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Within the field of algebraic combinatorics, there has been some recent
interest in the bijective correspondence between families indexed by Catalan
objects. In this thesis, we look at three such families: acyclic orientations,
rook placements and perfect matchings. We search for bijections between
these three families, and we use q-analogs to refine our results. We are
particularly interested in bijections which behave well with respect to such
q-analogs. We find that these families are in bijective correspondence, and
we propose using this correspondence to assist future advances in some
well-known open problems of the field, for example the Stanley–Stembridge
Conjecture.
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1 Introduction
The Catalan numbers, C0, C1, C2, C3, . . . , form the infinite sequence 1, 1, 2, 5,
14, 42, 132, 429, 1430, . . . , and within the field of combinatorics, this well-known
sequence seem to appear just about anywhere and everywhere [Sta15]. Broadly
speaking, Catalan numbers count the number of elements in the sets of various
families, including Dyck paths, binary trees, ballot sequences, perfect matchings
and many more, see Fig. 1. These Catalan families are commonly referred to as
Catalan objects, for the sake of simplicity. Readers unfamiliar with these objects
need not to worry, as they will be properly defined in Chapter 2.3.

Figure 1: Examples of objects counted by the Catalan num-
bers. a) Dyck paths, b) binary trees, c) area sequences and
unit interval graphs, d) perfect matchings (non-crossing), e)
valid parenthesis words, f) Ferrers boards.

In mathematics, a family is generally understood as a “set of sets”, and a Catalan
family, Cat = (Cat1,Cat2,Cat3, . . . ), is defined as a family, such that Cati has
cardinality Ci, where Ci the i:th Catalan number. For example, let the Catalan
family Dyck = (Dyck1,Dyck2,Dyck3, . . . ) be the family of Dyck paths of size
(1, 2, 3, . . . ). It follows that each set Dycki is restricted to Dyck paths of size i,
and that the cardinality of Dycki is Ci, see Fig. 2. Note that the cardinality of
a set is just the number of elements in the set.

Figure 2: The C3 = 5 Dyck paths of Dyck3, i.e. the set of
Dyck paths from (0, 0) to (3, 3).

Since the cardinality of every Catalan set Cati is Ci for all i ≥ 0, all Catalan
objects have a one-to-one correspondence on element-, set- and family level. In
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other words, Catalan objects are in bijective correspondence, see Fig. 3. We use
the terms corresponding elements, corresponding sets and corresponding families
whenever we wish to describe these bijective relations.

Catalan Object A Catalan Object B

Figure 3: One-to-one correspondence on element level (black),
set level (blue), and family level (green), i.e. a bijection.

The described bijective correspondence is sometimes easy to perceive, and at
other times a bit harder to grasp using pure intuition, see Fig. 4. Such bijections
have been thoroughly examined, for example in [Sta15].

Figure 4: Bijections between the C3 Dyck paths from (0, 0) to
(3, 3), the C3 valid parenthesis words of length 6, the C3 ways
to build a classic house of cards with 3 units in the bottom
row, and the C3 non-crossing perfect matchings of 6 points
on a circle.
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In this thesis, we are not primarily interested in Catalan objects per se, but
rather certain families indexed by Catalan objects, that is {FamD : D ∈
Cati for some i}, for which we introduce the name C-Indexed families or CIF:s.
More specifically, we will look at the following C-Indexed families:

• Acyclic Orientations (AO), indexed by the Catalan object unit interval
graphs (UIG).

• Rook Placements (RP), indexed by the Catalan object Ferrers boards
(FB).

• Perfect Matchings (PM), indexed by the Catalan object perfect match-
ing starting points (PMSP).

Just as with Catalan objects, these families are in bijective correspondence,
although it is not intuitively apparent. Some of this correspondence have been
studied earlier, for example in [AP18]. However, to our knowledge, there is
no publication which summarises these observations. In this thesis, our main
interest is to illuminate certain bijections between the three families listed above.

To be more specific, in Chapter 4 we will look at the following: Consider
the Catalan objects unit interval graphs, Ferrers boards and perfect matching
starting points, and let UIGa, FBa, and PMSPa be three corresponding elements
in these Catalan families, see Fig. 5. For now, we simply state that these three
elements are corresponding, since they all correspond to the same area sequence
a = (a1, a2, a3, . . . , an), defined in Chapter 2.3. However, we will define this
correspondence properly in Chapter 4.

UIGa FBa PMSPa

Figure 5: Three corresponding Catalan elements.

These three corresponding elements index the set of Acyclic Orientations AO(UIGa),
rook placements RP(FBa), and perfect matchings PM(PMSPa). Since UIGa, FBa
and PMSPa are corresponding Catalan elements, we prefer to simplify the no-
tation, and so we write AO(a), RP(a) and PM(a). Figure 6 shows one arbitrary
element of each such set, i.e. one acyclic orientation ϑ ∈ AO(a), one rook place-
ment Ψ ∈ RP(a) and one perfect matching Ω ∈ PM(a).
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ϑ ∈ AO(a) Ψ ∈ RP(a) Ω ∈ PM(a)

Figure 6: One acyclic orientation ϑ ∈ AO(a), one rook place-
ment Ψ ∈ RP(a) and one perfect matching Ω ∈ PM(a).

Notably, we find that the cardinality of these sets coincide for every area sequence
a, that is

|AO(a)| = |RP(a)| = |PM(a)| =
n∏

i=1
(ai + 1) . (1)

This implies that these families are in bijective correspondence. However, al-
though (1) is a noteworthy result, we are interested in refining this result, by
not only considering the cardinality of the sets, but also certain statistics within
the sets.

Each single orientation ϑ ∈ AO(a) has some number of ascending edges (asc).
We can refine (or simply sort) our set AO(a) using the number of ascending
edges in each orientation ϑ as statistics, so that

AO(a) = {ϑ : asc(ϑ) = 0} ∪ {ϑ : asc(ϑ) = 1} ∪ {ϑ : asc(ϑ) = 2} . . . .

Likewise, we can refine RP(a), using the number of inversions (inv) in each rook
placement Ψ as statistics, so that

RP(a) = {Ψ : inv(Ψ) = 0} ∪ {Ψ : inv(Ψ) = 1} ∪ {Ψ : inv(Ψ) = 2} . . . ,

and we can refine PM(a), using the number of inversions crossings (cr) in each
perfect matching Ω, as statistics, so that

PM(a) = {Ω : cr (Ω) = 0} ∪ {Ω : cr (Ω) = 1} ∪ {Ω : cr (Ω) = 2} . . . .
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As we will see in Chapter 3, q-analogs are highly suitable for describing such
refinements. We define our q-analogs

|AO(a)|q =
∑

ϑ∈AO(a)

qasc(ϑ) , (2)

|RP(a)|q =
∑

Ψ∈RP(a)

qinv(Ψ) , (3)

|PM(a)|q =
∑

Ω∈PM(a)

qcr(Ω) . (4)

In (2), q0 means acyclic orientations ϑ ∈ AO(a) with 0 ascending edges, q1 acyclic
orientations ϑ ∈ AO(a) with 1 ascending edge, and so on. The fundamentals of
q-analogs and q-counting are explained in Chapter 3, for readers not familiar
with these concepts.

Remarkably, we find that (2), (3) and (4) coincide, so that

|AO(a)|q = |RP(a)|q = |PM(a)|q =
n∏

i=1
[ai + 1]q . (5)

This result refines the statement in (1), and it provides a strong indication of a
more general bijective correspondence between these three C-Indexed families,
see Fig. 7.

Figure 7: Schematic illustration of the bijections discussed in
this thesis.
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These findings are beautiful as they are, but they might also be useful for solving
some well-known open problems within the field of algebraic combinatorics, for
example the Stanley–Stembridge Conjecture [SS93], [Sta95]. The core of this
problem relates to acyclic orientations. However, in the light of (5), it might be
more fruitful to consider a corresponding family instead. This will be further
expanded on in Chapter 5.

This thesis provides an overview of the bijections outlined above, with particular
focus on the construction of transparent proofs and explanation models. A
background on the properties of Catalan numbers is provided in Chapter 2, and
q-analogs are explained in Chapter 3.
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2 Introduction to Catalan Numbers
In order to understand the bijections between C-Indexed families, we first need
to review the fundamental properties of Catalan numbers. Readers already
familiar with these properties may browse this chapter.

2.1 Definition
The most historically important definition of Catalan numbers comes from
counting triangulations of polygons [Sta15]. It is easy to show that a regular
polygon with n edges, Pn, always has (n− 3) non-intersecting diagonals. The
polygon Pn is said to be triangulated when a complete set of such non-intersecting
diagonals are drawn within the polygon, thus dividing the polygon into (n− 2)
smaller triangles, see Fig. 8.

Figure 8: One possible triangulation of P5 into 3 triangles,
using 2 non-intersecting diagonals.

Consequently, the polygon Pn+2 is triangulated into n triangles, using (n− 1)
diagonals, see Fig. 9. In polygons with more than three sides, i.e. when n > 1,
the triangulation could be achieved in more than one way. Define the n:th
Catalan number (Cn) as the number of ways to triangulate a regular polygon with
(n+ 2) edges.

