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1 Introduction
This paper aims to discuss the concept of graph connectivity and its
relation to the spectrum of a graph. We begin by introducing some ba-
sic concepts of graph theory ranging from simple terminology to graph
presentations using matrices. Unless otherwise stated, this study will
consider simple graphs, meaning they are unweighted and undirected.

Throughout this paper we focus on the properties of the discrete Lapla-
cian matrix of a graph. It can be used to prove many useful properties,
including calculating the number of spanning trees of a graph, spectral
clustering and much more. We discuss several different special types of
graphs and their spectrum; however our main focus in will be the alge-
braic connectivity of a graph, or rather the second smallest eigenvalue
of its Laplacian matrix. This particular eigenvalue gives us information
about how well-connected a graph is, which motivates our interest in
bounding its value for graphs where it might be difficult to calculate
explicitly. For this reason we discuss at length the applications of the
Courant-Fischer theorem in bounding the eigenvalues of a matrix and
how we can apply those bounds to a path graph. Naturally we could
expand this technique to the spectrum of other graphs as well but the
path graph gives us a sufficiently good idea of how it is done.

Bounding the eigenvalues of a graph’s Laplacian has many applications
outside of pure academic activity. In fact, the Laplacian matrix of a graph
is instrumental for spectral clustering, commonly used in data science
problems today. One such application is the clustering of images, which
use the eigenvalues of a graph’s Laplacian to find similarities between
data points.
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2 Basics of graph theory
In this section we will introduce some basic concepts of graph theory
which will help us understand some of the more complicated problems
in the field. As such, we will first define what a graph is and how it
is structured to then define some graph presentations that can help us
analyze the graph algebraically.

2.1 What is a graph?

Geometrically a graph is a set of points and lines that connect these
points together. Or rather, as mathematicians tend to call them, sets of
vertices and edges. In a graph it is common to denote the set of vertices
as V = {v1, ..., vn} and the set of edges as E = {e1, ..., em} where n and
m are the number of vertices and edges respectively. A common way to
illustrate an edge in a graph is as a relation of vertices. For example,
for G in Figure 1, its vertices are called V = {v1, v2, v3, v4} and edges
E = {e1, e2, e3, e4}. However as we will see soon it is often helpful to think
of its edges as pairs of vertices E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}}.
With this in mind we are ready to define a graph.

v1 v2

v3v4

e1

e2

e3

e4

Figure 1: Graph G

Definition 2.1. A graph G is a set of vertices V together with a set of
edges E. Notation

G = (V,E).

Let us introduce some terminology to help us structure our work. As
stated earlier we can interpret the edges of a graph as pairs of vertices.
These pairs of vertices connected by an edge are called adjacent, oth-
erwise two unconnected vertices are called disjoint. For example, look
at Figure 1 and notice that (v1, v2) are adjacent, while (v1, v3) are dis-
joint. Now we are ready to formally define adjacency and degree of a
vertex.

Definition 2.2. In a graph G = (V,E), two vertices vi, vj ∈ V are
adjacent if {vi, vj} ∈ E.
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Definition 2.3. The degree d(vi) of a vertex vi is the number of vertices
in G adjacent to vi.

We say that a graph is complete if each pair of vertices is connected by
an edge, or in other words, if every vertex in a graph G is adjacent to
every other vertex. Naturally for a complete graph with n vertices, each
vertex has degree n− 1, since it is adjacent to every other vertex except
for itself.

Furthermore we will define four presentations of graphs in the form of
four different matrices. One such presentation is called the adjacency
matrix of a graph G which we will denote as AG. As the name suggests
it is derived from looking at the adjacency relation of vertices. We will
also look at the Laplacian, degree and incidence matrices, all of which
we will use later. In order to understand the adjacency matrix we will
introduce the so-called adjacency list.

v1 v2 v3

v4v5

e1 e2

e4

e5

e3e6

Figure 2: Graph G

Let us for this reason consider graph G in Figure 2. For every vertex vi
in G, with i = {1, 2, 3, 4, 5}, form a list of all adjacent vertices and call
it the adjacency list. In G we see that

• v1: v2, v5,
• v2: v1, v3, v4,
• v3: v2, v4,
• v4: v2, v3, v5,
• v5: v1, v4.

Now we can produce the adjacency list, denoted by L(G) as

L(G) = {{v2, v5}, {v1, v3, v4}, {v2, v4}, {v2, v3, v5}{v1, v4}}.

Using this list we can easily define the adjacency matrix of a graph and
calculate it for our particular graph G in Figure 2.
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2.2 Graph presentations

Definition 2.4. The adjacency matrix AG of a graph G = (V,E), with
the vertex set V = {v1, ...vn}, is a square n × n matrix with entries ai,j
given by

ai,j =

{
1 if {i, j} ∈ E
0 otherwise.

For graph G in Figure 2, the adjacency matrix AG is given by

AG =




0 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0




.

Notice that if we compare the information in the adjacency matrix AG
with the adjacency list L(G) it is clear that every row represents a vertex
in the graph with ones corresponding to adjacent vertices. With the
adjacency matrix properly defined we will show how the vertex degrees
can be presented as a degree matrix of a graph G. The degree matrix of
a graph G is a diagonal matrix which contains information of the degree
of each vertex in G. Namely,

Definition 2.5. The degree matrix DG of a graph G = (V,E), with
entries di,j given by

di,j =

{
d(vi) if i = j

0 otherwise.

