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Abstract

The following paper aims to present the basic theory of quantum computing, Shor’s al-
gorithm, the graph isomorphism problem, and their connection to the hidden subgroup
problem. A mathematical approach is taken to these concepts, in contrast to a physi-
cal or computer scientific focus. Each topic is introduced with an emphasis on Hilbert
spaces, analytic number theory, representation theory, and group theory. First, Shor’s
factoring algorithm is presented and summarized in detail, giving a complete overview
of the factoring process. Then, after introducing basic notions of representation the-
ory of finite groups, the standard method of quantum algorithms is presented in the
context of the hidden subgroup framework. Finally, the graph isomorphism problem
is discussed, and a brief overview of the current status of this problem is given.
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section 1
Introduction

A major area of research today is the development of algorithms that can be effi-
ciently implemented using methods of quantum computing. There is, for good reason,
an expectation that these algorithmsmay offer exponential speed-up compared to their
classical counterparts. In 1994, Peter Shor presented a probabilistic quantum algorithm
providing this sought after speed-up to the factorization problem. This result had a
significant impact on the area, and the interest both in solving the technical difficulties
introduced by quantum mechanics and in how the underlying mathematics could be
used to develop new algorithms utilizing similar techniques increased over the follow-
ing years.

Just last year, Google claimed [AAB+19] in an article published in Nature, to have
achieved so-called “quantum supremacy” in solving a problem on a 53-bit quantum
computer in a mere 2.5 days, as opposed to their estimation of 10,000 years to solve the
same problem on a (classical) supercomputer. The initial claim was disputed by IBM
[PGMG19], the other major player at the forefront of the research in the field. Nonethe-
less, this shows that the quick developments and active research of recent years are
only the beginning of a new area of computing which promises to advance the limits of
computation as we know it today.

At the core of this area is a deep mathematical framework known as the hidden
subgroup problem, which, in combination with the Fourier transform gives the very
foundation of quantum algorithms such as Shor’s algorithm. In its most general form,
this framework can be applied to problems that are not yet solved, such as the graph
isomorphismproblem. Consequently, further progress in this field of research promises
not only significant advances in computer science and physics but also in mathematics.

The main purpose of this text is to present the basics of quantum computing along
with two of the most significant problems that are known to be, or suspected to be, ef-
ficiently solvable using quantum techniques: the factoring problem and the graph iso-
morphism problem. We focus on the mathematical aspects of this theory, with an em-
phasis on how the underlying mathematics provides the greater structure of quantum
computing. This includes the theory of Hilbert spaces, representation theory, group
theory, and Fourier transforms.

The preliminaries in Section 2 covers the theory of Hilbert spaces, time complex-
ity, and continued fractions. Section 3 presents the basics of quantum computing and
the discrete Fourier transform, these are tools that will be used heavily throughout the
text. In Section 4 Shor’s factoring algorithm is presented in its entirety, and an exam-
ple of how it can be used to factor an integer is given. This section is followed by a
presentation of the hidden subgroup problem, its relation to quantum computing, and
the so-called standard method for different groups. Finally, in Section 6, the graph iso-
morphism problem is presented, as well as theory regarding the representations of the
symmetric group (<.
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section 2
Preliminaries

§ 2.1. Hilbert Spaces. In what follows, we assume the reader to be familiar with
the basics of linear algebra: vector spaces, inner products and matrix operations. We
here present some extended definitions and theorems necessary to understand later
sections. Proofs and detailed explanations can be found in [Hal87].

Definition 2.1. A Hilbert space is a real or complex complete inner product space.

When considering a finite dimensional inner product space, which will be the case
throughout this text, the completeness criterion follows from the completeness of ℝ<

and uniqueness of norms.

Definition 2.2. A linear transformation on a vector space V, is a function) : V→ V

such that for all D1, D2 ∈ V, and scalars U, V, the following equality is satisfied:

) (UD1 + VD2) = U) (D1) + V) (D2).

Choosing a basis for the <-dimensional vector space ℂ<, we identify with each
linear transformation from ℂ< to itself a matrix in "<(ℂ), with respect to the chosen
basis. A certain subset of linear transformations will be exceptionally useful in studying
quantum gates.

Definition 2.3. A linear transformation* between Hilbert spaces is called unitary if it
is a bijection preserving the norm, or equivalently, if

*∗ = *−1.

Wewant to be able to create the product of two vector spaces, thus forming a larger
vector space, similar to forming the direct sum. We will denote this operation, called
the tensor product, by ⊗. Intuitively, we would want the tensor product U⊗ Vof two
spaces to contain elements C ⊗ D, that are products of elements C ∈ U and D ∈ V

in some sense. Most naturally, the dimension of the product space should be equal to
dim(U) · dim(V), and we also want this product to satisfy some linearity properties
that would be reasonable to expect.

In order to give a useful, formal definition of such a product, wemake the following
definitions.

Definition 2.4. A scalar valued function G on the vector space V is called a linear
functional if, for every D1, D2 ∈ Vand scalars U and V, it is true that

G(UD1 + VD2) = UG(D1) + V G(D2).

The set of all linear functionals form a vector space called the dual space of V, and is
denoted by V∗.

The dimension of the dual space is in fact equal to the dimension of the vector space,
a consequence of the following theorem:
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Theorem 2.5. Let V be a vector space with basis {D1, . . . , D<}, then there exists a unique
basis {E1, . . . , E<} in V∗ such that E8 (D7) = X7 8. This is called the dual basis.

Finally, we consider the equivalence of linear functionals on the direct product of
two vector spaces. This theory can also easily be extended to a product V1× . . .×V<, of
< finite dimensional vector spaces. Note that this is not the same as the tensor product
that we have yet to define.

Definition 2.6. Let U, V be vector spaces over the same field and form their direct
product W= U× V, which is also a vector space. A scalar valued function E on W is
called a bilinear form or bilinear functional, if

E(UC1 + VC2, D) = UE(C1, D) + VE(C2, D),

and
E(C, UD1 + VD2) = UE(C, D1) + VE(C, D2),

for all C, C1, C2 ∈ U, D, D1, D2 ∈ Vand scalars U, V.

We are now ready to give the definition of the tensor product of vector spaces. Note
that there are many possible ways to define the tensor product, somemore complicated
than others. For our purposes of working with finite-dimensional vector spaces we
stick with the definition of [Hal87].

Definition 2.7. The tensor product U⊗Vof two finite-dimensional vector spaces over
the same field is a space of linear functionals on the space of all bilinear forms on U×V,
such that for any C ∈ U and D ∈ V the tensor product C ⊗ D is defined by

E ↦→ E(C, D),

for every bilinear form E.

For the tensor space U⊗ Vwe have the following theorem, which shows that our
hopes that the dimension be multiplicative is satisfied.

Theorem 2.8. If {F1, F2, . . . , F<} and {G1, G2, . . . , G;} are bases of Uand V, respectively,
then the set {F7 ⊗ G8 | 7 = 1, . . . , <; 8 = 1, . . . , ;} is a basis of U⊗ V.

Wealso consider the linear transformations on the space U⊗V. So let � : U→ U′

and � : V→ V′ be two transformations. Then � = � ⊗ � is the linear trasformation
from U⊗ V to U′ ⊗ V′, with the adjoint �∗. By definition of the tensor product we
then have that

[�(C ⊗ D)] (E) = (C ⊗ D) (�∗E)
= (�∗E) (C, D)
= E(�C, �D)
= (�C ⊗ �D) (E),

for C ∈ U and D ∈ V.
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Example 2.9. To perhapsmake these somewhat abstract definitionsmore concrete, we
consider what the matrix � = � ⊗ � would look like in terms of � and �. So let these
transformations be defined by matrices � =

(
07 8

)
and � =

(
1>?

)
and fix an ordering of

the basis of U⊗ V, defined in Theorem 2.8, called the lexicographical order:

F1 ⊗ G1,F1 ⊗ G2, . . . , F1 ⊗ G;, F2 ⊗ G1, . . . , F2 ⊗ G;, . . . , F< ⊗ G1, . . . , F< ⊗ G;.

This provides an identification between the linear transformations from U ⊗ V →
U⊗ V to ";<(ℂ). Then,

�(F 8 ⊗ G?) = �(F 8) ⊗ �( G?) =
(∑

7

07 8F7

)
⊗

(∑
>

1>? G>

)
=

∑
7,>

07 81>?(F7 ⊗ G>).

We thus get the following matrix form of �, known as the Kronecker product:

� =

©«
011� . . . 01<�

021� . . . 02<�
...

...
...

0<1� . . . 0<<�

ª®®®®¬
.

The final concept necessary to continue is that of projections, and in particular
orthogonal projections on Hilbert spaces.

Definition 2.10. Let V = " × # be a vector space such that every D ∈ V can be
written uniquely as D = F + G, where F ∈ " and G ∈ # . Then the projection on "
along # is the transformation % defined by %D = F.

Given a subspace " of a finite dimensional inner product space V, the Projection
Theorem [Hal87] Chapter 66, states that Vcan be decomposed into the direct product
of " and "⊥. So every D ∈ Vcan be written uniquely as D = F + G, where F ∈ " and
G ∈ "⊥. In particular this is true for Hilbert spaces.

It can thus be shown that projections onHilbert spaces are both idempotent, meaning
that % = %2, but also self adjoint, meaning that % = %∗. With these concuding remarks,
we state the following definition.

Definition 2.11. A linear operator % : V → V on a Hilbert space V is called an
orthogonal projection if % = %2 = %∗.

