
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

Classical finite simple groups

av

Seuri Basilio Kuosmanen

2020 - No K31

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM





Classical finite simple groups

Seuri Basilio Kuosmanen

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Sven Raum

2020





1 Abstract
This paper aims to prove the simplicity of the projective special linear groups and the
projective symplectic groups, which both belong to the family of six classical simple
finite groups. To do this, we first give intuition and motivation for studying simple
groups and give some prerequisite knowledge about group theory. We then proceed to
prove Jordan-Hölder Theorem, by applying, Schreier’s Refinements Theorem. For the
main result of this thesis, we use Iwasawa’s Lemma.
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2 Introduction
The theory of groups can be dated back to the nineteenth century and is born from
number theory and the theory of equations. Galois introduced groups to study the sym-
metry of polynomials and their set of roots. In his studies, he was able to use groups,
and in some cases, simple groups, to show that certain polynomials were not solvable
by radicals. Group theory is the study of these groups, and groups are a recurring
theme in mathematics. It has many applications outside of the world of mathematics,
for example, physics, and chemistry. From the study of these algebraic structures, the
question of what type of underlying structure is present in these groups arises. One
may draw simplified comparisons to the study of integers and the fact that an integer is
either a prime number or the product of prime numbers. In other words, there is an in-
terest in understanding what type of underlying structures are present in groups. From
that line of questioning, it is possible to get an intuition of the simple groups. One way
to look at simple groups is to think of them as building blocks for all groups. In the
same way, one may study and construct the integers via prime numbers and more pre-
cis prime number composition to get a deeper understanding of integers. So in a sense,
there is an interest in wanting to understand if a group is a finite simple group. Or if a
group can be reduced to simple pieces, and if there is a uniqueness for which this can
be done. Two mathematicians Camille Jordan and Otto Hölder stated and proved a the-
orem that is known as The Jordan-Hölder theorem that answers these questions. The
field of simple finite groups has enjoyed a range of contributions during the twentieth
century. The most groundbreaking was the Classification of finite simple groups theo-
rem, which states that every finite simple group belongs to one of the broader classes of
simple finite groups, the cyclic groups of prime order, the alternating groups of degree
at least 5, the groups of Lie type, sporadic groups, and Tits group. This paper will
focus on a specific class of groups of Lie type, namely the classical groups defined as
matrices over fields. We start by giving introducing some basic concepts in group the-
ory and proceed to stat and prove Jordan-Hölder theorem. We then continue by stating
and proving Iwasawa’s Lemma, which we then use to prove the simplicity of two of
the classical groups.
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3 Basics
In the introduction, we mentioned that Galois introduced the concept of a group to
solve polynomial equations of degree higher then four. This led to the development
of abstract algebra, which incorporates a wide range of abstract objects, for which the
group is one of thous objects. The subject of group theory is living and rich, and has
enjoyed a wide range of important results from many known mathematicians. Group
theory, is in some ways, interested in studying symmetry, and for example, the pla-
tonic solids can be expressed using groups. This section is structured to give sufficient
collections of definitions and examples for the upcoming sections. We will introduce
relevant definitions paired with explanatory examples. Furthermore, we will state and
prove the necessary theorems for the succeeding sections. As stated in the title of this
paper, we are focusing on the classical groups, which are subgroups of the general lin-
ear groups. They were first recorded in one of three manuscripts that Galois sent to
Chevalier in 1832. But Joseph Louis Lagrange and Niels Henrik Abel were also early
contributors to the field of group theory.

Definition 3.0.1. A group is a nonempty set G equipped with a binary operation
? : G×G−→ G such that

(i) The operation is associative (a?b)? c = a? (b? c) for all a,b,c in G

(ii) There exist an identity element eg in G such that eG ?a = a = a? eG for all a in
G.

(iii) For all a in G there exist an inverse a−1 = b in G such that a?b = e = b?a

Remark. A group is called abelian if a?b = b?a for all a,b in G. One example of an
abelian group is the set R× equipped with multiplication.

It might not seem clear from this definition but groups are a recurring theme in
mathematics. Many of the sets that we have encountered in elementary mathematics
are groups when equipped with a suitable binary operation. We consider a set from
linear algebra of invertible square matrices with entries from a field and we will show
that the set is in fact a fact a group.

Example 3.0.2. The set GLn(q) = {A ∈ Mn(Fq)| A is invertible} is a group when
equipped with matrix multiplication is a group. The set is preserved under matrix
multiplication since

(AB)−1 = B−1A−1 for A,B ∈ GLn(q).

We verify the conditions of Definition 4.1. Since matrix multiplication is associative it
is also associative in GLn(q). The condition of the existence of an identity is satisfied
since the identity matrix In is in GLn(q). The definition of GLn(q) satisfies the last
condition. So we conclude that GLn(q) is a group.

Remark. It is the general linear group over a finite field mentioned in the introduction
of this section.
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There is always an interest in understating the cardinality of a set, and so we in-
troduce a definition for groups, then proceed to calculate the cardinality of the general
linear group.

Definition 3.0.3. A group G is finite if the cardinality of the set G is finite. The order
of the group G is the cardinality of the set G and is denoted |G|.
Remark. A group that is not finite is called infinite.

Example 3.0.4. Consider the group GLn(q) and with entries from Fq. Then the order
of the group is

|GLn(q)|=
n−1

∏
k=1

(qn−qk)

Proof. An element A is in GLn(q) if and only if it is invertible. Which is equivalent
to its row vectors forming a basis of Fn

q. So then we want to count how many n-tuples
of vector in Fn

q for which are linear independent. There are qn− 1 different non-zero
vectors in Fq

n. Hence there are qn− 1 possibilities for which we can chose the first
vector. If we have chosen k vectors such that they span a k-dimensional subspace of
Fn

q whose cardinality is qk. Then there are qn−qk possible choices for the k+1 vector.
By the rule of product, there are

(qn−1)(qn−q) . . .(qn−qn−1) =
n−1

∏
k=1

(qn−qk)

many basis in Fn
q which equals the order of GLn(q).

The order of the group gives arise to questions regarding the elements of the group.
Thus for clarity we will give a definition of the the order of the elements of a group.

Definition 3.0.5. Let G be a group and let g be in G. Define the order of g by ord(g)= n
where n is the smallest positive integer such that xn = 1 if such n exist and if not
ord(x) = ∞.

We started by defining a group from the notion of a set. So naturally, the question
of the existence of subgroups arises. Hence we introduce a new definition.

Definition 3.0.6. Let G be a group and let H be a subset of G then H is a subgroup
of G denoted H ≤ G if and only if H 6= /0 and H is closed under products and taking
inverse.

Remark. To determine of a set H is a subgroup one simply verifies this conditions from
the definition. If H is non-empty and finite the problem is reduced to show that it is
closed under the binary operation.

In the next example, we will prove that the subset of invertible matrices whit deter-
minant 1 in GLn(q) is a subgroup.

Example 3.0.7. The subset

SLn(q) = {A ∈Mn(Fq)| det(A) = 1} ≤ GLn(q)

is a group since the determinant is multiplicative. It is called the special linear group.
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Remark. It will be needed in Section 6 to define the projective special linear group.

Definition 3.0.8. A (left) group action of a group G on a set X denoted by Gy X is a
mapping

G×X −→ X (g,x) 7→ gx,

such that the following condition are satisfied

(i) eGx = x for all x in X

(ii) (gh)x = g(hx) for all x in X and all g,h in G.

Remark. A group action can be thought of as providing for ever element in G a bijective
mapping of X to itself. Let us for g in G define the mapping αg : X −→ X by x 7→ gx.
Then αe = idX . So for g in G every αg has an inverse (α−1

g ) = α−1
g . Indeed as the

action is associative

αgα−1
g = αgg−1 = αe = idx associativity of the action

α−1
g αg = αg−1g = idx analogously.

This proves that the mapping is invertible and thus bijective.

We will give a concrete example of an group action. To do so we consider a basic
concept from linear algebra and show that it can be described using group theory.

Example 3.0.9. The mapping

GLn(q)×Fn
q −→ Fn

q

defined by matrix multiplication is a group action.

Proof. We need to verify that the conditions of a group action are satisfied. The neutral
element of the mapping is the identity matrix In since it satisfies Inv = v for all v in Fn

q.
Then the first condition is satisfied. The mapping is associative, since it is defined by
matrix multiplication just as the group law of GLn(q).

We continue with group actions and introduce some interesting subset. We will see
that we are given a more detailed understanding of the action when we take those sets
in consideration.

Definition 3.0.10. The kernel of an action is the set {g ∈ G| gx = x ∀x ∈ X}. The
elements in the kernel act trivially on every element of X . An action is faithful if its
kernel contains only the identity element of G.
The stabilizer of x in X is the set Gx = {g ∈ G | gx = x}.

Remark. The kernel and stabilizer are a subgroup of G.

We now proceed to show by a proposition that the group action in Example 3.0.9 is
a faithful action.
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Proposition 3.0.11. The action GLn(q)yFn
q is faithful.