For example, for graph G in Figure 2, the degree matrix DG equals

DG =




2 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 2




.

In fact, we will see later that the degree matrix of a graph has a close
relation with the spectrum of a graph.

We can now define the Laplacian matrix LG of a simple graph G as
LG = DG − AG where DG is the degree matrix and AG is the adjacency
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matrix. Since G is a simple graph, AG only contains 1s or 0s. We can
now give a formal definition of a Laplacian matrix.

Definition 2.6. The Laplacian matrix LG of a graph G = (V,E), with
entries li,j given by

li,j =





d(vi) if i = j

−1 if {i, j} ∈ E
0 otherwise.

From now on we will sometimes say Laplacian instead of Laplacian ma-
trix. As with previous matrix presentation we will calculate the Laplacian
of G in Figure 2. We get

LG = DG − AG =




2 −1 0 0 −1
−1 3 −1 −1 0
0 −1 2 −1 0
0 −1 −1 3 −1
−1 0 0 −1 2




.

Below we will mostly focus on the Laplacian matrix presentation. How-
ever for a broader understanding of graphs we will also define the concept
of incidence and that of the incidence matrix. In fact, we will see that the
Laplacian can be found by studying the incidence matrix, which provide
a helpful tool to prove a number of properties that the Laplacian matrix
possesses.

Definition 2.7. A vertex v ∈ V is incident with an edge {vi, vj} ∈ E if
either v = vi or v = vj.

Much like the adjacency relation we can, using the incidence relation,
introduce another matrix presentation that is relevant to our study. To
define this vertex-edge incidence matrix, we must first consider what it
means for a graph to be oriented. For example, look at the graph in
Figure 3. It is almost the same graph as the graph in Figure 2 on page 4
with the only exception being that it is oriented, meaning that the edges
are equipped with certain directions. In the graph this is illustrated with
arrows on the edges. It is possible to define the incidence matrix without
this property, however the resulting matrix will not be as useful for our
particular study. As such, we can formally define the incidence matrix
of an oriented graph.

Definition 2.8. The oriented incidence matrix EG of a graph G =
(V,E), with n vertices and m edges is an n × m matrix with entries
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v1 v2 v3

v4v5

e1 e2

e4

e5

e3e6

Figure 3: Graph G

Ee, v given by

Ee, v =





1 if e = (v, w) and v → w,

−1 if e = (v, w) and v → w,

0 otherwise.

Now let us consider the graph G in Figure 3 and the incidence matrix
EG. One has,

EG =




1 0 0 0 0 1
−1 1 1 0 0 0
0 −1 0 1 0 0
0 0 −1 −1 1 0
0 0 0 0 −1 1




.

It can easily be shown for an oriented graph that the incidence matrix
can be used to calculate the Laplacian matrix. In fact by multiplying
the transpose of the incidence matrix by itself we get the Laplacian ma-
trix,

ET
GEG = LG.

This is a handy way to factorise the Laplacian matrix, which in fact is
a tool that can be used to prove a number of useful properties that the
Laplacian possesses.

3 Properties of the Laplacian matrix
One of the fundamental properties of a graph is its connectivity. We can
use the Laplacian matrix defined on page 4 to study graph connectivity.
To do this we first want to provide an alternative definition of the Lapla-
cian matrix that closely relates to its more useful properties. As such,
let us consider the Laplacian of a graph on n vertices consisting of just
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one edge e = {v1, v2}. Using our definition of the Laplacian matrix we
get

Le =




1 −1 0 0
−1 1 0 . . . 0
0 0 0 0
... . . . ...
0 0 0 . . . 0




.

By adding up all such Laplacians we get a new definition of the Laplacian
matrix for the whole graph.

Definition 3.1. For a graph G = (V,E), LG =
∑
e∈E

Le.

Using this definition we will be able to prove a number of properties of
the Laplacian matrix by first proving them for one edge and then adding
them up. Recall that a matrix A is called symmetric if AT = A, where
AT is the transpose of the matrix. Since it is clear that the Laplacian
matrix of a graph is always symmetric we will use this to show additional
properties of the Laplacian matrix.

Definition 3.2. A symmetric matrix M is called positive semi-definite
if ∀x ∈ Rn ,

xTMx ≥ 0.

In terms of the Laplacian matrix of a graph this implies that all of its
eigenvalues are non-negative. As such let us show that the Laplacian
matrix of any graph has this property. Consider the Laplacian of an
edge

Le =

(
1 −1
−1 1

)
⊕ [zeros].

Note that (
1 −1
−1 1

)
=

(
1
−1

) (
1 −1

)
.

Remember that a vector v is an eigenvector of a matrix M with the
eigenvalue λ if Mv = λv and consequently that vTMv = vTλv. So for
a positive semi-definite matrix we know that vTλv must also be greater
than zero. With this in mind we can show that,

xTLex =
(
x1 x2

) (
1
−1

) (
1 −1

) (
x1
x2

)
= (x1 − x2)2,
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which is greater than or equal to zero. Notice that for the whole Laplacian
matrix we get

xTLGx = xT (
∑

e∈E
Le)x =

∑

e∈E
xTLex =

∑

(i,j)∈E
(xi − xj)2.

