
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK
MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET

RNG and Derandomized Algorithms

av

Wictor Zawadzki

2020 - No K42

MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

RNG and Derandomized Algorithms

Wictor Zawadzki

Självständigt arbete i matematik 15 högskolepoäng, grundnivå

Handledare: Olof Sisask

2020

Abstract

Randomness is heavily relied upon in di�erent computation situations across many in-

dustries, but generating a lot of random numbers can be quite resource intensive. As a

result, an argument could be made in favor of derandomizing algorithms into determin-

istic form whenever possible. The goal of this thesis is to investigate random number

generation, and the use of randomness in algorithms. We �rst look at theoretical

construction of pseudo-random number generators, statistical tests, and cryptographic

random number generators, as well as some practical examples for these. The second

part of the thesis focuses on the di�erences in method and performance between ran-

dom algorithms and their derandomized counterparts. After looking at speci�c random

algorithms, we conclude in this thesis that deterministic algorithms seem to often suf-

fer a few disadvantages from not using random numbers. Two examples of signi�cant

drawbacks are the existence of pathological inputs, as well as that some algorithms may

fundamentally require randomness to function as intended, for instance cryptographic

systems.

Acknowledgements

I am very grateful to my supervisor Olof Sisask, who had the patience to oversee my

work these past months, provided helpful advice, and proofread my work. I would

also like to express my gratitude towards Boris Shapiro, who likewise took the time to

proofread my work.

Contents

1 Introduction 1

2 Random Number Generation 2
2.1 Background and Terminology . 2
2.2 Bias . 3
2.3 TRNG and its Insu�ciency . 4
2.4 PRNG and Derandomization . 5
2.5 Cryptography and CSPRNG . 8

3 PRNG in Practice 9
3.1 Statistical PRNG . 10

3.1.1 Linear Congruential RNG . 12
3.1.2 Mersenne Twister . 14
3.1.3 XorShift. 15

3.2 Cryptographically Secure PRNG . 16
3.2.1 NIST Hash_DRBG . 16
3.2.2 NIST HMAC_DRBG . 18

3.3 Bad CSPRNG . 20
3.3.1 Mathematics of Elliptic Curves . 21
3.3.2 NIST Dual_EC_DRBG (Obsolete) 23
3.3.3 The Dual_EC_DRBG Problem . 24
3.3.4 Demonstration . 25

4 Randomness in Algorithms 27
4.1 Simple Example . 28
4.2 Numerical Integration . 29

4.2.1 Monte Carlo integration. 30
4.2.2 Deterministic Numerical Integration. 33

4.3 Sorting Algorithms . 35
4.3.1 Randomized QuickSort. 35
4.3.2 Deterministic QuickSort. 38

4.4 Primality Testing . 39
4.4.1 Miller-Rabin Test . 39
4.4.2 Deterministic Miller Test . 41

4.5 Necessarily Random Algorithms . 42
4.5.1 Shu�ing Algorithms . 42
4.5.2 Cryptographic Algorithms . 43

4.6 Limitations of Derandomized Algorithms . 44

5 Open Problems in Random Algorithms 46

A Dual_EC_DRBG Backdoor Demonstration Script 49

1 Introduction

In practice, there are many purposes for which one may wish to use random number
generation. For instance, simulations may require an element of randomness to account for
unpredictable variables in what they aim to simulate. In statistics, it may be important to
take a number of random and independent samples of a particular body of data that is
too big to analyze fully. In computer security, we may desire to create some cryptographic
system using secret keys chosen in a way that potential attackers couldn't predict, much
like how locksmiths should want to make it di�cult to guess what the key to a speci�c
lock might be.

However, generating random numbers may be easier said than done. There are
myriad ways to generate random numbers, and all methods are not equally good. As if
that wasn't enough to consider, many situations have particular constraints on available
time, space and resources, making it even more crucial to choose the right random number

generator (RNG) for the right purpose. A random number generator is some mechanism
which can be used to generate a random number, two types of which will be discussed in
this project. It is because of the previously mentioned reasons that the increasing demand
of RNG for use in modern technology has led to the study of random number generation
becoming increasingly more important in the last several decades.

From this brief introduction, it should be clear that random numbers do not exist
in a vacuum. From �nding ways to generate random numbers and making sure that they
are random enough, to designing algorithms that use RNG and measuring how e�ective
they are, the study of randomness covers many �elds of mathematics and computer
science, such as number theory, statistical analysis and algorithm theory. As a result, this
work will take something of an interdisciplinary approach to consider randomness on both
theoretical and practical levels, from generation to application.

I should note that there is one resource in particular, The Art of Programming by
Donald Knuth, which was used throughout this project. I have opted to cite it only
whenever a signi�cant result from it is being used in the text.

1

2 Random Number Generation

2.1 Background and Terminology

The purpose of a random number generator is to output a number, often in the form of
a bit sequence, in an unpredictable manner and on demand. Since randomness does not
simply appear out of thin air, such generators will require some form of input.

Devices which generate a random number via some unpredictable physical event are
known as hardware random number generators, or true random number generators

(TRNG). Some such devices may generate random numbers by measuring radioactive
decay, or by counting keystrokes on a keyboard. A fairly simple one that may appear in
everyday situations is a coin toss, resulting in heads or tails at random.

The alternative to true random number generation is pseudo-random number gener-

ation (PRNG). Rather than a device that outputs numbers based on some unpredictable
phenomenon, it is an algorithm which takes some number input known as a seed and then
outputs a seemingly unpredictable number - we use the word "seemingly" here because
such an algorithm is typically completely deterministic, which is the motivation behind
putting "pseudo" in the name. Simple examples of such algorithms are linear congruential
generators, which using a seed x will output a number of the form f(x) = ax + b mod c
for su�ciently good choices of a, b, c. A PRNG is typically used in sequence, where instead
of creating a new seed (re-seeding) every time you want your PRNG to generate a random
number, you will use the last obtained random number to generate the next one, which
formulated recursively is xn+1 = f(xn).

We quickly run into an issue, however. How can we convince ourselves that a random
number generator is su�ciently random? This is especially important in cryptographic
context as we certainly want to give no clues to a potential attacker. However, even for
non-cryptographic RNG, usually referred to as statistical RNG for their use in statistical
algorithms, enough bias can skew results in unwanted ways and lead to e.g. incorrect/bi-
ased simulation [5]. One guiding idea is that of an ideal random number generator, as seen
in [18], which is a generator with uniformly distributed and independent outputs. It is not
di�cult to see how such a generator would provide the titular ideal random numbers.

Luckily, there is a number of methods to formalize how random a generator is, and
we will be de�ning three such concepts here. Let us consider the random number generator
as a random variable X with its potential outputs being its associated probability space,
where in the case of a TRNG we let this consist of the distribution of outputs of the
device. In the case of a PRNG we need to think somewhat out of the box, as they by
de�nition are strictly deterministic and hold no inherent randomness, only the "appearance
of randomness". Until we discuss PRNGs more thoroughly, we can consider them to be
the distribution of the outputs of the algorithm assuming the input is ideally generated.
In other words, we will look at a PRNG Y = f(X) as a random variable de�ned as

2

the function of an ideally random variable X, with the additional and rather vague
property of the output "seeming random" compared to the input. We will introduce
this idea by looking at three types of bias, taken from True Random Number Generators

[21, page 5] and the literature Fundamentals in Information Theory and Coding [3, page 11].

2.2 Bias

The �rst type of bias is perhaps the simplest, and only considers the distribution of indi-
vidual bits over time. We can call it simple binary bias, and we de�ne it as follows:

De�nition 2.1 A simple binary bias b for a random number generator X over a Bernoulli

distribution, in other words a two-point distribution over {0, 1}, as

b :=
p(1)− p(0)

2
,

where p(0) is the probability of a 0-bit being generated, and p(1) the same for a 1-bit.

This simple de�nition can be extended to sequences of n bits instead of just individual
bits, in which case the distribution is over 2n points corresponding to each possible bit
sequence. For n = 2, each possible sequence 002, 012, 102, 112 correspond to 0, 1, 2, 3. The
denominator for the general case would then be 2n, so for this example case where n = 2,
the expression describing the bias would be p(0)+p(1)+p(2)+p(3)

4 .

The most natural example of a generator that de�nitely fails the simple bias test is
one that outputs only 1-bits or only 0-bits, which will yield biases of b = 1/2 and b = −1/2
respectively. We may additionally desire that knowledge of previously generated random
bits does not give hints on what "nearby" bits may be. In other words, there is no
short-range correlation. This can for instance be modeled with serial autocorrelation
coe�cients:

De�nition 2.2 Serial autocorrelation coe�cients ak for a sequence of N bits (b1, . . . , bN)
with the mean value b is de�ned as

ak :=

∑N−k
i=1 (bi − b)(bi+k − b)∑N−k

i=1 (bi − b)2
,

where k denotes the number of bits of "lag", or the distance between the bits tested for

correlation.

Such coe�cients could for instance detect if every eighth bit generated is more likely to be a
1 than a 0, in which case a8 would be noticeably positive rather than approximately zero. An
example of a generator that would pass the simple bias test but would fail autocorrelation
is on that outputs an alternating sequence 101010 While the binary bias is b = 0, we
have for instance a1 = −1 and a2 = 1. The third concept, information entropy, is a measure
of bias that can be used for full generated numbers rather than individual bits. It can be
viewed as the average bias across all possible outputs.

3

De�nition 2.3 The entropy H(X) of a random number generator X, with the probability

space consisting of all its possible outputs xi and their associated probabilities p(xi), is

de�ned as follows:

H(X) := E[− log2(p(X))] = −
∑

i

p(xi) log2 p(xi),

in which E[·] denotes expected value. The unit of entropy is bits, and could more elaborately
be called "average number of bits worth of information".

Among discrete random variables X with n values, the entropy attains its maximum
H(X) = n log2 n for the uniform distribution, and its minimum H(X) = 0 for a single-
point distribution p(a) = 1 for a point a. More generally, it increases if there are many,
approximately equally improbably outputs in X, and it decreases if amongst these outputs
there are a few which are signi�cantly more likely. Since we do not want any speci�c
numbers to be especially likely to appear when we randomly generate numbers, one can
generally say that a generator with higher entropy is "more random" or "less biased" than
one with lower entropy. Naturally, higher entropy is desirable when we try to maximize
randomness.

These three concepts are some ways to measure of bias, and will later be integrated
into the more general concept of statistical tests. The amount and type of bias depends
on the generator, and there may sometimes be a trade-o� between low bias and, say, high
e�ciency. Other methods of measuring and testing the amount of bias in a generator will
be discussed further in section 3.1.

2.3 TRNG and its Insu�ciency

True random number generators have a few advantages over pseudo-random number
generators, perhaps most obviously that TRNGs do not rely on a seed to produce a
random number. Indeed, this mean that you need a seed from a TRNG for a PRNG
to function e�ectively. Additionally, two numbers generated by a TRNG are (typically)
independent of each other, whereas for a PRNG, a random number xn+1 = f(xn) depends
completely on the number xn used to generate it.

The question may then strike the reader. Why do we bother with PRNGs if TRNGs are
better? There are two primary answers to this question, leading to PRNGs being the
predominantly relied upon method of producing random numbers in practice.

Problem 1: Rate of generation. Since a TRNG generates numbers by measuring
some physical phenomenon, it can only generate a certain number of random bits per
second. Depending on the TRNG, attempting to exceed this limit is either impossible, or
will lead to signi�cant dependence between measurements which can manifest as increased
bias or other issues. A PRNG, in comparison, only requires TRNG seeds occasionally

4

for re-seeding, and otherwise can generate new random numbers as quickly as the system
allows it to. Even using modern methods trying to increase rate of generation, PRNGs are
almost always much more e�cient.

Part of the reason behind the ine�ciency of TRNG is the fact that whatever phe-
nomenon they measure to generate random bits is typically far from ideal. This can be in
the form of both non-uniform distribution and dependency between generated numbers.
To counter this, an algorithm to turn the distribution uniform and keep the outputs
independent is necessary. This process, in some cases referred to as debiasing, comes at
the cost of additional ine�ciency that PRNGs do not experience.

Problem 2: Cost of components. If one is dead set on using primarily TRNG to
generate random numbers, it may be tempting to counter the �rst problem by simply
using the best available TRNG components. However, this will also increase both the
total price of the components as well as the amount of physical space taken up, whereas
a PRNG is both without monetary price and doesn't require installing components that
take up physical space.

By no means can PRNG completely substitute TRNG, but as we can deduce from
the previously mentioned issues with TRNGs, it can be a necessary complement to it.

2.4 PRNG and Derandomization

The conclusions on the drawbacks of TRNGs in section 2.2 merits a closer look into
PRNGs, and we shall start with an introduction to the concept of derandomization.
Derandomization is the process of using a deterministic algorithm to substitute some
random algorithm, as to remove the need for the random input that the random algorithm
requires. As PRNGs are deterministic by de�nition, and serve to be used to partially
replace TRNGs which function on random input, the use of PRNGs can be seen as a
derandomization of TRNGs.

Let us de�ne a PRNG more explicitly. This is more di�cult than it might seem, as
its de�ning characteristic is that we expect the output to "seem random" while we very
well know that it is not. A common way of de�ning this is as an algorithm with outputs
that cannot be distinguished from TRNG by any e�cient testing algorithm, also known as
being computationally indistinguishable [7] from randomness.

We will settle on de�ning PRNGs as being indistinguishable from true randomness
by any polynomial-time random algorithm, in this context often referred to as statistical
tests if they use statistical analysis to "test" how random it is. As complexity will be
important later, we will de�ne it here based on how it is described in An Introduction to

Mathematical Cryptography [10, pages 78�80], in the context of time complexity.

5

De�nition 2.4 If an algorithm A(x) with input x has a running time of T (x), then it has

time complexity O(f(x)) with respect to x for some function f(x) if there is some constant
c and point C such that for all x ≥ C, T (x) ≤ cf(x). This is denoted by "T (x) = O(f(x))",
meaning that T (x) is bounded from above by some f(x), not necessarily in value but in its

rate of growth.

