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Abstract

One of the main purposes of algebra is to study algebraic equations and
their solutions. This paper will show how it is impossible to solve the general
quintic equation by the use of radicals, but also how a soluble quintic equation
must have either one real and four complex conjugate roots or five real roots.
The paper also gives an account of the history that lead to the solving of
the general quadratic, cubic and quartic equations and provides methods for
solving those. In those methods it is also shown how in order to solve an
equation of degree n, an auxiliary equation of degree n−1 needs to be solved
as well.
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1 Introduction
Since the dawn of mathematics, people have sought to solve the complex
puzzles called equations. In the beginning it was thought that all equations
have a general solution, and it was just a matter of mental prowess and
logical capacity to find the formula for each and every one of them.
Mathematicians all over the world struggled to produce solutions for the
general quadratic, cubic and quartic equations, until all the solutions had
finally been found. Then a new question arose: How could a quintic
equation, or equations of an even higher degree be solved? The answer is
that there are no general solutions for such equations, and it all began with
the proof of how the quintic is not soluble with radicals.

This paper begins with an account of definitions and theorems that will be
used, which are referred to in the text, followed by an account of the history
behind the solving of equations up to the quartic. In the following
subsections the formulas for all aforementioned equations will be derived.
Finally, some history behind the quintic equation and a proof of how the
quintic equation is impossible to solve using radicals will be displayed.

Most of the theorems and proofs are taken from ”Lärobok i algebra” by
Nagell as well as ”Polynom och ekvationer” by Tambour. Regarding the
quintic equation, the reader may find the original proof by Abel as well as
the re-printed version in the reference list, in addition to the explained
proof taken from Nagell.

I would like to give appreciation to my tutor, Torbjörn Tambour, for
continuously being incredibly patient, supportive and helpful on my path to
increased knowledge.
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2 Concepts and denotations
In this paper, mostly basic algebraic notations such as polynomials,
equations and roots will be used, together with some definitions required to
compute the equations of interest. The definitions and theorems have been
divided into two parts, where the first will be referred to by mostly the
quadratic, cubic and quartic equation and where the second is only relevant
for the quintic equation.

2.1 Polynomials, equations and roots

Definition 1.1: A polynomial with r variables x1, x2, x3 is defined by∑
ak1,k2,...,krx

k1
1 x

k2
2 ...x

kr
r

where a are the polynomials coefficients which are constant complex
numbers, and k1 = 0, 1, ..., n1;... ;kr = 0, 1, ..., nr. The sum, difference and
product of two polynomials is also a polynomial. For polynomials it is also
known that the laws of commutativity, associativity and distributivity
apply. (Nagell, p. 1)

Definition 1.2: If p(x) is a polynomial, then p(x) = 0 is called an algebraic
equation. (Nagell, p. 21)

Definition 1.3: The roots (or solutions) of an equation are the values of x
that satisfies the equation. The existence of said roots are confirmed by an
existential theorem, which states that for all algebraic equations

p(x) = xn + a1x
n−1 + ...+ an = 0

where n > 0 and all coefficients are complex numbers, there is at least one
root x. (ibid)

Theorem 1.4: The number of roots of an algebraic equation of degree n
has exactly n roots if they are counted with multiplicity. (Nagell, p.
25)(Tambour, 2003)

2



Theorem 1.5 (The Factor Theorem): The polynomial p(x) has a factor
(x− k) if and only if p(x) has a root k such that p(k) = 0.

Theorem 1.6: The coefficients of an equation may be expressed as
polynomials in the roots. According to the factor theorem, a general
equation xn + a1x

n−1 + ... + an = 0 with roots x1, x2, ..., xn has the factors
(x− x1), (x− x2), ..., (x− xn) and it may be factorised accordingly, inserting
the polynomial an

xn + a1x
n−1 + ...+ an = an(x)(x− x1)(x− x2)...(x− xn).

Since the degree of the polynomial is n, an is a constant. Furthermore, since
xn on the left side has the coefficient 1, an must also be equal to 1. Multiplying
the factors on the right side and comparing the coefficients on both sides gives
the following relations

a1x
n−1 = −(x1 + x2 + ...+ xn)x

n−1

x1 + x2 + ...+ xn = −a1
a2x

n−2 = (x1x2 + x1x3 + ...+ xn−1xn)x
n−2

x1x2 + x1x3 + ...+ xn−1xn = a2
...

an = (x1x2...xn)an
x1x2...xn = (−1)nan.

For quadratic and cubic equations the relations are the following

Quadratic: x2 + a1x+ a2
x1 + x2 = −a1
x1x2 = a2

Cubic: x3 + a1x
2 + a2x+ a3

x1 + x2 + x3 = −a1
x1x2 + x1x3 + x2x3 = a2

x1x2x3 = −a3.

Definition 1.7: The discriminant of a polynomial is a quantity that depends
on the polynomials coefficients and determines some properties of the roots,
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denoted D. Consider the general polynomial p(x) = xn + a1x
n−1 + ... + an

with the roots x1, ..., xn. Then the discriminant of p is defined as∏
1≤i<j≤n

(xi − xj)2.

