . . .+Am

the coefficients Ai are polynomials in a1 with homogeneous linear integer poly-
nomials of the coefficients in f . If we now set

Φ(z) = A0z
m +A1z

m−1 + . . .+Am

and divide Φ by f(z) = (z − x1)(z − x2) = z2 + e1z + e2, we will get

Φ(z) = Q(z)f(z) +A+Bz

where A and B are polynomials with coefficients that are homogeneous linear
integer polynomials of the coefficients in f .

For z = x1 we then have
f(x1, x2) = A+Bx1

and since f is symmetric we will also get

f(x1, x2) = A+Bx2.

Since x1 and x2 are, of each other, independent variables, it follows that B = 0
and thus

f(x1, x2) = A

and the theorem is proven for n = 2.

Induction step:

We now assume that the theorem holds for n − 1 variables, and want to prove
that it then holds for n variables.

The symmetric polynomial f then is a polynomial of n variables, f(x1, x2, . . . , xn).
We arrange f in order of the exponents as

f(x1, x2, . . . , xn) = f0x
µ
1 + f1x

µ−1
1 + . . .+ fµ−1x1 + fµ (5.3.1)

the coefficients f0, f1, . . . , fµ are symmetric polynomials of the n − 1 variables
x2, x3, . . . , xn, with coefficients that are homogeneous linear integer polynomials
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of the coefficients in f . We denote the elementary symmetric polynomials of
these n− 1 variables by e′1, e

′
2, . . . , e

′
n−1.

If now

f(z) =

n∏

i=1

(z − xi) = zn + e1z
n−1 + . . .+ en−1z + en

we will have

f(z)

z − x1
= zn−1 + e′1z

n−2 + . . .+ e′n−2z + e′n−1

thus we get

e′1 = x1 + e1

e′2 = x21 + e1x1 + e2

e′3 = x31 + e1x
2
1 + e2x1 + e3

...

e′n−1 = xn−11 + e1x
n−2
1 + . . .+ en−1.

Because the theorem by assumption holds for n − 1 variables, we can then ex-
press the coefficients f0, f1, . . . , fµ as polynomials in the elementary symmetric
polynomials e1, e2, . . . , en and x1, with coefficients that are homogeneous linear
integer polynomials of the coefficients in f .

By inserting the expressions for e′1, e
′
2, . . . , e

′
n−1 above into (5.3.1), and then

again arrange f in order of the exponents of x1, we get

f(x1) = A0x
m
1 +A1x

m−1
1 + . . .+Am−1x1 +Am.

The coefficients A0, A1, . . . , Am in f(x1) are polynomials in e1, e2, . . . , en, and
the coefficients in ei are homogeneous linear integer polynomials of the coeffi-
cients in f .

If we now, similarly to the n = 2-case, set

Φ(z) = A0z
m +A1z

m−1 + . . .+Am−1z +Am

and divide by f(z) to get

Φ(z) = Q(z)f(z) + Ψ(z)

where
Ψ(z) = C0z

n−1 + C1z
n−2 + . . .+ Cn−2z + Cn−1

the coefficients C0, C1, . . . , Cn−2, Cn−1 are polynomials in e1, e2, . . . , en, with
coefficients that are homogeneous linear integer polynomials of the coefficients
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in f .

If we now set z = x1 in Φ(z) = Q(z)f(z) + Ψ(z) we will, since f(x1) = 0, have

f = Φ(x1) = Ψ(x1)

and since f is symmetric in x1, x2, . . . , xn, this equality will hold if x1 is replaced
with any other of the variables xi. Then it follows that the polynomial

C0z
n−1 + C1z

n−2 + . . .+ Cn−2z + Cn−1 − f

will vanish for n different values: z = x1, z = x2, . . . , z = xn. It follows then,
from the fundamental theorem of algebra, that the polynomial will vanish iden-
tically since its degree is at most n−1. In other words we must have f = Cn−1,
i.e. f is expressed as a polynomial in the elementary symmetric polynomials
e1, e2, . . . , en, whose coefficients are homogeneous linear integer polynomials of
the coefficients in f .

By Lemma 5.1 the expression is also unambiguous, thus by the induction hy-
pothesis, the theorem is proven. �
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6 Invariant polynomial functions

Now we are finally ready to investigate the core concept of this thesis, which
are all the polynomial functions p that are invariants to GL(n,C).