Let us consider an example. Consider an algorithm that takes a natural number x ∈ N,
and then performs a speci�c action x times. Assuming that this action always takes a
constant unit of time u to perform, this algorithm will take T (x) = ux time. Since u is
constant, ux is bounded from above by cx for all c > u, and so ux = O(x) with respect to
input x.

The use of O(f(x))-snotation in this manner is also applicable to functions not re-
lated to running time, but will primarily be used for that in this work. It is important
to take note of precisely what an algorithm's running time is taken to be "with respect
to", in other words what its variable is. When discussing time complexity of algorithms,
one typically does not consider the running time based on the input number itself, but
rather as a function T (n) of the "size of the input", usually in terms of its number of bits
n, where we let T (n) be the running time for length n. For instance, the decimal number
5 has the binary representation 1012 which is n = 3 bits long, which is why this is often
referred to as "bit length".

Going back to our earlier example of an algorithm that performs an action x times
for input x, if x is n bits long then we have x ≤ 2n. Then see that the running time
ux ≤ u2n = O(2n) with respect to the bit length n. In a scenario like this, we can say
that the input is O(n) bits in "size", since it is upper bounded by n = O(n). To make
comparisons between algorithms of very di�erent time complexities, there exist several
"classes" of time complexity. Let us look at some of the most important ones.

De�nition 2.5 Let an algorithm A with an input size of O(n) have a running time of

T (n). We say that

(i) A(x) has constant time complexity if T (n) = O(1), meaning it doesn't depend on n;

(ii) A(x) has polynomial complexity if T (n) = O(nk) for some k > 1;

(iii) A(x) has exponential complexity if T (n) = O(ekn) for some positive k;

(iv) A(x) has sub-exponential complexity if T (n) = Oε(e
εn) for every positive ε.

For inputs being natural numbers, input size means bit length, but for algorithms that
take other inputs, like lists, size could be something else, such as the length of the list.
Polynomial-time algorithms are considered to be "fast", and is what we usually mean by
"e�cient", whereas sub-exponential ones are considered to be fairly slow, and exponential
ones very slow. Once more, going back to our example about an algorithm repeating an
action x times, since T (n) = O(2n), and 2n = O(ekn) for k = 1, then that algorithm

6

is exponential with respect to the bit length, meaning that it is slow. This should be
fairly intuitive if we think of it in this manner: for every additional bit in the input,
the number of repetitions x will approximately double, meaning that it grows exponentially.

We notice that if we are looking at the pure input x instead of its size n, then if
the complexity with respect to the size is O(f(n)), then the one for the pure input is
O(f(log x)). Reiterating the importance of knowing what our algorithm is "with respect
to", our example algorithm has exponential time O(2n) with respect to bit length, but
with respect to pure input x is O(2log2 x) = O(x), meaning polynomial-time with respect
to the pure input.

With a de�nition of polynomial-time complexity, we can now formally de�ne a PRNG as
to distinguish it from just any bitwise function. We wish to remind ourselves that the
purpose of a PRNG is to be an extension of a TRNG; in other words, we take some smaller
number of random bits from a TRNG as a seed to generate a larger number of "seemingly
random" bits using this PRNG, as described in [7].

De�nition 2.6 An algorithm which calculates a function G : {0, 1}n → {0, 1}m, n < m
is a pseudo-random number generator if it is deterministic, and if for all polynomial-time

random algorithms A : {0, 1}m → {0, 1}, an ideally randomly chosen seed x ∈ {0, 1}n
and an ideally randomly chosen number in bit form r ∈ {0, 1}m, the absolute di�erence

|Pr(A(G(x) = 1))− Pr(A(r) = 1)| is negligibly small.

In the de�nition, if we speci�cally crafted A to be an algorithm to test randomness we
could for instance let its output being either 1 or 0 be a judgment on whether the input is
truly random or not. However, for the sake of generality, we make no such assumption.
Put another way, the second part of the de�nition means that any random algorithm A
would be essentially just as likely to consider the PRNG output as random, as it would
for an ideally random bit sequence. The primary strength of this de�nition is that we
practically assume that there is no e�cient random algorithm test that can run on a
computer program which can tell apart a PRNG's output from a TRNG's. However, in
practice, things are not quite so simple. This is partially because there exists no single
universally accepted standard of PRNGs, so PRNGs weaker than this de�nition are still in
use, and partially because there is no way to know for sure whether a given PRNG is truly
indistinguishable from TRNG, while older PRNGs are routinely being proven as weaker
than expected by new statistical tests.

A few additional things worth mentioning about the use of PRNGs which have lit-
tle e�ect on the de�nition of PRNGs but matter in practice. It is not strictly necessary for
a PRNG to use only one seed s0 as input. It may in fact use several - however, several seeds
sa, sb, sc, . . . can be simply concatenated into a single seed sa‖sb‖sc‖ · · · = s0. For instance,
if we have two seeds 1112 and 0002, they could be concatenated as 1112‖0002 = 1110002.
We may also recall that a primary strength of PRNG is the fact that we can use it
iteratively while getting its next input - often called a state si - from the last output.

7

Alternatively, when a PRNG G consists of a family of functions Gk for k ∈ {0, 1 . . . }, for
instance G0 may be used to generate the input state for the next iteration, and G1 may
generate the intended random number output. Speci�cally, a PRNG G taking a state
si ∈ {0, 1}n as input may contain a function G0 such that the input state used for the next
iteration si+1 is G0(si) = si+1. In such a case, we can say that the PRNG is an algorithm
of the form G(si) = (si+1, y), such that G : {0, 1}n → {0, 1}n × {0, 1}m−n, where y is the
pseudo-random number meant to be outputted. The length m − n of y is called its block
size, referring to the "block" of random bits that the PRNG outputs. For a PRNG to be
functional, it requires either that that the block size is at least one bit per iteration, or
that the output is simply each state si.

2.5 Cryptography and CSPRNG

While general PRNGs were described in some detail previously, PRNGs for cryptographic
use have been mostly ignored so far, but we will introduce those here. Properties often
desired from PRNG that may in�uence which algorithm one chooses to implement
include high speed of generation, greater length of output, low storage size, and such.
For Cryptographically Secure PRNG (CSPRNG), we have higher demands however, and
most PRNGs simply will not be su�cient. This is because CSPRNGs require not only
randomness, but also keeping the states secret. Due to our fairly strong de�nition of
PRNGs in the previous chapter, which a lot of PRNGs in practice do not ful�ll, there are
only a few things to add when we de�ne a CSPRNG.

Whenever cryptographic security is concerned, it is perhaps good to �rst consider
Kerckho�s's principle, which e�ectively states that a cryptographic system should be
secure even if everything about the system, except the secret key, is public knowledge.
The motivation behind this principle is that some attacker may have insider info about the
system we use, or could have in other ways deduced parts about it. If the only security lies
in keeping the inner workings of the system a secret, then if an attacker would somehow
�nd out about it, the entire cryptosystem will collapse - much like how a secret language
is only secret while nobody else knows how to speak it. If such an event were to occur, it
would be much easier to simply generate a new secret key, instead of having to create a
whole new system that the attacker is unaware of. And so, Kerckho�'s principle is often
considered to be a very good basis for constructing cryptographic systems.
A way to interpret it more plainly is as a rule of thumb stating that you should
never assume that a potential attacker doesn't understand how your system works.
When applied to random number generation states that even if a potential attacker
were to hold complete understanding of the inner workings of the generator device/al-
gorithm, it should grant them no help in determining what numbers will be generated by it.

With this principle in mind, we should assume that any potential attacker is aware
of what CSPRNG we are using. We can safely call this CSPRNG an algorithm
G : {0, 1}n → {0, 1}n × {0, 1}k, such that G(si) = (si+1, yi) and the block size of each yi is

8

k > 0. It should be so that having knowledge of the values y1, y2, . . . , yi would not give any
signi�cant insight into what s0, s1, . . . , si, si+1 are, where s0 is the seed. A more speci�c
property that a CSPRNG in practice should have as an additional safety measure is called
Forward Secrecy and is described in [7]. This property revolves around what would happen
if an attacker somehow getting a hold of a state.

De�nition 2.7 Let G : {0, 1}n → {0, 1}n × {0, 1}k, k > 0 be a pseudo-random number

generator, such that G(si) = (si+1, yi) for all i ≥ 1. This generator has Forward Secrecy

if it ful�lls the following property: if the seed s0 ∈ {0, 1}n is uniformly random, then

for any i ≥ 1, we have that the sequences (y1, y2, . . . , yi, si+1) and (r1, r2, . . . , ri, si+1) for
some ideally random numbers in bit sequence form r1, . . . , ri ∈ {0, 1}n are computationally

indistinguishable.

In practice, Forward Security implies that if an attacker were to get a hold of a state
si+1, it would not give them any hints on what the previous output blocks y1, . . . , yi were.
Forward Secrecy also has a variant in the opposite direction, known as Backward Secrecy
or Future Secrecy, in the sense that if Forward Secrecy means that past keys are kept
secret in the case of a leak, Future Secrecy means that future keys will remain secret as well.

One example of a type of PRNG that does not have Forward Secrecy or Future Se-
crecy is a PRNG of block length equal to the state length, and where G(si) = (si+1, si), in
other words each output block yi = si, as the sequence (s1, s2, . . . , si, si+1) would be very
easy to con�rm as correct, assuming the attacker knew the algorithm used.

We let the properties mentioned in this section be su�cient to give an overall idea
of what a CSPRNG is, as most CSPRNGs will need to ful�ll them. More speci�c
applications of RNG may have more precise, non-universal demands of the used CSPRNG.

3 PRNG in Practice

With knowledge about what precisely we will refer to as a PRNG and CSPRNG re-
spectively, we have an abstract understanding of what such generators are. However,
it tells us nothing about how these generators function in practice. In addition to
the running time of such algorithms, we don't know what the previously mentioned
"statistical tests" actually are, nor what they imply about PRNGs. Let us �rst lay out
a basic form of what PRNGs look like in practice. Rather than a strict de�nition, it
is more of an observation that can be used to easier conceptualize how speci�c PRNGs work.

As previously stated, the input of some PRNG is called a state, but it is not neces-
sarily just one integer used as a seed for the next number, but can also include other
speci�cations. In particular, the state si, other than the state value Vi derived from the
previous iteration and used to generate the next random number, often includes some
set of parameters P , which could either be in the form of a constant that doesn't change

9

except for potentially during reseeding, or some key that changes during the algorithm.
and often also a reseed counter which is increased by one every time a new number is
generated, and upon reaching a speci�ed amount, the algorithm will call for a reseeding.
These three can collectively be called a working state si = (Vi, P, reseed_counter). Some
PRNGs also allow for optional "additional input", as a sort of soft reseeding for potentially
increased security.

There are in fact usually three parts to a PRNG's algorithm. First, initiating the
generator, much like how you start the engines before you can get a plane moving. Then,
there is a number generator process. Thirdly, there is a reseeding process, which is often
more useful than restarting the generator completely (in the same way fueling a plane in
mid-air could be useful) as stopping and reinitializing a generator takes time. Initialization
basically involves using one or several seeds, as well as other speci�cations like desired secu-
rity strength, and only serves to create the �rst usable working state s0. The reseeding part
is also quite simple, with a working state and new seed as input, possibly with additional in-
put, it outputs a new working state si+1. We will focus on the algorithm for the RNG itself:

input : Working state si = (Vi, P, reseed_counter), requested random number
bit length reqlen, additional input addin.

output: Next state si+1, random number ri of length reqlen, status.

Reseed check ;
if reseed_counter is above some limit then

Break and return a "reseed required" indicator as the status.
end

Additional input check ;
if addin 6= Null then

For some function f ;
si ← f(si, reqlen, addin)

end

Random number generation;
For some function g;
(si+1, ri)← g(si, ri, reqlen);
Return (si+1, ri) with a status of success.

The functions f, g in the algorithm could also be their own algorithms. Now when we
have a basic idea of what a PRNG typically looks like, and that there is some dedicated
initialization and reseeding procedure involved, we will use this section to look at practical
examples, as well as some theory.

3.1 Statistical PRNG

A statistical PRNG is a non-cryptographic PRNG, meaning that we do not necessitate
security properties such as Forward Secrecy, but still generates su�ciently uniform and
independent bits to be indistinguishable from true randomness by polynomial algorithms.

10

Some primary ways we test indistinguishability are by testing standard biases, but that is
typically not su�cient for modern standards, because of the many ways that dependencies
between bits can occur depending on the used PRNG. In addition to standard biases, we
can use many other statistical tests to see whether the generator seems to be close enough
to the ideal one.

A common way to test generators is by using a test battery, which is a sort of
package containing several speci�c tests which are performed on some output of the
PRNG. A classic example of a battery is the diehard set of tests, consisting of various
statistical tests such as the Birthday Spacing test based on the statistical phenomenon
known as the "Birthday Paradox", to the craps test which simply involves simulating a
game of craps to see if the game follows a realistic distribution. The invention of new
useful statistical tests, and the existence of certain limitations in its original formula-
tion, make newer test suites more appropriate for modern use. One often used suite
is TestU01 [14], which contains a few di�erent batteries of varying levels of strictness.
The three most important batteries are "SmallCrush" which performs 10 tests, "Crush"
which performs 96 tests, and the most intense battery "BigCrush" which performs 160 tests.

In general, statistical tests use hypothesis testing to determine whether some prop-
erties of the generator's output follow the statistical distribution that ideal randomness
would provide - and if the generator's output deviates too much, with some signi�cance
level, the hypothesis is rejected. This is what it means to fail a statistical test. We
previously mentioned the Birthday Spacing test, which we now will look at in further
detail as an example of a test, as it is described amongst the diehard tests.

