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Abstract

Quantum computation is a computing system that makes use of quantum me-
chanical phenomenons to perform computation. A computer performing such
computation is referred to as a quantum computer. Some computational prob-
lems, in particular integer factorization, are believed to be solved significantly
faster on quantum computers.
The RSA cryptosystem makes use of the fact that integer factorization is con-
sidered hard for a classical computer. On a quantum computer, the integer
factorization problem may be solved easily with Shor’s algorithm. The central
goal in this thesis is to understand the details of Shor’s integer factorization
algorithm. To accomplish this we provide a brief introduction to the field of
quantum computation.
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0.1 Introduction

In 1994 Peter Shor developed the polynomial-time quantum algorithm for in-
teger factorization that we today know as Shor’s algorithm. This algorithm
is remarkable in a number of ways. Perhaps most interesting, as of writing it
remains unproven whether a polynomial-time classical analogue exists. That is,
it’s possible that there are natural computational problems for which a quan-
tum computer is inherently faster than a classical one. Although exponential
quantum speed up of a classical algorithm had previously been demonstrated
with Simon’s algorithm for Simon’s problem, it was more difficult to envision
an exact application of this discovery.
There is however no doubt in anyone’s mind regarding the possible application
of polynomial-time integer factorization. In fact, the assumption that there is
no classical polynomial-time algorithm to the integer factorization problem is
the very bedrock of the RSA cryptosystem. As of writing this, the RSA cryp-
tosystem still has many uses. It is for example a very common cipher suite used
in TLS protocols for establishing secure internet connections.
Recently, it was estimated that by optimizing modular exponentiation in Shor’s
algorithm, a 2048 bit RSA integer could be factorized in 8 hours with 20 million
qubits[1]. This is the most commonly used RSA moduli size in use today. The
number field sieve algorithm, which is regarded as the fastest classical integer
factorization algorithm, took 2000 years of computing on a single core 2.2GHz
AMD Opteron to factor a 768-bit RSA integer in 2009[2].

Post-quantum RSA

Even with all this in mind, there may still be a future for RSA. For one thing,
there currently are no quantum computers with 20 million qubits. For context,
IBM announced in October 2019 their most powerful quantum computer so far
- a staggering 53 qubits[3]. Even then, with the appropriate amount of qubits,
RSA may still be feasible. According to [3], it’s estimated (preliminary) that
trying to factor the product of two 4096-bit primes with Shor’s algorithm would
take 2100 operations. Although the process of using such primes in encryp-
tion took around 100 hours, it is perhaps still an alternative for high-security
information.

Prerequisites and final remarks

The motivated reader needs no more than a strong grasp of the fundamental
concepts in linear algebra. It is however recommended for the reader to be
familiar with some analysis and group theory.

In the end, regardless of possible application, the field of quantum computation
is a truly interesting one. Lying somewhere in between mathematics, computer
science and physics, it contains beautiful and clever ideas from all three fields.
Being very much a beginner himself, the author hopes he can illustrate some
of the basic ideas of quantum computation as well explain some of the clever
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algorithms that emerged from these ideas. The goal is to do this in a sufficient
way as to understand the details of Shor’s integer factorization algorithm.
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Chapter 1

Preliminaries

In order to gain a good understanding of quantum algorithms we must first
look to the building blocks which compose them. This chapter will explain the
concept of a qubit, quantum measurement, quantum computation along with
the technical background needed to formulate them.

We begin with some notation. Dirac’s bra/ket notation is used throughout
quantum physics to represent the state of a quantum system. A vector is rep-
resented by a symbol written inside a ket, such as |v〉.
That is, instead of writing ~v for a vector we write |v〉 . The vector representation
of a bra 〈v| is obtained from taking the Hermitian conjugate of |v〉

Example 1.0.1. Let |v〉 =

[
1 + i
2− i

]
. The bra 〈v| would then be

[
1 + i
2− i

]†
=

[
1− i 2 + i

]
.

Furthermore we represent the Outer product of two vectors |a〉 and |b〉 as
|a〉 〈b|, and the Inner product of the same vectors as 〈a|b〉.

Example 1.0.2. Let |v〉 =

[
1
0

]
and |w〉 =

[
0
1

]
. Then |v〉 〈w| =

[
1
0

] [
0 1

]
=

[
0 1
0 0

]
. The inner product 〈w|v〉 =

[
0
1

]
·
[
1
0

]
= 0.

With this notation in mind, we will begin presenting some of the basic con-
cepts in quantum computation.

1.1 Postulates of quantum mechanics

Quantum mechanics is the mathematical framework we need to work within to
explain concepts in quantum computation. This section introduces the postu-
lates of quantum mechanics in a formal manner in terms of state vectors. We
begin by introducing the most fundamental concepts of quantum computation
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in combination with the associated postulate. In the next section we reformu-
late two of these postulates in terms of density operators. This new formulation
comes in handy when dealing with certain scenarios in quantum computation.

1.1.1 Single qubits

In a classical computer, the bit is the elementary unit of information. The
quantum analogue for this is the qubit. While a classical bit is either in the
state 0 or 1, the state of the qubit can be represented by some linear combination
of the two. We say this is a two state quantum system. Loosely speaking a qubit
is a mixture of 0 and 1.
In order to manipulate qubits we have to have a suitable space to operate in. It
so happens that we can use a complex vector space with inner product like the
Hilbert space to achieve our goals.

Definition 1.1.1. Hilbert space

A complex finite vector space H that assigns a complex number to the inner
product 〈x, y〉 for every pair of vectors x, y ∈ H is called a Hilbert space if:

• The inner product is linear with respect to the first argument:

〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉
• The inner product is equal to the complex conjugate reverse inner product:

〈x, y〉 = 〈y, x〉

• The inner product is positive definite, in other words:

〈x, x〉 ≥ 0

and is 0 only when x = 0

• The inner product is anti-linear with respect to the second argument:

〈x, ay1 + by2〉 = a〈x, y2〉+ b〈x, y2〉
This follows from the other properties.

The following definition is important when defining the qubit. More gener-
ally, the state of a qubit is a special case of a quantum state. A quantum state is
a vector in Hilbert space which we think of as assigning probabilities to certain
outcomes in a system.

Definition 1.1.2. Quantum state
Assume some orthonormal basis B = {|b1〉 , |b2〉 , ..., |bn〉} of the Hilbert space H.
A quantum state is a vector

|ψ〉 =
n∑

i=1

ai|bi〉

where ai ∈ C for i ∈ {1, 2..., n} and
∑n
i=1 |ai|2 = 1.
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As we shall discuss later, we interpret this definition as each part bi in the
basis representing the outcome of a measurement with the associated probability
|ai|2.
In the case of the qubit we denote the two basis states as |0〉 and |1〉 .
This means that the state of the qubit can be any (complex)linear combination

|ψ〉 = α |0〉+ β |1〉 .

We think of |α|2 and |β|2 as being the probabilities of measuring the qubit as
being in state |0〉 and |1〉 respectively. We refer to α and β as the (probabil-
ity)amplitudes. Because |α|2 + |β|2 = 1, geometrically we can think of this as
a unit vector in two-dimensional complex space. More generally, if we have a
quantum state

∑n
i=1 ai |bi〉 we may think of it as a unit vector in n-dimensional

space. For the two dimensional case, we sometimes refer to the linear combina-
tion of basis states |α|2 + |β|2 as a superposition when α and β are non-zero.
When we talk about bases in this paper, it will always be assumed that they are
orthonormal. Unless explicitly stated otherwise, throughout the paper
we will always assume

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
.

We are now ready to introduce the first postulate of quantum mechanics.

Postulate 1 Associated to any closed (physical) system is a complex vector
space, a Hilbert space H. We call this the state space of the system. The system
is completely described by a unit vector in the state space |ψ〉 ∈ H. unit vector

Our interpretation of this postulate in the context of qubits is that the state of
the system (qubit) can be described by a quantum state |ψ〉 = α |0〉+ β |1〉 .
We may describe the state of any closed system with such a state vector, but we
cannot know what it looks like without measuring it (introducing outside inter-
ference) which in turn collapses the state. More about this in the measurement
section.

Relative and global phase

There is a small caveat to postulate 1 worth mentioning regarding whether two
vectors are different or not. We introduce two definitions in application should
be regarded different or not

Definition 1.1.3. Relative phase
Let θ, θ′ ∈ R. Two qubit states |ψ〉 = α |0〉 + β |1〉 and |φ〉 = α′ |0〉 + β′ |1〉 are
said to differ by a relative phase if α = eiθα′ and β = eiθ

′
β′ when eiθ 6= eiθ

′
.

Definition 1.1.4. Global phase
Let θ ∈ R. Two qubit states |ψ〉 and |φ〉 are said to be equal up to a global phase
if |ψ〉 = eiθ |φ〉 .
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For reasons that will become clear in the section about the reformulation of
certain quantum postulates, we regard two states equal up to a global phase
as being the same. We will only say informally that a relative phase difference
implies a real physical difference between states. Meanwhile, global phase factors
are seen as nonphysical.

Example 1.1.1. Consider the states |ψ1〉 = 1√
2

(|0〉+ |1〉) , |ψ2〉 = 1√
2

(|0〉 − |1〉)
and |ψ3〉 = i√

2
(|0〉+ |1〉) .

States |ψ1〉 and |ψ2〉 differ by relative phase and are thus not the same. State
|ψ1〉 and |ψ3〉 are equal up to a global phase and we regard them as the same.

Remark The attentive and topologically minded reader will perhaps realize
that this classification of similar states is equivalent to introducing the equiv-
alence relation |ψ〉 ∼ eiθ |ψ〉, creating a quotient space H/ ∼ known as the
projective Hilbert space. This remark is not necessary to understand the rest of
the paper.

Example 1.1.2. A very common geometric representation of the single qubit
state is given by the Bloch sphere as represented in figure 1.1. The north pole
represents being in state |0〉 and the south pole state |1〉.

Figure 1.1: Bloch sphere representation for single qubit state

1.1.2 Multiple qubits

In a state space with n qubits, there are 2n basis vectors, each represented as
|j0j1...jn−1〉 where ji ∈ {0, 1}. The ”components” of multiple qubits are of
course, some sort of combination of single qubits. Formally, we shall use the
following definition.
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Definition 1.1.5. Tensor product

Let V and W be vector spaces with bases {|v1〉 , |v2〉 , ..., |vn〉} and {|w1〉 , |w2〉 , ..., |wm〉}
respectively.
The tensor product of V and W is written as V ⊗W and is an nm-dimensional
vector space spanned by elements of the form vi ⊗wj. This new vector space is
called the product space. The operator in question ⊗ is called the tensor opera-
tor.
We define the tensor operator by the following relations:

• |v〉 ⊗ (|a1〉+ |a2〉) = |v〉 ⊗ |a1〉+ |v〉 ⊗ |a2〉
• (|b1〉+ |b2〉)⊗ |w〉 = |b1〉 ⊗ |w〉+ |b2〉 ⊗ |w〉
• (a |v〉)⊗ |w〉 = |v〉 ⊗ (a |w〉) = a(|v〉 ⊗ |w〉)
Tensor products will only be talked about in the context of Hilbert spaces

in this paper. The following definition will come in handy.

Definition 1.1.6. Inner product in product space
Let H1⊗H2 be a product space of two Hilbert spaces H1 and H2. Also let |v1〉⊗
|v2〉 , |w1〉⊗|w2〉 ∈ H1⊗H2. We define the inner product 〈 |v1〉 ⊗ |v2〉 | |w1〉 ⊗ |w2〉 〉 ≡
〈v1|w1〉 · 〈v2|w2〉 .