§ 2.2. Asymptotic Notation. We briefly discuss the basic notions of algorithmic
complexity and order notation, for a more in-depth discussion, the reader can consult
Chapter 3 of [CLRS09]. When discussing the efficiency of algorithms it is fundamental
to be able to compare the amount of resources needed to run the computation. Re-
sources here usually refers to time or memory. We aim to describe the amount of re-
sources needed in terms of the input size, often as a function) (<), if the input is of size
<. However, determining this function is often quite difficult, which is why we usually
consider the asymptotic complexity instead. We make the following definition:
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Definition 2.12 (Order Notation). Let 5 and 6 be positive functions of <. If there exists
constants 2 and # such that

5 (<) ≤ 26(<),
for all < ≥ # , we say that 5 is big-O of 6, and write 5 (<) = O(6(<)).

We often analyze algorithms from a worst-case standpoint, assuming that it takes as
long as possible to complete, and thus derive the upper bound 6(<).

Depending on what kind of function 6 is, we can compare the complexity of dif-
ferent algorithms. We here list, from best to worst, the most common functions to
consider when analyzing time and space complexities:

• 6(<) = 1: constant time

• 6(<) = <: linear time

• 6(<) = <9: polynomial time

• 6(<) = O(4Y<), for all Y > 0: sub-exponential time

• 6(<) = 49< : exponential time

§ 2.3. Continued Fractions. Perhaps surprisingly, the theory of continued frac-
tions plays a significant role in the post processing of Shor’s algorithm which we will
see in the next section. In this section, we give a brief overview of relevant results in
this area, following the presentation given in [HW08].

Definition 2.13. The expression

00 +
1

01 + 1
02+ 1

...+ 1
0<

,

where < ≥ 0 and 07 is a positive integer for each 7, is called a finite continued fraction.
This expression is also denoted by [00, 01, 02, . . . , 0<].

Definition 2.14. The expression [00, 01, . . . , 07] , 0 ≤ 7 ≤ <, is called the 7th convergent
to the continued fraction [00, 01, . . . , 0<].

Throughout this section, we reserve the [0]-notation for denoting the continued
fraction expansion with just one term, not to be confused with the notation used in
other sections where this represents the integer part of 0.

The convergents can be calculated using the following recursive formula.

Theorem 2.15. Let [00, 01, . . . , 0<] be a finite continued fraction. If >7 and ?7 are defined
recursively by

>0 = 00, >1 = 0100 + 1, >7 = 07>7−1 + >7−2 (2 ≤ 7 ≤ <),
?0 = 1, ?1 = 01, ?7 = 07?7−1 + ?7−2 (2 ≤ 7 ≤ <).

then
[01, 01, . . . , 07] =

>7

?7

is the 7th convergent.
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Theorem 2.16. Every positive rational number can be uniquely represented by a finite
continued fraction.

Now, to actually determine this continued fraction expansion of a given rational
number F ∈ ℚ, we use a process similar to the familiar Euclidean algorithm. We now
demonstrate this process and then analyze its time complexity which will be important
later on.

Taking F ∈ ℚ, let 00 = [F] , so that F = 00 + Y0, where 0 ≤ Y0 < 1. Now, if Y0 ≠ 0
we write

1
Y0

= 0′1,
[
0′1

]
= 01, 0′1 = 01 + Y1,

again where 0 ≤ Y1 < 1. Similarly, if Y1 ≠ 0, we have that

1
Y1

= 0′2 =
[
0′2

]
+ Y2 = 02 + Y2,

where 0 ≤ Y2 < 1. We continue this process, in each step obtaining another 0′
7
=

1/Y7−1 > 1 and corresponding positive integer 07, for all 7 ≥ 1. Eventually, a point is
reached when Y7 = 0, say for 7 = <, and a system of equations is obtained:

F = 00 + Y0
1
Y0

= 01 + Y1
1
Y1

= 02 + Y2
...

1
Y<−1

= 0< + Y<,

where 0 ≤ Y7 < 1, for each 0 ≤ 7 < <. It follows that F = [00, 01, . . . , 0<] is the continued
fraction expansion of F.

As promised, we now demonstrate how this process is actually the Euclidean algo-
rithm in disguise. Since F is rational, write F =

>

?
, where >, ? ∈ ℤ, ? > 1, and we have

the initial relation > = 00? + Y0?. Denote the term Y0? by ?1, this is the remainder of the
division >/?. So we can write

0′1 =
?

?1
= 01 + Y1,

from which we get the relation ? = 01?1 + Y1?1, where ?2 = Y1?1 is the remainder of ?
divided by ?1. Continuing in the same fashion, we obtain a strictly decreasing sequence
of integers, ?, ?1, ?2, . . . , ?<. This yields the following system of equations:

> = 00? + ?1, 0 < ?1 < ?

? = 01?1 + ?2, 0 < ?2 < ?1

...

?<−2 = 0<−1?<−1 + ?<, 0 < ?< < ?<−1

?<−1 = 0<?<,
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which is immediately recognized as the Euclidean algorithm, calculating the greatest
common divisor of > and ?. This also implies that the complexity of the continued
fraction algorithm is the same as the Euclidean algorithm.

As mentioned previously, the ?7’s are strictly decreasing, and in fact, it is true that
?7+2 <

1
2?7, meaning that they are halved after two iterations.

This is certainly true if ?7+1 ≤ 1
2?7, and if ?7+1 >

1
2?7 we have that

?7+2 = ?7 − ?7+1 < ?7 −
1
2
?7 =

1
2
?7.

Now if 29−1 < > < 29 the algorithm terminates after at most 29 iterations and thus
O(log >) division steps are needed to find gcd(>, ?) or the continued fraction expansion
of >

?
, where > > ?.
The final result that we will need is the following theorem, an elementary result of

number theory. A proof can be found in [HW08], Theorem 184.

Theorem 2.17. Let F ∈ ℚ, and >, ? ∈ ℤ, ? ≠ 0. If����F − >? ���� < 1
2?2

,

then >/? is a convergent of F.

This theorem will be used later, along with the continued fraction algorithm, to
determine the convergent >/?.
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section 3
Quantum Computing

§ 3.1. Foundations of QuantumComputing. Quantum computing differs quite
significantly from classical computing. In this sectionwe introduce basic notions in this
area, and go over the three phases of quantum computation: the input, the computation
and the output. Similar to the classical case, quantum computations are operations
performed on registers consisting of bits, but these computations, registers and bits are
very different from their classical counterparts.

Definition 3.1. A unit vector in a Hilbert space is called a quantum state. A state in ℂ2

is called a qubit, and we distinguish the vectors

40 =

(
1
0

)
and 41 =

(
0
1

)
,

called the fundamental states.

Here we instantly recognize the difference to the definition of classical bits. While
the state of a classical bit is either 0 or 1, a qubit is any unit vector in ℂ2. Furthermore,
the state of a qubit is described by two complex numbers and thus contains far more
information than the state of a classical bit.

Theorem 3.2. The vector D = U40+V41 in ℂ2 is a qubit for all U, V such that |U |2+|V |2 = 1.

Proof. This is true by the definition of states, since | |D| | =
√
|U |2 + |V |2 = 1, so D is

indeed a unit vector. �

It is worth noting that a qubit D = U40 + V41 is said to be in a superposition of states
if both U and V are nonzero.

As the reader is probably familiar with, an <-bit register in classical computing cor-
responds to a string of < bits, in quantum computing, however, we define an <-bit reg-
ister as follows.

Definition 3.3. An <-qubit composite system, or an <-qubit register, is the Hilbert tensor
product of the < individual qubit systems, (ℂ2)⊗<.

By Theorem 2.8, for any Hilbert spaces H1 and H2, with bases {F1, F2, . . . , F<} and
{G1, G2, . . . , G;}, we have that H1 ⊗ H2 is a Hilbert space with basis {F7 ⊗ G8 | 7 =

1, . . . , <; 8 = 1, . . . , ;}.
We can define a basis of fundamental states for this composite system as the ten-

sor product of the fundamental states of each subsystem: {471 ⊗ 472 ⊗ . . . ⊗ 47<}, where
(471 , . . . , 47<) ∈ (ℤ/2ℤ)<, a binary digit of length <. Thus we may write the basis ele-
ments as {40, 41, 42, . . . , 42<−1}, and they can be interpreted as binary sequences. Observe
that this might lead to ambiguity if we fail to pay attention to which Hilbert space a
product belongs to, for example 40 ⊗ 40 ∈ (ℂ2)⊗2 and 40 ∈ ℂ2.

Theorem 3.4. A vector D =
∑2<−1
7=0 U747 is a state in a composite system (ℂ2)⊗< if

2<−1∑
7=0

|U7 |2 = 1.
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Proof. Again, it is clear that D is a unit vector in (ℂ2)⊗< since | |D| | =
√∑ |U7 |2 = 1. �

Now we move on to discuss how quantum computations are performed on an in-
put consisting of a quantum state. First of all, we want a computation to transform one
state into another, so the norm has to be preserved. These are then the unitary trans-
formations from a Hilbert space (ℂ2)⊗< to itself, in quantum computing commonly
referred to as quantum gates. Since unitary transformations are invertible, this implies
that quantum computations are reversible, in contrast to classical computations. We
now provide the reader with a few examples of simple quantum gates.

Example 3.5. (Hadamard Transform) The Hadamard transform, �1 : ℂ2 → ℂ2, on a
single-qubit system is defined by the following transformation

1
√
2

(
1 1
1 −1

)
.

We see that it transforms the two fundamental states in the following way

�140 =
1
√
2

(
1
1

)
=

1
√
2
(40 + 41) and �141 =

1
√
2

(
1
−1

)
=

1
√
2
(40 − 41) .