Birthday Spacing test. Assume that a year consists of n days. Now randomly choose
m birthdays amongst these n days using the generator, and make a list out of the m − 1
spacings between consecutive birthdays. E.g., if the �rst birthday is on the 5th day and
the next is on the 8th day, the �rst spacing on the list will be 8− 5 = 3. The total number
of values on this list is of course m − 1, and let j be the number of values which occur
more than once on the list. If the generator is ideally random, then the distribution of j is
approximated by a Poisson distribution Po(λ) with mean λ = m3

4n . In the original diehard
tests, the parameters used are n = 224,m = 29, and 500 samples of j are taken. Speci�cally,
a chi-square "goodness of �t" test is used with signi�cance level 0.05.

Example 3.1 Let n = 16, and m = 8, so we generate 32 random bits from the PRNG to

be tested. We generate

0100 1100 1101 1001 1011 1100 0111 1100

which correspond to, when sorted, 4, 7, 9, 11, 12, 12, 12, 13. The spacings between consecu-

tive birthdays are 3, 2, 2, 1, 0, 0, 1 respectively, where the values that repeat are 0, 1 and 2.

Therefore, j = 3.

With statistical testing in mind, let us look at a few common statistical PRNGs. When

11

we talk about the running time, memory use, and which statistical tests that the example
generators pass, the source used is [15, pages 6�12].

3.1.1 Linear Congruential RNG

One of the most common PRNG types in use is Linear Congruential RNG [24], which
describes any PRNG of the form of

Vi+1 ≡ aVi + c mod m

with the seed V0, and a modulus m ≥ 1, multiplier 0 < a < m and increment 0 ≤ c < m.
Predictably, the state si is made up of (Vi, (a, c,m)) with a, c,m constant. The random
output is some amount of the most signi�cant bits of Vi+1, typically a multiple of 32. The
modulo m acts as an upper bound for not only the other constants but also the values Vi, so
we denote the bit length ofm as N . The generation function consists of only two operations,
making it very fast in absolute time, and with a complexity depending on multiplication
algorithm used, the best known of which is the Harvey-Hoeven algorithm with complexity
O(n log n). This generator is very fast and has polynomial complexity. It is also fairly
compact, with each state si only requiring at the very most 4N bits of storage.

Parameter Choice. Clearly key is the speci�c choices of parameters a, c,m, where dif-
ferent types of choices of parameters will have di�erent advantages and drawbacks. Most
common is choices with c 6= 0, which is what we will focus on here. A common goal when
choosing parameters is maximizing the period length, in other words the number of possi-
ble values for Vi. For instance, Vi+1 ≡ Vi + 1 mod 4 with seed V0 = 0 has possible values
{0, 1, 2, 3} and thus a period of 4, whereas Vi+1 ≡ Vi+2 mod 4 with the same seed only has
the possible values {0, 2} with a period of 2. A greater period length means more possible
values for our PRNG, meaning that for equivalent runtime and space use, we are getting
signi�cantly more unpredictability, and we can expect to go on for longer without having
to reseed. When c 6= 0, the Hull-Dobell theorem [11, page 233] tells us that we will have a
maximized period length, in other words the period is equal to m, when the following three
conditions are true:

Theorem 3.2 A sequence generated by a Linear Congruential RNG with parameters

(a, c,m) with increment c 6= 0 has full period m if and only if

(i) c is relatively prime to m,

(ii) a ≡ 1 mod p for all prime factors p of m,

(iii) a ≡ 1 mod 4 if 4 is a factor of m.

The proof of this theorem is somewhat long, but in short �rst shows that this obviously
holds for a = 1, and then shows that a 6= 1 if and only if the conditions hold. Since a = 1
may not be a good choice for a multiplier, we may instead want to make sure that m is a
non-prime, and considering property (iii), it would expand our possible choices of a if we

12

should have m be divisible by 4. As a price for its simplicity and speed, LCG su�ers from
several �aws, albeit oftentimes dependent on the particular parameter choice.

For instance, property (ii) states that a − 1 should be divisible by every prime fac-
tor of m, however we should take care as to not make a divisible by more factors of m
than necessary, lest the number generation becomes more predictable. In The Art of

Programming [13, page 24], it is simply stated that multipliers of the form a = 2k + 1 < m
for binary computers should be avoided, but for the sake of illustration, we can simulate
some such scenarios to see exactly what goes wrong. Let us use some parameters that
ful�ll the Hull-Dobell theorem, for instance a = 2k + 1,m = 64, c = 3 for k = 2, 3, 4 and
5, such that they can have full period. If the advice should hold in this case, we would
expect the randomization for a = 22 + 1 = 5 to look the most random of the bunch.

Figure 1: LCG with c = 3,m = 64 and seed s0 = 1, for the purpose of comparing the
multiplier parameter choices a = 5, 9, 17, and 33.

We observe in Figure 1 that indeed, as the recommendation stated, the LCG with a = 5
appears to be the most unpredictable, whereas those a such that a − 1 is "unnecessarily
divisible" by factors of m seem to have very clear patterns that deviate from what we would
expect from uniform, independent randomness.

Statistical Tests. What we just saw is one way that bad parameter choices could
doom an LCG. Even when good parameters are chosen, it often happens that LCGs fail
several types of statistical tests in commonly used suites, and due to its tendency to form
"patterns" is considered particularly badly suited for data sampling in larger numbers of
dimensions as these patterns become very obvious for the amount of random numbers

13

required for arbitrary-dimensional sampling. This issue in LCGs is primarily tested by
statistical testing suites using what is known as a Spectral Test, which involves checking
how obvious the lines or hyperplanes are in the output when plotted in several dimensions.
Even strong LCGs will typically fail this test if their output is too patterned.

However, for particularly large bit length parameters such as N = 96 with only the
32 most signi�cant bits outputted as the RNG, which is the one featured in the aforemen-
tioned paper, LCGs can pass even the TestU01 suite's notorious BigCrush battery. While
quite fast even at that level of quality, there are other PRNGs which also pass BigCrush
but use signi�cantly shorter parameters.

Memory Use. The fact that a N = 96 bit LCG, assuming no additional methods of
saving storage space are being utilized, uses space of up to 4N = 384 bits for 32 random
bits per iteration - a ratio of 12 : 1. Speci�c implementations of LCGs may not contain the
parameters in the state and are instead stored directly in the generator's code, and in such
a case the state has a size of only up to N = 96 bits and a ratio against the output of only
3 : 1. Even then however, there are other PRNGs that pass all BigCrush statistical tests
while requiring even less memory.

3.1.2 Mersenne Twister

The most widely used statistical PRNG is the Mersenne Twister, which is the default
PRNG in many programming languages such as Python and R as well as scienti�c software
such as MATLAB. It gets its name from the fact that its period length is what's called a
Mersenne prime, which is a prime of the form 2n − 1 for some integer n. It is a linear-
feedback shift register (LFSR) type PRNG, roughly meaning that it uses bitwise functions
such as shifts and XOR-operators to generate new states. Unlike general formula PRNGs
such as linear congruential generators, the Mersenne Twister PRNG is speci�c and has
�xed parameters, but it does have a few variants. The standard 32-bit output variant is
known as MT19937, and while there are versions with longer bit length outputs as well
as specialized use variants, we will be focusing on this standard MT19937 generator as it
serves the most general purpose use.

Memory Use. The Mersenne twister MT19937 generator uses a series of computations,
including matrix calculations, to generate random numbers of bit length 32. Unfortunately,
due to the nature of the generator, the state consists of an n×w array, containing n values
of bit length w. These coe�cients are speci�cally w = 32, n = 624, meaning that each
state si consists of 32 · 624 = 19968 bits. There is a reason for this sort of state, which is
that it allows the generator to enjoy an incredibly long period, namely 219937 − 1, adding
more unpredictability to the 32-bit random number output and avoiding some problems
typical to short periods. There exists an alternative to MT19937 known as TinyMT, which
requires a mere 127 bits of state rather than 2.5KiB, but has a period of "only" 2127 − 1,
which is a size comparable to the period of other similarly performing PRNGs.

14

Running Time. Since the Mersenne Twister uses �xed coe�cients, the output is pre-
cisely a 32 bit random number, making time complexity somewhat meaningless, but since
generating 64 bits takes twice as long as 32 bits, its time complexity is O(N) for number
of bits equal to N . Instead, we can compare its runtime to other PRNGs. In the paper,
[15, page 6] MT19937 took a little over 6 seconds to run SmallCrush, of which a little
over 4 seconds are constant time taken to perform the tests themselves, meaning that it
took about 2 seconds to generate the numbers to be tested. In comparison, an LCG with
96-bit keys and 32-bit outputs (which, recall, passed all BigCrush tests) took a little less
than one second. Overall the performance of MT here is fairly average amongst the tested
generators.

Statistical Tests. So far, we have seen that the standard MT19937 takes up quite a
lot of space in exchange for a longer period. Unfortunately, this does not make it very
statistically random. This version of the Mersenne Twister not only fails BigCrush, but it
also fails Crush. Since its parameters and algorithm are preset and cannot be changed, if
you aim to use a PRNG which does pass these two test batteries, you will simple have to
use a di�erent one.

3.1.3 XorShift.

There is a class of PRNGs known collectively as Xorshift RNGs [23], which much like the
Mersenne Twister PRNG is an LFSR PRNG. XorShift PRNGs are characterized by low
memory use and fast processing speed, often at the cost of some of the less signi�cant
bits being not entirely random. One such generator is XorShift64*. While not the best
performing within the family (which would probably be the xoshiro/xoroshiro generators)
XorShift64* was featured in the same test as the previously mentioned PRNGs in the form
of a 32-bit RNG from 64-bit state, removing the weaker bits. Much like the Mersenne
Twister, its parameters are �xed, although it does not require any special operations and
its code occupies very little space.

Speci�cations. Not only is its state small at a mere 64 bits, meaning a 2 : 1 ratio
between state and output size, but it is also fast. While time complexity is not particularly
meaningful here, its runtime generating numbers for the SmallCrush battery (excluding the
time taken performing statistical tests) was just about one second, which was slower than
the 96-bit LCG with 32-bit outputs, but almost twice as fast as the Mersenne Twister.

Many XorShift generators do not pass every test in BigCrush, such as the regular
XorShift64* due to the low signi�cant bits being weak (low entropy). The implementation
of XorShift64* with 32-bit outputs however does in fact pass BigCrush, and it manages
this precisely because it does not output its weak bits, which however leads to a lower rate
of generating random bits [15, page 7].

15

3.2 Cryptographically Secure PRNG

While statistical PRNGs are quite useful for general PRNG, they generally lack some
previously discussed properties desired for cryptographic contexts, typically because
designing a PRNG around such properties tends to complicate the algorithm and increase
its runtime. For this reason, it's common to develop speci�c PRNGs for only cryptographic
use, and some such CSPRNGs will be featured in this section.

As an example of a PRNG that is unsuitable for cryptographic use, we need to
look no further than LCG. For instance, take a = 5, c = 3,m = 64, and it outputs the
whole generated number ri = 5si + 3 mod 64, where thus si+1 = ri. If an attacker gets a
hold of ri then they can calculate every successive value on their own, since ri+1 ≡ 5ri + 3
mod 64. Even if we choose to only output, say, the rightmost 3 bits of data, if the attacker
�nds one ri then there will be 23 = 8 possible values of si+1. For instance with ri = 0112,
then the candidates c for si+1 include 0000112, 0010112, . . . 1110112. If the attacker also
gets a hold of, for instance ri+1, then the number of candidates are further reduced to only
the candidates c such that ri+1 ≡ 5c + 3 mod 64, which in practice is typically a drastic
decrease.

Since CSPRNGs are especially intended for situations where secrecy must be guar-
anteed, it is important that the CSPRNG (and its creator) is trustworthy. Poor design is
undesirable in its own right, but even worse would be a maliciously designed PRNG that
could compromise security. Perhaps due to this fairly higher standard of trust demanded
of the creator, some organizations have taken it upon themselves to make standardizations
of CSPRNG, which must follow strict speci�cations to gain their approval. One such
organization is the US National Institute of Standards and Technology (NIST) which has
published a large number of documents, aiming to standardize various systems within
technology, including cryptographic RNG, as in their special publication NIST SP 800-90A

[2] and subsequent revisions.

There are several types of CSPRNGs depending on what sort of algorithm they em-
ploy to generate random numbers, where two common types include hash-based and
counter-mode block ciphers. For the sake of simplicity, we will be looking at two hash-
based CSPRNGs documented in the NIST standard, since it provides a lot of details into
the algorithms and discussion of their di�erences, and two generators based on the same
principles of randomization are easier to compare directly.

3.2.1 NIST Hash_DRBG

The �rst CSPRNG featured in NIST's previously mentioned publication is the hash-based
algorithm Hash_DRBG, where DRBG stands for deterministic random bit generator
and is another term for PRNG. A hash function is a function which maps arbitrarily
large inputs to speci�c-length outputs, and many such functions intentionally map values
in a very unpredictable manner for cryptographic purposes such as digital signatures,
making hashes like this an interesting possibility for use in RNG. Hash functions deemed

16

suitable for such situations are sometimes called cryptographic hash functions. They are
expected to have speci�c properties such as unpredictability, non-reversibility and collision
resistance, meaning that �nding two inputs that output the same hash value is very di�cult.

The NIST standard does not mention what speci�c hash function should be used
for the algorithm, and instead allows the implementer to choose any FIPS-approved
cryptographic hashing function depending on for instance how secure it needs to be,
and how large they want their randomly generated numbers to be. Many aspects of
the algorithm, such as its security, rely overwhelmingly on the hash-function and its
unpredictability, so choosing the right function is important. One common choice of hash
function is the SHA family of functions, which is what NIST lists as standard.

We will not go through the reseeding check or additional input check as the former
doesn't a�ect the generated number and the additional input check only involves a fairly
trivial way to modify the used input value. For some hash function Hash(x), the outputs of
which are blocklen bits long, Hash_DRBG random number generation functions as follows:

input : Working state si = (Vi, C, reseed_counter), requested random number
bit length reqlen, additional input addin.

output: Next state si+1, random number ri of length reqlen, status.