This also works for vectors that are linear combinations of such vectors
above, because of the distributive property.

Example 1.1.3. Let H be a two dimensional Hilbert space with standard basis
{[

1
0

]
,

[
0
1

]}
.

The product space H⊗H has the basis
{[

1
0

]
⊗
[
1
0

]
,

[
1
0

]
⊗
[
0
1

]
,

[
0
1

]
⊗
[
1
0

]
,

[
0
1

]
⊗
[
0
1

]}
.

It’s perhaps a little frustrating that the tensor product cannot be simplified
further. We will usually be referring to these tensor products by their represen-
tation in the standard basis of the product space, sorted lexicographically.

Example 1.1.4. In example 1.1.3 by naming {|v1〉 , |v2〉} =
{[

1
0

]
,

[
0
1

]}
,

we see that the basis provided for H⊗H is sorted lexicographically and has the
following representation in the standard basis:








1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




0
0
0
1
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As you may have already guessed, this way of combining vectors in Hilbert
spaces is how we’re going to represent multiple qubits.
Letting |ji〉 ∈ Hi for i ∈ {1, 2, ..., n} be single qubits, the composition of them
has the following notation:

|j0j1...jn−1〉 = |j0〉 ⊗ |j1〉 ⊗· · · ⊗ |jn−1〉 .

where ji is a two state quantum system, a single qubit. By definition 1.1.2, a
system of n qubits is a quantum state represented by a 2n dimensional vector.

Example 1.1.5. Consider the basis {|Ψ+〉 , |Ψ−〉 , |Φ+〉 , |Φ−〉} for a two-qubit
system where:

∣∣Ψ+
〉

=
1√
2

(|00〉+ |11〉)
∣∣Ψ−

〉
=

1√
2

(|00〉 − |11〉)
∣∣Φ+

〉
=

1√
2

(|01〉+ |10〉)
∣∣Φ−

〉
=

1√
2

(|01〉 − |10〉

These are called the Bell states, and the basis is called the Bell basis.

1.1.3 Quantum gates

The state vector of some state space is manipulated into other vectors of the
same space through linear transformations. These operations are the quantum
equivalent of the logic gates in classical computation. They are the building
blocks with which we will later compose quantum circuits.

Definition 1.1.7. Quantum gate
A quantum gate is a complex unitary matrix.

Definition 1.1.8. Quantum circuit
A quantum circuit is a sequence of quantum gates.

Interestingly, the unitary constraint is sufficient for the definition of quan-
tum gates. The unitary condition implies that every quantum gate is invertible,
which in the context of quantum circuits is referred to as the circuit being re-
versible.
Remark Just as there is a small set of classical gates that can be used to
compute some arbitrary function, there is a corresponding set of such gates in
quantum computation. We call these set of gates universal. Universality and
reversibility will be discussed in greater detail in chapter 2.
The following postulate describes how a quantum system changes with time.
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Postulate 2 The evolution of a closed quantum system is described by a quan-
tum gate. This means that for state |ψ1〉 at point t1 in time and |ψ2〉 at point
t2 in time, they are related to each other by some unitary matrix U :

|ψ1〉 = U |ψ2〉 .

Where U is a function of t1, t2.

This description of time evolution will serve as a good approximation of the
framework for quantum computation we’re constructing. The limitation being
that we can only describe the system in discrete time. The continuous time for-
mulation of the postulate leads to the introduction of the Schrödinger equation.
Although very interesting, this is outside the scope of the paper and for our
purposes not completely necessary to formulate the framework.

1.1.4 Measurement

For some arbitrary system, recall that a state vector |ψ〉 lives inside of a Hilbert
space H which is spanned by some basis. As mentioned earlier, if the Hilbert
space has dimension n we will always set the basis as the standard basis for
n−Euclidean space. By definition this means we may write any state vector as
a linear combination of this basis,

|ψ〉 =
∑

zj |j〉.

The act of measuring a state vector ”collapses” it to one of the elements in this
basis. This leads to the third postulate.

Postulate 3 The probability of obtaining outcome j from a measurement with
respect to the standard basis of the state |ψ〉 =

∑
zj |j〉 is |zj |2.

This is consistent with definition 1.1.2 which says that
∑ |zj |2 = 1.

Notice how measurement is always with respect to a basis. In practice this
will always be the standard basis, but it’s worth noting that the result of the
measurement depends entirely on the choice of basis. We will always measure
with respect to the standard basis in this paper.

Example 1.1.6. Let |ψ〉 =

[
1√
2
1√
2

]
. Measured in the standard basis, we would

have an equal probability 1
2 of the outcome |0〉 =

[
1
0

]
as well as |1〉 =

[
0
1

]
.

If we instead measure with the Hadamard basis

{[
1√
2
1√
2

]
,

[
1√
2

− 1√
2

]}
, the outcome

would be |0〉 =

[
1√
2
1√
2

]
with probability 1.
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A more natural explanation of this will be given in the next section, where
Postulate 3 is reformulated in terms of projection operators.
Lastly we present Postulate 4, which is a more formal description of the com-
position of single qubits into multiple qubits described earlier.

Postulate 4 Let HA and HB be Hilbert spaces. The composite state HAB is
tensor product of its components HA ⊗HB .

Not all states |ψAB〉 ∈ HAB can be described as |ψA〉⊗ |ψB〉 for |ψA〉 ∈ HA and
|ψB〉 ∈ HB. This is a bit surprising, since it’s in a way saying that a system
can’t always be described by the sum of its parts. This isn’t true for classical
mechanics and seems to be an oddity of stepping into the quantum world.
It’s in this confusion that we introduce the concept of entanglement.

Definition 1.1.9. Entanglement
Any state |ψ〉 ∈ H1⊗H2⊗ ...⊗Hn which cannot be described by a tensor product
|ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψn〉 for |ψi〉 ∈ Hi is referred to as entangled.

Given some thought, it’s clear that the vast majority of the possible states
in a given system are entangled. In fact, these states are what makes quantum
computation so powerful and the ability to compute in parallel.
The next section will deal with reformulating postulate 1 and 3 in order to
give a more general understanding, and for postulate 3 giving a more solid
mathematical understanding rather than dismissing it as quantum weirdness.

1.2 Reformulation of the standard postulates of
quantum mechanics

In this section we will give a brief reformulation of two of the four postulates
from quantum mechanics according to Landsberg[10]. This will be done in terms
of density operators. We provide motivations for the reformulations.

1.2.1 Partial measurements

The state of a quantum system can be described by some vector in a Hilbert
space H. More specifically, a full description of the state of an n-qubit system
is given by some vector v ∈ (C2)⊗n. In most algorithms however, we require
some workspace registers which are not to be measured. Let |ψ〉 =

∑
zI |I〉 be

some state vector. Instead of simply saying that the probability of the outcome
I being equal to |zI |2, we will define measurement with orthogonal projection
operators into C |I〉. The space spanned by |I〉.

Definition 1.2.1. Projection operator
Let M be some linear subspace in (C2)⊗(n+m), and let m be the amount of
workspace qubits. A projection operator ΠM is a map

ΠM : (C2)⊗(n+m) →M.
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In the case of measurement M = |I〉 ⊗ (C2)⊗m where I ∈ {0, 1}n. We
call this special case an orthogonal projection operator.
The formal description of the probability of a state being measured is given by
the following proposition.

Proposition 1.2.1. Let |ψ〉 ∈ (C2)⊗(n+m), and I ∈ {0, 1}n. Then the prob-
ability that given |ψ〉 one measures |I〉, p(|I〉 | |ψ〉), is the following expression.
p(|I〉 | |ψ〉) = 〈ψ|ΠM |ψ〉 .
Proof. Since |ψ〉 ∈ (C2)⊗(n+m), then p(|I〉 | |ψ〉) can be written as the sum
of the probabilities p(|ψ〉 , |I〉 |R〉) for all R ∈ {0, 1}m for some I ∈ {0, 1}n.
Equivalently,

p(|I〉 | |ψ〉) =
∑

R∈{0,1}m
p(|ψ〉 , |I〉 |R〉).

Each probability is the same as the inner product 〈ψ|I〉 |R〉 〈I| 〈R|ψ〉. Thus,
∑

R∈{0,1}m
p(|ψ〉 , |I〉 |R〉) =

∑

R∈{0,1}m
〈ψ|I〉 |R〉 〈I| 〈R|ψ〉.

This can be rewritten as

〈ψ| (|I〉 〈I| ⊗ Id(C2)⊗m) |ψ〉
which we finally identify as

〈ψ|ΠM |ψ〉 .

Let IdH be the identity matrix for the Hilbert space H. We are ready to
reformulate the third postulate of quantum mechanics as

Postulate 3 - Measurements
A state is always measured with a corresponding collection of projection opera-
tors ΠMj such that

∑
k ΠMk

= IdH. The probability of state |ψ〉 being measured
in state space Mj is given by 〈ψ|ΠMj

|ψ〉

This reformulation in terms of projection operators is useful for generalizing the
concept of measurement. For example, it allows us to describe more precisely
what it means to measure a state with respect to a certain basis. Simply letMj

be the spaces spanned by the vectors in the basis which we wish to measure in
respect to. As mentioned earlier, in this paper when we talk about measurement
it is implied that Mj = C |j〉 for the standard basis vectors |j〉 ∈ H. There is
a very natural explanation as to why two states equal up to global phase are
regarded as equal. Consider the proposition.

Proposition 1.2.2. Two states equal up to global phase are regarded as equal.

Proof. With our new formulation of the standard postulates in terms of projec-
tion operators, consider for θ ∈ R

〈ψ| e−iθM†mMme
iθ |ψ〉 = 〈ψ|M†mMm |ψ〉 .
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Mixed states

So far our efforts have gone to accurately describing the measurements and
manipulations of pure states, that is to say states which can be represented as a
vector in the tensor product of complex Hilbert spaces. We can however, come
up with systems which have states that cannot be described in this way. An
example of this kind of scenario is the following. Let |ψ〉1 , |ψ〉2 be two states
in the Hilbert space H. Assume a qubit is either in state |ψ〉1 or in state |ψ〉2
with equal probability. We have introduced an additional thing to keep in mind
when measuring the system, and we would like our measurement postulate to
encapsulate this scenario. First of all we would like to define this kind of state
that we just described. Consider the following two definitions.

Definition 1.2.2. Ensemble of pure states
Suppose we have n states |ψi〉 with an associated probability pi. We will call
{pi, |ψi〉} an ensemble of pure states.

Sometimes an ensemble of pure states is referred to as a mixed state, the
idea being that a mixed state refers to both pure and mixed states[6]. Here we
will treat them as disjoint. Mixed states cannot be represented as vectors in
tensor products of complex Hilbert spaces. These states are instead described
by matrices.

Definition 1.2.3. Density operator
For probabilities 0 ≤ pi ≤ 1, let {pi, |ψi〉} be some pure ensemble of states. The
density operator for this system is defined as

ρ =
∑

s

ps |ψs〉 〈ψs| .

The density operator is sometimes referred to as the density matrix. A pure
state |ψ〉 may be represented with this matrix notation as |ψ〉 〈ψ|. This way of
describing states through density operators is more general since it also includes
mixed states. Let’s prove some properties about density operators.

Theorem 1.2.1. Let ρ be a density operator. The following facts are true:

• ρ is Hermitian.

• ρ is a positive operator, ∀ |φ〉, 〈φ| ρ |φ〉 ≥ 0.

• trace(ρ) = 1.

Proof. To prove that ρ =
∑
s ps |ψs〉 〈ψs| is Hermitian we need to show ρ = ρ†.