More generally, theHadamard transformon a <-qubit register is defined recursively
as the <-fold tensor product of �1:

�< = �<−1 ⊗ �1 =
1
√
2

(
�<−1 �<−1
�<−1 −�<−1

)
.

Inwhat followswe use superscripts to denote theHilbert space towhich a state belongs.
Now consider the following intermediary result:

Lemma 3.6. It is true that

(410 + 411)⊗< =
2<−1∑
7=0

4<7 .

Proof. First note that

(410 + 411)⊗2 = (410 + 411) ⊗ (410 + 411)
= 410 ⊗ 410 + 410 ⊗ 411 + 411 ⊗ 410 + 411 ⊗ 411

=

22−1∑
7=0

427 .

This is our base case for induction. Now assume that (410 + 411)⊗9 =
∑29−1
7=0 49

7
. Then,

(410 + 411)⊗9+1 = (410 + 411) ⊗ (410 + 411)⊗9

= (410 + 411) ⊗
29−1∑
7=0

497

=

29−1∑
7=0

410 ⊗ 497 +
29−1∑
7=0

411 ⊗ 497 ,
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by assumption. Note that in the final sumwe append a 0 to the beginning of each binary
sequence in the first sum, and a 1 to the terms in the second sum. This leaves the first
sum unchanged, and increases the value of the binary sequences in the second sum by
a power of 2. Hence this expression is equal to

29−1∑
7=0

497 +
29+1−1∑
7=0

49+1
7+29 =

29+1−1∑
7=0

49+17 .

The result follows by induction. �

Now returning back to the Hadamard transform, we consider an interesting prop-
erty, that we will see the usefulness of later: applying the �< to the zero-state 4⊗<0 we
obtain the following state:

�<((410)⊗<) = (�14
1
0)⊗< =

(
1
√
2

)< [
(410 + 411) ⊗ (410 + 411) ⊗ . . . ⊗ (410 + 411)

]︸                                             ︷︷                                             ︸
< times

=
1

2</2

2<−1∑
7=0

4<7 ,

by the preceding Lemma. This is a superposition of all fundamental states of the com-
posite system (ℂ2)⊗<.

Example 3.7. Another interesting gate is theNOT-gate on a single qubit system, which
maps 40 to 41 and vice versa, as compared to the logical NOT that negates the statement
to which it is applied. This transformation is defined by

# =

(
0 1
1 0

)
.

The final phase of quantum computation is the measurement where we actually re-
trieve information from a state after a computation has been made.

Definition 3.8. A projective measurement on a finite dimensional qubit register V, is a
finite collection of nonzero orthogonal projections %1, %2, . . . , %9, where %7 is a projec-
tion of Vonto V7 such that

9∑
7=1

%7 = �V.

Let D ∈ V be a quantum state. In our model of quantum computing, applying a
measurement results in a permanent change of the state to which it was applied. In
particular, applying the measurement %1, . . . , %9 on D results in an observation of 7 ∈
{1, . . . , 9} with probability >(7) = | |%7 (D) | |2, and the state D is transformed to

%7 (D)
| |%7 (D) | |

.



3.2. The Discrete Fourier Transform 13

Furthermore, it follows by Pythagoras that this defines a probability measure because

9∑
7=1

>(7) =
9∑
7=1

| |%7 (D) | |2 =
�����
����� 9∑
7=1

%7 (D)
�����
�����2 = | |D| |2 = 1.

Thismeans that every timewemeasure a quantum register, and observe 7, the prob-
ability of obtaining any other outcome in a second measurement becomes zero. Hence,
further measurements will not provide any additional information. Note that if 7 is
observed, it must be that >(7) ≠ 0, so %7D ≠ 0.

Example 3.9. Let D = U40 + V41 be a single-qubit system. Then we have the projections

%0 = 40 ⊗ 4∗0 =
(
1 0
0 0

)
, and %1 = 41 ⊗ 4∗1 =

(
0 0
0 1

)
.

If we measure and observe 0, the system is transformed to the state

%0D

| |%0D| |
=

U40√
|U |2

=
U

|U | 40.

Similarly, if 1 is observed, the system is transformed into

%0D

| |%0D| |
=

V

|V | 41.

§ 3.2. TheDiscrete Fourier Transform. A central part of quantum computation
is the use of the quantum Fourier transform. A special case of this unitary transfor-
mation occurs when we consider the cyclic group ℤ/#ℤ. This is called the discrete
quantum Fourier transform, or cyclic Fourier transform.

Definition 3.10. Let � be an additive Abelian group, and � a set. A function 5 : �→ �

is said to be periodic with period @ if 5 (0 + @) = 5 (0), for every 0 ∈ �.

Let !2(ℤ/<ℤ) = {5 : ℤ/<ℤ→ ℂ} be the <-dimensional Hilbert space with inner
product

〈5 , 6〉 =
∑

F∈ℤ/<ℤ
5 (F)6(F) for 5 , 6 ∈ !2(ℤ/<ℤ).

An orthonormal basis of this space is the family of functions {XF}F∈ℤ/<ℤ defined as

X7 ( 8) =
{
1 if 7 ≡ 8 (mod <)
0 otherwise.

We define the characters of ℤ/<ℤ to be the set of homomorphisms { j2}2∈ℤ/<ℤ, from
ℤ/<ℤ to ℂ∗ such that j2 (F) = 42c72F/<. Wewill learn an alternative definition in Section
5.1 which applies to the more general case of an arbitrary finite group �.

Lemma 3.11. Let < ∈ ℕ, then
<−1∑
9=0

42c 79/< = 0.



14 3.2. The Discrete Fourier Transform

Proof. We have that (
42c 7/< − 1

) <−1∑
9=0

42c 79/< = 42c 7</< − 1 = 0,

and since 42c 7/< ≠ 1, it must be that the sum is equal to zero. �

Theorem 3.12. Let { j0, j1, . . . , j<−1} be the set of characters of ℤ/<ℤ, then the family

� =

{
j2√
<

}
2∈ℤ/<ℤ

form an orthonormal basis of !2(ℤ/<ℤ).

Proof. Let j2/
√
< and j3/

√
< be two such characters. If 2 = 3, by definition of the inner

product of !2(ℤ/<ℤ) we have that〈
j2√
<
,
j2√
<

〉
=
1
<

∑
F∈ℤ/<ℤ

42c7F2/< · 4−2c 7F2/< = 1
<

∑
F∈ℤ/<ℤ

1 = 1.

Now if 2 ≠ 3 we instead have that〈
j2√
<
,
j3√
<

〉
=
1
<

∑
F∈ℤ/<ℤ

42c7F2/< · 4−2c 7F3/<

=
1
<

∑
F∈ℤ/<ℤ

(42c 7(2−3)/<)F

=
1 − (42c 7(2−3)/<)<

<(1 − 42c 7(2−3)/<)
= 0.

�

Definition 3.13. The discrete Fourier transform is the transformation,F : !2(ℤ/<ℤ) →
!2(ℤ/<ℤ) defined by

[F(5 )] (2) =
〈
5 ,
j2√
<

〉
.

This function is commonly denoted by 5̂ , and we have more explicitly that

5̂ (2) = 1
√
<

∑
0∈ℤ/<ℤ

4
−2c702
< 5 (0).

Applying Fto the basis of delta functions we obtain the matrix representation

&< =

(
j2 (F)/

√
<

)
0≤2,F≤<−1

.
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Example 3.14. For < = 2 we obtain the familiar matrix

&2 =
1
√
2

(
1 1
1 −1

)
,

which we recognize as the Hadamard transformation on a single qubit system. How-
ever, this does not extend to larger <, consider for example < = 4 which results in the
matrix

&4 =
1
2

©«
1 1 1 1
1 7 −1 7

1 −1 1 −1
1 7 −1 −7

ª®®®¬ .
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section 4
Shor’s Algorithm

One of the most widely known and used algorithms in cryptography today is the so
called RSA cryptosystem. The main reason for its widespread use being that the fastest
algorithms to break the encryption runs in sub-exponential time, which is far worse
than the desired polynomial time complexity. The hard underlying problem of RSA
is the integer factorization problem, which is also of great mathematical interest. In
1994, Peter W. Shor [Sho97] introduced a quantum algorithm which makes it possible
to factorize a large integer # in polynomial time. The fundamental idea of the algo-
rithm is to reduce factorization to a problem of determining the order of elements in
cyclic groups, and then utilize the properties of the discrete quantum Fourier trans-
form to retrieve information about a subgroup generated by the element in question in
the additive group ℤ/#ℤ. This information can then be used to classically obtain the
generator for this subgroup, and thus the period of 5 .

§ 4.1. Reducing the Factorization Problem. Our first goal is to reduce the fac-
torization problem to one that we can solve using a quantum computer. Let # be a
large, odd integer, and pick a random integer 1 < G < # . Using the Euclidean algo-
rithm we can quickly determine whether G and # share a common factor, because if
1 < 3 = gcd( G, #), then 3 is a common factor of # and G. However, if # is large,
it is very unlikely that we find such a G, so we can assume this is not the case, and
gcd( G, #) = 1. Since G is invertible modulo # in this case we can consider it an ele-
ment of the finite group (ℤ/#ℤ)∗. Let @ be the order of G in this group, so that G@ = 1.
This means that G@ − 1 = 0modulo # , and hence it must be that # | ( G@ − 1).

Now, if we are lucky and it happens that @ is even, we have

G@ − 1 = ( G@/2 − 1) ( G@/2 + 1) = 0 (mod #),

and since # - ( G@/2 − 1) it must be that # and G@/2 + 1 share at least one prime factor.
So we can again use the Euclidean algorithm to determine 3 = gcd(#, G@/2+1). If 3 = 1
or 3 = # the test has failed, and we cannot get any further with this choice of G, but if
3 > 1 we have once again been lucky and found a factor of # .