When n = 2 the polynomial is p(x) = x2 +a1x+a2 and according to theorem
1.6 the relation between the roots may be expressed as x1 + x2 = −a1 and
x1x2 = a2. Expressing D as a polynomial with the help of a1, a2 gives

D = (x1 − x2)2 = x21 − 2x1x2 + x22 = (x1 + x2)
2 − 4x1x2 = a21 − 4a2

Considering the first parenthesis, it is clear that D = 0 if and only if the
roots are equal, which means the polynomial has one root with multiplicity
2, which also makes it a square. (Tambour, 2003)

When n = 3 the polynomial is p(x) = x3+a1x
2+a2x+a3 but may be written

p(x) = x3 + px + q, which is the depressed form of the cubic polynomial.1

The determinant is then

D = (x1 − x2)2(x1 − x3)2(x2 − x3)2 = −108(
q2

4
+
p3

27
)

Definition 1.8: The nth roots of unity are the complex numbers that satisfy
the equation xn − 1 = 0. A root is called primitive if n > 0 is the smallest
number such that xn = 1. According to Moivre, we may find the primitive
roots in the corners of a regular n-sided polygon inscribed in the unit circle.
The reason that the roots are located on the unit circle is quite simple,
consider what happens when the absolute value is applied to both sides

|x|n = |1|
|x| = 1

which means that all roots have the absolute value 1.
Applying de Moivres formula, xn = cos(nφ) + i sin(nφ), gives the formula
for finding said roots, which is εm = cos(2πmn ) + i sin(2πmn ), where n is the
degree of the original equation and m = 1, 2, ..., n − 1. This could be

1See 3.3.1
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described as a full rotation, 2π, being divided into n parts, where one
primitive root is found after each partly completed rotation. (Nagell, p.
177) If one root x0 for a binomial equation xn − α = 0 is found, the other
roots can be written εmx0. (Tambour, 2003)

Definition 1.9: A radical of the nth degree, also called an nth root, may
be expressed n

√
c. The number n is the exponential of the radical; for

example, when n = 2 the radical is a square root. If an equation may be
solved by operating on its coefficients using the four elementary rules of
arithmetic and root operations it is said to be solvable by means of radicals,
(Nagell, p. 179)

Theorem 1.10 (The binomial theorem): Any non-negative power of x+y
may be expanded to a sum of the form

(x+ y)n = xn + A1x
n−1y + ...+ Akx

n−kyk + ...+ An−kxy
n−1 + yn

where

Ak =
n(n− 1)...(n− k + 1)

1 · 2...(p− 1)p
.

(Nagell, p. 56)

Definition 1.11: The general form of the different equations that will be
mentioned in this paper, where an 6= 0:

The linear equation: a1x+ a2 = 0
The quadratic equation: a1x

2 + a2x+ a3 = 0
The cubic equation: a1x

3 + a2x
2 + a3x+ a4 = 0

The quartic equation: a1x
4 + a2x

3 + a3x
2 + a4x+ a5 = 0

The quintic equation: a1x
5 + a2x

4 + a3x
3 + a4x

2 + a5x+ a6 = 0
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2.2 Functions, number fields and groups

Definition 2.1: A rational function, usually denoted f(x1, x2, ..., xn), of
one or more variables is defined as the quotient of two polynomials. If
P, P1, Q,Q1 are polynomials and PQ1 = P1Q then the two rational
functions P

Q and P1

Q1
are equal. Just as for polynomials, the sum, difference

and product of two rational functions is another rational function. (Nagell,
p. 15)

Definition 2.2: A rational function f(x1, x2, ..., xn) of the n variables
x1, x2, ..., xn is called symmetric if it does not change when the variables are
permuted in any of the n! possible ways. The sum, difference and product
of two symmetric functions is once again a symmetric function, but in
addition this is also true for the quotient of two symmetric funtions.
Furthermore, every symmetric rational function may be written as the
quotient of two symmetric polynomials. (Nagell, p. 129)

Definition 2.3: An algebraic number field, or field for short, is usually
denoted K(α) or Ω, where α is an algebraic number. A field is a set of
numbers which may be both complex and real. This set is denoted M ,
where M 6= 0 and if a, b ∈ M then a + b, a − b, ab, ab ∈ M . A property of a
field is therefore that it does not expand when the four elementary
arithmetic operations are applied to numbers within the field. For example,
the set containing all rational numbers is a field, called the rational field. In
fact, all fields contain this set, since a

a = 1 exists within all sets where
M 6= 0 and all rational numbers may be constructed from the number 1 by
repeated application of aforementioned operations.

If α 6= 0 is an arbitrary number, K(α) is defined as the smallest field that
contains α and is defined

a0 + a1α + a2α
2 + ...+ amα

m

b0 + b1α + b2α2 + ...+ bnαn

where ak, bk are integers and m,n natural numbers or zero. For example,
the numbers −α2, 1, 2α... belongs to the field.

In the same manner K(a1, a2, ..., ar) is the smallest field constructed from
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the numbers a1, a2, ..., ar , and K(Ω, ξ) is the smallest field constructed from
all numbers in the field Ω together with the number ξ. It is said that ξ is
adjoined to or an adjunction of Ω. The last example is also denoted Ω(ξ),
or in the case where ξ ∈ Ω simply Ω. (Nagell, p. 32)

Theorem 2.4: The radical n
√
β is called irreducible if the binomial xn − β

is irreducible in K(β). The number n is called the relative degree of the
radical with respect to K. (Nagell, p. 249)

Theorem 2.5: Let f(x) and g(x) be two polynomials in the field K. If
f(x) is irreducible in K and if f(x) and g(x) has a common root, f(x) is a
factor of g(x). (Nagell, p. 220)

Theorem 2.6 (The Schönemann-Eisenstein Theorem): The integer
polynomial

f(x) = xn + a1x
n−1 + ...+ an−1x+ an

where all coefficients may be divided with the prime number p, but where
an may not be divided with p2, is irreducible in the rational field. (Nagell,
p. 225)