From the properties of the Hermitian adjoint operator, we know (
∑
i pi |ψi〉 〈ψi|)† =∑

i pi(|ψi〉 〈ψi|)† =
∑
i pi(〈ψi|

† |ψi〉†) =
∑
i pi |ψi〉 〈ψi|). This proves that ρ is

Hermitian.
Let |φ〉 be any arbitrary state. We can write 〈φ| ρ |φ〉 =

∑
i pi 〈φ|ψi〉 〈ψi|φ〉 =
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∑
i pi| 〈φ|ψi〉 |2 ≥ 0.

Lastly, it’s simple to show that ρ has trace 1 since

tr (ρ) =
∑

i

pi tr (|ψi〉 〈ψi|) =
∑

i

pi = 1.

Lastly we note that a density operator is an endomorphism for the associated
Hilbert space.

Definition 1.2.4. Endomorphism
A is linear operator Let H be a vector space. An operator A that maps H to
itself is called an endomorphism of H. The set of all such operators is written
End(H).

It’s clear that a density operator ρ is an endomorphism because it maps H
to itself.
In order to better describe mixed states and motivated by the above definitions,
we now reformulate the first postulate in terms of density operators. The final
set of postulates are the following.

Postulate 1’
Associated to any closed system is a Hilbert space H, known as the state space
of the system and a density operator ρ ∈ End(H) describing the state of the
system.

Postulate 2
The evolution of a closed system is described by quantum gates acting on its
associated density operator ρ by matrix multiplication.

d̊alig engelska While we are at it, measurement can also be reformulated in
terms of these density operators.

Postulate 3’
Measurement is described by a collection of projection operators ΠMj

such that∑
k ΠMk

= IdH. The probability that ρ is measured in state Mj is given by
tr(ΠMj

ρ). Upon measurement, the state collapses to Mj .

Postulate 4 Let HA and HB be Hilbert spaces. The composite state HAB is
tensor product of its components HA ⊗HB .

This summary concludes the section of quantum computation preliminaries.
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Chapter 2

Quantum Computation

Chapter 2 presents the building blocks needed to construct basic quantum cir-
cuits. The concept of reversibility and universality will be explained in terms
of our mathematical framework. Universality in this context meaning the con-
struction of arbitrary functions from a given set of quantum gates. We want
to show that classical circuits can be made reversible with no significant effi-
ciency loss. Even though classical circuits may perhaps best be left to classical
computers for other reasons, this results tells us in some sense that quantum
computers are at least as powerful as classical ones.

2.1 The quantum circuit model

This section deals with describing the model of quantum circuits.

2.1.1 Single qubit quantum gates

We can do a surprising amount of things with single quantum gates, which we
will refer to as 1-gates. Three types of 1-gates are especially important, consider
these three rather arbitrary looking types of gates.

R(β) =

[
cosβ sinβ
− sinβ cosβ

]
, T (α) =

[
eiα 0
0 e−iα

]
,K(δ) = eiδI.

Definition 2.1.1. Using the box above, let δ, β, α be real numbers. We refer to
K(δ) as the phase shift gate, R(β) as the rotation gate and T (α) as the phase
rotation gate.

The reason these three operations are special is that we can write any single
qubit quantum gate in terms of them.
In order to prove this, we start with a lemma:
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Lemma 2.1.1. Any unitary matrix U =

[
u00 u01
u10 u11

]
can be expressed as U =

[
eiφ00 cosβ eiφ01 sinβ
−eiφ10 sinβ eiφ11 cosβ

]
for φij , β ∈ R.

Proof. The unitary condition UU† = I implies





|u00|2 + |u01|2 = 1

u00u10 + u01u11 = 0

|u11|2 + |u10|2 = 1

This in turn implies that |u00| = |u11| and |u01| = |u10|. This means we can
rewrite the coefficients ui in terms of sine and cosine for some angle β,

Q =

[
eiφ00 cos(β) eiφ01 sin(β)
−eiφ10 sin(β) eiφ11 cos(β)

]
.

We also see that φ00 + φ11 = φ01 + φ10 because Q is a unitary matrix, so
QQ† = I..

Theorem 2.1.2. Any single qubit quantum gate U can be written as U =
K(δ)T (α)R(β)T (γ) for some α, β, δ ∈ R.

Proof. According to lemma 2.1.1 we can write U =

[
eiφ00 cosβ eiφ10 sinβ
−eiφ01 sinβ eiφ11 cosβ

]
.

Consider that K(δ)T (α)R(β)T (γ) =

[
ei(δ+α+γ) cosβ ei(δ+α−γ) sinβ
−ei(δ−α+γ) cosβ ei(δ−α−γ) sinβ

]
.

It’s easy to convince yourself that φ1 = δ + α+ γ, φ2 = δ + α− γ, φ3 = δ − α−
γ, φ4 = δ − α− γ and that this system has a solution.

Example 2.1.1. The Hadamard gate

H =
1√
2

[
1 1
1 −1

]

can be decomposed as K (0)T (0)R(π4 )T (0) =

II

[
1√
2

1√
2

− 1√
2

1√
2

]
I.

In other words, just a special case of the rotation gate R.
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2.1.2 Two qubit quantum gates

Two qubit quantum gates are a very important addition to our model, because
with 1-gates only we cannot describe entanglement. Entanglement of two qubits
was defined in chapter 1. The way we achieve entanglement is through a set of
gates referred to as control gates. A control gate specifies a control qubit and
a target qubit. We will explain what this means after introducing the following
notation.

Definition 2.1.2. We can represent quantum gates by specifying where the basis
vectors are mapped to,

|00 . . . 0〉 7→ |a0〉
|01 . . . 0〉 7→ |a1〉

. . .

|11 . . . 1〉 7→ |an〉

or the matrix representation

|00 . . . 0〉 〈a0|+ |01 . . . 0〉 〈a1|+ · · ·+ |11 . . . 1〉 〈an|

for |ai〉 ∈ Hn.

Suppose we have states |a0〉 , . . . , |an〉 ∈ H In the standard basis, a control
gate acts on the target qubit with a quantum gate Q if the control qubit is in
state |1〉. If the control qubit is in state |0〉, the target qubit is not acted upon.
We express this as ∧

Q = |0〉 〈1| ⊗ I + |1〉 〈1| ⊗Q.

The
∧

means that it is a controlled gate, the Q tells us what kind. The above
is therefore a controlled Q-gate.

Example 2.1.2. A very common controlled 2-gate is the controlled-NOT gate,
which we may express in the following ways CNOT =

∧
X = |0〉 〈1|⊗I+ |1〉 〈1|⊗

X

=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Here X is the single qubit NOT gate

X =

[
0 1
1 0

]
. (2.1)

17



2.1.3 Graphical representation of quantum circuits

The definition of a quantum circuit was introduced in chapter 1 as a sequence
of quantum gates. We will give some common graphical notation to describe
quantum circuits.
The figure below describes a possible single wire quantum circuit.

β γ|0〉 H H

Figure 2.1: A single wire quantum circuit

Going through the symbols in order, |0〉 is the state the qubit is in before
entering the circuit. Quantum gates are represented by boxes with symbols
on them. Of course H is the Hadamard gate, and we apply H to |0〉. It
follows that the qubit at β has the state 1

2 (|0〉+ |1〉) . After yet again applying
H to the qubit, we return to the state |0〉 because the Hadamard gate is its
own inverse. Lastly, measurement is represented by the last box. The
circuit of course outputs |0〉. Figure 2.1 is a single qubit quantum circuit. We
represent multiple qubits by drawing wires in parallel, and multiple
qubit gates as boxes or symbols intersecting into multiple wires.
More common notation is summarized in the figure below.
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Figure 2.2: Common quantum gates and their graphical representation. Made
by Rxtreme and shared under the Creative Commons Attribution-Share Alike
4.0 International license.

2.1.4 Universality

The reader may be familiar with the classical result that arbitrary (classical)
functions may be calculated with a combination of AND, OR, and NOT gates.
Informally, we will refer to such a set as of gates as universal, in the sense that
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all other gates may be constructed from them.
Considering the context, it’s natural to ask, what would be the analogous re-
sult in quantum computation? As it turns out, we can construct a similar
non-discrete set containing only 1-gates and CNOT gates. We shall follow the
construction in Benenti,Casati and Strini[11].

Theorem 2.1.3. Let U be a quantum gate, then
∧
U gate may be decomposed

into 1-gates and CNOT gates.

Proof. We would like to make the decomposition
∧
U = (

∧
K(δ)) (

∧
U ′) where

U ′ = T (α)R(β)T (γ).
It’s possible to implement

∧
K(δ) using only single qubit gates in the following

way:

∧
K(δ) = |0〉 〈0| ⊗ I + eiδ |1〉 〈1| ⊗ I =




1 0 0 0
0 1 0 0
0 0 eiδ 0
0 0 0 eiδ


 =

[
1 0
0 eiδ

]
⊗ I =

(
K

(
δ

2

)
T

(−δ
2

))
⊗ I.

Implementing
∧
U ′ is perhaps not as intuitive, and makes use of the following

type of quantum gates.

U0 = T (α)R

(
β

2

)
,

U1 = R

(−β
2

)
T

(−(γ + α)

2

)
,

U2 =

(
γ − α

2

)
.

We can now implement
∧
U ′ in terms of these 1-gates and CNOT gates by

∧
U ′ = (I ⊗ U0)(I ⊗ U1)(I ⊗ U2).

Finally, we combine the two to get our final result

∧
U =

((
K

(
δ

2

)
T

(−δ
2

))
⊗ I
)

(I ⊗ U0)(I ⊗ U1)(I ⊗ U2).

We illustrate this circuit in figure 2.3.

U

=

∧
K(δ)

U2 U1 U0

Figure 2.3:
∧
U gate decomposed into 1-gates and CNOT gates
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Recall the Toffoli gate from figure 2.2. The Toffoli gate is actually universal
in classical computation, a result we will not prove here. By showing that
we may implement such a gate with only 1-gates and CNOT gates, we also
encompass classical computations.
The details in the proofs of the following two theorems will not be included, a
quantum wire and an intuitive explanation will be offered.

Theorem 2.1.4. The Toffoli gate may be implemented from CNOT gates and
1-gates.

Proof. Let V =

[
1 0
0 i

]
. We already know we can write

∧
V in terms of CNOT

gates and 1-gates. The following circuit implements the Toffoli gate.

=

H V V † V H

Figure 2.4: Quantum circuit illustrating the general procedure in the proof of
theorem 2.1.4.

The details of verifying this consists of confirming that the 8x8 matrix rep-
resentation of the circuit maps the basis vectors to the correct position. This is
quite messy, so hopefully an intuitive explanation will suffice.
If the control gates do not trigger, the idea is that the other gates should cancel
each other out. This leaves the state unchanged. Otherwise, the gates will not
cancel out and transform the state accordingly.

Let’s extend some notation. We will refer to a control gate with k control
qubits with the notation

∧
k U for some gate U . In other words, we perform U

if and only if all k control qubits are 1. Furthermore
∧i
x U is the control gate

for target qubit i and pattern x.

Example 2.1.3. Let |b0b1b2〉 be a three-qubit system. The Toffoli gate uses two
qubits as control qubits and another as the target qubit. In our new notation,
this can be written as

∧2
110X. It can also be written as

∧2
111X, since only the

values of the control qubits decide the gate.

We’re interested in being able to construct
∧
k U gates, and we can do so

only with Toffoli and
∧
U gates.
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Theorem 2.1.5. Let U be any 1-gate and k some integer. We can decompose∧
k U in terms of Toffoli and

∧
U gates.