In order for this process to actually be useful, we require two things: first an efficient
algorithm for finding the order @ of G, and second we need to find a G of even order @,
such that G@/2 + 1 is not divisible by # . For the first part we will require a quantum
computer, but for the second we can rely on the following proposition to ensure that
the probability of finding such a G is not too small.

Theorem 4.1. Let # be a large odd integer with prime factorization # = >
A1
1 >

A2
2 . . . >

A;
; ,

and let

{G ∈ (ℤ/#ℤ)∗ : @ = ord( G) ≡ 0 (mod 2), G@/2 + 1 . 0 (mod #)}.

Then this set contains at least

i(#)
(
1 − 1

2;−1

)
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elements, where i denotes Euler’s function that counts the number of integers up to # that
are that are relative prime to # .

Proof. First we determine the number of elements in (ℤ/#)∗ that have odd order. By
the Chinese remainder theorem ℤ/# ≡ ℤ/>A11 × ℤ/>A22 × . . . × ℤ/>A;; . Hence picking
a G ∈ (ℤ/#)∗ is equivalent to picking G7 ∈ (ℤ/>A77 )

∗ for each 7 ∈ {1, . . . , ;}. Each
(ℤ/>A7

7
)∗ is cyclic of order i(>A1

7
) = >

A7−1
7
(>7 − 1). Half of these elements has odd order,

so the total number of elements of odd order in (ℤ/#)∗ is equal to

;∏
7=1

1
2
i(>A7

7
) = 1

2;
i(#).

Next, we find the number of elements G of order @ such that G@/2 ≡ −1 (mod #). For
such G by the Chinese remainder theorem we have that G@/2 ≡ −1 (mod >A7

7
) for all 7,

so G has even order in (ℤ/>A7
7
)∗. So there are at most 1

2; i(#) such G.
Thus, the order of the set of good G’s is at least

i(#) − 2 · 1
2;
i(#) = i(#)

(
1 − 1

2;−1

)
.

�

This means that in the worst case scenario when # only has two prime factors, we
are still able to find a "good" G with probability 1

2 , and if there are more prime factors
the process is even more likely to succeed quickly. So by randomization it appears that
the factorization problem has been reduced to a problem of determining the order of
elements in (ℤ/#ℤ)∗.

§ 4.2. The Quantum Subroutine. First and foremost, we want to somehow en-
code the information of a periodic function to a qubit register. So let # be a large
integer such that 2<−1 < #2 ≤ 2<, and : =

⌈
log2 #

⌉
. Now let 1 < G < # be an

integer such that gcd( G, #) = 1 with order @ in (ℤ/#ℤ)∗, and consider the function
5 : ℤ/2<ℤ→ ℤ/2:ℤ given by

F ↦→ GF (mod #),

which is not necessarily periodic. We choose ℤ/2<ℤ in the definition of 5 in order to
make sure the algorithm succeeds with a good probability in Theorem 4.2 later. The
codomain is chosen to be the smallest power of 2 neccessary to capture the order of G.

We define the transformation*5 : V<⊗V: → V<⊗V: taking 47⊗48 to 47⊗45 (7)+8. Here
47 takes values among the fundamental states of V<, and 45 (7)+8 takes all values among
the fundamental states of V: exactly once while 8 varies over {0, . . . , 2:−1}. Hence,*5 is
applied to all the fundamental states of the tensor product V< ⊗ V: , and permutes these
elements, so it is unitary. This transformation encodes 5 since we retrieve 5 by taking
the tensor of 47 ∈ V< with the zero state 40 ∈ V: , so that

*5 (47 ⊗ 40) = 47 ⊗ 45 (7) .



18 4.2. The Quantum Subroutine

In this way, we obtain access to the world of classical functions on a quantum computer
through what is called a quantum oracle.

We may use this oracle together with the previously mentioned Hadamard trans-
form to encode the function 5 as follows:

*5 (�<(4⊗<0 ) ⊗ 4
⊗:
0 ) =*5

(
1

2</2

2<−1∑
7=0

47 ⊗ 4⊗:0

)
=

1
2</2

2<−1∑
7=0

*5 (47 ⊗ 4⊗:0 )

=
1

2</2

2<−1∑
7=0

47 ⊗ 45 (7) .

This entangled state now contains information about all the function values of 5 .
The trickier part, and where the findings of Shor really come into play, is when we turn
to the problem of extracting information from this entanglement, without collapsing
the state. As mentioned previously, making multiple measurements of the same kind
on the same register yields no further information.

The first step to extracting information from this state is to measure the second
register, obtaining a random state 48 in the image of 5 . So let 8 ∈ ℤ/2:ℤ and %8 : V: →
V: be the orthogonal projection onto the line ℂ48. Then {idV< ⊗ %8}8∈ℤ/2:ℤ form a
measurement. Applying this measurement we find that the probability of observing 8
is equal to�����

�����(idV< ⊗ %8)
(

1
2</2

2<−1∑
7=0

47 ⊗ 45 (7) )
)�����
�����2 =

������
������ 1
2</2

∑
7∈5−1 ( 8)

47 ⊗ 48

������
������
2

=
1
2<
|5−1( 8) |.

So if we do observe 8, it must be that the preimage

5−1( 8) = { 8 + 9@ | 0 ≤ 8 < @, 9 = 0, 1, . . . ,  − 1},

where  = min{9 : 8 + 9@ ≥ 2<}, is nonempty. Denote by D the state before measure-
ment, then after observing 8, the system D is in the state

(idV< ⊗ %8) (D)
| | (idV< ⊗ %8) (D) | |

=
©« 1√
|5−1( 8) |

∑
7∈5−1 ( 8)

47
ª®¬ ⊗ 48 =

(
1
√
 

 −1∑
9=0

48+9@

)
⊗ 48

=

(
2<−1∑
7=0

k 8 (7)47

)
⊗ 48, (4.2.1)

where

k 8 (7) =
{

1√
 

if @ | (7 − 8)
0 otherwise.

.
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Next, we apply the discrete Fourier transform (see Section 3.2) to the first register
of (4.2.1) which yields

(F⊗ idV: )
(
2<−1∑
7=0

k 8 (7)47

)
⊗ 48 =

(
2<−1∑
9=0

k̂ 8 (9)49

)
⊗ 48.

Let %2 : V< → V< be the orthogonal projection onto the line ℂ42 , and apply the mea-
surement {%2 ⊗ idV: }2∈ℤ/2<ℤ. Then the probability of observing 2 is equal to

| |k̂ 8 (2)42 ⊗ 48 | |2 = |k̂ 8 (2) |2 =
����〈k 8, j2√

2<

〉����2 = 1
 2<

����� −1∑
9=0

4
2c72 ( 8+9@)

2<

�����2 . (4.2.2)

The following theorem tells us that we now have a reasonable chance of determin-
ing the period @.

Theorem 4.2. The probability of observing 2 ∈ ℤ/2<ℤ, with the property that there exists
an integer A such that 0 ≤ A < @ with gcd(A, @) = 1 and��� 2

2<
− A
@

��� < 1
2@2

,

is at least
4
c2
· i(@)

@

(
1 −

( c@

2 · 2<
)2)

. (4.2.3)

Now we see that given an integer A, and a corresponding 2 such that��� 2
2<
− A
@

��� < 1
2 · 2< ,

our former choice ofℤ/2<ℤ in the definition of 5 nowmakes sense since this inequality
implies that ��� 2

2<
− A
@

��� < 1
2@2

.

With this theorem, all parts are in place for Shor’s algorithm, and we will prove it
shortly. The remaining steps rely on the theory of continued fractions, encountered in
Section 2.3, as we will see in Section 4.3.

However, if 5 happens to be periodic, we can make use of a shortcut in this process
using the following Lemma.

Lemma 4.3. Let @ be a factor of < ∈ ℕ, and 5 : ℤ/<ℤ→ ℂ a periodic function of period
@. Then 5̂ (2) = 0 for all 2 ≠ 0 (mod <

@
).

Proof. We see that

[F(5 )] (2) = 1
√
<

∑
F∈ℤ/<ℤ

5 (F) j−2

=
1
√
<

@−1∑
0=0

<
@
−1∑
1=0

5 (0 + 1@) j−2 (0 + 1@)

=
1
√
<

@−1∑
0=0

5 (0) j−2 (0)
<
@
−1∑
1=0

j−2 (1@).
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Now since </@ does not divide 2, we have that j2 (1) = 42c72/< ≠ 1, and the result follows
by Lemma 3.11. �

In practice, this Lemma assures that the probability (4.2.2) is zero for any 2 ≠ 0
(mod <

@
), which means that we will only observe states that are multiples of <

@
. Hence,

in the periodic case we necessarily get the equality | 22< −
A
@
| = 0 for some integer A. Then

we can simply read off @ since 2
2< is known.

After the following intermediary lemmawe are ready to prove Theorem 4.2, making
no assumptions on the periodicity of 5 .

Lemma 4.4. Let < ∈ ℕ and 5 : ℝ→ ℂ be a function given by

5 (U) =
����� #∑
<=0

47U<

�����2 .
Then 5 is monotonically decreasing on [0, c/#].

Proof. We write

5 (U) =
#∑

;,<=0
47U (;−<) ,

and obtain

35

3U
5 (U) =

#∑
;,<=0

7(; − <)47U (;−<)

=

#∑
9=1

9(# − 9 + 1)7(47U9 − 4−7U9)

=

#∑
9=1

−9(# − 9 + 1)Im(47U9).