Figure 9: One possible triangulation of Pn+2 into n triangles,
using n−1 non-intersecting diagonals. The number of ways to
triangulate Pn+2 is given by the n:th Catalan number (Cn).
Hence, P6 can be triangulated in C4 ways.
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Even though there is no obvious interpretation of how to triangulate a 2-gon,
C0 is set to 1, see Fig. 10.

Figure 10: “Triangulation” of P2. C0 is set to 1.

2.2 Recurrence Relation
The Catalan numbers, C0, C1, C2, C3, . . . , form the infinite sequence 1, 1, 2, 5,
14, 42, 132, 429, 1430, 4862, 16796, . . . , which satisfies the recurrence explained
below.

As stated above, C0 is set to 1, and since a polygon with three sides (P3) can be
triangulated in exactly 1 way, C1 = 1, see Fig. 11.

Figure 11: C1 = 1.

As we add more sides to a polygon, it is helpful to think of the regular polygon
Pn+2 as a combination of two smaller polygons, Qa and Qb, by removal of some
edge e, see Fig. 12. Note that a, b ≥ 2 and that, since Qa and Qb have one
mutual vertex, a + b = n + 3. This means that if Qa has 2 edges, Qb has
n + 1 edges, and if Qa has 3 edges, Qb has n edges, and so on. Since Qa is a
polygon, it can be internally triangulated in Ca−2 ways and, naturally, this is
the case for Qb as well. Hence, according to the multiplication principle, each
combination of Qa and Qb can be triangulated in Ca−2 · Cb−2 ways, and the
number of ways to triangulate the larger polygon Pn+2 is equal to the sum of all
of these triangulated combinations of Qa and Qb.
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Figure 12: A regular polygon as a combination of two smaller
polygons, Qa and Qb.

Although it seems like we have found the principle for the recurrence already, we
choose to proceed slowly, building our case step by step. We thus continue with
P4. Starting at one of the vertices connected to e, P4 is either a combination of
first a 2-gon and then a 3-gon, or first a 3-gon and then a 2-gon, both alternatives
shown in Fig. 13. The number of ways to triangulate the larger polygon P4 is
equal to the sum of all such triangulated combinations of Qa and Qb. Thus,
C2 = C0C1 + C1C0 = 1 · 1 + 1 · 1 = 2.

QaQa

Qb

Qb

ee

Figure 13: C2 = 2.

Similarly, P5 is either a combination of first a 2-gon and then a 4-gon, two
3-gons, or first a 4-gon and then a 2-gon, see Fig. 14. As we have seen, each
4-gon can be triangulated in C2 = 2 ways. Thus, C3 = C0C2 + C1C1 + C2C0 =
1 · 2 + 1 · 1 + 2 · 1 = 5.

Qa Qa
Qa QaQb Qb

Qb Qb

e e e ee

Qa
Qb

Figure 14: C3 = 5.

The same argument can be used for any n ≥ 0, and we see that Cn+1 is always
the sum of such mutually dependent combinations of C0 through Cn. Hence,

Cn+1 = C0Cn + C1Cn−1 + · · ·+ CnC0 =
n∑

k=0
Ck Cn−k . (6)
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2.3 Some Famous Catalan Objects
Although the family of triangulated polygons gives important historical back-
ground to Catalan numbers, it is not the most studied object. In fact, many other
Catalan objects reveal the properties of Catalan numbers in a more intuitive
and useful manner. Some of the most well-known objects are introduced in this
section. For a more comprehensive list, see [Sta15].

2.3.1 Valid Parenthesis Words

A valid parenthesis word is a sequence of 2n parenthesis signs, “(” or “)”, arranged
in a valid order, according to the rules of parenthesis pairing. For example, (())()
is one of the valid words of length 6, whereas ())()( is not.

Proposition 1. The set of valid parenthesis words of length 2n has cardinality
Cn.

Proof. We note that any valid word must consist of an equal number of left and
right signs, and thus we think of the word as consisting of n pairs of left/right
signs. It is also evident that any such pair must start with a left parenthesis sign.
Let A and B be sets of such valid pairs, and note that A and B can be empty.
We realise that any valid word with n ≥ 1 could be written on the form (A)B,
i.e. where set A is locked within a fixed pair f . Since f is fixed, |A|+ |B| = n−1,
so if set A contains k pairs, set B contains n− k − 1 pairs.

Let C ′n be the number of valid pairings of n parenthesis pairs. It is obvious that
C ′0 = 1, since there is exactly 1 way to arrange an empty set. A word with 1
pair (C ′1) uses only the fixed pair f with two empty sets A and B. We have just
learned that any empty set could be internally arranged in C ′0 = 1 ways, and
so the number of valid pairings using two empty sets equals C ′0 · C ′0 = 1 · 1 = 1,
according to the multiplication principle.

In a word with 2 pairs, we use f and one more pair, which could be placed either
in set A or B. We know that if A contains k pairs, set B contains n − k − 1
pairs, so if we choose B, we have that k = 0 and n− k − 1 = 1. We have just
learned that the number of ways to internally arrange a set with 1 pair is C ′1 = 1,
and so the number of valid pairings when choosing B is C ′0 · C ′1 = 1 · 1 = 1,
according to the multiplication principle. If we choose A instead, k = 1 and and
n− k − 1 = 0 and we have C ′1 · C ′0 = 1 · 1 = 1. Thus, the total number of ways
to arrange 2 pairs of parenthesis is C ′0 · C ′1 + C ′1 · C0 = 2.

In a word with 3 pairs (C ′3), we use f and two more pairs. We can choose to place
both in A, both in B, or 1 in each set. Whenever 2 in a set, these can be internally
arranged in C ′2 ways. Thus, C ′3 = C ′0 · C ′2 + C ′1 · C ′1 + C ′2 · C ′0 = 2 + 1 + 2 = 5.
The same argument can be used for words with any n number of pairs, for n ≥ 0.
We see that C ′n+1 is always the sum of such mutually dependent combinations
of C ′0 through C ′n. Consequently, the general recurrence is

C ′n+1 = C ′0C
′
n + C ′1C

′
n−1 + · · ·+ C ′nC

′
0 =

n∑

k=0
C ′k C

′
n−k . (7)
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We see that C ′n satisfies the same initial condition and recurrence as Cn, for all
n ≥ 0, see (6). Hence, valid parenthesis words is a Catalan object.

2.3.2 Dyck Paths

Consider a n × n grid, and define a monotonic path from (0, 0) to (n, n) as a
path such that if one horizontal step has direction (x, 0), all horizontal steps
have direction (x, 0), and if one vertical step has direction (0, y), all vertical
steps have direction (0, y). In this thesis, we consistently use monotonic paths
with the allowed steps (1, 0) and (0, 1), i.e. paths that “travel north-east”. Define
a Dyck path as a monotonic path from (0, 0) to (n, n), such that all steps of the
path are above the main diagonal from (0, 0) to (n, n). A Dyck path may touch
the main diagonal, but not surpass it at any time, see Fig. 15.

For practical reasons, monotonic paths are sometimes described as binary words,
where up-steps are represented with 1, and right-steps with 0. Note that this is
just a question of notation, and we do not need to distinguish between a Dyck
path and its corresponding binary word.

Figure 15: The C3 Dyck paths from (0,0) to (3,3), ana-
logue to the C3 binary words (1, 1, 1, 0, 0, 0), (1, 1, 0, 1, 0, 0),
(1, 1, 0, 0, 1, 0), (1, 0, 1, 1, 0, 0) and (1, 0, 1, 0, 1, 0).

Proposition 2. The set of Dyck paths from (0, 0) to (n, n) has cardinality Cn.

Proof. There is an obvious bijection between valid parenthesis words and Dyck
paths. In fact, we can picture a Dyck path as just a graphical illustration of
such a word, where a left sign is represented with an up-step, a right sign with a
right-step. The condition that the pairs are balanced, and must start with a left
sign translates to the restriction of all steps of the path being above the main
diagonal.

2.3.3 Area Sequences

Consider a Dyck path D and define the area sequence, a(D) = (a1, a2, a3, . . . , an)
as the number of intact grid units between D and the main diagonal at row
1, 2, 3, . . . , n, see Fig. 16. We say that ai is the row area at row i. It is obvious
that each Dyck path defines exactly 1 area sequence, and it follows that the set
of area sequences with n rows has cardinality Cn.
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Figure 16: A Dyck path D from (0, 0) to (7, 7), and its
associated area sequence a(D) = (0, 1, 2, 2, 3, 2, 3) in blue.

2.3.4 Non-crossing Perfect Matchings

A perfect matching is a pairing of of 2n elements into n pairs, visualised by
the drawing of n connecting chords between 2n points on a circle. Define a
non-crossing perfect matching as a perfect matching, such that there are no
crossings of the chords. We can picture the set of non-crossing perfect matchings
of 2n points as the possibilities for 2n persons, spread out around a table, to
simultaneously shake hands in pairs of two, without any crossings of arms, see
Fig. 17.

Figure 17: The C3 non-crossing perfect matchings of 6 points
on a circle.

Proposition 3. The set of non-crossing perfect matchings of 2n points on a
circle has cardinality Cn.