Proof. Once again, the proof will consist of the graphical circuit representation.
We need k workspace qubits to store the result of the previous Toffoli gate.

|j0〉
|j1〉
|j2〉
. . .

|jk−1〉

|jk〉 U

|0〉

|0〉

. . .

|0〉

Figure 2.5: Quantum circuit illustrating the general procedure in the proof of
theorem 2.1.5.

The final argument, which shows that any arbitrary matrix U may be writ-
ten in terms of the gates we’ve dealt with, is perhaps a bit involved.The intuitive
explanation goes something like this: Any unitary transformation is just a ro-
tation. To transform a 2n dimensional vector, we can do so with a sequence of
rotation in 2 dimensions.
For the formal argument, we refer to [11].

Theorem 2.1.6. Any arbitrary quantum gate may be decomposed in terms of
CNOT gates and R(β), T (α),K(δ) gates for β, α, δ ∈ R.

Proof. See [11].

2.2 Reversible computation

Looking back to postulate 2, we see that our qubits are transformed through
unitary matrices, which we refer to as quantum gates. One basic property of
these transformation is that they’re invertible, the direct consequence being that
our quantum circuit is reversible. That is, the matrix that describes the circuit
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is invertible.
Classical logic gates can also be reversible, by the following definition.

Definition 2.2.1. A logic gate, represented by a function f : {0, 1}n → {0, 1}m,
is called reversible if f is bijective.

It’s worth noting that the representation of a reversible logic gate is just
a permutation. Classical circuits, which are sequences of logic gates and can
thus be represented as functions, are clearly not all reversible. Consider the
OR gate for example. By knowing that the output is 1, one still can’t deduce
what the two input bits were. It’s tempting to disregard reversibility as a
quirk of quantum computation, but consider that a quantum algorithm may
need to perform classical subroutines. Modular exponentiation is an important
classical subroutine present in Shor’s algorithm. In the original paper, Shor
even referred to modular exponentiation as ”The bottleneck of the quantum
factoring algorithm”. We would of course like this bottleneck to be as efficient
as possible.
The object of this section is to show that any classical circuit can be made
reversible with no significant efficiency loss, according to Rieffel and Polak[5].

2.2.1 A first iteration

Fact: The AND and NOT operations form a universal set of logic gates for
classical circuits.
As to not delve too far into logic and functional completeness, we will not prove
this fact. We can assume that every circuit we construct is only composed
out of AND and NOT operations. These circuits are not necessarily reversible,
as illustrated by the example below. We use notation ¬ to represent logical
negation and ∧ to represent logical conjunction.

Example 2.2.1. Figure 2.6 illustrates a classical circuit reusing input registers
to store intermediate calculations.

a0 NOT

AND

¬a0

a1

AND

¬a0 ∧ a1

a2

AND

¬a0 ∧ a1 ∧ a2

a3 ¬a0 ∧ a1 ∧ a2 ∧ a3

Figure 2.6: A classical irreversible circuit.

A common technique to make a classical circuit reversible is to add an ad-
ditional output bit for each AND gate. For a circuit with s bits and t gates, we
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at most need t additional bits to make it reversible. This means replacing the
AND gates with Toffoli gates.

Example 2.2.2. The circuit in example 2.2.1 has been made reversible below.

a0 NOT

T

¬a0

a1 a1

t0 = 0

T

¬a0 ∧ a1

a2 a2

t1 = 0

T

¬a0 ∧ a1 ∧ a2

a3 a3

t2 = 0 ¬a0 ∧ a1 ∧ a2 ∧ a3

Figure 2.7: A reversible classical circuit

This approach of simply substituting AND gates with Toffoli gates won’t
do. Worst case scenario we double the amount of bits used, which can hardly
be called space efficient. We would like to somehow reuse the bits carrying the
intermediate results. Just plain resetting them to 0 is of course not a reversible
action. Instead we aim to uncompute them. For a circuit with s bits and t
gates, we need at most t additional gates to do this.

Example 2.2.3. Let’s uncompute the intermediate bits in the circuit of exam-
ple 2.7, so that they can be reused later in the circuit. Our workspace bits will
be called t0, t1, t2.

a0 NOT

T T

¬a0

a1 a1

t0 = 0

T T

0

a2 a2

t1 = 0

T

0

a3 a3

t2 = 0 ¬a0 ∧ a1 ∧ a2 ∧ a3

Figure 2.8: A reversible classical circuit

24



Substituting Toffoli gates and uncomputing intermediate bits is the naive
approach. This is O(s + t) memory. Next we will show a more efficient con-
struction.

2.2.2 Composing subcircuits

The more efficient construction involves partitioning the circuit C, with t gates
and s bits, r = dt/se sub circuits. We will refer to each as Ci for 1 ≤ i ≤ r,
such that C = C1C2 . . . Cr. The inefficient way of making this circuit reversible
as shown in the above examples would concretely look like this.

1. For each Ci, make it reversible by substituting AND gates with Toffoli
gates. Call the reversible subcircuit Ri. This new subcircuit has at most
s more bits.

2. Copy the values used in later parts of the computation to an output reg-
ister. Once again, this adds at most s bits.

3. Perform the sequence of gates from step 1 in reverse order, to reset all
bits except the output register bits to their input values. By doing this,
all intermediate bits have been uncomputed to 0 and can be reused.

The idea behind our new, more efficient construction is now the following: Com-
bine the circuits Ri in a smart way. By choosing to uncompute a subcircuit, we
add more gates but reduce the need to create new intermediate bits.

Theorem 2.2.1. Every classical circuit C with t gates and s bits can be made
reversible using O(tlog2 3) gates and O(s log t) bits.

Proof. Let C = C1C2 . . . Cr be a circuit with t gates and s bits. For simplicity,
we will prove only the case where r = dt/se = 2k for some k ∈ Z+. Also let
ri = 2i. Let R = R1R2 . . . Rr be the inefficient reversible circuit, made from C
with the steps specified above. Consider the recursively defined transformation
B : R→ R′ for circuits R and R′.

B(R1R2 . . . Rri+1
) = B(R1R2 . . . Rri)B(Rri+1Rri+2 . . . Rri+1

)(B(R1R2 . . . Rri))
−1)

B(R) = R.

For a reversible circuit R represented by some function f : {0, 1}n → {0, 1},
R−1 is represented by f−1. The act of applying R1 is what we refer to as
’uncomputing’ the circuit. The last term (B(R1R2 . . . Rri))

−1) acts on the same
bits as the first B(R1R2 . . . Rri), and does not require additional space.
The point of this transformation is that it uncomputes every subcircuitRi except
Rr, which outputs the result of the circuit. We know B(R1R2 . . . Ri+1) uses at
most s more bits than B(R1R2 . . . Ri), meaning that we may find a bound for
the amount of bits used recursively in the following way. Let S(i) mean the
space requirement for each of the steps 1 ≤ i ≤ k = log2 r. Then we know by
the previous observation that S(i) ≤ S(i − 1) + s. We also know S(1) ≤ 2s.
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This of course means that S(k) ≤ (k + 1)s = s(log2 r + 1). Thus if we have t
steps, we need O(s log2 t) space. As for the gates, we solve it similarly. Let T (i)
be the number of circuits executed by B(R1, . . . , Rri). Then T (i) = 3T (i − 1)
because we have 3 computations in (1.15). Also T (1) = 1 because B(R) = R.
Since we assumed that r = 2k, we see that T (2k) = 3k = 3log2 r = rlog2 3. We
have shown that we need O(rlog2 3) gates, which ends the proof.

An illustration of this way of combining subcircuits is shown below.

Figure 2.9: Reversible circuit that reuses bits

Example 2.2.4. For figure 2.9, we can get the same result by using the recursive
transformation B defined in the proof of theorem 2.2.1.

B(U1U2U3U4) = B(U1U2)B(U3U4)(B(U1U2))−1 =

B(U1)B(U2)(B(U1))−1B(U3)B(U4)(B(U3))−1(B(U1)B(U2)(B(U1))−1)−1 =

U1U2U
−1
1 U3U4U

−1
3 U1U

−1
2 U−11 .

Instead of arbitrarily deciding that we may only have r = 2k partitions,
inspired by the technique used in the last proof we can make a recursively
defined transformation that partitions the sequence of circuits into m equally
large parts instead of only 2. By doing this, we attain another bound.

Theorem 2.2.2. Let C be a classical circuit with t gates and s bits. It has a
reversible counterpart with O(t1+ε) gates and O(s log t) bits.

Proof. Suppose r = mk for m, k ∈ Z+, and let ri = mi. Examine the no-
tation ~Rx,i = R1+(x−1)riR2+(x−1)ri . . . Rxri . Convince yourself that ~R1,i+1 =
~R1,i

~R2,i . . . ~Rm,i.
Consider the following recursive transformation B : R → R′ for reversible cir-
cuits R and R′.

B( ~R1,i+1) = B(~R1,i
~R2,i . . . ~Rm,i) =

B(~R1,i)B(~R2,i) . . .B(~Rm,i)B(~Rm−1,i)
−1(~Rm−2,i)

−1 . . . (~R1,i)
−1,

B(R) = R.

In each step, one of the m parts ~Rk,i is replaced by 2m − 1 transformations.
Since r = mk, the recursion takes k steps. This implies that we have a total of
(2m− 1)k reversible subcircuits Ri. Rewriting this in terms of r gives us

(2m− 1)logm r = rlogm 2m−1 ≈ rlogm 2m = r1+
1

log2m
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Any reversible circuit Ri constructed from Ci may be made reversible with at
most 3s gates, according to the steps outlined at the start of section 2.2.2.
Because of this, we once again define T (t) as the total number of gates for a
reversible circuit of t gates and say

T (t) ≈ 3s

(
t

s

)1+ 1
log2m

< 3t1+
1

log2m .

For any ε > 0, we can choose m large enough so that we only need O(t1+ε) gates
for a reversible construction. The amount of bits remains the same as from the
previous proof, O(s log2 t).

From classical to quantum

With this theorem, it’s clear that any classical circuit can be computed in a
reversible way with comparable efficiency. Because we may construct any re-
versible classical circuit from AND and Toffoli gates, the implementation trans-
lates to quantum circuits since both gates may be implemented as quantum
gates. Thus they can used in quantum circuits without significant efficiency
loss.

2.2.3 Quantum circuit complexity

In the coming chapters we will showcase quantum algorithms which solve prob-
lems in polynomial time which classical algorithms may only solve in exponen-
tial. Before moving on we will provide the reader with an incomplete, but for
our purposes sufficient definition of the time complexity of a quantum circuit.
We make the following definitions.

Definition 2.2.2. Simple quantum gate
A simple quantum gate is a gate A is one of the gates R(β), T (α),K(δ) or CNOT
for some parameter α, β, δ ∈ R.

The time complexity of a quantum circuit is defined by how many simple
quantum gates it has.

Definition 2.2.3. Time complexity
A quantum circuit is said to have time complexity O(f(n)) where n is the amount
of input qubits and f(n) is the amount of simple gates used.
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Chapter 3

The Finite Abelian Hidden
Subgroup Problem

In order to give context to the definition of the quantum Fourier transform, we
would like to take a section to change the scope of what we’re trying to solve.
The context is given by the problem of finding generators to a subgroup H of
a finite Abelian group G, where H is implicitly defined by a function on G. In
order to be more formal, we need the definition.

Definition 3.0.1. Constant within each coset, distinct between each
coset
Assume a group G and a subgroup G > H, let gH be some coset for g ∈ G. A
function f : G→ S for some set S is said to be constant within each coset and
distinct between each coset if f(g̃1) = f(g̃1) if and only if g̃1, g̃2 ∈ gH.

