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Abstract

This paper will deal with how to transform an uncertain 2 person game
to a robust tractable program and how to solve such a program. The
program that we will be using are second order programs (SOCP) and
semi-definte programs (SDP). Both of these programs are some common
conic programs (CP), which we will introduce through adapting linear
programming (LP). There are some theorems and definitions that will
frequently occur such as the duality theorem and Karuch-Kuhn-Tuckers
conditions, that will be essential when we are creating our aspiring pro-
gram. We will in the last section discuss how and in which fields robust
programming is applied in.

Keywords— linear programming, conic programming, robust programming, game
theory, zero sum game, uncertain bimatrix game.
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1 Introduction

There are many reasons why mathematics is such an important subject, and one
of the most underlying reason, which one simply cannot ignore is its applications.
A mathematical program is a structure in the form of an objective function that
orientates in a space, and its data is a restriction to this space. Our goal is to either
find an optimal value of our objective function within this space, or to collect solutions
that can generate such a value, wheres an optimal value is a maximum or minimum
value. However, for any realistic problems uncertainty will be an inevitable factor. The
mathematical interpretation of uncertainty is that our data is only so called nominal
values, which can vary with a perturbation. For a mathematical program with a lot
of constraints a rather small perturbation can affect the feasibility of our solution and
make it infeasible, thus resulting that the true answer is very different. Hence, we
want to make our program robust such that it takes these perturbations in account.
Whiles we want to make our program robust we still want to get a solution, i.e. we
want to create a tractable model. There are different ways one can acquire such a
model, in this paper we have chosen to create a tractable model by assuming that the
uncertainty set can be described in the form of a box or ellipsoid.
There are many ways to acquire a mathematical program, if it is involving agents it is
quite common that our data takes form of decisions. A 2-person game or a bimatrix
game is a decision problem involving two agents, where each agent wants to optimise
their payoff. Hence, each agent can transform their decision problem to a mathematical
program and their opponents possible response will be the agents constraints. In the
case of an uncertain bimatirx game one or more of the components of the game must
be uncertain. We will only treat the scenario where an agent is uncertain of their
opponents strategy and when an agent is uncertain of their own payoff.
We will give two separate sections for the duality theorem and Karush-Kuhn-Tucker
conditions, because their role in uncertain bimatrix games are particular important.
The duality is best described through an example:
Suppose that we try to maximise our profit given that we don’t exceed our budget
in terms of costs, its dual reformulation would then be that we want to minimize our
costs given that our profit must exceed our maximal profit in our previous problem.
We can do a similar analogy in a bimatrix, given that the opponent wants to minimize
the players payoff.
In the upcoming section we will focus on linear programming, and then in the conic
program section show how we can generalise those methods in order to solve none
linear problems, which an uncertain bimatrix game can be transformed to.
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2 Linear programming

2.1 Formalising an LP

We begin by observing a general mathematical program (MP ), i.e. a maximisation or
minimisation problem under some constraints. When we create an MP we will first
have to analyse the decision variables, call them x. These variables are bounded in
some data set K and if K is not a finite set then that is in itself a constraint, i.e. a
restriction to the feasibility. However, if nothing is mentioned, we will assume that
x ∈ Rn. We can describe our constraints as a required aggregation that needs to be
fulfilled, i.e. a constraint function of the form g(x) Ω b. Where Ω can be an inequality
or equality relation. Thus, our data set and constraint functions will create a feasible
space, which we denote as F . The function that we want to optimise in relation to
F is called the objective function or cost function. If we now assume that we have
an MP of the form of a minimisation with m constraints then we can give a formal
notation of a MP

min
(or max)

f(x) (MP)

s.t. g(x) Ω b,

where x ∈ Rn, b ∈ Rm and f : Rn → Rm. We have denoted ”subjected to” as ”s.t”
and we will use this denotation throughout the paper. Assume that we are given
a minimisation problem, then the constraints must have a lower bound in order for
the program to have a minimal value. Thus, for such a problem to be meaningful
Ω must then either denote; ”>”, ”=” or ”≥”. We can make a similar setting for a
maximisation problem. We can now give a definition for an LP .

Definition 2.1. An MP is an LP when its objective function and constraints are
linear.

A useful technique that we will use when we have an MP is the introduction of slack
variables, that are variables which allow us to manipulate the Ω sign, but the most
frequent usage is to transform an inequality to an equality. A specific MP can be
interpret as a program that has certain features, i.e. our structure and data must
fulfill certain requirements. We will now introduce a linear program and we will out
of convention refer this as the standard form of an LP .

min cTx (LP)

s.t. Ax ≥ b,

whereas A is an m× n constraint matrix with real variables and b ∈ Rm. Hence, our
standard LP model is a minimisation problem with inequality constraints. A more
common convention for a standard LP which we can find on [2, page 15] is that we set
the optimal value as∞ when it is infeasible. Why? It is mainly for algorithmic reasons
which ensures us to always find a new candidate, since any other feasible solution will
give a smaller value. Notice that if it is feasible and unbounded from below, then the
objective value is −∞. We can now give a notation of the optimal value.

Notation 1. If an LP has a nonempty feasible set F and is bounded below (i.e. there
exists a finite infimum for F), then we can define the optimal value c∗ as the infimum
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value amongst the feasible solutions, i.e.

F = {x : Ax− b ≥ 0} 6= ∅
c∗ = inf

{x:Ax−b≥0}
cTx.

2.2 Certifying solvability for LP

A natural question is to ask, how do we verify that an LP problem is solvable? To
get an intuition to this we can aggregate our inequalities with a positive vector λ, into
one equation, which we will denote as Cons(λ). Formally, Cons(λ) is the the inner
product such that

〈λ,Ax〉 := λTAx ≥ λT b. (Cons(λ))

If we assume that our objective function is strict greater then the vector a, i.e. we
assume that a is a lower bound to our problem. Then there should not exists any
solution such that our objective function equals a, hence we can verify feasibility by
verifying that the following system has no solutions

−cTx+ a > 0 (S)

(Ax− b) Ω 0,

where Ω is either ”>” or ”≥”. If we now rewrite our original LP as a summation of
all the affine combinations with the vector λ ≥ 0, i.e. as Cons(λ). Then we get the
following system

(
m∑

i=1

λiai)
Tx Ω

m∑

i=1

λibi. (Cons(λ))

As mentioned above, our LP has no solutions if S has no solutions. Since λ ≥ 0 we
see that we can make the the following conventions for Cons(λ)

m∑

i=1

λiai)
T = dT

m∑

i=1

λibi = e,

where d is a vector and e is a scalar. This gives us the refined system

dTx Ω e

Thus, for our LP to be infeasible then our refined system needs to be unsolvable. We
can clearly see that if we set d = 0 then we will get a contradiction for all e > 0 and
if Ω is a strict inequality then we will get a contradiction for e = 0 as well.

We now want to propose a theorem which describes the feasibility of an LP , it is
similarly to the one in [2, page 18].

Theorem 2.1. A LP that is a minimisation problem, i.e.

min cTx (LP’)

s.t Ax Ω b
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where Ω is ”≥” or ”>”, is infeasible if and only if there exists an affine combination
with a vector λ ≥ 0 such that the following system is solvable





(a)
∑m
i=1 λi > 0

(b)
∑m
i=1 λiai = 0

(c)
∑m
i=1 λibi Ω 0.

2.3 The Dual theorem

The duality is a technique that systematically generates a lower bound to the ”primal”
problem. By primal we mean the optimisation problem that was given to us. We are
essentially transforming our problem such that it is an optimisation problem in respect
to our constraints. A consequence from our transformation is that our dual problem
is always convex, which we will show later on. In practices it is easier to implement
algorithms to such a program. Because, a convex program with a differentiable objec-
tive function must the local optimal point be a global optimal point as well, a simple
geometric interpretation will verify this. Hence, the dual holds many positive prop-
erties. Since we will from now on be working with two programs simultaneously, we
will refer the programs as the primal and the dual, where the primal is the program
we are given. Assume that our primal is the following program

c∗ = min
x∈Rn

f(x) (P)

s.t. g(x) ≥ b, i = 1, ...,m.

In order to formulate the dual program (D), we will have to create a program such
that its objective function is a lower bound to the primal programs objective function.
We can accomplish this in the following manner:

Introduce λ ∈ Rm+ and let fλ(x) denote the Lagrangian function. If we now minimise
fλ(x) with respect to x, then we can create a function φ(λ) such that

φ(λ) = min f(x) + λT (b− g(x)).

If we choose a λ ≥ 0 such that φ(λ) is the maximal value, then it will be a lower bound
to the primal problem, i.e. the dual to the primal. This can be written as

max {φ(λ) : λ ≥ 0}, (D)

where φ(λ) is the objective function to the dual. We will now work on the maximisation
problem to the LP problem of the form

c∗ = min
x∈Rn

f(x) (P)

s.t. g(x) ≥ b, i = 1, ...,m.

Now, introduce λ ≥ 0 so that we

min cTx+ λT (b−Ax)

s.t. x ≥ 0,

where the objective function is equal to

λT b+ (cT − λTA)x.
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Since λT b is independent of x will we be working on (cT − λTA)x. If

cT − λTA ≥ 0,

then x = 0 will do the job. Otherwise, if some component of

cT − λTA < 0,

say the i-th, then xi = ∞ gives minimum. Since we will maximise the minimal
Lagrange function in order to get the dual, then the dual function must be be λT b.
Therefor the dual is

max {bTλ : ATλ− c ≥ 0, λ ≥ 0}. (D)

We can now give a formal statement.

Theorem 2.2. (Weak duality) The optimal value in the dual is always less then or
equal to the optimal value in the primal.