Proof. Consider a circle with 2n points, and fix any of these points as our starting
point p. We construct our first pair by connecting point p to some other point
m, using a connecting chord. This divides the remaining points into two subsets,
A and B, see Fig. 18. In order not to break the rules of non-crossing perfect
matchings, m has to be chosen so that there is an even number of points in set
A (and thus in set B), including the option of an empty set. The points of each
of the subsets A and B can now be internally paired, such that there are no
crossings of the connecting chords. It is clear that, for each acceptable point m,
if A contains k pairs of points, B contains n−k−1 pairs of points. It is also clear
that, for each acceptable point m, the number of perfect matchings of the original
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2n points is the product of the number of possibilities to internally pair the
points of A and B. By moving point m to all acceptable positions, all possible
combinations are covered, and we see that the total number of perfect matchings
of the original 2n points is the sum of the products from each acceptable point
m.

Let C ′n be the number of non-crossing perfect matchings of 2n points on a circle.
There is exactly one way to connect the points of an empty set, so C ′0 = 1. When
n = 1, A and B are both empty, and so C ′1 = C ′0 ·C ′0 = 1, see Fig. 18, top. As we
add one more pair of points (i.e. when n = 2) and move m around the circle, this
added pair becomes a part of either A or B, and thus C ′2 = C ′0 ·C ′1 +C ′1 ·C ′0 = 2,
see Fig. 18, middle. Consequently, when n = 3 and m moves around the circle, A
changes from 0 to 1 to 2 while B changes from 2 to 1 to 0. We have just learned
that a set of 2 pairs has C ′2 matchings, so C ′3 = C ′0 · C ′2 + C ′1 · C ′1 + C ′2 · C ′0 = 5,
see Fig. 18, bottom. The same argument can be used for perfect matchings with
any n number of matchings, for n ≥ 0. We see that C ′n+1 is always the sum of
such mutually dependent combinations of C ′0 through C ′n. Consequently, the
general recurrence

C ′n+1 = C ′0C
′
n + C ′1C

′
n−1 + · · ·+ C ′nC

′
0 =

n∑

k=0
C ′k C

′
n−k (8)

follows. We see that C ′n satisfies the same initial condition and recurrence as
Cn, for all n ≥ 0, see (6). Hence, non-crossing perfect matchings is a Catalan
object.

Figure 18: A step-by-step movement of point m generates all
possible combinations of the subsets A and B, for C′

1 (top),
C′

2 (middle) and C′
3 (bottom).
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2.4 Explicit Formula
The explicit formula for the n:th Catalan number is

Cn = 1
n+ 1

(
2n
n

)
, (9)

where
(2n
n

)
is a binomial number.

This equals 1
n+ 1

(2n)!
(n!)2 , and since (n + 1)n! = (n + 1)! , the n:th Catalan

number is sometimes defined as

Cn = (2n)!
(n+ 1)!n! , (10)

or
Cn = 1

2n+ 1

(
2n+ 1
n

)
, (11)

via the equivalence (2n)!
(n+1)!n! = 1

2n+1
(2n+1)!

(n+1)!n! . All three forms (9), (10) and (11)
are common in the literature.

Proof 1. This widespread proof, well explained in [Dav10] for example, uses
Dyck paths and a somewhat developed version of André’s reflection method
[And87], which is a clever method for identifying bad paths from (0, 0) to (n, n),
i.e. monotonic paths from (0, 0) to (n, n) that are not Dyck paths. Note that,
by convention, this proof defines Dyck paths as monotonic paths from (0, 0) to
(n, n), such that all steps of the path are below the main diagonal from (0, 0) to
(n, n). It should be clear that this is just a mirroring of the same property.

The number of monotonic paths from (0, 0) to (n, n) equals the number of ways
to position the n up-steps in the 2n string of steps, which is

(2n
n

)
. Any path

entering the forbidden area above the diagonal at any time is considered a bad
path. Note that a path might illegally surpass the diagonal already at the first
step. As soon as a bad path P has surpassed the diagonal for the first time, we
reflect the remaining steps so that up-steps become right-steps and vice versa,
see Fig. 19.

X

R

Figure 19: Left: The Original path P . Right: The new path
Pr, reflected in point R.
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When a path P has surpassed the diagonal it has used one more up-step than
right-step by definition, and since P in the end has to use n steps of each, the
remaining part of P (after R) contains one more right-step. When this part
is reflected, it will instead contain one more up-step, and thus end in point
X, defined as (n − 1, n + 1). Note that all reflected paths end in point X,
since every bad path must cross the diagonal by definition. Also note that
each bad path is reflected into one distinct path ending in point X. Hence,
the number of paths ending in point X must be equal to, or greater than, the
number of bad paths (since there might be other paths ending in point X
as well). Conversely, since the reflection process is reversible, any monotonic
path from (0, 0) to point X could be reflected into a bad path from (0, 0) to
(n, n). So, using the same argument, the number of bad paths must be equal
to, or greater than, the number of paths ending in point X. However, we have
already seen that |paths (0, 0)→ point X| ≥ |bad paths (0, 0)→ (n, n)|. Hence
|bad paths (0, 0)→ (n, n)| = |paths (0, 0)→ point X|.

The number of bad paths is thus equal to the total number of paths from (0, 0)
to point X, which is

(
n−1+n+1

n+1
)

=
( 2n
n+1
)

=
( 2n
n−1
)
. The number of Dyck paths

from (0, 0) to (n, n) could now be calculated by subtracting the number of bad
paths from the total number of paths from (0, 0) to (n, n), i.e.

(
2n
n

)
−
(

2n
n+ 1

)
=
(

2n
n

)
− 1
n+ 1 ·

(2n)!
n!(n− 1)!

= (2n)!
n!n! −

n

n+ 1 ·
(2n)!
n!n!

= n+ 1
n+ 1 ·

(2n)!
n!n! −

n

n+ 1 ·
(2n)!
n!n!

= 1
n+ 1

(
2n
n

)
, (12)

which is identical to the explicit formula for Catalan numbers, see (9).

Proof 2 (Chung-Feller/Chen). Another, perhaps more interesting, proof pro-
vides a better intuitive understanding of the 1

n+1 part of the formula. The proof
was constructed by Young-Ming Chen in 2008 [Che08], with the purpose of
making a more direct and bijective proof of the famous Chung-Feller Theorem
from 1949 [CWF49], which was analytically proved.

As in proof 1, we consider the
(2n
n

)
monotonic paths from (0, 0) to (n, n), where

Dyck paths are defined as monotonic paths such that all steps of the path are
below the main diagonal from (0, 0) to (n, n). Each monotonic path can exceed
the diagonal by 0, 1, 2, . . . , n vertical steps in total (which obviously equals the
number of exceeding horizontal steps as well). Thus, there are n + 1 distinct
exceedance classes, which we refer to as β0, β1, β2, . . . , βn, see Fig. 20.
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β0 β1 β2

Figure 20: All monotonic paths from (0, 0) to (2, 2), sorted
into the exceedance classes β0, β1 and β2.

A Dyck path belongs to exceedance class β0 by definition, and class β1, β2 . . . βn
contain all the bad paths. If we can prove that there is an equal number of
paths in each class, i.e. that |β0| = |β1| = |β2| = · · · = |βn|, formula (9) follows
immediately, and we are done. Luckily, this statement is exactly the Chung-Feller
Theorem, which Young-Ming Chen provides a bijective proof of.

The central thought of the Young-Ming Chen proof is this: Let us say we find an
algorithm that transforms paths of exceedance class k (with k “flaws”) to paths
of exceedance class k+ 1, and we can show that this algorithm is bijective. Then
all paths of exceedance class k are potential paths of exceedance class k + 1 and
vice versa. Consequently, all paths of exceedance class k + 1 are potential paths
of exceedance class k + 2 and vice versa, and so on up to exceedance class n and
down to exceedance class 0. This is only possible if there is an equal number of
paths in each exceedance class.

Here is the algorithm from exceedance class k to k − 1:

1. Start at (0, 0) and note when the path surpasses the diagonal for the first
time.

2. As the path touches the diagonal again, denote the last horizontal step X.
Also let A be the portion before X, and B the portion after X.

3. Construct the path B −X −A (Swap A and B).

Figure 21: The clever algorithm by Young-Ming Chen.

Note that the algorithm is reversible. We leave it as a fun exercise for the reader
to verify the algorithm, and to sort all the monotonic paths from, let us say,
(0, 0) to (3, 3) into the relevant exceedance classes, using the algorithm.
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This proof makes it clear that Catalan numbers actually count the number of
monotonic paths in each exceedance class β (and Dyck paths is just one of these
classes).
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3 Using q-analogs
Within the field of mathematics as a whole, q-analogs are used for a variety of
purposes. In algebraic combinatorics however, we primarily use q-analogs as an
efficient means of providing additional information to a set count with respect
to some statistic we are interested in. In general terms, it is helpful to think of
such a q-analog as describing a refinement, or a set partition with respect to this
chosen statistic. We define a q-analog |S|q on the elements s in a set S, using
stat(s) as statistics, as

|S|q =
∑

s∈S
qstat(s) . (13)

Hence, if our statistic describes outcomes between 0 and n, the q-analog is a
polynomial A1q

0 +A2q
1 +A3q

2 + · · ·+An+1q
n, providing the refined information

that the set S contains A1 elements s such that stat(s) = 0, A2 elements such
that stat(s) = 1, and so on. It is easy to see that for q = 1, the sum of the
polynomial equals the cardinality of the set.