Below is a more formal description of our problem. för tidigt för order finding

Definition 3.0.2. Hidden Subgroup Problem
Assume a group G and a function f : G→ S where S is some finite set. Suppose
f defines a subgroup H such that f is constant within each coset and distinct
between each one.
The Hidden Subgroup Problem (HSP) consists of finding H. This is done by
finding a subset that generates H.

The difficult part of Shor’s problem can be reformulated in terms of the HSP
for finite Abelian groups. It is in the context of solving HSP for finite Abelian
groups that we introduce the Quantum Fourier transform.

3.1 Algebraic representation of groups

We start off with some definitions from group theory. Definitions are taken
from[5].
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Definition 3.1.1. Algebraic representation
Let G be any group and X a complex vector space. We denote GL(X) as the
group of invertible, linear mappings that carry X into itself.
A representation is a group homomorphism

χ : G→ GL(X)

g → χ(g).

In this section, we mostly care about Abelian groups. In the case of Abelian
groups we will only need to consider group homomorphisms χ : G→ C where C
is the multiplicative group of complex numbers. Because every Abelian group
can be decomposed into a product of cyclic groups (as we will show later) we
will mostly be dealing with G = Zn and products of Zn. The representations
for Zn are called characters.
For Zn we can form the complete set of representations

χj : x→ exp

(
2πi

n
jx

)

for each j ∈ {0, 1, ..., n − 1}. This is because we map the identity element 0 to
the identity element 1. Furthermore we must map 1 to one of the n roots of
unity since n ≡ 0 in Zn. After all, a representation χ is a homomorphism such
that χ(1)n = χ(1 + 1 + · · ·+ 1) = χ(n) = χ(0) = 1. This implies that there can
be no more than n representations of Zn and that they also must be of the form
above. When dealing with products of Zn, say Zn1

× · · · × Znk , the complete
set of representations is given by

χ((g1, . . . , gk)) = χ1(g1) . . . χk(gk),

where χ1, . . . , χk may be any of the representations for Zn1
, . . . ,Znk respectively.

The complete set of characters of a group G with the operation of pointwise
multiplication , χ(g) = χ1(g) ◦ χ2(g) = (χ1χ2)(g) ∀g ∈ G, is called the dual

group Ĝ with the inverses given by χi(g) = 1
χi(g)

∀g ∈ G. If H is a subgroup of

G, then the following is a subgroup of Ĝ :

H⊥ = {χ ∈ Ĝ | χ(h) = 1 ∀h ∈ H}.
We see that it’s a subgroup by using the subgroup test, (χω−1)(h) = 1 for all

χ, ω ∈ Ĝ and for all h ∈ H. The subgroup H⊥ has |G : H| members because
it’s the representations of G which map all elements of H to 1. The reason we
care about H⊥ is because of the fairly simple property given below.

Proposition 3.1.1. Let G be a group and G > H. Then (H⊥)⊥ ∼= H.

Proof. We mentioned above that H⊥ has |G : H| elements if G > H. It follows
that (H⊥)⊥ has |G : H⊥| = |H| elements.
Next, we show that every element of H is contained in (H⊥)⊥,

(H⊥)⊥ = {g′ ∈ G|g′(χg) = 1,∀g ∈ H⊥}
= {g′ ∈ G|χg(g′) = 1,∀g ∈ H⊥}.
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By definition, all elements of H have this property. Thus (H⊥)⊥ ∼= H.

In order to define the quantum Fourier transform we need a fundamental
lemma called Schur’s lemma.

Lemma 3.1.1. Schur’s Lemma
g ¿ h definera Let χ1 and χ2 be elements of Ĝ for some finite group G where
chi1 6= χ2. Then,

∑

g∈G
χ1(g)χ1(g) = |G|

and ∑

g∈G
χ1(g)χ2(g) = 0.

Proof. The first statement is obvious when you consider χ1(g) = 1
χ1(g)

∀g ∈ G.
For the second statement we reason in the following way. Since χ1 6= χ2 we can
take an element h ∈ G such that χ1(h) 6= χ2(h). Then:

χ1(h)
∑

g∈G
χ1(g)χ2(g) =

∑

g∈G
χ1(h)χ1(g)χ2(g)

=
∑

g∈G
χ1(hg)χ2(h−1hg)

=
∑

g∈G
χ1(g)χ2(h−1g)

=
∑

g∈G
χ1(g)χ2(h)χ2(g)

= χ2(h)
∑

g∈G
χ1(g)χ2(g).

Since χ1(h) 6= χ2(h), we conclude that
∑

g∈G
χ1(g)χ2(g) = 0.

A useful corollary to this is Schur’s lemma for subgroups.

Corollary 3.1.1.1. Schur’s lemma for subgroups space Let G be a finite
Abelian group with subgroup H, and χ some representation of g. Then

∑

h∈H
χ(h) =

{
|H|, if ∀h in H χ(h) = 1

0, otherwise

Proof. Apply Shur’s lemma restricted to χ, since it’s also a representation of
H.

Next we will be defining the quantum Fourier transform. fixa prop 3.0.2.
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3.2 Fourier basis and quantum Fourier trans-
form

For every group G = Zn, |G| = n, we will associate an n-dimensional complex
vector space Cn with the standard basis G. Given standard ordering, we denote
each basis vector by an element in the group G in the following way,
Let G = {|g0〉 , |g1〉 , ..., |gn−1〉} be the standard basis.
Consider the following set: B = {|ei〉 | i ∈ G} such that

|ei〉 =
1√
n

∑

g∈G
χi(g) |g〉.

Proposition 3.2.1. B is an orthonormal basis for Cn

Proof. Consider the inner product of two elements |ei〉 and |ej〉 where i 6= j,

〈ei|ej〉 =


 1√

n

∑

g∈G
χi(g) |g〉



(

1√
n

∑

h∈G
χj(h) |h〉

)
(3.1)

=
1

n

∑

g∈G

∑

h∈G
χi(g)χj(h) 〈g|h〉 (3.2)

=
1

n

∑

g∈G
χi(g)χj(g) = 0 (3.3)

Also 〈ei|ei〉 = 1 because

〈ei|ei〉 =
1√
n

∑

g∈G
χi(g) |g〉 1√

n

∑

g∈G
χi(g) |g〉 (3.4)

=
1

n

∑

g∈G
χi(g)χi(g) 〈g|g〉 (3.5)

=
1

n

∑

g∈G
χi(g)χi(g) (3.6)

=
n

n
= 1. (3.7)

The equalities (3.3) and (3.7) are true because of Schur’s Lemma.
Now finally we are ready to define the quantum Fourier transform over Abelian
groups

Definition 3.2.1. The quantum Fourier transform for Abelian groups
The quantum Fourier transform is the transformation F that maps the basis
vector |g〉 to |eg〉 ∀g ∈ G. In other words,

F =
∑

g∈G
|eg〉 〈g|.
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A general n-qubit quantum circuit implementation of the quantum Fourier
transform is given in figure 3.1. Here we use the notation [0.x1x2 . . . xk] =
[x1x2...xk]

2k
where [x1x2 . . . xk] is the binary representation of some positive inte-

ger. We let

Rm =

[
1 0

0 e
2πi
2m

]
(3.8)

. . .

. . .

. . .

. . .

|x1〉 H R2 R3
. . . Rn

1√
2
(|0〉+ e2πi[0.x1...xn] |1〉)

|x2〉 H R2
1√
2
(|0〉+ e2πi[0.x2...xn] |1〉)

|x3〉 1√
2
(|0〉+ e2πi[0.x3...xn] |1〉)

. . .

|xn−1〉 H R2
1√
2
(|0〉+ e2πi[0.xn−1xn] |1〉)

|xn〉 H
1√
2
(|0〉+ e2πi[0.xn] |1〉)

Figure 3.1: A quantum circuit implementation of the quantum Fourier transform
for n qubits.

Recall our description of controlled gates in chapter 2.1.2 and figure 2.2.
Loosely speaking, these are of great importance in the quantum Fourier trans-
form because they provide a means of entanglement of the qubits. This cannot
be done with only 1-gates. To see that the quantum Fourier transform can be
written in the form shown in figure 3.1, we need a bit of algebra.

Proposition 3.2.2. Writing |j〉 = |j1j2 . . . jn〉, for some n qubit system where
we identify each basis vector |j〉 with the standard basis, the quantum Fourier
transform may be expressed in the following way:

|j1j2 . . . jn〉 →
(
|0〉+ e2πi0.jn |1〉

)
⊗
(
|0〉+ e2πi0.jn−1jn |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi0.j1...jn |1〉

)

2n/2
.

Proof. By definition of the quantum Fourier transform,

|j〉 → 1

2n/2

2n−1∑

k=0

e2πijk/2
n |k〉

for which the right-hand side can be written as the product of sums in terms of
the fractional binary notation of k,

1

2n/2

1∑

k1=0

· · ·
1∑

kn=0

e2πij(
∑n
l=1 kl2

−l) |k1 . . . kn〉

=
1

2n/2

1∑

k1=0

· · ·
1∑

kn=0

n⊗

l=1

e2πij(kl2
−l) |kl〉 .
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The tensor product is distributive, so we can rewrite it as

1

2n/2

n⊗

l=1

[
1∑

kl=0

e2πijkl2
−l |kl〉

]
=

1

2n/2

n⊗

l=1

[
|0〉+ e2πij2

−l |1〉
]

=

(
|0〉+ e2πi0.jn |1〉

)
⊗
(
|0〉+ e2πi0.jn−1jn |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi0.j1...jn |1〉

)

2n/2
.

Which is what we wanted to prove.

Example 3.2.1. A circuit implementation of the quantum Fourier Transform
is given below.

|x1〉 H R2 R3
1√
2

(
|0〉+ e2πi[0.x1x2x3] |1〉

)

|x2〉 H R2
1√
2

(
|0〉+ e2πi[0.x2x3] |1〉

)

|x3〉 H
1√
2

(
|0〉+ e2πi[0.x3] |1〉

)

Figure 3.2: A quantum circuit implementation of the quantum Fourier transform
for n = 3 qubits.

We swap the first and last qubit to obtain the correct output order.

Example 3.2.2. The n − qubit quantum Fourier transform may also be ex-
pressed as a unitary matrix,




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω(n−1)2)




where ω = e
2πi
n .

Every unitary matrix has its inverse. In the case of the quantum Fourier
transform we will always refer to it simply as the inverse quantum Fourier
transform.

Definition 3.2.2. Inverse quantum Fourier transform
The inverse quantum Fourier transform, or the inverse quantum Fourier trans-
form is

F−1 =
∑

g∈G
|g〉 〈eg| .
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Complexity of the quantum Fourier transform

The quantum Fourier transform is what provides the exponential speedup for
most quantum algorithms. The circuit in figure 3.1. requires (n+1)+ · · ·+2+1
Hadamard and controlled phase shift gates. Using big-O notation, the quantum
Fourier transform requires O((n + 1) + · · · + 2 + 1) = O(n2) simple gates.
Compare this with the best known time complexity of the discrete (classical)
Fourier transformO(n2n), the speed up is exponential. This makes the quantum
Fourier transform an incredibly powerful tool to have when designing quantum
algorithms.
The catch here is of course that one does not actually know the amplitudes
when using the quantum Fourier transform. After all, postulate 3 tells us that
by measuring the state we inevitably also collapse it.

3.3 The Fundamental Theorem of Finite Abelian
Groups

3.1.1. G is abelian As mentioned earlier, when dealing with algebraic represen-
tations of groups our main interests are products of cyclic groups. The reason
for this being that, as it turns out, every finite Abelian group can be decom-
posed into a direct product of cyclic groups of prime order.
Seeing how this theorem is such a fundamental component in solving the HSP,
we will dedicate this section to building up some background to the theorem in
order to prove it. The proofs and theorems that follow are taken from Judson[8].
Consider the following definitions, the first one being a generalization of Abelian
groups.