This implies that LG is in fact positive semi-definite, and that its eigen-
values are real and non-negative.

Theorem 3.1. For a graph G, every eigenvalue λ of the Laplacian matrix
LG is non-negative.

Proof. Suppose that λ is an eigenvalue and that x ∈ Rn is a nonzero
eigenvector of λ. Then

xTLGx = xT (λx) = λ(xTx).

Since xTLGx ≥ 0 from LG being positive semi-definite and xTx > 0, we
have that λ ≥ 0.

Theorem 3.2. For any symmetric matrix A, including the Laplacian
matrix of a graph, every eigenvalue λ of A is real.

Proof. Let Av = λv with v 6= 0 and λ ∈ R, then

λvTx = vT (λx) = vTAv

= (ATv)Tv = (Av)Tv = λvTv.

Because v 6= 0, then vTv 6= 0 and λ = λ.

Now knowing that the eigenvalues of the Laplacian matrix are in fact real
and non-negative that LG has an orthogonal basis consisting of eigenvec-
tors of LG. Therefore, since G has n vertices, there exists n eigenvalues
for LG. Since they are all non-negative we can conclude that

0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn.

4 Connectivity

4.1 Graph connectivity

Below we discuss graph connectivity and how the spectrum of the Lapla-
cian matrix can help us to study it. However what does it really mean
for a graph to be connected and can we quantify how strongly a graph is
connected? We will begin to answer these questions by first defining the
concept of a path in a graph.
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Definition 4.1. A path is a sequence of edges, one following the other
where no vertex may appear more than once.

Using the definition of a path we can easily define what it means for a
graph to be connected.

Definition 4.2. For a non-empty graph G, we say that it is connected if
there is a path between any two of its vertices and disconnected otherwise.

Recall the definition of LG. It is clear that if all entries of x are the
same, then xTLGx is zero. Thus consequently, LGx = 0, showing that
the constant vectors are eigenvectors with eigenvalue 0. Knowing this,
we can start discussing what the eigenvalues of a Laplacian matrix can
tell us about the connectivity of a graph.

Proposition 4.1. Let G = (V,E) be a graph, and let 0 = λ1 ≤ λ2 ≤
... ≤ λn be eigenvalues of the Laplacian of G. Then if G is connected if
λ2 > 0.

Proof. Assume that G is connected and that x is an eigenvector of LG
with eigenvalue 0. Then we have that

xLGx
T =

∑

(u,v)∈E
(xu − xv)2 = 0

Thus for every pair of vertices connected by an edge, we have xu = xv.
Since for a connected graph every pair of vertices are connected by a
path, we conclude that xu = xv for all vertices (u, v) ∈ V . Thus x
must be a constant vector the multiplicity of eigenvalue 0 is 1. It follows
that λ2 6= 0, so λ2 > 0 since all eigenvalues are non-negative as shown
previously.

In fact, the multiplicity of the eigenvalue 0 of LG is exactly the number
of connected components in G. We say that a connected component of a
graph G is a subgraph of an undirected graph in which any two vertices
are connected to each other by a path. For example, look at graph H in
Figure 4 and notice that it has two distinct components where vertices
are connected by a path, meaning that it has two connected components.
Whereas graph G in Figure 4 is connected i.e it has only one component.
This leads us to believe that the number of eigenvalues that are 0 in
graph G is 1, while in graph H there are 2. This is because if we apply
Proposition 4.1 to each connected component in H, we get that they
both have an eigenvalue λ1 = 0 and a nonzero eigenvalue λ2 > 0. The
multiplicity of eigenvalue 0 is often called the dimension of the nullspace
of a matrix. The second smallest eigenvalue if often referred to as the
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algebraic connectivity as it has a connection with the overall connectivity
of a graph. Let us formally define it as it is relevant to our particular
study.

Definition 4.3. The algebraic connectivity of a graph G, as introduced
by Fiedler, is the second smallest eigenvalue of the Laplacian matrix of
G.

v1 v2

v3v4

e1

e2

e3

e4

(a) Connected graph G

v1 v2

v3v4

e1

e2

(b) Disconnected graph H

Figure 4: Graph components

Corollary 4.1.1. Let G = (V,E) be a graph. Then the multiplicity of 0
as an eigenvalue is the number of connected components of G.

Proof. LetG1 = (V1, E1), G2 = (V2, E2), ...., Gk = (Vk, Ek) be the number
of connected components, or rather connected subgraphs of the graph G.
Then by Proposition 4.1 it follows that each connected component has
eigenvalue 0 with multiplicity 1. Thus we have that the multiplicity of the
eigenvalue 0 of LG must be the number of such connected components,
since they are clearly linearly independent.

We can now conclude that for a graph G, we have that λk = 0 if and
only if G has at least k connected components.

4.2 Examples of Laplacian matrices

Now let us look at some concrete examples of graphs and see how their
spectrum looks like when we change the number of edges. The eigenval-
ues explicitly calculated are found by solving the characteristic equation
commonly found in many textbooks of linear algebra. The characteristic
equation stated that for a matrix A, its eigenvalues λ can be found from
the equation det(A− λI) = 0, where I is the identity matrix.