Reseed check, Additional input check ;

Random number generation;
data← Vi;
W ← NULL;

for i← 1 to d reqlenblocklene do
W ←W‖Hash(data);
data← (data+ 1) mod 2blocklen

end
ri ← leftmost(W, reqlen);

Vi+1 ← (Vi + C + Hash(0x03‖Vi)) mod 2blocklen;
si+1 ← (Vi+1, C, reseed_counter);
Return (si+1, ri) with a status of success.

Algorithm 1: Hash_DRBG generator algorithm.

To put the main generation step into words, the algorithm uses a hash function Hash(x),
the value Vi, and a counter counting up to generate enough blocklen length blocks, which
are concatenated, such that you can output a reqlen length random number consisting of
the reqlen leftmost bits. For instance, if the hash function produced random bits in blocks
of 4, and the desired random output is 10 bits long, this algorithm would generate three
blocks totaling in 12 random bits, and then output the 10 leftmost bits as the random
number ri.
Afterwards, the hash function is then used to generate the value Vi+1 for the next state.
For reference, the 0x03 is hexadecimal representation for the number 3, which in binary

17

becomes 000000112. The notation of 0x0N is also used in other algorithms, but not in such
a way that hexadecimal notation will require further explanation.

Choice of hash function. We can now understand why it's so important that our hash
function has to be particularly good: since the algorithm relies on a counter, using a hash
function with outputs that aren't very unpredictable for inputs "close to" each other will
generate subsequent blocks that don't seem very random, which not only means the ri
won't be very random-looking, but also that an adversary looking at the blocks of ri in
sequence could get additional information to brute-force the working state, compromising
security in the process.

Running time. Since the main chunk of the algorithm involves generating a �xed number
of blocks with quickly calculated inputs, this algorithm is easily parallellizable, meaning
that each of these blocks can be calculated at the same time by separate processes. The
speed of the algorithm ultimately becomes most dependent on the speed of the Hash(x)

function, which means that its running time can be signi�cantly lowered if implemented
well. Assuming that the loop step can be fully parallellized for some �xed working state
and requested number of random bit output reqlen, if the hash function has an expected
running time u, the total run time of Hash_DRBG will scale along 2u with respect to the
hash function's running time.

Implementation. Since the only special part that this CSPRNG requires is a crypto-
graphic hash function, if there is already a strong hash function stored in the system and
accessible by Hash_DRBG, the algorithm can be quite cheap to implement since the hash
function does not have to be implemented just for this CSPRNG.

We will compare the properties discussed here with the next featured CSPRNG,
which despite its di�erence is also hash-based.

3.2.2 NIST HMAC_DRBG

This is an alternative to Hash_DRBG featured beside it in the NIST publication. It is
somewhat more complicated and uses two di�erent functions. One is a hash function
HMAC(K, x), where HMAC refers to a family of hashing algorithms de�ned in the standard-
ization FIPS 198, and was originally intended for cryptographic message authentication.
It uses a secret key K and an message x as input, where K is stored in the working state
of the algorithm. Additionally, it involves a sub-algorithm HMAC_Update which will be
covered after the main algorithm.

18

input : Working state si = (Vi,Key, reseed_counter), requested random number
bit length reqlen, additional input addin.

output: Next state si+1, random number ri of length reqlen, status.

Reseed check, Additional input check ;

Random number generation;
temp← NULL;
while temp length < reqlen do

Vi ← HMAC(Key, Vi);
temp← temp‖Vi

end
ri ← leftmost(temp, reqlen);
(Key, Vi+1) = HMACUpdate(addin,Key, Vi);
si+1 ← (Vi+1,Key, reseed_counter);
Return (si+1, ri) with a status of success.

Algorithm 2: HMAC_DRBG generator algorithm.

This algorithm looks overall fairly similar to the Hash_DRBG algorithm. We can
see that one big di�erence from Hash_DRBG is that the loop that generates the
random bits does not use a counter to create the di�erent blocks, and that they are
instead generated in a serial manner. This means that HMAC_DRBG is not parallel-
lizable like Hash_DRBG. The part left out is the function we called HMACUpdate(a, K, V):

input : Additional input addin, parameter Key, value V .
output: New parameter Key, value V .

K ← HMAC(Key, V ‖0x00‖addin);
V ← HMAC(Key, V);
if addin = NULL then

return Key, V
end
K ← HMAC(Key, V ‖0x01‖addin);
V ← HMAC(Key, V);
Return Key, V

Algorithm 3: HMACUpdate(x) value updater algorithm.

This algorithm is also used in the instantiation and reseeding steps of HMAC_DRBG, and
is basically used to generate the next step's value and key.

Choice of hash function. The choice of the hash function HMAC(x) is much more re-
stricted here than it was for Hash_DRBG. As unintuitive as it might at �rst seem, however,
our choice of hash function is actually less strict than in Hash_DRBG, due to a quirk in
the random bit generation. Since there is no counter used in the generation loop, and we
instead generate each block in a serial manner, the hash function does not have to be quite
as unpredictable for sequential inputs, which is something we had to take into consideration
when we chose a hash function for Hash_DRBG. The fact that all we really need is a FIPS-

19

approved hash function for message authentication means that, if we already have a system
that uses message authentication, we can just reuse the cryptographic hash function that
we used in that system, meaning that we could potentially save storage space by choosing
HMAC_DRBG.

Running time. The �ip-side of not using a counter for our generation loop is that it
is not parallellizable. Instead, we will need to iterate the loop N ≥ 1 times, where the
exact value of N depends on the length of the blocks generated by HMAC(x), as well as on
our requested number of bits reqlen, meaning that for every random number ri we wish
to generate, we will need to call our function HMAC(x) a total of N + 1 ≥ 2. Assuming
that HMAC(x) is expected to take time u to run, then the running time will be at least 3u,
which only occurs when reqlen is at most the number of bits that HMAC(x) outputs, and
we are not using additional input. In practice, according to the publication where they
are both speci�ed, the algorithm HMAC_DRBG takes twice as long to generate random
bits as Hash_DRBG. It does note, however, that both algorithms are still fairly fast, so
depending on the situation, the di�erence in speed may not be signi�cant enough to take
into consideration.

3.3 Bad CSPRNG

From how we have discussed CSPRNGs earlier, it could seem that as long as we base a
PRNG on a cryptographic function, and do the bare minimum to obfuscate the output ri
from the value Vi, we have a good CSPRNG. Unfortunately, things are not that easy. Even
when a CSPRNG seems to have been designed with security taken into account, it might
not be �t for practical use due to some bug or inherent �aw. It might then be interesting
to ask oneself, what exactly could a bad CSPRNG be?

Some obvious �aws that could make an algorithm unsuitable for cryptographic use
are lacking important features, failing many statistical tests, being exceedingly slow or
taking up too much storage. Such algorithms will for instance include most statistical
PRNGs, as well as many CSPRNGs based on number-theoretical one-way functions like
multiplication on elliptic curves which are typically very slow. Other than such obvious
drawbacks, CSPRNGs may have particular bugs that can compromise security in speci�c
scenarios. Many such bugs do not stem from the use of bad algorithms, but rather bad
implementation, meaning that this can happen even to good CSPRNGs.

In a nightmare scenario, a CSPRNG could have been intentionally designed with a
security �aw that could be exploited by its creators to compromise the working state
for those with the required knowledge. There is one infamous case where the public
consensus seems to be that this occurred, and it is none other than the (now obsolete)
Dual_EC_DRBG featured in earlier versions of the NIST SP 800-90A standardization
based on mathematics of elliptic curves. Due to the signi�cance of this case within the
world of computer security, we will dedicate a section to explain how the alleged backdoor

20

functions, as that particular aspect is not only very well known but also surprisingly
simple, assuming one is at least somewhat familiar with mathematics of elliptic curves.

3.3.1 Mathematics of Elliptic Curves

An elliptic curve is a set of points (x, y) that satisfy the equation y2 = x3 + ax + b, for
integers a, b. Additionally, we also require the curve to be non-singular, meaning there are
certain types of points that we do not want on the curve, such as self-intersections. This is
luckily easy to check, as an elliptic curve is non-singular if and only if 4a3 + 27b2 6= 0. The
curve can be de�ned with x, y, a, b over any �eld, and typical choices are real numbers R,
complex numbers C, and �nite �elds Fp where p is a prime.

Figure 2: Three elliptic curves de�ned over the reals, the third curve is singular due to its
cusp at the origin.

We construct the abelian group of the points on an elliptic curve. What abelian refers to
is practically that addition works like it does for integers, where for instance the order
you add elements doesn't a�ect the sum. We de�ne such an addition between some P,Q,
over the reals, informally as the point R′ gained by �rst drawing a line through P,Q,
�nding the third point R = (x, y) on the curve that the line intersects, and then �ipping it
over the y-axis to get R′ = (x,−y). Before we de�ne it more formally, note two special cases.

First is if we add some P + P together. The answer is simple, namely to let the line
be the tangent line at the point P , which will then intersect one other point on the curve Q.

Secondly, what about adding two y-opposite points P + P ′? Algebraically, there is

21

no third point on the curve that it intersects. The solution is to consider P ′ the additive
inverse of P , and "including a point at in�nity" called O as the additive identity. In this
manner, P + P ′ = O. This case also includes when adding P + P ′ where P = P ′, which
occurs at any "edge points" on the curve, which occurs when y = 0.

We more formally describe the addition of points on the elliptic curve with identity
point O as follows: [10]

De�nition 3.3 Consider an elliptic curve given by the equation y2 = x3 + ax+ b for non-
singular choices of a, b. We let the group over this curve contain the points P = (xP , yP)
on the curve, and extend it with an identity element O, such that the inverse of P is

P ′ = (xP ,−yP). We de�ne the addition of any two points P = (xP , yP), Q = (xQ, yQ) on
the curve as P +Q = R as follows:

(i) If P = Q′, then P +Q = P + P ′ = O;

(ii) If Q 6= P ′ but P = Q, then P + Q = R = (xR, yR), where xR = k2 − xP − xQ,

yR = k(xP − xR)− yP , where k =
3x2P+a
2yP

;

(iii) Otherwise, exactly the same as for P = Q but with k =
yP−yQ
xP−xQ .

Remark 3.4 Addition of points on an elliptic curve is both commutative and associative.

In cryptographic contexts, we don't assume the coordinates of the points to be reals,
as we de�ne the curve over a �nite �eld Fp modulo a prime p, containing the integers
0, 1, . . . , p− 1 and following normal modular addition, subtraction, multiplication and
division rules. The only di�erence this makes for our elliptic curve addition is that
arithmetic is done modulo p, and that division is de�ned as the multiplicative inverse
modulo p, in other words for some element x ∈ Fp, 1/x = y where xy = 1 mod p. Since p
is a prime, we know that all such non-zero elements have an inverse.

The �nal aspect to know about the elliptic curve is the scalar multiplication of
points, which is that for some positive number n and point on a curve P , we have that
nP =

∑n
1 P = P + · · ·+ P , that (−n)P = n(−P) = nP ′, and of course that 0P = O.

This brings us to the crux of elliptic curves which makes them cryptographically in-
teresting: the elliptic curve discrete log problem (ECDLP), which states that for any two
distinct P,Q on a curve over some very large �eld, �nding the n such that nP = Q is very
di�cult, assuming there is such an n. A P which can generate all other points on the curve
is called a primitive root, and it is only if the number of points on the curve is a prime that
all points on the curve are primitive roots. The point at in�nity is never a primitive root.
This sort of one-way function f(x) = xP is the reason why elliptic curves have been used
in cryptography, such as in the form of elliptic curve Di�e-Hellman exchange.

22

3.3.2 NIST Dual_EC_DRBG (Obsolete)

We are now prepared to look at the now defunct EC algorithm previously included in the
NIST SP 800-90A standard. It involves several functions which will be explained after the
algorithm, and its working state primarily consists of a state value s and two points P,Q.
The standard described in the publication requires the use of one out of a few speci�c
curves with parameters (a, b, p, n, seedlen), and each speci�c curve has two speci�c points
P,Q which must be used. If only one curve is used, then the parameters need not be
included in the working state, so let us assume that they aren't. As a matter of fact, our
point choice P,Q is not meant to be kept secret, and is constant throughout use, so we can
presume those are not a part of the working state either, and so the working state consists
of only the state value si.

Again, we will not look at the additional input and reseed checks, and only con-
sider the generation part of the EC algorithm. One function worth explaining before the
algorithm is ϕx. All ϕx(P) does is take a point as input, and outputs its x-coordinate xP
in its binary representation.

input : Working state si, requested random number bit length reqlen, additional
input addin.

output: Next state si+1, random number ri of length reqlen, status.

Reseed check, Additional input check ;

Random number generation;
temp← NULL;
S0 ← si;
S0 ← S0

⊕
addin;

for k ← 1 to n such that n = d reqlenblocklene do
Sk ← ϕx(Sk−1P);
Rk ← ϕx(SkQ);
temp← temp‖rightmost(Rk, blocklen)

end
ri ← leftmost(temp, reqlen);
si+1 ← ϕx(SnP);
Return (si+1, ri) with a status of success.

Algorithm 4: Dual_EC_DRBG generator algorithm.

There is quite a lot going on in this algorithm, but let us �rst point out the functions
used. First o�,

⊕
is the bitwise XOR operator, which looks at each pair of bits from each

number and if they are the same then the output is a 0 in that place, and if they are
di�erent then the output is 1 in that place. As an example, 01112

⊕
00012 = 01102.

As for the rightmost(input, bits) function, the constant blocklen is speci�c to the curve
used, and is calculated as seedlen − 16 where seedlen is the bit length of prime p in bits
- making seedlen the length of the states and random numbers derived as coordinates
from the curve's points. This means that the output of rightmost(Rk, blocklen) is the

23

entire coordinate Rk except for its 16 leftmost bits, which is likely a design choice made to
obfuscate what Rk is, and by extension, the state Sk that generated Rk. It should be noted
that seedlen is very large, between 256 and 512 going by the curves that the publication
demands be used.