Example 4. Let us say we have a set Buck of 7 distinct buckets b with some
balls in them: 2 buckets have 0 balls, 3 buckets have 1 ball, 1 bucket has 2 balls
and 1 bucket has 3 balls, see Fig. 22. Note that we already know that these
buckets are distinct, and that the cardinality of Buck thus is 7. For some reason
we are particularly interested in communicating how many buckets have 0 balls,
how many have 1 ball etc. We do this by q-counting Buck, using the statistic
nb(b), i.e. “number of balls in bucket” . Using (13) we have that

|Buck|q =
∑

b∈Buck
qnb(b) = 2q0 + 3q1 + 1q2 + 1q3 = 2 + 3q + q2 + q3 .

We see that the q-analog describes our desired additional information, and that
if we set q = 1, the q-analog returns the total sum 7.

Figure 22: Seven distinct buckets.

The use of q-analogs becomes much more interesting when our statistic of interest
is added as a series of independent choices. Note that this time we do not know
the cardinality of the set (i.e. the number of distinct buckets) nor the number of
balls in each bucket beforehand.

Example 5. Let us say we have one empty bucket, and we are given a number
of specific choices to fill this bucket with balls. At choice 1 we are given three
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alternatives: add 0, 1 or 2 green balls. At choice 2 we are given two alternatives:
add 0 or 1 blue ball, see Fig. 23. How many distinct buckets can we construct?
and how is the statistic number of balls in bucket distributed within this set of
distinct buckets? Well, it is trivial to see that the number of distinct buckets,
|Buck|, is 3 · 2 = 6, according to the multiplication principle. However, this does
not tell us anything about the number of balls in each bucket.

Figure 23: Top: Choice 1. Middle: Choice 2. Bottom: The
set of 6 distinct buckets as a result of two independent choices.

The multiplication principle is really just parenthesis multiplication according to
the distributive law, and so we could equally well write |Buck| = (1+1+1)(1+1) =
1 + 1 + 1 + 1 + 1 + 1 = 6. In this way, it is more apparent that, for example, the
last “1” in the first parenthesis represents the alternative “2 green balls”, and
the last “1” in the second parenthesis represents the alternative “1 blue ball”.
The multiplication of these two alternatives represents the bucket with three
balls, which is one of the 6 elements in Buck, i.e. one of the 6 distinct buckets.

However, in the parenthesis, “1” means simply “1 alternative”, regardless of how
many balls this alternative represents, and when we multiply “1” with “1”, we
get “1”. Hence, we still do not know the number of balls in each bucket. This is
because we lack the refined information held in nb(b). We realise that we can
refine our parenthesises by rewriting (1 + 1 + 1 + . . . ) as (q0 + q1 + q2 + . . . ),
and since exponentials are added under multiplication (qm · qn = qm+n), this
will bring our statistic nb(b) to the count. Hence,

|Buck|q = (q0 + q1 + q2)(q0 + q1) = (1 + q + q2)(1 + q)
= 1 + q + q + q2 + q2 + q3

= 1 + 2q + 2q2 + q3.
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We see that the q-analog describes our desired additional information, see Fig.
23, and that if we set q = 1, the q-analog returns the total sum 6. Note that
the q-analog is a refinement of the statistic number of balls in bucket. The
information of which ball came from which choice (i.e. the color in our example)
is not held in the q-analog.

In general terms, for any integer k > 0, we define the q-analog [k]q of k as
[k]q = q0 + q1 + q2 + · · ·+ qk−1. It follows that, just as in Example 5, when we
have the exact a+ 1 alternatives of adding {0, 1, 2, . . . , a} balls (or whatever is
our chosen statistic), the q-analog is defined as [a + 1]q = q0 + q1 + q2 + · · ·+ qa.
Hence, when the statistic of our interest is a result of a series of n independent
choices, such that choice i has the exact ai + 1 alternatives {0, 1, 2, . . . , ai}, we
define the q-analog |S|q on the set S as

|S|q =
n∏

i=1
[ai + 1]q . (14)
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4 C-Indexed Families
Let us now proceed to the main section of this paper. As stated in the introduc-
tion, the set of acyclic orientations AO(a), rook placements RP(a), and perfect
matchings PM(a) correspond to the same area sequence a = (a1, a2, a3, . . . , an),
defined in Chapter 2.3. In this chapter, we will look more closely at this corre-
spondence. We begin by examining the exact relation between a Dyck path D
and its associated area sequence a.

Definition 6. Let D be a Dyck path from (0, 0) to (n, n). In Chapter 2.3, we
defined a(D) = (a1, a2, a3, . . . , an) as the area sequence associated to D, where
ai is the row area at row i, for each i ∈ {1, 2, 3, . . . , n}. In D, there are n
up-steps and n right-steps. There is exactly 1 up-step per row. Define ui as
the up-step at row i, and define si as the index of ui in the 2n Dyck path, thus
forming the sequence s(D) = (s1, s2, s3, . . . , sn). For example, the Dyck path
D = (1, 1, 0, 1, 0, 1, 0, 0) has 4 up-steps, u1, u2, u3 and u4. Up-step u1 has index
1, u2 has index 2, u3 has index 4 and u4 has index 6 in D, so s1 = 1, s2 = 2,
s3 = 4 and s4 = 6, thus forming the sequence s(D) = (1, 2, 4, 6), see Fig. 24, left.

Also, define a lost square as any grid unit above the Dyck path and define
Dmax as the unique Dyck path from (0, 0) to (n, n), such that si = i for all
i ∈ {1, 2, 3, . . . , n}, or equivalently: the number of lost squares at row i equals 0,
for all i ∈ {1, 2, 3, . . . , n}, see Fig. 24.

Figure 24: Left: The Dyck path D = (1, 1, 0, 1, 0, 1, 0, 0) has
1 lost square at row 3, and 2 lost squares at row 4. Right:
Dmax .

Lemma 7. For a given Dyck path D from (0, 0) to (n, n), let ai be the row area
at row i, and let si be the the index of the i:th up-step ui in D. Then

ai = 2i− 1− si , (15)

for each i ∈ {1, 2, 3, . . . , n}.

Proof. By definition, a Dyck path D from (0, 0) to (n, n) has n up-steps
u1, u2, u3, . . . , un, with exactly one up-step per row. We have defined si as
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the index of ui in D. Roughly speaking, the index si tells us “how early or late”
the Dyck path moves from row i to row i+ 1. Hence, si has a direct impact on
the row area at row i.

Let us now consider the unique Dyck path Dmax . By definition, the number of
lost squares at row i in Dmax equals 0, for all i ∈ {1, 2, 3, . . . , n}. Hence, the
row area at row i in Dmax is i − 1 (i.e. all units above the diagonal at row i).
We know that Dmax occurs exactly when si = i for all rows i, i.e. when all the
up-steps comes first in D.

We now consider some other Dyck path D′, so that D′ 6= Dmax . In D′, si 6= i for
some i. To be more specific, since the i:th up-step cannot be positioned before
we even reach row i, we must have that si > i for some i. Whenever si > i, lost
squares are induced at row i, so in D′ there must be lost squares at row i. The
number of lost squares at row i of D′ equals the difference between the “earliest
possible scenario” of Dmax and the actual scenario of D′, which is exactly si − i,
see Fig. 24.

The same argument can be used independently for any row of any Dyck path.
Hence, the row area ai at row i for some Dyck path D equals the row area
of Dmax at row i minus the number of lost squares at row i, which equals
i− 1− (si − i) = 2i− 1− si.

Definition 8. Define the column area sequence, b = (b1, b2, b3, . . . , bn) as the
number of intact grid units between a Dyck path and the main diagonal from
(0, 0) to (n, n), at column 1, 2, 3, . . . , n.

Lemma 9. Let a = (a1, a2, a3, . . . , an) be the area sequence corresponding to a
Dyck path D, and let b = (b1, b2, b3, . . . , bn) be the column area sequence of the
same Dyck path D. Then b is a permutation of a.

Proof. This Lemma is easily understood through induction. Consider a Dyck
path where there are no lost squares, as in Fig. 25, left. Due to the symmetric
construction it is evident that sequences a and b are permutations of each other.
They contain the same values, although in reverse order. Let us now introduce
lost squares, one by one. The first lost square can only be introduced at one
position, see Fig. 25, middle. When this lost square is introduced, the largest
value of a and b diminishes by 1. Hence, a and b are still permutations.

We now introduce another lost square, as in Fig. 25, right. Let x the horizontal
distance between the lost square and main diagonal, measured in area units.
Now one element in a changes from value x + 1 to x. However, in the figure,
we see that the vertical distance between the lost square and main diagonal is
also x, which means that one element in b changes from value x + 1 to x as
well. Hence, a and b are still permutations. This was not due to pure luck,
but a direct consequence of the definition of the diagonal as the line where row
position equals column position. So, from any square in the grid, the horizontal
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distance to the diagonal equals the vertical distance to the diagonal. Hence, for
every introduced lost square, sequence a and b will always be permutations of
each other.

Figure 25: Left: a = (0, 1, 2, 3, 4) and b = (4, 3, 2, 1, 0).
Middle: a = (0, 1, 2, 3, 3) and b = (3, 3, 2, 1, 0).
Right: a = (0, 1, 2, 2, 3) and b = (2, 3, 2, 1, 0).