Proof. Consider the action GLn(q)yFn
q, we claim that it is faithful. We need to prove

that its kernel consists of only the identity matrix. So consider the row vector ek in Fn
q

with 1 in the kth entry and zero everywhere else. If A is to be in the kernel of the action,
then the equality Aek = ek needs to hold for all k ∈ {1, ...,n}. But for this to be true
for e1, ...,en in Fn

q, such an A has to have entry 1 on the diagonal, and zero everywhere
else, thus A = In. Hence our claim that the action is faithfully is justified.

Definition 3.0.12. The orbit of a point x in X under a group action Gy X is the set
Gx = {gx ∈ X | g ∈ G}. If there is only one orbit, the action is called transitive.

Remark. If the action is transitive then for every x,y in X we have that x = gy for some
g in G.

Definition 3.0.13. Two element a,b in G are said to be conjugate in G if gag−1 = b
for some g in G. The orbits of G by conjugation are called the conjugacy classes of G.

We continue with mappings and consider the mapping of a group onto another
group.

Definition 3.0.14. Given two groups G,H the mapping γ : G −→ H is called a homo-
morphism if and only

γ(ab) = γ(a)γ(b) for all a,b ∈ G.

A homomorphism that is bijective is called an isomorphism. Then G and H are iso-
morphic which is denoted by G∼= H.

Remark. If G ∼= H then |G| = |H| and G is abelien if and only if H is abelien. The
order of group elements is preserved under isomorphism.

At the end of this section, we will stat and prove an isomorphism theorem. We
begin by stating and proving some propositions and introducing some definition

Proposition 3.0.15. If γ : G−→ H is a homomorphism, then γ(eG) = eH
and γ(g−1) = γ(g)−1 for all g in G.

Proof. Let γ : G −→ H be a homomorphism. We claim that γ(eG) = eH . Indeed γ is a
homomorphism

γ(eG) = γ(eGeG) = γ(eG)γ(eG),

then it follows that

eH = γ(eG)
−1γ(eG) = γ(eG)

−1γ(eG)γ(eG) = γ(e−1
G eG)γ(eG) = γ(eG).

This justifies our claim. We want to show that γ(g)−1 = γ(g−1) for all g in G. We first
observe that for all g in G, then

γ(g)−1γ(g) = γ(eG) = eH (1)

which proves that γ(g−1) = γ(g)−1) holds for all g in G. Hence our claim is justified.
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Definition 3.0.16. The kernel of a homomorphism γ : G−→ H is the set

ker(γ) = {g ∈ G | γ(g) = eH}.

Proposition 3.0.17. If ker(γ) is the kernel of a homomorphism γ : G−→H, then ker(γ)
is a subgroup of G.

Proof. Observe that Proposition 3.2 implies that eG is in ker(γ). We claim that ker(γ)
is a subgroup of G. Suppose that g1 and g2 are in ker(γ), then

γ(g1g−1
2 ) = γ(g1)γ(g−1

2 ) = γ(g1)γ(g2)
−1 = eHe−1

H = eH .

Thus proving that ker(γ) is closed under taking inverses and group products. Hence
our claim that ker(γ) is a subgroup of G is satisfied.

We will now give a concrete example of a homomorphism. We will consider the
general linear group for the example. We will also see that the special linear group is
the kernel of that homomorphism.

Example 3.0.18. Consider the determinant det : GLn(Fq)−→Fx
q . It is a homomorphism,

and its kernel is SLn(q).

At the end of this section, we will stat and prove two theorems. We begin by
introducing some definitions and proceed from there.

Definition 3.0.19. A left coset of N in G is a subset of the form gN = {gn | n ∈ N} for
some g in G. Similarly a right coset is a subset Ng = {ng | n ∈ N} for some g in G.

Definition 3.0.20. If a subgroup N of G is invariant under conjugation by any element
of G, then N is a normal subgroup, denoted by N EG.

Remark. If N ≤ G is a normal subgroup, then all left N-coset are right N-cosets and
vice versa. Indeed gN = gN(g−1g) = (gNg−1)g = Ng for all g in G. If N is a normal
subgroup of G and N 6= G, then N is a proper normal subgroup, denoted by N /G.

To prove the isomorphism theorem, we must first introduce and verify the following
statement.

Theorem 3.0.21. If G is a group with normal subgroup N, then the set of cosets G/N
is a group.

Proof. We claim that the set of cosets G/N is a group. To verify this, we first defined
the product (g1N)(g2N) = g1g2N on G/N. We need to show that the product is well-
defined. If gN = hN for g,h in G, then there is n in N such that g = ge = hn. So we
have to prove that for g1,g2 in G and n1,n2 in N the following the equality holds

(g1n2)(g2n2)N = g1g2N.

But N is normal in G, so

g1n1g2n2 = g1g2(g−1
2 n1g2)n2 = g1g2nn2,
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thus
(g1n1)(g2n2)N = g1g2nn2N = g1g2N,

and the equality holds. From our definition of the product of G/N associativity follows.
Furthermore eN is the identity element and g−1N is the inverse of gN. Hence our claim
that G/N is a group is justified.

Definition 3.0.22. If N is a normal subgroup of G, then the group of cosets G/N is
called the quotient group.

Theorem 3.0.23. Let G and H groups and let γ : G−→H be a homomorphism, then the
kernel K is a normal subgroup of G, and G/K is isomorphic to the image γ(G).

Proof. We claim that K /G and that G/K is isomorphic to the image of γ . Observe
that K is a subgroup of G. If K is a normal subgroup G, then this verifies the existence
of G/K. To prove that K is normal in G, we need only show that K is invariant under
conjugation by any g in G. Let k be in K and g in G, then

γ(gkg−1) = γ(g)γ(k)γ(g−1) = γ(g)γ(g−1) = γ(gg−1) = γ(eG) ∈ K,

thus verifying that K is normal, and the existence of G/K. We claim that G/K is
isomorphic to γ(G). We first show that there exists a well-defined mapping, then that
the mapping is a homomorphism and bijective. Suppose that ω : G/K −→ H, defined
by ω(gK) = γ(g) for all g in G and some γ(g) in H. We need ω to a well-defined
mapping. Suppose that gK = g′K, then g = g′k for some k in K, and

ω(gK) = γ(g) = γ(g′k) = γ(g′)γ(k) = ω(g′K),

thus ω is well-defined. Observe that ω maps G/K to the image γ(G), since K is the
kernel of γ , it follows that

ω(gKg′K) = ω(gg′K) = γ(gg′) = γ(g)γ(g′) = ω(gK)ω(g′K)

for any gK in G/K. This proves that ω is a homomorphism. The statement holds if
ω is bijective, which is equivalent to ω being surjective and injective. We first check
subjectivity. If γ(g1) in γ(G), then g1K is in G/K, which implies that ω(g1K) = γ(g1),
thus ω is surjective. We proceed to check that ω is invective. Let g,g′ be in G/K, such
that ω(gK) = ω(g′K), then

ω(gK)ω(g′K)−1 = ω(gg′−1K) = γ(g)γ(g−1) = γ(e),

which implies that γ(g) = γ(g′) and injective, thus concluding that ω is bijective.
Hence our claim that G/K ∼= γ(G) is satisfied.

We complete this section by defining the simple group.

Definition 3.0.24. If G is a group, such that the only normal subgroups are the trivial
group and G, then G is called a simple group.
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4 Composition series

4.1 Zassenhaus’ Lemm
In this subsection, we will state and prove Zassenhaus’ Lemma, which is a statement
regarding isomorphisms between quotient groups, the quotients are products of sub-
groups and intersections, thus before proving the Zassenhaus’ Lemma, we need to give
some statements and proofs which will convince us that the products are in fact sub-
groups and that we can have isomorphic subgroup quotients. We start by stating a
lemma about subgroup products.

Lemma 4.1.1. If N and H are subgroups of G and NEG, then NH is a subgroup of G.
If N and H are normal subgroups of G, then NH EG.

Proof. Let NH =
{

nh ∈ G | n ∈ N, H ∈ H
}

we claim that NH is a subgroup of G.
Observe that NH is clearly non-empty.To verify that NH is closed under products, one
simply uses that N is normal in G and some algebraic manipulation. Suppose that n1h1
and n2h2 are in NH, then by writing n3 = h1n2h−1

1 we obtain,

(n1h1)(n2h2) = n1(h1n2h−1
1 )h1h2 = n1n3h1h2 ∈ NH,

thus verifying that NH is closed under products. It remains to show that NH is closed
under taking inverses. Suppose that (nh) is in NH, then from N EG, it follows that

(nh)−1 = h−1n−1 = (h−1n−1h)h−1 = n′h−1 ∈ NH,

thus proving closedness taking inverses. Hence NH is a subgroup. We proceed to
verify the second statement. Suppose that N and H are normal in G and consider any
element nh in NH and g in G, then

g(nh)g−1 = g(ng−1gh)g−1 = (gng−1)(ghg−1) = n′h′ ∈ NH.

Hence NH is a normal subgroup of G.

Remark. Observe that N is normal in all of G, thus N is normal in NH.

Definition 4.1.2. The intersection of subgroups H,N in G is the set {x : x∈H∧x∈N}.
The set is called the intersection of subgroups H and N, denoted H ∩N,

Lemma 4.1.3. The intersection of subgroups H and N in G is a subgroup of G. If N is
normal in G, then H ∩N is a normal subgroup of H.