This is evident from how we choose to define the dual. If we assume that the optimal
value for the prime is c∗ and the optimal value for the dual is b∗, then we can express
the duality gap as:

σ = c∗ − b∗,

where σ is the duality gap. We can now present the duality theorem in LP , which we
will present in a similar fashion as in [2, page 23]

Theorem 2.3. (The strong duality theorem) If we have two programs like in (P) and
(D) then the optimal values for (P) and (D) are equal when;

(i) The primal is feasible and bounded below

(ii) The dual is feasible and bounded above

(iii) The primal is solvable

(iv) The dual is solvable

(v)Both the primal and the dual are feasible.

The proof can be read in [2], but readily it is: If the (P) is feasible and bounded below
(i) implies that c∗ exists and weak duality implies that this value must equal to b∗.
If (D) is is feasible and bounded above then (P) must be so as well. If both of the
program are feasible then that implies that both of them need to be bounded.

We can now summarise the above as a more convenient theorem.

Theorem 2.4. A pair (x∗, y∗) are feasible solutions to the primal and dual if and only
if the complementary slackness holds or the duality gap is zero, where

λi = 0 or bi −
n∑

j=1

aijxj = 0 (complementary slackness)

cTx∗ − bT y∗ = 0. (zero duality gap)

The zero duality gap holds by definition. The complementary slackness is a reformu-
lation of feasibility for both the programs.
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2.4 Quadratic programming problem

We will in this section show how the theory presented earlier is applied by studying
the quadratic programming (QP ) problem. A quadratic function in variables x =
(x1, ..., xn) is a polynomial in x where the maximum degree of nominals is equal to
two. Assume that; Q is an n × n semi-definite positive matrix, A is a m × n matrix,
b is an n-vector and c is an n-vector. Now we consider the quadratic programming
problem (QP )

min
1

2
xTQx+ cTx, (QP)

s.t. Ax = b

x ≥ 0.

If we begin by observing the geometry of this sort of problem then we can notice
that we are minimising a convex quadratic function over a polyhedron described by
{x : Ax = b, x ≥ 0}, where the solution are the points where the quadratic function
and the polyhedral set (or polyhedron) intersect. From this we get that for us to gain
a solution there exists two geometrical positions, which are;

(i) The optimal solution is on the boundary of the polyhedron.
(ii) The optimal solution is inside the polyhedron.

Since our objective function is a quadratic function we know that the level curves are
ellipses. Thus, in (i) we have that our optimal solution x∗ is the intersection of one of
the hyperplanes and the tangent to an ellipsoidal.

For the case in (ii) we have

arg min
x

1

2
xTQx+ cTx = −Q+c,

is inside the polyhedron. From this we can see that −Q+c is the center of the ellipsoidal
level curves. Where Q+ is the pseudo inverse of Q and in particular Q+ = Q−1 if Q
is invertible.

Note that if the polyhedron is empty the the problem is infeasible, i.e. there is no
solution; and if the polyhedron is unbounded in the opposite direction of c and Qc = 0
then the QP is unbounded. However, if Q is positive definite, then QP cannot be
unbounded, for a more detailed explanation see [18, page 127-130].

Let us now find the dual problem of this QP problem.

We can write the Lagrange function as

L(x, λ, µ) =
1

2
xTQx+ cTx− λTx+ µT (b−Ax)

=
1

2
xTQx+ xT (c−ATµ− λ) + bTµ.

where λ ≥ 0, λ ∈ Rn, µ ∈ Rm are Lagrange multipliers. Solving

0 = ∇xL(x, λ, µ) = Qx+ c−ATµ− λ,
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yields

x = Q+(ATµ+ λ− c), (1)

⇐⇒ Qx = ATµ+ λ− c. (2)

We can substitute (1) with L(x, λ, µ), this gives us the dual objective. Hence,

φ(λ, µ) =




BTµ− 1

2
(ATµ+ λ− c)Q+(ATµ+ λ− c) if ATµ+ λ− c ∈ Im(Q)

−∞ otherwise

This implies that the dual problem is

max bTµ− 1

2
(ATµ+ λ− c)Q+(ATµ− c)

s.t. ATµ+ λ− c ∈ Im(Q)

λ ≥ 0.

From (2), we also write the dual problem as follows

max bT y − 1

2
xTQx (D)

s.t. Qx = AT y + λ− c
λ ≥ 0.

This is uncommon if we are interested in dualising the problem, because there are
both primal and dual variables in this formulation. However, this is the case when we
reformulate QP as a conic programming problem, which we will do later.

If we were to assume that Q is positive definite, i.e. Q ∈ Sn++, then that implies that
Q+ = Q−1. Hence, our dual problem would then be





max
λ, µ

bTµ− 1

2
(ATµ+ λ− c)Q−1(ATµ+ Λ− c)

s.t. λ ≥ 0.

If we assume that Slater’s condition are fulfilled, then strong duality gives us;
(i) The primal problem of QP is infeasible if and only if

∃y : yTA ≤ 0 and bT y > 0

(ii) The dual problem is infeasible if and only if

∃x ≥ 0 : Ax = 0, Qx = 0 and cTx < 0.

2.5 KKT conditions and Slater’s conditions

The KKT and Slater’s conditions are formulated in different ways depending on if
the MP is with or without equality constraint. Consider a general mathematical
programming in the form

min f(x) (MP)

s.t. g(x) ≤ 0

h(x) = 0,
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where

f : Rn → R

g(x) ≤ 0 ⇐⇒ gi(x) ≤ 0, i = 1, ...,m

h(x) = 0, ⇐⇒ hj(x) = 0, j = 1, ..., l

x ∈ X ⊆ Rn.

We assume that X is an open set and for the sake of simplicity we will also assume that
f and gi are continuous and differentiable in the optimum x∗. Let us now consider a
system that only has inequality constraints, i.e.

min f(x) (MP≤)

s.t. g(x) ≤ 0

x ∈ X.

If we let

I = {i : gi(x
∗) < 0},

then we can give Slater’s condition for a (MP≤) and (MP ), i.e.

Slater’s condition for MP≤:
The set X is open, each gi is pseudo convex for i ∈ I at a feasible point x∗ and each
gi for i /∈ I is continuous at x∗ and there is an x ∈ X such that gi(x) < 0 for all i ∈ I
[18, 223].

Slater’s condition for MP :
If we now observe for a general (MP ) then we have that; the set X is open, each
gi for i ∈ I is pseudoconvex at x∗, each gi for i /∈ I is continuous at x∗, each hi
for i = 1, ..., l is quasiconvex, quasiconcave and continuosly differentiable at x∗, and
∇hi(x∗), for i = 1, ..., l are liniearly independent. Furthermore, there is an x ∈ X
such that gi(x) < 0 for all i ∈ I and hi(x) = 0 for all i = 1, ..., l.

We can now summarise these two to the following

Slater’s condition for a convex programming problem:

min f(x)

s.t. g(x) ≤ 0

Ax = b

x ∈ X.

The set X is open, f , g are differentiable over X, and A is a m × n matrix where
m ≤ n has full row rank.

We say that the problem satisfies the Slater’s conditions if

∃x0 ∈ X : gi(x0) < 0, i = 1, ...,m, Ax0 = b,

which guarantees strong duality [4, page 283].
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Theorem 2.5. Consider the problem (MP ). Suppose (MP ) (the primal problem) and
its dual have equal optimal value, which are attained at x∗ and (λ∗, µ∗). Then

λ∗i gi(x
∗) = 0, i = 1, ...,m.

Proof. Since the duality gap is zero, we have

f(x∗) = φ(λ∗, µ∗)

where φ(λ, µ) is the dual objective function. By definition

φ(λ, µ) =min
x∈X

(f(x) +
m∑

i=1

λifi(x) +
l∑

j=1

µjhj(x))

Thus

φ(λ∗, µ∗) =min
x∈X

(f(x) +
m∑

i=1

λ∗i fi(x) +
l∑

j=1

µ∗jhj(x))

By definition of minimum we have

min
x∈X

(f(x) +
m∑

i=1

λ∗i fi(x) +
l∑

j=1

µ∗jhj(x))

≤ f(x∗) +
m∑

i=1

λ∗i fi(x
∗) +

l∑

j=1

µ∗j lj(x
∗).

Now x∗ is optimum of (MP ) we have g(x∗) ≤ 0, h(x∗) = 0, so altogether we have a
chain of inequalities

f(x∗) ≤ φ(λ∗, µ∗) ≤ f(x∗) +
m∑

i=1

λ∗i gi(x
∗) +

l∑

j=1

µ∗j lj(x
∗)

≤ f(x∗).

Hence, they are all equal, i.e.

f(x∗) = f(x∗) +
m∑

i=1

λ∗i gi(x
∗) +

l∑

j=1

µ∗jhj(x
∗)

⇐⇒
m∑

i=1

λ∗i gi(x
∗) = 0, since hj(x

∗) = 0.

Now gi(x
∗) ≤ 0, λ∗i ≥ 0 and the sum is eqial to zero implies

λ∗i gi(x
∗) = 0, i = 1, ...,m.

11



Theorem 2.6. Under the same condition as the ones in the previous theorem, if
(λ∗, µ∗) is optimal of the dual problem then

x∗ = arg min
x

L(x, λ∗, µ∗)

where

L(x, λ, µ) = f(x) + λT g(x) + µTh(x). (Lagragian function)

Proof. We have from the proof of the previous theorem

min
x
{f(x) +

m∑

i=1

λ∗i gi(x) +
l∑

j=1

µ∗jhj(x)}

=f(x∗) +
m∑

i=1

λ∗i gi(x
∗) +

l∑

j=1

µ∗jhj(x
∗)

which means x∗ is the minimiser of the Lagrange function L(x, λ∗, µ∗)

If we would now assume differentiability, then x∗ = arg min
x

L(x, λ∗, µ∗) implies

∇f(x∗) +
m∑

i=1

λ∗i∇qn(x∗) +
l∑

j=1

µ∗jhJ(x∗) = 0.

This leads to the following necessary condition for existence of primal and dual solu-
tion. Next theorem is an immediate consequence of the previous result.