Let
p : Mn → C (6.0.1)

be a polynomial function that obeys (5.2.1) for all square matrices A and in-
vertible matrices B. Then we have

p(BAB−1) = p(A); ∀ A ∈ Mn, ∀ B ∈ GL(n,C). (6.0.2)

We have already seen some examples of (6.0.1), namely the trace of A, tr(A) =
p1(A) and the determinant of A, det(A) = pn(A). In order to determine all
polynomial functions (6.0.1) on the set of square matrices Mn that fulfils (6.0.2),
we are going to start with the restriction of all square matrices to the diagonal
matrices Dn. We will then proceed to diagonalizable matrices Hn, and finally
Mn the set of all n× n–matrices over C. The reason for this approach is rather
straight forward, it is hard to start with all n× n–matrices over C, and since

Dn ⊂ Hn ⊂ Mn

we can investigate the smallest subset of Mn, the diagonal matrices Dn, first,
and then expand the argument to bigger subsets to finally arrive at the entire
set Mn.

6.1 Diagonal Matrices

We can solve the problem for diagonal matrices D ∈ Dn, with Theorem 5.1. We
want to determine all polynomial functions (6.0.1), for the case of the subset
consisting of the diagonal matrices in the set of all n × n–matrices over C. So
the polynomial functions when we restrict us to Dn will be

p : Dn → C

and (6.0.2) in this case is

p(BDB−1) = p(D); ∀ D ∈ Dn, ∀ B ∈ GL(n,C).

It must then especially hold for all permutation matrices Aσ, where the permu-
tation σ is an element in the symmetric group of degree n, Sn

p(AσDA
−1
σ ) = p(D) ; ∀ Aσ, σ ∈ Sn. (6.1.1)

Now, since a polynomial function, p : Dn → C, originated in a polynomial in the
diagonal elements of D

p(D) = p(diag(d1, d2, . . . , dn))
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and since we have from (3.1.9) that

Aσ(diag(d1, d2, . . . , dn))A−1σ = diag(dσ−1(1), dσ−1(2), . . . , dσ−1(n))

in accordance with (6.1.1), it then has to be the case that

p(diag(dσ−1(1), dσ−1(2), . . . , dσ−1(n))) = p(diag(d1, d2, . . . , dn))

for all permutations σ ∈ Sn, thus p(diag(d1, d2, . . . , dn)) is a symmetric polyno-
mial in diag(d1, d2, . . . , dn). According to Theorem (5.1) there exists a polyno-
mial P (e1(d1, d2, . . . , dn), e2(d1, d2, . . . , dn), . . . , en(d1, d2, . . . , dn)) such that

p(diag(d1, d2, . . . , dn) =

= P (e1(d1, d2, . . . , dn), e2(d1, d2, . . . , dn), . . . , en(d1, d2, . . . , dn))

and since Theorem 5.1 state that we can write any symmetric polynomial in
terms of the elementary symmetric polynomials

pi(diag(d1, d2, . . . , dn) = ei(d1, d2, . . . , dn)

we have showed that

p(D) = p(diag(d1, d2, . . . , dn) = P (p1(D), p2(D), . . . , pn(D)). � (6.1.2)

6.2 Diagonalizable Matrices

We want to determine all polynomial functions (6.0.1), for the case of the subset
consisting of the diagonalizable matrices in the set of all n×n–matrices over C.

Let Hn be the set of diagonalizable matrices in Mn. The polynomial function’s
condition (6.0.2), will then, similarly to the previous case of diagonal matrices,
be restricted to the subset Hn of Mn.

Let
p : Hn → C

be the polynomial functions when we restrict us to the subset H of Mn, then
(6.0.2) gives

p(BHB−1) = p(H); ∀ H ∈ Hn, ∀ B ∈ GL(n,C). (6.2.1)

We know that all matrices H ∈ Hn are diagonalizable, and we know that if a
matrix H is diagonalizable, there exists another matrix T such that