Definition 3.3.1. Generated group
Let S be a set of elements gi ∈ G for some Abelian group G. The smallest
subgroup H of G containing all the elements in S is the group generated by S.

Proposition 3.3.1. Let H be the subgroup in the Abelian group G generated
by the set S = {g1, g2, ...}. Then h ∈ H ⇔ h = gα1

i1
gα2
i2
...gαnin for some n ∈ N

and α1, . . . , αn ∈ Z. In other words, when h is a product of generators to some
exponent.

Proof. It’s clear that elements of the form gα1
i1
gα2
i2
...gαnin are in H, since it’s the

smallest subgroup of G that contains all elements in S. It remains to show the
other direction of the arrow.
LetK be the set of all elements of the form gα1

i1
gα2
i2
...gαnin . Clearly this set contains

all elements in S, so if K is a group (with respect to multiplication) then H = K
since we already showed K < H. The identity element is contained in this set,
since g0ik = 1. The inverse of any element gα1

i1
gα2
i2
...gαnin is just g−α1

i1
g−α2
i2

...g−αnin
.,

and it’s clear that it’s closed under the group operation. Associativity follows
from the multiplication operation.
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Definition 3.3.2. p-group
A p-group is a group G such that |g| = pα for some α for every g ∈ G, where
|g| refers to the order of the element g in G.

With the second definition in mind, we will prove a special case of the fun-
damental theorem of finite Abelian groups.

Proposition 3.3.2. Every finite Abelian group is isomorphic to a direct product
of p-groups.

Proof. Suppose G is a finite Abelian group. The case |G| = 1 is trivial. Let
|G| > 1 and |G| = pα1

1 pα2
2 ...pαnn for some unique prime decomposition. Define

Gi to be the set of all g ∈ G such that the order of g is pαi for some α ≥ 0.
We want to show that G ∼= G1 ×G2 × ...×Gn, since this is a direct product of
p-groups. By Lagrange’s theorem, the order g of an element of a group divides
the order of the group. Write

|g| = pβ1

1 p
β2

2 ...p
βn
n

for some element in G. Now let ai = |g|/pβii , which means gcd(a1, a2, ..., an) = 1.
Then there are coefficients bi such that a1b1 + a2b2 + ...+ anbn = 1. With this
in mind, consider

g = ga1b1+a2b2+...+anbn=1 = ga1b2ga2b2 ...ganbn .

For each term in this product, notice how gaibip
βi

= g|g|bi = e. This of course
means that each gi = gaibi belongs to its respective subgroup Gi, and that every
g has a decomposition g = g1g2...gn.
It remains to show that this decomposition is unique. Let g = h1h2...hn. Then
e = g1g2...gn(h1h2...hn)−1 = g1h

−1
1 g2h

−1
2 ...gnh

−1
n . We observe that every gih

−1
i

must be of order pαi for some α. This means that the order of g1h
−1
1 g2h

−1
2 ...gnh

−1
n

is the greatest common product of the orders gih
−1
i , which of course is e. This

proves uniqueness. Thus G ∼= G1 ×G2 × ...×Gn
Lemma 3.3.1. Every finite Abelian p-group G can be written 〈g〉×H for some
g ∈ G of maximal order and for some subgroup H of G.

Proof. Let’s proceed by induction. If |G| = pn for the case n = 1, then we can
write G as 〈g〉 ×H for some generator g and H = {e}. Now assume the lemma
is true for all 1 ≤ k < n, and let g be an element in G of maximal order, say
|g| = pm. This means for all a ∈ G, ap

m

= e. We know that 〈g〉 6= G since
otherwise we would be done. We can assume that there is an element h /∈ 〈g〉 of
smallest possible order. We define H = 〈h〉. Next we want to show that these
groups are disjoint except for the identity element, 〈g〉∩H = {e}. To show this,
it actually suffices to show that |H| = p.

We know |hp| = |h|
p , so hp ∈ 〈g〉 because h is by definition the element with the

smallest order that is not in 〈g〉. Thus hp = gx for some integer x. Then the
following is true,

(gx)
pm−1

= (hp)
pm−1

= hp
m

= e.
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Also |gr| ≤ pm−1. Because of this, gr cannot generate 〈g〉. Notice that r is a
multiple of p, say r = ps, so hp = gr = gps. Let a = g−sh, clearly a is not in 〈g〉
because h is not in 〈g〉. Consider how

ap = g−sphp = g−rhp = h−php = e.

Thus a is an element with order p such that a /∈ 〈g〉. But h is by definition such
an element with the smallest order, so all elements that are not in 〈g〉 must have
order p. Thus |H| = p. Finally we will show that |gH| has the same order as
g ∈ G. Assume by contradiction that |gH| < |g| = pm. This means

H = (gH)p
m−1

H

which means gp
m−1 ∈ 〈g〉 ∩H = {e}. But then the order of g can’t be pm. Thus

gH has maximal order in G/H. Using the correspondence theorem (we will not
prove this) and by our induction hypothesis,

G/H ∼= 〈gH〉 ×K/H.

for K < G containing H. Let b ∈ 〈g〉∩K, this implies that bH ∈ 〈gH〉∩K/H =
{H} and b ∈ 〈g〉 ∩H = {e}. It follows that G = 〈g〉K =⇒ G ∼= 〈g〉 ×K.

Finally we are ready to present the fundamental theorem. It follows easily
from the previous results.

Theorem 3.3.2. Fundamental Theorem of Finite Abelian Groups
Every finite Abelian group is isomorphic to a product of cyclic groups of the
following form,

Zα1
p1 × Zα2

p2 × ...× Zαnpn .

Proof. Every finite Abelian group is isomorphic to a product of p-groups

G1 ×G2 × ...×Gn.

Here |Gi| = pαi for the corresponding element in the prime decomposition of
|G| = pα1

1 pα2
2 ...pαnn .

By the lemma above, each Gi is isomorphic to 〈g〉 ×H for some maximal order
element g and subgroupH ∈ G. Of course, H being a subgroup ofG implies that
it also is a p-group. Applying the same lemma to H we can further decompose
this until H = e. This is true because G is finite. Doing this for each component
Gi gives us our desired decomposition.

3.4 Solving the Finite Abelian Hidden Subgroup
Problem

In this section we will give a general procedure to solving the finite Abelian
HSP. As reference we will be using[5].
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Assume we are given a finite Abelian group G where |G| = n, and a function
f that implicitly defines H as in definition 3.0.1. Let the two n-qubit input
be |ψ0〉 = |0〉⊗n ⊗ |0〉⊗n, the first n qubits we refer to as the first register and
the other n as the second register. It’s common to refer to the the gate which
computes the function f as Uf , or as ”the oracle”. It acts on two registers like

|x〉 |0〉 → |x〉 |f(x)〉 .

Rather than finding H itself, the solution finds generators for H⊥, which can
later be used to find H since (H⊥)⊥ ∼= H. The solution consists of four steps.

Initialization

The H⊗n gate is applied to the first register,

|ψ1〉 =
1√
|G|

∑

g∈G
|g〉 |0〉⊗n .

Applying the oracle

We simply apply the oracle to the state in order to store the function output in
the second register. We end up with a sum of cosets,

|ψ2〉 = Uf |ψ1〉 =
1√
|G|

∑

g∈G
|g〉 |f(g)〉.

Notice that the state has become entangled.

Measuring second register

By measuring the second register, the first register collapses into some element
in the same coset as the measured register,

|ψ3〉 =
1√
|H|

∑

h∈H
g̃H.

This measurement really just yields a random f(g̃) for some g̃ ∈ G, since each
coset has the same probability of being chosen.

The quantum Fourier transform

Apply the quantum Fourier transform to |ψ3〉:

|ψ4〉 = F(|ψ3〉) =F(
1√
|H|

∑

h∈H
|g̃h〉)

=
1√
|G||H|

∑

h∈H

∑

g∈G
χg(g̃h) |g〉 .
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χg is a group homomorphism, so we can also write it

1√
|G||H|

∑

h∈H

∑

g∈G
χg(g̃)χg(h) |g〉

=
1√
|G||H|

∑

g∈G
χg(g̃)

(∑

h∈H
χg(h)

)
|g〉 .

From Schur’s lemma for subgroups (3.3.1.1.), we know that
∑
h∈H χg(h) 6= 0

only when χg(h) = 1∀h ∈ H.. By definition, all such g are members of H⊥. So
measuring the state at this point returns an index g from some random element
χg in H⊥, which is precisely what we want. We already know that every finite
Abelian group is isomorphic to some kind of product of cyclic groups. If we let
G be such a product (Zα1

p1 , . . . ,Z
αn
pn ), measuring |ψ4〉 would return a product of

such indexes (g1, . . . , gn) where gi ∈ Zαipi .

In the next section, we will finally make use of this generalization. We will see
that some important quantum algorithms, including Shor’s algorithm, may be
formulated in terms of the finite Abelian HSP.
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Chapter 4

Quantum Algorithms

In this chapter we present two important quantum algorithms. First we include
Simon’s algorithm to show a common approach for quantum algorithms. Sec-
ond we show Shor’s algorithm. Order finding, perhaps conceptually the hardest
part of Shor’s algorithm, can be seen as a finite Abelian HSP. Simon’s problem
is also such a special case. We take time to develop tools that better our un-
derstanding of order finding, like quantum phase estimation.
The goal of this chapter is to provide the reader with an in depth understanding
of these quantum algorithms in the context of showcasing quantum computa-
tional techniques. This means that the classical parts of the algorithms, while
important, will not be our focus.

4.1 Simon’s problem

While having a solution to Simon’s problem isn’t very interesting in itself, the
techniques used in the solution definitely are and eventually came to inspire
Shor’s algorithm. Consider the definition, which we will use in the problem
formulation.

Definition 4.1.1. XOR operation
Let x = x1x2 . . . xk, y = y1y2 . . . yk ∈ Zk2 . The XOR between these elements
x⊕ y is an element in c = c1c2 . . . ck ∈ Zk2 such that ci = xi + yi mod 2.

Definition 4.1.2. Simon’s problem
Let f : Zn2 → Zn2 be a two-to-one function such that there exists an s ∈ Zn2 , s 6= 0
with the following property:
f(x) = f(y)⇔ x⊕ y ∈ {0, s}. Where ⊕ is the XOR operation.
Simon’s problem is finding s.
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Example 4.1.1. A two-to-one function f is given by

00→ 11

10→ 10

01→ 10

11→ 11

We can visually verify that f(10) = f(01) = 10. This means that 10 ⊕ 01 =
11 ∈ {00, s}. Thus the solution is s = 11.
For cases n = 2, it’s easy to find a solution. This becomes exponentially harder
as n increases.

Clasically, the lower bound for solving this problem is O(2N/2) steps for
f : {0, 1}N → {0, 1}N [9]. The quantum solution offers exponential speed-up,
which is undeniably impressive.
Simon’s problem can be formulated in terms of the finite Abelian HSP. Set
G = Zn2 with the XOR operation ⊕ and a subgroup H = {0⊗n, s}. Of course,
f is the function that implicitly defines the subgroup H, which me must find
generators for.
Just to illustrate, we follow the procedure outlined in the previous chapter.

Simon’s algorithm

Assume we have a case of Simon’s problem and we are provided with a function
fZn2 → Zn2 . The following probabilistic algorithm returns the solution s.
Input: Two zero registers |0〉⊗n |0〉⊗n. Assume we know an efficient implemen-
tation of the oracle function f , Uf .