Theorem 2.7. (The KKT necessary condition). Assume that f , gi (i = 1, ...,m),
hj (j = 1, ..., l) in (MP ) are differentiable over the open set X. Let x∗ and (λ∗, µ∗) be
any primal and dual optimal solution with no duality gap. Then the KKT conditions
holds. That is,

(i)gi(x
∗) ≤ 0, i = 1, ...,m, hj(x) = 0, j = 1, ..., l (primal feasibility)

(ii)λ∗i ≥ 0, i = 1, ...,m (dual feasibility)

(iii)λ∗i gi(x
∗) = 0, i = 1, ...,m (complementary slackness)

(iv)∇f(x∗) +
∑

i=1

λ∗i∇gi(x∗) +
l∑

j=1

µ∗j∇hj(x∗) = 0. (Lagrange stationarity)

Theorem 2.8. (KKT sufficient theorem) Consider the optimisation problem (MP ).
Assume that; X is an open and convex set, f , {gi}mi=1 and {hj}lj=1 are differentiable
and convex on X. If (x∗, λ∗, µ∗) is a KKT point, i.e. it satisfies the KKT conditions.
Then x∗ and (λ∗, µ∗) are primal and dual optimal with zero duality gap.

The proof is rather technical so we give a proof of a little special case where hi(x) are
affine functions, which is indeed what we need in this test. This affect the optimisation
problem so that it becomes categorized as a convex optimisation problem.

12



Proof. Since (x∗, λ∗, µ∗) is a KKT point we have that x∗, (λ∗, µ∗) are primal and
dual feasible. Note that {hj(x)}lj=1 are affine plus convex and

l∑

j=1

µjhj(x)

is also convex. This together with λ∗ ≥ 0 (KKT condition (ii)) gives that L(x, λ∗, µ∗)
is convex in X (positive combination of convex functions). So, the Lagrange station-
arity at x∗ implies x∗ is a minimiser of L(x, λ∗, µ∗), which is sufficiently optimal due
to convex of L(x, λ∗, µ∗). Hence, by the KKT condition’s

φ(λ∗, µ∗) = L(x∗, λ∗, µ∗) = f(x∗) +
m∑

i=1

λigi(x
∗) +

l∑

j=1

µ∗jhj(x
∗)

= f(x∗).

In other word, the duality gap is 0. Thus x∗ and (λ∗, µ∗) are primal and dual optimal.

Theorem 2.9. Assume that the optimisation problem (MP ) is; convex and f , {gi}mi=1,
{hj}nj=1 are differentiable and convex on the open convex set. If (MP ) satisfies the
Slater’s condition, then the KKT condition are sufficient and necessary for optimality.
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3 Conic programming

3.1 Formalising a CP

We will in this section show how the idea of solving LP problems can be generalised
to solving a fairly large class of nonlinear problems. Basically we transform the poly-
hedral cone in LP to a convex cone formed by the nonlinear constraints. Note that
the nonlinear objective function is not essential, because it can be reformulated by
minimising t with an additional constraint f(x) < t where t ∈ R.

Recall that the LP problem has a linear objective function and the constraint Ax ≥ b,
which is Ax− b ≥ 0. So we have a natural ordering to get this ”≥” (component wise).
That means Ax − b is in the cone Rn+ with the natural ”≥”. Now, we will pass to
nonlinear constraints to a well-order cone, which has similar properties as Rn+. That
is, we need to find ”≥” in terms of the cone. We can now formalise a standard CP as
the following

min cTx (CP)

s.t. AxΩK b

where ΩK is ”>” or ”≥” such that it satisfies the basic properties of a standard
ordering and K ⊂ Rn is a convex cone. For it to be a standard ordering (like vector
inequality) then ΩK must satisfy

(i) reflexivity, a ≥ a
(ii) anti-symmetry, if a ≥ band b ≥ a then b = a

(iii) transitivity, if a ≥ b, b ≥ c then a ≥ c
(iv) Homogeneity, if a ≥ b then λa ≥ λb
(v) Additive, if a ≥ b, c ≥ d then a+ c ≥ b+ d.

where a, b, c, d ∈ Rm. Usually we only refer that the order is good if its inner product
satisfies (i) to (v). This is the case if the set K can be formalised such that

K := {a ∈ E : a � 0},
where E is the Euclidean space. We can now precise ΩK as the following

Ax ΩK b := {x : AxΩb, x ∈ K}.
We can now propose a proposition.

Proposition 1. If K is of good order then K must be a pointed cone, i.e.

(i) a′, a ∈ K =⇒ a+ a′ ∈ K (K is nonempty and closed under addition)

(ii) a ∈ K, λ ∈ R, λ ≥ 0, =⇒ λa ∈ K (K is a conic set)

(iii) a ∈ K, −a ∈ K =⇒ a = 0, (K is pointed)

Proof. K is clearly nonempty, just take any positive point in E. If a ≥K 0 and b ≥K 0
then a+ b ≥K 0, thus (i). The proof for (ii) is analogously to the one in (i). And we
can clearly see for (iii) that the only point that satisfies a ∈ K, −a ∈ K is 0.

We will in the next section look at some particular cones that frequently occurs in
CP .
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3.2 Some interesting cones

We will now observe some special cones; the positive orthant, the Lorentz cone and
the semi-definit cone. These cones frequently occur and they are proper cones.

Definition 3.1. (Proper cone) A cone K is a proper cone if it is convex, closed,
pointed and has a nonempty interior.

Definition 3.2. (Self dual) Let K be a nonempty subset in Rn. The K∗ is a dual
cone if

K∗ = {y : 〈x, y〉 ≥ o, for all x ∈ K}

Assume K is a nonempty convex cone. If K∗ = K then K is called self dual.

3.2.1 The positive orthant

The positive orthant is when K can be formalised as

K = Rm+ ⊂ Rn

Proposition 2. The positive orthant is a proper cone.

Proof. Since the positive orthant contains all of its line segments implies that it has
to be convex and Rm+ is clearly nonempty. The cone is closed because the boundary
is included in Rm+ and clearly is 0 the only point which satisfies −a, a ∈ Rm+ .

Proposition 3. The positive orthant is self dual.

Proof. The dual cone to K is such that

K∗ = {a : aTx ≥ 0,∀x ∈ K}.

We can clearly see that if K is the positive orthant then K∗ must be so as well.

3.2.2 Lorentz cone

The Lorentz cone (or sometimes know as the second order cone or the ice cream cone)
is the set K that can be formalised as

K = Lm =



x = (x1, ..., xm)T ∈ Rm : xm ≥

√√√√
m−1∑

i=1

x2
i





Lemma 3.1. The Lorentz cone is a proper cone

Proof. We are going to separate this proof into four stages. Whereas, in the first stage
we prove that the set is convex, in the second stage that the set is closed, the third
stage that the interior is none empty and in the fourth stage that the set is pointed.
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i) We can see that convexity follows directly from triangle inequality. For any x, y ∈ L
let

x̃ =




x1

...
xm−1


 , ỹ =




y1

...
ym−1


 .

We can now apply the triangle inequality:

||λx+ (1− λ)y||2 ≤ ||λx||2 + ||(1− λ)y||2
= λ||x̃||2 + (1− λ)||ỹ||2
≤ λxm + (1− λ)ym.

ii) L is closed because the boundary is included in L

iii) int(L)6= ∅.
We can see that (0, 0, 1) ∈ int(L), hence the interior of L cannot be empty.

iv) L is a pointed cone if L∩ (−L) = {0}, which is the case since all elements in L are
greater then or equal to zero.

Altogether gives that L is a proper cone.

Lemma 3.2. The Lorentz cone is self dual, L = L∗

Proof. We prove that L ⊆ L∗ and L∗ ⊆ L.

L ⊆ L∗:
Hence, if xiy ∈ L then Cauchys-Schwarz inequality gives

xT y = xnyn +
n∑

i=1

xiyi ≥ xnyn −

√√√√
n−1∑

i=1

x2
i

√√√√
n−1∑

i=1

y2
i ≥ 0.

The last inequality clearly holds because x, y ∈ L. This inequality tells us that

x2
n ≥

n−1∑

i=1

x2
i , −y2

n ≥
n−1∑

i=1

y2
i

xn ≥ 0, yn ≥ 0

Thus the inner product for the vector spaces are the same, i.e. if x ∈ L then x ∈
L∗ ⇐⇒ L ⊆ L∗.
L∗ ⊆ L:
Assume y ∈ L∗, i.e. yTx ≥ 0 ∀x ∈ L. If y = (y1, ..., yn−1, yn − 1) = 0, then consider
x1 = ... = xn−1 = 0 and xn = 1. Then

yTx ≥ 0 ⇐⇒ yn ≥ 0 ⇐⇒ y2
n ≥

n−1∑

i=1

y2
i ⇐⇒ y ∈ L.
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Otherwise let xn =
∑n−1
i=1 y

2
i and xi = −yi for i = 1, ...,m. Then

yTx ≥ 0 ⇐⇒ yn

√√√√
n−1∑

i=1

y2
i −

n−1∑

i=1

y2
i ≥ 0

⇐⇒ y2
n ≥

n−1∑

i=1

y2
i , yn ≥ 0 ⇐⇒ y ∈ L.

Thus the inner product for the vector spaces are the same, i.e. if y ∈ L∗ then y ∈
L ⇐⇒ L∗ ⊆ L.

3.2.3 Semi-definite cones

Let

Sn := {A ∈ Rn×n : AT = A}, (symmetric set)

Sn+ = {A ∈ Sn : A � 0} = {A ∈ Sn : xTAx ≥ 0 ∀x ∈ Rm} (positive semi-definite)

Sn++ = {A ∈ Sn+ : A � 0} (positive definite)

Clearly S+, S++ are cones. We will now define an inner product on Sn as

〈A,B〉 = Tr(AB) =
∑

i,j

Ai,jBi,j ,

which is the so-called Frobenius inner product, where Tr(·) is the the trace of the
matrix ·.
Proposition 4. Sn+ is a proper cone.

Proof. (i) Sn+ is closed and convex.

We can rewrite Sn+ as an intersection of Hx, i.e.