4.1 Acyclic Orientations on Unit Interval Graphs
The area sequence a = (a1, a2, a3, . . . , an) of a Dyck path, uniquely defines a unit
interval graph, UIGa, where the squares on the main diagonal represent vertices
1, 2, 3, . . . , n (counted from the bottom left and upwards to the right). An area
sequence unit (blue square) in the horizontal/vertical crossing of two vertices
corresponds to an edge between these vertices. Thus, the unit interval graph
to the left in Fig. 26 corresponds to the traditional graph drawing to the right.
Outside the limitations of this thesis, it should be mentioned that unit interval
graphs are traditionally defined through counting overlapping unit intervals on
integers, hence the name. However, area sequences give an alternative definition,
see [AP18].

4

1

2

3

5

6

7

Figure 26: Left: The area sequence a = (0, 1, 2, 2, 3, 2, 3) de-
fines a unit interval graph, UIGa. Right: Traditional drawing
of the same graph UIGa.

By assigning an orientation to all edges of our graph UIGa, it turns into a directed
graph with an orientation θ, see Fig. 27. The orientation of any single edge is
either ascending (oriented from vertex α → β, where α < β), or descending
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(α→ β, where α > β). An orientation θ on UIGa may, or may not, contain cycles.
Define a cycle as a subgraph of UIGa, where the orientation θ provides a directed
path from some vertex u to some vertex v and a directed path from vertex v to
vertex u, with u 6= v. Define an acyclic orientation, ϑ, as an orientation with no
cycles.

4 4

1 1

2 2

3 3

5 5

6 6

7 7

Figure 27: Left: One acyclic orientation on UIGa for a =
(0, 1, 2, 2, 3, 2, 3). Edge 1→ 2 is ascending and edge 5→ 3 is
descending. Right: By reversing the orientation of edge 2→ 5,
the two cycles 5→ 2→ 4→ 5 and 5→ 2→ 4→ 7→ 5 are
created on UIGa.

Let us now introduce the set of acyclic orientations on UIGa.

Definition 10. Define AO(a) as the set of acyclic orientations on the unit
interval graph UIGa, corresponding to the area sequence a. For any given
acyclic orientation ϑ ∈ AO(a), define asc(ϑ) = (asc1, asc2, asc3, . . . , ascn) as
the sequence counting the number of ascending edges pointed at vertex i ∈
{1, 2, 3, . . . , n} in UIGa. Also, define asc(ϑ) as the total number of ascending
edges in ϑ, i.e. the sum of the sequence asc(ϑ). Note that asc(ϑ) is a vector, and
asc(ϑ) is an integer.

Remark 11. If not restricted to acyclic orientations, there might be more than
one orientation corresponding to the same asc-sequence.

Figure 28: Two orientations, θ1 and θ2, that give the same se-
quence asc = (0, 0, 1, 1, 1). Ascending edges are marked with
right-arrows in the diagram. Edges that are not ascending,
are descending.
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Definition 12. We prepare for Lemma 13 with a few definitions: In a unit
interval graph UIGa with n vertices, define subi as the subgraph consisting of
vertex i and its connected vertices v, such that v < i, i.e. all the vertices prior to
vertex i such that they are connected to vertex i. Define presubi as the subgraph
subi without vertex i. For example, in Fig. 28, sub5 is the subgraph containing
vertices 2, 3, 4 and 5, and presub5 is the subgraph containing vertices 2, 3 and 4.

Also, define complete graphs as graphs where every distinct pair of vertices is
connected by a unique edge. In graph theory, it is well-known that an acyclic
orientation of a complete graph defines a total ordering on its vertices, so that
the in-degree of every vertex in the graph is distinct. (The in-degree of a vertex
v is just the number of edges pointed at v).

Lemma 13. Consider the the set of acyclic orientations AO(a) on the unit
interval graph UIGa, corresponding to the area sequence a, and let asc(ϑ) =
(asc1, asc2, asc3, . . . , ascn) be the sequence counting the number of ascending
edges pointed at vertex i in each acyclic orientation ϑ ∈ AO(a). Then each
distinct sequence asc(ϑ) uniquely defines one acyclic orientation ϑ.

Proof. Consider an orientation of a graph with n vertices. It is trivial to see
that, for n = 1, the number of ascending edges is exactly 0. For n = 2, every
orientation has to be acyclic since there cannot be cycles in graphs with less than
3 vertices. It is also evident that the unique edge between vertex 1 and vertex
2 is either ascending or descending, i.e. each acyclic orientation corresponds to
exactly 1 distinct value on asc2. Hence, the Lemma is true for n = 1 and n = 2.

Let us proceed by induction. Consider a unit interval graph UIGa with n vertices,
and let us say we already have an acyclic orientation on the first n− 1 vertices.
Now we want to include vertex n into this orientation, without introducing any
cycles, see Fig. 29, left. We realise that since the [n − 1]-graph is acyclic by
definition, any cycles in UIGa can only be introduced in the subgraph subn, see
Fig. 29, middle.

Due to the restrictions of legal steps in a monotonic path, presubn and subn have
to be a complete graphs, and we know that an acyclic orientation of a complete
graph defines a total ordering on its vertices. Hence, we can picture the acyclic
orientation of presubn as an ordered line, into which vertex n now has to fit. The
number of distinct total orderings of subn is equal to the number of positions we
can choose for vertex n in this ordering, see Fig. 29, right.
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Figure 29: Left: The acyclic graph UIGa, before adding
orientation to vertex n. Middle: UIGa, with the complete
subgraphs subn (within the red dotted line), and presubn
(within the blue dotted line). Right: The total ordering of
presubn, and the possible positions for vertex n.

The subgraph subn is acyclic if, and only if, there is a total ordering on its
vertices, and each distinct total ordering uniquely defines one acyclic orientation.
Hence, the number of ways to add vertex n to the acyclic orientation of the
[n− 1]-graph, equals the number of vertices in subn. Due to the restrictions of
legal steps in a monotonic path, and since the horizontal distance to the main
diagonal always equals the vertical distance to the main diagonal (see proof of
Lemma 9), the number of vertices in subn is always equal to an + 1, see Fig. 29,
left.

Now, let us say we choose position p in this ordering. Then all vertices prior to
p, points at n, and since n > n− 1 > n− 2 . . . , these edges must be ascending
by definition. It is evident that, for each position p, there is a unique number of
vertices prior to p in the ordering. We see that for each of the an + 1 legal ways
to add vertex n to the acyclic graph, there is a unique number {0, 1, 2, . . . , an}
of ascending edges pointed at vertex n in the unit interval graph, i.e. a distinct
value ascn ∈ {0, 1, 2, . . . , an} at index n in the sequence asc(ϑ).

Naturally, the same argument can be used for any row i ∈ {1, 2, 3, . . . , n}, and we
thus see that each distinct sequence asc(ϑ) = (asc1, asc2, asc3, . . . , ascn) uniquely
defines one acyclic orientation ϑ.

An alternative way of looking at Lemma 13, is this: Of all possible orientations
corresponding to the same asc-sequence, exactly 1 is acyclic, see Remark 11.
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Theorem 14. Let AO(a) be the set of acyclic orientations corresponding to the
area sequence a with the column area sequence b, and let |AO(a)|q be the q-analog
of AO(a), with respect to the number of ascending edges (asc(ϑ)) in each acyclic
orientation ϑ ∈ AO(a). Then

|AO(a)|q =
∑

ϑ∈AO(a)

qasc(ϑ) =
n∏

i=1
[ai + 1]q =

n∏

i=1
[bi + 1]q , (16)

for any area sequence a.

Proof. We have defined |AO(a)|q as the q-analog on AO(a), with respect to the
number of ascending edges in each orientation ϑ ∈ AO(a). This is exactly

∑

ϑ∈AO(a)

qasc(ϑ) .

In the proof of Lemma 13, we saw that the number of ways to add vertex n
to an acyclic orientation of a [n− 1]-graph of UIGa, equals an + 1. Let us say
we already have r distinct acyclic orientations before we add vertex n. Each of
these can be combined with the new possibilities at row n. We know that this is
true for any row in the graph (Lemma 13), and we realise that, since the number
of such possibilities at row i is ai + 1 for any row i ∈ {1, 2, 3, . . . , n}, the total
number of acyclic orientations is the product of the possibilities at each row i,
hence

∏n
i=1(ai + 1). From Lemma 13 we have that each acyclic orientation ϑ

uniquely defines one distinct sequence asc(ϑ), such that asci ∈ {0, 1, 2, . . . , ai}
for all i ∈ {1, 2, 3, . . . , n}.

Combinatorically speaking, the rows represent independent choices, and as we
saw in (14), when the statistic ascending edges is the result of a series of n
independent choices, such that the i:th choice has the exact ai + 1 alternatives of
adding {0, 1, 2, . . . , ai} ascending edges, the q-analog is defined as

∏n
i=1[ai + 1]q.

For details on q-analog notation, see (13) and (14).

The q-analog
∏n
i=1[ai + 1]q is the product of a series of independent choices.