Theorem 2.7: If ξ is an algebraic number with the relative degree n with
respect to Ω, every number α in K(Ω, ξ) may be described in one way and
one way only on the form

α = a0 + a1ξ + a2ξ
2 + ...+ an−1ξ

n−1

where a0, a1, ..., an−1 belongs to Ω. (Nagell, p. 234)

Theorem 2.8: Let R(x1, x2, x3, ...) be a rational function of x1, x2, x3, ... with
coefficients in Ω, and let α, β, γ, ... be numbers in K(Ω, ξ). If

R(α, β, γ, ...) = 0,

then
R(α(i), β(i), γ(i), ...) = 0
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for all i = 1, 2, 3, ... and where α(i), β(i), γ(i), ... denotes the algebraic
conjugates to α, β, γ, .... That is, α(i), β(i), γ(i), ... are respectively roots to
irreducible polynomials. (Nagell, p. 236)

Theorem 2.9: Let α be an algebraic number with the relative degree n
with respect to Ω and β an algebraic number with the relative degree q
with respect to K(Ω, α). Then the field K(Ω, α, β) has the relative degree
nq with respect to Ω. (Nagell, p. 243)

Theorem 2.10: An algebraic equation is said to be solvable by means of
radicals with respect to the field Ω or metacyclic with respect to Ω if all its
roots are possible to write with radicals with respect to Ω. (Nagell, p. 248)

Theorem 2.11: Every nth root of unity2 may be presented with
irreducible radicals with respect to the rational field.3 (Nagell, p. 255)

Theorem 2.12: Let f(x) be a polynomial in an arbitrary field Ω which is
irreducible in Ω and has the prime number degree p. Let % be an algebraic
number with the relative degree q with respect to Ω. If f(x) is reducible in
K(Ω, %) and if q is a prime number, then p = q. (Nagell, p. 259)

2See definition 1.8
3See definition 2.3
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3 History of equations and how to
solve them

To understand how the proof of the impossibility to solve quintic equations
came to be, we must first understand the discoveries of the solutions of lower
grade equations.
The exclusion of the linear equation is intentional, since the solution of it is
quite trivial.

3.1 The founders

It is difficult to accredit one or more specific individuals to the solution of
the quadratic equation, since it dates back incredibly far in time. Evidence
has been found that the Babylonians in 3879 BC had methods for solving
quadratic equations, using area and length. (Friberg, 2009) However, it was
not until 1637 that the formula for solving second degree equations as we
know it today was published by René Descartes in La Géométrie. (Serfati,
p. 4)

As for cubic equations, the foundation was laid by the Greeks when they
invented conic sections in 429 B.C., but it was not until around 300 A.D.
that Diophantus of Alexandria succeeded in solving one single cubic
equation using this method. In 1505, Scipione del Ferro (also known as Dal
Ferro or Scipo Ferro, 1465-1526) told his pupil Antonio Fiore (also known
as Floridas) of the solution to x3 +mx = n, which would be the first step in
solving a general cubic equation. However, it was Nicolo of Brescia (also
known as Tartaglia, 1499/1500-1557) who first found a method for solving
x3 + px2 = q. This method was not perfected and only worked for specific
cases, but in 1541 he also found a way to solve the equation by first
reducing it to the form x3 + mx = n, which worked for all cubic equations.
This discovery was shared with Cardano (also known as Cardan, 1501-1576)
who had to promise to keep it secret. However, when Cardano’s pupil
Ferrari (1522-1565) managed to discover the solution of the quartic equation
based on Tartaglia’s work, Cardano realised that they had to publish the
cubic solution in order to publish the quartic. This was because of the
necessity to calculate a cubic equation to solve a quartic, which meant that
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if Cardano published the solution of the quartic it would not be complete
without the solution of the cubic. Ferrari, who realised the importance of
publishing his findings, succeded in finding Ferro’s old formula, which
Cardano could use to justify the publishing of the general formula of both
the cubic and quartic equations. Both solutions were published in 1545 in a
book called Artis Magnae, Sive de Regulis Algebraicis Liber Unus,
commonly called Ars Magna or The Great Art. Even though Cardano
attributed the solution to the cubic equation to Ferro and Tartaglia, it was
published by him and thus the solution was viewed as his. To this day, the
general formula, which was founded by Ferro and completed by Tartaglia, is
called ”Cardano’s solution”. This in contradiction to the general solution to
the quartic equation, which was attributed to Ferrari and was named
”Ferrari’s solution”. (Guilbeau, 1930) (Tambour, 2003) (G̊arding, p. 7)

Many others have since proposed other formulas for both the cubic and
quartic equations. For example, Euler (1707-1783) and Lagrange
(1736-1813) developed their own formulas for solving both equations, but
they are of course all based on the work of Ferro and Tartaglia, so
substitution and solving an auxiliary equation of a lower degree are vital
aspects of them. (Zhao, 2019)
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3.2 The quadratic equation

The general form of a quadratic equation is a1x
2 +a2x+a3 = 0, where an are

complex numbers and an 6= 0. If a1 6= 0, the equation can be divided with a,
which gives the following

x2 +
a2
a1
x+

a3
a1

= 0.

Substituting p = a2
a1

and q = a3
a1

gives the (hopefully) familiar equation

x2 + px+ q = 0.