Sn+ = ∩
x∈Rn

{A ∈ Sn : xTAx ≥ 0} = ∩
x∈Rn

Hx

where Hx := {A ∈ Sn : xTAx ≥ 0}.

Now Hx is closed and convex. Thus must Sn+ be convex and closed as well.

(ii) Sn+ are pointed i.e. we claim that

(Sn+) ∩ (−Sn+) = {0}.

If there exists an A such that A ∈ (Sn+)∩ (−Sn+) then the eigenvalues of A must equal
zero, resulting that A = 0.

(iii) int(Sn+)=Sn++ 6= ∅
We can prove this by shoving that int(Sn+) ⊆ Sn++ and vice versa and then that there
exist an interior point in Sn++. Hence, we prove this by a matrix 2-norm.

int(Sn+) ⊆ Sn++:

Let A ∈ int(Sn+), then ∃ε > 0 (that is sufficietnly small) such that ||A−X||2 ≤ ε. This
implies that x ∈ Sn+.
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Let X = A− εI, where I is the n× n- identity matrix. We then have

||A−X||2 = ||εI||2 = ε =⇒ X = A− εI ∈ Sn+.

Since all the eigenvalues are nonnegative and the eigenvalues of A− εI are λ− ε, which
is nonnegative, where λ is the eigenvalue of A. From this it follows that

λi ≥ ε > 0,

where λi is the eigenvalue of A, i = 1, ..., n counted with multiplicities

=⇒ A ∈ Sn++.

Sn++ ⊆ int(Sn+):

Let A ∈ Sn++. Then the minimum eigenvalue of A λmin > 0. Consider the following
set

B := {M ∈ Sn : ||M −A||2 ≤ λmin

2
}.

We will show that B ⊆ Sn++ (i.e. A is interior point of Sn+). We have:

||M −A|| ≤ λmin

2
⇐⇒ |xT (M −A)x| ≤ λmin

2
, ∀x : ||x|| = 1

then

=⇒ xTMx ≥ xTAx− λmin

2
≥ λmin

2
> 0

=⇒ M ∈ Sn++ =⇒ B ⊆ Sn++

Proposition 5. Sn+ is self dual.

Proof. Sn+ is self dual, which is equivalent to Sn+ = (Sn+)∗. (Under scalar product
Tr(AB)).

Sn+ ⊆ (Sn+)∗:

Assume B ∈ Sn+, then by spectral theorem,

B =
n∑

i=1

λiviv
T
i , λi ≥ 0

and vi ⊥ vj (j 6= i), ||vi|| = 1∀i.
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Now A ∈ Sn+, i.e. all vTAv > 0 for all no zero vector v. Using the cyclic property of
the trace we have

Tr(AB) = Tr(
n∑

i=1

λiAviv
T
i ) =

n∑

i=1

Tr(λiAvi − vTi )

=
n∑

i=1

λiTr(Aviv
T
i )

=
n∑

i=1

λiTr(v
T
i Avi)

=
n∑

i=1

λiv
T
i Avi, v

T
i Avi ≥ 0

≥ 0

=⇒ A ∈ (Sn+)∗.

(Sn+)∗ ⊇ Sn+:
Assume that

B ∈ Sn : Tr(AB) > 0 ∀A ∈ Sn+.

We will now show that B ≥ 0. Take A = xxT ∀x ∈ Rn we get Tr(xxTB) = xTBx ≥
0 ∀x ∈ Rn =⇒ B ∈ Sn+.

3.3 Some common conic programs

It is clear that an LP problem is a CP since we introduce the CP by an analog of LP
where the cone K is Rn+ and the ordering is the componentwise inequality. Now we
show that there are other optimization problems.

3.3.1 Second order programming

We start with a reformulation of the QP discussed in section 2.4. Note that

Q ∈ Sn+ ⇐⇒ ∃F ∈ Rk×n such that Q = FTF

(which is of most interest when k � n. Then xTQx = ||Fx||22. Now the conic
reformulation is

min r + cTx (CPQP )

s.t. Ax = b

x ≥ 0

(1, r, F (x)) ∈ Lk+2
r

where Lk+2
r is the rotated cone defined as

Lk+2
r = {x ∈ Rk+2 : 2x1x2 ≥ x2

3 + ....+ x2
n, x1 ≥ 0, x2 ≥ 0}

x ∈ Lk+2 ⇐⇒ Tk+2x ∈ Lk+2
r
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with

Tk+2 =




1√
2

1√
2

0

1√
2
− 1√

2
0

0 0 In




The dual problem of (CPQP ) is

max bT y − u
s.t. − FT v = AT y − c+ s

s ≥ 0

(u, 1, v) ∈ Lk+2
r

Now we are in the position to justify why we had an uncommon version of the dual
to the QP earlier. In an optimal primal dual solution we have r = 1

2
Fx2. Hence, the

complementary slackness for the cone Lk+2
r demands v = Fx and −FFT v = Qx and

u = 1
2
|v|2 = 1

2
xTQx. This is why the dual has both dual and primal variables.

A second order conic problem is a conic problem for which the cone K is a direct
product of ice-cream cones:

K = Lm1 × ...× Lmk .

=



y =



y[1]
. . .
y[k]


 : y[i] ∈ Lmi , i = 1, ..., k



 .

Hence we can substitute K with Lm and we can write the data matrix as:

[Ai; bi] =

[
Di di
pTi qi

]
,

where Di is of the size of (mi − 1)× dimx. We can write this problem as

min
x
{cTx : ||Dix− di||2 ≤ pTi x− qi, i = 1, ..., k}.

Second order cone program (SOCP) is a generalisation of linear and quadratic pro-
gramming that allows affine combinations of variables to be constrained inside a special
convex set K. Wheres the set K is a second order cone whiles the constraints and the
objective are an affine combination of variables. A way to prove that Kn is a convex
set is by expressing it as the intersection of a finite or infinite number of halfspaces,
i.e.

Kn = ∩{(x, t), x ∈ Rn ×R : xTu ≤ t},

which is a cone for any z ∈ Kn if it holds that αz ∈ Kn ∀α ≥ 0.

A SOCP in standard form is

min
x∈Rn

cTx

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, ...,m.
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An equivalent form is the standard conic form

min
x∈Rn

cTx

s.t. (aix+ bi, c
T
i x+ di) ∈ Km, i = 1, ...,m.

SOCP duality

p∗ = min
x
cTx

s.t. ||Aix+ bi||2 ≤ cTi x+ di, i = 1, ...,m

we have

p∗ = min
x

max
λ≥0

cTx+
m∑

i=1

λi(||Aix+ bi||2 − cTi x− di)

= min
x

max
||ui||2≤λi, i=1,..,m

cTx+
m∑

i=1

(uTi (Aix+ bi)− λi(cTi + di))

Applying the maxmin inequality we obtain p∗ ≥ d∗

d∗ = max
||ui||2≤λi, i=1,..,m

min
x
cTx+

m∑

i=1

(uTi (Ai + bi)− λi(cTi x+ di)).

Solving x we get the dual problem, and applying Slater’s condition we get the dual
theorem.

3.3.2 Semi-definite program

A semi-definite program (SDP ) is a convex optimisation problem where the objective
is subjected to constraints, which are positive semi-definit. And, positive semi-definite
constraints implies that the symmetric matrices depends affinely on a vector of vari-
ables x ∈ Rn.

Given Fi ∈ Sm, i = 0, ..., n is a semi-definite program, we can usually reformulate to
the following:

p∗ = min
x∈Rn

cTx

s.t. F (x) � 0,

where F (x) = F0 +
∑n
i=1 xiFi, F (x) � 0 iff λmin(F (x)) ≥ 0.

If p∗ and d∗ are attained, we say that the Lagrangian formula L has a saddle point at
the primal and dual, which we denote as (x∗, λ∗, v∗).

We will use the letters A,B etc. to indicate that it is a linear mapping.

Hence, a semi-definite program is usually written:

min
x
{cTx : Ax−B ≥Sm

+
0}.
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We note that

Ax =
n∑

j=1

xjAj , x = (x1, ..., xn)T ∈ Rn

min
x
{cTx : x1A1 + ...+ xnAn −B � 0}.

The dual of the semidefinit program is

max
Λ
{〈B,Λ〉 ≡ Tr(BΛ) : Tr(AiΛ) = ci i = 1, ..., n; Λ � 0}.

For us to apply strong duality the program has to be positive definite, which it is
when

〈Λ,Ax−B〉 = 0.
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4 Robust linear programming

4.1 Defining Robust linear programming

We will in a similar manner as described in [4] go through how we can define a robust
linear program, RLP . As the name hints, robust programming is a method where
we analyse how to make the problem robust against uncertainty, i.e. we bound our
data within a set such that the perturbation is within this set. Without taking the
perturbation into account, then one can get a direct contradicting solution. We can
illustrate this with an example:
A drunk person tries to walk home in the middle of the highway, will he get home
safely? Our nominal values would indicate that there exits a narrow path that could
allow him to get home safely. However, taking the perturbation in account, then he
or she would most likely not be able to maintain to walk on the straight narrow path.
Thus, our nominal values indicates that he or she will get home safely whiles when
we take perturbation in account then he or she will not get home safely. This is a
silly example, but it still emphasises that a rather small perturbations can have a big
impact on the solution.

Lets now reformulate our original LP problem such that every variable is a function
of an uncertainty U , i.e.

{
min
x
{cTx+ d : Ax ≤ b}

}
(c,d,A,b)∈U

(ULP)

where U ⊂ R(m+1)×(n+1). We now want to show how the robust counterpart can be
computationally tractable if we make mild convexity and compatibility assumptions
for the uncertainty set U . As a start we can can formulate our uncertainty set U as a
sum of the nominal values and their respective perturbation. Hence,

U =

{
(cT , d, A, b) = (cT0 , d0, A0, b0) +

L∑

l=1

ζl(c
T
l , dl, Al, bl) : ζ ∈ Z ⊂ RL

}
.