3.3.3 The Dual_EC_DRBG Problem

To assure users that a cryptographic algorithm with speci�c parameter choices is made
in good faith, the creators either properly justify the parameter choices, or in the case
that the parameters are randomly chosen, show the method with which they were chosen.
No such justi�cation was o�cially made for the speci�c curves and points de�ned for the
NIST Dual_EC_DRBG standard, which is where suspicion arose.

The alleged backdoor in the algorithm as described in [19] is based on the idea that
P,Q were indeed speci�cally chosen such that eQ = P , where e is known by either the
person who installed the backdoor or by some other potential attacker. For the sake of
keeping the example simple, we will make a few assumptions. This situation can be seen
as a sort of worst case scenario, and the potential for exploiting the backdoor exists even
without making these assumptions, but the exploit becomes less straightforward. Let us
assume addin = NULL, since the standard explicitly states that additional input use is
perfectly optional. We also assume that the desired number of bits is exactly blocklen,
in other words the length of one single generated R. We will naturally also presume that
any potential attacker is aware of the curve as well as what points P,Q are being used, by
Kerckho�'s principle.

Figure 3: Graph of how Dual_EC_DRBG functions under our assumptions.

With the assumptions we previously made, the algorithm can be simpli�ed as a set of three

24

calculations when a generation call is made, for an input working state si:

Si = ϕx(siP), Ri = ϕx(SiQ), si+1 = ϕx(SiP)

as well as, of course, the output random number ri = rightmost(Ri, blocklen).

Assume that the attacker has access to some ri. We remind ourselves that a ran-
dom number was generated via ri = rightmost(ϕx(siQ), blocklen), and si+1 = ϕx(siP).
The �rst step is to get some idea of what Ri could be. Since ri in practice is several
hundred bits long, and is only 16 bits away from the x-coordinate Ri with 216 = 65536
di�erent values to go through, there aren't that many numbers that Ri could be. If we let
Ri = B‖ri where 0 ≤ B < 216, we "only" have 65536 values to check. While this sounds
like a lot, it is so much less than the total at least around 2256 di�erent values Ri could
have been if we did not know ri, and it can be reduced by also ignoring any candidates
greater than p, as those are not possible x-coordinates for Ri. We can put in all the
possible Ri values into the elliptic curve equation and use modular square roots to see if
there is some corresponding y-coordinate such that A = (Ri, y) is on the curve, further
reducing the number of possible values of Ri. Out of all these points, one is de�nitely
(±SiQ), and since the attacker knows of an e such that eQ = P , they can for each point
A simply calculate ϕx(eA), knowing that for A such that A = SiQ,

ϕx(eA) = ϕx(e(SiQ)) = ϕx(Si(eQ)) = ϕx(SiP) = si+1.

If we put all ϕx(eA) in a list, we are bound to have gained some duplicates, meaning we
have further reduced the number of possibilities, and we now have a list with signi�cantly
fewer than 65536 candidates for what si+1 is, reduced by a huge order of magnitude
over the (depending on the curve) at least about 2256 possible states that the attacker
would otherwise have to consider if they were to try and bruteforce the result. Worse
is, since the attacker has access to P,Q, they can perform the same calculations on
their list of candidates as the generator does for its state, and so for every consecutive
random number ri, ri+1, . . . that the attacker gets a hold of, they can cross-check which
of the states in its list of states yields that particular random number. This means
that they could calculate the state of the generator with as little as only two of the
random numbers generated by this instantiation of the algorithm, and in fact, they
do not have to be consecutive random numbers as long as the attacker has an idea of
how many iterations are between them. At that point, all future states until reseeding
or de-instantiation will have been compromised, taking the CS out of this CSPRNG.
There are various ways to optimize this method, but this is how it works in its simplest form.

3.3.4 Demonstration

For the purpose of a demonstration, I have prepared a situation as previously described,
with a speci�cally chosen curve and parameters. Due to limited computing power, we
will be using much smaller numbers than one would in practice. We look at the curve
wherein a = −50, b = 200, p = 4091 where our states are maximum seedlen = 12 bits

25

long, with r1 = rightmost(R1, 6), meaning that R1 = B‖ri for 0 ≤ B < 26. Without any
outside knowledge, the state s2 could be anything between 0 and p − 1 ≈ 212. We let
P = (2937, 1854), Q = (4, 8), and the attacker knows that P = 20Q.

We can let our secret state be S1 = 5, which of course the attacker won't know.
This gives s2 = 962, which is what the attacker is trying to �gure out. We end up with
R1 = (3052, 1246), and the 6 rightmost bits of 3052 yields r1 = 44 = 1011002, which is
the random output the attacker sees. With a script, the attacker can check every possible
x = B‖ri for all 6 bit long values B = 02, 12, 102, . . . , 1111112 such that B‖ri < p, to see
which ful�ll the elliptic curve equation y2 = x3 − 50x+ 200 mod 4091 with some solution
of y. We can �nd such y-coordinates via modular square root, which can be done using
one of the several available methods, such as the Tonelli-Shanks algorithm which will not
be discussed here.

Now we have a list of points A = (x, y) such that A lies on the curve, and the x-
coordinate is of the form B‖ri < p. Since we know that P = 20Q then, for all these A,
we construct a list consisting of every element ϕx(20A). This list contains all possible
candidates for the state s2 based on r1. This list contains 36 elements which is about half
of 26 = 64, which were all the possibilities before �ltering based on the points existing on
the curve. Indeed, if we check, we can see that the true s2 = 962 is indeed amongst our 36
candidates.

However, 36 candidates may not be few enough for the hacker, and so let us as-
sume they came across r2. All they need to do is, for all candidates c in the list of possible
values of the state s2, perform rightmost(ϕx(ϕx(cP)Q), 6), which is the random number
r2 that this candidate would have generated if it actually were the state s2. We do this for
all the candidates, compare them to the actual r2, and we remove any elements where the
random numbers don't match. This time, our list shrinks down to a mere two candidates
1044, 962, meaning that the state s2 must be one of these. In fact, we see that the actual
state s2 = 962 is in that list of candidates.

As a proof of concept, this demonstration displays the danger of this potential ex-
ploit, where the knowledge of just a small amount of random numbers could be enough to
completely compromise the working state of this CSPRNG. Naturally, in practice, doing
this is quite a bit more resource intensive and may require some extra considerations when
it comes to loops and reqlen di�erent from blocklen, but the problem itself does not go
away. A very potent way of either minimizing or even completely eradicating this issue
could be to either always or at least very frequently use unpredictable additional inputs
when generating numbers. The problem with this, of course, is twofold.

Firstly, where would this frequent "unpredictable" additional input come from? Most
likely, to be at all sustainable, we would have to use a TRNG at every step to generate
said additional input, and at that point we should perhaps question why we are choosing
to rely so heavily on TRNG when we are using an algorithm (a PRNG) with the explicit

26

purpose to be less reliant on TRNG.
Secondly, we should ask ourselves why we are using a PRNG that requires near constant
additional input only to �x an otherwise unavoidable exploit in the code, when we could
simply use a di�erent PRNG without this type of exploit. It certainly does not help that
Dual_EC_DRBG is much slower than any of the other CSPRNGs featured in the same
publication.

Now, with some knowledge of the inner workings of PRNGs both good and bad, we
move on to what they are used for.

4 Randomness in Algorithms

When thinking of algorithms, what �rst springs to mind might be a deterministic algorithm,
such as calculator operations or such. Speci�cally, a deterministic algorithm is one which
depends only on the input, with no random variables involved. In particular, given a speci�c
input, we expect them to have the same running time and yield the same output every time.

Many algorithms however, as discussed previously, make use of random numbers in
their process. Such algorithms can be formalized as random variables, in which case we
more precisely interpret the input of an RNG as a random variable. We are already aware
of some of the big perks of derandomization, including predictable runtime as well as by
de�nition reducing reliance on the random number resource.

Much like what we did when we compared the exclusive use of TRNG against de-
randomizing RNG to consisting of mostly PRNG, it's worth investigating how and when
derandomization can be viable. Random algorithms are so diverse in functionality and in
how they use randomness, that it is necessary to look at several di�erent examples to gain
an understanding of how random algorithms may be derandomized, and how it may a�ect
their performance.

Before beginning, let us have a short discussion of how complexity functions for
random algorithms, as there are two primary types of random algorithms: Las Vegas

algorithms, which expect to output a "correct" result after a potentially unknown but �nite
amount of time, and Monte Carlo algorithms, which most likely make a "correct" output
but could make an incorrect output with some probability after a �xed (or bounded)
amount of time [1, pages 9�10].

A Las Vegas algorithm is typically more desirable than a Monte Carlo algorithm
due to having a 100% success-rate, however for some problems using a Las Vegas algorithm
is either unreasonably time-consuming when there is a much quicker Monte Carlo algorithm
that simply yields a "good enough" output, or the problem simply cannot be solved exactly
in a �nite amount of time.

A key di�erence between these two types is how exactly they depend on random-

27

ness. Las Vegas algorithms will always �nish with a correct solution, but their running
time can depend on whether they get "good" random numbers or not. Monte Carlo
algorithms will end after a speci�c amount of time, but not always give a correct solution,
and how good the solution is depends on getting "good" random numbers. For this
reason, we consider the time complexity of Monte Carlo algorithms to be based on the
upper bound of time it will take. On the other hand, we consider the time complexity
for Las Vegas algorithms to be something of a random variable T (I) for an input I that
depends on the RNG. For such algorithms, we may divide running time complexity into
best-case, average-case, and worst-case complexities, where each of these is the expected
value E[T (I)] for inputs I that can be considered best-case, average-case and worst-case
inputs. Typically, the worst-case and average-case running times are of greatest interest.

This means, of course, that when we compare the time complexity of Las Vegas al-
gorithms against Monte Carlo or deterministic algorithms, we are speaking of the same
time complexity concept as dependent speci�cally on the input. For instance, with
non-input parameters and coe�cients �xed, worst-case scenarios in Las Vegas algorithms
are typically much more dependent on the random number generation than on the
input, whereas Monte Carlo worst cases are mostly or entirely based on the input, and
deterministic worst case scenarios are always based entirely on the input.
Something similar also occurs in regards to the error, which often is denoted as O(f(N))
for a decreasing function f(N) as N increases, where the "error" that deterministic
algorithms may have in their output depends entirely on the input and parameters. Monte
Carlo algorithms however have their error O(f(N)) depend partially on the input and
parameters, as well as on the random numbers, whereas time complexity is not a function
of the random numbers.

4.1 Simple Example

To illustrate the di�erence between deterministic and random algorithms, we will look
at a problem, two di�erent random algorithms we could use to solve it, as well as their
derandomized variants. This will serve as a practical example to highlight some di�erences
between Monte Carlo and Las Vegas algorithms.

For the problem, imagine the following situation. You are in your household when
you notice that there is some large, yet �nite, number of cardboard boxes in front of you.
You know that under one of these hides a spying neighbor, in�ltrating your home to steal
your Wi-Fi password. To �nd where this unwanted guest is, you must check underneath
each box until you �nd him.

Las Vegas Approach. Let us �rst consider the Las Vegas solution to this problem.
Such an algorithm will use some random number generator to tell you which box to look
under next, without checking the same box twice. Derandomizing this algorithm is also
simple, as we can simply decide on a deterministic way to choose the next box to check,

28

for instance "the box closest to me that I have not yet checked". At a �rst glance, there is
no major di�erence between these two algorithms and they should thus be equally good,
but upon closer inspection, there are two important di�erences.

The �rst point is naturally that the random algorithm requires a source of random
numbers. In a system where RNG is already readily accessible, this shouldn't pose a
problem, but if there is either little or no access to randomness, this can leave the random
algorithm unfeasible.

The second point of di�erence is what runtime depends on. In the deterministic
scenario, when faced with a given situation of boxes, we will check each box in the same
time. Our spy may have taken this into consideration, and has hidden himself in the
very last box we would check. This type of problem is called a pathological input, which
is when an input for our algorithm will give us a worst-case scenario. There is no real
way to combat this without involving a random element, which causes our algorithm to
cease being deterministic. An equivalent worst-case scenario will still be possible for the
randomized algorithm variant, but it will no longer depend on the input, and so the spy
has to rely on luck to not be found.

Monte Carlo Approach. The Las Vegas algorithm and its corresponding derandomized
variant may work just �ne if there aren't too many boxes. Imagine however if your neighbor
brought an extraordinarily large number of boxes, say several hundred. Checking all of
these by hand would not only be nigh impossible, but also much slower than waiting for
your neighbor to come out when he inevitably needs a break. However, for good measure,
you may decide to check at least a few random boxes anyways, with no guarantee of
�nding your in�ltrator. This is a Monte Carlo algorithm to solve this problem. Such an
algorithm would use RNG to tell you which n boxes to look inside.

The deterministic variant would choose n boxes after some predetermined rule, for
instance "the n closest to you". These variants di�er from each other in the same
manner as the Las Vegas algorithm did from its deterministic variant, that is to say
that one requires access to RNG and the other has some pathological inputs. However,
one big di�erence is that both of these will take a �xed amount of time depending on
n, unlike the Las Vegas algorithm and its deterministic variant. Indeed, the pathologi-
cal inputs in this case has no e�ect on running time, only on the likelihood of �nding the spy.

4.2 Numerical Integration

Integration of functions is a common mathematical operation in many �elds of applied
mathematics, such as engineering and statistics. However, many integrals are either very
di�cult or impossible to compute by explicit formulas, rendering symbolic integration in-
viable. When dealing with de�nite integrals, an approach known as numerical integration
can be used do approximate the value F =

∫
D f(x)dx of said integral over some domain

29

D, which is sometimes perfectly su�cient. There are myriad methods to integrate func-
tions numerically, and whichever is used typically depends on what function f(x) is being
integrated, as well as on the domain D.

4.2.1 Monte Carlo integration.

A common type of Monte Carlo algorithms is what's called the Monte Carlo methods
which are used in numerical analysis, de�ned by taking some number of random samples
of a dataset to approximate some function.