Proof. Observe that for any H and N in G, the intersection of subgroups is non-empty.
In the first statement, we claim that the H∩N = {x : x ∈H∧x ∈N} is a subgroup of G.
To justify our claim, we need to show that H ∩N is closed under products and taking
inverses. Suppose that we have x,y in H ∩N, which implies that xy−1 is in H and N,
since H and N are subgroups of G. But if xy−1 is in H,N, then xy−1 is also in H ∩N.
Thus we have verified that H∩N is nonempty closed under products and taking inverse,
and our claim that the intersection of subgroups is a subgroup is justified. Observe that
the intersection subgroups H ∩N is contained in N and H, thus a subgroup of H,N.
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Furthermore, we claim that if H,N ≤ G, and N is a normal subgroup of G, then their
intersection N ∩H is normal in H. Our claim is justified if we can show that H ∩N is
invariant under conjugation by any h in H. Now assume that x is in H∩N, and consider
the conjugate of x by any h in H, that is hxh−1. Then the conjugate is clearly an element
of H ∩N, since H is a subgroup of G and N is normal in G, it follows that H ∩N is
invariant under conjugation. Hence H ∩N is a normal subgroup ofH.

Remark. Observe that it is not generally the case that H∩N is normal in all of G, even
if H or N is normal in G. For this to be true in general, we need for both N and H to
be normal in G. Which implies that for any x in H ∩N, the conjugate of x by any g in
G. That is gxg−1 is an element of N and H. This is clearly true for all x in H∩N, since
we have that H,N EG, so it follows that g(H ∩N)g−1 is in H ∩N for any g in G. Thus
H ∩N is invariant under conjugation by any g in G, so H ∩N is normal in G.

We can now state and prove one of the isomorphism theorems. The proof applies
Lemma[4.1.1] and Theorem[3.0.23]. The theorem will then be used in the proof of
Zassenhaus’ Lemma

Theorem 4.1.4. Let H and N be subgroups of G, and let N be normal in G, then HN/N
is isomorphic to H/(H ∩N).

Proof. Observe that by the conditions of our statement, we can apply Lemma[4.1.1],
and N is normal in all of G, thus verifying the existence of HN/N. We claim that the
quotient groups are isomorphic. If the conditions of Theorem [3.0.23] are satisfied,
then H/H∩N is isomorphic to HN/N. Consider γ : H −→HN/N defined by γ(h) = hN
for h in H. Since γ is the composition mapping of embedding of H into HN with the
quotient mapping HN to HN/N, it follows that γ is a homomorphism. Our claim is
justified if the kernel of γ is equal to H ∩N. We first show that H ∩N is contained
in the kernel, then the converse. Suppose that h′ is in H ∩N, then γ(h′) = h′N. But
h′ is contained in both H and N, thus γ(h′) = h′N = N, which shows that (H ∩N) is
contained in ker(γ). Conversely, if h is any non-trivial element in H, such that h is in
the kernel of γ , then we have that γ(h) = N, which implies that and h is in N and H∩N,
thus proving that kernel of γ is contained H∩N. Hence by Theorem[3.0.23] our claims
is justified.

We will offer a final observation about subgroups and intersections of subgroups,
which we present in the following proposition.

Proposition 4.1.5. (Dedekind modular law) If X ,Y and Z are subgroups of G, and Y
is contained in X . Then the intersection X ∩ (Y Z) is equal to Y (X ∩Z).

Proof. For the subgroups Y ≤ X and Z in G, suppose that we have the intersections
of subgroups X ∩Z = {a : a ∈ X ∧ a ∈ Y}, and that we have the following product
of groups subset, Y Z = {yz : y ∈ Y, z ∈ Z} and Y (X ∩Z) = {ya : y ∈ Y∧,a ∈ X ∩Z}.
We claim have that X ∩ (Y Z) and Y (X ∩ Z) are equivalent, that is we claim that the
following equality holds X ∩ (Y Z) = Y (X ∩ Z). For this to be true, we need for the
inclusion X∩(Y Z)⊆ (X∩Z), and its converse to be true. Note that a subgroup products
subset is not necessarily a subgroup of G, and note that X ∩(Y Z) and Y (X ∩Z) are both
contained in X . Let a be in X ∩ (Y Z), which implies that there is some yz in Y Z, such
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that a = yz, then x = yz for some x in X . Which is equivalent to y−1x = z, since both
x,y are in Y ≤ X , so it follows that z is in X and Z. Hence z is in the intersection of X
and Y , and a = yz is in Y (X ∩Z) for any a in X ∩ (Y Z). Before proving the converse,
observe that Y (X ∩Z) ⊆ X ∩ (Y Z) is just the product of subset with intersection, for
which the intersections are subsets of the same set. So we can conclude that

Y (X ∩Z)⊆ (Y ∩X)∩ (Y ∩Z) = X ∩ (Y Z).

Hence the inclusions X ∩ (Y Z)⊆Y (X ∩Z) and its converse have been verified, and the
statement that X ∩ (Y Z) = Y (X ∩Z) is justified.

Now we have the relevant statements and proofs needed for us to prove Zassenhaus’
Lemma.

Theorem 4.1.6. (Zassenhaus’ Lemma) Let A and B be subgroups of G, and let NA be
a normal subgroup of A, and let NB a normal subgroup of B, then the quotient groups
are all isomorphic

NA(A∩B)
NA(A∩NB)

∼= A∩B
(NA∩B)(A∩NB)

∼= NB(A∩B)
NB(NA∩B)

.

Proof. The following proof is based on [[2], Theorem 70]. Since the Theorem’s state-
ment is symmetric in both A and B, we need only prove the first two isomorphisms. We
will prove the isomorphism statement by applying Theorem[4.1.4]. Before we can do
this, we must first verify that the quotient groups in the statement exists. Suppose that
NA EA and NA EB, and that A,B≤ G. Then the intersection A∩B is a subgroup of G,
with normal subgroups NA ∩B and A∩NB, Lemma[4.1.3]. Thus (NA ∩B)(A∩NB) is
normal in A∩B, by Lemma[4.1.1]. Which implies the existence of the quotient group

(A∩B)
(NA∩B)(A∩NB)

.

We continue with the two remaining quotients it suffices to show the existence of one,
and outline the proper steps for its analog. Before we can verify the existence of the
quotient group

NA(A∩B)
NA(A∩NB)

,

we first need to show that NA(A∩B) is a subgroup of G, it suffices to show that NA(A∩
B) is a subgroup of A. We do this by simply checking the assumptions in Lemma[4.1.1],
thus we conclude that NAEA′(A∩B) is a subgroup of A. So we have that NA is a normal
subgroup of NA(A∩B), we need for NA(A∩NB) to be normal in NA(A∩B). To get the
desired normal subgroup, we must first show that (A∩B′) is a subgroup of NA(A∩B).
We use the fact that we have the following inclusion A∩B′ ⊆ A∩B, and that and B,
are all subgroups of G, then by applying Proposition[4.1.5] to NA(A∩B), we get the
following equality,

NA(A∩B) = NA(A∩ (A∩NB)B) = NA(A∩NB)(A∩B),
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which provides the desired result, (A∩NB) ≤ NA(A∩B). Therefore we can now con-
clude that NA(A∩ B′) is a normal subgroup of NA(A∩ B), by Lemma[4.1.1]. This
implies the existence of the quotient group,

NA(A∩B)
NA(A∩NB)

=
NA(A∩NB)(A∩B)

NA(A∩NB)
.

To verify the existence of the quotient group NB(A∩B)/NB(NA∩B), we simply recall
that NB EB and that (A∩NB) ≤ (A∩B) and NB are all subgroups of B. Hence the
desired results will follow after making the appropriate adjustments to the previous
arguments of its analog. Before proving the first isomorphism statement, that is

NA(A∩NB)(A∩B)
NA(A∩NB)

∼= A∩B
(NA∩B)(A∩NB)

.

We recall first the assumptions of Theorem[4.1.4], thus we need only show that

NA(A∩NB)∩ (A∩B) = (NA∩B)(A∩NB).

To show that the equality holds, we apply Proposition[4.1.5] to the left hand side and
deduce that

NA(A∩NB)∩ (A∩B) = (NA∩A∩B∩B)(A∩NB∩A∩B) = (NA∩B)(A∩NB).

We then use the analogous argument for B(NA∩B)∩ (A∩B). Hence the isomorphism
claim is justified by Theorem [4.1.4], so from symmetry it follows that

NA(A∩B)
NA(A∩NB)

∼= A∩B
(NA∩B)(A∩NB)

∼= NB(A∩B)
NB(NA∩B)

,

and the statement is verified.

4.2 Jordan-Hölder theorem
In this section, we will prove one of the main results of the thesis, namely the Jordan-
Hölder theorem. The theorem fits into the analogy presented in the introduction re-
garding viewing simple groups as building blocks of groups. We first give relevant
definitions paired with some concrete examples based on [[8], Section 10.1], then con-
tinue to prove statements needed for the main result.