Where Z is our perturbation set, and index zero indicates that it is our nominal
value and ζ is our perturbation vector. Thus, our solution will be robust feasible if it
satisfies

Ax ≤ b ∀(c, d, A, b) ∈ U .

We now want to give a definition for the robust value, so that we can formalise the
robust counterpart. If we denote the robust value as ĉ(x) for a feasible solution x,
then we can give the following definition.

Definition 4.1. If ĉ(x) is the uncertain value of c(x) for an uncertain linear program
then we can ensure robustness by taking the largest value that cTx + d can take over
all the realisations of the data in the uncertainty set, i.e.

ĉ(x) = sup
(c,d,A,b)∈U

[cTx+ d].

We can formulate the robust counterpart, which is equivalent to the uncertain LP

min
x,t

{
t : cTx− t ≤ −d, Ax ≤ b, ∀(c, d, A, b) ∈ U

}
. (RC)
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If we now look at two cases; (i) where the objective is certain but the data remains
uncertain, and (ii) where the objective is uncertain but the data is certain.

(i) Assuming that we have a certain objective then we can rewrite our robust coun-
terpart:

min
x
{cTx+ d : Ax ≤ b, ∀(A, b) ∈ U . (RC)

We can now replace all of its original constraints with its robust counterparts. We do
this by extending the uncertainty set U to Û , where Û is a direct product of all the
robust counterparts Ui. Hence, we project our uncertainty set U onto our data space.
This leaves us with

(Ax)i ≤ bi ⇐⇒ aTi x ≤ bi, ∀[ai; bi] ∈ Ui
Ui = {[ai; bi] : [A, b] ∈ U
Û = U1 × ...× Un.

Notice that we can extend Ui to its convex hull, because if x is a robust feasible solution
then it will remain feasible if we do this extension. If [ai; bi] ∈ conv(Ui:

[ai; bi] =
J∑

j=1

λj [a
j
i ; b

j
i ]

=⇒ aTi x =
J∑

j=1

λj [a
j
i ]
Tx ≤

∑

j

λjb
j
i = bi

where [aji ; b
j
i ] ∈ Ui, λ ≥ 0 such that

∑
j λj = 1. By similar argument will x remain

robust feasible if we extend to its closure set. Hence, if we have a certain objective
function then we can extend U to its convex and closed robust counterpart. Thus we
can rewrite Ui to the following

Ui := {[ai; bi] = [a0
i ; b

0
i ] +

L∑

l=1

ζl[a
l
i; b

l
i] : ζ ∈ Zi}

U = {[a; b] = [a0; b0] +
L∑

l=1

ζl[a
l; bl] : ζ ∈ Z},

where Z is a closed convex perturbation set. Thus, all a and b that fulfill the uncer-
tainty requirements must give a tractable representation of the robust counterpart.
Lets now observe how we can reformulate our robust counterpart given some popular
uncertainty sets Z.

4.2 Tractable under ellipsoid uncertainty

Assuming that our objective function is certain, we can then formulate our uncertainty
set so that it is an ellipsoid. However, this is equivalent to a ball, by the same reasoning
as before. Thus, we assume that the uncertainty set is a ball with a radius of Ω and
that it is centered at the origin, i.e.

Z = ZE = {ζ ∈ RL : ||ζ||2 ≤ Ω}.
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Now, for an uncertain LP we have for any x ∈ Rn the following must hold

L∑

l=1

(ζla
l)x+ [a0]Tx ≤

L∑

l=1

(ζlb
l) + b0

L∑

l=1

(ζl(a
l)x+ bl) ≤ b0 − [a0]Tx.

In the last step we gathered all of our uncertainty vectors on the left side and the
certain values on the right side. Notice that b−ATx is an upper bound, which means
that the maximum value of left side will still be less than or equal to the value on the
right side. Thus, we substitute our left side with its maximum.

max
||ζ||2≤Ω

{
L∑

l=1

ζl(a
l)x+ bl)} ≤ b− [a0]Tx

⇐⇒ Ω

√√√√
L∑

l=1

((al)x+ bl)2 ≤ b0 − [a0]Tx

⇐⇒ w ≤ b0 − [a0]Tx

We substituted the greatest value with w. Since our sets consists of closed and convex
sets means that we can freely apply strong duality. Hence,

min
λ∈RL

{wTλ : λ = (
L∑

l=1

al)x− b, λ ≥ 0} ≤ b0 − [a0]Tx

We can now formalise our robust counterpart to our uncertain LP

min
x∈Rn, λ∈RL

cTx (RCLP)

s.t. wTλi ≤ bi − aTi x
λi = ATi x− bi
λi ≥ 0,

wheres the number of decision variables is n + mL and the number of constraints is
(1 + k + 1)m. This is clearly a SOCP problem, hence if we have a certain objective
function and an uncertainty set of an ellipsoid then we can transform our uncertain
LP to a SOCP problem.
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5 Robust programming applied to 2-person games

5.1 Formalising a bimatrix game

As the name might suggest we call it a bimatrix game, because it consists of two players
and we can represent the players payoffs in a matrix. When we formalise such a game
we first need to find out what pure strategies each player has access too, by ”pure”
we emphasise that the strategy is strict. For example under z circumstance player I
will make the move q. Thus, we can form two strategy sets of the available strategy
for respective player, call them S and T . When a strategy is presented against an
opponents strategy this result is a payoff to the respective player. Hence, if we assume
that S consists of m strategies and T of n strategies then we can formalise both players
payoffs as n×m matrices. We can now present this in mathematical terms

Player I Player II

Payoff: A =



a(s1,t1) ... a(s1,tn)

... ... ...
a(sn,t1) ... a(sn,tm)


 Payoff: B =



b(s1,t1) ... b(s1,tn)

... ... ...
b(sn,t1) ... b(sn,tm)




Strategy set: S Strategy set: T

strategy: si Strategy: ti

We can denote this game, G, as the set of (A,B, S, T ). The above is a pure strategy
game, but we can generalize it into a mixed strategy game by introducing two proba-
bility vectors x and y that determines the likelihood that a player chooses each pure
strategy. Notice, that in a pure strategy game x and y must then be ei and ej , i.e.
where ei denotes unit vector and the index denotes the position of the unit. Thus, we
can formalize the expected payoff in a general mixed strategy game in the following
manner

n∑

i=1

xi = 1,
m∑

j=1

yj = 1, xi, i = 1, ..., n, yj ≥ 0, j = 1, ...,m

w1 = xTAy, w2 = xTBy,

where w1 and w2 denotes the value of the expected payoff for respective player.
We can make our denotation of game G a bit more informative by setting it as
(A,B, S, T,X, Y ), however out of convention will we be referring a bimatrix game as
(A,B). Out of convention we are going to let 4m and 4n denote the m-dimensional
and n-dimensional mixed strategies, i.e. the simplices

4m = {x ∈ Rm : xi ≥ 0, ∀i
m∑

i=1

xi = 1}

4n = {y ∈ Rn : yi ≥ 0,∀i
n∑

i=1

yi = 1}.

Thus, a strategy in the strategy space can be written as (x, y) ∈ 4m ×4n.
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We now want to write a definition for a Nash equilibrium, which is a mixed strategy
pair (x∗, y∗) that no players has any motives to alternate from. Formally, we can write
this as the following definition.

Definition 5.1. A Nash equilibrium is the saddle point (x∗, y∗) for the bimatrix game
(A,B) if and only if it satisfies

x∗TAy∗ ≥ xTAy∗ ∀x ∈ 4m,
x∗TBy∗ ≥ x∗TBy ∀y ∈ 4n.

From this the following theorem holds.

Theorem 5.1. (Nash’s existence theorem) Every bimatrix game (A,B) where each
player can choose from a finite amount of pure strategies has at least one Nash equi-
librium.

We can prove this with Brouwer’s theorem as they have done in [15] and [17].

Theorem 5.2. (Brouwer’s theorem) Let T be a continuous function that maps a
compact convex set S ⊂ Rn to itself. Then there is a point x ∈ S such that T (x) = x,
i.e. there is a fixed point in the set.

Proof. (Of theorem 5.1) Let x and y be any pair of mixed strategies for the bimatrix
game (A,B). We can denote Ai,. as the ith row of A and B.,j as the j-th column of B.
We can now define the maximum perturbation between our optimal solution and our
maximal aggravation and denote them as ci for player I and dj for player II. Hence,
we make the following definitions

ci := max{Ai,.y − xTAy, 0}, 1 ≤ i ≤ m
dj := max{xTB.,j − xTAy, 0}, 1 ≤ j ≤ n

x′i =
xi + ci

1 +
∑m
k=1 ck

, 1 ≤ i ≤ m

y′j =
yj + dj

1 +
∑n
l=1 dl

, 1 ≤ j ≤ n.

We can see this as a mapping, i.e. T (x, y) = (x′, y′). We now claim that T is a
continuous map that maps the set of all the mixed strategies to itself, i.e. 4n ×4m
to itself.

i)
m∑

i=1

x′i =
1

1 +
∑m
k=1 ck

(
m∑

i=1

xi +
m∑

i=1

ci) = 1

Likewise,
n∑

j=1

y′j = 1.

(ii)x′j ≥ 0 ∀j = 1, ..., n and y′i ≥ 0 ∀i = 1, ...,m

because ci ≥ 0 and dj ≥ 0 by definition.

Thus the strategy space must be the Cartesian product 4n × 4m which must be
convex and compact since4n and4m are convex and compact. This means T satisfies
the conclusion of Brouwer’s fixed point theorem, hence T has a fixed point (x, y) ∈
4n ×4m. That is, T (x, y) = (x, y) or equivalently (x′, y′) = (x, y).
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Next we will show that a point satisfies T if and only if it is a Nash equilibrium. We
will show this from player ones perspective, since the proof is analogue for the second
player, i.e. we can do the same for dj . So we will have two case

(1) ci = 0 and di = 0

(2) ci > 0 or dj > 0.