For U ∈ [0, c/#] , we have that Im(47U9) ≥ 0 for all 9 ∈ {1, . . . , #}. So 35

3U
≤ 0 in this

interval. This shows that 5 is monotonically decreasing. �

Proof. (Theorem 4.2) It follows by the statement of the theorem that

|2@ − A2< | < @

2
, (4.2.4)

and we denote the difference 2@ − A2< by Y.
The conditions on  implies that | @ − 2< | < @. This is the final relation we need,

and we are now ready to begin the proof of Theorem 4.2.
Consider the probability described in (4.2.2). It can be simplified as follows:

1
 2<

����� −1∑
9=0

4
2c72 ( 8+9@)

2<

�����2 = 1
 2<

����� −1∑
9=0

4
2c729@
2<

�����2 .
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We want to determine a lower bound of this expression. First, we rewrite this expres-
sion on the form

1
 2<

����� −1∑
9=0

4
2c 729@
2<

�����2 = 1
 2<

����� −1∑
9=0

4
2c79(Y+A2< )

2<

�����2 = 1
 2<

����� −1∑
9=0

4
2c 7Y9
2<

�����2 .
Now by (4.2.4) and Lemma 4.4 we have that

1
 2<

����� −1∑
9=0

4
2c7Y9
2<

�����2 > 1
 2<

����� −1∑
9=0

4
7c@9
2<

�����2 .
This can be further simplified using geometric series as follows

1
 2<

����� −1∑
9=0

(
4
7c@
2<

)9�����2 = 1
 2<

�������
(
4
c 7@
2<

) 
− 1

4
c 7@
2< − 1

�������
2

.

Consider for a moment the expression | cos 2F + 7 sin 2F − 1|2. By the double angle
formulae it follows that

| cos 2F + 7 sin 2F − 1|2 = | − 2 sin2 F + 27 sin F cos F |2

= |27 sin F(cos F + 7 sin F) |2

= 4 sin2 F.

So by writing 4c7@/2
<

in trigonometric form we get the following expression

1
 2<

�����cos  c@
2·2< + 7 sin

 c@
2·2< − 1

cos c@
2·2< + 7 sin

c@
2·2< − 1

�����2 = 1
 2<

sin2  c@
2·2<

sin2 c@
2·2<

.

Now, using the properties of  mentioned previously we have that

 c@

2 · 2< >
c

2
· 2

< − @
2<

=
c

2

(
1 − @

2<
)
.

Since @/2< is small we can use Taylor expansions and obtain the following expression

sin2
(
 c@

2 · 2<

)
> sin2

( c
2

(
1 − @

2<
))
≥ 1 −

( c@

2 · 2<
)2
.

We also have that
sin2

( c@

2 · 2<
)
≤

( c@

2 · 2<
)2
,

so that

1
 2<

sin2  c@
2·2<

sin2 c@
2·2<
≥ 1
 2<

(
1 −

( c@

2 · 2<
)2)
·
(
2 · 2<
c@

)2
=

4
c2@
· 2

<

 @

(
1 −

( c@

2 · 2<
)2)

>
4
c2@

(
1 −

( c@

2 · 2<
)2)

.
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Finally, since the number of A relatively prime to @ is equal to i(@), the probability that
gcd(s, r) = 1 for a given 0 < A ≤ @ is equal to i(@)/@. The number of possible values to
observe in the second register is @. Hence, the probability of observing a 2 corresponding
to such an A is at least

4
c2
· i(@)

@

(
1 −

( c@

2 · 2<
)2)

.

�

Furthermore, from [Apo76] Theorem 13.14, we have the bound

i(@)
@

>
1

4W log4 log4 @ + 2.50637
log4 log4 @

, (4.2.5)

where W ≈ 0.5772 denotes Euler’s constant. This, as we will see in the following section,
proves that the algorithmhas a great probability of success if it is repeated several times.

§ 4.3. Post Processing. By Theorem 4.2 we know that at the end of the quantum
subroutine of Shor’s algorithm, an integer 2 is observed such that��� 2

2<
− A
@

��� < 1
2@2

,

where 0 ≤ A < @ are integers such that gcd(A, @) = 1, with high probability. From this
relation we wish to determine the period @. Since 2 and 2< are known at this stage, we
recognize this as the same expression as that of Theorem 2.17, where F = 2

2< . So
A
@
is a

convergent of 2
2< . Consequently, by examining the convergents of 2

2< we find @. As seen
in Section 2.3 this can be done in polynomial time on 2<.

§ 4.4. Time Complexity. What really makes Shor’s algorithm of interest is its su-
perior time complexity compared to other, classical, factoring algorithms such as the
quadratic sieve or the number field sieve. We have already seen that Shor’s algorithm
is probabilistic in the sense that we pick a G with good properties with a certain prob-
ability, and the success of the entire algorithm hinges on this choice. Luckily, as we
saw in Theorem 4.1, the probability of picking a G with the desired properties is at
least 1

2 . In principle, this means that in the worst case scenario when # is the product
of two primes, after choosing only 7 different G ’s the probability of a good choice is
1 − (1/2)7 ≈ 0.99.

As we saw in Section 4.2, there is also another point of uncertainty that lies in how
many times we expect to have to run the quantum subroutine. However, since there is a
lower bound on i(@)/@, given by (4.2.5), we can determine howmany times the quantum
algorithm needs to be performed to succeed with a probability of at least 2

3 for a given
size of # and @. For example, if # = @ = 10100 are fairly large numbers, after 28 tries
the probability of success is at least

1 −
(
1 − 4

c2
· 1
4W log4 log4 10100 + 2.50637

log4 log4 10100

(
1 − c · 10

100

2 · 2665

)2)28
≈ 0.67994 ≥ 2

3
.

In practice, given the sizes of # and @, we can determine the number of tries neccesary
to suceed with the desired probability in the same way.
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However, if the algorithm is really slow, having to run it several times can be a
big issue. Therefore, it is of interest to us to determine how much time the algorithm
requires from start to finish.

Let # be a large integer such that 2<−1 < #2 ≤ 2< and : = dlog#e. As was already
established, the Euclidean algorithm that is used to find the greatest common divisor of
# and a randomly chosen G < # , runs in O(log#) = O(:) time. So the classical part
preceding the quantum subroutine runs quickly.

For the quantum subroutine we first apply the Hadamard transform to the first
register, and encode the information of 5 by applying the quantum oracle to the double
register. The Hadamard gate requires O(:) steps, and using an algorithm for modu-
lar exponentiation, as described in Chapter 31 of [CLRS09], requires O(:3) operations.
Next, the discrete Fourier transform is applied to the first register, which requiresO(:2)
additional steps [BBDR04]. The final part of the algorithm, that uses the theory of con-
tinued fractions, has the same running time as the Euclidean algorithm, so it has com-
plexity O(:).

This analysis, together with the expected number of times we need to run the al-
gorithm to get a probability of success greater than or equal to 2/3, shows that the
complete process has time complexity O((log#)3 log log#). This means that Shor’s
algorithm runs in polynomial time on the size of # , which is a huge improvement to
the fastest classical algorithms in use today.

§ 4.5. The Algorithm. We have now covered each part of Shor’s algorithm, and
hopefully the reader is convinced that it provides us with a probabilistic method of
successfully factoring large integers, with time complexity O((log#)3 log log#).

Nowhas come the time to summarize the algorithmwith all of its parts, and provide
an illustrating example of the process, factoring # = 15. We start with a summary of
the process from start to finish, with an arbitrary integer # , such that 2<−1 < #2 ≤ 2<.

Pre-processing.

1. Pick, at random, an integer G < # .

2. Calculate gcd( G, #) = 3. If 3 ≠ 1, the algorithm terminates, otherwise continue.

3. Let 5 : ℤ/2<ℤ → ℤ/2:ℤ, be the function mapping F to GF (mod #), where
: = dlog#e.

Quantum Subroutine.

4. Prepare the two quantum registers +< ⊗ +: in the zero-state 4⊗<0 ⊗ 4
⊗:
0 .

5. Apply the Hadamard transform �< to the first register.

6. Encode the function values of 5 by applying the quantum oracle*5 to the second
register. The machine is now in the state

1
2</2

2<−1∑
7=0

47 ⊗ 45 (7) .

7. Measure the second register.
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8. Apply the discrete Fourier transform Fto the first register.

9. Measure the first register, obtaining the state 42.

Post-processing.

10. Use the continued fraction algorithm to obtain the set, (, of convergents for 2
2< .

11. Pick a random A
@
∈ (, where gcd(A, @) = 1. Check that @ = 0 (mod 2) and that

G@/2 + 1 ≠ 0 (mod #), if this is not true, return to step 1, otherwise continue. If
no such A exists, return to step 4.

12. Compute gcd( G@/2 + 1, #) and gcd( G@/2 − 1, #), obtaining at least one prime
factor of # .

Example 4.5. Take # = 15 = 3 · 5, noting that 152 = 225 ≤ 28, as the integer we
want to factor. We first pick a random element G < # , for the sake of example we
pick G = 2. As expected, gcd(2, 15) = 1, and the algorithm continues. We are thus to
determine the period of the function 5 (F) = 2F (mod 15). Since this is a small example,
we can already determine this value, and for purposes of demonstration we note that
5 (4) = 24 = 1 (mod 15).

Next, we initiate the double quantum register and apply the Hadamard transform,
and then the quantum oracle, obtaining the state

1
√
256

255∑
7=0

47 ⊗ 45 (7) =
1
√
256
(4041 + 4142 + 4244 + 4348 + . . .) .

Now, measuring the second register, we obtain either 41, 42, 44 or 48 with probability 1
4 .