The general formula for solving this equation is called the quadratic
formula, and is derived from completing the square in the equation. Start
with subtracting q from both sides, which gives

x2 + px = −q. (1)

To make the left side into a complete square on the form (x + α)2, it must
be modified. Expanding the square gives

(x+ α)2 = x2 + 2αx+ α2. (2)

If the left side in (1) and the right side in (2) are compared, it is obvious that
α = p

2 , and that α2 = (p2)2 must be added to (1) for them to be equal. This
gives

x2 + px+ (
p

2
)2 = (

p

2
)2 − q. (3)

But, the reason the square was completed was so that the left side could be
simplified, which gives

x2 + px+ (p2)2 = (x+ p
2)2

(x+ p
2)2 = (p2)2 − q

Worth mentioning is that the right side in the equation is D
4 , according to

definition 1.7, where D determines how many real solutions the equation
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has. If D = 0 the equation has the real solution x = −p
2 with multiplicity 2,

meaning that the polynomial in the left side of the equation is square.

Now it is possible to take the square root of both sides in (3), which results
in the famous quadratic formula√

(x+ (p2))2 =
√

(p2)2 − q

x+ p
2 =

√
(p2)2 − q

x = −p
2 ±

√
(p2)2 − q.

Note that since D
4 is now under a square root it is clear that if D

4 > 0 the
equation has two real solutions, and if D

4 < 0 it has two conjugate complex
solutions.

12



3.3 The cubic equation

The general form of the cubic equation is a1x
3 + a2x

2 + a3x+ a4 = 0, where
an are complex numbers and an 6= 0. To solve a cubic equation, it is first
reduced to its depressed form x3 + px+ q = 0, without quadratic term. After
finding one root by the use of substitutions, the primitive cube roots are used
to find the remaining roots.

3.3.1 The depressed cubic

Constructing a depressed cubic is done by first dividing the equation with a1
and then substituting. Since an 6= 0 it is indeed possible to divide the general
equation with a1, which gives the equation

x3 +
a2
a1
x2 +

a3
a1
x+

a4
a1

= 0

in which the substitution x = t − a2
3a1

is made, after which the equation is
simplified.

(t− a2
3a1

)3 + a2
a1

(t− a2
3a1

)2 + a3
a1

(t− a2
3a1

) + a4
a1

= 0

t3 − t2a2
a1

+ ta22
3a21
− a32

27a31
+ a2

a1
(t2 − 2ta2

3a1
+ a22

9a21
) + a3

a1
(t− a2

3a1
) + a4

a1
= 0

t3 + t(a3a1 −
a22
3a21

) + 2a32
27a31
− a2a3

3a21
+ a4

a1
= 0

Substituting p = a3
a1
− a22

3a21
and q = 2a32

27a31
− a2a3

3a21
+ a4

a1
gives the depressed cubic

t3 + pt+ q = 0 (4)

3.3.2 Primitive cube roots of unity

Finding the primitive cube roots of unity is according to definition 1.8 done
by computing εm = cos(2πmn ) + i sin(2πmn ) for m = 1, 2 and n = 3. This gives

13



ε1 = cos(2π3 ) + i sin(2π3 )

= −1+i
√
3

2

ε2 = cos(2π23 ) + i sin(2π23 )

= −1−i
√
3

2 .

3.3.3 Solving the depressed cubic

Solving the depressed cubic using Cardano’s solution starts with introducing
another substitution, namely t = u+ v. This transforms (4) into

u3 + 3u2v + 3uv2 + v3 + (u+ v)p+ q = 0

u3 + v3 + (3uv + p)(u+ v) + q = 0

which has the solution u+ v if u3 + v3 = −q and uv = −p
3 . Viewing the form

of these conditions reminds of the relation between roots and coefficients in
a quadratic equation, where if x1, x2 are roots to a quadratic equation, and
a1, a2 are its coefficients, x1 +x2 = −a1 and x1x2 = a2 (definition 1.6). Thus,
an equation with the roots u3 and v3 can be constructed in the following
manner

(y − u3)(y − v3) = 0

y2 − (u3 + v3)y + (uv)3 = 0

where u3 + v3 and uv can be replaced according to the aforementioned
relations, which gives

y2 + qy − p3

27
= 0.

Solving for y gives

y = −q
2
±

√
q2

4
+
p3

27
. (5)
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The expression under the square root might be familiar. It is the
disriminant for a cubic polynomial divided with −108. Let this expression
be denoted ∆, then D = −108∆. When D > 0 or D = 0 the equation gives
three real roots, and when D < 0 it instead gives one real root and two
complex roots. (Tambour, 2003)

Since u and v are symmetric variables, (5) gives

u1 =
3

√
−q

2 +
√

q2

4 + p3

27

v1 =
3

√
−q

2 −
√

q2

4 + p3

27 .

Here the primitive cube roots are used to find the other possible solutions

u2 = ε1u1 = −1+i
√
3

2

3

√
−q

2 +
√

q2

4 + p3

27

u3 = ε2u2 = −1−i
√
3

2

3

√
−q

2 +
√

q2

4 + p3

27

v2 = ε1v1 = −1+i
√
3

2

3

√
−q

2 −
√

q2

4 + p3

27

v3 = ε2v1 = −1−i
√
3

2

3

√
−q

2 −
√

q2

4 + p3

27

Since uv = −p
3 , not all combinations of these solutions are valid. This means

that some calculations are necessary to find the actual solutions

u1v1 =
3

√
−q

2 +
√

q2

4 + p3

27

3

√
−q

2 −
√

q2

4 + p3

27

=
3

√
q2

4 − (
√

q2

4 + p3

27)2

= 3

√
−p3

27 = −p
3
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In the same manner

u1v2 = u1v1ε1 = p(1−i
√
3)

6

u1v3 = u1v1ε2 = p(1+i
√
3)

6

u2v2 = u1v2(ε1)
2 = 2p(i

√
3+1)

12

u2v3 = u1v1ε1ε2 = −p
3

u3v2 = u1v1ε2ε1 = u2v3 = −p
3

u3v3 = u1v1(ε2)
2 = p(−i

√
3)

3 .