For (1) we have that x′i = xi and that y′j = yj , hence T is satisfied. We also have that
this is a Nash equilibrium, since for a Nash equilibrium to be true for player one we
have

xTAy ≥ eTi Ay = Ai,.y,

which is only true when for all i ci = 0. We can in a similar manner show that for it to
be Nash equilibrium for the second player then for all j dj = 0, hence (1) implies that
it is a Nash equilibrium. Obviously, we then have that (2) implies that it is not an
Nash equilibrium. Hence, there exists an index such that Ap,.y > xTAy and xp > 0.
But, since xTAy is the weighted average of {Ai,.y}mi=1 then this would imply

x′p =
xp

1 +
∑m
k=1 ck

< xp =⇒ x′ 6= x,

which does not satisfy T . Thus the only point that satisfies Brouwer’s theorem is the
Nash equilibrium, which proves the theorem.

We have now showed that every bimatrix game (A,B) has a Nash equilibrium, we will
now show a theorem that gives more information about this equilibrium.

5.2 Zero sum games

A zero sum game is when a players outcome is directly inclined with the other play-
ers loss, hence referring to our previous denotation of the payoff matrices we would
have

A+B = 0.

As we showed in theorem 5.1, there is at least one equilibrium in such a game. We will
now show that we can transform such a problem into a LP problem. Now we claim
that in a zero sum game both players opt to go for a strategy that minimizes their
respective worst expected payoff. Why? This is best illustrated in a example:

(
4 6 8 10 15
9 7 3 0 −2

)
(Example 1)

We can easily see in this example that the column player could be tempted to maximise
her payoff by choosing column five, but then the row player can easily retaliate by
choosing row two. Observe, that this follows analogously as the primal and dual of a
LP , i.e.

min cT y max xT b

s.t. Ay ≥ b, y ≥ 0 s.t. xTA ≤ c, x ≥ 0

where b = (11, ..., 1m)T and c = (11, .., 1n)T . We will now show that we can refine this
formulation by the minmax theorem.
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Theorem 5.3. (Minmax) For any m × n matrix A, the minmax over all strategies
equals the maximimum, i.e.

max
x

min
y
xTAy = min

x
max
y
xTAy

This equality is the value of the game. If the maximum on the left is attained at y∗

and the minimum on the right is attained at x∗ then those strategies are optimal and
will yield a saddle point from which nobody wants to alternate from. Hence, (x∗, y∗)
is a Nash equilibrium that must abide the following relation

x∗TAy ≤ x∗TAy∗ ≤ xTAy∗, for ∀x, y.

Proof. Since the zero sum game is a LP problem with convex sets means that we
can freely use the dual theorem. This means that there exits an optimal probability
vectors such that

cTx∗ = y∗T b.

Since c and b are only ones and zeros this implies that there is a saddle point S such
that ∑

x∗i =
∑

y∗i = S.

For this to be equal to a normal mixed strategy set, i.e. the sum of probabilities
needs to equal one, we can divide both sides by S and and receive the optimal mixed
strategies

x∗

S
=
y∗

S
= 1.

If we now observe for any other strategies x y we have

Ax∗ ≥ b y∗A ≤ cT

=⇒ yAx∗ ≥ yb =⇒ y∗Ax ≤ cTx
⇐⇒ yAx∗ ≥ 1 ⇐⇒ y∗Ax ≤ 1

The last equivalency holds because every mixed strategy sum is equal to one. Thus
we get the following expression

y∗Ax ≤1 ≤ yAx∗

=⇒ y∗Ax

S
≤ 1

S
≤ yAx∗

S
.

The last expression tells us that if a player were to use the optimal mixed strategy,
i.e. y∗/S or x∗/S, then they can ensure that their opponent can maximum win or lose
1/S. Hence, we get a saddle point 1/S if a player use a maxmin strategy.

We can now apply the minmax theorem in order to solve our previous example.

The optimal strategy for row player is (
3

5
,

2

5
)T . Clearly both y∗1 = (

1

2
, 0,

1

2
, 0, 0)T and

y∗2 = (
2

3
, 0, 0,

1

3
, 0)T are optimal for the column player. By convexity any point in R5

between these two vectors is an optimal solution, i.e. x∗ = λx∗1 + (1 − λ)x∗2, ∀λ ∈
[0, 1].
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The optimal solution (x∗, y∗) to this pair of LP problems obtains the optimal strategy

for Y player (column player)
x∗

Φ
and the optimal strategy for X player (row player)

y∗

Φ
, where Φ =

∑n
i=1 x

∗
i =

∑m
i=1 y

∗
i . Note that optimal (mixed strategies) are not

unique.

5.3 Bimatrix game as a quadratic programming SDP re-
laxation approach

In this subsection we will first show that a bimatrix game can be formulated as a
quadratic program following [1].

We will now show that the Nash equilibrium can be written as a solution to a quadratic
problem, we start by claiming that

(x∗, y∗) ∈ 4m ×4n is a Nash equilibrium for game (A,B) iff

x∗Ay∗ ≥ eTi Ay∗, 1 ≤ i ≤ m
x∗By∗ ≥ (x∗)TAei, 1 ≤ i ≤ n

Proof. The interpretation of this is that there always exists an optimal pure strategy
response to a an optimal mixed strategy. Notice that the optimal payoff to a mixed
strategy is a convex combination of pure strategies. Then by Brouwer’s theorem, as
previously stated, there always exists a pure strategy which is a best response to the
other player’s strategy.

We can now prove our previous statement and reformulate it to a QP

min 0

s.t. xTAy ≥ eTi Ay, 1 ≤ i ≤ m
xTBy ≥ xTBej 1 ≤ j ≤ n
xi ≥ 0, yi ≥ 0, ∀n ≤ m, 1 ≤ j ≤ n
m∑

i=1

xi = 1
n∑

j=1

yj = 1.

This can be solved by SDP relaxation, if we let

M :=

(
X P
Z Y

)
M′ :=


 M

x
y

xT yT 1




with X ∈ Sm×m (all m ×m symmetric matrices), Z ∈ Rn×m, Y ∈ Sn×n (all n × n
symmetric matrices), P = ZT , x ∈ Rm, y ∈ Rn. Then the QP can be reformulated
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to

min
M′∈S(m+n+1)(m+n+1)

0

s.t. Tr(Az) ≥ eTi Ay ∀1 ≤ i ≤ m
Tr(Bz) ≥ xTAej ∀1 ≤ j ≤ n
m∑

i=1

xi = 1,
n∑

j=1

yj = 1

M′ � 0,M′m+n+1,m+n+1 = 1 � 0�

We can without loss of generality assume that all the entries in A and B are between
zero and one, because Nash equlibria are invariant under certain affine transformations
in the payoff.

Examples of some bimatrix games:

1. Example for transform any pair of A, B to the pair that has elements bounded by
0 and 1:

A =

(
1 −3
−1 −2

)
B =

(
1 3
2 −4

)

First we convert them to have positive elements add 3I to A:

=⇒ A+ 3I =

(
4 0
2 1

)
then we divide it by 4 (so the maximum is 1)

1

4
(A+ 3τ) =

(
1 0
1

2

1

4

)

Similarly

B + 4I =

(
5 7
6 0

)
thus we need to divide it by 7:

1

7
(B + 4τ) =




5

7
1

6

7
0




so we can choose c =
1

4
≥ 0, d =

3

4
, e =

1

7
≥ 0, f =

1

7
.

where I is the identity matrix.

2. In the case of the condition (x∗, y∗) is a Nash equilibrium if and only if

x∗TAy∗ ≥ eTi Ay∗ ∀i and x∗TBy∗ ≥ x∗TBej ∀j

For the game given by A, B with our previous example our optimal solution

x∗ = (
3

4
,

1

4
)T , y∗ = (

2

3
,

2

3
)T

is a Nash equilibrium because

x∗T )Ay∗ = −5

3
, Ay∗ = (−5

3
,−5

3
)T so

x∗TAy∗ = eT1 Ay
∗ = eT2 Ay

∗ = −5

3
our expected payoff
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and

x∗TBy∗ =
5

4
, x∗TB = (

5

4
,−5

4
) so

x∗TBy∗ = eTi Be1 = x∗TBe2 =
5

4

3. Non unique solution

A =

(
6 3
1 5

)
B =

(
5 3
1 6

)

We then get the optimal strategies

x∗ = (
5

7
,

3

7
), y∗ = (

3

7
,

5

7
)

(x∗, y∗) is a Nash equilibrium since

x∗Ay∗ =
27

7
and Ay∗ = (

27

7
,

27

7
)T =⇒ x∗TAy∗ ≥ eT1 Ay∗ = eT2 Ay

∗

x∗TBy∗ =
27

7
and x∗B = (

27

7
,

27

7
) =⇒ x∗TBy∗ ≥ x∗TBej j = 1, 2.

Hence we can see that both of the players expected payoff from their respective optimal
strategy gives the same value, i.e.

EPx = EPy =
27

7
.

Note also that if x∗ = (1, 0)T , y∗ = (0, 1)T then (x∗, y∗) is also a Nash equilib-
rium

x∗TAy∗ = 5

x∗TBy∗ = 6

and x∗ = (1, 0)T , y∗ = (0, 1)T also give a Nash equilibrium with the expected payoff 6
and 5 respectively. If we denote the three pairs in the order they come as P1, P2, P3.
Then we see that P1 is a mixed strategy and P2 and P3 are pure strategies.

This example also shows that (x∗, y∗) obtained from solving:

min
y
x∗TAy = max

x
min
y
xTAy

max
y

xTAy∗ = max
y

min
x
xTBy

4.