• Initialization: Applying the Hadamard gates,

1

2n/2

∑

x∈Zn2

|x〉 |0〉⊗n .

• Oracle: The application of the Oracle Uf entangles the two registers.

1

2n/2

∑

x∈Zn2

|x〉 |f(x)〉 .

• Measurement: By measuring the second register, we are left with a state
of the form

1√
2

(|x〉+ |x⊕ s〉)

• Quantum Fourier transform: The representations for Zn2 can be writ-
ten χi(j) = (−1)ij for i = 0, 1. Note that the quantum Fourier transform
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in this case is the Hadamard gate, and that we compute the elements
x, z, s as their numeric value in the exponent.

1

2n+1

∑

z∈Zn2

(
(−1)xz + (−1)(x⊕s)z

)
|z〉

By applying Shur’s lemma for subgroups, we know that the measurement of the
state returns an element zi of H⊥ = {z|(−1)s·z = 1∀z ∈ H}. This can also be
seen by the following reasoning:
The only non-zero output of measuring the first register is the case where
(−1)xz = (−1)(x⊕s)z. This implies

x · z = (x⊕ s) · z (4.1)

x · z = x · z ⊕ s · z (4.2)

s · z = 0 mod 2. (4.3)

Equation (4.2) is a property of the XOR operation.
Each time this process is repeated we obtain some random zi. We wish to obtain
n− 1 unique elements zi ∈ H⊥, how many times should we repeat the process
to obtain this with good accuracy? If we repeat the procedure n times, the
probability of choosing n unique such zi is given by

n∏

k=1

(
1− k

2n

)
>
(

1− n

2n

)n
.

Given n is large, this will be very close to 1. Thus we can expect to get a correct
answer by repeating the algorithm O(n) times. It remains to solve the system
of equations,





s · z1 = 0 mod 2

s · z2 = 0 mod 2

. . .

s · zn−1 = 0 mod 2

.

With n− 1 independent equations there are two possible solutions. The trivial
solution s = 0 and the non-zero solution s. The system of equations may be
solved with Gaussian elimination, which is O(n2) steps. The quantum part
takes O(n) steps we repeat the process roughly nk times, where k is the number
of simple gates.

Theorem 4.1.1. Simon’s algorithm can solve Simon’s problem in O(n2) time.

Proof. The Hadamard gates are O(n). The oracle is just the XOR operation,
which may be done O(n) classically. In other words, the quantum part of
Simon’s algorithm is O(n). The bottleneck is the classical Gaussian elimination
part which is O(n2).
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A quantum circuit implementation of Simon’s algorithm is included in the
figure below.

|0⊗n〉 H⊗n

Uf

H⊗n

|0⊗n〉

Figure 4.1: A quantum circuit illustrating the quantum part of Simon’s algo-
rithm.

Intuitively, we can see this algorithm as a way of gathering ”clues” about H
without actually knowing H. We find these clues as elements of a group H⊥.
After having a sufficient amount of ”clues”, one stops the process.
Hopefully this has illustrated the power of seeing problems as special cases of
the finite Abelian HSP. We will further illustrate this through Shor’s algorithm.

4.2 Shor’s algorithm

Unlike Simon’s problem, the solution to the integer factorization problem defi-
nitely holds interest. For clarity and consistency, we will describe the problem.

Definition 4.2.1. Integer factorization problem Given a composite number
N , find the prime decomposition N = pα1

1 pα2
2 . . . pαkk . This necessarily exists

because of the fundamental theorem of arithmetic.

This is an overview of the algorithm:
For some composite number N the idea of the classical part is to find the order
r of some number 1 < a < N such that ar = 1 mod N . Pick another a if r
ends up being odd. If a and N do not share any common factors then we may
say that (ar/2 + 1)(ar/2− 1) = 0 mod N. This is the reason we wanted an even
r, so that ar/2 would be a whole number. If neither (ar/2 + 1) nor (ar/2 − 1)
is a multiple of N , it must mean at least one of them share a non trivial factor
with N . We may find this easily with gcd(N, ar/2 + 1) and gcd(N, ar/2 − 1).
Shor’s algorithm solves this in two parts; A classical part and a quantum part.

The classical part

The objective of the classical part of the algorithm is to reduce the problem to
the problem of order finding.

Definition 4.2.2. Order finding problem
Given a group G and an element a ∈ G, return the order of a.

The first three steps of the algorithm reduces the problem of factoring to
the problem of order finding. Just like Simon’s algorithm, Shor’s algorithm is
probabilistic and needs to be repeated several times in order to achieve a certain
accuracy for the answer.
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Shor’s algorithm

It accomplishes this as follows.

1. Pick a random element a ∈ Zn, a > 1.

2. Calculate gcd(a,N) with the Euclidean algorithm

3. if gcd(a,N) 6= 1 we’re done (very unlikely).

4. Find the order r of a in Zn through the quantum subroutine.

5. If r is odd, go back to the first step.

6. If either ar/2 + 1 or ar/2 − 1 is a multiple of N , go back to the first step.

7. At least one of the two numbers ar/2 + 1 or ar/2 − 1 must have a non
trivial factor of N . Calculate the following with the Euclidean algorithm,
gcd(N, ar/2 + 1) and gcd(N, ar/2 − 1).

The only difficult part here is order-finding, which is handled by the quantum
subroutine of the algorithm.

The quantum part

Finding the order of an element is no easy task classically. No classical algorithm
is known to be able to do this polynomial time.
Thankfully this can be done much faster with the tools we have developed in the
previous chapter. First we will describe the intuition of the solution in a high
level overview. Order finding is the most important part of Shor’s algorithm,
and we will spend time going into the details of how it works. That being said,
some classical results will be stated but not proven in order to not lose sight of
the goal of the chapter. That is to showcase common quantum computational
techniques for designing algorithms. We will show two different, at least in name,
ways of thinking about the problem. Through Quantum phase estimation and
as a finite Abelian HSP.

• Picking up from step 4 in the classical part, assume we have a suitable a.
Let f(x) be the function f(x) = ax mod N .

• Apply Uf to the registers |x〉 |0〉 so that we get a uniform superposition of
all possible values |x〉 |f(x)〉.

• We know |x〉 is entangled with |f(x)〉 By measuring the second register, the
first register will be a uniform superposition of all |x′〉 such that f(x′) =
f(x).

• All these values differ by a multiple of the period r. If only we could
measure more than one value at one point, figuring out the period would
be easier.
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• Instead we apply the quantum Fourier transform. The intuition here is
that we transform states into waves, that either constructively interfere to
amplify the correct answer or destructively interfere to reduce the incorrect
answers. After measuring one only obtains a sort of approximation of the
correct answer. Even more abstractly, one can may get ”clues” as to what
the period r could be this way.

• Repeat this subroutine until one has sufficient ”clues”.

Quantum phase estimation

We will find the order of an element by using quantum phase estimation. By
approximating some appropriately chosen phase through the process of con-
structive interference, one may get clues as to what the order is. More formally,
this is the problem we’re trying to solve.

Definition 4.2.3. Phase estimation problem Let some state |ψ〉 = 1
2n

∑2n−1
k=0 eiφk|k〉.

The problem of finding an approximation φ of φ̃ will be referred to as the phase
estimation problem.

In this case, the problem will manifest itself as finding the eigenvalue e2πiφ

of some eigenvector |u〉 for some unitary matrix U.

Quantum phase estimation algorithm

Let |u〉 be an eigenvector to the unitary matrix U , with eigenvalue e2πiφ. for
some unknown phase φ ∈ R.

1. Initial state: We initialize the state with two registers. The first register
holds our estimation of φ in t for some appropriate t depending on the de-
sired accuracy of the estimation. The second register holds our eigenvector
|u〉.

|ψ0〉 = |0〉⊗t |u〉 .

2. Superposition: Apply H⊗t on the first register.

|ψ1〉 =
1

2t/2
(|0〉+ |1〉) |u〉 .

3. Controlled operations: Apply controlled-U j operations as shown in
figure 4.2. The resulting state is

|ψ2〉 =
1

2t/2

(
|0〉+ e2πiφ2

t−1 |1〉
)
⊗
(
|0〉+ e2πiφ2

t−2 |1〉
)
⊗· · ·⊗

(
|0〉+ e2πiφ2

0 |1〉
)
⊗|u〉 .

Motivation: Note how U2j |u〉 = U2j−1

e2πiφ |u〉 = · · · = e2πi2
jφ.

4. Inverse quantum Fourier transform: By applying the inverse quan-
tum Fourier transform, we will get an estimation of φ.

|ψ3〉 =
∣∣∣φ̃
〉
|u〉 .
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5. Measurement The first register is measured and we get a t-bit approxi-
mation φ̃ of φ.

|ψ〉4 =
∣∣∣φ̃
〉
.

. . .

|0〉⊗t

H

F†
H

. . .

H

|u〉 U2t−1

U2t−2

U20

Figure 4.2: A solution to the phase estimation problem.

Order finding with quantum phase estimation

Let’s show how phase estimation may be used to find the order of elements. For
some element a ∈ ZN where N is a L bit composite integer, we wish to find the
order r. Consider the L-qubit operator

U |y〉 ≡
{
|a · y mod N〉 , 0 ≤ y ≤ N − 1

|y〉 , N ≤ y ≤ 2L − 1

Proposition 4.2.1. The operator U defined above is unitary.

Proof. One way to see this is to show ‖Ux‖ = ‖x‖ for all x ∈ Cn. In other
words, show that U is an isometry with respect to the complex norm. Let
|b〉 = α1 |b0〉 + · · · + αk |bk〉 be some linear combination of basis states. Let
αi |bi〉 be one component in this linear combination, and a ∈ Zn. Note how
either Uαi |bi〉 = αi |abi mod N〉 or Uαi |bi〉 = αi |bi〉 . Neither of which changes
the length of the input vector αi |bi〉 . This implies that the size of the linear
combination is preserved. Since all elements may be written as such a linear
combination, it must mean that vector length is preserved with respect to the
transformation. This means that U is unitary.

The following states are eigenvectors for U:

|us〉 =
1√
r

r−1∑

k=0

e−2πi
sk
r

∣∣xk mod N
〉
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for 0 ≤ s ≤ r − 1. We can see this since

U |us〉 =
1√
r

r−1∑

k=0

e−2πi
sk
r

∣∣xk+1 mod N
〉

=
1√
r

r∑

k=1

e−2πi
s(k−1)
r

∣∣xk mod N
〉

=e2πi
s
r |us〉

Why is this significant? Because the state |us〉 is a superposition of states which
have the property that their representations differ by some multiple of r.
However, we don’t actually know the eigenvectors |us〉 because we don’t know r.
So how does one go about preparing the state |us〉? We circumvent this problem
by initializing the second register as |1〉⊗n and observing that

1√
r

r−1∑

j=0

|us〉 = |1〉⊗n .

The remaining problem is extracting information regarding our estimated phase
s̃
r =

∣∣∣φ̃
〉
.

Two cases

Before going any further, we let the reader know that there are two cases that
we may find ourselves in while attempting to find the phase φ.

1. The easy case: φ has a representation φ = [0.φ1φ2 . . . φt]

2. The general case: φ does not have such a representation.

The approach for each case is equivalent, but differ in the probability of success.
The same circuit shown in figure 4.2 is used in both cases. We will note some
differences in the steps.

The easy case

For this scenario, assume that φ = [0.φ1φ2 . . . φt].
With this assumption, the state |ψ2〉 at step 3 is really just an application of the
quantum Fourier transform F(|ψ0〉). This can be seen from proposition 3.2.2.
After applying the inverse quantum Fourier transform we recover the state
|φ〉 |u〉. Upon measuring the first register we obtain |φ〉. As already mentioned,
we have prepared the input state such that φ = s

r for some 0 ≤ s ≤ r − 1.