Monte Carlo integration, as seen in [4], is precisely when the Monte Carlo method
is applied to numerical approximation of an integral. A simple demonstration of this is
imagining a 1-by-1 square completely containing a circle of diameter 1. By randomly sam-
pling a large number of points in the form of (x, y)-pairs of numbers in the interval (0, 1),
and comparing the amount that land within the circle to the total number of pairs, we can
approximate the area of the circle relative to the square, which is one way to approximate π.

Figure 4: One version of Monte Carlo integration used to approximate the area of a circle
of diameter d=1.

The example seen in Figure 4 was sampled by picking 28 random-looking points manually1.
In this case, 22 landed within the circle, approximating the circle's area as A∗c = 0.7857 . . . ,
and since the area of a circle is Ac = πr2 with r = 0.5, we can �nd an approximation
of π by calculating π∗ = A∗c/r

2 = 3.1428 Signi�cantly more data points are usually
sampled which typically yields a much better approximation.

Monte Carlo integration is particularly attractive for situations where a function is

1When implementing a random algorithm of some sort, it is generally ill-advised to substitute the

algorithmic PRNG for a person choosing numbers randomly at the top of their head.

30

di�cult or even impossible to integrate theoretically, but where a numerical approximation
over an interval is su�cient. The most basic form of a Monte Carlo integration algorithm
is a one-dimensional estimator [12], that is when we wish to integrate over an integral in
one dimension.

De�nition 4.1 For a function f(x) such that F =
∫ b
a f(x)dx, the Basic Monte-Carlo

Estimator using N uniform random variables (samples) Xi over [a, b) is de�ned as

〈FN 〉 := b− a
N

N∑

i=1

f(Xi).

Naturally, the expected value of 〈FN 〉 is indeed F , since its probability density function
p(x) = 1

b−a for x ∈ [a, b):

E[〈FN 〉] = b− a
N

N∑

i=1

E[f(Xi)]

=
b− a
N

N∑

i=1

b∫

a

f(x)p(x)dx

=
1

N

N∑

i=1

b∫

a

f(x)dx =

b∫

a

f(x)dx = F.

To know that this estimator will end up converging towards the expected value as n→∞,
we need look no further than the laws of large numbers. In particular, the strong law of
large numbers [22]:

Theorem 4.2 Let X1, X2, . . . be an in�nite sequence of independent and identically dis-

tributed random variables with a �nite expected value µ in common, and let Sn = 1
n

∑n
1 Xi.

Then,

Pr
(
lim
n→∞

Sn = µ
)
= 1.

The proof of this theorem will be skipped over, but it involves setting Yi = Xi−µ, and then
showing that the sum of all Yi average out to 0 by employing the generalized Chebyshev
inequality.

By the strong law of large numbers, we know that 〈FN 〉 will converge to its ex-
pected value F , and thus that 〈FN 〉 becomes a better estimator when using a larger
number of samples. Thus, faithful to its name, the Monte-Carlo estimator is a random
variable which uses samples from N random variables to estimate some integral.

In an arbitrary number of dimensions, the estimator is mostly similar in de�nition,
but we shall show it here for the sake of generality:

31

De�nition 4.3 For a function f(x) where x = (x1, . . . , xd), and F =
∫
D f(x)dx where

D ⊆ Rd with the volume V =
∫
D dx, the General Monte-Carlo Estimator using N uniform

random variables (samples) Xi in said d-dimensional domain D, is de�ned as

〈FN 〉 := V

N

N∑

i=1

f(Xi),

the expected value of which can be proven to be equal to F in a similar way. While there
are various ways to improve upon Monte Carlo integration, such as variance reduction,
this will be left out.

Let MC be a random algorithm which uses Monte Carlo integration with an input
consisting of a domain D ⊆ Rd, a function f(x) de�ned over D, sometimes a speci�ed
number of signi�cant digits s in the datapoints and/or output, and a number N of desired
data points to be used to estimate the integral

∫
D f(x)dx. This type of Monte Carlo

method is very fast, which we can show by �xing the domain D, the function f and the
desired number of signi�cants s for each datapoint, and then counting its steps depending
on the desired number of data points N .

Running Time. The �rst part of MC requires choosing N random datapoints over D
of length s, which is done using some PRNG. Assuming each generated data point takes
some constant time unit u, generating N random numbers will take about time uN , this
part of the MC has polynomial complexity O(N).

The second part of MC involves calculating the estimator, which is done in 2N + 1
arithmetic operations; one count of division, one of multiplication, N function evaluations
and N − 1 additions. Each such operation's running time depends on the size of the
datapoints s and not the number of datapoints, meaning that we have polynomial
complexity O(N).

As so we have established that Monte Carlo integration has a step complexity of
O(N) + O(N) = O(N) for number of data points N . Since the time taken by operations
in part two depends more on the number of signi�cant digits s than just on the number of
data points, we see that either multiplication which can be implemented to have as low as
polynomial complexity O(s log s), or the function f with unknown (and potentially very
slow) complexity, may bottleneck the true running time of MC. We can thus consider
additional signi�cants s to be more expensive than additional data points N , and if we
want a more accurate approximation we might therefore prefer to increase the latter.

Error. Since this algorithm is approximative, it will generally not be completely accurate.
Since the variance σ2 = E[(〈FN 〉−F)2] is a measure of deviation from the expected value,
we can look at it as a measure of error. The error can be shown to be proportional to
N−1/2, in other words, if we wish to reduce the error by a factor of r, we need to increase
the number of data points by a factor of r2. We can here say that the expected accuracy

32

of MC is O(N−1/2). It is important to remember that, unlike deterministic error which
acts as more of a strict bound, this error is indeed a probabilistic bound, and not a strict
bound.

4.2.2 Deterministic Numerical Integration.

An alternative to the probabilistic Monte Carlo integration method is some deterministic
numerical integration, also called quadrature, of which there are several types. A lot of
quadrature methods are designed for one-dimensional integrals, but can be generalized to
higher dimensions. For the one-dimensional example, an integral F =

∫ b
a f(x)dx can be

approximated with n points by the following formula:

b∫

a

f(x)dx = F ≈
n∑

i=1

wif(xi),

where xi are points on the interval [a, b], and the coe�cients wi are preset weights to
determine the "signi�cance" of certain points on the interval. Speci�c choices of points and
weights are called rules, which is also extended to more advanced forms of quadrature, such
as the ones involving derivatives. In its most simple form, weights are taken to be wi =

1
n ,

and the points xi are equidistant in some manner. For instance, in the Riemann Midpoint
rule [20], we let xi = a+ 2i−1

2n (b− a).

Figure 5: Approximation of a one-dimensional integral using Riemann Midpoint rule inte-
gration with n = 6 points.

We can see in Figure 3 that, while not a bad attempt, it is not perfect. This can be reme-
died by using di�erent weights and point distributions, or more advanced formulas such as

33

higher degree Newton-Cotes formulas. At this level, an algorithm that chooses these points
in a deterministic manner and then estimates F ∗ =

∑n
i=1wif(xi) is equivalent to the Monte

Carlo integration method discussed earlier in terms of total steps per number of data points.

We can also generalize it for d dimensions with N = nd points using what's known
as the product rule. All this entails is that we �ll the space with points distributed
just like we would the n points in one dimension, but we do it in every dimension,
forming a d-dimensional grid. So, to approximate F =

∫
D f(x)dx in a domain D with

an n×· · ·×n set of points xa indexed by coordinates a ∈ {1, . . . , n}d, we can use the formula
∫

D

f(x)dx = F ≈
∑

∀a∈{1,...,n}d
waf(xa),

where wa is the weight for the d-cube about xi. While a good method in theory, we notice
what is sometimes called the "curse of dimensionality": The greater the dimension d, the
exponentially more points are necessary to "�ll the domain" properly. For especially high
dimensions, such as d ≥ 10, this is a terrible restriction. However, for now, let us ignore it
and instead compare this to Monte Carlo integration in d dimensions and nd points.

Running Time. An algorithm RMR using Riemann Midpoint Rule of approximating
an integral will have its running time scale at the same rate as Monte Carlo integration.
This is because the only real di�erence between the parts in MC and RMR are the way
they get their datapoints as well as the precise appearance of the formula, so the number
of steps are approximately the same for any given N = nd number of used data points.

Error. The error for MC was said to be proportional to N−1/2 regardless of the number
of dimensions d. For RMR, in one dimension d = 1 and a total number of data point
evaluations n = N , it has an accuracy of O(N−2) = O(n−2), which of course is better than
the O(N−1/2) that MC would have. However, for dimensions d > 1 and the same data
points "per length" n, the number of data points for the same level of error will be N = nd,
and so an equivalent error of O(n−2) as a function of dimensions is O(N−2/d). For lower
dimensions, this is still a better choice than general Monte Carlo sampling, but already at
d = 4 it is equal to that of MC at O(N−1/2), and it quickly starts getting signi�cantly
worse. Unintuitive as it may be, MC sits at a steady O(N−1/2) regardless of dimension,
because its variance is only a function of N .

Pathology. An important point to be made is about pathological inputs, in other words
certain inputs that are especially incompatible with the algorithm. Unlike MC, it is a
fact that RMR and similar functions will have preset positions and weights, and certain
inputs will lead to highly erroneous estimates. This can often be partially remedied by
increasing the number of data points, or make other changes to the algorithm, but the
fundamental problem of the existence of pathological inputs cannot be completely removed
when dealing with deterministic functions, while being signi�cantly rarer in most random

34

algorithms.

4.3 Sorting Algorithms

Much like how people are often less productive if their papers and notes are a disorganized
mess, many algorithms working with large datasets will work slower than usual if the data
they are working with is particularly "out of order". In practice, there are user-experience
related reasons for why sorting is useful, for instance sorting internet search results by
their relevance. It is for reasons such as this that sorting algorithms are commonly used
to sort an input data set by imposing some sort of ordering upon its elements by means of
rearrangement. Naturally, such algorithms are almost2 exclusively Las Vegas algorithms,
as they involve sorting a �nite list of elements until it is completely sorted. Designing a
sorting algorithm to have an upper bound to its running time would lead to it occasionally
outputting not completely sorted lists, meaning it did not actually sort the list.

4.3.1 Randomized QuickSort.

There are many di�erent sorting algorithms, and it is not uncommon to combine several
whenever it is useful. One of the most common sorting algorithms is QuickSort with
randomized pivoting, or just Randomized QuickSort.
QuickSort is a comparative sorting algorithm, meaning that it takes some array A as input,
and requires some de�nition of order, typically in the form of an order check, such that for
any two elements a, b in the array, it is always possible to determine which is greater. The
order check can be some comparison function f(a, b) that will output a 0 if b < a, and a 1
if a < b. If it is possible for two elements to be equal, there needs to be a third output to
signal this.

Randomized QuickSort works by a divide-and-conquer process, splitting the input
array A into two smaller subarrays A1, A2 where every element in A1 is smaller than every
element in A2, and repeats the process until the list is sorted - or, alternatively, switches
to a di�erent sorting algorithm when the subarrays have become small enough that it's
worth it. More formally, Randomized QuickSort RQS is an algorithm using the array A
as input. Using lecture notes [16] as a resource, we describe the algorithm as functioning
as follows:

2Non-Las Vegas sorting algorithms, which are ones that may either never �nish or may output an

incorrectly sorted list, have little use besides being examples of bad sorting algorithms, such as Bogosort.

35

input : An array A.
output: The array resulting after sorting A.

check for trivial input ;
if |A| < 2 then

The array is already sorted or empty, return A.
end

pivot choice;
p← randomly chosen element in A;

comparisons;
Bless ← array with elements {e ∈ A| e < p};
Bequal ← array with elements {e ∈ A| e = p};
Bmore ← array with elements {e ∈ A| e > p};
recursive assembly ;
return RQS(Bless)‖Bequal‖RQS(Bmore)

An example scenario could be an unsorted array if integers A = [1, 4, 2, 5, 3, 0], which we
wish to sort from least to greatest. We �rst randomly choose a pivot point, such as p = 2,
leaving us with arrays Bless = [1, 0], Bequal = [2], Bmore = [4, 5, 3]. After the array Bless is
ran through this algorithm, it will be sorted no matter what pivot point is chosen, leaving
us with [0, 1]. The array Bequal = [2] is already sorted, and we end up with the array
[4, 5, 3], where we repeat the process as before and eventually end up with arrays which we
can combine into [3, 4, 5]. Together, these three arrays combine to [0, 1, 2, 3, 4, 5], which is
a fully sorted array.

There are some improvements that can be made to this basic algorithm. For in-
stance as previously mentioned, when arrays are small enough, instead of resuming with
QuickSort, it can be quicker to use a simpler sorting algorithm to sort the elements within.
However, as it were, this is the basic setup for Randomized QuickSort.

Running Time. Regarding time complexity, for arrays with |A| = n elements, RQS has
the expected running time of E[T (A)] = O(n log n) comparisons, which is quite fast and
in fact polynomial. We remind ourselves of the fact that Las Vegas algorithms are usually
considered in terms of expected best-case, average-case and worst-case time complexity.
For this type of Randomized QuickSort however, the input array will make no di�erence
in the expected running time, and so the expected worst-, average- and best-case times are
identical.

Theorem 4.4 The expected running time of the Randomized QuickSort algorithm, for an

input array A of size n, is O(n log n) comparisons.

To demonstrate this, let us consider some input array A of size n. For the sake of simplicity,
let us assume that no two elements are equal - the existence of such elements would not
negatively a�ect the running time, and it will simplify our notation.

36

When we �rst pick a pivot, we will perform n − 1 comparisons to split the array.
We have divided this array into subarrays Bless, Bmore, where depending on the pivot
point, it could be that |Bless| = 0, |Bmore| = n − 1, or that |Bless| = 1, |Bmore| = n − 2,
and so on. Each such partition has a probability of 1/n of occurring, since there were n
elements to choose our pivot from. Since we performed n− 1 comparisons, we are now up
to n − 1 steps so far. With these facts at hand, and because we de�ned RQS recursively,
we can set up a recursion for the expected number of comparisons T (n) as a function of
the list length n [1, pages 5�7].