Remembering that t = u+v and x = t− b
3a , the solution to the cubic equation

can now be constructed

x1 = u1 + v1 − b
3a

x2 = u2 + v3 − b
3a

x3 = u3 + v2 − b
3a .

With this in mind, if the cubic equation lacks a quadratic term, − b
3a will

be excluded from the solutions since the process of depressing the equation
does not have to be computed and the coefficients p and q can be directly
extracted from the equation.
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3.4 The quartic equation

To solve the quartic equation, a variation of Ferrari’s solution will be used,
which utilises Cardano’s solution. Ferrari originally solved the quartic
equation by first reducing it to depressed form, without cubic term, and
then made use of an auxiliary variable to write the equation as two squares.
It is however possible to solve it in the same manner as Ferrari without
reducing it first, which will be displayed here. An example of how to solve a
quartic equation without a cubic term can be found after the general
formula, and the following section will show how indeed all quartic
equations can be reduced to such an equation.

3.4.1 The depressed quartic

When the cubic equation was depressed, the equation was divided by a1
and then a substitution was made. The same method will be applied here.
Dividing the general quartic equation with a1 gives

x4 +
a2
a1
x3 +

a3
a1
x2 +

a4
a1
x+

a5
a1

= 0

in which the substitution t = x − a2
4a1

is made, after which the equation is
simplified and calculated by using theorem 1.10 (the binomial theorem)

(t− a2
4a1

)4 + a2
a1

(t− a2
4a1

)3 + a3
a1

(t− a2
4a1

)2 + a4
a1

(t− a2
4a1

) + a5
a1

= 0

t4 + t2(a
2
2+8a1a3
8a21

) + t(a
3
2−4a1a2a3+8a21a4

8a31
)− 3a42+4a1a

2
2a3−42a21a2a4+43a31a3

44a41
= 0.

Substituting p = a22+8a1a3
8a21

, q = a32−4a1a2a3+8a21a4
8a31

and

r = −3a42+4a1a
2
2a3−42a21a2a4+43a31a3

44a41
gives the depressed quartic

t4 + pt2 + qt+ r = 0. (6)

3.4.2 Solving the general quartic

Consider the general quartic, a1x
4 + a2x

3 + a3x
2 + a4x + a5 = 0. If new

coefficients are introduced, a = a2
a1

, b = a3
a1

, c = a4
a1

and d = a5
a1

, it can be
written as
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x4 + ax3 + bx2 + cx+ d = 0 (7)

x4 + ax3 = −bx2 − cx− d
x2(x2 + ax) = −bx2 − cx− d.

The intention is now to be able to write both sides as squares, since this
would allow for the square root to be applied to both sides. This starts with
completing the square on the left side, which entails adding x2a2

4 to both sides.
This gives

x2(x+ a
2)2 = −bx2 − cx− d+ a2x2

4

(x2 + ax
2 )2 = (a

2

4 − b)x
2 − cx− d.

The next step is truly magical. An auxiliary variable t is introduced, with
the motivation that it may be chosen in a way that allows the right hand side
of the equation to be written as a square. To keep the left side as a square,
the expression (x2 + ax

2 )t+ t2

4 is added, which gives

(x2 +
ax

2
+
t

2
)2 = (

a2

4
− b+ t)x2 + (

at

2
− c)x+

t2

4
− d (8)

The right side can be written as a square according to definition 1.7 if the
discriminant D = p2 − 4q for the quadratic equation is 0. Dividing the right
hand side with the coefficient for x2 gives

x2 + (
2at− 4c

a2 − 4b+ 4t
)x+

t2 − 4d

a2 − 4b+ 4t
,

where p = 2at−4c
a2−4b+4t and q = t2−4d

a2−4b+4t . Calculating the discriminant gives

t3 − bt2 + (ac− 4d)t− a2d+ 4bd− c2 = 0.

This is a cubic equation and the solutions to it are calculated according to
Cardano’s solution.4 Substituting t = y + b

3 gives

y3 + (ac− b2

3
− 4d)y +

abc

3
− a2d− 2b3

27
+

8bd

3
− c2 = 0

4See chapter 3.3
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and
pc = ac− b2

3 − 4d

qc = abc
3 − a

2d− 2b3

27 + 8bd
3 − c

2.

Applying Cardano’s formula gives

u =
3

√
−qc

2 +
√

q2c
4 + p3c

27

v =
3

√
−qc

2 −
√

q2c
4 + p3c

27

y = u+ v.

If it is now, according to Cardano’s solution, assumed that u0 and v0 are
roots for u and v and u0v0 = −p

3 , the following are solutions for t:

t1 = u0 + v0 + b
3

t2 = ωu0 + ω2v0 + b
3

t3 = ω2u0 + ωv0 + b
3

With the solutions to the auxiliary variable t, it is now possible to write the
right side in (8) as a square on the general form (αx + β)2. Expanding the
general form and comparing to the right side in (8) gives

α2x2 + 2αβx+ β2 = (a
2

4 − b+ t)x2 + (at2 − c)x+ t2

4 − d
α2 = a2

4 − b+ t

β2 = t2

4 − d
αβ = at

4 −
c
2

Re-writing (8) with the completed square on the right side gives

(x2 +
ax

2
+
t

2
)2 = (αx+ β)2

with the solutions

x2 +
ax

2
+
t

2
= αx+ β (9)

and

x2 +
ax

2
+
t

2
= −αx− β. (10)

19



The first two solutions are given by solving (9), and the third and fourth by
(10)

x1,2 =
α−a

2±
√

(α−a
2 )

2−4( t2−β)
2

x3,4 =
−α−a

2±
√

(α−a
2 )

2−4( t2+β)
2

Note that according to theorem 4 the number of roots of the quartic equation
is exactly equal to 4. This means that even if t has 3 possible solutions with
2 different α and β each, the solutions to x are equal whichever t is chosen,
which means that either can be used to give the same solutions to x.