The general case

Assume φ cannot be expressed using t bits. As it turns out, we may still get a
good approximation of φ with a high probability. This is foreshadowed by our
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choice of notation φ̃ when describing the order finding algorithm. The fact that
we refer to this case as the general one is because most fractions between 0 and
1 cannot be represented as a t-bit binary fraction.

Theorem 4.2.1. Let φ be such that it has no representation φ = [0.φ1 . . . φt].
To obtain an approximation of φ accurate to 2L + 1 bits with probability 1 − ε
of success, one may choose t as

t = 2L+ 1 +

⌈
log2

(
2 +

1

2ε

)⌉

Where L is dlog2(N)e.

Proof. See the proof in Nielsen and Chuang[6].

The continued fraction expansion

Having obtained an approximation φ̃ = s̃
r , how should one extract information

from this clue? We do this with continued fractions. Consider the lemma,

Lemma 4.2.2. Let φ̃ be the approximation of the rational number s
r to t bits

given as the output of out phase estimation algorithm. Then

∣∣∣s
r
− φ̃

∣∣∣ ≤ 1

2r2
.

Proof. By setting t = 2L+ 1 +
⌈
log2

(
2 + 1

2ε

)⌉
as in theorem 4.2.1., we see that

∣∣∣s
r
− φ̃

∣∣∣ ≤ 2−2L−1 ≤ 1

2r2
. (4.4)

This is because r ≤ N ≤ 2L.

This lemma is used in a fairly well known result,

Theorem 4.2.3. Suppose s
r is a rational number with the property

∣∣∣s
r
− φ̃

∣∣∣ ≤ 1

2r2
.

It follows that s
r is a convergent of the continued fraction for φ̃, and may be

computed in O(L3) steps using the continued fractions algorithm.

Proof. Using the above lemma, we know φ̃ has this property. The rest of the
proof is outside the scope of this paper, and we refer to books such as An
Introduction to the Theory of Numbers by Hardy, Wright, Wiles.
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The continued fractions algorithm

The idea of this algorithm is to describe rational numbers in terms of continued
fractions.

[a0, . . . , aM ] ≡ a0 +
1

a1 + 1
a2+

1

···+ 1
am

for positive integers a0, . . . , aM . Rational numbers are represented by finite con-
tinued numbers. Let a be some real number and consider the following recursive
process.

1. Split a into it’s integer and fractional part by

a = a0 + r1.

2. Invert the fractional part so that

a = a0 +
1
1
r1

.

3. Apply step one and two for 1
r1

,

a = a0 +
1

a1 + 1
r2

.

4. Repeat until the decomposition into a continued fraction may be repre-
sented without a fraction. That is to say, using only integers.

Example 4.2.1. Let’s apply the continued fractions algorithm on 15
11 .

15

11
=1 +

4

11

=1 +
1
11
4

=1 +
1

2 + 3
4

=1 +
1

2 + 1
4
3

=1 +
1

2 + 1
1+ 1

3

=[1, 2, 1, 3].

The continued fraction algorithm can be done classically without the need for
a quantum circuit. We only include this result to show later that it will not
affect the time complexity of the algorithm. As to not lose focus of our goal
of giving a comprehensive view of Shor’s algorithm in the context of quantum
computation, we will not prove this classic result.
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Theorem 4.2.4. For rational numbers p
q , the continued fraction algorithm will

complete in (at least) O(L3)

Proof. We refer to Loceff[12].

The order finding algorithm

We now have all the tools needed to show a final version of the order finding
subroutine.

1. Initialization:
→ |ψ0〉 = |0〉⊗t |1〉⊗L

2. Apply Hadamard on first register

→ |ψ1〉 =
1√
2t

2t−1∑

j=0

|j〉 |1〉

3. Applying the oracle:

→ |ψ2〉 =
1√
r2t

r−1∑

s=0

2t−1∑

j=0

e2πij
s
r |j〉 |us〉

4. Inverse quantum Fourier transform:

→ |ψ3〉 =
1√
r

r−1∑

s=0

∣∣∣φ̃
〉
|us〉

5. Measure first register:
→ φ̃

6. Continued fraction algorithm:

→ r′

This algorithm will yield the correct answer with a certain probability. To in-
crease the probability of attaining the correct answer, one repeats the algorithm
a number of times to verify the correct answer. Hopefully, an example will help
with illustrating the process we just outlined.

Example 4.2.2. This is how using Shor’s algorithm to factor N = 91 might
look.
We begin by arbitrarily choosing some integer, say a = 3. After confirming that
gcd(91, 3) = 1, we pick appropriate sizes for the two registers. Because N < 27,
we would need L = 7 and t = 2L+1 = 15 qubits in the second register. We will
use these 15 qubits to approximate the phase φ. The input to the order finding
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algorithm for order r will thus be |0〉⊗t |1〉⊗L, which after having applied the
Hadamard gates to the first register becomes

(
|0〉+ |1〉+ · · ·+

∣∣215
〉)
⊗ |1〉 .

After this it’s time to apply our oracle, the controlled-U2j operations.

1√
215

(|0〉 |1〉+ |1〉 |3〉+ |2〉 |9〉+ |3〉 |27〉+ |4〉 |81〉+ |5〉 |61〉+ . . . )

Notice that this can be rewritten as

1√
215

((|0〉+ |6〉+ |12〉+ . . . )⊗ |1〉+ (|1〉+ |7〉+ |13〉+ . . . )⊗ |3〉+ . . . )

If only we could look inside the circuit and see the state, we would be finished
here. But alas, by observing the state we also collapse it. This wouldn’t give
use any worthwhile information. This is when we apply the inverse quantum
Fourier transform to the first state and measure the second register, amplifying
the amplitudes for 2t

6 · s for s ∈ Z+. Thus we would have a high probability

of obtaining the states which are approximate multiples of 2t

r = 215

6 . A rough
illustration of this is given by figure 4.3.

Figure 4.3: A rough illustration of what the state in example 4.2.2 may look
like after applying the inverse quantum Fourier transform

After measuring, one obtains one such approximation. Say we obtain the
state |27307〉, which is the integer closest to 215 5

6 . This is the ”clue” we use to
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extract information about r through the continued fractions algorithm.

27307

215
=

27307

32768
=

1

1 + 1
5+ 1

2730+ 1
2

.

After the first two convergents 1
1 ,

5
6 we see that the next one is very small since

2730 is large. This leads us to believe that the denominator yields the answer,
r = 6. Let’s check this.

36 ≡ 1 mod 91.

We have found the order of a = 3. We see that r is even, and neither 33 +1 = 28
nor 33 − 1 = 26 is a multiple of 91. Thus either 28 or 26 have a non-trivial
factor with 91. This can easily be calculated with Euclid’s algorithm.

gcd(91, 28) = gcd(28, 91− 28 · 3) = gcd(7, 28− 7 · 4) = 7.

We see that 91
7 = 13. Since 13 is a prime, we have a complete factorization

91 = 7 · 13.

Using HSP

Another way to think about the order finding problem is as a finite Abelian
HSP. Consider the following formulation. To make things easier, assume that
we are dealing with the easy case. That is, the order r divides N Consider,
Group G = ZN and a periodic function f(x + r) = f(x) where r is the period
to some element a ∈ G.
This function implicitly defines the subgroup H = {kr|k ∈ [0, . . . , N/r]}. We

would like to find r, the generator of the subgroup H. Put χg(h) = e2πi
gh
N and

H⊥ = {x|e2πi xhN = 1∀h ∈ H} = {x|xkr = 0 mod N∀k ∈ [0, . . . , N/r]}.

The procedure outlined in chapter 3 yields an x ∈ H⊥. This element x satisfies
xkr = 0 mod N∀k ∈ [0, . . . , N/r]. This implies that xr = 0 mod N , so x is
a multiple of N/r. We use this clue to compute r with the help of continued
fractions.
Worth noting is that the quantum Fourier transform in step 4 in this case is the
inverse quantum Fourier transform.

4.2.1 Pitfalls of order finding

There are some issues we haven’t addressed regarding this approach of finding
orders. First of all, the output of the phase estimation at step 5 outputs some
m-bit estimation φ̃ = s′

r′ of φ. If gcd(s′,′ r) 6== 1, the denominator will not be
an approximation of r but rather a divisor of r.
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Numerator and denominator have common factors

How do we go about resolving the situation? The by far simplest way is simply
realizing the following: It should be fairly unlikely that s′ and r′ share a factor
larger than 1. The prime number theorem tells us that the probability of s being
a prime smaller than r is given by 1

log r . Thus by repeating the algorithm logN

times we will will a high probability observe a phase s′

r′ such that gcd(s′, r′) = 1.

Oracle implementation

We have naively assumed that the oracle gate in our algorithm is some sort of
black box, the implementation details of which we haven’t bothered to verify.
Thankfully, this abstraction doesn’t turn out to be a problem since it’s fairly
straightforward to implement controlled -U2j operations.

|a〉 |b〉 → |a〉Uat2t−1

. . . Ua12
0 |b〉

= |a〉
∣∣∣xat2t−1 · · · · · xa120b mod N

〉

= |a〉 |xab mod N〉

Here a is the content of the first register. Knowing the reversible techniques used
in chapter 2, this is not hard for us. Simply reversibly compute xa mod N in
a third register. In this same register, reversibly multiply the contents of the
second register with the contents of the third register. Then just uncompute the
third register using the techniques outlined in chapter 2. As for the modular
exponentiation part, we first observe the following:

xz mod N =
(
xat2

t−1

mod N
)(

xat−12
t−2

mod N
)
. . .
(
xa12

0

mod N
)
.

We can use modular multiplication to compute x2 mod N and by repetition x2
j

mod N. Since we use t = 2L+ 1 + dlog
(
2 + 1

2ε

)
e = O(L), we need t− 1 = O(L)

squaring operations which in turn are O(L2). This of course means we need
a total of O(L3) operations. We conclude that oracles may be implemented
in polynomial time. Instead of replacing these black box abstractions in our
circuits, we will keep them for simplicity sake. We are happy just knowing that
they may be implemented reasonably.

4.2.2 Time complexity

The reason Shor’s algorithm has garnered so much attention is because of its
polynomial time complexity. Having illustrated the functionality of the algo-
rithm previously, we will show that it is also tremendously fast.

• Hadamard gates are O(L).

• The oracle is implemented with modular exponentiation, which as shown
before can be done in O(L3) time.
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• The inverse quantum Fourier transform of course has the same time com-
plexity as the quantum Fourier transform, which is O(L2).

• Recall that classically, theorem 4.2.4. states that the continued fraction
algorithm completes in O(L3).

Theorem 4.2.5. Shor’s algorithm computes a factor a of any integer N in
O(L4).

Proof. The bottleneck of Shor’s algorithm is modular exponentiation, which
is O(L3). Coupled with the reasoning above, and the fact that we repeat the
algorithm approximately O(L) times implies that time complexity is O(L4).

Closing words

In chapter 4 we have chosen to focus on only Simon’s algorithm and Shor’s
algorithm. However, the techniques used in these algorithms can be found in
many other quantum algorithms. The interested reader is may be interested in
studying Deutsch’s algorithm and Shor’s discrete logarithm algorithm. These
are both special cases of the finite Abelian HSP.
The techniques we have developed in earlier chapters will also suffice to study al-
gorithms such as Grover’s search algorithm. Due to time constraints the author
has chosen not to include the aforementioned three algorithms, but encourages
the reader to do their own research regarding these.
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