Naturally, the order of these choices does not alter the refinement (Chapter 3).
Hence, since the column area sequence b is a permutation of the area sequence
a (Lemma 9),

∏n
i=1[ai + 1]q =

∏n
i=1[bi + 1]q.
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Example 15. Consider the set of acyclic orientations AO(a) on the unit interval
graph UIGa, corresponding to the area sequence a = (0, 1, 2, 2, 1), as in Fig. 30.
Then the number of acyclic orientations ϑ ∈ AO(a) is

n∏

i=1
(ai + 1) = 1 · 2 · 3 · 3 · 2 = 36. (17)

We refine the set cardinality by q-counting this set with respect to the number
of ascending edges in each orientation. Using (16) we have that

|AO(a)|q =
n∏

i=1
[ai + 1]q = (q0)(q0 + q1)(q0 + q1 + q2)(q0 + q1 + q2)(q0 + q1)

= 1q0 + 4q1 + 8q2 + 10q3 + 8q4 + 4q5 + 1q6. (18)

Hence, in this set we have 1 ϑ with no ascending edges, 4 ϑ with one ascending
edge, 8 ϑ with two ascending edges, 10 ϑ with three ascending edges, 8 ϑ with
four ascending edges, four ϑ with five ascending edges and 1 ϑ with six ascending
edges. Any reader with plenty of free time is strongly encouraged to verify this
result. For q = 1, the sum of (18) equals the cardinality of the set, which is 36.

Figure 30: The unit interval graph UIGa, corresponding to
the area sequence a = (0, 1, 2, 2, 1).
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4.2 Rook Placements on Ferrers Boards
Ferrers boards are traditionally used to visualise partitions of some integer n
into m parts, where each part is represented with one row. Thus, a partition
of the integer 7 into the parts 4 + 2 + 1 would generate a Ferrers board with 3
rows of length 4, 2 and 1, see Fig. 31.

Figure 31: One partition of the integer 7, in the form of a
Ferrers board. Note that the actual drawing of a Ferrers board
can be rotated and mirrored.

More specifically, Ferrers boards are subsets of square grids, where each square
has row position i and column position j, i.e. the squares of the board has
coordinates i, j. Now, consider an area sequence a = (a1, a2, a3, . . . , an), as
described in Chapter 4.1, see Fig. 32, left. We define the Ferrers board FBa,
corresponding to a, as the unique Ferrers board containing all the squares with
coordinates restricted by 1 ≤ i ≤ n and n+ 1− (a(n+1−i) + i) ≤ j ≤ n, where
the rows on the Ferrers board are counted from the top, and columns from the
left. Consequently, in FBa, define the row length, ri, of the i:th row from the
top, as a(n+1−i) + i. To avoid confusion, note that r1 is the top row of FBa,
whereas a1 is the bottom row of a. It is clear that each distinct area sequence
a defines exactly one Ferrers board FBa, see Fig. 32, middle. The traditional
interpretation of FBa would be one possible partition of the integer

∑n
i=1 ri into

n parts.

However, over the years, there has also been some interest in the properties
of non-attacking rook placements on Ferrers boards [Sta11]. A non-attacking
rook placement, Ψ, on a Ferrers board FBa with n rows, is a setup of n rooks,
where no single rook can attack any other rook, according to the rules of chess
(i.e. column position u and row position v are distinct in Xu,v, for all rooks
X ∈ FBa), see Fig. 32, right. In this chapter, we are interested in the set RP(a)
of such non-attacking rook placements on the Ferrers board FBa.

Figure 32: Left: The area sequence a in blue. Middle: The
Ferrers board FBa. Right: A rook placement Ψ on FBa.
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Definition 16. Within the context of non-attacking rook placements on Ferrers
boards, define an inversion as one square • of the board, where these three
conditions are met:

1. There is no rook on • .

2. There are no rooks to the left of • in the same row.

3. There are no rooks above • in the same column.

Define inv(Ψ) = (inv1, inv2, inv3, . . . , invn) as the sequence counting the number
of inversions at each row i ∈ {1, 2, 3 . . . , n} of a rook placement Ψ. Also, define
inv(Ψ) as the total number of ascending edges in Ψ, i.e. the sum of the sequence
inv(Ψ). An example is provided in Fig. 33.

Figure 33: A rook placement Ψ, where inv(Ψ) = (2, 2, 1, 0, 0),
and inv(Ψ) = 5.

In Lemma 13, we saw that an acyclic orientation is uniquely defined by the
number of ascending edges in each row. Analogously, a rook placement is
uniquely determined by the number of inversions in each row.

Lemma 17. Consider the set of rook placements using n rooks, RP(a), on the
Ferrers board FBa, corresponding to the area sequence a. For each rook placement
Ψ ∈ RP(a), let inv(Ψ) = (inv1, inv2, inv3, . . . , invn) be the number of inversions
at each row of Ψ. Then Ψ is uniquely defined by inv(Ψ), i.e. for each distinct
inversion sequence, there is one, and only one, rook placement Ψ.

Proof. It is easy to see that there are n! non-attacking rook placements on a
“full” n × n Ferrers board. Since there are n rooks, any rook placement has
exactly 1 rook per row and, placing one rook per row, the first can be placed in
n positions, the second in n− 1 positions etc., all the way down to the last rook,
which can be placed in exactly 1 position. A similar approach can be used for
Ferrers boards derived from any area sequence.

Consider a Ferrers board FBa with row lengths r1, r2, r3, . . . , rn, counted from
the top row, see Fig. 34, left, and note that the row lengths (r1, r2, r3, . . . , rn)
are increasing by definition, so that ri ≤ ri+1 ≤ ri+2 and so on. Since the row
lengths are a(n+1−i) + i, the first rook can be placed in an + 1 positions, the
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second in (an−1 +2)−1 positions, the third in (an−2 +3)−2 and so on all the way
down to the last rook which can be placed in (a1 +n)− (n− 1) positions. Hence,
for any row i ∈ {1, 2, 3, . . . , n}, the number of rook placements is a(n+1−i) + 1.

We now want to prove that, for each given rook placement Ψ, there is a unique
inversion sequence inv(Ψ), and we use the principle of induction. We construct
a rook placement Ψ by adding one rook at a time, starting at row 1. This rook
can be placed in any of the r1 squares, and we choose square x. According to
the definition of inversions, all squares to the left of x are inversions, see Fig.
34, middle. Thus, each position x uniquely defines the number of inversions
at row 1.

Figure 34: Left: The Ferrers board FBa. Middle: Placement
of the first rook at row 1. Squares • are inversions. Right:
The three allowed squares, as1, as2 and as3, at row 2.

We now proceed to row 2. On this row, there are r2 − 1 squares for the rook
to choose from (remembering that the square below x has been disqualified).
Let as1, as2, as3, . . . , as(r2−1) be such allowed squares, numbered from left to
right, see Fig. 34, right. Since the definition of inversions is equivalent to allowed
squares to the left of the rook, choosing as1 is equivalent to having 0 inversions.
If we abandon the alternative as1, and choose as2 instead, as1 becomes an
open square to the left of as2, and thus an inversion. Choosing as2 is therefore
equivalent to having 1 inversion. Consequently, choosing as3 means 2 inversions,
and for the k:th allowed square from the left, there are exactly k − 1 inversions.
Hence, we see that for each rook position at row 2, there is a unique number
{0, 1, 2, . . . , r2 − 2} of inversions at row 2, i.e a distinct inv2.

Naturally, this argument can be repeated for the remaining rows. So, for each
of the a(n+1−i) + 1 rook positions at row i ∈ {1, 2, 3 . . . , n}, there is a distinct
number {0, 1, 2, . . . , ri − i} of inversions at row i. Remember that ri is defined
as a(n+1−i) + i, and so we have that for each of the a(n+1−i) + 1 rook positions
at row i ∈ {1, 2, 3 . . . , n}, there is a distinct number {0, 1, 2, . . . , a(n+1−i)} of
inversions at row i. Since invi is uniquely defined by the rook placement at row
i, the full inversion sequence inv(Ψ) = (inv1, inv2, inv3, . . . , invn) is uniquely
defined by the rook placement at row 1, 2, 3, . . . , n.

34



Theorem 18. Let RP(a) be the set of rook placements corresponding to the area
sequence a, and let |RP(a)|q be the q-analog of RP(a), with respect to the number
of inversions (inv(Ψ)) in each rook placement Ψ ∈ RP(a). Then

|RP(a)|q =
∑

Ψ∈RP(a)

qinv(Ψ) =
n∏

i=1
[ai + 1]q , (19)

for any area sequence a.

Proof. We have defined |RP(a)|q as the q-analog on RP(a), with respect to the
number of inversions in each rook placement Ψ ∈ RP(a). This is exactly

∑

Ψ∈RP(a)

qinv(Ψ) .

According to the multiplication principle, the number of rook placements equals
the product of the possibilities at each row, which is

∏n
i=1(a(n+1−i) + 1), see

Lemma 17. We know that each rook placement Ψ uniquely defines one inversion
sequence inv(Ψ), and that for each of the a(n+1−i) + 1 rook positions at row
i ∈ {1, 2, 3 . . . , n}, there is a distinct number {0, 1, 2, . . . , a(n+1−i)} of inversions
at row i (Lemma 17).

As we saw in (14), when our statistic inversions is a result of a series of
n independent choices, such that the i:th choice has the exact a(n+1−i) + 1
alternatives of adding {0, 1, 2, . . . , a(n+1−i)} inversions, the q-analog is given by∏n
i=1[a(n+1−i) + 1]q. However, the order in which we multiply does not change

the resulting q-analog, and for i ∈ {1, 2, 3 . . . , n}, the rows a(n+1−i) is just the
reverse order of the rows ai. Hence,

∏n
i=1[a(n+1−i) + 1]q =

∏n
i=1[ai + 1]q.