Say 41 is observed. Then, using what we know of the order of 5 ,  = min{9 : 1 + 49 ≥
28} = 64. After measurement and applying F to the first register, the system is in the
state: (

255∑
7=0

k̂1(9)49

)
⊗ 41 =

1
√
256

255∑
9=0

255∑
2=0

4
2c792
256 42 ⊗ 41,

where 2 ∈ ℤ/256ℤ is observed with probability

1
64 · 256

����� 63∑
9=0

4
2c72 (1+49)

256

�����2 .
As we see from Figure 1, the most probable values are 2 = 0, 64, 128 and 192, each

observed with probability approximately equal to 1
4 .

Say 2 = 64 is observed. Then���� 64256 − A@ ���� < 1
2 · @2 =

1
32
.

The fraction 64
256 has convergents 0 and

1
4 , and since 0 is clearly not a valid option, we

get
A

@
=
1
4
.
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Figure 1: Probabilities of observing 2 between 0 and 255.

This choice passes our checks since 1 and 4 are relatively prime, 4 = 0 (mod 2), and
24/2 + 1 = 5 (mod 15).

Computing gcd(22 + 1, 15) = 3 and gcd(22 − 1, 15) = 5, we obtain two unique
factors of 15 in this run of the algorithm. Hence, we have successfully factored # = 15.
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section 5
The Hidden Subgroup Problem

Now that we have seen an example of a quantum algorithm that successfully solves
a problem to which no efficient classical algorithm is known, it is reasonable to ask
whether it is possible to generalize the process, and perhaps provide tools to help solve
other mathematical problems as well.

The period finding problem of last section is actually a special case of a broader
problem called the hidden subgroup problem which can be stated as follows.

Definition 5.1. Let� be a group, � a subgroup, and - a finite set. Suppose 5 : � → -

is a function such that for all 61, 62 ∈ �, the equality 5 (61) = 5 (62) holds if and only if
61� = 62� . Then � is the subgroup of � hidden by 5 , and the hidden subgroup problem
is to find � , given 5 . We say that 5 separates cosets of � .

In fact, many different mathematical problems can be reduced to the hidden sub-
group problem, which makes efficient algorithms for solving this problem for different
families of groups very useful. We now show how the factorization problem of the
previous section falls under this category.

Example 5.2. Recall the reduction of the factorization problemof Section 4.1, wherewe
wished to factor the integer# . We then introduced the periodic function 5 : ℤ/2<ℤ→
ℤ/2:ℤ, taking F to GF modulo # . Let � be the additive group ℤ/2<ℤ, @ the period
of 5 , and � the subgroup generated by @. Then � is the hidden subgroup of �, since
periodicity implies that 5 is constant on elements of � , and distinct otherwise. So Shor’s
algorithm is effectively an algorithm for solving the hidden subgroup problem over
cyclic groups.

In Section 6wewill investigate the hidden subgroup problemover symmetric groups,
and how this could help solve the well known graph isomorphism problem.

§ 5.1. RepresentationTheory Basics. Section 3.2 introduced the discrete Fourier
transform, which we could use to solve the Abelian hidden subgroup problem. For
other families of groups, however, we will need a more general version of the quantum
Fourier transform. This section presents the necessary foundations of representation
theory.

Recall that if V is a vector space of dimension < over a field �, then �!(V) is the
automorphism group of V, that is, the group of all nonsingular linear transformations
from Vto itself, called the general linear group. Associated with this group is the group
�!<(�), of matrices obtained by fixing a basis of Vof size <.

Definition 5.3. Let � be a group, and Va vector space over a field �. A representation
of �, is a homomorphism d : � → �!(V). The degree of the representation is the
dimension of V.

Two representations d and d′ of the same group � in the vector spaces Vand V′

respectively, are said to be isomorphic if there exists an isomorphism 5 : V → V′

satisfying
5 ◦ d(6) = d′(6) ◦ 5 ,
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for all 6 ∈ �.

Example 5.4. An important example, that we will see the significance of later, is the so
called regular representation of a group �. This is the representation _ : � → �!( �)
defined on the basis {46}6∈� of the vector space Vover the field  , by

_6 (4ℎ) = 46ℎ.

The degree of _6 is equal to the order of �.

Definition 5.5. Let d : � → �!(V) be a representation of a group � on the vector
space V, and Wbe a subspace of V. If Wsatisfies d(6)W⊆ Wfor every 6 ∈ �, then
W is an invariant subspace of d.

Note that the subspaces Vand {0} are invariant since d(6)V= Vand d(6){0} =
{0} for all 6 ∈ �. These are called the trivial invariant subspaces. We thus distinguish
the nontrivial invariant subspaces with the following definition.

Definition 5.6. A representation with no nontrivial invariant subspaces is said to be
irreducible.

As the name suggests, we can uniquely decompose a representation d into irre-
ducible parts. However, in what follows we require the representation space to be over
either ℝ or ℂ to guarantee that an inner product is defined.

Theorem 5.7. If d : � → �!(V) is a representation of a finite group � on the vector
space V, and V1 is a nontrivial invariant subspace of V, then there exists a complementary
invariant subspace V2 of V such that V= V1 ⊕ V2.

Proof. Let 〈·, ·〉0 be the inner product on V. We define the inner product

〈C, D〉 =
∑
6∈�
〈d(6)C, d(6)D〉0,

also on V, where C, D ∈ V. Then

〈d(6)C, d(6)D〉 =
∑
ℎ∈�
〈d(ℎ6)C, d(ℎ6)D〉0 = 〈C, D〉,

so this inner product is invariant. Then taking V2 = V⊥1 , we obtain a complementary
and invariant subspace of Vsuch that V= V1 ⊕ V2. �

It follows that we can decompose the space V into a direct sum of invariant sub-
spaces, V= V1 ⊕ V2 ⊕ . . . ⊕ V<, for which we have the irreducible representations d7 :
� → �!(V7). This gives us a decomposition of the representation d = d1⊕ d2⊕ . . .⊕ d<.
This property is called complete reducibility.

In Section 3.2 we introduced the characters of the group ℤ/<ℤ as the set of homo-
morphisms from ℤ/<ℤ to ℂ∗ taking F to 42c72F/<. Now has come the time to reintro-
duce this concept in the context of what we now know.
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Definition 5.8. Let d : � → �!(V) be a representation. The character of this repre-
sentation is the complex-valued function on � defined by

jd(6) = Tr(d(6)).

This is the trace of the matrix associated with d(6).

Theorem 5.9 (Schur’s Lemma). Let d1 : � → �!(V) and d2 : � → �!(W) be
irreducible representations of �, and i : V→ Wa map such that d2(6) ◦ i = i ◦ d1(6)
for all 6 ∈ �, then

(i) If i is not an isomorphism, then i = 0.

(ii) If V= W, then i = _ · � , where _ ∈ ℂ and � is the identity.

Proof. To prove (i), first consider Ker(i) = {D ∈ V | i(D) = 0}. This subspace is
invariant since for any D ∈ Ker(i) and 6 ∈ � we have that (i ◦ d1(6)) (D) = (d2(6) ◦
i) (D) = 0. Since V is irreducible, and Ker(i) ⊆ V, either Ker(i) = Vor Ker(i) =
0. Unless i = 0, we have that Ker(i) = 0. Similarly, the subspace Im(i) = {E ∈
W | i(D) = E, D ∈ V}, is also invariant since W is invariant. So Im(i) = W, which
means that i is an isomorphism.

Next, suppose V = W, and let _ ∈ ℂ be an eigenvalue of i. This value exists
because ℂ is algebraically closed. Taking i− _� in place of i in the previous argument
and noting that this is not an isomorphism proves (ii). �

This important "lemma" has several consequences that provide important steps for-
ward. Although not advanced, we omit the proofs of these corollaries, which can all be
found in [Ser77]. In what follows we let d1 : � → �!(V) and d2 : � → �!(W) be
irreducible representations of � as in Theorem 5.9.

Corollary 1. Let ℎ be a linear map from V into W, and let

ℎ0 =
1
|� |

∑
6∈�

d−12 (6)ℎd1(6).

Then the following is true:

(i) If d1 and d2 are not isomorphic, then ℎ0 = 0.

(ii) If V= Wand d1 = d2, then ℎ0 = 1
<
Tr(ℎ), where < = dim(V).

Now, assuming d1 and d2 are given in matrix form as

d1(6) = (@71 81 (6)), and d2(6) = (@72 82 (6)).

Let ℎ be given in matrix form by F72 71 , and ℎ0 by F072 71 . Then

ℎ0 = F072 71 =
1
|� |

∑
6∈�,81 , 82

@72 82 (6−1)F 82 81@71 81 (6),

from which the following two corollaries can be derived.
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Corollary 2. In case (i) of Corollary 1, we have

1
|� |

∑
6∈�

@72 82 (6−1)@81 71 (6) = 0,

for all 71, 72, 81, 82.

Corollary 3. In case (ii) of Corollary 1, we have

1
|� |

∑
6∈�

@72 82 (6−1)@81 71 (6) =
1
<
X72 71 X 82 81 =

{
1
<

if 71 = 72 and 81 = 82

0 otherwise.

Example 5.10. Another interesting example arise when we consider irreducible repre-
sentations of Abelian groups. Aswewill see, in this case, the representations are actually
equal to the characters. So let d : � → �!(V) be an irreducible representation. We
want to show that the dimension of V, and thus the degree of d, is equal to 1. For
6, ℎ ∈ � we have that

d(6)d(ℎ) = d(6ℎ) = d(ℎ6) = d(ℎ)d(6),

so taking i = d in Schur’s Lemma, it follows that d = _� , for some constant _ ∈ ℂ.
Hence, d is a scalar, and it must be that dim(V) = 1.