H = TDT−1

where D is a diagonal matrix with the eigenvalues of H as entries, and T has
the eigenvectors of H as columns.
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Now, the polynomial functions property (6.2.1), for this new representation of
H, give us

p(B(TDT−1)B−1) = p(TDT−1) = p(D)

which in turn gives
p(H) = p(D)

and according to (6.1.2), we then have

p(H) = P (p1(D), p2(D), . . . , pn(D))

which gives

p(H) = P (p1(TDT−1), p2(TDT−1), . . . , pn(TDT−1))

and then, since pi(TDT
−1) = pi(H), we have

p(H) = P (p1(TDT−1), p2(TDT−1), . . . , pn(TDT−1)) =

= P (p1(H), p2(H), . . . , pn(H))
(6.2.2)

and the proof for diagonalizable matrices is complete. �

6.3 All Matrices

Before we proceed with the proof for all square matrices, we are going to go
through some more theory about diagonalizability and eigenvalues, the discrim-
inant of a polynomial and their connection to the characteristic polynomial of
a matrix.

A polynomial function
p : Mn → C

is determined by its restriction to the subset Hn of Mn, and in fact restricted to
matrices with n distinct eigenvalues. To show this, we will begin with a proof
that if all eigenvalues of a matrix A are distinct, the eigenvectors of A are lin-
early independent and thus A is diagonalizable.

We will formalize by stating this as a theorem

Theorem 6.1. [4]: Sec. 5.2
Let A be the matrix representation of a linear operator T on a vector space V, and
let λ1, λ2, . . . , λk be distinct eigenvalues of A. If v1, v2, . . . , vk are eigenvectors
of A such that λi corresponds to vi, then the set of eigenvectors {v1, v2, . . . , vk}
are linearly independent.

Proof. We follow the proof in [4] Sec. 5.2
The proof is by induction over k
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Base case:
Suppose k = 1, then vk = v1 6= ~0 since an eigenvector by definition cannot be
the zero-vector, and then v1 is linearly independent.

Induction hypothesis:
We now assume that the theorem holds true for k−1 distinct eigenvalues, where
k − 1 ≥ 1, and that we have k eigenvectors v1, v2, . . . , vk corresponding to the
distinct eigenvalues λ1, λ2, . . . , λk. We want to show that the set of eigenvectors
{v1, v2, . . . , vk} is linearly independent.

Induction step:
Suppose that a1, a2, . . . ak are scalars such that

a1v1 + a2v2 + . . .+ akvk = 0

applying A− λkE on both sides of the equation gives

a1(λ1 − λk)v1 + a2(λ2 − λk)v2 + . . .+ ak−1(λk−1 − λk)vk−1 = 0

then, by the induction hypothesis, the set of eigenvectors {v1, v2, . . . , vk} is
linearly independent, and hence

a1(λ1 − λk) = a2(λ2 − λk) = . . . = ak−1(λk−1 − λk) = 0 .

Since the eigenvalues λ1, λ2, . . . , λk are distinct, we know that λi − λk 6= 0 for
1 ≤ i ≤ k − 1. So then it has to be the case that

a1 = a2 = . . . = ak−1 = 0

and then equation a1v1 + a2v2 + . . .+ akvk = 0 will reduce as

a1v1 + a2v2 + . . .+ akvk = 0 ⇒ akvk = 0

and since vk 6= ~0 as previously stated, it must be the case that ak = 0. So then
we have a1 = a2 = . . . = ak−1 = ak = 0, and from that it follows that the set of
eigenvectors {v1, v2, . . . , vk} is linearly independent. �

Then we can formulate a corollary to the theorem that will conclude our desired
property of A, that is A being diagonalizable.

Corollary 6.1. [4]: Sec. 5.2
Let A be the matrix representation of a linear operator on an n-dimensional
vector space V. If A has n distinct eigenvalues, A is diagonalizable.

Proof. We follow the proof in [4] Sec. 5.2
Suppose A has n distinct eigenvalues λ1, λ2, . . . , λn. For each i we choose an
eigenvector vi corresponding to the eigenvalue λi, then by the theorem the set
of eigenvectors {v1, v2, . . . , vk} is linearly independent, and since dim(V) = n
this set is a basis for the vector space V. And since a linear operators matrix
representation on a finite-dimensional vector space is diagonalizable if and only
if there exists an ordered basis for the vector space consisting of eigenvectors of
A, A is diagonalizable. �
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6.3.1 The Discriminant

A way to find an algebraic condition for diagonalizability of a matrix A is the
discriminant to said matrix’s characteristic polynomial pA(t).