Corollary 19. For any area sequence a,

|RP(a)|q = |AO(a)|q . (20)

Proof. A given area sequence a uniquely determines the q-analog
∏n
i=1[ai + 1]q.

The corollary follows from Theorem 14 and Theorem 18.
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Example 20. Consider the set of non-attacking rook placements RP(a) on the
Ferrers board FBa, corresponding to the area sequence a = (0, 1, 1, 2), as in Fig.
35, left. Then the number of rook placements Ψ ∈ RP(a) is

n∏

i=1
(ai + 1) = 1 · 2 · 2 · 3 = 12. (21)

We refine the set cardinality by q-counting this set with respect to the number
of inversions in each rook placement. Using (19) we have that

|RP(a)|q =
n∏

i=1
[ai + 1]q = (q0)(q0 + q1)(q0 + q1)(q0 + q1 + q2)

= 1q0 + 3q1 + 4q2 + 3q3 + 1q4. (22)

Hence, in this set we have 1 Ψ with no inversions, 3 Ψ with one inversion, 4 Ψ
with two inversions, 3 Ψ with three inversions and 1 Ψ with four inversions. We
encourage the reader to verify this result. For q = 1, the sum of (22) equals the
cardinality of the set, which is 12. According to Corollary 19, this refinement
mirrors the refinement on the set of acyclic orientations AO(a) on the unit interval
graph UIGa, with respect to the number of ascending edges in each orientation
ϑ ∈ AO(a), see Fig. 35, right.

Figure 35: Left: The Ferrers board FBa, corresponding to
. . .Middle: . . . the area sequence a = (0, 1, 1, 2). Right: The
unit interval graph UIGa.
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4.3 Perfect Matchings on PM-Starting Points
As stated earlier, a perfect matching, Ω, is a pairing of of 2n elements into n
pairs, visualised by the drawing of n connecting chords between 2n points on a
circle, see Fig. 36. Such perfect matchings can have one or more crossings, or be
non-crossing. In Chapter 2.3 we saw that non-crossing perfect matchings and
area sequences are Catalan objects, linked by a bijection. In this chapter we
will see that, even though this is true, it is more helpful to think of non-crossing
perfect matchings as just one element in a set of perfect matchings, and that
each such set contains exactly 1 non-crossing perfect matching.

Figure 36: A perfect matching of 12 points into 6 pairs.

Definition 21. Consider a perfect matching Ω of 2n points, and define the
matching array of Ω as an array of the n pairs s1−e1, s2−e2, s3−e3, . . . , sn−en,

Ω =
[
e1 e2 e3 . . . en
s1 s2 s3 . . . sn

]
,

ordered so that the bottom row is strictly increasing, and the top row has the
larger of the two values in each pair, i.e. such that ei > si for all i ∈ [n] and
si < si+1 for all i ∈ [n− 1], see Fig. 37.
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Ω =
[
10 4 7 11 9 12
1 2 3 5 6 8

]

Figure 37: Arbitrary example of a perfect matching Ω, and
the matching array of Ω.

Arranged this way, the bottom row becomes a subsequence of starting points
and the top row a subsequence of ending points. Define s(Ω) = (s1, s2, s3, . . . , sn)
as the sequence of starting points, and e(Ω) = (e1, e2, e3, . . . , en) as the sequence
of ending points in the matching array of Ω. This ordering principle will prove
to be useful, but note that any actual matching Ω is only dependent on its pairs,
and it is thus independent of the ordering of these.

Definition 22. Although we have discussed non-crossing perfect matchings
several times, we have not provided a definition yet. Given the set PM(a),
we define the perfect matching Ω ∈ PM(a) as non-crossing if, and only if,
ei−1 < ei ⇒ ei−1 < si, see Fig. 38. In other words, for every index i in the
matching array of Ω: whenever there are elements x ∈ e(Ω), such that x < ei, to
the left of index i, these elements also need to be such that x < si. In any set of
perfect matchings, we let Ω∗ denote the unique perfect matching of the set.
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Ω∗ =
[
12 11 4 10 7 9
1 2 3 5 6 8

]

Figure 38: The unique non-crossing perfect matching with
starting points s(Ω∗) = (1, 2, 3, 5, 6, 8).

Definition 23. Let ψ be the function defined by the following algorithm:
In a perfect matching Ω of 2n points, start at point 1 and visit each point
i ∈ {1, 2, 3, . . . , 2n} in the numbered order. For each point i, let xi = 1 if the
chord starting at point i is encountered for the first time, and let xi = 0 otherwise.
Construct the binary word x(Ω), see Fig. 39.

Figure 39: The function ψ at work.

Lemma 24. The number of distinct binary words x of length 2n, generated by
the function ψ, equals the n:th Catalan number Cn.

Proof. It is fairly easy to see that the number of distinct binary words generated
by the function ψ is limited by the exact same rules as that of valid parenthesis
words, described in Chapter 2.3. By definition, when we feed any perfect
matching of 2n points into ψ, the output has to be balanced pairs of 1:s and
0:s and, according to the definition of ψ, any such pair must start with a “1”.
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To clarify, balanced pairs means that the total number of 1:s equals the total
number of 0:s, and that, at any index i ∈ {1, 2, 3, . . . , 2n}, the number of 1:s so
far is equal to, or greater than, the number of 0:s so far. The rest follows from
Chapter 2.3. We encourage the reader to compare to the proof of (7), for more
details.

A direct consequence of Lemma 24 is that the set of distinct binary words x of
length 2n, generated by the function ψ, equals the set of Dyck path words of
length 2n. Let us consider one specific such binary word, corresponding to the
area sequence a and the matching Ω. Remember that the sequence s(a) indexes
the up-steps in DPa, i.e. si(a) equals the index of the i-th “1” in the binary word,
see Definition 6. Similarly, the subsequence s(Ω) indexes the starting points of Ω,
i.e. si(Ω) also equals the index of the i-th “1” in the binary word. Hence, for one
specific area sequence, the sequence s(a), indexing the up-steps in DPa, equals
the subsequence s(Ω) of starting points in Ω, see Fig. 40. Naturally, this is why
we let s = (s1, s2, s3, . . . , sn) denote either of them.

Figure 40: s(a) = s(Ω) = (1, 2, 4, 6).

However, each distinct binary word could correspond to more than one perfect
matching, since we could just switch some of the chords ending points, without
altering the binary word. For example, in Fig. 40, we could switch the ending
points of the chord starting at 1 and the chord starting at 4. This would alter
the perfect matching, but the binary word would not change. It follows that
the number of perfect matchings Ω corresponding to the same binary word x
equals the number of legal set-ups of ending points, i.e. sequences e(Ω) such that
ei > si for all i ∈ [n] and si < si+1 for all i ∈ [n− 1].

We are now ready to define the set of perfect matchings corresponding to a.

Definition 25. For a given area sequence a = (a1, a2, a3, . . . , an), define the
Catalan element PMSP(a) as the specific set-up of starting points s(a), corre-
sponding to a, and define PM(a) as the set of perfect matchings on PMSP(a).
Note that, for any a, all perfect matchings Ω ∈ PM(a) share the same starting
points, see Fig. 41.
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Figure 41: The perfect matchings of PM(a), corresponding
to the area sequence a = (0, 1, 1). All the matchings have
starting points 1, 2 and 4, i.e. s(a) = (1, 2, 4). There are 4
matchings Ω, i.e. 4 possible permutations of e(Ω).

Intuitively, we might think that a “crossing” of two chords involves both chords
equally (and it does!). However, when we count crossings, we need to make sure
we do not count every crossing twice.

Definition 26. In any intersection of two chords with starting points a and
b, where b > a, we define the crossing as belonging to only the chord from b.
For example, if we switch the ending points “4” and “11” in Fig. 38, the chord
starting at “2” has 0 crossings, and the chord starting at “3” has 1 crossing.

Definition 27. In a perfect matching Ω, define the sequence
cr(Ω) = (cr1, cr2, cr3, . . . , crn) as the sequence counting the number of cross-
ings belonging to the chords with starting points s1, s2, s3, . . . , sn. Also, define
cr (Ω) as the total number of ascending edges in Ω, i.e. the sum of the sequence
cr(Ω).

Lemma 28. Consider the set PM(a) of perfect matchings, corresponding to
the area sequence a, and let the sequence cr(Ω) = (cr1, cr2, cr3, . . . , crn) be the
sequence counting the number of crossings belonging to the chords with starting
points s1, s2, s3, . . . , sn. Then each perfect matching Ω ∈ PM(a) uniquely defines
one sequence cr(Ω).

41



Proof. Remember that all matchings in the set PM(a) share the same starting
points. Now, starting with the unique non-crossing perfect matching Ω∗ ∈ PM(a),
the chord from si to ei could potentially cross exactly the chords with ending
points larger than ei and starting points smaller than si. All other crossings will
belong to some other chord by definition, see Fig. 42.

Figure 42: For this specific set-up of starting points: Top:
Chord 3 can cross exactly 2 chords. Middle: Chord 2 can
cross exactly 1 chord. Bottom: Chord 1 can cross exactly no
chord.