Now, since V� ℂ in this case, we can again return to the discussion in Section 3.2
and note that they in fact send every 6 ∈ � to an <th root of unity, where < = |� |.

Recall the standard inner product on functions, also introduced in Section 3.2. We
can use the more general form of this,

(5 , ℎ) = 1
|� |

∑
6∈�

5 (6)ℎ(6),

where 5 , ℎ are complex valued functions on �, and show a more general statement of
Theorem 3.12.

Theorem 5.11. The characters of irreducible representations are orthonormal.

Proof. Let d1, d2 be irreducible representations with characters j1 and j2. Let the asso-
ciated matrix to d1 be @7 8 (6), and the associated matrix to d2 be A7 8 (6). Then j1 is given
by Tr(@7 8 (6)) =

∑
@77 (6), and j2 =

∑
A8 8 (6). Fixing an invariant inner product such that

the representation d unitary, it is easy to check that jd(6−1) = jd(6), and by Corollary
2 we thus have

( j1, j2) =
1
|� |

∑
6∈�

j1(6) j2(6) =
1
|� |

∑
6∈�

j1(6) j2(6−1) = 0.

�

Nowwe can relate the characters of a representation with the decomposition of the
associated vector space.
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Theorem 5.12. Let d : � → �!(V) be a representation with character j, and suppose V
decomposes into irreducible representations:

V= W1 ⊕ . . . ⊕ W<.

Then, if W is the representation space of an irreducible representation with character q, the
number of W7 in the decomposition of V equivalent to W equals (q, j).

Proof. Let d7 be the representation with space W7, and j7 its character. By choosing an
appropriatematrix for d1⊕ . . .⊕ d<, we have that q = j1+ . . .+ j<. By the orthonormality
of the characters, the terms of the sum

(q, j) =
<∑
7=1

(q7, j7)

are only equal to 1 if W7 ≠ W, and 0 otherwise. �

Example 5.13. Recall that we for an element 6 in a group � define the conjugacy class
�:0AA(6) = {ℎ−16ℎ | ℎ ∈ �}. It is easy to see that the characters are constant on the
conjugacy classes of �, that is

j(ℎ−16ℎ) = j(6),

by the familiar formula Tr(��) = Tr(��). This makes the characters into what we call
class functions, functions constant on conjugacy classes. In fact, one can take Theorem
5.11 even further and show that the irreducible characters form an orthonormal basis of
the space of class functions. It can also be shown that the number of conjugacy classes
is equal to the dimension of the space of class functions, so it follows that the number
of conjugacy classes is equal to the number of irreducible characters.

Returning to Example 5.4, denote the character of the regular representation _ by
j_ . For 6 = 1, we have that j_ (1) = Tr(_1) = Tr(�) = |� |, since all the basis elements
are fixed. Otherwise, j_ (6) = Tr(_6) = 0, since there are no fixed points and all basis
elements are permuted by 6. From this reasoning the following theorem follows almost
immediately.

Theorem5.14. Let� be a groupwith irreducible characters j1, . . . , j< with degrees 31, . . . , 3<.
Then every irreducible representation d7 of � is contained in the regular representation with
multiplicity equal to its degree 37, and the degrees satisfy

<∑
7=1

37 j7 (6) =
{
0 if 6 ≠ 1
|� | otherwise.

In particular, it is true that
<∑
7=1

327 = |� |.
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Proof. The first statement follows from Theorem 5.12, computing

( j_ , j7) =
1
|� |

∑
6∈�

j_ (6) j7 (6) = j7 (1) = 37.

From this it follows that

j_ =

<∑
7=1

37 j7 (6),

so if 6 = 1, this sum is equal to |� |, in particular
∑
32
7
= |� |, and otherwise it is 0 as

desired. �

This result concludes our section on basic representation theory, necessary to give
insight into a more general approach to solving the hidden subgroup problem.

§ 5.2. The StandardMethod. Now, with this final piece of the puzzle in place, we
can generalize the Fourier transform, which previously was only introduced for cyclic
groups.

Definition 5.15. Let � be group of order # which is finite, 5 : � → ℂ a function, and
d an irreducible representation of � of dimension 3d. Then the Fourier transform of 5
at d is the linear map defined by

5̂ (d) =
√
3d

#

∑
6∈�

5 (6)d(6). (5.2.1)

We define the inverse Fourier transform of 5̂ to be the linear map

5 (6) =
√

1
#

∑
d∈�̂

√
3d Tr

(
5̂ (d)d(6−1)

)
, (5.2.2)

where �̂ is the set of irreducible representations of �.

For our purposes this definition of the inverse quantum Fourier transform is suf-
ficient. However, it is worth mentioning that it is really a map between vector valued
function spaces, �̂ and qd∈�̂End(Vd). To check that formula (5.2.2) indeed gives the
inverse, it suffices to check that it holds if 5 (ℎ) = X6,ℎ, for 6, ℎ ∈ �. We then have that

5̂ (d) =
√

3d

#
d(6), and the inverse Fourier transform equals√

1
#

∑
d∈�̂

√
3d Tr

(√
3d

#
d(6)d(ℎ−1)

)
=

1
#

∑
d∈�̂

3d Tr
(
d(6ℎ−1)

)
=

1
#

∑
d∈�̂

3d jd(6ℎ−1).
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By Theorem 5.14 this sum is equal to 1 if 6 = ℎ, and 0 otherwise, so this expression is
exactly 5 (ℎ), as desired.

Note that after a choice of basis, each irreducible representation d can be identified
with a 3d × 3d matrix. By Theorem 5.14 we have that |� | = ∑

d∈�̂ 3
2
d . This means that

the number of bits required to store the function values that determine 5 is equal to
the number of bits necessary to store the matrix entries of d. Specifically, the Fourier
transform does not change the size of the register to which it is applied.

Now, relating this to the discrete Fourier transform that we saw in Definition 3.13,
we note that by Example 5.10 the representations of Abelian groups are equal to the
characters. Hence the general quantum Fourier transform of (5.2.1) reduces to

5̂ (d) = 1
√
#

∑
0∈ℤ/#ℤ

5 (0) jd(0).

The second thing that it is time to generalize is the quantum procedure that we used
to solve the hidden subgroup problem. As we saw, the key step in the quantum subrou-
tine was the use of the discrete Fourier transform, and with our newly gained knowl-
edge of the necessary theory to define the general Fourier transform, we can generalize
this process. We refer to this as the standard method for solving the hidden subgroup
problem.

So let � be an arbitrary group with a subgroup � hidden by the oracle function
5 : � → - , and let d ∈ �̂ where �̂ is the set of all irreducible representations of �. We
associate the formal symbol d, 7, 8 with the matrix of the irreducible representation d,
and the 7, 8 element of thismatrix. Then themethod can be summarized in the following
steps:

1. Prepare a double register in the zero state 4⊗ |� |0 ⊗ 4⊗ |- |0

2. Apply the Hadamard transformation to the first register.

3. Encode the information of 5 by applying the oracle *5 to the second register,
obtaining the state

1√
|� |

∑
6∈�

46 ⊗ 45 (6) .

4. Measure the second register which encodes the function values, obtaining the
value 5 (2) for some 2 ∈ �. This collapses the first register onto the coset 2� ,
resulting in the state

1√
|� |

∑
ℎ∈�

42ℎ ⊗ 45 (2ℎ) .

Note that 5 (2ℎ) = 5 (2) for all ℎ ∈ � .
5. Apply the quantum Fourier transform to the coset state, which yields∑

d∈�̂

√
3d

|� | |� |
∑
7,8

∑
ℎ∈�

d(2ℎ)7 84d,7,8

in the first register.
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6. Measuring this register of subspaces defined by the elements of �̂, we obtain an
irreducible representatiton d, which gives information about � and its genera-
tors.

7. Use the information of step 6 to find a generating set of � , identifying the hidden
subgroup.

Hopefully the reader recognize the similarities between this standard method and
the steps of the quantum subroutine seen in Section 4.5. As we saw in Theorem 4.2,
when uncovering the hidden subgroup generated by a single element, the information
given by the quantum subroutine had a high probability of being useful, and resulting in
a situation where the generator could be recovered during post processing. So the in-
formation obtained in step 6 was a state 42 , where 2 ∈ ℤ/2<ℤ. This value 2 corresponds
to one specific irreducible character j2 , or, equivalently a representation d2. From this
information, in this case without really needing any of the more advanced techniques
discussed in this section, we could extract 2, and by the theory of continued fractions
obtain @, the generator of the hidden subgroup.

In the next section we will take a look at yet another problem that can be reduced
to the hidden subgroup problem, and possibly be solved using this standard method.
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section 6
The Graph Isomorphism Problem

Aswe saw in previous sections, the Abelian hidden subgroup problem could be used
to efficiently solve the factoring problem using the discrete quantumFourier transform.
If we instead consider the hidden subgroup problem for a non-Abelian group such as
the symmetric group (<, we obtain the graph isomorphism problem as a special case.

§ 6.1. Graph Isomorphism and Automorphism Groups. Let � = (+, �) de-
note a graph, with nonzero vertex set + and edge set � ⊆ + × + . Throughout this
section, we assume all graphs to be simple and undirected, so that (D, D) ∉ � and (C, D)
is identified with (D, C), for all C, D ∈ + . We also let �@0>ℎ(+ ) denote the set of graphs
on the vertex set + , and ( G;(+ ) be the symmetric group on + .

Definition 6.1. The graphs�1 = (+1, �1) and�2 = (+2, �2) are said to be isomorphic
if there exists a bijection c : +1 → +2 such that (C, D) ∈ �1 if and only if (c (C), c (D)) ∈
�2.