Definition 6.1: The Discriminant

The discriminant to a polynomial x1, x2, . . . , xn is defined as the polynomial

∆(x1, x2, . . . , xn) =
∏

1≤i<j≤n
(xi − xj)2. (6.3.1)

We will now see that the discriminant is a symmetric polynomial, i.e. that

∏

1≤i<j≤n
(xi − xj)2 =

∏

1≤i<j≤n
(xσ(i) − xσ(j))2 .

Proof:

We start with the basic cases where we have two variables x1 and x2, and three
variables, x1, x2 and x3 in the polynomial, since that is a good foundation for
the proof.

n = 2:

The discriminant to a polynomial in the two variables is

∆(x1, x2) =
∏

1≤i<j≤2
(xi − xj)2 = (x1 − x2)2

and if we look at the transposition permutation of ∆(x1, x2) we have

τ12 (∆(x1, x2)) = (x2 − x1)2 = (−(x1 − x2))
2

= ∆(x1, x2)

then ∆(x1, x2) is a symmetric polynomial, and we can then express it in the
elementary symmetric polynomials

∆(x1, x2) = (x2 − x1)2 = x21 − 2x1x2 + x22

= x21 + 2x1x2 + x22 − 4x1x2

= (x1 + x2)2 − 4x1x2

= e1(x1, x2)2 − e2(x1, x2).

n = 3:

The discriminant to a polynomial in the three variables is

∆(x1, x2, x3) =
∏

1≤i<j≤3
(xi − xj)2 = (x1 − x2)2(x1 − x3)2(x2 − x3)2
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and if we look at the cyclic permutation β = (1 2 3) of ∆(x1, x2, x3), we have

β (∆(x1, x2, x3)) = (x2 − x3)2(x2 − x1)2(x3 − x1)2

= (−(x3 − x2))
2

(−(x1 − x2))
2

(−(x1 − x3))
2

= ∆(x1, x2, x3)

then ∆(x1, x2, x3) is also a symmetric polynomial. We can then again express it
in the elementary symmetric polynomials, we will omit the explicit calculation
here, but we would get

∆(x1, x2, x3) = e21e
2
2 − 4e32 − 4e31e3 − 27e23 + 18e1e2e3 .

n = n:

We now let σ ∈ Sn be an arbitrary permutation and let the polynomial have
any number n of variables. The discriminant to the polynomial in n variables is

∆(x1, x2, . . . , xn) =
∏

1≤i<j≤n
(xi − xj)2 .

The symmetry of ∆(x1, x2, . . . , xn) is proven similarly to the cases of n = 2 and
n = 3. For any permutation σ ∈ Sn, we will have

σ (∆(x1, x2, . . . , xn)) =
∏

1≤i<j≤n
(xσ(i) − xσ(j))2

and because i 6= j always, then σ(i) 6= σ(j) always also. Thus, we have

∏

1≤i<j≤n
(xσ(i) − xσ(j))2 = ∆(x1, x2, . . . , xn)

and the proof that the discriminant is a symmetric polynomial is complete. �

From the fact that ∆(x1, x2, . . . , xn) = ∆(x) is a symmetric polynomial, it
follows that we can then express ∆(x1, x2, . . . , xn) = ∆(x) in the elementary
symmetric polynomials. But we are however not going to need the explicit ex-
pressions for ∆(x) in the elementary symmetric polynomials, merely the fact
that we can express them in the elementary symmetric polynomials, in accor-
dance with Theorem 5.1

∆(x) = P (e1(x)), e2(x), . . . , en(x))

and since the polynomial ∆(x) has integer coefficients, then by Theorem 5.1 the
polynomial P (e1(x)), e2(x), . . . , en(x)) will also.
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The discriminant and eigenvalues

Let

f(x) = xn − a1xn−1 + a2x
n−2 − . . .+ (−1)n−1an−1x+ (−1)nan

be a polynomial with roots α1, α2, . . . , αn, not necessarily distinct, the factor-
ization representation of f(x) is

f(x) = (x− α1)(x− α2) . . . (x− αn) .

According to the relationship between roots and coefficients (section 6) we have

ai = ei(α)

and the discriminant to f(x) is then defined as

∆(f) = ∆(α) =
∏

1≤i<j≤n
(αi − αj)2

then it must be the case that

∆(f) = P (e1(α), e2(α), . . . , en(α)) = P (a1, a2, . . . , an)

thus the discriminant of f(x) can be expressed as a polynomial with integer
coefficients, where the coefficients are the coefficients of the polynomial f(x),
as we saw in the example above. So in principle, it is possible to calculate the
discriminant of f(x) without knowing the roots of the polynomial f(x).