3.4.3 Example of depressed quartic

To show how Ferrari’s solution may be used as it was intended, an example
of a quartic equation without a cubic term will be calculated. This will
show how the formula does not depend on whether an equation is reduced
to depressed form or not before the roots are calculated.

The equation which will be solved is x4 − 51x2 − 10x+ 600 = 0. Comparing
this equation to the one for the general quartic in (7) yields that a = 0, b =
−51, c = −10 and d = 600, which shows that it is exactly the same equation.
This means that it indeed is not necessary to depress the quartic equation
before calculating it, and the solution of the equation may be calculated
according to the general solution. Just like before, the equation is rewritten
and an auxiliary variable t is introduced to produce squares.

x4 = 51x2 + 10x− 600

(x2 + t
2)2 = x4 + x2t+ t2

4

= 51x2 + 10x− 600 + x2t+ t2

4

Factoring the right side of the equation gives

(51 + t)(x2 +
10

51 + t
x+

t2 − 2400

51 + t
)

and calculating for which t the discriminant for the quadratic equation is 0
gives

t3 + 51t2 − 2400t− 122500 = 0.
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Here the formula found in the general solution for pc and qc is used to
construct Cardano’s formula

pc = ac− b2

3 − 4d

= −−5123 − 4 · 600
= −3267

qc = abc
3 − a

2d− 2b3

27 + 8bd
3 − c

2

= −2(−51)3
27 + 8(−51)600

3 − (−10)2

= −71874

u =
3

√
−qc

2 +
√

q2c
4 + p3c

27 = 33

v =
3

√
−qc

2 −
√

q2c
4 + p3c

27 = 33

y = u+ v = 66
t = y + b

3 = 49.

Now α and β may be calculated using Ferrari’s solution

α2 = a2

4 − b+ t = 100
α = ±10
αβ = at

4 −
c
2

β = ±1
2 .

For simplicity α = 10 and β = 1
2 is chosen, since Ferrari’s formula will give

the same solutions whichever pair of α and β is used. Finally, to find the
solutions to the equation, Ferrari’s formula is applied with the chosen values
of α and β.

x1,2 =
10−0±

√
(10−0)2−4( 492 −

1
2 )

2

= 10±2
2

x3,4 =
−10−0±

√
(−10−0)2−4( 492 + 1

2

2

= −5

Thus, the equation has the solutions x1 = 6, x2 = 4 and x3,4 = −5.
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4 The quintic equation

4.1 Erland Samuel Bring

Bring (1736-1798) was a Swede based in Lund, who worked as a lawyer and
then as a notary after which he became a professor in history. (G̊arding,
p.7) Given his background, it is most surprising that he also is a famous
mathematician, which is mostly due to the dissertation he wrote in 1786
regarding how equations may be transformed, under the name ”Meletemata
quaedam mathematica circa transformationem aequationum algebraicarum”.
This dissertation proved how reducing a general quintic equation to the form
of y5 + py + q = 0 is indeed possible. His work is most likely based on
Tschirnhausen’s5 (1651-1708) earlier calculations, but this is not noted in
Bring’s work. (G̊arding, p.8) Bring also contributed with the Bring radical,
which of a real number α is the unique real root to the polynomial x5+x+α.
George Jerrard (1804-1863) later realised it was possible to use the Bring
radical to solve some quintic equations.

4.2 Niels Henrik Abel

In 1824 Abel showed that the quintic equation is impossible to solve using
only algebraic operations, that is by means of radicals. He had to finance the
printing of his work by himself, which made the proof relatively short and
not quite finished (Nagell, p. 247), but in 1826 a more thorough version was
published in ”Journal für die reine und angewandte Mathematik”, also called
Crelle’s journal. (Crelle, 1824) He is accredited to be the first person who
showed this impossibility, but shortly thereafter Galois (1811-1832) showed
the same thing using group theory.

5An account of Tschirnhaus transformations may be found in Nagell, p. 206
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4.3 The proof

This proof is taken from Nagell and follows Abel in the sense that it uses
mostly basic properties of fields and polynomials. Nagell starts with
expanding the rational field with the help of radicals, after which properties
of factors in polynomials are considered in order to construct a linear
system of equations, solving for possible solutions of the quintic equation.

Start with the field consisting of the set of all rational numbers, here denoted
Ω0, and let f(x) be an irreducible polynomial of the fifth degree in Ω0. The
equation f(x) = 0 can be expressed as the general quintic equation with 1 as
the coefficient for x5 in the following manner

x5 +
a2
a1
x4 +

a3
a1
x3 +

a4
a1
x2 +

a5
a1
x+

a6
a1

= 0.

Assume that this equation is solvable with radicals with respect to Ω0. This
means that if Ω0 is expanded with adjunctions of radicals, f(x) becomes
reducible in the expanded field. A polynomial may exist in two forms, its
original form and its reduced form

f(x) = xn + a1x
n−1 + ...an−1x+ an

f(x) = (x− x1)(x− x2)...(x− xn)
where x1, ..., xn are the roots of the polynomial. Since the polynomial is
irreducible in Ω0, it means that the roots of the polynomial exist outside
Ω0, which is why the field must be expanded. Then it is also logical that
the radicals that are adjoined to Ω0 in order to make f(x) reducible must
aid in constructing the roots of the polynomial, which will be shown below.