Definition 4.2.1. A sequence of subgroups

e = 0≤ H0 ≤ H1 ≤ ·· · ≤ Hn = G

is called a subgroup series, denoted (Hk)k∈[0,n]. A sequence of normal subgroups

e = N0 EN1 E · · ·ENn = G

is called a normal series, denoted 〈Nk〉k∈[0,n]. The quotient groups Nk/Nk+1 are called
factor groups.
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We will give an example of a normal series, which will do by considering the
quotient group of integers modulo 20.

Example 4.2.2. Let Z/20 and let d denote all the d-multiplies of element in Z/20.
Then Z/20 as the following normal series 0/2Z/20/Z/20.

In some cases, we can refine a normal series, resulting in a series containing new
factor groups. We give a definition then show by an example a refined version of a
normal series.

Definition 4.2.3. If for the normal series 〈Nk〉k∈[0,n] of G, there exist another normal
series 〈Ml〉l∈[0,m] of G, such that 〈Nk〉k∈[0,n] is contained in 〈Ml〉l∈[0,m]. Then 〈Ml〉l∈[0,m]

is a refinement of the normal series, that is 〈Nk〉k∈[0,n]⊆〈Ml〉l∈[0,m]. A proper refinement
of 〈Nk〉k∈[0,n] is a refinement that is not equal to 〈Nk〉k∈[0,n].

In Example[4.2.2], we constructed a normal series from the quotient group of the
integers module 20. We will now give an example of a refinement of the series.

Example 4.2.4. Indeed the normal series 0 / 2Z/20 / Z/20 has the following proper
refinement 0/10Z/20/2Z/20/Z/20

We will offer another example of a normal series and proper refinement. Before we
can do this, we must first introduce some new groups.

Definition 4.2.5. • The group of all bijections on the set {1, ...,n} is called the
symmetric group of order n, denoted Sn.

• The group consisting of exactly the permutations that can be expressed as an
even product of transpositions is called the alternating group, denoted An

• The unique non-cyclic group of order 4, denoted V4 is called the Klein-4 group.
It is unique up to isomorphism.

Remark. Observer that the parity of the number of the decomposition of a permutation
in to products of transposition is unique, [[5], Section 3.5].

Example 4.2.6. The following example is based on [[8], Example 10.1.1]. Consider
the symmetric group S4 with has a normal series e /A4 / S4. The normal series has
following proper refinement e /Z/Z2 /V4 /A4 / S4. Observe that the factor groups in
the refinement have prime order, thus there exists no further refinement.

Remark. The group V4 is the subgroup of order 4, which is normal in S4 and A4.

Definition 4.2.7. Given two normal series 〈Nk〉k∈[0,n] and 〈N′k〉l∈[0,n′], we denoted their
factor groups by Fk = Nk+1/Nk and F ′k′ = Nk′+1/Nk for k > 0. We say that the normal
series are equivalent. If and only if n = n′ and there exists a permutation, σ in Sn, such
that Fk ∼= F ′σ(k) for all k in [1,n].

Definition 4.2.8. If for two refinements 〈Ck〉k∈[0,n] and 〈C′l〉l∈[0,m] of two normal series
in G, for which there exists equivalent factor groups. Then the refinements have equiv-
alent refinement terms. If this is true for every distinct term in the refinements, then the
normal series have equivalent refinements.
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We now have a collection of relevant definitions and statements needed to prove
Schreier’s Theorem. The proof is constructed by producing two refinements, then ap-
plying Zassenhaus’ Lemma to the factor groups in the refined normal series.

Theorem 4.2.9. (Schreier’s Refinement Theorem) Any two normal series of the same
finite group G have equivalent refinements.

Proof. The following proof is based on [[2], Theorem 72] Given two normal series of
G, that is

e = N0 EN1...ENn−1 ENn = G and e = H0 EH1 E ...EHm−1 EHm = G.

We want to construct refinements for 〈Ni〉i∈[0,n] and 〈H j〉 j∈[0,m] in G, such that the their
refinements have the same length, and equivalent refinement terms. To construct a
refinement, we must first construct a new series,

e = Ñ0 E Ñ1...E Ñnm−1 E Ñqm = G and Ñin = Ni

We define the terms in the series by Ñk = Nq(Nq+1∩Hr), for k = qm+r,with 0≤ q < n
and 0≤ r ≤ m. We need to verify that Ñk is well-defined, that is that

Nq(Nq+1∩Hm) = Nq+1(Nq+2∩H0)

Recall that Hm = G and H0 = e, so

Nq(Nq+1∩Hm) = Nq(Nq+1∩G) = NqNq+1 = Nq+1,

and
Nq+1(Nq+1∩H0) = Nq+1(Nq+2∩{e}) = Nq+1.

Hence our Ñk is well-defend. Furthermore our construction of Ñk, implies that each
term in 〈Ni〉i∈[0,n] is equal to some Ñk in the new series. For the new series to be
a refinement of the original series 〈Ni〉i∈[0,n], we must first show that Ñk is normal
subgroup in Ñk+1. We first recall that H j is normal in H j+1. Therefore if we consider
the term Ñk+1 = Nq+1(Nq+2∩Hr+1) and r < m. Then it follows that

Ñk = Nq(Nq+1∩Hr)ENq+1(Nq+2∩Hr+1) = Ñq+1,

which shows that Ñk is normal Ñk+1. Observe that there might exist some numbers k
for which Ñk = Ñk+1. Therefore we can not yet verify that our new series is in fact a
normal series, and thus a refinement of 〈Ni〉i∈[0,n]. Before we can treat this aspect, we
construct the analogue of (Ñk)k for 〈Hi〉∈[0,m]

e = H̃0 E H̃1...E H̃nm−1 E H̃nm = G and H̃ jm = H j

and setting H̃l = Hq(Hq+1∩Nr), for l = nq+ r, where 0 < q ≤ m and 0 ≤ r ≤ n. The
previous arguments hold analogously for H̃k. Let k = um+ v and l = sn+ t, then the
factor groups Ñk+1/Ñk and H̃l+1/H̃l can expressed as

Nk+1

Nk
=

Nu(Nu+1∩Hv+1)

Nu(Nu+1∩Hv)
and

Hl+1

Hl
=

Hs(Ht+1∩Nt+1)

Hs(Hs+1∩Nt)
.
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Thus by applying Zassenhaus’ Lemma [4.1.6], we conclude that there exists a per-
mutation, denoted σ , in Smn, such that the factor groups, Ñk+1/Ñk and H̃l+1/H̃l are
isomorphic. Now all we have to do is remove any redundant terms of the series. This
is done by observing that there is an equal number of trivial inclusions Ñk = Ñk+1 and
H̃l = H̃l+1. Therefore after removing suitable terms from (Ñk)k and (H̃l)l , we obtain
equivalent refinements, that is 〈Ñk〉 ∼= 〈H̃k〉, and our claim is justified.

We now have acquired the tools needed for the main theorem of this section. Be-
fore stating and proving the Jordan-Holders Theorem, we introduce the definition of a
normal series consisting of simple factor groups.

Definition 4.2.10. A a normal series in which the factor groups are simple is called a
composition series.

Remark. It is possible to think of the composition series as a normal series which has
no proper refinements.

To prove the main result of this section, we will apply Schreier’s theorem and con-
sider the remark made in the definition of the compositions series.

Theorem 4.2.11. (Jordan-Hölder) Let G be a finite group, then any two composition
series of G are equivalent to etch other.

Proof. Observe that a composition series, admits no proper refinements of the series.
Therefore, Schreier’s Theorem applies to a pair of compositions series, providing the
desired conclusion.

5 Classic simple finite groups

5.1 Iwaswa’s Lemma
The classic simple groups consist of six families of simple groups, the linear, unitary,
symplectic groups and three families of orthogonal groups. In this thesis, we will
prove the simplicity of the projective special linear group and the projective symplectic
group. Their simplicity will be proven by applying Iwasawa’s Lemma on the general
cases. This subsection is devoted to stating and proving Iwasawa’s Lemma, which
uses a stronger form of transitive group actions and a specific type of group property
to prove that simplicity of the group. We begin by giving the relevant definitions and
statements needed to verify Iwasawa’s Lemma.

Definition 5.1.1. A proper subgroup M is a maximal subgroup of G if its not contained
in any other proper subgroup H in G.

Remark. The term maximal will be used when it is clear from the context that we are
referring to a maximal subgroup.

Definition 5.1.2. A block system for G y Ω, is a set of partitions of the set Ω pre-
served by the group G. The partitions are mutually disjointed non-empty subsets,
whose unions is Ω, and are referred to as blocks.
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Definition 5.1.3. The trivial block system are the block system consisting of the sin-
gle block Ω, and the block system of the partition by singletons. A non-trivial block
system is called a system of imprimitivity. Any group action admitting a system of
imprimitivity is called imprimitive.

Remark. The trivial block system is preserved for every group G.

Definition 5.1.4. Any group that is non-empty and not imprimitive is called primitive.

Lemma 5.1.5. A transitive group action is primitive if and only if all point stabilizers
are a maximal subgroup.