It is clear from the previous section that this graph is connected. As such
the eigenvalue 0 has dimension 1. Since graph G is a complete graph on
4 vertices, the dimension of the eigenvalue 4 is clearly 3, which we prove

11



1 2

34

(a) Complete graph G




3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3




(b) Laplacian matrix of G

Figure 5: Graph G and its corresponding 4× 4 Laplacian matrix

later. However this can also be seen algebraically by simply calculating
the Laplacians eigenvalues from Figure 5, which are

λ1 = 0, λ2 = λ2 = λ3 = 4.

An interesting observation is that the sum of all vertex degrees is equal
to the sum of all eigenvalues. In fact we will see later that this is true
for all graphs.

1 2

34

(a) Graph G




3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2




(b) Laplacian matrix of G

Figure 6: Graph G and its corresponding 4× 4 Laplacian matrix

Now let us see what happens with the spectrum of a graph if we remove
one of its edges. Before making any calculations we can assume that
the graph’s algebraic connectivity λ2 will be less than 4, since we have
made it "less" connected. We also know, from Proposition 4.1, that the
nullspace has dimension 1 since it is still a connected graph.

If we calculate the eigenvalues of Figure 6 we get

λ1 = 0, λ2 = 2, λ3 = λ4 = 4.

Notice that by removing one edge we reduce the algebraic connectivity
by exactly two. We can also observe that the sum of all vertex degrees is
again equal to the sum of all eigenvalues. Let us continue by removing
another edge.
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1 2

34

(a) Graph G




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




(b) Laplacian matrix of G

Figure 7: Graph G and its corresponding 4× 4 Laplacian matrix

The eigenvalues of the Laplacian matrix of graph G in Figure 7 are

λ1 = 0, λ2 = λ3 = 2, λ4 = 4.

As with the other graphs we can observe that the eigenvalues reduce in
value when we make the graph "less" connected. Let us continue by
removing another edge.

1 2

34

(a) Graph G




1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1




(b) Laplacian matrix of G

Figure 8: Graph G and its corresponding 4× 4 Laplacian matrix

The eigenvalues of the Laplacian matrix of the graph G in Figure 8
are

λ1 = 0, λ2 = 2−
√

2, λ3 = 2, λ4 = 2 +
√

2.

The graph in Figure 8 has the least number of edges while still being
connected and it is clear that if we remove another edge the graph would
become disconnected. For that reason, let us look at a disconnected
graph to see how the spectrum changes.

In Figure 9 we get that G is no longer connected, implying that the
nullspace will now have dimension 2. We can view each connected com-
ponent in G as subgraphs G1 with 1 vertex and G2 with 3 vertices. By
Corollary 4.1.1, we have that the nullspace of G must have dimension 2,
which confirms our visual assessment. We can also see that since G2 is
a complete graph, its eigenvalues not equal to 0 will be 3. Thus we get
that the eigenvalues of G are

λ1 = λ2 = 0, λ3 = λ4 = 3.
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1 2

34

(a) Disconnected graph G




2 −1 −1 0
−1 2 −1 0
−1 −1 2 0
0 0 0 0




(b) Laplacian matrix of G

Figure 9: Graph G and its corresponding 4× 4 Laplacian matrix

This can easily be confirmed by solving the characteristic equation.

Now that we have seen some examples of how connectivity is related to
the spectrum of a graph’s Laplacian matrix it is clear that the second
smallest eigenvalue λ2 is important to the problem. However, as of now,
we have no way of evaluating eigenvalues of graphs with complicated
Laplacians. In the next section, we will discuss how we can bound the
eigenvalues of a matrix. In particular, we are interested in approximating
the algebraic connectivity of a graph to see what it can tell us about the
graph.

5 Bounding eigenvalues

5.1 Courant-Fischer theorem and Rayleigh quotients

Studying the Laplacian matrix can tell us many things about the connec-
tivity of a graph. As seen previously, we saw that the dimension of the
nullspace tell us how many connected components its graph has. How-
ever, when discussing connectivity it is also interesting how strongly a
graph is connected. The algebraic connectivity is directly related to such
questions. Therefore we will now discuss how to bound λ2 as well as λn
to find a relation between a graph’s spectrum and its connectivity.

We will begin by looking at the general bounds of the sum of a Laplacian’s
eigenvalues to draw further conclusions from that.

Lemma 5.1. For a graph G with n vertices of degree di, with i = 1, ..., n
and a Laplacian LG with eigenvalues λi we have that,

∑

i

λi =
∑

i

di ≤ n(n− 1).
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Proof. The first two expressions are the trace of LG so they must be
equal. The maximum value of the sum of all vertex-degrees must occur
when every vertex is adjacent to every other vertex, that is when each
vertex has degree (n − 1). The sum of n vertices with n − 1 degrees is
n(n− 1).

We can use the previous lemma to create a statement about the bounds
of λ2 and λn.

Lemma 5.2. With λi and di as above, we get

λ2 ≤
∑

i di
n− 1

,

λn ≥
∑

i di
n− 1

.

Proof. By the previous lemma and the fact that for a graph λ1 = 0, we
get that

n∑

i=2

λi =
∑

i

di.

Since λ2 ≤ .... ≤ λn, the bounds follow immediately.

Now we would also be interested in the upper bounds of the eigenvalues.
Let us take a closer look at the Courant-Fischer formula that gives such
bounds for a symmetric matrix.