Assume that the radicals which are adjoined to Ω0 have exponentials that
are prime numbers. First the 5th root of unity, ε(5), will be adjoined to the
field. This will allow for remaining roots of the binomial equation
x5 − a = 0 to be calculated when the first root is found. When adjoining a
complex number to a field, its complex conjugate must also be adjoined,
because the adjunction of a complex number might not cause the
adjunction of its conjugate. Obviously, if the adjunction of the complex
number causes its conjugate to be adjoined, the additional adjunction is
unnecessary. However, in the case when the first 5th root of unity is
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adjoined, all other 5th roots of unity will be adjoined as well, since εk = εk.

Let Ω1 be the field that is constructed when ε(5) is adjoined to Ω0, which
according to definition 1.8 is

ε(5) = cos(
2π

5
) + i sin(

2π

5
) =

1

4
(
√

5− 1 + i

√
10 + 2

√
5).

The polynomial f(x) is not reducible in Ω1. According to theorem 2.12, in
order for f(x) to be reducible in Ω1, the adjunction that constructed Ω1

needs to have the relative degree 5. Since this adjunction is supposed to
make the construction of the roots to the quintic equation f(x) possible, the
adjunction must be a fifth root, and ε(5) only has square roots. This means
that f(x) is indeed irreducible in Ω1.

Now let % be the second radical that is adjoined to the field and also the
one that makes f(x) reducible. As mentioned earlier, if the adjunction %

yields that f(x) becomes reducible, % must according to theorem 2.12 have
the relative degree 5 and thus be on the form % = 5

√
η. The number η is in

Ω1 because the adjunction of % is made so that f(x) becomes reducible,
then % must be an operation on an algebraic number that is already in the
field. It is also possible to write % on the binomial form %5 − η = 0, which
means that according to theorem 2.4 it is irreducible in Ω1, since η belongs
to the field.

Let Ω2 be the field in which f(x) is reducible, consequently constructed by
the adjunction %, so that Ω2= K(Ω1, %). Since f(x) now is reducible, it has
at least one polynomial factor. Let this factor be g(x), and let g(x) be an
irreducible polynomial in Ω2. According to theorem 2.7, g(x) may be written
as g(x, %), since the coefficients of g belongs to Ω2. Then g(x) is a polynomial
in the variables x, % with coefficients in Ω1. This is due to theorem 2.7 which
states that there is only one way to present all numbers α in K(Ω1, %), or
the coefficients for g(x), which is

α = ε1 + ε2%+ ε3%
2 + ...+ ε5%

4

Assume that the variable with the highest degree in g(x, %) has the coefficient
1. Now, according to theorem 2.8, since the polynomial f(x) has the factor
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g(x, %) it must have the factors

g(x, %), g(x, ε%), g(x, ε2%), g(x, ε3%), g(x, ε4%). (11)

These are all irreducible in Ω2 since g(x, %) is irreducible. This is because of
theorem 2.8 and how the factors εk% in the polynomials are algebraic
conjugates. Furthermore, the polynomials in (11) are irreducible which
means that they do not have a common factor. If they did, the factor would
be the same as the polynomial, which would mean that the polynomials
would coincide.

The polynomial

F (x) = g(x, %)g(x, ε%)g(x, ε2%)g(x, ε3%)g(x, ε4%)

belongs to Ω1, since the multiplication of the polynomials on the right hand
side will produce a polynomial in x with coefficients that are polynomials
and symmetric in %, ε%, ..., ε4%. Since they are symmetric, they belong to Ω1,
which means that their product also belongs to Ω1. Furthermore, F (x) is
according to theorem 2.5 divisible with f(x). But, as was shown earlier, all
the factors in F (x) are factors in f(x), which means that F (x) is a power of
f(x). Since none of the factors are the same, F (x) must be the first power
of f(x), which means that F (x) = f(x) and that the factors are linear. If
now ξi denotes the roots of the equation f(x), the following linear system of
equations may be constructed according to theorem 2.6


ξ1 = α0 + α1%+ α2%

2 + α3%
3 + α4%

4

ξ2 = α0 + α1ε%+ α2ε2%
2 + α3ε3%

3 + α4ε4%
4

ξ3 = α0 + α1ε2%+ α2ε4%
2 + α3ε%

3 + α4ε3%
4

ξ4 = α0 + α1ε3%+ α2ε%
2 + α3ε4%

3 + α4ε2%
4

ξ5 = α0 + α1ε4%+ α2ε3%
2 + α3ε2%

3 + α4ε%
4

(12)

where the coefficients α0, ..., α4 belong to Ω1. The roots ξi are polynomials
in Ω2 and are constructed with variables up to %4 since %5 = η.

The polynomial f(x) has real coefficients, since it is defined in the real field,
and since it is a polynomial of an odd degree it has at least one real root.6

6Can be proven with the help of the intermediate value theorem, but is not shown here
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It is known that % = 5
√
η, which means that η may be both real and

complex for % to produce the roots of f(x). It is necessary to divide further
inquisitions into two different cases.