Proof. The following proof is based on [[9], Proposition 2.1]. Let GyΩ be transitive
and take x in Ω. We claim that the action is primitive if and only if Gx is a maximal
subgroup of G. Suppose that the group action is primitive and that H = Gx is not
maximal, then there exist K such that H < K < G. Observe that there exists a natural
bijection between the points in Ω and the cosets gH in G, since g(xH) = gxH. But
H < K and the cosets of K in G are unions of H-cosets, thus sets can be identified
with a partition of Ω, this implies the existence of a non trivial block system, which
contradicts the assumption that the action is primitive. Conversely, assume that G
acts transitively and imprimitive on Ω, and fix x in Ω. Then x is contained in some
imprimitive block, denote the block Ωx. Since the action is transitive, it follows that
the stabilizer of Ωx acts transitively on itself, and not on Omega. Thus H is contained
in the stabilizer of Ωx, that is GΩx . This contradicts the assumption that H is maximal.
Hence our claim is justified.

Before stating Iwasawa’s Lemma, we need to formalize a certain type of group
property. We do this by first giving a definition, then stating and proving a proposition.

Definition 5.1.6. Let G be a group and let x,y be in G. The element [x,y] = xyx−1y−1

is called the commutator of x and y.

Remark. The commutator is equal to identity if and only if x,y commute.

Definition 5.1.7. The subgroup 〈[x,y] | x,y ∈ G〉 in G is called the commutator sub-
group, denoted G′.

Remark. Observe that the set G′ = e[x,y] | x,y ∈ G〉 is a subgroup by definition.

Proposition 5.1.8. The commutator subgroup G′ ≤ G, is a normal subgroup of G.

Proof. We claim that G′ is a normal subgroup of G. To verify this claim, we simply
check that G is invariant under conjugation by any g in G. It suffices to show that the
conjugate of a commutator is again a commutator. Consider the commutator subgroup
of G. Suppose that [x,y] is in G′, then the conjugate of [x,y] by any g in G is,

g[x,y]g−1 = g(xyx−1y−1)g−1

= gxg−1gyg−1gx−1g−1gy−1g−1

= (gxg−1)(gyg−1)(gxg−1)−1(gyg−1)−1

= [gxg−1,gyg−1].
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Thus proving that the conjugate of a commutator [x,y] is another commutator, so the
subgroup G′ is a normal subgroup of G.

The commutator subgroup allow us to understand how close a non-commutative
group is to being abelian. This is defined and formalist in the next definition and
proposition.

Definition 5.1.9. The abelian quotient group of group G by its commutator subgroup
G′ is called the abelianization of G, denoted Gab.

Proposition 5.1.10. Let G be a group with the non-trivial subgroup G′, then for every
abelian group A and every homomorphism π : G−→ A, there exists a unique homomor-
phism φ : Gab −→ A, such that the following diagram commutes,

G

��

∀π // A

Gab
∃!φ

>> .

In particular G/N is abelien if and only if G′ ≤ N.

Proof. Let G be a non-commutative group, this means 1�G′EG, and let A be abelian.
We claim that for every homomorphism π : G −→ A, there exists a unique homomor-
phism denoted φ , such that φ : Gab −→ A, for which the previous diagram commutes.
To do verify the claim we simply apply Theorem[3.0.23], we first make the following
observation regarding π . Observer that since the homomorphism π : G−→ A maps any
non-commutative group G into an abelian group A, it follows that the image π(G) is
commutative, this means that for any x,y in G

π(xy) = π(x)π(y) = π(y)π(x) = π(yx),

thus the kernel ker(π) is contained in G′EG,

π(xy)π(yx)−1 = π(xyx−1y−1) = π([x,y]) = eA.

Observer that the converses inclusion is also true, that is any commutator [x,y] in G′ also
gets mapped to the identity in A. Thus the kernel ker(π) is equal to the the commutator
subgroup in G′ in G. So by Theorem[3.0.23] there exists a mapping φ : G/G′ −→ A such
that φ is a isomorphism. But if φ is the isomorphism φ : G/G′ −→ Al, then G/G′ is the
abelianization of G, and since φ it is the composition mapping of the embedding of G
into G/G′ with the mapping G/G′ −→ A, it follows that φ is a unique homomorphism.
Hence the diagram commutes and our claim is justified. To prove the last statement,
that is that G/N is abelian if and only if the commutator subgroup G′ is in N EG.
Suppose that G/N is abelian and let x,y be in G, then

(xN)(yN) = (yN)(xN) = (xyx−1y−1)N = N,

which implies that (xyx−1y−1) = [x,y] is in N, thus showing that G′ is contained in N.
Conversely if G′ ≤ N and N EG, then xNyN = xNyN and xyx−1y−1N = eN, which
implies that G/N is abelian. Hence our claim is justified.
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Definition 5.1.11. A group with no non-trivial abelian quotient is called a perfect
group.

Theorem 5.1.12. (Iwasawa’s Lemma) If G is a finite perfect group, acting faithfully
and primitively on a set Ω, such that the every point stabilizer has a normal abelian
subgroup whose conjugates generate G, then G is simple.

Proof. The following proof is based on [[9], Proposition 2.1]. Let K be a non-trivial
subgroup of G. We are going to show that the following equality K = G holds. Since K
is non-trivial, there exist some point in Ω, which is not fixed by all of K. We take x in
Ω to be such a point, then K is not a subgroup of the stabilizer Gx. We set H = Gx and
so K �H. Since is H maximal, it follows that G = HK, this means that g = hk for any
g in G, by h in H and k in K. So every conjugate of A by any g in G can be expressed
by

g−1Ag = k−1h−1Ahk = k−1Ak ≤ AK.

Recall that we assume K is normal in G hence the inclusion k−1Ak ≤ AK is justified.
Since the conjugates of A generate G, it follows that AK = G. Thus by Theorem[4.1.4],
we find an isomorphism G/K = K/K ∼= A/(A∩K) which implies that G/K is abelian.
But G is a perfect group, that is there exists no non-trivial abelianization of G. There-
fore the quotient G/K is trivial which proves the desired equality, K = G, and so we
conclude that G is simple.

5.2 Projective Special linear groups
In the previous section, we introduced a collection of tools to verify the hypothesis of
Iwasawa’s Lemma. In this section, and the next one, we will use those tools to show
the simplicity of two of the classic finite groups, namely, the projective special linear
groups and the projective symplectic group. We do this by first deafening the group as
the quotient group of special linear groups. After that, we state and prove a collection
of lemmas about the special linear group. This is simply some verification’s of the
existence of the tools stated in Section 5.1. So that we can apply Iwasawa’s Lemma
on the projective special linear groups. Besides proving the simplicity of projective
special linear groups, we will also derive its order and study two isomorphism cases.

Definition 5.2.1. The set Z(G) = {z ∈ G| gz = zg for all G} is called the center of G.

Remark. Since the identity commutes with ever element it is an element of the center.
Thus the center is non-empty.

Proposition 5.2.2. Let G be a group, then Z(G) is a normal abelian subgroup of G.

Proof. We claim that center is a normal abelian subgroup. Let G be a group, and let
Z(G) be the center of G. Since associativity of G and the definition of Z(G), ensures
closeness under products and taking inverses. It follows that the center is a subgroup
of G. Observer that any two elements in Z(G) commute, so it is an abelian subgroup.
Since every z in Z(G) commutes with every element g in G, it follows that Z(G) is
invariant under conjugation by any element in G. Hence Z(G) is a normal abelian
subgroup of G.
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Definition 5.2.3. The projective special linear groups denoted PSLn(q) is defined as
the quotient group SLn(q)/Z(SLn(q).

Remark. The subgroup Z(SLn(q)) consist of all matrices that commutes with all ma-
trices in SLn(q). The only matrices that commutes with all of SLn(q) are the scalar
matrices and the identity.

In the previous section, we introduced a stronger form of transitive group action.
That is the primitive action. In the next definition, we formulate yet another stronger
form of transitivity.

Definition 5.2.4. A group action of G on Ω is called 2-transitive if for every (x1,x2),
and (y1,y2) in Ω×Ω, such that x1 6= x2 and y1 6= y2. There exists some g in G which
satisfies the equality (gx1,gx2) = (y1,y2).

Remark. This can be reframed by saying that, the action G,y Ω is 2-transitive if and
only if Gy {(x1,x2) ∈Ω2 | x1 6= x2} is transitive.

We give an example of a 2-transitive group action by considering the special linear
group and the set of one-dimensional subspaces of of the finite vector space Fn

q. We do
this by stating and proving a lemma.

Lemma 5.2.5. The special linear group SLn(q) acts two transitively on the set of 1-
dimensional sub vector spaces of Fn

q, denoted Ω.