We are now going to investigate the important situation where ∆(f) = 0, we
will see that this will be the case if and only if ∆(f) has at least one root of
multiplicity two or greater. This follows from the fact that the discriminant is
a product, and for it to be zero we must have at least one of the factors equal
to zero. This happens exactly when αi = αj for at least one factor (αi − αj)2,
and it will be non-zero whenever αi 6= αj for all i and j

(αi − αj)2 = 0, if and only if αi = αj

(αi − αj)2 6= 0, if and only if αi 6= αj , ∀ i, j .

Let A ∈ Mn, and we again have the characteristic polynomial to A

pA(t) = det(tEn −A),

the roots of pA(t) are the eigenvalues of A, λ1, λ2, . . . , λn. We will then have
the discriminant to the characteristic polynomial, ∆(pA(t)) 6= 0, if and only if
A has n distinct eigenvalues, which is the same as n eigenvalues of multiplicity
1

∆(pA(t)) 6= 0, if and only if λi 6= λj , ∀ i, j . (6.3.2)
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6.3.2 Products of Polynomials

Now we are going to make use of the properties 5.1 and 5.2 of polynomials in
section 5.

If f(x) is a polynomial, that is not the zero polynomial, in one variable over C
(or any other infinite field like R or Q), then the set of roots to f is finite or
”small”, we call this subset ω

ω = {a ∈ C : f(a) = 0}.

The subset of C where f is non-zero, is then infinite or ”large”, we call this
subset Ω

Ω = {a ∈ C : f(a) 6= 0}
Now we assume that g(x) is another polynomial such that g(a) = 0 for all
a ∈ Ω. Since a polynomial only can have a finite number of roots, and since Ω
is infinite, g has to be the zero polynomial. This also holds for a polynomial of
many variables, g(a) = g(a1, a2, . . . , an).

Theorem 6.2. Let
f(x1, x2, . . . , xn)

be a polynomial over C, and we now set the subset of C where f is non-zero to

Ω = {(a1, a2, . . . , an) ∈ Cn : f(a1, a2, . . . , an) 6= 0}

now lets assume that g(x1, x2, . . . , xn) is a polynomial such that

g(a1, a2, . . . , an) = 0 ,∀ (a1, a2, . . . , an) ∈ Ω, then g is the zero polynomial.
(6.3.3)

Proof. Let

h(x1, x2, . . . , xn) = f(x1, x2, . . . , xn)g(x1, x2, . . . , xn)

then from Properties 5.1 and 5.2 of polynomials, we have

if (a1, a2, . . . , an) /∈ Ω, then f(a1, a2, . . . , an) = 0

and thus h(a1, a2, . . . , an) = 0

if (a1, a2, . . . , an) ∈ Ω, then g(a1, a2, . . . , an) = 0

and thus h(a1, a2, . . . , an) = 0 .

We can conclude that h(a1, a2, . . . , an) = 0 for all (a1, a2, . . . , an) in Cn, and
then h has to the the zero polynomial. And since h = fg is a product of
two polynomials, it cannot be the zero polynomial unless at least one of the
polynomials in the product f or g is the zero polynomial, then because f is not
the zero polynomial, g is the zero polynomial. �
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6.4 All invariants

From previous section 6.2 on diagonalizable matrices, we now know that the
polynomial function

p : Mn → C (6.4.1)

has the properties

p(A) = p(BAB−1)

p(A) = P (p1(A), p2(A), . . . , pn(A))

for all matrices A in the subset Hn of Mn, and all invertible matrices B. We
are now going to investigate the polynomial function for all square matrices Mn.
With the known properties, Corollary 6.1 then gives us that all matrices with
n distinct eigenvalues, Nn, is a subset of Hn, we can use the discriminant to
extend the set Hn to the whole of Mn.