Case 1: The number η is real. Since f(x) has real coefficients, at least one ξi
must be a real root. The roots ξ2,3,4,5 contain algebraic conjugates of ε, which
means that they have complex components. It is then logical to assume that
the real root is ξ1. Now, it is known that ε and all its conjugations belongs
to Ω1, which means that it can be assumed that % must be the real root to
xn = η. Then, for ξ1 to be real, α0, α1, α2, α3, α4 must be real. If they were
complex, their complex conjugates would also belong to Ω1. If α′k denotes
the complex conjugate to αk, then

ξ1 = α′0 + α′1%+ α′2%
2 + α′3%

3 + α′4%
4

and comparing with ξ1 from (12)

α0 + α1%+ α2%
2 + α3%

3 + α4%
4 = α′0 + α′1%+ α′2%

2 + α′3%
3 + α′4%

4

(α0 − α′0) + (α1 − α′1)%+ (α2 − α′2)%2 + (α3 − α′3)%3 + (α4 − α′4)%4 = 0.

This kind of equation may be solved in two ways. Either solve for the radical %
or the trivial solution, where all coefficients and constants are zero. According
to theorem 2.4, the binomial %5− η is irreducible in Ω1, which means that it
is impossible to solve for %. This means that the only possible solution is the
trivial, where

(αn − α′n) = 0, n = 0, 1, 2, 3, 4.

The only way for this to be true is if an is real, since the conjugate of a real
number is the same real number. Therefore an is real, which makes the root
ξ1 real.

Consider definition 1.8, which says that the nth roots of unity may be found
in the corners of a regular n-sided polygon inscribed in the unit circle. This
means that ε and ε4 as well as ε2 and ε3 are complex conjugates. From (12)
it is now clear that ξ2 and ξ5 as well as ξ3 and ξ4 must be complex
conjugates. The polynomial f(x) then has one real and four complex roots.
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Case 2: The number η is complex, with η′ as complex conjugate. The
equation x5 = η then has the complex roots %, %1, %2, %3, %4 and the complex
conjugate equation x5 = η′ consequently has the complex conjugate roots
%′, %′1, %

′
2, %
′
3, %
′
4. Then

%%′ = %1%
′
1 = %2%

′
2 = %3%

′
3 = %4%

′
4 = 5

√
ηη′ = R

where R is a real number. If now the adjunction R results in f(x) becoming
reducible, the adjunction % becomes unnecessary, and it is possible to
continue with case 1 but where the real number R replaces η.

If f(x) does not become reducible from the adjunction R, % must be adjoined,
which means that also %′ = R

% is adjoined. If ξ1 is real and the conjugate of
a real number is the same real number, then

α0 + α1%+ α2%
2 + α3%

3 + α4%
4 = α′0 + α′1%

′ + α′2%
′2 + α′3%

′3 + α′4%
′4

where α′i is the complex conjugate to αi. According to theorem 2.7, this
equation must be true even if % is replaced with any of %1, %2, %3, %4, which
gives the following equation

α0 + α1%i + α2%
2
i + α3%

3
i + α4%

4
i = α′0 + α′1%

′
i + α′2%

′2
i + α′3%

′3
i + α′4%

′4
i

where i = 1, 2, 3, 4. This means that all roots ξj, j = 1, 2, 3, 4, 5 are real.

This results in the following theorem:

Theorem 2.13: An algebraic equation of the fifth degree which belongs to,
is irreducible in and is metacyclic with respect to the field Ω either has one
real and four imaginary roots or five real roots. (Nagell, p. 263)

According to definition 2.8, the equations which are not metacyclic with
respect to Ω are irrelevant, since they cannot be solved with radicals with
respect to Ω. According to theorem 2.6, a polynomial which has coefficients
divisible with a prime number is irreducible in the rational field. One such
polynomial may be constructed by letting q ≥ 2 be a prime number and the
polynomial’s corresponding equation be on the form
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f(x) = x5 − 2qx− q = 0. (13)

Now the derivative is used to analyse how the function behaves. The following
equation is given

f ′(x) = 5x4 − 2q = 0

and the roots may be calculated

5x4 = 2q

x4 = 2q
5

x1 = 4

√
2q
5

x2 = − 4

√
2q
5 .

Note that x1 and x2 are the real roots of the equation. The original equation
is then calculated with the given values for x

f(x1) = 4

√
2q
5

5

− 2q 4

√
2q
5 − q

= −8q
5

4

√
2q
5 − q < 0

f(x2) = − 4

√
2q
5

5

− 2q(− 4

√
2q
5 )− q

= 8q
5

4

√
2q
5 − q > 0

for q ≥ 2. Consequently, three of the roots must be real.7 However, this
means that the equation is not solvable by the means of radicals, according
to theorem 2.13. Thus, the only quintic equations that may be solved by the
means of radicals indeed has either one real and four imaginary roots or five
real roots. Therefore, it has been proven that the general quintic equation is
unsolvable by the means of radicals.

7Intermediate value theorem
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5 Aftermath
In this paper I have made an effort to stay as close to the original solutions
to the equations as possible. Today, there are a multitude of different ways
to solve equations up to the quartic, and it is usually the form of the
equation that decides which route to take. The same goes for showing how
the quintic equation is impossible to solve with radicals. Another person
who showed the same thing as Abel in the same decade, is Galois. He wrote
an article in 1830 called ”On the condition that an equation be soluble by
radicals”, which not only considered the quintic equation, but all equations
of higher degrees. From his work group theory and especially Galois theory
sprung forth, which is the study of certain groups that may be associated
with equations. (O’Connor & Robertson, 1996) Many have since expanded
upon the work of Abel and Galois, and group theory is now an important
element in higher algebra, and especially in equation theory.
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de la résolution de l’équation générale du cinquième dégré. Christiania. Retrieved
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