Proof. The following proof is based on [[6], Lemma 8.3]. We claim that SLn(q)y Ω
is two transitive. Let U1,U2,V1,V2 be one dimensional subspace of Fn

q. We pick a pair
of non-zero vectors ui in Ui and vi in Vi for i in {1,2}. To prove this we will directly
check the condition spelled out in Definition 5.2.4. This is done by by completing u1,u2
and v1,v2 respectively, to basis. We will then consider the unique linear invertible
map between these basis. In a final step we will modify this map in order to have
determinant 1. Recall that given two different one-dimensional subspaces of a vector
space, and a non-zero vector in each them, the resulting pair of vectors is linearly
independent. Hence, the pairs (u1,u2) and (v1,v2) are linearly independent. As a
consequence, we can complete both to a basis of Fn

q, say (u1, ...,un) and (v1, ...,vn),
respectively. Hence we can choose appropriate uk and vk so that there exists a unique
invertible linear mapping T in Fn

q, described as T (uk) = (vk) for all k in {1,2, ...,n}.
Note that T is an element of GLn(q), but not necessarily of SLn(q). We take c in Fq to
denoted the inverse of det(T ). The tuple {cv1,v2, ...,vn} is a basis of Fn

q Fn
q, thus there

is a unique invertible linear transformation S, such that S(cv1) = v1 and S(vk) = vk, for
k in {2,3, ...,n}. It follows that

det(S)det(T ) = cdet(T ) = cλ = λ−1λ = 1.

This proves that the product ST is in SLn(q). Since Fn
qcv1 = Fn

qv1, it follows that ST
maps the pair of subspace (U1,U2) to the pair (V1,V2).

Remark. The kernel of the action is the set of scalar matrices and geometrically the
action maps bases to bases up to scalar matrix.
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We leave the special linear group for a moment to formulate and prove a statement
regarding the 2-transitive action and point stabilizers subgroup.

Lemma 5.2.6. If G acts 2-transitive on the set Ω, then the stabilizer is a maximal
subgroup of G, for all x in Ω.

Proof. Suppose that GyΩ is 2-transitive. We claim that the stabilizer Gx is a maximal
subgroup of G for all x in Ω. Recall that 2-transitivity is a stronger form of transitivity.
So if we can prove that 2-transitive implies primitive, then all point stabilizers are a
maximal subgroup by Lemma[5.1.5]. We need to show that the action is primitive,
that is that there exists no non-trivial block systems. Assume that there exists a block
containing more than one element of Ω. Since the action is 2-transitive, that it has two
orbits, it follows that the block is the partition of Ω into Ω. Thus any non-singleton
partition of Ω must be equal to all of Ω. This means that we have no imperative block
systems, so G is 2-transitive and primitive. Hence our claim that the stabilizer Gx is a
maximal subgroup of G for all x in Ω is justified.

Remark. Observe that the proof also shows that 2-transitive implies primitive.

We will prove simplicity of projective special linear groups by applying Iwasawa’s
Lemma.

Theorem 5.2.7. The projective special linear group PSLn(q) is simple for (n,q) 6=
(2,2) and (n,q) 6= (2,3).

Proof. The following proof is based on [[9], Section 3.2.2]. We claim that PSLn(q)
is a simple group, when (2,2) 6= (n,q) 6= (2,3). Let SLn(q) with n > 2 and q > 3,
and let that Ω denote the set of one-dimensional subspace of Fn

q. We will prove the
claim by applying Iwasawa’s Lemma[5.1.12]. Consider the action SLn(q) on Ω and
take a point 〈(1,0, ...,0)〉 in Ω, so that H is the stabilizers of that point. Then the action
is 2-transitive by Lemma[5.2.6], which implies that the action is primitive. Thus the
stabilizers H is a maximal subgroup of SLn(q). So it suffices to show that there exists
a normal abelain subgroup in H, whose conjugates generated SLn(q). We first prove
the existence of a normal abelian subgroup. Since H stabilize the point 〈(1,0, ...,0)〉 in
Ω, if follows that H consist of all matrices, so that the first row is (λ ,0, ...,0) for some
λ 6= 0 in Fq. This implies that there exists a subset A in H defined as

A = {
( 1 0n−1

vn−1 In−1

)
∈Mn(Fq) | vn ∈ Fn−1

q }.

Since A satisfies the condition of a subgroup and any non-trivial element in A is an
invertible lower triangular matrix, it follows that any two elements in A commute and
that A is invariant under conjugation by any element in H, thus A is a normal abelian
subgroup of H. Observe that any non-trivial elements of A is a transvection, that is
any non-trivial M in A is a shear matrix with det(M) = 1 and rank (M− In) = 1 and
(M− In)

2 = 0, so all transvections are contained in A. Note that transvections are
elementary matrices whose conjugate is still a elementary matrices. We also recall that
any matrix with determinant one can be reduced into a sequence of elementary row and
column matrices E(λi, j) in Fn

q, for λ in Fq and some i, j≤ n, since any such elementary
matrix is a transvection, it follows that E(λi, j) is in A. Thus every transvection is
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contained in some conjugate of A. But if SLn(q) consists of exactly the matrices with
determinant one, then SLn(q) is contained in some conjugate of A. Hence SLn(q) is
generated by transvections. This part of the proof is based on [[7], Theorem 9.2]. We
need to show that SLn(q) is perfect for n ≥ 2 and q > 3, that is that SL′n(q) = SLn(q)
when n≥ 2 and q > 3. It suffices to show that when n≥ 3 and k 6= i, j any elementary
metrics Ei, j(λ ) is in some commutator [Ei,k(λ ),Ek, j(1)] in SL′n(q). To verify that any
elementary matrixs in SLn(q) for n > 2 and q > 3 is equal to some commutator of
SL′n(q), we start with n = 3 and q > 3. We take the commutator [E21(λ ),E32(1)] in the
commutator subgroup SL′3(q),

[


1 0 0
λ 1 0
0 0 1


 ,




1 0 0
0 1 0
0 1 1



]

=




1 0 0
λ 1 0
0 0 1






1 0 0
0 1 0
0 1 1






1 0 0
−λ 1 0
0 0 1






1 0 0
0 1 1
0 −1 1


=




1 0 0
0 1 0
−λ 0 1




Thus the commutator [E21(λ ),E32(1)] is the elementary matrix E31(−λ ) in SL3(q).
Since SLn(q) is generated by transvections, that is a elementary matrices, it follows
that after a subtitle choice of basis every transvections is contained in SL′n(q) whenever
n≥ 3. Thus is SLn(q) is a perfect when n≥ 3. Furthermore elementary matrices of the
kind previously describe do not exist in SL2(q). This means that the previous augment
do not apply for SL2(q) and q > 3. Instead we simply show that there are elements
of the normal abelian subgroup A that appears as commutator in SL′2(q), since the
commutator subgroup is a normal subgroup, it immediately follows SL′2(q) = SL2(q).
This part of the proofs is based on [[1], Lemma 2.8]. Hence conjugates of A generate
SL2(q). Consider the commutator subgroup SL′2(q), and supposes that q > 3. We take
a arbitrary commutator in SL′2(q). Since q > 3, there is a non-zero element γ in Fq such
that γ2 6= 1. Fix such an element. Let λ = (1− γ2)−1. Then [E21(λ ),D(γ−1,γ)] is in
SL′2(q), that is

[(
1 0
λ 1

)
,

(
γ−1 0
0 γ

)]

=

(
1 0
λ 1

)(
γ−1 0
0 γ

)(
1 0
−λ 1

)(
γ 0
0 γ−1

)
=

(
1 0

λ (1− γ2) 1

)
=

(
1 0
1 1

)

Observe that for SL2(q), we need for q > 3 otherwise λ 2 = 1 for a non-zero λ in Fq,
then we obtain the desired result, that is that there are arbitrary commutators in SL′2(q)
that are also present in A. So by normality of the commutator subgroup SL′2(q), it fol-
lows that SL2(q) is perfect when q > 3. Now before we continue, recall the remark
given in Lemma[5.2.5], and since the quotient group of a perfect group is again per-
fect, it follows that the quotient group SLn(q)/Z(SLn(q)) is perfect. Hence our claim
that PSLn(q) is a simple group whenever n > 2 or q > 3, is justified by Iwasawa’s by
lemma[5.1.12].
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The remaining part of the section will be devoted to deriving the order of the special
linear group, and the projective linear group, as well as studying the two cases PSL2(2)
and PSL2(3). We will see that they are two special cases for when the projective linear
group is not simple.

Proposition 5.2.8. The order of SLn(q) is

|SLn(q)|=
1

q−1

n−1

∏
k=1

(qn−qk).

Proof. We recall that the det : GLn(q) −→ Fq is a surjective homomorphism. Its kernel
is the special linear group as every A in SLn(q) have determinant 1. The image of the
homomorphism is the quotient group and its order is |GLn(q)|/|SL(q)| = q− 1. Thus
the order of the special linear group is equal to |GLn(q)|/q−1 as stated.

|SL(q)|=
1

1−q

n−1

∏
k=1

(qn−qk) =
GLn(q)
q−1

.

Proposition 5.2.9. The order of PSLn(q) is

|PSLn(q)|=
1

gcd(n,q−1)
qn(n−1)/2

n

∏
k=2

(qi−1)

Proof. We recall that PSLn(q)= SLn(q)/Z(SLn(q) and as the order of SLn(q) is already
known so the problem is reduced to finding the order of Z(SLn(q). Recall that center
of SL(q) only contains In and λ In. So it suffices to find the number of solutions to
det(λ In) = λ n = 1 for λ Fq. But this equal to the greatest common divisor of (n,q−1),
that is gcd(n,q−1). Therefore the order of the quotient is

|SLn(q)|/(Z(SLn(q)|=
1

(n,q−1)
1

q−1

n−1

∏
k=1

(qn−qk) =
1

(n,q−1)
qn(n−1)/2

n

∏
k=2

(qi−1)

Example 5.2.10. The group PSLn(q) is not simple when (n,q) is equal to (2,2) or
(2,3). In particular,

PSL2(2)∼= S3 and PSL2(3)∼= A4.