A =




3 2 1
3 3 1
1 1 2
3 3 2
3 2 3



B =




2 3 1
2 2 2
3 3 1
2 1 1
3 1 1
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Nash equilibrium’s

X player EP Y player EP

1. (0, 1, 0, 0, 0) = 3 (1, 0, 0) = 2

2. (0, 1, 0, 0, 0) = 3 (0, 1, 0) = 2

3. (
1

2
, 0, 0,

1

2
, 0) = 3 (1, 0, 0) = 2

4. (0, 0, 0, 1, 0) = 3 (1, 0, 0) = 2

5. (
2

3
, 0, 0, 0,

1

3
) = 3 (1, 0, 0) =

7

3

6. (0, 0, 0, 0, 1) = 3 (1, 0, 0) = 3

5.4 Robust bimatrix games

In this section we show how a bimatrix game with uncertainty can be solved. The
problem is

min max
y∈4m Ã∈DA,z̃∈zu

yT Ãz̃ ((PA))

min max
z∈4n, B̃∈DB , ỹ∈Y u

ỹT B̃z ((PB))

we deal with the following uncertainty types;
(i) the payoffs are uncertain
(ii) the opponent’s strategy is uncertain.

The uncertainty in these two types of the problems will be formulated as box and
ellipsoid uncertainty, which will be described soon.

5.4.1 Uncertain payoffs

Now the game problem is the pair of optimisation problems

min max
y∈4m Ã∈DA

yT Ãz

min max
z∈4n B̃∈DB

yT B̃z

Our goal is to determine the uncertainty sets DA and DB so that our problem becomes
tractable, as described in section 4. To this and we consider two different sets of
uncertainty payoffs.

(a) Box Uncertainty:

DA = {Ã : Ã = A+M, −M ≤M ≤M} =: DB
A

DB = {B̃ : B̃ = B +N, −N ≤ N ≤ N} =: DB
B

where M, M, N, N ∈ Rm×n have nonnegative components. This uncertainty is called
box uncertainty.
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(b) Ellipsoid uncertainty

DE
A = D1

A × · · · ×Dn
A

DE
B = Di

B × · · · ×Dm
B

Di
A = {Acj +Rj(4pj) : ||4pj || ≤ Γj}, j = 1, ..., n,

where Acj is the j-th column of A, j = 1, ..., n and Rj are m × Lj matrices, 4pj =

(4p1
j , ...,4p

Lj

j )T ∈ RLj . We consider payoff uncertainty for DW
B similarly

Di
B = {Bri + (Si4qi)T : ||4qi|| ≤ Ωi}, i = 1, ...,m,

where Si are n×Ki matrices, 4qi = (4q1
i , ...,4qKi

i ) ∈ RKi and Bri is the i-th row of
B, i = 1, ...,m.

Note that Γj and Ωi are parameters controlling the robustness and optimality. This
uncertainty is called ellipsoidal uncertainty, since if Lj = Ωi = 1 for all i and j, all
Lj = n, j = 1, ..., n, Ki = m, i = 1, ...,m, then Di

A, Di
B are the standard ellipsoid

uncertainty sets in section 4.

Now we study the box uncertainty for player with the payoff Ã ∈ DB
A in detail. The

first task is to solve the inner maximisation of yT Ãz for Ã ∈ DB
A . That is

max
−M≤MM

yT (A+M)z = yT (A+M)z.

So we obtain the following minimisation problem over y:

min
y
yT (A+M)z

s.t. y ≥ 0,
m∑

i=1

yi = 1.

Let now 1m = (1, ..., 1)T ∈ Rm. Then
∑m
i=1 yi = 1 is equivalently to 1

T
my = 1. Let

further f(y) = yT (A + M)z. Since this is an LP problem, the KKT conditions are
necessary and sufficient for optimum. Thus, we can use the KKT conditions to solve
the problem. The KKT conditions are

(i)∇[f(y) + (−λ)T y + α(
m∑

i=1

yi − 1) = 0]

(ii)y ≥ 0,
m∑

i=1

yi = 1

(iii)λ ∈ Rm+ , α ∈ R

(iv)λiyi = 0, i = 1, ...,m.

Explicitly (i) is λ = (A+M)z + α1m ≥ 0 since (iii) holds.
Hence the KKT conditions can be stated as

y ∈ Rm+ ,
y ⊥ (A+M)z + α1m ∈ Rm+ ,
1
T
my = 1.
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Similarly, we can solve the problem for the player with payoff B̃, that is the KKT
conditions can be rephrase as

z ∈ Rn+, z ⊥ (B +N)T y + 1nβ ∈ Rn+ and

1
T
nz = 1.

Now we can solve the bimatrix game with box uncertainty payoff by solving x =
(yT , zT , α, η)T ∈ Rm+ × Rn+ × R × R, Gx ∈ Rm+n

+ , Hx ∈ Rm+n
+ and Gx ⊥ Hx,

Cx = d.

G =

(
Im 0 0 0
0 In 0 0

)
, H =

(
0 A+M 1n 0

BT +N
T

0 0 1m

)

C =

(
1
T
m 0 0 0
0 1

T
n 0 0

)
, d =

(
1
1

)
.

Next we turn to the game with ellipsoid uncertainty payoff. As in the previous situation
we solve the inner maximisation problem. By definition of the set DE

A we have

min max
y∈4n Ã∈DE

A

yT Ãz. (PEI )

max
Ã∈DE

A

yT Ãz = yTAz + max
||4pj ||≤Γj 1≤j≤n

n∑

j=1

zjy
TRj(4pj)

= yTAz +
n∑

j=1

zjΓj ||RTj y||

because yTR(4pj) = (RT y)T (4pj) ≤ ||RT y||||4pj ||4pj || ≤ Γj ||RTj y|| using the
Cauchy-Schwarz inequality and matrix computation. Hence, (PEI ) is reduced to

min
y
yTAz +

n∑

j=1

zjΓj ||RTj y||2 (PEI′ )

s.t. y ≥ 0,1Tmy = 1.

Similarly we get an optimisation problem for the player with payoff B̃

min
z
yTBz +

m∑

i=1

yiΩi||STi z|| (PEII′)

s.t. z ≥ 0, 1Tn = 1.

Solving (PI′)
E and (PII′)

E for y and z simultaneously we obtain optimal strategy
for the bimatrix game with ellipsoid uncertainty payoffs. These are SOCP problem.
These problems can be solved by the KKT conditions. The KKT conditions for (PEI′ )
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are

(i)Rm 3 y ≥ o,1T y = 1

(ii)λy ∈ Rm+ , µ ∈ R

(iii)λyi yi = 0 ∀i = 1, ...,m

µ(1Tmy − 1) = 0

(iv)∇y((Az)T y +
m∑

j=1

zjΓj ||RTj y||2 − λT y + µ(IITmy − 1) = 0

(iv) can explicitly be formulated as

(Az)T + µ1Tm − λT +
m∑

j=1

zjΓj
(RjR

T
j y)T

||RTj y||2
= 0

⇐⇒ Az + µ1m − λ+
m∑

j=1

zjΓjRjR
T
j y

||RTj y||2
= 0.

Let

uj = −zjΓjRjR
T
j y

||RTj y||2
.

Then

λ = Az + µ1m −
m∑

j=1

Rjuj ≥ 0 and λ ⊥ y.

⇐⇒ Rn+ 3 y ⊥ Az + µ1m −
m∑

j=1

Rjuj ∈ Rm+ .

Let γj = ||RTj y||. Then

uTj R
T
j y + Γjzj γ̇j = −zjΓj ||RTj y||+ Γjzj ||RTj y||.

Note also that ||uj ||2 = zjΓj . So we have

LLj+1 3
(
uj
Γzj

)
⊥
(
RTj y
γj

)
∈ LLj+1

Analogy the KKT condition for player with B̃ are

LKi+1 3
(

ti
Ωiyi

)
⊥
(
STi z
σi

)
∈ LKi+1, i = 1, ..., n

Rn+ 3 z ⊥ BT y + 1nη −
m∑

i=1

Siti ∈ Rn+, 1Tnz = 1.

Note that the unknowns are y, z, u1, ..., un, t1, ..., tm, γ1, ..., γn, σ1, ..., σm, ξ, η.
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5.4.2 Bimatrix game with opponent’s uncertainty

Now we discuss the optimisation problem

min max
y∈4m z̃∈Z

yTAz̃

min max
z∈4n ỹ∈Y

ỹTAz.

Here we also consider box and ellipsoid uncertainty where u, u ≥ 0. But we have to
make sure that z̃ ≥ 0,

∑n
i=1 z̃i = 1. To this end we need one more constraint on u,

that is
∑n
i=1 ui = 0. So,

ZB = {z̃ : z̃ = z + u,−u ≤ u ≤ u,
n∑

i=1

ui = 0}.

Now define the uncertainty set

U := {u : −u ≤ u ≤ u,
n∑

i=1

ui = 0}.

So

max
z̃∈ZB

yTAz̃ = max
u∈U

yTA(z + u)

= yTAz + max
u∈U

yTAu.

This implies that we can formulate Iu under box uncertainty to a LP problem

max (AT y)Tu (P0)

s.t. − u ≤ u ≤ u,
n∑

i=1

ui = 0 ⇐⇒ 1
T
nu = 0, 1Tn = (1, ..., 1) ∈ Rn.

Next is to find its dual problem. Note that

{
min cTx

s.t. Ax = b, x ≥ 0
(P)

{
max yT b

s.t. AT y ≤ c (D)

are a pair of dual problems. We can reformulate (Po) as

max (AT y)Tu

s.t. u ≤ u
− u ≤ u
1
T
nu ≤ 0

− 1
T
nu ≤ −0
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We can see that the constraints are equivalent to




I
−I
1
T
n

1
T
n


u ≤




u
−u
0
0




This is the form on (D). So the dual of it is

min
r1,r2,c1,c2

(uT , uT , 0, 0)




r1

r2

c1
c2


 = uT r1 + uT r2

s.t. (I,−I,1n,−1n)




r1

r2

c1
c2


 = AT y

r1 ≥ 0, r2 ≥ 0 r1, r2 ∈ Rn

c1 ≥ 0, c2 c1, c2 ∈ R

And this is equivalent to

min
r1,r2,c1,c2

uT r1 + uT r2

s.t. r1 − r2 + c11n − c21n = AT y

r1 ≥ 0, r2 ≥ 0

c1, c2 ≥ 0

Set α := c1 − c2 we obtain (note that α is sign unconstrained)

⇐⇒ min uT r1 + uT r2

s.t. r1 − r2 + α1n = AT y

r1 ≥ 0, r2 ≥ 0.