Let
G(A) = p(A)− P (p1(A), p2(A), . . . , pn(A))

then G is a polynomial function

G : Mn → C (6.4.2)

that we know is the zero-polynomial for the subset of diagonalizable matrices
in the set of all matrices, Hn ⊂ Mn. We are now going to show that G(A) is the
zero-polynomial for all matrices A ∈ Mn, that is, that

p(A) = P (p1(A), p2(A), . . . , pn(A)), ∀ A ∈ Mn.

To do this we use, as mentioned above, the discriminant to extend Nn to the
whole of Mn by forming the product of G(A) and ∆(pA), and show that the
product is in fact zero for all A ∈ Mn.

So I now claim that
G(A)∆(pA) = 0, ∀ A ∈ Mn (6.4.3)

where ∆(pA) is the discriminant to the characteristic polynomial pA(t) of A.

Proof of the claim:

To prove (6.4.3) we look at two cases, when A has n distinct eigenvalues and
then is diagonalizable, and when A does not have n distinct eigenvalues and is
not diagonalizable.

According to (6.3.2) the discriminant to the characteristic polynomial of A, is
non-zero if and only if A has n distinct eigenvalues

∆(pA) 6= 0 if and only if λi 6= λj , ∀ i, j .
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If A has n distinct eigenvalues, A is diagonalizable and we have from (6.2.2)
that

p(A) = P (p1(A), p2(A), . . . , pn(A))

which in turn means that

G(A) = p(A)− p(A) = 0 .

If, on the other hand, A does not have n distinct eigenvalues (6.3.2) gives

∆(pA) = 0 .

To summarize, we have that if A is not diagonalizable, ∆(pA) = 0 and

G(A)∆(pA) = 0

and if A is diagonalizable, G(A) = 0 and

G(A)∆(pA) = 0 .

From the Properties 5.1 and 5.2 of polynomials, we have that if the product
G(A)∆(pA) = 0 in (6.4.3), one of the polynomials has to be the zero-polynomial.
Since ∆(pA) is not the zero polynomial, thenG(A) has to be the zero polynomial.

From this we get that the polynomial function (6.4.2) fulfils the property (6.4.1),
and we have

p(A) = P (p1(A), p2(A), . . . , pn(A)), ∀ A ∈ Mn (6.4.4)

which concludes the proof for all matrices A ∈ Mn. �

Illustrative Example:

An example of (6.4.4), for a 3 × 3-matrix, is the sum of the squares of the
eigenvalues to A

p(A) =
3∑

i=1

λ2i = λ21 + λ22 + λ23.

Because

λ21 + λ22 + λ23 = (λ1 + λ2 + λ3)2 − 2(λ1λ2 + λ1λ3 + λ2λ3) = e1(λ)2 − 2e2(λ)

the polynomial p(A) is

p(A) = p1(A)2 − 2p2(A) = P (p1(A), p2(A)). (6.4.5)

Let

A =




1 2 1
0 1 1
0 2 1



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then the eigenvalues to A are

λ1 = 1, λ2 = 1 +
√

2, λ3 = 1−
√

2.

In the elementary symmetric polynomials we can express the square of the sum
of the eigenvalues, 12 + (1 +

√
2)2 + (1−

√
2)2, as

(1+1+
√

2+1−
√

2)2−2
(

(1 +
√

2) + (1−
√

2) + (1 +
√

2)(1−
√

2)
)

= e1(λ)2−2e2(λ).

We then get the polynomial p(A) as

p(A) = (1 + 1 +
√

2 + 1−
√

2)2 − 2
(

(1 +
√

2) + (1−
√

2) + (1 +
√

2)(1−
√

2)
)

=

= P (1 + 1 +
√

2 + 1−
√

2, (1 +
√

2) + (1−
√

2) + (1 +
√

2)(1−
√

2))

which is (6.4.5) with

p1(A) = 1 + 1 +
√

2 + 1−
√

2

p2(A) = (1 +
√

2) + (1−
√

2) + (1 +
√

2)(1−
√

2).
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7 Conclusion and Discussion

Conclusion:

Let Mn be the set of all n × n-matrices over C, and let G be the set of all
invertible matrices in Mn. Then G is a group under matrix multiplication, called
the general linear group over C, GL(n,C). The group acts on Mn through

G.A = GAG−1.

The linear transformation fσ acts on an arbitrary vector ~v ∈ V as

(fπfτ )(~v) = fπτ (~v).

For our specific groups, the symmetric group of degree n, Sn and the general
linear group of degree n over C, GL(n,C).