Proof. We will verify the statement by considering the two cases separately.

Case 1: We claim that PSL2(2) is not simple, and that PSL2(2) is isomorphic to S3.
Let PSLn(q) by the protective special linear group of order 6, that is PSL2(2), and take
the projective points space P over F2

2, yielding the projective lines P2 = X . To verify
the statements, it suffices to show that PSLn(q) is isomorphic to any of the two non
simple group of order 6. Since PSL2(2) is non-abelain, it follows that the only possible
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isomorphism is PSL2(2) ∼= S3. Recall that a group G acting on a set X induce a a
homomorphism from G −→ S|x|, the kernel of the homomorphism is equivalent to the
kernel of the action. Since PSL2(2) acts on X by left multiplication and Card(X) = 3,
it suffices to show that PSL2(2)y X is faithful. That is that the kernel of the action is
trivial. Since I2 is the only element that satisfies the condition the kernel, that is I2 p= p
for any p in P2, it follows that the kernel is trivial. Hence the action is faithful, and so
the homomorphism between PSL2(2) and S3 is bijective.

Case 2: We claim that PSL2(3) is not simple, and that PSL2(3) is isomorphic to A4.
Let PSLn(q) is by the protective special linear group, and (n,q) = (2,3). To verify the
claim, we first need to show that there is non-trivial proper normal subgroup contained
in PSL2(3). So if PSL2(3) is not simple, then there exists at least one non-trivial normal
subgroup in PSL(2,3). Since 12 is the product of distinct prime numbers, it follows
by Sylow’s Theorem [[7], Section 4.5 Theorem 18] and some direct computations that
there exists a unique 2-Sylow normal subgroup in PSL2(3). Hence PSL2(3) is not sim-
ple. We recall that group structures are preserved under isomorphisms, since PSL2(3)
is a non-commutative group order 12, with a unique 2-Sylow normal, it follows that the
only possible isomorphism is PSL2(3) ∼= A4. To verify this, we apply Cayley’s Theo-
rem [[5], Section 4.2 Corollary 4], that states that any group G is isomorphic to some
subgroup of the symmetric group Sn, we recall the definition of Sn and An and choose
n = 4. If PSL2(3) = G and S4, then PSL2(3) is isomorphic the subgroup of order 12 in
S4, which is the alternating group A4. Thus our claim that PSL2(3)∼= A4 is justified by
Cayley’s Theorem.

5.3 Projective symplectic group
In this section, we will prove the simplicity of the projective symplectic group. To do
so, we must first introduce the symplectic group. We start by formalizing a definition
for the mapping, that is linear in both its arguments and the symplectic basis.

Definition 5.3.1. Let V be a vector space over a field F the map f : V ×V −→ F is a
bilinear mapping if it satisfies the following laws

f (λu+ v,w) = λ f (u,w)+ f (v,w)

f (u,λv+w) = λ f (u,v)+ f (u,w),

for all u,v in V and λ in F. For the bilinear mapping f , we say that

• if f (u,v) = f (v,u), then f is symmetric,

• if f (u,v) =− f (v,u), then f is skew-symmetric,

• if f (v,v) = 0, then f is alternating.

We say that f is non-singular, if and only if f (u,v) = 0 for all v in V implies that u = 0.

Remark. The alternating bilinear form is always skew-symmetric, [[9], Definition 3.4.1].
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Definition 5.3.2. A symplectic bilinear mapping is a alternating non singular bilinear
mapping.

Definition 5.3.3. A symplectic basis is a ordered pair of vectors e1, ...,em, f1, ..., fm
contained in a vector space V paired with symplectic bilinear mapping, such that

• f (ei,ei) = f ( fi, fi) = 0

• f (ei, fi) =− f ( fi,ei) = λ 6= 0,

where f is the symplectic form and λ is in F2m
q .

We now have acquired the necessary tools to formalize the definition of the sym-
plectic group. We do this in the next definition.

Definition 5.3.4. Fix a symplectic basis, the symplectic group Sp2m(q) is the group of
2m squared matrices which preserve the symplectic form f on V ∼= F2m

q where V is the
symplectic basis.

Before verifying the hypothesis of Iwasawa’s lemma for the general case of the
symplectic group, we consider the case for Sp2(q). This is done in the following
lemma.

Lemma 5.3.5. The group Sp2(q) is equal to SL2(q).

Proof. The following proof is based on [[4], Theorem 2.2.9]. We claim that Sp2(q)
is equal to SL2(q). Let Sp2(q) be the symplectic group, and let V = F2

q denote the
symplectic basis. To verify the claim, we need to show that Sp2(q) consists of precisely
all invariable 2× 2 matrices with determinant one. Recall that Sp2(q) consists of the
ordered pair of the symplectic basis V , that preserves the non-singular alternating form.
So it suffices to show that the form

det : V ×V −→ Fq

(u,v) 7→ det(u,v)

is a symplectic form on V . Since det(u,u) = 0 and det(u,v) = −det(v,u) = λ 6= 0
for any u,v in V and λ in Fq, it follows that det is an alternating bilinear form on the
symplectic basis V . Thus Sp2(q) consist of precisely all invariable 2×2 matrices with
determinant one. Hence our claim that Sp2(q) is equal to SLn(q) is justified.

Remark. Observer that this implies that Sp2(q) is generated by transvections.

The symplectic group is also generated by a type of transvection. We formalize this
in the next definition and lemma.

Definition 5.3.6. A symplectic transvection is a linear map T such that

Tv(λ ) : x 7→ x+λ f (x,v)v,

where f is the symplectic form on V , for which v is a non-zero vector and λ is a
non-zero scalar in F.
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Lemma 5.3.7. Sp2m(q) is generated by symplectic transvections. In particular Sp2m(q)
is a subgroup of SL2m(q).

Proof. The following proof is based on [[9], Theorem 3.5.1]. We claim that Sp2m(q)
is generated by symplectic transvections, and that the determinant of a symplectic
transvection is equal to one. Let Sp2m(q) be the symplectic group, and let V be the
set of ordered symplectic basis of F2m

q . Suppose that S ≤ Sp2m(q) is the subgroup
generated by symplectic transvection, and let u,v,w be in V , so that v,w are non zero
vectors. To verify the claim, we need to show that the subgroup generated by symplec-
tic transvection is equal to the symplectic group. It suffices to show that the subgroup
S acts transitively on V . Observer that any such action will induce trivial point stabi-
lizers, and the desired result will follow. We will prove that S is transitive by way of
induction. We start by verifying three cases.

Case 3: Suppose that f (v,w) = λ 6= 0, then the symplectic transvection Tv−w(λ−1) is

Tv−w(λ−1) : v 7→ v+λ−1 f (v,v−w)(v−w)

= v+
f (v,−w+ v)

f (v,w)
(v−w)

= v+
− f (v,w)+ f (v,v)

f (v,w)
(v−w)

= v− (v−w)

= w

Thus Tv−w(λ−1) maps v to w in V . If this is not the case, then we choose an x in V , such
that f (v,x) and f (w,x) are not equal to zero. This is possible since f is a non-singular
form on a symplectic basis V . That is, if f (v,x) = 0 = f (w,x), then there exists y and z
in V , such that f (v,y) and f (w,z) are not equal to zero, which implies the existence of
a map v 7→ x and a map x 7→ w. Thus S acts transitively non-zero vectors in V .

But we have not yet convinced ourselves that S acts transitively on order symplectic
pairs in V . Fix u in V and suppose that f (u,v) = f (u,w) = 1 for v,w in V , such that
f (v,w) = λ for a non-zero λ in Fq, otherwise f (v,w) = 0. So we need to show that
there exists transvections that map v 7→ w and fixes u, we do this by considering the
f (v,w) 6= 0 and f (v,w) = 0 separately.

Case 4: If f (v,w) = λ 6= 0, then the symplectic transvection

Tv−w(λ−1) : v 7→ v+λ−1 f (v,v−w)(v−w)

= v+
f (v,−w+ v)

f (v,w)
(v−w)

= v− (v−w)

= w,

thus Tv−w(λ−1) maps v to w while u is fix.

For the case f (v,w) = 0 we consider a mortification of the argument in Case 3.
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Case 5: Let f (v,w) = 0, and x = u+ v in V , so that f (u,x) = 1 and f (v,x) = −1 and
f (w,x) =−1. Then the symplectic transvection

Tv−x(λ ) : v 7→ v+λ f (v,v− x)(v− x)

= v+λ f (v,λx+ v)(v− x)

= v+λ (λ f (v,x)+ f (v,v))(v− x)

= v− (v− x)

= x,

which implies that x 7→ v. Similarly the symplectic transvection

Tx−w(λ ) : x 7→ x+λ f (x,x−w)(x−w)

= x+λ f (x,λw+ x)(v− x)

= x+λ (λ f (x,w)+ f (x,x))(v−w)

= x− (x−w)

= w.