In the matching array, any such legal crossing corresponds to switching ei with
some element z ∈ e(Ω), such that z is to the left of position i and z > ei. The
number of such elements is i − 1, minus all elements x, such that x < ei. We
thus need to find the number of elements x, such that x < ei, and we proceed
by induction:

Let Ω∗(a) be the unique non-crossing perfect matching in PM(a), such that si = i
for all i and e1 > e2 > e3 · · · > en. For example,

Ω∗(a) =
[
6 5 4
1 2 3

]
.

Since the sequence e(Ω∗(a)) is strictly decreasing, it is obvious that to the left of
position i in e(a), there are exactly 0 elements such that x < ei.
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Let us now alter the sequence of starting points and consider a non-crossing
perfect matching Ω∗(b), corresponding to the area sequence b. In this sequence,
si > i for some i, for example

Ω∗(b) =
[
6 3 5
1 2 4

]
.

With this alteration, we have “forced” si − i elements to switch from the row
of starting points to the row of ending points, namely the element “3” in our
example. All such forced elements are by definition elements x such that x < si,
and they thus can only be positioned to the left of position i since si < si+1 for
all i ∈ [n− 1] and ei > si for all i ∈ [n]. Hence, to the left of position i in e(b),
there are (si − i) elements x such that x < ei.

Naturally, the same argument can be used for any sequence of starting points,
and so we see that, for every given sequence s of starting points, the unique
non-crossing perfect matching has exactly si − i elements x such that x < ei,
for all i ∈ {1, 2, 3, . . . , n}. Hence, the number of potential crossings belonging to
chord i equals i− 1− (si − i) = 2i− si − 1. Naturally, to not cross any other
chord is also an option. Consequently, for cri, exactly 2i − si distinct values
cri ∈ {0, 1, 2, . . . , 2i− si − 1} are possible.

We have already seen that the number of perfect matchings Ω ∈ PM(a) is equal to
the number of legal permutations of e(Ω). We can use a similar approach as above
to find the number of such permutations. When si = i for all i ∈ {1, 2, 3, . . . , n},
we have that the number of alternative ending points for si is i, see Fig. 43, left.
Whenever si > i, the number of legal alternatives for si becomes si − i less, see
Fig. 43, middle and right, and the number of alternative ending points is thus
i− (si − i) = 2i− si.

Figure 43: Left: si = i. Middle: s3 = 4. Right: s2 = 3 and
s3 = 5.

We see that the number of distinct choices to match chord i to some ending
point equals the number of distinct values at cri. It is also clear that any
such choice we make for chord i, generates a distinct number of crossings at
chord i, since we must pass a distinct number of chords in each switch, see Fig.
42. According to the multiplication principle, the number of perfect matchings
Ω ∈ PM(a) is the product of the choices for all chords i ∈ {1, 2, 3, . . . , n}. Each
such combination corresponds to exactly one distinct sequence cr(Ω), such that
cri ∈ {0, 1, 2, . . . , 2i − si − 1} for all i ∈ {1, 2, 3, . . . , n}. Hence, each sequence
cr(Ω) uniquely defines one perfect matching Ω ∈ PM(a).
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Theorem 29. Let PM(a) be the set of distinct perfect matchings corresponding
to the area sequence a, and let |PM(a)|q be the q-analog of PM(a), with respect
to the number of crossings (cr (Ω)) in each perfect matching Ω ∈ PM(a). Then

|PM(a)|q =
∑

Ω∈PM(a)

qcr(Ω) =
n∏

i=1
[ai + 1]q , (23)

for any area sequence a.

Proof. We have defined |PM(a)|q as the q-analog on PM(a), with respect to the
number of crossings in each perfect matching Ω ∈ PM(a). This is exactly

∑

Ω∈PM(a)

qcr(Ω) .

In the proof of Lemma 28, we saw that the number of perfect matchings
Ω ∈ PM(a) equals

∏n
i=1(2i− si), and that each perfect matching corresponds to

exactly one distinct sequence cr(Ω), such that cri ∈ {0, 1, 2, . . . , 2i− si − 1}, for
all i ∈ {1, 2, 3, . . . , n}. Since we know that, for any given area sequence a, the
sequence s(Ω(a)) of starting points equals the sequence s(a) indexing the up-steps
in DPa (see aftermath of Lemma 24), we can use the result from Lemma 7,
which states that 2i− si = ai + 1.

As we saw in (14), when our statistic crossings is the result of a series of n
independent choices, such that the i:th choice has the exact ai + 1 alternatives
of adding {0, 1, 2, . . . , ai} crossings, the q-analog is given by

∏n
i=1[ai + 1]q.

Corollary 30. For any area sequence a,

|PM(a)|q = |RP(a)|q = |AO(a)|q . (24)

Proof. A given area sequence a uniquely determines the q-analog
∏n
i=1[ai + 1]q.

The corollary follows from Theorem 14, Theorem 18 and Theorem 29.
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Example 31. Consider the set of perfect matchings PM(a) on the unique set-up
of starting points PMSP(a), corresponding to the area sequence a = (0, 1, 1), as
in Fig. 44, left. Then the number of perfect matchings Ω ∈ PM(a) is

n∏

i=1
(ai + 1) = 1 · 2 · 2 = 4. (25)

We refine the set cardinality by q-counting this set with respect to the number
of crossings in each perfect matching. Using (23) we have that

|PM(a)|q =
n∏

i=1
[ai + 1]q = (q0)(q0 + q1)(q0 + q1) = 1q0 + 2q1 + 1q2. (26)

Hence, in this set we have 1 Ω with no crossings, 2 Ω with one crossing and 1 Ω
with two crossings. We encourage the reader to verify this result (or just take
a look at Fig. 41). For q = 1, the sum of (26) equals the cardinality of the set,
which is 4.

According to Corollary 30, this refinement mirrors the refinement on the set of
acyclic orientations AO(a) on the unit interval graph UIGa, with respect to the
number of ascending edges in each orientation ϑ ∈ AO(a), and the refinement on
the set of rook placements RP(a) on the Ferrers board FBa, with respect to the
number of inversions in each rook placement Ψ ∈ RP(a), see Fig. 44.

Figure 44: From left to right: 1) The set-up of starting points
PMSP(a). 2) The corresponding area sequence a = (0, 1, 1).
3) The unit interval graph UIGa. 4) The Ferrers board FBa.
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5 Conclusions and Possible Applications
The main conclusion of this thesis is summarised in the following theorem.

Theorem 32. Let AO(a) be the set of distinct acyclic orientations, RP(a) the
set of distinct rook placements, and PM(a) the set of distinct perfect matchings,
all corresponding to the same area sequence a = (a1, a2, a3, . . . , an). Then the
q-analog of acyclic orientations ϑ ∈ AO(a), using ascending edges as statistic,
coincides with the q-analog of rook placements Ψ ∈ RP(a), using inversions as
statistic, which coincides with the q-analog of perfect matchings Ω ∈ AO(a), using
crossings as statistic. Hence, for any area sequence a,

|AO(a)|q =
∑

ϑ∈AO(a)

qasc(ϑ)

= |RP(a)|q =
∑

Ψ∈RP(a)

qinv(Ψ)

= |PM(a)|q =
∑

Ω∈PM(a)

qcr(Ω) =
n∏

i=1
[ai + 1]q . (27)

We also note that
n∏

i=1
[ai + 1]q =

n∏

i=1
[bi + 1]q , (28)

where ai is the row area at row i and bi the column area at column i.

Proof. Theorem 32 summarises Theorem 14, Theorem 18 and Theorem 29.

Theorem 32 states that the cardinality of AO(a), RP(a) and PM(a) coincide, for
any area sequence a. More importantly, the theorem also provides a refinement
of this statement, with respect to our statistic. The refinement provides a
strong indication of a more general bijective correspondence between these three
C-Indexed families. As mentioned in the introduction, such bijections might
be of interest for solving some of the classic open problems within the field of
algebraic combinatorics.

One such problem is the Stanley–Stembridge Conjecture from 1993, [SS93],
[Sta95], which was generalised by Shareshian–Wachs in 2012, [SW12], [SW16].
Briefly summarised, the Shareshian–Wachs Conjecture states that there should
be a combinatorial formula on the form

∑

θ∈AO(a)

qasc(θ)eµ(θ) , (29)
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for a certain type of symmetric function. Note that in (29), e is an elementary
symmetric function, and not the mathematical constant e. Setting q = 1 gives
the Stanley–Stembridge Conjecture. The problem is that, in (29), µ is not
known, and the problem of finding µ is evidently very difficult. Although a
similar conjecture was recently covered in [AP18] and [GHQR19], and later
solved in [AS20], the Shareshian–Wachs Conjecture remains unsolved.

In the Stanley–Stembridge / Shareshian–Wachs Conjecture, the core of the
problem relates to acyclic orientations. However, in the light of Theorem 32,
it might be more fruitful to consider a corresponding family instead. Indeed,
the identification of certain properties in a perfect matching might be far more
intuitive than within the corresponding acyclic orientation, and vice versa. For
example, in an acyclic orientation we can easily identify sinks, i.e. vertices where
the out-degree is 0. However, in a rook placement, we do not know what sinks
correspond to. This means that properties that remain hidden in one family,
might be found in a corresponding family.

The bijective correspondence described in this thesis is limited to three families,
using one statistic per family. However, there are indications of correspondence
to other families as well. We trust that these results could be a part of a larger
puzzle, covering multiple statistics within a wide range of families. If so, they
could be important for advances in several open problems of the field.
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