Theorem 5.3. For any symmetric n×n matrix A with eigenvalues λ1 ≤
λ2 ≤ ... ≤ λn and corresponding eigenvectors v1, v2, ..., vn, one has

λ1 = min
||x||=1

xTAx = min
x 6=0

xTAx

xTx
,

λ2 = min
||x||=1
x⊥v1

xTAx = min
x 6=0
x⊥v1

xTAx

xTx
,

...

λn = λmax = max
||x||=1

xTAx = max
x6=o

xTAx

xTx
.

In general, for 1 ≤ k ≤ n, let Sk denote the span of v1, ..., vk, and let S⊥k
denote the orthogonal complement of Sk. Then,

λk = min
||x||=1

x∈S⊥k−1

xTAx = min
x6=0

x∈S⊥k−1

xTAx

xTx
.
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Proof. Consider the spectral decomposition A = QTAQ of A, where A is
the diagonal matrix of eigenvalues. We observe that

xTAx = xTQTAQx

= (Qx)TA(Qx).

Since by definition Q is orthogonal it suffices to consider the case when
A = A is a diagonal matrix with eigenvalues in the diagonal. Then we
can write

xTAx =
n∑

i=1

λix
2
i .

Notice that when A is diagonal, the eigenvectors of A are vk = ek, i.e
(ek)i = 1 if i = k and 0 otherwise. Then the condition x ∈ S⊥k−1 implies
x ⊥ ei for i = 1, ..., k − 1, so xi = 0. Therefore, for x ∈ S⊥k−1 with
|| x ||= 1, we have

xTAx =
n∑

i=1

λix
2
i

=
n∑

i=k

λix
2
i ≥ λk

n∑

i=k

x2i

= λk || x ||2= λk.

On the other hand, plugging in x = ek yields xTAx = (ek)
TAek = λk.

This shows that
λk = min

||x||=1

x∈S⊥k−1

xTAx.

The same argument holds to show that λmax holds, but instead we plug
in x = en, giving us

λmax = max
||x||=1

xTAx.

Since this is true for any symmetric n × n matrix we can in particular
apply this fact to the Laplacian matrix of a graph. Since we defined
the Laplacian on page 9 in its quadratic form we can use the Courant-
Fischer theorem to get a very helpful expression of its eigenvalues. Such
expression of eigenvalues is called the Rayleigh quotient.

Corollary 5.3.1. Let G = (V,E) be a graph and let LG be the Laplacian
of G. We already know that λ1 = 0 and that v1 is the vector with entries
equal to 1. Then by the Courant-Fischer formula,

λ2 = min
x 6=0
x⊥v1

xTLGx

xTx
= min

x 6=0
x⊥1

∑
(i,j)∈E(xi − xj)2∑

i∈V x
2
i

,
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λmax = max
x 6=0

xTLGx

xTx
= max

x 6=0

∑
(i,j)∈E(xi − xj)2∑

i∈V x
2
i

.

The Rayleigh quotient is a helpful tool to aproximate the eigenvalues
of matrices that are usually difficult to diagonalize. However in many
problems we don’t need the exact value of λ to evaluate its connectivity.
Instead we just construct a vector with a small Rayleigh quotient to find
an aproximation of the algebraic connectivity of a graph. Similarly one
could construct a vector with a large Rayleigh quotient to find a lower
bound of the largest eigenvalue of a graph. As such, we can easily find a
lower bound of λn of the Laplacian of a graph.

Lemma 5.4. Let G = (V,E) be a graph with V = {1, 2, ..., n} vertices
and u ∈ V . If u has degree d, then

λn(G) ≥ d.

Proof. By the Courant-Fischer theorem we have that

λn(G) = max
x 6=0

xTLGx

xTx
.

Now let x = eu where e1, e2, ..., en is the standard basis. Applying the
Rayleigh quotient we get that,

eTuLGeu
eTu eu

=

∑
(u,v)∈E

(xu − xv)2
∑
x2u

=
d

1
= d.

So λn(G) ≥ xTLGx
xT x

= d.

This bound however is not very precise and does not tell us much about
the connectivity of a graph. Let us therefore improve it slightly.

Lemma 5.5. Let G = (V,E) be a graph with V = {1, 2, ..., n} vertices
and u ∈ V . If u has degree d, then

λn(G) ≥ d+ 1.

Proof. The argument is similar to that in the previous proposition, with
the difference that instead we consider the vector x given by,

xi =





d if i = u

−1 if {i, u} ∈ E
0 otherwise.
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Then we have that,

xTLGx

xTx
=

∑
(u,v)∈E

(xu − xv)2
∑
x2u

=
d(d− (−1))2

d(−1)2 + d2
=

(d+ 1)2

d+ 1

= d+ 1.

So λn(G) ≥ xTLGx
xT x

= d+ 1.

Now with λn adequately bound we turn our attention to λ2. This how-
ever proves to be a difficult eigenvalue to approximate generally, so we
will begin by looking at some special types of graphs and their spec-
trum.