E[T (n)] = (n− 1) +
1

n

n−1∑

i=0

(E[T (i)] + E[T (n− i− 1)])

= (n− 1) +
2

n

n−1∑

i=1

E[T (i)]

This recursion follows immediately from the de�nition of the expected value, since we're
considering the expectation of each possible way to partition the array into two. The next
part will involve making an educated guess of an expected upper bound for the running
time, and then showing that this is indeed the case.

The intuition is as follows: on average, the pivot is expected to split the array in
two about equally sized subarrays, halving the size in every recursion step, where each
halved list is easier to sort. In other words, for an array B of size 2n, we would only have
to split it one more time than our array A of size n - this progression is clearly logarithmic.
Since before each time we split our arrays in two, we need to perform up to n comparisons,
we can reasonably guess that E[T (n)] ≤ cn lnn for some constant c. We will show that
this is the case with a proof by induction. According to our guess, E[T (i)] ≤ ci ln i, with
the base case T (1) = 0.

E[T (n)] ≤ (n− 1) +
2

n

n−1∑

i=1

ci ln i

≤ (n− 1) +
2

n

n∫

1

cx lnxdx

≤ (n− 1) +
2

n

(
cn2 lnn

2
− cn2

4
+
c

4

)

≤ cn lnn (for c = 2)

Thus, we have found that E[T (n)] ≤ 2n lnn, implying complexity class of polynomial-time
by O(n log n). Since we made no assumption of what input we have other than the relative
worst-case assumption that there are no elements that are equal to each other, we know
that each case is necessarily polynomial-time. As stated previously, we could also show
that all cases are O(n log n), but that would require making speci�c assumptions about
equal elements which only complicates notation but leads to the same result, so it shall be
skipped.

37

4.3.2 Deterministic QuickSort.

As for deterministic QuickSort, the only typical di�erence against Randomized QuickSort
is how we choose a pivot. There are a few ways of doing this deterministically with various
levels of successfulness [16].

The most simple method is perhaps the most intuitive one: choose the �rst element
in the array. On average, this will be just as e�ective as randomized QuickSort, since
assuming uniformly random input arrays, the �rst element in the array will be random, as
will every subsequent "�rst element" in the upcoming subarrays. However, this is only in
the average case, and since we now do not pick our pivot at random, what type of case
we're dealing with is no longer dependent on a random variable's output, but rather on
the input array. This means that we have a new worst case scenario.

Worst-Case. What if our input array A is already nearly (or completely) sorted? Equally
troubling would it be if our array is reverse-sorted, or in other words, in "descending order"
as opposed to the properly sorted "ascending order". In fact, this is a relatively common
occurrence in practice. In this nearly sorted scenario, every iterative step of this �rst-
element-pivot algorithm, we will compare said pivot to all other elements a ∈ A we �nd
that this is the least element in the list, placing all other elements b ∈ A into Bmore, and
then repeat the process.

Theorem 4.5 The worst case complexity of the Deterministic QuickSort algorithm, for an

input array A of size n, is O(n2) comparisons.

For an array of size n, to "sort" an already sorted list, we would in total have to perform
(n − 1) + (n − 2) + · · · + 1 comparisons, which is an arithmetic series with the sum
n2−n

2 = O(n2). Thus, the �rst-element-pivot QuickSort algorithm has a worst case
of O(n2), and considering that almost sorted and almost reverse-sorted lists are quite
common in practice, this worst case will be an uncomfortably common occurrence for this
algorithm, while being suitably rare for Randomized QuickSort.

Of course, there are a few ways to remedy this situation by changing the pivot
choice step in one of a few ways. For instance, instead of de�nitely choosing the �rst
element, we may have the algorithm look at three elements, namely the �rst, last, and
middlemost elements of the array, ordering those three elements, and choosing the median
out of those to be your pivot. This not only eradicates the problem with both nearly
ordered and reverse-ordered lists, but it also improves your pivot choice in the average case;
At the cost of sorting three elements every pivot selection, requiring only 2-3 comparisons,
you are much more likely to get a pivot further towards the middle, which is optimal
because creating two middle-sized arrays is more e�cient than one much larger than the
other. For especially large lists, it could be worthwhile choosing more than three elements,
as the few additional comparisons performed once per iteration is a small price for such a
greatly improved average-case.

38

To illustrate, we can imagine having a list with a very large amount of elements
(such as integers) that we intend to sort, and we assume that they appear at random in
this list. If we were to choose only one element as our pivot, there is a 1/2 chance that this
element is either amongst the 25% smallest integers or 25% greatest integers in the list. If
we instead choose between three elements and let the median be pivot, the probability of
that median being in those upper and lower fringes is now 1/8, and if we choose between
�ve elements that probability becomes 1/49, with a sacri�ce of up to 10 comparisons to
sort the pivot candidates.

If we indeed are dealing with an immensely large array of elements, it is fairly obvi-
ous that this type of measure would save a lot of time on average. Naturally, there is also
no need for Random QuickSort to feel left out, as this type of improvement is possible even
then - and for the person in charge of programming it, even simpler than for deterministic
QuickSort. Instead of coding a way for the list to choose k elements from speci�c places
in the array, we can simply ask it to generate k distinct random numbers from our RNG,
sort them, then pick the median.

4.4 Primality Testing

One can imagine that there are a lot of theoretical, more abstract reasons why �nding and
testing prime numbers could be interesting. However, there are some practical applications
as well, such as when number theoretical restrictions necessitate that some parameter is
chosen as a prime. For instance, this was the case for the modulus p for de�ning elliptic
curves over �nite �elds in section 3.3.1, and we will see a similar cryptographic application
in the later section 4.5.2.

What all this means is that it can be important to have a good method or algo-
rithm to locate primes and test primality. As for primality testing in particular, the
problem is �nding out whether some number n is a prime or not. Other than the naive
method - namely, checking if there is any 1 < a < n such that a|n - there are a few
more e�cient methods. Several such methods rely on �nding some integer a which is a
witness to the compositeness of n. For the naive method, the witnesses are exactly the
true divisors of n, but better methods have witnesses that are not necessarily divisors of n.

4.4.1 Miller-Rabin Test

A pretty reliable method is known as the Miller-Rabin test [10, pages 130�132], referring to
the random algorithm variant. For an input n, the primality of which is to be determined,
it needs to take a random sample of some m numbers 1 < a < n, and they will all be
checked to see whether they are witnesses. If even a single number is a witness to the
compositeness of n then it proves that n is a composite number, but even if none of the
sample numbers are witnesses, it does not necessarily mean that n is prime.

The test is based on the following result. Let p be some prime, and write p − 1 = 2kq for

39

an odd q, and let a be a positive integer that does not divide p. By Fermat's little theorem
[25], ap−1 must be congruent to 1 mod p, meaning that either aq is congruent to 1 mod p,
or there is some 0 ≤ i ≤ k − 1 such that a2

iq is not congruent to 1 mod p, but its square
is, thus a2

iq must be congruent to −1. In other words, if p is a prime and 1 < a < p, then
either
1. aq ≡ 1 mod p, or
2. there is some 0 ≤ i ≤ k − 1 such that a2

iq + 1 ≡ 0 mod p.

Thus, if we are testing some number n in the above manner, if neither of the top
conditions is ful�lled, we know that n is composite, and then a is a witness to the
compositeness of n. However, if one of the conditions is ful�lled, then n could either be
prime or composite. If we perform the test using a random number, and it fails to prove
compositeness, we can say that n is "composite with some probability x", and if this
happens for two di�erent numbers a1, a2, we can say the same but with probability x2.
Luckily for us, we have a fairly good idea of what these probabilities are.

Theorem 4.6 For a composite number n > 4, at least 75% of positive integers a < n are

witnesses to its compositeness.

The proof for this [17, Theorem 1] is rather involved and so will be skipped. In either case,
for m distinct random numbers less than n, assuming n is composite, the probability that
none of m such numbers being witnesses is at most about 1/4m. The probability of n being
a prime number, as described in [10, page 134], is at least approximately 1− lnn

4m . Now, let
us formulate an algorithm to perform this test. We assume that m is some constant not
determined by the input.

40

input : An input integer n > 2 to be tested.
output: Primality status.

if 2|n then
return status "n is composite"

end

test for witnesses;
for num← 1 to m do

Let a be a random element 1 < a < n;
if 1 < gcd(a, n) < n then

return status "n is composite"
end

Let us notate n− 1 = 2kq such that q is odd;
if aq 6≡ 1 mod n then

if for all i ∈ {1, . . . , k}, a2iq + 1 6≡ 0 mod n then
return status "n is composite"

end
end

end

If we have reached this point without returning compositeness;

return status "about 1− lnn
4m chance of n being prime"

We are also quickly checking if n is a prime and whether a divides n, before performing the
test proper.

Running Time. Skipping over the details, the complexity of the randomized Miller-
Rabin test using repeated squaring is O(m(lnn)3), however naturally this is only the ex-
pected running time, and the true time will depend entirely on n, and what precise numbers
a are being tested, and even in what order. In the best case scenario, n is even and a com-
positeness status can be immediately returned, whereas the worst case is n being a prime
and thus none of the m tested numbers are witnesses. However, we will soon see that the
running time is not the most interesting part about this problem.

4.4.2 Deterministic Miller Test

The deterministic Miller-Rabin test, in this case a type known as the Miller test, will check
O((lnn)2) numbers for witnesses. While not often used in practice due to its slow running
time, it has the interesting property of potentially being able to prove that a number is
prime with certainty, and not just with probability depending on how many numbers were
tested. [10, page 136]

Theorem 4.7 Assuming that the Generalized Riemann Hypothesis is true, then for any

composite number n, there is some Miller-Rabin witness a such that a ≤ 2(lnn)2.

Its algorithm functions identically, but instead of randomly choosing a list with some
parametric length k, a list is deterministically chosen as the numbers less than 2(lnn)2.

41

Other than the fact that it's slow to check about 2(lnn)2 numbers when n is par-
ticularly large, there are two other obvious problems.
Firstly, if we choose to improve running time by reducing the number of integers that we
check for witnesses, we are no longer guaranteed to be able to prove primality under the
assumption of the GRH. We once more fall prey to the issue of pathological inputs.
Secondly, we have the fact that we are basing this entire test on the assumption that the
GRH, an unproven hypothesis, is true. It may be unwise to rely on an algorithm when it
is not known whether it is theoretically sound or not.

The good news for those deterministically inclined is that there are other algorithms,
some in fact faster than the deterministic Miller test, which can prove the primality of
any n > 1. As an example, there is the AKS primality test which, for every ε > 0, will
conclusively prove whether a number is a prime or not in no more than Oε((lnn)

6+ε)
steps. It is worth mentioning that this complexity is signi�cantly worse than the Random
Miller-Rabin test, but with the primary di�erence that the Miller-Rabin will have some
level of con�dence less than 100% in the primality of its input, whereas the AKS test will
prove it with certainty.

4.5 Necessarily Random Algorithms

We have previously seen examples where deterministic algorithms have been situationally
better than random algorithms in certain ways or for certain inputs, but there are cases
where use of a random algorithm is inherently necessary, such that a deterministic version
is completely out of the question for some fundamental reason. Two examples of such
situations involve certain simulations where unpredictability is the entire point, as well as
many cryptographic situations.

4.5.1 Shu�ing Algorithms

The sorting algorithm was touched upon in an earlier section, so let us now consider a type
of algorithm which involves what is arguably the opposite of sorting, namely a shu�ing
algorithm. We may use such an algorithm if we have some array A, possibly sorted, which
we wish to shu�e evenly and e�ciently such that every shu�ed permutation is equally
likely. Another property we want is that, much like when shu�ing a deck of cards by hand,
we want the result to be independent from the starting position in the sense that shu�ing
two separate perfectly ordered decks of cards using the same algorithm should still yield
two di�erently shu�ed decks. An example of such an algorithm for when we wish to shu�e
some array A with size |A| is the optimized Fisher-Yates shu�ing algorithm:

42

input : An array A.
output: The array resulting after shu�ing A.

for i← 1 to |A| − 1 do
r ← random number i ≤ r ≤ |A|;
let the r:th element switch places with the i:th element

end

The way that this algorithm shu�es the elements is quite simple. It �rst chooses an
element at random to place in the �rst spot in the array, then randomly chooses a
previously not picked element to place in the second spot, and so on for the rest of the
array. With a running time of O(n) for an array of size |A| = n, and a perfectly random
shu�e assuming ideally random numbers are used, you would be hard pressed to �nd a
better shu�ing algorithm.

The Fisher-Yates algorithm mentioned above will in total generate n − 1 random
numbers between 1 and n, meaning it will require O(n log n) random bits. However, is
there a way that we may be able to change the fact that it requires random bits at all?
The answer, rather intuitively, is no. If we removed any trace of randomization, then some
given input would always end up with the same shu�ed result. What we have now is not a
shu�ing, but something more akin to a PRNG. But as opposed to a PRNG, we mentioned
previously that we desire for the input to be shu�ed into any possible output with equal
likelihood, but that is not possible with a deterministic algorithm as it depends only on
the input.

4.5.2 Cryptographic Algorithms

Cryptographic algorithms are typically concerned with concealment of information in
some manner too unpredictable to be revealed normally in a timely fashion, but can be
e�ciently revealed using the associated secret key. One such algorithm is the regular
Di�e-Hellman exchange, which is used to generate a shared secret key between two parties
for future cryptographic use. The entire point of such algorithms is to provide for some
form of secure exchange of information, and the Di�e-Hellman exchange is no exception.

The Di�e-Hellman exchange between two parties Alice and Bob �rst requires them
to agree on two public parameters, the base g and the modulo p. We also require that g is
a primitive root modulo p, in other words that g is a generator for all numbers from 0 to
p − 1. After this, Alice and Bob will independently make randomly generate one private
key each, calculate a corresponding public key each, send them to each other, and they
will then be able to calculate their shared secret.