Since the game is finite by duality theorem for LP

max
u∈U

yTAu = min
r1,r2,α

{uT r1 + uT r2 : r1 − r2 + α1n = AT y, r1, r2 ≥ 0}

Substitute this to (IB)

min max
y∈4mz̃∈ZB

yTAz̃ = min max
y∈4m u∈U

yTA(z + u)

= min
y∈4m

(yTAz + max
u∈U

yTAu)

= min
y∈4m

yTAz + uT r1 + uT r2

s.t. r1 − r2 + α1n = AT y

r1, r2 ≥ 0.
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Thus we can rewrite IB
′

to the following

min
r1,r2,y,u

yTAz + uT r1 + uT r2 ((IB
′
))

s.t. r1 − r2 + α1n = AT y

r1 ≥ 0, r2 ≥ 0

y ≥ 0, 1Tmy = 1.

Player II in similar manner we get

min
z,t1,t2,p

yTBz + rT t1 + UT t2 ((IIB
′
))

s.t. t1 − t2 + β1m = Bz

t1 ≥ 0, t2 ≥ 0

z ≥ 0,1Tnz = 1.

So if we solve these two problems we get y and z.

Now we work out the KKT conditions for the linear programming problem from box
uncertainty zB , yB . For player I introduce Lagrange multiplies λ3 ∈ Rm+ , λ1, λ2 ∈ Rn+,
µ ∈ Rn, µ0 ∈ R. Then the Lagrange function is

f(y, r1, r2, α) = zTAT y + uT r1 + uT r2 + µ(1nα+ r1 − r2 −AT y) + µ0(1Tmy − 1)− λT1 r1 − λT2 r2 − λT3 y.

Then the KKT conditions are

(i)λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0

(ii) r1 ≥ 0, r2 ≥ 0, y ≥ 0, 1Tmy = 1, 1nα+ r1 − r2 −AT y = 0

(iii) ∇ f
(y,r1,r2,α)

= 0, i.e.

(zTAT − µTAT + µ01
T
m − λT3 , uT + µT − λT1 , yT − µT − λT2 , µT1n) = 0

⇐⇒

(iii′)λ3 = Az −Aµ+ 1mµ0, µ
T
1n = 0

λ1 = u+ µ, λ2 = u− µ

(iv)µi(1nα+ r1 − r2 −AT y)i = 0, ∀i = 1, ..., n

µ0(1Tmy − 1) = 0

λ1,ir1,i = 0, λ2,ir2,i = 0, i = 1, ..., n, λ3,iyi = 0, i = 1, ...,m
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Simplifying the conditions further we get Az − Aµ + 1mµ0 ∈ Rm+ (since λ3 ≥ 0) it is
orthogonal to y ∈ Rm+ (by (iv) and (ii)), which is

Rm+ 3 y ⊥ Az −Aµ+ 1mµ0 ∈ Rm+
rn+ 3 r1 ⊥ λ1 ∈ Rn+, Rn+ 3 r2 ⊥ λ2 ∈ Rn+ (by (iv), (i), (ii))

1nα+ r1 − r2 = AT y, 1Tmy = 1, (by (iii′))

u = λ1 − µ, u = λ2 + µ (by (iii))

We similarly have

Rn+ 3 z ⊥ BT y −BT y −BTω + 1nη ∈ Rn+
Rm+ 3 t1 ⊥ v1 ∈ Rm+ , Rm+ 3 t2 ⊥ v2 ∈ Rm+

1mB + t1 − t2 = Bz, 1Tnω = 0, v = v1 − ω, v = v2 + ω.

(b) Ellipsoid uncertainty. Now we investigate a solution method for ellipsoid uncer-
tainty in the opponent’s strategy. Let z be a nominal value and the center of the
ellipsoid. Then the uncertainty is the form

z +
n∑

i=1

z̃i = 1 and z̃i ≥ 0, i = 1, ...n or 1Tn z̃i = 0.

which can be guaranteed if

1
T
n (

K∑

k=1

(4dk)zk) = 0 and z + (
K∑

k=1

(4dk)zk) = 0.

Here we have the uncertainty strategy set

ZE := {z +
K∑

k=1

(4dk)zk : 1Tn (
K∑

k=1

(4dk)zk) = 0, z +
K∑

k=1

(4dk)zk ≥ 0, ||4d||2 ≤ 1}.

Recall the player I’s task:

min max
y∈4m, z̃∈ZE

yTAz̃ (IE)

we first work out max
z̃∈ZE

yTAz̃ for a fixed y. Since

yTAz̃ = yTA(z +
K∑

k=1

(4dk)zk) = yTAz + yTA(
K∑

k=1

(4dk)zk)

maximising it over ZE is equal to

max yTA(
K∑

k=1

(4dk)zk

s.t. 1Tn (
K∑

k=1

(4dk)zk) = 0, z +
K∑

k=1

(4dk)zk ≥ 0, ||4d||2 ≤ 1.
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Assume the existence of the Slater’s point then the strong duality holds. We have
learned that the dual problem is nicer, so we try to solve this problem. By standard
techniques, we get the dual problem as follows:

Change to min−yTA∑(4dk)zk

Introduce Lagrange multiplier λ1 ∈ Rn+, λ2 ∈ R+, µ ∈ R.

Construct the Lagrangian function and minimize it over 4d, i.e.

min
4d
− yTA

K∑

k=1

(4dk)zk + µ1Tn (
K∑

k=1

(4dk)zk)− λT1 (z +
k∑

k=1

(4dk)zk) + λ2(||4d||2 − 1).

The optimality conditions gives

−yTAzk + µ1Tnz
k − λT1 zk +

λ24dk
||4d||2

= 0, 1e = 1, ...,K

⇐⇒ −yTAzk + µ1Tnz
k − λ1z

k = −λ24d2

||4d||
plugging this into the lagrangian function gives

min
K∑

k=1

−λ24dk
||4d||2

· 4dk − λT1 Z + λ2||4d||2 − λ2

=− λ2||4d||2 − λT1 z + λ2||4d||2 − λ2

=− λT1 z − λ2

This shows the dual problem is

max
µ,λ1,λ2

(−λT1 z − λ2)

s.t. λ1 ≥ 0, λ2 ≥ 0

yTAzk = µ1Tnz
k − λT1 zk +

λ24dk
||4d||2

, k = 1, ...,K.

We can eliminate 4dk by reformulating this further, we have

min
µ∈R, ρ∈RK , λ1∈R+,λ2∈R+

λT1 z + λ2

s.t. yTAzk = µ1Tnz
k − λT1 zk + ρk, k = 1, ...,K

||ρ||2 ≤ λ2

λ1 ≥ 0, λ2 > 0.

This is a second order conic optimisation problem. Note that strong duality holds.
Hence, we convert the optimisation problem (IE) to the following SOCP problem over
(y, µ, ρ, λ1, λ2) ∈ Rm ×R×RK ×Rn ×R.

min yTAz + zTλ1 + λ2 (*)

s.t. yTAzk ≤ µ1Tnz
k + λT1 z

k

1
T
my = 1, ||ρ||2 ≤ λ2,

y ≥ 0, λ1 ≥ 0, λ2 ≥ 0.
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Let Z = (z1, ..., zK) ∈ Rn×k. Then (*) ⇐⇒

ρ =



yTAz1

...

yTAzk


−



µ1T1 z

1

...

µ1Tnz
k


+



λT1 z

1

...

λT1 z
k




= (AZ)T y − zT 1nµ+ ZTλ1.

This gives the following SOCP problem over y, I · µ, I · ρ, I · λ1, I · λ2:

min yTAz + zTλI1 + λI2 (P ∗I )

s.t. ρI = (Az)T y − zT 1nµ
I + ZTλI1

1Tmy = 1, ||ρI ||2 ≤ λI2
y ≥ 0, λI1 ≥ 0, λI2 ≥ 0.

The second player has to solve the following SOCP problem

min yTBz + yTλII1 + λII2 (PII)

s.t. ρII = Y TBz − Y T 1mµ
II + Y TλII1

1Tnz = 1, ||BII ||2 ≤ λII2
z ≥ 0, λII1 ≥ 0, λII2 ≥ 0.

Where the ρII = (ρII1 , ..., ρ
II
L )T ∈ RL from the uncertainty set

Y E :=

{
y +

L∑

l=1

(4hl)yl : eTm(
L∑

l=1

(4hl)yl) = 0, y +
L∑

l=1

(4hl)yl ≥ 0, ||4h||2 ≤ 1

}

and y = (y1, ...., yL) ∈ Rm×L, and the minimization is over (z, µII , ρII , λII1 , λ
II
2 ) ∈

Rn ×R×RL ×Rm ×R.

The optimal mixed strategy pair (y∗, z∗) is obtained by solving the SOCP problems
(PI), and (PII) simultaneously.

42



6 Discussion

As explained in the beginning of this paper can robust programming be applied in
most fields, however fields that does tend to get mentioned are within finance and and
engineering, examples of problems within these fields are inventory and networking
problems. For an inventory problem one can easily imagine a problem such that a
manager wants to minimise the inventory cost. For such a problem the manager
would have to take in account that; there is a limited space in the inventory, retailers
require certain amount of product each month which require that we match that order
from our suppliers. The inevitable uncertainty in this problem is the demand that can
vary. However, this does not affect the supplier so they will have to create some sort
of penalty for how much the manager deviate from the agreed value. Constructing
this uncertainty set can actually be very difficult, since it is easy that one chooses
an uncertainty set that yields robust solutions that are too conservative, so that the
resulting solutions has too low quality towards the objective. Thus, will one have to
use probability tools in order to reduce the uncertainty set, in such a way that it does
not encamps results that does not interest us.
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