Definition 6.2. Let �1 and �2 be two graphs. The problem of determining whether
�1 and �2 are isomorphic in polynomial time is called the graph isomorphism problem.

As mentioned, this problem can also be translated into the hidden subgroup prob-
lem which we will see shortly after introducing one more definition and a subsequent
result.

Definition 6.3. Let � = (+, �) be a graph. The automorphism group Aut(�) of �, is
defined by

Aut(�) = {c ∈ Sym(+ ) | ∀C, D ∈ + ; (C, D) ∈ � ⇐⇒ (c (C), c (D)) ∈ �}.

So the automorphism group of � consist of all permutations that respect the adja-
cency of edges in �.

Lemma 6.4. Let � = (+, �) be a graph, and 5 : Sym(+ ) → �@0>ℎ(+ ) be the function
taking c ∈ Sym(+ ) to the graph c (�) = (+, (c × c) (�)). Then 5 hides the subgroup
� = Aut(�) of �.

Proof. The group Sym(+ ) acts on �@0>ℎ(�). Given a graph �, the function 5 is the
orbit map of �, taking � to its orbit under the group action. Then it is clear that the
stabilizer of � is the automorphism group of �, so that the condition 5 (c1) = 5 (c2) is
equivalent to c1� = c2� , and 5 hides � . �

This result seems to imply that if we could find the generators of Aut(�), where
� = �1q�2, we could solve the graph isomorphism problem via the hidden subgroup
problem framework, which as we will now see, is indeed the case.

Theorem 6.5. Let �1 = (+1, �1), �2 = (+2, �2), be two connected graphs on < vertices,
and � = �1 q �2 = (+, �) be the disconnected graph on the disjoint union of the sets +1
and+2. If the symmetric hidden subgroup problem can be solved in polynomial time, then the
graph isomorphism problem of �1 and �2 is polynomially reducible to the hidden subgroup
problem.
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Proof. By finding the generators of the automorphism group Aut(�), we can determine
the existence of an element c ∈ Aut(�) that exchanges the vertices of �1 and �2, that
is, such that c (D) = C for D ∈ +1 and C ∈ +2. If such a "flip" exists, the graphs �1 and
�2 are isomorphic, and we have solved the graph isomorphism problem.

By assumption, the hidden subgroup problem can be solved in polynomial time,
so it is plausible that there are no more than >=: G(<) generators of Aut(�). Thus, by
simply checking each generator on each vertex of +1 and +2, we can determine if a flip
exist in the automorphism group in |+1 | |+2 |>=: G(<) = <2>=: G(<) steps. �

In fact, it is not unreasonable to think that the assumption of the theorem is true,
which would give us hope of solving the graph isomorphism problem by use of the
quantummethods discussed in this text. By an unpublished result of Von Neumann we
have the following Theorem, a sketched proof can be found in [CST89].

Theorem 6.6 (Von Neumann). Let � ⊆ (< be a group and 3(�) be the number of gener-
ators of �. Then

3(�) ≤ max
(
2,

[<
2

] )
.

This gives us a polynomial bound on the number of generators of Aut(�), so a
solution to the symmetric hidden subgroup problemwould yield a solution to the graph
isomorphism problem in polynomial time. However, as a solution to the former has not
yet been discovered, this is still an area of active research, which will be further covered
in Section 6.3.

§ 6.2. Representations of (< . The last section introduced the relation between
the symmetric group (< and the hidden subgroup problem. As we know, the standard
method presented in Section 5.2 relies on the representations of the group in question.
We now present some of the interesting and relevant properties of the representations
of the symmetric group. This section roughly follows [FH91], and details for the inter-
ested reader can be found in Chapter 4 of the book.

Consider the group(<, we distinguish three particular representations of this group:
the trivial, the alternating, and the standard representation. The first of these appears
quite naturally as the representation d : (< → ℂ∗ satisfying d(c) = � for every c ∈ (<.

The alternating representation can be realized if we consider the representation tak-
ing a permutation c to sgn(c)� .

Finally, we can also consider the action of (< on the standard basis {41, 42, . . . , 4<}
of ℂ<, by permuting the indices of the basis elements. Taking the subspace spanned by
the vector 41 + 42 + . . .+ 4< we obtain an invariant subspace since the action of (< merely
moves around the summands. This space then has a complementary subspace

+ = {(01, 02, . . . , 0<) ∈ ℂ< | 01 + 02 + . . . + 0< = 0},

which is also invariant, and thus irreducible. This then defines what is called the stan-
dard representation of (<.

From abstract algebra we know that the cycle types of elements of (< determine
the conjugacy classes, and since the cycle types correspond to the partitions of <, the
number of conjugacy classes is equal to the number of partitions of <. This observation
leads to a particularly nice situation in the case of (3.
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Example 6.7. Consider (3, a symmetric group with three cycle types, or equivalently,
three conjugacy classes. By Example 5.13 this means that (3 has exactly three irre-
ducible representations. The trivial and the alternating representation are both one-
dimensional, so they must be irreducible, because they cannot contain any nonzero
(proper) subspaces. Since there can only be one more irreducible representation of (3,
it has to be the standard representation which is 2-dimensional.

Now, for arbitrary <, we have other tools at our disposal to decompose the regular
representation of the symmetric group into its irreducible representations.

Given a partition of < = _1 + _2 + . . .+ _9, where the _s form a decreasing sequence,
we define an associated Young diagram. It is a diagram consisting of < left-aligned boxes,
with _7 boxes in the 7th row. In this way, the set of all Young diagrams of a given < is in
bijection to the set of irreducible representations of (<.

So we can determine the number of irreducible representations as the number of
partitions of <, but we can also determine the order of each irreducible by introducing
Young tableaux. Given a Young diagram, we assign an integer from {1, 2, . . . , <} to each
box, such that the numbers are increasing from left to right and from top to bottom.
There can be multiple possible such numberings, and it can be shown that the number
of Young tableaux is equal to the degree of the corresponding representation.

Example 6.8. The Young diagrams for < = 3 looks as follows:

where the first corresponds to the trivial representation, the second to the standard
representation, and the third to the alternating representation. It is simple to see that
the Young tableaux in this case are:

1 2 3
1 2
3

1 3
2

1
2
3

which gives us the degree of each representation. We have that 12 + 22 + 12 = 6 = |(3 |,
and again we see the relation |� | = ∑

d∈�̂ 3
2
d appear.

When attempting to solve the symmetric hidden subgroup problem, we proceed
according to the standard method presented in Section 5.2. This includes applying the
Fourier transform to the symmetric group. So as a conclusion to this section on repre-
sentations of symmetric groups, it might be interesting to see what such a transforma-
tion might look like when the information of the irreducible representations is to be
stored in a real computer. We continue our discussion of (3 from before:

Example 6.9. Consider the irreducible representations of (3 we saw in Example 6.7.
The trivial and alternating representations are one-dimensional, the former maps all
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permutations to (1), and the latter maps all transpositions to (−1) and all other ele-
ments to (1). The standard representation is more interesting. Let {41, 42, 42} be the
standard basis of ℂ3, and fix the basis {41 − 42, 42 − 43} of the representation space + .
From this we can derive the orthonormal basis 1√

6
{(
√
3,−
√
3, 0), (1, 1,−2)}. Then the

matrices of the standard representation are:

id ↦→ � (1 2) ↦→
(
−1 0
0 1

)
(1 3) ↦→

(
1
2 −

√
3
2

−
√
3
2 − 1

2

)
(2 3) ↦→

(
1
2

√
3
2√

3
2 − 1

2

)
(1 2 3) ↦→

(
− 1

2 −
√
3
2√

3
2 − 1

2

)
(1 3 2) ↦→

(
− 1

2

√
3
2

−
√
3
2 − 1

2

)
Fixing the order (3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)} of elements of (3, we then
get the following matrix representation:

&(3 =
1
√
6

©«

1 1 1 1 1 1

1 −1 −1 −1 1 1
√
2 −
√
2 1√

2
1√
2
− 1√

2
− 1√

2

0 0 −
√
3√
2

√
3√
2
−
√
3√
2

√
3√
2

0 0 −
√
3√
2

√
3√
2

√
3√
2
−
√
3√
2√

2
√
2 − 1√

2
− 1√

2
− 1√

2
− 1√

2

ª®®®®®®®®®®®®®¬
§ 6.3. Current and Future Developments. If we want to follow the general hid-

den subgroup-method given in Section 5, we still need to find a way to effectively com-
pute the quantum Fourier transform over a symmetric group. In 1997, Robert Beals
[Bea97] first constructed an efficient quantum Fourier transform over this family of
groups. Since then, new results have been presented. An improved algorithm was
given recently by Kawano and Sekigawa [KS16]. The complexity of their algorithm is
O(<3 log <) on (<, which is an improvement over the previously fastest algorithm by
Moore, Rockmore and Russel [MRR06] with complexity O(<4 log <).

To solve the graph isomorphism problem efficiently using the quantum Fourier
transform it is also crucial that we can perform the post processing effectively, meaning
that we need to be able to determine the hidden automorphism group and its generators
from the representations returned by the quantum subroutine. In a manuscript origi-
nally released in 2015, László Babai [Bab17] claimed to have constructed a an algorithm
solving the graph isomorphism problem. The suggested algorithm would run slower
than polynomial algorithms but faster than sub-exponential algorithms. A mistake in
the proof was discovered in 2017 by Harald Helfgott, but was corrected by Babai shortly
after. The algorithm still remains unpublished, so a final confirmation of this result is
yet to come.
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