5.2 Spectra of some types of graphs

Definition 5.1. The path graph, Pn on n vertices is a graph G = (V,E)
where V = {1, 2, ..., n} and E = {{i, i+ 1} | 1 ≤ i < n}.
Definition 5.2. The cycle graph, Cn on n vertices is the graph G =
(V,E) where v = {1, 2, ..., n} and E = {{i, i+ 1} | 1 ≤ i ≤ n} ∪ {1, n}.
Proposition 5.6. The Laplacian of the cycle graph Cn on n vertices has
eigenvalues 2− 2 cos

(
2πk
n

)
and eigenvectors of the form

xi(k) = cos

(
2πki

n

)
,

yi(k) = sin

(
2πki

n

)
,

where xi(k) denotes the i−th component of the eigenvector for the k−th
eigenvalue, k ≤ n

2
.

Proof. To prove this notice that the Laplacian of a cycle graph with n
vertices will be of the form,

LCn =




2 −1 0 −1
−1 2 −1 . . . 0

0 −1 2
...

... . . . −1
−1 0 . . . −1 2




.
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Now let λ be a eigenvalue of xk. Then x should satisfy the following
relation,

xkλ = 2xk(u)− xk(u+ 1)− xk(u− 1).

Now we can verify this with a simple computation using the proposed
formula for the eigenvalues and eigenvectors of the graph.

xkλu = 2xk(u)− xk(u+ 1)− xk(u− 1)

= 2 cos

(
2πku

n

)
− cos

(
2πk(u− 1)

n

)
− cos

(
2πk(u+ 1)

n

)

= 2 cos

(
2πku

n

)
− cos

(
2πku

n

)
cos

(
2πk

n

)
+ sin

(
2πku

n

)
sin

(
2πk

n

)

− cos

(
2πku

n

)
cos

(
2πk

n

)
− sin

(
2πku

n

)
sin

(
2πk

n

)

= 2 cos

(
2πku

n

)
− 2 cos

(
2πku

n

)
cos

(
2πk

n

)

= cos

(
2πku

n

)
(2− 2 cos

(
2πk

n

)
)

= xk(u)(2− 2 cos

(
2πk

n

)
).

With 2 − 2 cos
(
2πk
n

)
being the eigenvalues of the cycle graph we have

shown the relation. The computation for yk follows similarly.

Proposition 5.7. The Laplacian of the path graph Pn has the same
eigenvalues as C2n, excluding 2. That is Pn has eigenvalues 2−2 cos

(
πk
n

)

and the associated eigenvectors,

xk(u) = cos

(
πku

n
− πk

n

)
,

for 0 ≤ k < n.

Proof. To prove this, we treat Pn as a quotient of C2n by identifying
vertex i of Pn with both vertices i and 2n + 1 − i of C2n. Then we find
an eigenvector v of C2n such that vi = v2n+1−i for all vertices i of C2n.
Then

x =




v1
v2
...
vn
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is an eigenvector of Pn. Now notice that the Laplacian LPn has the form



1 −1 0 0
−1 2 −1 . . . 0

0 −1 2
...

... . . . −1
0 0 . . . −1 1




.

So if λ is an eigenvalue and x is an eigenvector of Pn, then it must satisfy

x1(u)− x1(u+ 1) = λx1,

xn − xn−1 = λxn and

2xk(u)− xk(u+ 1)− xk(u− 1) = λxk, ∀ 1 < k < n.

From the argument in Proposition 5.6 our x satisfies the last condition,
so we must check the first two conditions.

1

2 3

4

5

67

8

Figure 10: Graph C8

Consider the graph C8 in Figure 10 and notice that applying the condition
that we can identify each vertex i with both vertex i in the path graph
and as 2n+1− i in the cycle graph. These will be pairs of vertices as can
be seen in the figure. Now it becomes clear that we can do the following
calculations:

λx1 = 2x1 − x2 − x2n = 2x1 − x2 − x1 = x1 − x2,

λxn = 2xn − xn+1 − xn−1 = 2xn − xn − xn−1 = xn − xn−1.
So our x satisfies the above conditions. Lastly we must check if there
exists an eigenvector v of C2n that satisfies vi = v2n+1−i, so that we can
derive our x from it. Therefore let

vi(k) = cos

(
πki

n
− πk

2n

)
,
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then
v2n+1−i(k) = cos

(
πk(2n+ 1− i)

n
− πk

2n

)

= cos

(
πk(4n+ 2− 2i− 1)

2n

)

= cos

(
πki

n
− πk

2n

)
= vi(k),

which satisfies our definition of v. Since

vi(k) = cos

(
πki

n
− πk

2n

)

= cos

(
πk

2n

)
cos

(
2πki

2n

)
+ sin

(
πk

2n

)
sin

(
2πki

2n

)
,

we have that v ∈ Span({x(k), y(k)} where x(k) and y(k) are the eigen-
vectors of C2n following from Proposition 5.6. The associated eigenvalues
are thus λk = 2− 2 cos(πk

n
) where 1 ≤ k ≤ n.

Definition 5.3. A complete graph, Kn on n vertices is a graph G =
(V,E) where V = {1, 2, ...., n} and E = {{i, j} | i 6= j, i, j ∈ V }.
Proposition 5.8. The multiplicity of the eigenvalue 0 of the complete
graph Kn is 1 and eigenvalue n with multiplicity n− 1.