Hence we have convinced ourselves that v maps to w via x whiles u is fix.

Therefor by induction the subgroup of symplectic transvections S ≤ Sp2m(q) acts
transitively on the ordered symplectic basis, and S = Sp2m(q). Observe that symplec-
tic transvections have determinant one, Lemma[5.3.8], thus Sp2m(q) is contained in
SL2m(q).

We have no acquired the necessary definition and statements to prove that the sym-
plectic group is perfect and primitive. This is done in the following two lemmas.

Lemma 5.3.8. Sp2m(q) is perfect for m = 2 and q > 3, and m > 3 q > 2

Proof. The following proof is based on [[3], Proposition 7.3]. We claim that Sp2m(q) is
perfect, that is Sp′2m(q) = Sp2m(q). Let V denoted be the symplectic basis F2m

q , and let
Sp′2m(q) be the commutator subgroup in Sp2m(q). To verify this, we need to show that
every symplectic transvection is in Sp′2m(q). Since Sp2m(q) is generated by symplectic
transvections, Lemma[5.3.7], it suffices to show that given any v in V and λ in Fq the
transvection Tv(λ ) is in Sp′2m(q). Suppose that λ is in Fq, and that v is in V . Then λv
is also in V . Since Sp2m(q) acts transitively on the symplectic basis, Lemma[5.3.7],
we can find g in Sp2m(q) and v in V , so that gv = λv for any λ in Fq. Thus for any λ
in Fq, the commutator [g,Tv(λ )] is an element of Sp′2m(q). Observe that product of the
commutator [g,Tv(λ )] is equal to

[g,Tv(λ )] = gTv(λ )g−1Tv(λ−1)

= Tgv(λ )Tg−1v(−λ )

= Tλv(λ )Tλ−1v(−λ )

= Tv(λ 2)Tv(−1)

= Tv(λ 2−1),
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and Tv(λ 2−1) is just another symplectic transvection. If q > 3 we can choose λ 2 not
equal to 1, then λ 2−1 6= 0 is in Fq, which implies that every transvection is contained in
the commutator subgroup Sp′2m(q). Thus Sp2m(q) is equal to its commutator subgroup,
for q > 3. To complete the argument, we need for Sp2m(q) to be equal to Sp′2m(q).
This part of the proof is based on [[1], Lemma 4.9]. Let Sp′2m(q) be the commutator
subgroup of Sp′2m(q). Suppose that A is any invertible 3× 3, and B any symmetric
matrix 3× 3, both with entries in Fq. Since the symplectic group is generated by
symplectic transvections, it suffices to show the an arbitrary commutator is equal to
a symplectic matrix. We do this by considering the commutator of two two-block
matrices
[(

A−1 0
0 AT

)
,

(
I 0
B I

)]

=

(
A−1 0

0 AT

)(
I 0
B I

)(
A 0
0 (AT )−1

)(
I 0
−B I

)
=

(
1 0

BAT+1−B 1

)

Thus by suitable choice of A,B, we get that BAT+1−B1 has rank 1. So we can conclude
that the commutator is equal to a symplectic matrix in Sp6(q). Hence our claim that
Sp2m(q) is perfect, is justified.

Before stating and proving the primitively for the symplectic group, we derive the
order of the symplectic group.

Proposition 5.3.9. The order of Sp2m(q) is

|Sp2m(q)|= qk2
l

∏
k=1

(q2k−1)

Proof. This proof is based on [[9], Section 3.5]. We want to deduce the order of
Sp2m(q). That is want to compute the number of ways to choose an order symplec-
tic basis. We start by selecting the first vector e1 in V . This can be done in q2m− 1
ways. There are q2m−1 ways of selecting the perpendicular complete e⊥1 in V . We recall
that, u = em and v = λ fm and observe that for every pair f (u,v). There are q−1 pos-
sible scalar multiples λ in Fq. So the vector f1 can be selected in q2m−q2m−1/(q−1)
ways. Therefore the first vector pair e1, f1 can be selected in qm2

(q2m−1) possibilities.
The order is derive the order by induction.

|Sp2m(q)|= qk2
m

∏
k=1

(q2k−1)

Remark. All matrices in M ∈ Sp2m(q) have linearly independent vectors as it is a sub-
group of GL2m(q). This allows us to reduce the problem to finding linearly independent
vectors in a symplectic basis.

Lemma 5.3.10. The special symplectic group Spm(q) acts primitively on the set of
1-dimensional subspace of F2m

q , denoted Ω.
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Proof. The proof is based on [[9], Section 3.5.2]. We want to prove that Sp2m(q) acts
primitively on Ω. We first recall that a primitive action has only two block-systems.
That is, the block consisting of the partition of Ω into Ω, and the blocks of the partition
of all of Ω into singletons. To verify the claim, we assume the converse. Suppose
that the action Sp2m(q)y Ω is imprimitive, then there exists some non-trivial block
systems. We know that the action is transitive, Lemma[5.3.7]. So if p is a point in
Ω. Then the stabilizer Gp acts transitively one the (q2m−1) points not orthogonal to the
fixed point. Recall that for any symplectic form f (u,v) 6= 0, there exists q−1 possible
scalars, Proposition[5.3.9]. This means that the stabilizer of p also acts transitively on
the (q2m−1−1)/(q−1)−1 points that are orthogonal but not equal to p, this is simply a
consequence of the fact that if given three vectors u,v,w in F2m

q , so that both the vectors
v and w are orthogonal to u, there exist two possible values for the symmetric form of
u,v, either f (v,w) = λ 6= 0 or f (v,w) = 0. If for v,w we have that f (w,v) = λ 6= 0,
then there exists a transvection Tv−u(λ−1) : v 7→ w while u gets fix, Lemma[5.3.7]. If
f (w,v) = 0, then there exists a suitable vectors x for which f (v,x) and f (w,x) are non-
zero, which implies that we can map v to w via x while u gets fix. Hence the only blocks
systems are the partitions which has cardinality 1+q2m−1 and 1+(q2m−1−1)/(q−1).
But non of the possible blocks is divisible with (q2m−1 − 1)/(q− 1), then the only
block systems are the trivial one, this contradicting our assumption that Sp2m(q) is
imprimitive. Therefore, the claim that the action Sp2m(q)yΩ is primitive is justified.

Definition 5.3.11. The projective symplectic group denoted PSp2m(q), is the group
defined as the quotient of Sp2m(q) by the set of scalar matrices in Sp2m(q), denoted
PSp2m(q).

Remark. Recall that for the definition of PSLn(q) in Section[5.2], we used the center
of the special linear group, which consists of the scalar matrices in SLn(q). Observe
that this is also what we did for Sp2m(q). But, since we are restricted to the symplectic
form, any λ in Fq must satisfy f (λu,λv) = λ 2 f (u,v), it follows that any the only
possible scalars are λ ±1. This observation will be used when deriving the order of the
projective symplectic group.

In the next theorem, we state and prove the simplicity projective symplectic group.
This is done by simply verifying the hypothesis of Iwasawa’s lemma.

Theorem 5.3.12. The group PSp2m(q) is simple for all m > 2, and m = 2 and q > 2.

Proof. The fallowing proof is based on [[9], Section 3.5.2]. We claim that the group
PSp2m(q) is simple for m > 2, and for m = 2,q > 2. Let Sp2m(q) and m≥ 2 and when
m = 2, take q > 2. Now suppose that Sp2m(q) acts on the set of one-dimensional sub-
space of F2m

q , denoted Ω. To prove the statement, we simply need to verify the hypothe-
sis of Iwasawa’s Lemma[5.1.12]. We first recall that Sp2m(q) is perfect, Lemma[5.3.8].
Furthermore the action Sp2m(q)y Ω is primitive, Lemma[5.3.10], and the point sta-
bilizer are maximal subgroups, Lemma[5.1.5]. Therefore, it suffices to show that any
arbitrary point stabilizer have a normal abelian subgroup whose conjugates generate
Sp2m(q)/Z(Sp2m(q)). To show this, we fix vector v in Ω, and consider the stabilizer
H = Sp2m(q)〈v〉. Since the stabilizer H fixes 〈v〉 and its perpendicular complement
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〈v〉⊥, it follows that the transvections Tv(λ ) that fix 〈v,v⊥〉 form a subset A of H, de-
fined as

A =

{


1 0 0
λ 1 0
0 0 I2m−1


 | λ ∈ Fq

}
.

Observe A satisfies the condition of a subgroup and any non-trivial element in A is an
invertible lower triangular matrix, so any two elements in A commute. But Sp2m(q) is
generated by symplectic transvections, Lemma[5.3.7], and every non-trivial element in
A is an symplectic matrix and thus invariant under transpose conjugation, it follows that
A is an abelain normal subgroup whose conjugates generate PSp2m(q). Hence the claim
that the projective symplectic group PSp2m(q) is simple for m > 2 and m = 2,q > 2, is
justified by Iwasawa’s Lemma.
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