43

input : Public base element g and modulo p
output: Shared secret S

Private exponents;
a← random number 1 < a < p− 1 (Alice's private key);
b← random number 1 < b < p− 1 (Bob's private key);

Public exponents;
A← ga mod p (Alice's public key);

B ← gb mod p (Bob's public key);
Key exchange as Alice and Bob transmit their public keys to each other;

Shared secret calculation;
Alice's calculation: Ba ≡ S mod p;

Bob's calculation: Ab ≡ gab ≡ Ba ≡ S mod p;

Shared secret: Ab ≡ S ≡ Ba mod p

The only publicly known elements here are g,m,A,B, from which S is quite di�cult to
calculate without access to the secret private parameters a, b, making this a useful way to
generate some secret number S just in case there may be someone eavesdropping. The
fact that S is di�cult to calculate from only the public parameters and A,B is referred
to as the Di�e-Hellman Problem. Without going too far into the details, we direct our
attention to the very �rst step of the algorithm: generating the private key exponents a, b.

The fact of the matter is that, if an eavesdropper were to know what either a or b
are, then calculating the shared secret S would be trivial and hold no security. If this
algorithm was somehow derandomized, however, that is precisely what would happen. If
a, b were deterministically chosen based on g,m, then all an adversary would need access
to is the algorithm and the already public keys g,m for the whole exchange to no longer
be secure, and thus would render it pointless.

We can generalize this to any cryptographic algorithm which relies on a private key,
which is every cryptographic algorithm. If such an algorithm would be derandomized, it
would have to generate its secret keys based on its input. The input in turn would have to
consist of public parameters. Now, if the input of a deterministic algorithm that generates
a private key consists of public parameters, anyone with access to the algorithm can
generate the same private key, and thus by Kerckho�'s principle you can no longer assume
that the private key is a secret, and the algorithm necessarily fails at being cryptographic.

4.6 Limitations of Derandomized Algorithms

As thoroughly established previously in this section, using derandomized algorithms is not
always preferable to random algorithms. While many derandomized algorithms have their
fair share of bene�ts, there are some things that random algorithms can do with a limited
amount of time and space that deterministic algorithms cannot do with the same resources.
Additionally, there are a couple of issues that are downright emblematic of derandomized

44

algorithms, and are much rarer in random algorithms.

Pathological inputs. Something we have seen a few times so far is pathological inputs
being a risk factor for deterministic algorithms. Indeed, for most such algorithms, there
is often some type of input that is especially time-consuming or gives a particularly large
degree of error. For some algorithms, it is reasonably easy to make modi�cations to reduce
the intensity of events like this, or the probability that they will a�ect the process nega-
tively. Nevertheless, a more straightforward way is sometimes to simply implement random
variables in place of some �xed choices somewhere to make the issue less dependent on
input - something you have little to no control over - and more dependent on RNG, which
is something you can often generate more of should you need it.

Complicated coding. Some algorithms are able to take a variety of inputs that may re-
quire di�erent kinds of solutions depending on certain properties of the input. One example
of this seen previously involved QuickSort. Both to improve worst-case performance, and
to make on average more e�ective pivot choices for very large lists, deterministic QuickSort
would choose a pool of candidates and then pick the median as the next pivot. How large
this pool was, and how precisely it would choose the elements to put into the pool, would
somewhat depend on the size of the current list. This would be quite a bit simpler to code
for a randomized QuickSort algorithm, as now the only thing depending on the size of the
list is the size of the pool, whereas the elements in the pool can be chosen at random instead
of following some complicated equation.

Situational ine�ectiveness. There are situations in which a deterministic decision will
yield a worse result on average than the expectation of a random choice. One such example
was in regards to numerical integration, for which lower dimensional integrals could be
solved with minimal error using deterministic algorithms, whereas for integrals over higher
dimensions, error became much more costly to reduce. This particular situation is caused
by what is known as the "curse of dimensionality", which is an observation regarding the
exponential increase of volume for each additional dimension. There are a few di�erent
methods that are known to work with small error despite this terrible curse, one of which is
Monte Carlo integration, which relies on random sampling, and is therefore more suitable
for estimating higher dimensional integrals.

Inherent determinism. While perhaps much more obvious than other issues, an algo-
rithm may require some degree of randomness simply due to the nature of the problem.
Examples featured previously included shu�ing algorithms, which cannot be deterministic
by how we de�ne a fair shu�e as inherently unpredictable, and cryptographic algorithms,
which cannot be deterministic because it relies on choosing private keys unpredictably.

45

5 Open Problems in Random Algorithms

Those familiar with unsolved problems in mathematics may have heard of the "NP versus
P" question, which asks whether or not "P = NP". What P and NP refer to are essentially
classi�cations of problems, where P is the class of problems which can be solved using
some deterministic polynomial-time algorithm, and NP informally refers to the class of
problems such that, if you give it an answer, there is a polynomial-time algorithm that can
verify whether this answer is correct. Phrased more informally, the question is whether a
problem can be solved quickly if and only if a correct answer to the problem can be veri�ed
quickly. The type of problems that these classes refer to are so called decision problems,
and all that means is that the answer for some given input is either "yes" or "no". It is
conjectured that P 6= NP , but it has not been proven.

There are many similar open problems in mathematics, which ask whether two classes of
problems are overlap exactly. One such open problem which relates to random numbers
is "BPP versus P". Here, P again refers to the class of polynomial-time deterministically
solvable problems, and BPP refers to problems which are polynomial-time solvable using a
speci�c kind of random algorithm.

The type of random algorithm referred to by BPP is de�ned by its probability of
providing a correct answer. It is related to the class PP, which is short for probabilistic
polynomial-time, and the B in BPP stands for Bounded-Error.

De�nition 5.1 A decision problem is a BPP problem if it is solvable by an algorithm A
such that

(i) A is a polynomial-time random algorithm, and

(ii) the probability that the algorithm outputs the correct answer is ≥ 2/3.

This de�nition is a rephrasing of the one that can be found on ComplexityZoo [6] at the
time of writing. If we consider an algorithm that solves a problem exactly half of the time
as neutral, then the fact that BPP problem solving algorithms must have a success rate of
at least 2/3, which we note is fairly signi�cantly more than 50% of the time, means that
we could informally call BPP algorithms "good". Additionally, by using such an algorithm
repeatedly similar to how it was done in the Miller-Rabin test in 4.4.1, the rate of success
can be further increased, converging to 100%s.

It is currently conjectured that indeed P = BPP [8, page 4]. What it would mean
for derandomization if this result was to be proven is, in very rough terms, that any
e�cient, good random algorithm can be derandomized to an e�cient deterministic
algorithm.

46

References

[1] Aspnes, James "Notes on Randomized Algorithms"

https://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf,

[2] Barker, Elaine; Kelsey, John "Recommendation for Random Number Generation Using

Deterministic Random Bit Generators"

(NIST Special Publication 800-90A, as well as the succeeding version Revision 1),

[3] Borda, Monica "Fundamentals in Information Theory and Coding" (2011),

[4] Burkardt, John "Integration, Quadrature, and Sparse Grids" (2010)
https://people.sc.fsu.edu/~jburkardt/presentations/sparse_2010_fsu.pdf,

[5] Click, Timothy; Liu, Aibing; Kaminski, George "Quality of random number genera-

tors signi�cantly a�ects results of Monte Carlo simulations for organic and biological

systems" (2011),

[6] ComplexityZoo "BPP"

https://complexityzoo.uwaterloo.ca/Complexity_Zoo:B#bpp,

[7] Dodis, Yevgeniy "Lecture 5 Notes of Introduction to Cryptography (PDF)",

[8] Guild, David; van Melkebeek, Dieter "Lecture 14: Randomized Classes"

http://pages.cs.wisc.edu/~dieter/Courses/2011f-CS710/Scribes/PDF/

lecture14.pdf

[9] Harvey, David; van der Hoeven, Joris "Integer multiplication in time O(n log n)"

https://hal.archives-ouvertes.fr/hal-02070778/document

[10] Ho�stein, Je�rey; Pipher, Jill; Silverman, J.H. "An introduction to mathematical cryp-

tography",

[11] Hull, Thomas E.; Dobell, Alan R. "Random Number Generators"

(SIAM Review Vol. 4, No. 3, July, 1962),

[12] Jarosz, Wojchiech "E�cient Monte Carlo Methods for Light Transport in Scattering

Media, Appendix A"

https://cs.dartmouth.edu/~wjarosz/publications/dissertation/appendixA.

pdf,

[13] Knuth, Donald "The Art of Computer Programming" (Third Edition),

[14] L'Ecuyerm, Pierre; Simard, Richard "TestU01 User's guide, compact version (PDF)"

(May 16, 2013),

[15] O'Neill, Melissa E. "PCG: A Family of Simple Fast Space-E�cient Statistically Good

Algorithms for Random Number Generation",

47

[16] "QuickSort"
https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_

notes/lect0123.pdf,

[17] Rabin, Michael O. "Probabilistic algorithm for testing primality"

[18] Schindler, Werner; Killmann, Wolfgang "Evaluation Criteria for True (Physical) Ran-

dom Number Generators Used in Cryptographic Applications",

[19] Shumow, Dan; Ferguson, Niels "On the Possibility of a Back Door in the NIST SP800-

90 Dual Ec Prng",

[20] Sparling, George A. J. "The midpoint rule" (2002)
http://www.math.pitt.edu/~sparling/23021/23022numapprox2/node4.html,

[21] Stip£evi¢, Mario; Kaya Koç, Çetin "True Random Number Generators",

[22] Tracy, Craig A. "Laws of Large Numbers"
https://www.math.ucdavis.edu/~tracy/courses/math135A/

UsefullCourseMaterial/lawLargeNo.pdf

[23] Vigna, Sebastiano "An experimental exploration of Marsaglia's xorshift generators,

scrambled",

[24] Wolfram Alpha's de�nition of an LCG
https://demonstrations.wolfram.com/LinearCongruentialGenerators/

[25] Wolfram Alpha's statement of Fermat's Little Theorem
https://mathworld.wolfram.com/FermatsLittleTheorem.html

48

A Dual_EC_DRBG Backdoor Demonstration Script

The following is the script I wrote to generate a list of candidates for the next state. It
may not be as well written as it could have been, which I attribute to my inexperience
with programming. The script consists of a function which takes in the parameters of the
exploit system and outputs the list of candidates for the state. The module "customEC"
is primarily used to perform elliptic curve arithmetic, and "modsqrt" is used to perform a
modular square root operation.

1 import customEC as ec # self made EC module for creating curves and points ,

finding points on a given curve , and adding points together.

2 import math as m

3 from modsqrt import modular_sqrt as msqrt # a module fortaking modular

square roots , taken from github.

4

5 def ECcheck(cparams , Qcoords , e, state1 = None , rem = 0, printout =0):

6 """ Takes parameters of curve parameters , xy-coordinates of point Q, the

state S1 , number of bits to be removed , and whether to print extra info

"""

7

8 a, b, p = cparams # curve parameters.

9 xQ ,yQ = Qcoords # coordinates for Q. curve class checks if on the

curve.

10 S1 = state1 # state of the first known random number

11

12 slmax = len(bin(p)[2:]) # seed length

13 if rem > slmax: raise Exception("Removed bits \"rem\" is greater than the

number of bits \" seedlen\", the bitlength of p.")

14

15 curve = ec.Curve(a, b, p) # define the curve

16 Q = ec.Point(xQ,yQ, curve) # define point on the curve

17 P = Q * e # define eQ = P

18 s2 = (P * S1)[0] # just for reference , calculate what the next

actual state is. not necessary.

19

20 R1 = Q * S1; R1x = R1[0] # internal RNG coordinates generated

21 r1 = bin(R1x)[2:] # the random number that we see , string form

22 while slmax > len(r1): # formats r1 to usable form , e.g. 00000010

instead of 10

23 r1 = "0"+r1

24 r1 = r1[rem:]

25

26

27 V = [] # list of candidates for s2

28 for i in range (2** rem):

29 if rem >2 and i % 2**(m.floor(rem /3)) == 0 and i != 0: print (100*i/(2**

rem), "%") # will sometimes print % progress (upper bounded , may finish

early)

30

31 x = int(bin(i)[2:]+r1 , 2)

32 if x >= p: break # excludes any R1 candidates greater than the modulo p

33

34 z = (x**3 + a*x + b) % p

49

35 y = msqrt(z, p) # if there is no such mod square root y, it outputs 0.

36 if y != 0:

37 A = ec.Point(x, y, curve)

38 s2c = (A * e)[0]

39 if s2c == None: s2c = "O"

40 V.append(s2c) # saves the next state candidate corresponding to

x in the list V

41

42 if printout == 1: # prints out useful information at the end

43 print("_________________")

44 print("a=", a, "b=", b, "p=", p)

45 print("P=", P, "Q=", Q, "e=", e)

46 print("S1=", S1, "\nR1=", R1, "r1=", int(r1 ,2), "\nbin(R1x)=", bin(R1x)

, "bin(r1)=", r1)

47 print("seedlen=", slmax , "rem=", rem)

48 print("\ncontents of V is:", V, "\ns2 is actually:", s2)

49 print("_________________")

50

51 return V, s2

52

53

54 cparams = [-50, 200, 4091] # arbitrary non -singular curve (a, b, p)

55 Qcoords = ec.findpoint(cparams , xmax = 50, ymax = 50) # given a curve ,

finds a point Q deterministically.

56 e = 20 # arbitrarily chosen multiplier e to generate eQ = P

57 state1 = 5 # arbitrarily chosen starting state

58 rem = 6 # the number of leftmost bits removed from R1 to make r1.

larger means safer , but outputs fewer random bits.

59

60 outp = ECcheck(cparams , Qcoords , e, state1 , rem , printout =1) # runs the

function that finds the candidates using the exploit

61

62 if outp [1] in outp [0]: print("Yes , it is one in", len(outp [0]), ", opposed

to naive", 2**rem)

63 else: print("uh oh, nope. s2 is not in Slist.") # this line existed for

early troubleshooting

Listing 1: The script used to get the list of candidates from one random number r1.

50