Proof. We have mentioned how a complete graph looks visually where
these results are quite intuitive. However the formal proof follows directly
from Lemma 5.1 which states that the sum of all degrees are equal to the
sum of all eigenvalues. We know that the eigenvalue λ1 = 0, and that
the sum of all degrees of a complete graph is n(n − 1). Therefore, from
page 3 in [1], the multiplicity of the eigenvalue n must be n− 1.

Now let us define the bipartite graph, which interpolates between other
types of graphs defined earlier.

Definition 5.4. A bipartite graph G = (V,E) is a graph on n vertices
where the vertices are partitioned into independent sets V1 and V2 such
that V1 ∪ V2 = V .

We can see in Figure 11 an example of how a bipartite graph looks like. It
is partitioned into two sets such that no vertices in each set are adjacent
to each other. Now let us look at the complete bipartite graph, which
has a lot of useful applications.
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3

4

5

6

V1 V2

Figure 11: Bipartite graph G

Definition 5.5. A complete bipartite graph Kn1,n2 is a bipartite graph in
which each vertex in V1 is adjacent to each vertex in V2. The number of
vertices in the graph Kn1,n2 is n = n1 +n2 where the number of edges are
n1 ∗ n2.

The general form of the Laplacian matrix of a complete bipartite graph
is

LKn1,n2
=

(
n1In2×n2 −En2×n1

−En1×n2 n2In1×n1

)
,

where I is the identity matrix and E is the matrix with only ones.

Proposition 5.9. The Laplacian of the complete bipartite graph Kn1,n2

has eigenvalues of 0, n−n1, n−n2 and n with multiplicity 1, n1−1, n2−1
and 1 respectively.

The proof can be found in [5], Theorem 2 and involves using the comple-
ment ofKn1,n2 . In particular, let us look at the graph K4,2 as an example.
Its Laplacian equals

L4,2 =

(
4I2,2 −E2,4

−E4,2 2I4,4

)
.

From Proposition 5.9 we get that the eigenvalues of the Laplacian of K4,2

will be,
λ1 = 0, λ2 = λ3 = λ4 = 2, λ5 = 4, λ6 = 6,

which can easily be confirmed by calculating the eigenvalues explicitly.
This result coincides well with what we have discovered about the spec-
trum of graphs up until now. Looking at the algebraic connectivity λ2
we can see that it is exactly 2, or rather exactly the number of vertices in
the set of vertices with the least amount of vertices. In fact, for a graph
K4,3 the algebraic connectivity would be 3, which can be confirmed with
Proposition 5.9 and is shown in [3], "Old and new results on algebraic
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connectivity".

This result on bipartite graphs can be extended to multipartite graphs,
showing that similarly from Proposition 5.9 we can find the eigenvalues
of a graph Kn1,n2,...,nk

with k independent sets of vertices V1, V2, ..., Vk.
Such eigenvalues are 0, n−nk, n−nk−1, ..., n−n1 and n with multiplicity
1, nk − 1, nk−1 − 1, ..., n1 − 1 and k respectively.

Now let us explicitly bound the algebraic connectivity of the path graph
on n vertices to see how it could be done using the tools we have described
so far.

5.3 Bounding λ2 of a path graph

Consider the Rayleigh quotient again in order to find an upper bound of
λ2. We have

λ2 = min
x 6=0
x⊥v1

xTLGx

xTx
= min

x 6=0
x⊥1

∑
(i,j)∈E(xi − xj)2∑

i∈V x
2
i

.

When choosing a vector to get a Rayleigh quotient the path graph is nice
to evaluate since each subsequent vector follows the graph’s edges quite
predictably, which makes it considerably easier to use the Rayleigh quo-
tient. As such we will find an upper bound of the algebraic connectivity
of a path graph.

Proposition 5.10. Let Pn be a path graph, then λ2 ≤ 12
n(n+1)

.

Proof. Consider the vector u such that ui = (n + 1) − 2i for 1 ≤ i ≤ n
and the vector v1 with entries equal to 1. Then we get that

u · v1 =
∑

i

(n+ 1)− 2i = 0,

which we have seen previously means that u ⊥ 1. Then, by the Rayleigh
quotient we have that

λ2(Pn) =

∑
1≤i<n

(ui − ui+1)
2

∑
i

(ui)2
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=

∑
1≤i<n

((n+ 1− 2i)− (n+ 1− 2(i+ 1)))2

∑
i

(n+ 1− 2i)2
=

=
22(n− 1)∑

i

(n+ 1− 2i)2
.

The denominator
∑
i

(n + 1 − 2i)2 is clearly of order n3. By calculating

the sum we get,

∑

i

(n+ 1− 2i)2 =
(n+ 1)n(n− 1)

3
.

Thus,

λ2(Pn) =
22(n− 1)

n(n2 − 1)/3
=

12

n(n+ 1)
.

Therefore we get a rough upper bound of the algebraic connectivity of a
path graph with n vertices by

λ2 ≤
12

n(n+ 1)
.

Now we try to get a lower bound for λ2 of Pn. For this we will need
another technique. We begin by introducing a special partial order on
symmetric n×n-matrices. For two symmetric n×n matrices A,B we say
that A � B if the matrix A − B is positive semi-definite. So if A � B,
then xTAx ≥ xTBx for all x. This notion can be applied to Laplacian
matrices of graphs as well. We say that for a graph G, G � H if LG � LH
is true. This notion will be most useful when discussing some multiple
of an edge graph, much like what we saw when discussing properties of
the Laplacian matrix in section 2.