Let g be the function from Sn to GL(n,C)

g : Sn → GL(n,C)

g : σ 7→ fσ

}
σ ∈ Sn, fσ ∈ GL(n,C).

The function g is a group homomorphism from Sn to GL(n,C).

We then have concluded that the group actions of A on Mn, will result in

Aσ.B = AσBA
−1
σ gives

(
AσBA

−1
σ

)
ij

= bσ−1(i)σ−1(j)

Aσ.B = AσB gives (AσB)ij = bσ−1(i) j

Aσ.B = BA−1σ gives
(
BA−1σ

)
ij

= bi σ−1(j) .

A polynomial function
p : Mn → C

is a function that originates in a polynomial, that is a polynomial in the elements
of the matrix. And we have seen that the special invariants to GL(n,C) that
are polynomials in the elements of the matrix A ∈ Mn, have the property

p(BAB−1) = p(A); ∀ A ∈ Mn, ∀ B ∈ GL(n,C)

we have showed that all invariants to matrices can be written in terms of the
special invariants.

For diagonal matrices Dn ⊂ Mn, we showed this in Theorem 5.1, and we got

p(D) = p(diag(d1, d2, . . . , dn)) = P (p1(D), p2(D), . . . , pn(D)).

We then extended the argument to diagonalizable matrices Hn ⊂ Mn, which
gave us

p(H) = P (p1(TDT−1), p2(TDT−1), . . . , pn(TDT−1)) =

= P (p1(H), p2(H), . . . , pn(H)).
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For the case of all square matrices, we looked at the set of diagonalizable ma-
trices with n distinct eigenvalues Nn ⊂ Mn, and with the discriminant to the
characteristic polynomial to A, pA(t) we could expand Nn to the whole of Mn.
This gave us, with the addition of the polynomial function G(A), gave us the
result for all matrices A ∈ Mn

p(A) = P (p1(A), p2(A), . . . , pn(A)), ∀ A ∈ Mn .

Discussion:

This is a remarkable result! That we can describe all invariants, the elements
of the ring P(Mn)G, with the special invariants pi(BAB

−1) = pi(A).

Though it is outside the scope of this thesis, an interesting continuation of this
argument would be to investigate the orbits of the group action. This would
give us a way to categorize the orbits or to give specific elements in them, and
determine if two matrices in Mn are elements in the same orbit. The result we
have arrived at gives us the first important step needed to try and categorize
the orbits.

Another interesting question to look at would be if the invariants does separate
the orbits, that is if there for two orbits O1 and O2 always exists an invariant
function f such that

f(O1) 6= f(O2).

If we look at the most basic case of 2× 2-matrices, the invariants are

p1(A) = tr(A)

p2(A) = det(A).

They do separate the orbits corresponding to matrices with two distinct eigen-
values. Let for example A and B be two 2 × 2-matrices with two distinct
eigenvalues

A =

(
1 0
0 2

)
, B =

(
3 0
0 4

)

then we have

p1(A) = tr(A) = 1 + 2 = 3

p2(A) = det(A) = 2

p1(B) = tr(B) = 3 + 4 = 7

p2(B) = det(B) = 12
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and the invariants does separate the orbits of A and B

p1(OA) 6= p1(OB)

p2(OA) 6= p2(OB).

When we have 2× 2-matrices with a double eigenvalue, one eigenvalue of mul-
tiplicity two, we can for example see that

E2 =

(
1 0
0 1

)
, and A =

(
1 1
0 1

)

have the same eigenvalue, 1, of multiplicity two. So the invariants will have the
same value on the orbits of E2 and A

p1(A) = tr(A) = p1(E2) = tr(E2) = 2

p2(A) = det(A) = p2(E2) = det(E2) = 1 .

But since the identity matrix E2 forms an orbit on its own, an orbit with only
the element E2

OE2 = E2 ,

the matrices E2 and A are not conjugated, there exists no matrix G such that

GE2G
−1 = A .

This means that even though the invariants evaluates to the same value in both
cases

f(OE2
) = f(OA),

the orbits are still distinct from one another

OE2 6= OA

and the invariants does not separate the orbits in this case.

On the other hand there exists matrices in the orbit of A that lies arbitrarily
close to E2, since A is conjugate to the matrix

(
1 x
0 1

)
, ∀x 6= 0.
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