Lemma 5.11. If G and H are two graphs with n vertices such that

c · LG � LH , c > 0,

then
c · λ2(G) ≥ λ2(H).
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Proof. Applying Courant-Fischer formula we see that

c · λ2(LG) = min
x 6=0
x⊥v1

cxT (LG)x

xTx

= min
x 6=0
x⊥v1

xT (cLG)x

xTx
≥ min

x 6=0
x⊥v1

xT (LG)x

xTx
.

By definition of the above partial order we saw that

min
x 6=0
x⊥v1

xT (LG)x

xTx
≥ min

x 6=0
x⊥v1

xT (LH)x

xTx
= λ2(H),

which proves the lemma.

With this tool we will be able to find a lower bound of λ2(Pn) by com-
paring it to λ2(Kn). However first we need to look at some inequalities
that will help us to understand how the path graph can be compared to
the complete graph. Consider for that reason the path graph Pn from
vertex 1 to vertex n and let G1,n be the graph with just one edge (1, n).
Let all of these edges be unweighted.

Lemma 5.12. In the above notation,

(n− 1)Pn � G1,n.

Proof. We need to show that for every x ∈ Rn,

(n− 1)
n−1∑

i=1

(xi+1 − xi)2 ≥ (xn − x1)2.

For 1 ≤ i ≤ n− 1, set
∆(i) = xi+1 − xi.

Notice that (xn−x1), the inequality on the right-hand side, can be rewrit-
ten as;

n−1∑

i=1

(xi+1−xi) = x2−x1+x3−x2+ ...+xn−1−xn−2+xn−xn−1 = xn−x1.

Then the inequality becomes

(n− 1)
n−1∑

i=1

∆(i)2 ≥ (
n−1∑

i=1

∆(i))2.
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This however is precisely the Cauchy-Schwartz inequality that follows
from the fact that the inner product of two vectors is at most the product
of their norms. With the vector v with entries equal to one and using ∆
we see that,

(n− 1)
n−1∑

i=1

∆(i)2 =|| v ||2|| ∆ ||= (|| v |||| ∆ ||)2

≥ (vT∆)2 = (
n−1∑

i=1

∆(i))2.

With Lemma 5.12 we can show that some multiple of the path graph Pn
is at least the complete graph Kn. To this end, see

LKn =
∑

j<i

LGi,j
.

Proposition 5.13. For a path graph Pn,

λ2(Pn) ≥ 6

n2 − 1
.

Proof. We will prove this by comparing the path graph Pn to the com-
plete graph Kn. Suppose Kn = (V,E) where V = (1, ..., n). Then for
every edge (i, j) ∈ E in Kn, we apply Lemma 5.12 to show that

(j − i)Pn � (j − i)
j−1∑

k=1

Gk,k+1 � Gi,j.

This says that Gi,j is at most (j−i) times the part of the path connecting
i to j and that this part of the path is less than the whole. Then summing
over all pairs of i, j with i < j, we get

∑

i<j

(j − i)Pn �
∑

i<j

Gi,j = Kn.

Notice that
∑

1≤i<j≤n
(j − i) =

n−1∑

k=1

k(n− k)

= n
n−1∑

k=1

k −
n−1∑

k=1

k2
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= n
(n− 1)n

2
− n(n− 1)(2n− 1)

6

=
n3

6
− n

6
=
n(n2 − 1)

6
.

Therefore, we get that

n(n2 − 1)

6
Pn � Kn.

From Lemma 5.11, we have

n(n2 − 1)

6
λ2(Pn) ≥ λ2(Kn).

Proposition 5.8 implies that λ2(Kn) = n, therefore

n(n2 − 1)

6
λ2(Pn) ≥ n

⇐⇒ λ2(Pn) ≥ 6

n2 − 1
.

We can readily see that this lower bound has the same order as our
previous rough upper bound of λ2. Thus we now have a pretty good
bounding of λ2(Pn), namely

6

n2 − 1
≤ λ2(Pn) ≤ 12

n(n− 1)
.

6 The algebraic connectivity
Now that we have seen some examples of the spectra of graphs and eval-
uated their connectivity it is clear that the algebraic connectivity is an
important characteristic of a graph. As opposed to the vertex and edge
connectivity it is more concerned with the global structure whereas the
vertex and edge connectivity’s are more concerned with the smallest ver-
tex or edge cut. As seen from some of the examples in chapter 4 and from
some of the other calculations we have done, it is clear that λ2 ranges
from n for a complete graph and decreases as the graph becomes less
and less connected. Our results with bounding the path graph, which is
a very "weak" family of graphs, tells us that when the number of ver-
tices become very large, the algebraic connectivity approaches 0. This in
contrast with the complete graph that has an ever increasing algebraic
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connectivity as the order increases. This becomes very natural when you
consider some of the propositions outlined in Section 4 that discuss the
concept of connected components and the impact that they have on the
graphs overall connectivity.

As the path graph is only one family of graphs this study could naturally
be expanded to other types of graphs using similar techniques. One
could also expand it by further discussing the problem of maximizing the
algebraic connectivity of certain families of graphs with constraints on
the number of edges and vertices.
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